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Abstract 

 

Single cell protein (SCP) defines the dried cells of microorganisms that can be used as a 

protein supplement both in animal feed or human food. SCP could represent an effective alterna-

tive to meet the high and growing demand of feed products.  

This work aimed to develop a simple and economically feasible process to obtain SCP by 

adding value to an industrial waste stream. Spent sulfite liquor (SSL), pure glycerol and crude 

glycerol and two different types of wood oils were selected. However, the wood oils were early 

discharged (after characterization) as possible substrates due to their low chemical oxygen de-

mand (COD) content and an unpleasant and undesirable smell. Thus, only SSL and pure and 

crude glycerol were tested.  

Crude glycerol proved to be the most viable choice given the high COD content – - g O2/L – 

and the low price per ton of COD – 200 €/ton COD. In continuous mode it was possible to achieve 

biomass concentrations of - g CDW/L (- g CDW/g COD) while efficiently removing - % of the COD 

of the influent stream. When tested in batch mode, biomass concentration reached a maximum 

of - g CDW/L (- g CDW/g COD) after - days of operation. After - days of operation, CDW per liter 

started to decrease which could indicate some sort of inhibition by fermentation by-products or 

other toxic compounds.  

Considering a batch operation mode, it was possible to produce SCP (- %w/w of protein 

content) with a commercial price of - €/ton protein. Thus, SCP production was considered feasible 

since it was possible to obtain a product that can highly compete with other feed products, for 

example, fishmeal (market price: 1.940 €/ton protein). 

  

Keywords: Single cell protein (SCP), bioreactors operation, COD removal efficiency, economic 

feasibility. 
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Resumo 

 

Single cell protein (SCP) são suplementos proteicos obtidos a partir de microrganismos, 

após secagem, que podem ser usados como aditivo alimentar em ração animal ou para consumo 

humano. SCP podem representar uma alternativa eficiente para atender à elevada e crescente 

procura de produtos alimentares para animais. 

Este trabalho teve como objetivo a projeção de um processo simples e economicamente 

viável para obtenção de SCP valorizando um efluente industrial. Licor de sulfito gasto, glicerol 

(puro e bruto) e dois tipos de óleos foram estudados. Contudo, após caracterização, os óleos 

foram descartados como possível substrato devido à baixa carência química de oxigénio (CQO) 

e ao seu odor desagradável e indesejável. Posto isto, apena o licor de sulfito e os gliceróis foram 

testados. 

Devido ao elevado CQO (- g O2/L) e ao baixo preço por tonelada de CQO (200 €/ton CQO), 

o glicerol bruto foi selecionado como substrato mais viável. Em contínuo foi possível obter den-

sidades celulares de -  g CDW/L (rendimento de - g CDW/g CQO), removendo - % do CQO do 

influente. Em batch, após - dias de operação, a densidade celular máxima obtida foi de - g CDW/L 

(- g CDW/g CQO). A densidade celular diminui após o segundo dia de operação devido, prova-

velmente, a inibição por subprodutos de fermentação ou outros compostos tóxicos.  

Operando em batch foi possível produzir SCP (- % w/w de proteína) com um preço comercial 

de - €/tonelada de proteína. A produção de SCP foi considerada exequível considerando que se 

obteve um produto que poderá ser altamente competitivo com outros produtos alimentares para 

produção animal. Ração a partir de desperdícios de piscicultura, por exemplo, é atualmente ven-

dida a 1.940 €/tonelada proteína). 

Palavras-chave: Single cell protein (SCP), operação de bioreatores, eficiência de remoção de 

CQO, viabilidade económica. 
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Chapter 1 

1. Introduction 

  

 

World resources for feed production, and thus food production, by conventional methods are hard-

pressed to satisfy the needs of an increasing population. Agriculture alone is unlikely to cover the 

additional demand for feed protein. (Hamdan & Senez, 2009).  

 

Population growth and development are increasing the demand, both quantitatively and qual-

itatively, of animal protein. This is expected to continue as real income grows, particularly in 

emerging economies, changing the nutritional habits of the population (Food and Agriculture Or-

ganization, 2004). With the increasing demand for animal protein supply, the demand for feed, 

mainly cereals and seed-oil meals, will also increase. The increasing demand for feed are a cause 

of great concern since the same grains can compete directly, or in the use of land, with grains for 

human consumption (FAO, 2004; Feed International, 2012).  According to the International Grain 

Council (2014), the 746 million tons of grains used as feed in the crop year of 2010/2011 will 

increase to a staggering 834 million tons in 2015/2016 due to the increased protein demand and 

consumption. 

Recently, for economic and healthy concerns, an increasing consumption of aquaculture 

products has been observed and, consequently, an increasing demand for feed for farmed fish 

and crustaceans. In fact, over the last 30 years aquaculture production was the segment of world 

food production that grew more rapidly, with the highest growth rate (approximately 6 % per year) 

(FAO 2012; Feed International, 2012). In 2008, 29 million tons of feed were produced globally for 

aquaculture production and the forecasts for 2015 are 51 million tons of feed (Feed International, 

012). Aquaculture production alone is projected to increase by 90% between 2010 and 2050, 

according to the International Feed Industry Federation (2013). Hence, there is the need to find 

alternative, profitable and sustainable feed sources to support the substantial growth in protein 
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production from livestock and aquaculture. Protein is the key building block for feed formulation 

systems thus the main focus for feed improvement (FAO, 2004).  

Protein production via microbiological synthesis could be an effective alternative for feed 

production in comparison with conventional agricultural technologies (e.g. soybean cultivation). 

Microbiological production uses resources more efficiently, requires less arable land, does not 

depend on climate and does not pollute the environment with pesticides. Proteinaceous biomass, 

usually called single cell protein (SCP), already outperform plant proteins and are comparable to 

traditional animal proteins Daramwal & Gaur, 2004; Jay, Loessner, Golden., 2005). 

 

1.1 Avecom NV 

This thesis was carried out at Avecom NV located in Gent, Belgium, within a six months 

period internship.  

Avecom NV was founded in 1995 as a spin-off of the Laboratory of Microbial Technology 

(LabMET) of Prof. Dr. Ir. Willy Verstraete (Ghent University). Avecom NV is now a small and 

medium-sized enterprise with focus on steering and optimizing microbial and environmental pro-

cesses. It has expertise in research, development and tailor-made solutions for particular prob-

lems related to microbial waste water treatment and soil remediation. The company offers its own 

product portfolio as well as a wide spectrum of lab- and pilot-scale feasibility studies for valoriza-

tion of organic side streams, waste water treatment, anaerobic digesters and soil remediation. 

Avecom NV has a broad know-how in biological concepts thanks to a profound collaboration with 

different universities, institutes and industrial partners. 

 

1.2 Goals of the internship 

The goal of this 6 months work was to gain know-how on the operation of lab-scale bioreac-

tors, namely for production of protein-enriched biomass, and on several analysis methods typi-

cally associated with biotechnological processes. In this scope, the goal was to add value to a 

waste stream in order to develop a new product that Avecom NV could add to their already vast 

portfolio.   

The waste stream to be used was selected according to the bioconversion efficiency of the 

waste into proteinaceous biomass as well as economic factors (e.g. operation costs and price of 

final product). The product obtained should be market-competitive. 

In order to have a more accurate follow-up of the bioreactors there was also interest in im-

plementing new analytical procedures in Avecom NV. 
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1.3 Thesis organization 

This thesis is organized into 6 chapters with 1 appendix. Chapter 1 provides the introduction, 

an overview of the company and the goals of the internship. In Chapter 2 is presented a literature 

review about the current food and feed consumption as well as a review about single cell protein. 

Chapter 3 presents the materials and methods of this work. In Chapter 4 is presented a standard 

operation procedure developed during the internship, regarding the determination of carbohy-

drates in aqueous solutions. Chapter 5 contains the results of the study and respective discussion 

of results. Finally, Chapter 4 is the conclusion chapter and you can also find some future perspec-

tives of this study. 
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Chapter 2 

2. Literature review 

 

 

2.1 World feed panorama 

The growing worldwide demand for food of animal origin has been caused by continuing 

population growth combined with income growth, urbanization and changes in lifestyles and food 

preferences. According to the Population Division of the Department of Economic and Social Af-

fairs of  United Nations (2013), between 2000 and 2011 the world population grew 5,4 % from 6,1 

to 7 billion. Within the next 14 years, population is projected to increase by more than 1 billion 

reaching 8,2 billion in 2015 and further increase to 9,6 billion in 2050. Since population growth 

and development are correlated with a larger protein consumption, demand for protein, mainly 

from animal origin, is also increasing (FAO, 2014; Hamdan & Serez, 2009).  Between 2000 and 

2011, demand for food of animal origin rose from 226 to 291 million tons, representing 42 kg meat 

per capita per year, and this growing trend is expected to continue in the following years (FAO, 
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Figure 2.1 – Population, in billion, and meat demand, in million tons, between 2000 and 2011 
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2014). The graphic of Figure 2.1 shows the population growth between 2000 and 2011 and meat 

consumption in the same period.  

The growing trend of meat demand shown in Figure 2.1, projected to continue in the next 

years, will severely impact both livestock and crop production systems. 

As the demand for meat is climbing, demand over the last few years has been largely met by 

the worldwide growth in intensive livestock production, particularly poultry, pigs and aquaculture 

products (FAO, 2006). The growth in this three sectors is due to a shifting towards animals that 

convert grain into protein more efficiently, representing lower cost products. Considering the four 

major meat sources (cattle, pigs, poultry and aquaculture), aquaculture is the livestock sector with 

the highest efficiency grain-into-protein, followed by poultry and pigs respectively, while cattle is 

the sector with the lowest efficiency of grain conversion (Alexandratos & Bruinsma, 2012; FAO 

2014). Cattle requires roughly 7 kilograms of grain to produce 1 kilogram gain in live weight while 

most species of farmed fish require less than 2 kilograms of grain. Pigs and poultry production 

require 4 and 2 kilograms, respectively, per kilogram of weight gain (Brown, 2006).  

Hence, given the highly efficient conversion of feed into protein, aquaculture production ex-

panded at a compound annual growth rate of 6,2 % within the period 2000-2011 (FAO, 2014), 

being the sector with the highest growth rate (see Figure 2.2). In the same period, the growth rate 

of poultry, pigs and cattle was 3,7%, 2,5% and 0,9%, respectively. As shown in Figure 2.2, aqua-

culture already overtook cattle production, becoming the third most demanded animal protein 

source. 

Although feed production for aquaculture does not currently represent a great amount, given 

the increasing consumption of aquaculture products, thus increasing demand for feed, special 

attention should be given to this sector. Production of feed for the aquaculture sector is expanding 

at a rate of 6-11 % per year, with no signs of peaking, being the most rapidly expanding market 
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of animal feeds production (Rust, Barrows, Hardy, Lazur, Naughten, Silverstein, 2011; Tacon, 

Hasan, Metian, 2011). Commercial aquaculture feed sector has grown from 7,6 million tons in* 

1995 to 35,3 million tons in 2010 and is projected to reach 71 million tons by 2020 (Feed Interna-

tional, 2012; Tacon et al., 2011). In contrast to commercial aquaculture feeds, farm-made aqua-

culture feeds, non-commercial, a rough estimate made by Tacon (2008) forecasted a production 

between 18,7 and 30,7 million tons in 2006.  

Feed for aquaculture can be obtained from three different sources: animal nutrient sources 

(aquatic or land animal protein meals and lipids), plant nutrient sources and microbial nutrient 

sources. Although animal and plant nutrient sources play the major role in terms of aquaculture 

diet, they have several disadvantages. Plant sources main concerns are the high occupation of 

arable land (arable land for feed crops is increasing mainly due to deforestation which has severe 

environmental impacts) (Alexandratos & Bruinsma, 2012; FAO, 2006) and competition between 

cereals and oil-seeds for human consumption and feed purposes; besides that, plant sources are 

highly dependent upon the climate and have other environmental implications (e.g. continuing soil 

degradation and loss of fertility) (FAO, 2004). Soybean meal, the most common plant source of 

protein, accounted for 25% of the total aquafeed production in 2008 (Feed International, 2012).  

As for the animal sources, considering land animals, they are directly and highly dependent 

on plant sources; besides, land animal sources are also undesirable considering the severe en-

vironmental impacts of massive livestock production (e.g. land degradation, high emissions of 

greenhouse gases and high water usage) (FAO, 2006). Considering aquatic animals the major 

concern is the currently highly restrictive policies of fish capture that are slowing down the use of 

wild fish as feed for both aquaculture and livestock; the competition factor (human consumption 

and feed purposes), already mentioned for plant sources, is also a major concern (FAO, 2014; 

Rust et al., 2011). Animal sources have an advantage towards plant sources since sometimes 

plant feedstuffs have more indigestible organic matter (carbohydrates and fibers) that result in 

higher amount of wastes (Naylor, Hardy, Bureau, Chiu, Elliott, Farrel, 2009).  

There is then the need to identify and develop sustainable alternatives to both agricultural 

and animal nutrient sources that have limited requirements of land, freshwater, nutrients and en-

ergy (Diana, Egna, Chopin, Peterson, Cao, Pomeroy et al., 2013). Microbial nutrient sources (al-

gae, thraustochytrids, yeasts, fungi and bacteria) are a promising substitute of conventional nu-

trient sources – animal and plant. Currently, there is only yeast-derived products (brewer’s yeast 

and extracted fermented products), in commercial quantities, available for feed purposes (Naylor 

et al., 2009; Tacon et al., 2011). Single Cell Protein (SCP) are currently seen as one of the major 

and most promising alternatives to plant and animal proteins. The main reason is the high growth 

rate and efficiency of microorganisms to produce protein compared to traditional sources (animal 

and plant) (Jay, Loessner, Golden, 2005).  

Despite the potential of SCP to be used as animal feed has been recognized for years, SCP 

never fully replaced fish meal at production scale (Zee, Logan, Terry, Spear, 2015). The potential 

to substitute, mainly, plant-based proteins into aquafeeds is high but depends on their relative 

prices, availability, digestibility and palatability for individual species. To be a viable alternative 
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the first criteria that should be addressed is the competitive pricing. Since feed costs typically 

account for 40 to 60 % of production costs of aquaculture products is then imperative to use good 

quality feeds at reasonable prices to ensure profitability (Hasan & New, 2013; Naylor et al., 2009). 

Other properties should also be present, such as high protein content, nutritional suitability (e.g. 

favorable amino acid profile), high digestibility and pleasant odor and palatability. Additionally, the 

product should be ease to handle, ship and store (Naylor et al., 2009). 

 

2.2 Single cell protein (SCP) 

The term Single Cell Protein (SCP) was used for the first time by C. Wilson, professor in the 

Massachussetts Institute of Technology, in 1966, so the product could be seen more favorably by 

the target market which could have been reluctant to the idea of a microbial protein or bacterial 

protein (Ware, 1977). SCP is the name given to dried cells of microorganisms (algae, fungi, yeast 

and bacteria), used as protein supplement in animal feed or human food (Najafpour, 2015; Ware, 

2007). The term should not be understood only as protein source since it refers to the whole 

microbial biomass which includes proteins, carbohydrates, lipids, nucleic acids, vitamins, minerals 

and other cell constituents.  

  

2.2.1 Historical Perspective 

Before the term SCP was first introduced in the 60’s, a pioneer research project conducted 

by M. Delbrück (Institut für Gärungsgewerbe, Germany), in 1910, had already showed the value 

of adding yeast as a feeding supplement for animals. This study would be useful years later in 

the Word War I, when Germany faced a shortage of grain and replaced as much as half of its 

imported protein sources by yeast, obtained via batch aerobic fermentation of beet and cane 

molasses (Nasseri et al., 2011; Rose & Harrison, 1993). In 1919, S. Sak (Denmark) and F.F. 

Hayduck (Germany) patented a fed-batch process – Zulaufverfahren – in which the sugar supply 

solution (molasses) was incrementally added to an aerated suspension of yeast instead of adding 

yeast to diluted sugar solution (Rose & Harrison, 1993; Ugalde & Castrillo, 2002).  Though the 

interest in yeast technology declined post-war period, regained interest in 1936 with the Word 

War II when several types of yeasts were used as supplement for both human food and animal 

feed (Ugalde & Castrillo, 2002).  

Post-war years rose awareness to face and tackle the problems of humanity and a number 

of international organizations emerged in this scope, under the leadership of the United Nations. 

Regarding the United Nations, was created the Food and Agricultural Organization (FAO) which 

highlighted worldwide malnutrition and hunger problems in 1960 by showing that 25% of the world 

population had a deficiency of protein intake in their diet. The population growth predictions com-

bined with a prospect that the agricultural production would fail to meet the increasing food re-

quirements of the growing society increased interest in fermentation processes and products 
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(Hamdan & Senez, 2009; Ugalde & Castrillo, 2002). Relatively low selling price of SCP and abun-

dant substrates (e.g. by-products such as cheese whey, molasses, methanol, hydrocarbon sub-

strates and spent sulfite liquor), with low prices, steered design towards large scale production 

and low product cost. In the 60’s, almost 250 million tons of yeast were being product worldwide 

in order to compensate agricultural shortages.  

Although, SCP ended up by being outmarketed in the late 80’s due to an increased agricul-

tural output lead by improvements in plant breeding and crop production and the approval of an 

open agricultural product trade agreement. With these developments, the price of the major agri-

cultural crops (e.g. soybeans, maize, rice and wheat) did not show the forecasted increase. The 

decrease observed in the market price of protein of plant origin effectively conditioned the expan-

sion of the promising SCP market and several industrial processes for SCP production were dis-

continued (Ugalde & Castrillo, 2002). Despite that, in 1985 Quorn™, a SCP-based company, 

received unrestricted clearance to start marketing its products and, as for 2007, Quorn™ products 

were currently the only SCP produced exclusively to human consumption (Glazer & Nikaido, 

2007; Quorn, 2014).  

Nowadays, SCP technology is still an attraction as part of an integrated food system for ani-

mal production (poultry, veal and fish) as well as human consumption (e.g. meat substitutes, tex-

ture providing agents and flavor enhancers) (Ugalde & Castrillo, 2002). 

 

2.2.2 SCP sources 

Bacteria, yeast, fungi and algae are the main sources of microbial protein that can be used 

as SCP (Anupama & Ravindra, 2000). Microorganisms are an excellent source of SCP due to 

their rapid growth, ability to grow on inexpensive waste materials and high yield of carbon source-

to-protein (in grams of protein per kilogram of waste). Thus, the requisites for a microorganism to 

be suitable for SCP production are high protein content, high growth rate (high productivity), non-

pathogenic characteristics, cellular resistance against medium fluctuations and should be able to 

utilize complex mixture of carbon sources, with particular interest to waste materials (Cooney & 

Tannenbaum, 2012; Daramwal & Gaur, 2004; Nasseri et al., 2011). The average composition of 

SCP, considering the four main sources, is shown in Table 2.1. 

Table 2.1 – Composition of SCP (protein, fat, ash and nucleic acid content), in % dry weight, 

according to the four main sources of SCP: algae, bacteria, fungi and yeasts (Najafpour, 

2015). 

 Composition (% dry weight) 

Protein Fat Ash Nucleic acid 

Algae 40 – 60 7 – 20 8 – 10 3 – 8 

Bacteria 50 – 65 2 – 6 5 – 10 8 – 12 

Fungi 30 – 45 2 – 8 9 – 14 7 – 10 

Yeasts 45 – 55 1 – 3 3 – 7 8 – 12 



24 

 

 Bacteria and yeast are particularly interesting due to the shorter doubling time (5-15 minutes) 

when compared to algae and fungi (2-4 hours) (Najafpour, 2015). Other advantages of yeasts 

include their high lysine content, ability to grow at acidic pH and high acceptability by the popula-

tion (Nasseri et al., 2011).  As example of species of yeasts used as SCP are Pichia, Candida, 

Saccharomyces, Kluyveromyces and Koloechera (Jay et al., 2005; Nasseri et al., 2011). 

Bacteria have the highest protein content, considering the four major SCP sources, and pro-

tein with good quality, mainly due to a higher amount of lysine and sulfur-bridge amino acids 

(Daramwal & Gaur, 2004). However, the high content of nucleic acids and the general public 

resistance to bacterial products may represent a disadvantage of SCP from bacteria, if consider-

ing food purposes. Cellulomonas, Pseudomonas, Methylococcus, Bacillus, Rhodopseudomonas, 

Lactobacillus, Methanomonas and others, are amongst the genera of bacteria used for SCP pro-

duction (Anupama & Ravindra, 2000; Daramwal & Gaur, 2004).  

Algae are the source of SCP with the lowest nucleic acid content and they also have high 

protein content. Although, the high production costs and technical difficulties associated with the 

cultivation, mainly due to the need of light and high surfaces to grow as well as a difficult harvest-

ing process, are big disadvantages when considering cultivation of algae for SCP production. 

Production costs can be reduced by placing production plants of such cells in areas where sun-

light is available most of the year although, this characteristic makes the process of producing 

SCP climate dependent which is undesirable. Chlorella and Spirulina are the most reported gen-

era of algae used for SCP production (Daramwal & Gaur, 2004). 

 Fungi are the source of SCP with the lowest protein content. Additionally, they have slower 

growth rates, when compared to yeasts and bacteria, and low content of sulfur-bridge amino acids 

(Daramwal & Gaur, 2004; Nasseri et al., 2011). However, some fungal species have the ability to 

bioconvert lignocellulosic wastes (Anupama & Ravindra, 2000). Aspergillus, Penicillium, Rhizo-

pus, Agaricus, Chaetomium, Fusarium and Phanerochaete are amongst the several fungal spe-

cies reported for SCP production (Daramwal & Gaur, 2004).  

 

2.2.3 Substrates used for SCP production 

The interesting characteristic inherent to SCP production is the flexibility and suitability of 

microorganisms to convert waste materials into protein-enriched biomass (Najafpour, 2015). 

Cost-effectiveness production of SCP is directly linked to the substrate used and the bioconver-

sion efficiency into biomass (Daramwal & Gaur, 2004). Hence, there is a great interest in using 

waste material as substrate for SCP production since their use as substrate contributes for a 

cheaper production cost as well as control the accumulation of wastes (Daramwal & Gaur, 2004; 

Najafpour, 2015). Several waste materials have been reported for SCP production including pe-

troleum-based hydrocarbons, methane, methanol, starch, bagasse, manure and animal wastes, 

wheat bran and straw and other agricultural and industrial wastes (Anupama & Ravindra, 2000; 

Najafpour, 2015).  

Although there were already several industrial processes running on high energy sources 

(e.g. petroleum based hydrocarbons and methanol) there are several inherent disadvantages 
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such as price of substrates highly dependent of oil prices, carbohydrates remainders and political 

and economic decisions (Najafpour, 2015; Trinci, 1992). For instance, in the USA the price of 

methanol-derived SCP is 2 to 5 times higher than fish meal, making it an uninteresting alternative. 

Due to the highly competitive soya price and the presence of carcinogens in petroleum-based 

SCP is no documented company producing petrochemical-derived proteins (Nasseri et al., 2011).  

Waste materials as substrates is probably the only way to make a large-scale protein pro-

duction unit profitable. Waste materials should be selected according to the local availability to 

avoid extra costs resulting from transportation of substrates over long distances. Constant supply 

and large volumes of substrate should also be ensured (Daramwal & Gamur, 2004). Lignocellu-

losic substrates can also represent an extra production cost since it is usually necessary a pre-

treatment step to release the fermentable sugars (Nasseri et al., 2011). Despite the promising 

performance of waste materials as substrate for SCP production, selection of domestic 

wastewaters should be avoided. Zee et al. (2014) reported the contamination of SCP products 

with heavy metals and faecal pathogens due to the processing of domestic sewage. 

  

2.2.4 SCP nutritional value and use limitations 

The nutritional value of SCP is based on its composition (protein, fats/lipids, ash, nucleic 

acids, carbohydrates and vitamins) and is linked to the selected microorganism, the substrate and 

the growth conditions.  

The most attractive characteristic of SCP is their high protein content and balanced amount 

of enzymes, minerals and vitamins. As drawbacks, mainly when considered for human consump-

tion, there are the rigid cell wall (mainly in algal products), the high content of nucleic acids, aller-

gies, and gastrointestinal effect (Jamal, Alam, Salleh, 2008; Najafpour, 2015). If considering SCP 

for food purposes, nucleic acids content should be reduced below 2% either by chemical or en-

zymatic procedures (Nasseri et al., 2011); for the same purpose, the cell wall should also be 

removed since    

Considering the four major SCP sources, bacterial cells produce biomass with the highest 

protein content while algae products have the highest lipid content (see 2.1.2 SCP sources, Table 

2.1) (Najafpour, 2015). As previously said, amino acids and vitamins are well balanced in all SCP 

products. Vitamins of the B-complex are present in all SCP sources (Anupama & Ravindra, 2000; 

Jay et al., 2005). Essential amino acids content in SCP from bacteria, yeast and algae is higher 

than that of plant proteins and essentially similar to animal protein (e.g. casein), as shown in Table 

2.2 (Volova & Barashkov, 2010).   

Optimal concentration of lysine, an important amino acid, found in SCP and not in major plant 

proteins (e.g. wheat) indicates that SCP can successfully replace plant proteins and are compa-

rable to animal proteins (Daramwal & Gaur, 2004; Jay et al., 2005). Amino acids content found in 

SCP is also comparable with FAO guidelines (Anupama & Ravindra, 2000).  When it comes to 

digestibility, SCP slightly yield animal proteins but surpass plant proteins (Jay et al., 2005; Volova 

& Barashkov, 2010).  
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Table 2.2 – Amino acid composition, in % dry weight, of SCP from bacteria, yeast and algae 

and amino acid composition of a standard animal protein – casein (Volova & Barashkov, 

2010). 

 

Amino acid composition (%dry weight) 

Bacteria Yeast Algae 
Casein 

(animal protein) 

Lysine 8,61 7,02 5,98 7,33 

Histidine 2,48 1,96 1,81 2,20 

Arginine 8,00 7,30 7,74 3,19 

Asparagine 9,57 10,08 9,49 7,11 

Threonine 4,52 5,29 4,88 4,22 

Serine 3,47 4,02 4,86 5,72 

Glutamic 11,17 12,56 13,12 22,20 

Proline 3,46 4,58 5,74 10,41 

Glycine 5,47 6,05 6,34 1,88 

Alanine 8,80 9,07 9,18 2,96 

Cystine - 0,56 1,37 0,42 

Valine 7,13 6,38 5,41 5,72 

Methionine 2,69 2,63 2,16 2,47 

Isoleucine 4,58 4,47 3,55 4,10 

Leucine 8,52 8,60 8,91 9,39 

Tyrosine 3,26 3,62 3,13 4,75 

Phenylalanine 3,96 4,42 4,41 4,62 

Tryptophan 1,24 1,40 1,58 1,32 

 

Hence, nutritive value of SCP is higher than plant proteins and can be used as a substitute 

or a fortifier of this protein source (Daramwal & Gaur, 2004). The majority of SCP products are 

found to have a comparable amino acid profile with fish meal (Tacon, Metian, Hasan, 2009; Zee 

et al., 2015). 

Although, when grown on substrates like hydrocarbons and wastes contaminated with heavy 

metals, several toxins and other undesirable compounds can accumulate which decreases the 

nutritive value of SCP (Anupama & Ravindra, 2000).  
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2.2.5 SCP production process 

SCP are usually produced by two types of fermentation processes: submerged fermenta-

tion and solid state fermentation (SSF), as shown in Figure 2.3.  

 

 

 

 

 

 

 

 

 

 

(Adapted from FAO, n.d.) 

In a submerged fermentation process, the substrate to be used is liquid and is held in the 

bioreactor which is operated continuously. The product is filtered or centrifuged and finally dried, 

originating the SCP. As for the SSF, is generally used with solid substrates and are more water 

efficient and have lower operating costs, when compared with submerged fermentation (Chen, 

2013; Mitchell, Berovič, Krieger, 2006). SSF can run efficiently with a water content of 60 % (or in 

the range 12 – 80% depending on the process); on the contrary, submerged fermentation requires 

a water content of around 95%. SSF needs no centrifugation/filtration to harvest the microorgan-

isms which is related to the reduced operation costs. In Table 2.3 is shown a comparison between 

both fermentation processes. Although, SSF has several advantages, their use is more suitable 

for fermentation of lignocellulosic wastes, where simultaneous saccharification and fermentation 

are desirable. It is also more suitable for SCP production from fungi since higher biomass con-

centrations are obtained (Mitchell et al., 2006). 

 

 

 

 

Figure 2.3 – Representative diagram of the two main fermentation processes to obtain SCP: sub-

merged fermentation and solid-state fermentation (SSF). 
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Table 2.3 – Comparison between the two fermentation processes usually used for SCP 

production: submerged fermentation and solid state fermentation (SSF) (Adapted from 

Chen and Xu, 2004). 

Solid-state fermentation Submerged fermentation 

Low water content Water is the main component of the culture 

Microorganisms absorb nutrients from the wet solid 
substrate; a nutrient concentration gradient exists 

Microorganisms absorb nutrients from the 
mixed liquor; there is no concentration gradient 

Inoculation size is large (> 10%) Inoculation size is small (< 10%) 

Required oxygen is from the gas phase; low energy 
consumption 

Oxygen is provided as dissolved oxygen; 
higher energy consumption due to dissolved 
oxygen 

Microorganisms adsorb or penetrate into the solid 
substrates 

Microorganisms distributed uniformly in the 
mixed liquor 

High production rate and high product yield Low production rate and low product yield 

Mixing is difficult and the growth is restricted by nu-
trient diffusion 

Easy to mix; growth not restricted by nutrient 
diffusion 

Difficult control of temperature Easy control of temperature 

Energy consumption and equipment investment are 
high 

Low investment in equipment; low energy con-
sumption 

Low raw material cost High raw material cost 

Little waste organic water Large amount of waste organic water 

Heterogeneity  Homogeneity 

 

2.1.6 Economic viability of SCP production  

Estimating cost of SCP product is of extreme importance for the feed market industry. When 

considering SCP production it is relevant to accurately estimate the associated costs since in 

most cases the product will be competing with protein sources, mainly of plant origin, and the 

profit margins are predictably low. Several parameters can be used to estimate the economic 

viability of the process. In SCP production, with no pre-treatment or purification (e.g. nucleic acids 

removal) the substrate is the key element and accounts for nearly 62% of the total product cost 

followed by 19% of fixed costs, related to the production process (Stanbury, Whitaker, Hall, 2000; 

Ugalde & Castrillo, 2002). 

To be market-competitive, at least with plant proteins, SCP produced should have at least 

the same price. As of December 2014, soybean meal (with 48% of protein), the major source of 

plant protein used as feed, was marketed in the USA at 340 euros per ton; fishmeal (with 60% 

protein), one of the prime animal protein sources used as feed, was sold at 1.940 euros per ton 

(Index Mundi, 2014). 
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Chapter 3 

3. Materials and Methods 

 

 

 

3.1 Microbiome, substrates and nutrients 

3.1.1 Microbiome 

 A hydrogenotroph was used to inoculate the reactors. 

The mixed liquors from the bioreactors were periodically harvested (typically 10% of the total 

volume) and stored in a cold room, for further inoculation. Prior to use, the inoculum was accli-

mated to 23 ºC (room temperature).  

3.1.2 Substrates  

Four types of industrial waste streams were tested to determine the best substrate for protein 

production: glycerol (65% purity from Proviron, Belgium), crude glycerol (technical grade from 

Delabie, Belgium), spent sulfite liquor and wood oil (Biomass Technology Group, Belgium).  

Substrates were previously submitted to several analysis in order to do its characterization, 

namely, pH, total and soluble chemical oxygen demand (COD), total suspended solids (TSS), 

volatile suspended solids (VSS), ammonium nitrogen, orthophosphate and Kjeldahl nitrogen. The 

substrates were stored in a cold room and acclimated to room temperature (23 ºC) before analysis 

or feeding. 

  

3.1.3 Nutrients 

 Apart from the inoculum and substrate, the reactor was fed with nitrogen and phosphate 

sources as well as trace elements. A trace elements solution (1 L) was prepared, according to Yu 
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Eq. 3.1 

Eq. 3.2 

Eq. 3.3 

et al. (2013) with 0,26 g CH4N2O, 0,6 g H3BO3, 0,4 g CoCl26H2O, 0,2 g ZnSO47H2O, 0,06 g 

MnCl24H2O, 0,06 g NaMoO42H2O, 0,04 g NiCl26H20 and 0,02 g CuSO45H2O; 1 mL of trace 

elements solution per liter of reactor was added. All solutions and mixed liquors were prepared 

with tap water. 

 

3.2 Reactors operation 

3.2.1 Continuous mode 

A lab-scale continuous stirred-tank reactor (CSTR) was fed with a diluted solution containing 

all the nutrients and the substrate (with different concentration), as indicated in Figure 3.1. Aera-

tion was made by means of a sparger of compressed air. The pH of the reactor was kept above 

6,75 by automatically adding NaOH. The reactor was operated at room temperature (23 ºC). The 

reactor was inoculated with 10% of the total effective volume. The inoculum was previously accli-

mated to the respective substrate.  

Sludge retention time (SRT) and hydraulic retention time (HRT) of the reactor are equal. This 

is guaranteed by feeding the influent continuously and removing the effluent via overflow. HRT 

was calculated according to Eq. 3.1.  

 

HRT = 
V

F
 

 

 

Where: 

- HRT represents the hydraulic retention time, in d; 

- V is the volume of the reactor, in L; 

- F is the influent flow rate, in L/d; 

Organic loading rate (OLR) of the reactor was also calculated, in relation to HRT, as shown 

in Eq. 3.2.  

OLR=
Cfeed

HRT
 

with: 

- OLR representing the organic loading rate, in g COD/Ld; 

- Cfeed as the desired COD content, in g COD/L, of the influent (feed) stream; 

- HRT representing the hydraulic retention time, in d. 

By calculating the OLR it is possible to determine the sludge loading rate (SLR) as shown in 

Eq. 3.3. 
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Eq. 3.4 

Eq. 3.5 

SLR=
OLR

VSS
 

Where: 

- SLR is the sludge retention time, in g COD/g VSSd;  

- OLR is the organic loading rate, as mentioned before; 

- VSS represents the volatile suspended solids, in g VSS/L; 

The amount of substrate to be added to the feed stream in order to achieve the desired COD 

in the influent was calculated according to Eq. 3.4. 

Vsubs = 
Cfeed

Csubs

 ∙ Vfeed 

Where: 

- Vsubs represents the volume of substrate that should be added to the feed stream to 

obtain the desired COD content, in L; 

- Cfeed is the desired COD content, in g COD/L, of the influent (feed) stream; 

- Csubs is the COD content, in g COD/L, of the substrate to be used; 

- Vfeed is the volume of feed, in L, to be prepared for a given test. 

-  

3.2.2 Batch mode 

 A reactor with the same characteristics as the one previously described was operated in 

batch mode. This typology was tested only with crude glycerol, with two different initial organic 

loads –*. All nutrients and the crude glycerol were provided in the beginning of the batch. The 

reactor was aerated with compressed air, through an air sparger, and the pH was kept above 6,8 

by automatic addition of NaOH, as shown in Figure 3.2. The reactor was operated at 23 ºC (room 

temperature). 

3.2.3 Follow-up of CSTR and batch reactors 

Both operation modes were monitored regarding the same parameters: soluble chemical 

oxygen demand (sCOD), total suspended solids (TSS), volatile suspended solids (VSS), dis-

solved oxygen (DO) and pH. 

Soluble COD was used to calculate the COD removal efficiency (in percentage) of each 

reactor according to Eq 3.5. 

COD removal efficiency = 
Cfeed -CML

Cfeed

×100% 

Where: 

- Cfeed is the soluble COD in the influent (feed), in g COD/L; 
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Eq. 3.6 

Eq. 3.7 

- CML is the soluble COD in the mixed liquor, in g COD/L.  

 

3.3 Analytical techniques 

3.3.1 Total suspended solids (TSS)  

Total solids content in the samples was determined by the dry residue method as described 

by Clescerl et al., 1999. Dry residue contains all suspended solids as well as soluble compounds. 

The dry residue was obtained after the evaporation of the water contained in a certain sample 

volume, after drying in a kiln at 103–105 ºC until constant weight. According to this method, a 

previously dried and empty crucible was weighted, by means of an analytical balance (Sartorius 

TE64, Germany), and then filled with a certain sample volume. The crucible was then placed in a 

kiln (Memmert, Germany) at 105 ºC overnight, until constant weight. After drying, the crucible was 

placed in a desiccator in order to cool down until ambient temperature and then weighted. Total 

solids (TSS), expressed in g/L, can then be calculated according to Eq. 3.6.  

Total suspended solids (TSS) = 
m2-m1

VS

  

where: m2 = weight of the crucible with the sample after drying at 105 ºC (g); 

   m1 = weight of the pre-dried crucible (g);  

   VS = volume of sample used in the determination (L);  

3.3.2 Volatile suspended solids (VSS) 

Volatile solids content was determined by the ash content method, as described by Clescerl 

et al., 1999. The ash content corresponds to the residue left after incineration of the dry residue 

(previously obtained by the dry residue method) in the muffle oven at 600 ºC ± 50 ºC.  Subse-

quently, the porcelain crucible with the dry matter was placed in the muffle oven LE 4/11/R6 (Na-

bertherm, Germany) at 600 ºC for 2 hours. The procedure was then the same as for the dry 

residue method: after 2 hours the crucible was placed in the desiccator to cool down until ambient 

temperature. After cooling down the crucible was weighted and the ash content (volatile sus-

pended solids, VSS) was calculated according to Eq. 3.7. 

Volatile solids (VSS) = 
m2-m1

VS

  

where: m2 = weight of the crucible with the sample after incineration at 600 ºC (g); 

   m1 = weight of the crucible with the sample previously dried at 105 ºC(g);  

   VS = volume of sample used in the determination (L); 
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Eq. 3.8 

Eq. 3.9 

3.3.3 Dissolved Oxygen (DO) 

 Dissolved oxygen (DO) was measured using a DO meter (WTW Oxi 315i, Germany). DO in 

the reactors was kept above 2 mg O2/L. 

 

3.3.4 pH 

 pH was measured using the pH meter (Consort C535, Belgium). 

 

3.3.5 Chemical Oxygen Demand (COD) 

Chemical oxygen demand was determined by two different methods, depending on the sam-

ples. Chemical oxygen demand (COD) of mixed liquors was measured photometrically using a 

spectrophotometer (HACH Lange DR 3900, USA) and easy-to-use kits LCK014 (range: 1.000 – 

10.000 mg O2/L) and LCK 514 (range: 100 – 2.000 mg O2/L) as specified by the manufacturer; 

solid samples and substrates were analyzed by means of the reference method. COD standard 

method is based on the oxidation (destruction) of organic matter by potassium dichromate, cata-

lyzed by silver sulfate. Destruction was followed by a colorimetric titration with a ferroin indicator 

of the excess of non-reduced potassium dichromate with iron ammonium sulfate. The COD can 

then be calculated as shown in Eq. 3.8 and expressed in mg O2/L or, in case of a solid sample, 

in mg O2/g sample. 

COD = 
(A −  B)∙t∙8000

VS

 

where: A = volume of iron ammonium sulfate solution used for titrate the blank (mL); 

   B = volume of iron ammonium sulfate solution used for titrate the sample (mL); 

   t = normality of the iron sulfate ammonium solution (N); 

   8000 = milliequivalent weight of oxygen 

   VS = amount of sample used in the determination (L or g); 

The normality (t) of the iron sulfate ammonium solution is calculated according to Eq. 3.9. 

t = 
10 ×0,25

n
 

 with n = volume of iron ammonium sulfate solution for the normality determination (mL). 

Mostly of the COD analysis performed were regarding the soluble COD. Analysis of soluble 

COD are performed in the supernatant of a previously centrifuged sample (usually 20 mL volume) 

at 10.000 rpm for 10 min. 
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Eq. 3.10 

3.3.6 Ammonium nitrogen 

Ammonium nitrogen (NH4
+
-N) was measured photometrically using a spectrophotometer 

(HACH Lange DR 3900) and the commercial easy-to-use kits LCK302 (range: 47 – 130 mg NH4
+
-

N/L), LCK303 (range: 2,0 – 47 mg NH4
+
-N/L) and LCK304 (range: 0,015 – 2,0 mg NH4

+
-N/L), ac-

cording to the manufacturer indications. In order to remove suspended solids, the samples were 

previously centrifuged at 10.000 rpm for 10 minutes (Eppendorf 5810, Germany).  

 

3.3.7 Nitrate and nitrite as nitrogen 

Nitrate as nitrogen (NO3
-
-N) was measured photometrically using a spectrophotometer us-

ing the easy-to-use kits LCK339 (range: 0,23 – 13,5 mg NO3
-
-N/L) and LCK340 (5 – 35 mg NO3

-
-

N/L), according to the manufacturers indications.  

Nitrite as nitrogen (NO2
-
-N) was measured photometrically using a spectrophotometer using 

the easy-to-use kits LCK341 (range: 0,015 – 0,6 mg NO2
-
-N /L) and LCK342 (range: 0,6 – 6 mg 

NO2
-
-N/L) as indicated by the manufacturer. Samples were previously centrifuged at 10.000 rpm 

for 10 minutes in order to remove suspended solids. 

 

3.3.8 Phosphate as orthophosphate 

Phosphate as orthophosphate (PO4
3-

-P) was measured photometrically using a spectropho-

tometer using the easy-to-use kits LCK 348 (range: 0,5 – 5 mg PO4
3-

-P /L) and LCK350 (range: 2 

– 20 mg PO4
3-

-P /L) as specified by the manufacturer.  

 

3.3.9 Kjeldahl-Nitrogen and protein content 

Kjeldahl method is used to determine organic and ammoniac nitrogen content of organic and 

inorganic substances. This method is based on the conversion of organic nitrogen in ammonium 

nitrogen under the form of ammonium sulfate, by means of destruction using concentrated sulfuric 

acid (98%) and a Kjeldahl catalyst (catalyst tablet containing 5 g K2SO4 and 0,5 mg CuSO4.5H2O) 

at high temperatures (400 ºC). After destruction, ammonium is released in alkaline solution as 

ammonia, distilled and bound as borate. The nitrogen content was determined with an acid-base 

titration. Nitrogen content, expressed as Kjeldahl nitrogen (Kj-N), was calculated according to 

Eq.3.10. 

Kj-N =
(A - B)∙t∙MMN∙1000

VS

∙f 

With A = volume of acid (HCl) titrated for the sample (mL) 

   B = volume of acid (HCl) titrated for the blank (mL)  
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Eq. 3.11 

Eq. 3.12 

   t = titre of the HCl solution (usually 0,02 N) 

   MWN = molecular weight of Nitrogen (g/mol)  

   VS = volume of the sample in mL. 

  f = dilution factor 

 Protein content of biomass was determined using Kjeldahl method. Although, this method 

does not measure the protein content directly, therefore a conversion factor (FK) was applied in 

order to convert the measured nitrogen concentration to protein concentration, as shown in Eq. 

3.11.  

P=FK×N 

with P = Protein content (mg/L) 

   FK = Kjeldahl conversion factor 

        N = content of nitrogen (mg/L) 

The magnitude of the Kjeldahl factor depends on the sample matrix (e.g. amino acid compo-

sition of the proteins) but a conversion factor of 6,25 is usually accepted, for simplification rea-

sons.   

 

3.3.10 Total fat content determination   

Total fat content in biomass was determined using a lipids extraction method – Soxhlet 

method. According to this method lipids were extracted from the sample by multiple rinsing out 

with an organic solvent. The organic solvent used was fat-free petroleum ether (PE) with a boiling 

point range between 40 and 60 ºC. At the end of the extraction process the organic solvent was 

distilled out from the extracted lipid. The glass flask was then dried in the oven, at 105 ºC over-

night, until constant weight. After cool down, the mass of the extract (total fat) was then measured 

and the percentage of extractable lipid (EL) in the initial sample was calculated according to Eq. 

3.12. The fat content can also be expressed in miligrams of extractable lipids per gram of sample 

(mg EL/g sample). 

EL = 
(m2 - m1)

mS
×100% 

where, 

m2 is the mass, in grams (g), of the extraction flask containing the extracted lipid after sol-

vent evaporation (distillation and oven-drying) and cooled down to room temperature until 

constant weight; 

m1 is the mass, in grams (g), of the clean extraction flask (tare); 

mS is the initial mass, in grams (g), of the sample used for the extraction. 
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3.3.11 Carbohydrate concentration 

The determination of the carbohydrate concentration was performed using a method imple-

mented and validated in Avecom throughout this work (See 4. Standard Operation Protocol). 

 

3.4 Harvesting, drying and grinding 

Reactors were harvested and the mixed liquor was kept in a beaker to let it settle gravita-

tionally for approximately - minutes. The supernatant was then discharged and the settled bio-

mass was centrifuged during - minutes at - rpm using - mL bottles. In order to wash the pellet 

before drying, the pellet was centrifuged one time with water in the same conditions. Three differ-

ent drying processes were tested: (1) tumble drying, (2) microwave drying, and (3) oven drying. 

The dried product was then ground by means of a pestle and a mortar. 

 

3.5. SCP characterization  

The characterization of the single cell protein – ProMic pure – was performed according to 

content of protein (Kjeldahl method), lipids (Soxhlet method), carbohydrates (Dubois method), 

ash and solubility in water. 

 

3.6 Economic evaluation 

Economic viability of the project was evaluated according to calculations regarding the pro-

cess operation costs (e.g. costs of substrate, base/acid, oxygen, centrifuging and drying) and the 

price of the final product. The total process operation costs (Total OPEX) and the price of the final 

product were then compared regarding the substrates tested. 
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Chapter 4 

 5. Results and Discussion 
 
 

4.1. Characterization of the waste streams 

Prior to use, pure glycerol (PG), crude glycerol (CG), spent sulfite liquor (SSL) and two dif-

ferent types of wood oil (WO-1 and WO-2) were characterized in order to evaluate its applicability 

as carbon source for the reactor. In Table 5.1 are shown the main characteristics (pH, tCOD, 

sCOD, TSS, VSS, ammonium nitrogen, orthophosphate, total and soluble Kjeldahl nitrogen, color 

and scent) of the possible suitable substrates for production of proteinaceous biomass. 

Table 4.1 - Characterization parameters (pH, total and soluble COD, TSS, VSS, ammonium nitrogen, 

phosphate, total and soluble Kjeldahl nitrogen, color and scent) of pure glycerol (PG), crude glycerol 

(CG), spent sulfite liquor (SSL) and wood oils (WO-1 and WO-2). 

Sample 

PG CG SSL WO-1 WO-2 

pH      

tCOD (g O2/L)      

sCOD (g O2/L)      

NH4
+
-N (mg/L)      

PO4
3-

-P (mg/L)      

TSS (g/L)      

VSS (g/L)      

Kj-Nt (mg/L)      

Kj-Ns (mg/L)      

Color      

Scent      
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As shown in Table 4.1, pure glycerol, crude glycerol and SSL both have high COD (higher 

than - g O2/L) which indicated they were promising substrates for the intended goal; on the other 

hand, both wood oils (WO-1 and WO-2) had low COD which indicated that these two substrates 

would not be a good choice as carbon source for the reactor.  

 

4.2 Waste stream selection 

In order to be selected as suitable substrates, there were some requirements that the waste 

streams had to meet: (1) high COD content; (2) no presence of toxins or other potential harmful 

compounds; (3) low cost per kilogram of COD; and (4) high availability (high volumes, constant 

supply and no rupture of stocks). The COD content is shown in Table 4.1. Regarding this param-

eter, as previously explained, WO-1 would be the stream to be early discarded due to a low COD 

content. Although, since both wood oils had an unpleasant smell they were both discarded as 

possible substrates, since it is an unwanted characteristic of feeding products. 

The presence of toxins is hard to determine therefore this parameter was not used to decide 

the suitability of the streams as substrate. Since all the waste streams were readily available, their 

availability could not be used as an excluding factor. Considering the price of the different waste 

streams (in euro per ton of COD), crude glycerol appeared to be the most promising waste stream 

given that it had the lowest price per ton of COD (200 €/ton) comparing to 350 €/ton and 360 €/ton 

for PG and SSL, respectively. Although PG was purchased at 250 € per ton the market price had 

to be discussed with the supplier. The initial market price of PG was 650 € per ton which would 

be unfeasible. In Table 4.2 is shown the price overview of the substrates tested: PG, CG and 

SSL. 

Table 4.2 – Price overview (as €/ton and €/ton COD) of the substrates tested. 

Industrial 

waste stream 
Source ton COD/ton stream 

Price  

(€/ton) 

Price 

 (€/ton COD) 

PG Proviron 0,72 250 350 

CG Delabie 0,67 135 200 

SSL Greensource 0,55 200 360 

 

Comparing the characteristics of the five acquired waste streams, the substrates selected to 

be tested were the pure glycerol, crude glycerol and SSL. A mixture of pure glycerol and SSL was 

also tested.   
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4.3 Bioreactors operation 

4.3.1 Continuous mode 

CSTRs were tested since it is one of the most widely typologies used for SCP production. 

Continuous operation was only tested with SSL, PG and an equal mixture of both. The reactors 

were followed-up during several weeks in order to achieve a steady-state biomass, thus protein, 

production. Previously to this work, the CSTRs were operated under the same process conditions, 

as evidenced in Table 4.3.  

Table 4.3 – Previous process conditions of the CSTRs operated in Avecom 

Parameter  

Volume (L)  

Flow (L/d)  

Substrate concentration (g COD/L)  

HRT (d)  

OLR (g COD/Ld)  

C/N/P  

 

Although this organic concentration – - g COD/L – was not inhibitory of bacterial growth, the 

substrates were too recalcitrant (results not shown). Therefore the initial substrate concentration 

provided to the reactors was decreased from - g COD/L to - g COD/L. Since there was also a high 

amount of ammonium nitrogen left in the effluent (results not shown), the nitrogen source was 

reduced. The C/N/P was then changed from -/-/- to 100/5/1. The flow rate was increased from - L 

feed/d to - L feed/d. The reactors already showed a constant performance to the previously im-

posed - g COD/Ld. Thus this one was increased to - g COD/Ld.  

 

4.3.1.1 Spent sulfite liquor 

Two tests, with different feed concentrations were performed with spent sulfite liquor. Feed 

solutions were prepared with - g COD/L (- mL SSL/L) and - g COD/L (- mL SSL/L). Feed flow rate, 

HRT, OLR and C/N/P were kept constant in both tests. Ammonium chloride was used as nitrogen 

source and dipotassium phosphate was used as phosphate source. The - L CSTRs fed with SSL 

were tested according to the process parameters described in Table 4.4. 
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Table 4.1 - Process parameters of the SSL–reactor fed with 20 gCOD/L (A) and 10 g COD/L 

(B). 

Parameter A B 

Flow (L/d)   

Feed concentration (g COD/L)   

Nitrogen (g N/L)   

Phosphate (g P/L)   

HRT (d)   

OLR (g COD/Ld)   

C/N/P 100/5/1 100/5/1 

 

The results of the follow-up, namely the COD and the COD removal efficiency, of the CSTR 

fed with - g COD/L are shown in the graph of Figure 4.1. 

As evidenced in Figure 4.1, the highest SSL consumption rate was obtained between day - 

and day - (removing - % of the COD of the influent). In the following days, the COD removal 

efficiency continued to increase, although at a slower rate. It reached a maximum peak at day - 
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Figure 4.1 – Follow-up of the SSL-fed reactor (20 g COD/L): soluble COD (g COD/L) and 

COD removal efficiency (%). 
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with - % of COD removal from the influent. After day -, the consumption of substrate stabilized 

around - g COD/L. In Figure 4.2, is shown the cell dry weight (CDW) as well as the biomass yield.  

 

 

Maximum cell dry weight – - g CDW/L – was achieved in the - day of operation. This corre-

sponded to a yield of approximately - g CDW/g COD. The maximum yield obtained was within the 

range usually reported in literature (Guo & Olsson, 2014; Helle, Lin, Duff, 2008). After day -, bio-

mass concentration showed a decreasing tendency. 

A test with a stream with lower COD content (- g COD/L) was also performed. The results 

are shown in Figure 4.3.  
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Figure 4.3 – Soluble COD, in g COD/L, and COD removal efficiency (%) of a reactor 

continuously fed with - g COD of SSL per L. 

 Comparing the graphs of Figures 4.1 and 4.3 one can tell that both reactors showed a similar 

performance. The reactor fed with - g COD/L reached the maximum of COD consumption at day 

- of operation, with a removal efficiency of -%. From day - onwards COD consumption stabilized: 

the COD left in the effluent was around - g/L; the COD removal efficiency was approximately - %. 

Cell dry weight and respective yield CDW/COD was not considered in this test. 

 A great amount of base was consumed in order to control the pH of the reactors. Approxi-

mately - mL of NaOH were pumped to the reactor per day (considering the one fed with - g 

COD/L). This highly influences the process costs since a higher amount of base is linked to higher 

process costs. SSL and the high amount of base consumed combined with its high cost (350 € 

per ton of COD), SSL was economically unfeasible and should not be considered for scale-up (for 

detailed economic viability please refer to 4.6 Economic evaluation). The process could still be 

considered feasible if the biomass yield was high since the high amount of cell produced would 

compensate the high costs. Though, this was not verified since the biomass yield was too low. 

 

4.3.1.2 Pure glycerol 

 Pure glycerol was tested an influent stream containing - g COD/L. The process parameters 

applied were the same as described before (see Table 4.4).  
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 If diluted, glycerol is known to be very sensitive to contamination at room conditions. Refrig-

eration of the feed container and tubing could be a possibility. Although this would increase pro-

cess costs which was undesirable. Hence, the design of the reactor was changed. Instead of 

feeding the CSTR with a single influent stream (diluted stream of glycerol, nutrients and micronu-

trients) the CSTR was fed with two separated streams: a stream with pure, concentrated glycerol 

and a stream of nutrients and minerals solution (see Figure 4.4). This eliminated the contamina-

tion problem since concentrated glycerol is not susceptible to contamination. 

  

The results of the soluble COD and COD removal efficiency are shown in the graph of Figure 

4.5. The CSTR fed with pure glycerol (- g COD/L) demonstrated an excellent performance re-

garding COD consumption. After - days of operation, the COD left in the effluent was approxi-

mately - g COD/L; the maximum COD removal efficiency was - %. Even though the COD removal 

efficiency decreased in the following days, it remained above - % which was still an excellent 

removal efficiency. 

Comparing the graphs of Figure 4.1 (CSTR fed with - g COD of SSL per liter) and Figure 4.5 

(CSTR fed with - g COD of pure glycerol per liter) it was evident that the reactor fed with pure 

glycerol showed a far better performance than the SSL-fed. The maximum COD removal in the 

SSL reactor was - % (when fed with - g COD/L) against - % in the glycerol reactor (fed with a 

higher COD content: - g COD/L). 

Figure 4.4 – Schematic diagram with the changed CSTR design with two separate influent 

streams: one with pure glycerol and a solution containing the nutrients. 
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Figure 4.5 – Removal efficiency (in percentage) and soluble COD (in g COD/L) of a - L 

CSTR continuously fed with pure (concentrated) glycerol. 

The cell dry weight (CDW) and respective yield of mass of biomass per mass of COD pro-

vided to the reactor is represented in the graph of Figure 4.6.  
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Figure 4.6 – Cell dry weight, in g CDW/L, and yield of biomass, in g CDW/g COD, of the 

CSTR fed with - g COD/L of pure glycerol. 
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The maximum biomass concentration was obtained at day - of operation – approximately - g 

CDW/L. This was equivalent to a yield of biomass of - g CDW/g COD. Besides, even though the 

biomass concentration and yield decreased after day -, they remained constant afterwards.  

Although, the glycerol reactor also consumed a great amount of base – - mL per day – to 

increase the pH. Once again this was undesired since it has influence in the process costs. Even 

the considerably high biomass concentration (- g CDW/L) was not enough to compensate the 

process costs (see 4.6 Economic evaluation, for more detailed information on the process costs). 

4.3.1.3 Crude glycerol 

Crude glycerol was tested in the same process conditions as mentioned before for both SSL 

and pure glycerol. The COD content of the feed stream was -g COD/L. Similarly to pure glycerol, 

to avoid contamination, the CSTR was tested according with the diagram of Figure 4.4. Soluble 

COD of the effluent and the respective COD removal efficiency of the CSTR is represented in the 

graph of Figure 4.7. 

When running on crude glycerol the reactor showed a better performance than the reactor 

fed with SSL. Although, the reactor fed with pure glycerol was still better regarding COD removal 

and COD left in the effluent. However, this was already expected. As described on literature by 

several authors, reactors running on crude glycerol usually have a worse performance than those 

running on pure glycerol. In fact, in some cases crude glycerol could have an inhibitory effect in 

the microbiome (Chatzifragkou, A. & Papanikolaou, S., 2012).  
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CSTR continuously fed with crude (concentrated) glycerol. 
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The highest COD removal efficiency – - % - was recorded at day - which corresponded to - 

g COD/L left in the effluent. After day -, the COD content in the effluent showed a stabilizing 

tendency around - g COD/L. Likewise, the COD removal efficiency stabilized around - %. The 

biomass content and biomass yield are represented in the graph of Figure 4.8. 

 Even though the reactors fed with pure and crude glycerol had different biomass content and 

yield, the graphs showed similar performances. This indicates that there is no glycerol-inhibition. 

Similarly to the pure glycerol reactor, the crude glycerol also evidenced the highest biomass con-

centration at day - (- g CDW/L) with a slight decrease in the following days. The biomass content 

tended to decrease in the following days. Although, it started to show a stabilizing tendency 

around - g CDW/L. Maximum biomass yield was obtained at day - – - g CDW/g COD. Even though 

the yield decreased from - g CDW/g COD to - g CDW/g COD, it was visible stabilized around this 

final value.  

Similarly, to the other two reactors, the high consumption of base represented a drawback. 

The reactor consumed around - mL of base per day. 
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CSTR fed with - g COD/L of crude glycerol 



47 

 

4.3.1.4 Remarks on the CSTR operation 

 

Since there was no resources in Avecom to centrifuge and then dry the harvested biomass 

continuously, there was great amount of wastes produced that had to be discarded. This was a 

major technical and economic drawback. The wastes could have been stored in a cold room for 

later centrifuging although this would only be feasible at lab-scale and not at bigger scale. Addi-

tionally, the disposal and then treatment of this wastes would represent an increased process 

cost. As there was no possibility to acquire a continuous system for centrifuging, in the time-lapse 

of this work, an alternative had to be addressed. Batch mode operation was then tested as a 

possible solution.  

 

4.3.2 Batch mode 

4.3.2.1 Crude glycerol  

The batch operation mode consisted in providing the necessary COD and nutrients (nitrogen, 

phosphate and other micronutrients) in the beginning of the test. Batch tests were started in the 

same conditions as aforementioned for the CSTR operation. C/N/P was kept constant (100/5/1).. 

Two different initial COD contents were tested: - g COD/L and - g COD/L. Results of soluble COD, 

measured within - weeks, are shown in Figure 4.9. 

The reactor showed a similar performance when running with both concentrations of crude 

glycerol. The lowest COD content in the mixed liquor was measured at day - of operation: - g 

COD/L (when fed with - g COD/L) and - g COD/L (when fed with - g COD/L). The removal effi-

ciency in both batches is shown in Figure 5.10. Since from day - onwards there was no COD 

Figure 4.9 – Results of soluble COD of the crude glycerol batch reactor fed with 

two different initial glycerol concentration: - g COD/L and - g COD/L. 
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removal, the graph only shows the removal efficiency between the start of the batch and day -. 

COD removal efficiency was calculated considering the initial COD content of both reactors. 

 As shown in Figure 4.10 the batch started with - g COD/L showed a higher COD removal. 

However it was not a significant difference. Considering the batch started with - g COD/L, the 

removal efficiency was approximately - %; as for the batch started with - g COD/L, the removal 

efficiency was - %.  

Comparing batch operation (initial COD: - g/L) with the continuous operation (influent stream: 

- g COD/L) it was possible to see that both showed approximately equal COD removal efficien-

cies. In continuous mode the removal efficiency was - % while in batch mode was - %. However, 

it took - days of operation in continuous mode to successfully remove the - % of the COD fed 

while in batch mode it was only necessary - days. The remaining soluble COD in both operation 

modes was approximately the same: - g COD/L in continuous mode and - g COD/L in batch.  

The biggest difference found between both operation modes was the biomass concentration 

obtained. In continuous mode it was possible to obtain considerably higher biomass concentra-

tions – - g CDW/L – while in batch mode it was lower – - g CDW/L. However, the main problem 

found in batch mode was the decrease of the biomass content (- % less biomass) after the - day 

of operation (see Figure 4.11). This decrease in the cell dry weight could be a result from accu-

mulation of byproducts or other compounds that can be toxic for the microbiome. These products 

could result in cellular lysis leading to an increase of the soluble COD and decrease of CDW. 

Figure 4.10 – COD removal efficiency in the reactors tested with two different initial 

COD contents: - g COD/L and - g COD/L 
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Figure 4.11 – Cell dry weight, in g CDW/L, during a - days batch-test with two differ-

ent initial organic loads: - g COD/L and - g COD/L. 

  

 Since the biomass concentration after the - day of operation starts to decrease, the reactor 

should no longer operate. Thus, the reactors should be operated during - days, then harvested 

and restarted again.  

   

5.3.2.2 pH control 

Similarly to what happened in the continuous mode, there was a great consumption of NaOH 

to control the pH. Once again this was undesirable since it increases process costs. The reactor 

consumed - mL NaOH per day, making a total of - mL of base in the batch test (- days). Even 

considering that the reactor would only operate during - days that would result in - mL of base per 

batch or - L of base per week. Thus, a cheaper solution had to be addressed.  

The alternative tested was the addition of calcium carbonate (CaCO3) in the mixed liquor in 

the beginning of the batch. Calcium carbonate was added in different concentrations: - g/L, - g/L, 

- g/L, - g/L and - g/L. Results of pH (the lowest measured) and ash content are represented in 

Table 4.5. 

Table 4.5 – Variation of pH and ash content with the different CaCO3 concentrations. 

CaCO3 content (g/L) pH Ash content (%)1 

 6,17   

 6,29   

 5,95   

 6,33   

1 Considering the highest TSS result and correspondent VSS 
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As shown in Table 5.5., the pH was stable – under 5,95 – for each concentration of calcium 

carbonate testes.  However, as expected, the higher the concentration of calcium carbonate the 

higher the ash content. Since a high ash content was undesirable, the amount of calcium car-

bonate added per batch should not exceed - g/L. The process costs effectively decreased after 

replacing base as pH-buffer (as shown in 4.6 Economic evaluation)  

 

4.3.2.3 Follow-up of nitrogen content  

Firstly, monitoring of the nitrogen content in the mixed liquor is important to ensure that there 

was not high amounts of nitrogen sources left in the mixed liquor.  

Additionally, there is a future interest to start to produce SCP enriched with polyhydroxybutyr-

ate (PHB), the remaining nitrogen content of the reactor had to be controlled. Given that PHB 

usually accumulates in microorganisms under nitrogen limitation, the nitrogen left in the mixed 

liquor in the end of a regular batch (- days) needed to be kept close to zero. To ensure that no 

possible nitrogen source was present in the reactor, ammonium nitrogen, nitrate and nitrite were 

measured. The results of these analyses are shown in Table 4.6.  

Table 4.2 – Follow-up of the different nitrogen sources (ammonium, nitrate and nitrite) dur-

ing a single batch (- days). 

 

 As shown in Table 4.6, ammonium nitrogen – the main nitrogen source – was completely 

consumed within the - days batch period. Although, nitrate and nitrite were not provided per se, 

they were probably present in the crude glycerol. However, the final concentration of the three 

nitrogen sources was considered residual.  

 

 

 

 

 Ammonium nitrogen Nitrate, as nitrogen Nitrite, as nitrogen 

 mg  NH4-N /L mg  NO3-N /L mg  NO2-N /L 

start  

 

 

-   

-    
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4.4 Biomass harvesting, drying and grinding 

4.4.1 Tumble-drying 

The centrifuged mixed liquor was placed in a - mL plastic bottle with - metal spheres. One 

hole was drilled in both ends of the plastic bottle to allow air circulation inside the bottle. The 

drying test was performed in a regular tumble dryer during - hours, using the extra-dry program. 

The interior view of the bottle used in the drying test is shown in Figure 4.12. The goal of the 

metallic spheres was homogenization of the sample during the drying process. 

 

 

 

 

 

 

 

 

Even after - hours, in the extra-dry program, the sample was still wet and more than half of 

the initial volume, placed in the bottle, spilled from the holes drilled in its ends. Therefore this 

drying process could not be considered suitable for drying the biomass harvested from the reac-

tors. 

 

4.4.2 Microwave drying 

Microwave drying test was performed during - minutes using a regular microwave oven. As 

shown in Figure 4.13, the outer portion of the sample was already dried while the central portion 

was still wet. In order to dry the central portion, the drying time should have been extended; alt-

hough, by extending the drying time, the outer portion would be burned. Hence, microwave drying 

was also considered unfeasible for biomass drying.  

Figure 4.4 – Inside view of the plastic bottle (with - metal spheres) after tumble-dry-

ing with the extra-dry program for - hours. 
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Figure 4.5 – Centrifuged mixed liquor after drying in the microwave oven for - minutes. 

 

4.4.3 Oven-drying 

These drying tests were performed in a regular oven by using different temperatures: -, - and 

- ºC. The harvested biomass was spread in the oven trays as shown in Figure 4.14. 

 After - hours at - ºC the sample was completely dried and ready to be ground. In opposition, 

the sample dried at - ºC required an extra hour to be completely dried. Additionally, at - ºC the 

required drying time was between - and - hours. To decide about the ideal drying temperature it 

was essential to determine the protein content in the powder after drying at different temperatures.  

 

 

Figure 6 – Mixed liquor harvested from the reactor: (A) after centrifuging at - rpm for - 

minutes and before drying at - ºC for - hours; (B) after drying at - ºC for - hours. 

 

 

 

Figure 4.7 – ProMic-pure powder obtained after grinding the dried biomass 

Figure 8 – Mixed liquor harvested from the reactor: (A) after centrifuging at - rpm for - 

minutes and before drying at - ºC for - hours; (B) after drying at - ºC for - hours. 
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4.4.4 Drying temperature 

Three different drying temperatures were tested. The protein content of the dried powder was 

determined using the Kjeldahl method and the results are shown in Table 4.7. The samples were 

analyzed in triplicate. The samples were also analyzed before drying to see whether the drying 

process affects the protein content.  

Table 4.7 – Kjeldahl nitrogen and protein content according to three different drying tem-

peratures: -, - and - ºC. 

Drying temperature (ºC) 
Kj-N 
(mg Kj-N/g sample) 

Protein  
(mg/g sample) 

Protein content (%) 

- - ± 0,80 - ± 5,00 - ± 5,00 

- - ± 0,79 - ± 5,00 - ± 5,00 

- - ± 0,93 - ± 5,81 - ± 5,81 
 

As shown in Table 5.7, there is no evident influence of the drying temperature in the protein 

content of the final product. Hence, for a faster process, the drying temperature established was 

- ºC. Although this is not a suitable drying process for bigger scales. Thus, when scaling-up, 

alternatives should be addressed. 

The sample analyzed before drying exhibited an average protein content of -%. Thus it was 

possible to observe that the loss of protein in the drying process was not significant (less than 

10%).  

 

4.4.5 Grinding 

 After drying, the biomass was ground with a pestle and a mortar originating a fine powder 

with particles lower than 0,5 mm, as shown in Figure 4.15. After drying, the ready-to-feed ProMic-

pure powder exhibited a pleasant and cereal-like scent. 

 

 

 

 

 

 

Figure 4.9 – ProMic-pure powder obtained after grinding the dried biomass 

 

 

Figure 4.10 – ProMic-pure powder obtained after grinding the dried bio-

mass 

 



54 

 

4.5 Nutritional value and safety of SCP 

 The nutritional value of the ground ProMic-pure was determined regarding protein content, 

lipid (fat) content, carbohydrates content and ash. Solubility in water was also determined. A mi-

crobiological quality control test was also performed in the final product to ensure its safety. 

 

4.5.1 Nutritional value  

The results of the composition of the ProMic-pure powder are shown in Table 4.8.  

Table 4.8 – Composition of ProMic-pure. Comparison with other single cell proteins (Kefir, 

bacterial SCP, yeast SCP) and fishmeal. 

 
ProMic-pure 

Kefir 

SCP1 

Bacterial 

SCP2 

Yeast SCP 

 (S. cerevisae)2 
Fishmeal2 

Compound Content (g/g CDW) % w/w % w/w % w/w % w/w % w/w 

Protein  - - ± 1,80 53,9 73,1 46,8 66,7 

Lipids - - ± 0,09 4,0 5,7 5,7 9,1 

Carbohydrates - - ± 0,87 6,5 NA NA NA 

Ash - - ± 1,02 7,3 11,7 6,2 14,9 

Others - 7,7 28,3 35 41,3 9,3 

1 Paraskevopoulo et al., 2003 

2 Tacon, 1987 

 The final product obtained – ProMic-pure – had an average protein content of - % which can 

be compared to the other protein sources displayed (see Table 4.8). Lipid content was lower than 

in other sources: - % lower when compared to traditional fishmeal. Additionally, ProMic-pure had 

a high carbohydrate content when compared with Kefir SCP, e.g. Ash content was also within the 

range. The other compounds, not measured, were probably nucleic acids. Although, there was 

no analytical method in Avecom to determine these compounds. However, in case it corresponds 

to nucleic acids, it falls within the range normally described in literature (Nasseri et al., 2011). 

 The solubility of the ProMic-pure in water was determined by dispersing - g of powder in 1 L 

of distilled water. The protein content in the supernatant was determined using the Kjeldahl 

method. The content was calculated by means of a ration between the protein in the supernatant 

and the protein content in the dispersed sample. Hence, the ProMic-pure had a - % solubility in 

water. 

 

4.5.2 Safety and quality 

A microbiological control test was performed in order to confirm the absence of pathogens in 

the final product. To perform the test - g/L of dried ground powder were dispersed in sterile distilled 

water. The mixture was then pasteurized at - ºC for - h and homogenized in a shaker overnight. 
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A serial dilution set was prepared and plated out on the selective agar media for known pathogens 

as described in Table 4.9. 

Table 4.9 – Putative pathogenic microorganisms and corresponding specific agar plates 

Microorganism detected Agar plate 

Salmonella typhimurium ATCC®14028 Brilliance Salmonella Agar 

Listeria monocytogenes ATCC® 13932, Listeria 
monocytogenes ATCC®  19111 and Listeria in-
nocua ATCC®33090 

Chromogenic Listeria Agar (ISO) 

Enterococcus faecalis ATCC 29212 and Entero-
coccus /faecium ATCC 19434 

VRE Selective 

Staphylococcus aureus MRSA Brilliance MRSA 2 Agar 

Escherichia coli ATCC TBX Medium 

 

 The plate counting results for putative pathogenic microorganisms (in colony forming unit per 

mL, CFU/mL) is shown in Table 4.10. 

Table 4.10 – Results of the plate counting, in CFU/mL, for supposed pathogenic microor-

ganisms. 

Agar plate 
Concentration 

(CFU/mL) 

Brilliance Salmonella Agar - 

Chromogenic Listeria Agar (ISO) - 

VRE Selective - 

Brilliance MRSA 2 Agar - 

TBX Medium - 

 

4.6 Economic evaluation 

 After testing the performance of the reactors, both in continuous and batch mode, there was 

the need to evaluate their economic feasibility. Economic feasibility of the process was deter-

mined for the three substrates tested and for both operation modes. The evaluation was based 

on the price of substrates and several process costs, such as, price of biomass produced, cost of 

pH buffers and cost of aeration, centrifuging and drying. The goal of the economic evaluation was 
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to determine which substrate and operation mode resulted in the most market-competitive prod-

uct. This was determined based on the price of the final product (in €/ ton protein). Other costs 

such as cost of workers and rent were not addressed. 

The prices of the substrates tested as well as the price of the biomass produced, considering 

the biomass yield obtained, are indicated in Table 4.11.  

Table 4.11 – Price of the substrates (€/ton and €/ton COD), biomass yield according to the 

operation mode (in ton CDW/ton COD) and price of biomass (€/ton CDW). 

Operation mode Substrate 

Price  

(€/ton) 

Price 

 (€/ton COD) 

Biomass yield  

(ton CDW/ton COD) 

€/ton CDW 

Continuous 

Pure glycerol 250 350 0,40 - 

Crude glycerol 135 200 0,27 - 

Spent sulfite liquor 200 360 0,09 - 

Batch 

Crude glycerol1  

Crude glycerol2 

135 

135 

200 

200 

0,28 

0,23 

- 

- 

1 Buffered with CaCO3 

2 Buffered with - N NaOH 

 As aforementioned, from an economic point of view, the most promising substrate was the 

crude glycerol. The low price per ton of COD and a good biomass yield, especially in batch mode, 

confirmed it as a top choice for SCP production. In fact, crude glycerol is the substrate that pro-

duced a biomass with lower price: - €/ton CDW in batch mode when buffered with calcium car-

bonate. When buffered with base, the price of biomass was - €/ton CDW. In continuous mode the 

price of biomass was the same as the latter.  Additionally, pure glycerol could also be chosen as 

a feasible substrate. The high biomass yield (- ton CDW/ton COD) compensated the high cost 

per ton of COD of the pure glycerol (350 €/ton). Therefore, the biomass produced had similar 

price to the one resulting from the crude glycerol: - €/ton CDW.  

 Spent sulfite liquor was the substrate which produced the priciest biomass. The high cost per 

ton of COD (360 €/ton COD) combined with the low biomass yield (- ton CDW/ton COD) resulted 

in an exorbitant price of - €/ton CDW. Considering a protein content of -% (- g protein/g CDW), 

the protein produced via SSL would be marketed at - €/ton, even without accounting other process 

costs. This would not be viable since fishmeal, one of the primary protein sources for animal feed, 

was marketed at 1.940 €/ton. The following calculations confirmed the unfeasibility of SSL. 

 In Table 4.12 are shown the process costs of the CSTRs tested with the three substrates. 

The calculations were made based on prices and the biomass yield described in Table 4.11. 
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Process costs were calculated based on the electricity prices for households (- €/kWh); if calcu-

lated with industrial electricity prices (approximately 0,06 €/kWh), the process costs would be 

lower.  

Table 4.12 – Process costs of the CSTRs fed with SSL, pure glycerol (PG) and crude glyc-

erol (CG).  

Continuous  

Parameter SSL PG CG 

Buffer 

Type Base Base Base 

Price 60 €/m3 60 €/m3 60 €/m3 

Volume 

Volume per CDW 

Price per CDW (€/ton CDW) 

- mL/d 

- m3/ton CDW 

- 

- mL/d 

- m3/ton CDW 

- 

- mL/d 

- m3/ton CDW 

- 

Process 

Oxygen (€/ton CDW) - - - 

Drying (€/ton CDW) - - - 

Centrifuging (€/ton CDW) - - - 

Total process (€/ton CDW) - - - 

OPEX1 cost 
Substrate + Buffer +  

Process (€/ton CDW) 
- - - 

Final product (ProMic-pure) (€/ton protein) - - - 

1Operational expenditure – non-capital expenses for running a product/business. 

The price of the final product was similar for both: - €/ton protein (pure glycerol) and -  €/ton 

protein (crude glycerol). However, both substrates resulted in a product with a non-competitive 

price for the aquafeed market since it is higher than fishmeal, e.g. As predicted, SSL resulted in 

an extremely expensive product: - €/ton protein.  

In Table 4.13 are presented the same process costs for a batch operation with crude glycerol. 

The parameter changed between both tests was the pH buffer. One was buffered with base (- N 

NaOH) while the other was buffered with calcium carbonate. 
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Table 4.13 – Process costs of the batch operation considering the two pH buffers: - N NaOH 

and CaCO3.  

 Batch 

Parameter CG CG 

Buffer 

Type Base CaCO3 

Price 60 €/m3 250 €/ton 

Volume 

Volume per CDW 

Price per CDW (€/ton CDW) 

- - 

Process 

Oxygen (€/ton CDW) - - 

Drying (€/ton CDW) - - 

Centrifuging (€/ton CDW) - - 

Total process (€/ton CDW) - - 

OPEX cost 
Substrate + Buffer +  

Process (€/ton CDW) 
- - 

Final product (ProMic-pure) (€/ton protein) - - 

  

As shown in Table 4.13 there was a significant difference in both reactors. The one buffered 

with calcium carbonate ( g CaCO3/L) produced ProMic-pure that could be sold at - €/ton. This 

product can be highly competitive with the current commercial fishmeal (market price of fishmeal: 

1.940 €/ton). On the other hand the reactor buffered with base resulted in a product with a rather 

pricey protein (- €/ton protein). The biggest was found in the calculations of the buffer consump-

tion. The price per ton of CDW of the batch reactor buffered with base was an order of magnitude 

higher than the one buffered with calcium carbonate.  

However the process was considered feasible, profitability was not ensured. Considering a 

pilot-reactor of - m3 (active volume) operating in batch, it would only be possible to produce - kg 

per batch. In terms of sales, this would only represent - €/month (- €/year). As a result, to be 

considered profitable, a much bigger scale would need to be implemented. If considering a reactor 

with - m3 (active volume), it would be possible to produce - ton/month resulting in - €/month (- 

€/year). Several reactors running at the same time should also be considered. 
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Chapter 5 

6. Conclusions and future work 

  

 

5.1 Conclusions 

The goal of this work was to study the technical performance and economic feasibility of 

bioreactors running on different substrates. The desired product was protein enriched biomass – 

known as single cell protein (SCP) – to be marketed as feed, particularly for aquaculture. 

 Pure glycerol (PG), crude glycerol (CG), spent sulfite liquor (SSL) and two different types of 

wood oils were acquired. Prior to use, the waste streams were characterized according to their 

COD content, ammonium nitrogen, phosphate, total and volatile suspended solids, Kjeldahl nitro-

gen and color and scent. After characterization, both wood oils were discarded as potential sub-

strates due to their low COD content (lower than - g O2/L) and the unpleasant smell. Following 

characterization, SSL, PG and CG were tested as substrates. 

 Two operation modes were tested: continuous and batch. SSL, PG and CG were tested in 

continuous mode; the only substrate tested in batch was CG.  

 In continuous mode, SSL proved to be unfeasible. The COD was too recalcitrant: of the - g 

COD/L fed to the reactor, there were still around - g COD/L in the effluent (-% COD removal 

efficiency. The maximum cell dry weight (CDW) reached was - g CDW/L with a low biomass yield 

of - g CDW/g COD. The low cell density and biomass yield combined with the high price per ton 

of COD (- €/ton COD) resulted in high process costs. Hence, the obtained SCP was too expen-

sive: - €/ton protein. Removal efficiency in this reactor was always higher than - %. When fed with 

- g COD/L the maximum COD content measured in the effluent was - g COD/L. Plus, it reached 

a cell density of - g CDW/L and a high biomass yield of - g CDW/g COD. It was possible to produce 

SCP priced at - €/ton protein. Crude glycerol showed a worse performance compared to CG but 

better in relation to SSL. The COD removal efficiency was around - %: - g COD/L in the effluent 

out of - g COD/L in the influent. Biomass concentration and biomass yield was also good: - g 

CDW/L and - g CDW/g COD, respectively. With the low price per ton of COD (200 €/ton COD) it 
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was possible to produce SCP priced at - €/ton protein. SCP produced via glycerol, both pure and 

crude, evidenced a similar final price. 

The major technical drawback of the continuous mode was the lack of equipment to harvest, 

centrifuge and dry the mixed liquor continuously in Avecom NV. Therefore, batch operation was 

addressed as a solution. Since SSL proved to be unfeasible and PG had a higher price, they were 

not tested in the batch operation mode. Only crude glycerol was tested. 

In batch mode, CG proved to be feasible for the production of SCP. After - days of operation, 

maximum biomass concentration – - g CDW/L – and maximum biomass yield – - g CDW/g COD 

– were reached. The COD removal efficiency within the - days was - % corresponding to - g 

COD/L left in the mixed liquor. After day -, the biomass concentration started to decrease which 

could indicate some sort of inhibition. In this operation mode it was possible to obtain a SCP 

priced at - €/ton protein. It was considered market-competitive with other protein sources such as 

fishmeal (priced at 1.940 €/ton protein). Although, to be considered profitable, the process should 

be implemented at a big scale. 

In both operation modes pH buffering with base (- N NaOH) represented an economic draw-

back. Using calcium carbonate as pH buffer (- g CaCO3/L) in the batch reactor proved to be 

efficient and economically feasible.  

The final product – ProMic-pure – had a rather high protein content of - ± 1,80 %w/w. Lipid 

and carbohydrate content was - ± 0,09 and - ± 0,87 %w/w, respectively. Ash content was around 

- ± 1.02 %w/w. ProMic-pure had a nutritional value comparable to other protein sources (i.e. dif-

ferent SCP and fishmeal) as described by Paraskevopoulo et al. (2003) and Tacon (1987). How-

ever, digestibility and amino acids composition should be further analyzed. A microbiological qual-

ity control test ensured that there was no presumptive pathogens in the final product. 

Following this work, the reactors were scalled-up to pilot-scale (working volume: - m3) and 

are currently under tests. 

  

6.2 Future work 

 Although the process is already being tested at pilot-scale there are still some further tests 

that can be done.  

 The main interest should be the production of SCP enriched with polyhydroxybutyrate (PHB). 

According to Defoirdt et al. (2009) and Liu et al. (2010), PHB has the potential to be used as a 

supplement for animal feed as an anti-infective strategy in order to discard antibiotics in animal 

production. Therefore, PHB could be used to add extra value to the SCP produced increasing its 

price thus increasing the profitability of the process.  

 Besides that, shifting from batch to a continuous process should be done. This would in-

crease the amount of SCP produced. A strategy to effectively control the pH should be addressed. 

Buffering with calcium carbonate could be a solution. Strategies to increase the biomass content 

of the reactors should also be taken into account (i.e. recirculation system).  
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