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Abstract 
 

 

With the fast increase of world-wide consumption and lack of legislation of engineered 

nanomaterials (ENMs), it is expected an increase of artificial production and consequently, an 

increase of the number of nanoparticles (NPs) that are released into the environment. Most 

nanoparticles present in the aquatic environment, such as those of titanium oxide nTiO2, have 

effects on histopathological alterations on fish, creating several implications on their health, and, 

consequently influencing aquatic environment status. 

 

The effects caused by the exposure to two realistic concentrations of nTiO2 (20 and 200 μgL-1, 

plus controls) were evaluated in gills of fish (S. senegalensis), through a short-term ex vivo 

approach, meaning that exposure was accomplished after dissection of gills from the animals. 

Alterations in gills were analysed, such as the formation of metal deposits and the specific 

alterations to gas-exchange epithelial and chloride cells. Standard histological techniques were 

coupled with fluorescent techniques to assess aforesaid alterations. Quantitative ad semi-

quantitative approaches were employed. 

 

Overall, the main alterations observed in gill exposed to nTiO2 treatments were epithelial lifting, 

chloride cells autolysis and goblet cell hypertrophy. Higher severity and dissemination of 

alterations was observed for gills exposed to the highest concentration (200 µg nTiO2 L-1). In 

accordance, the gill global histopathological condition indice (Ih) increased with the increase of 

nTiO2 concentration in water at T2 and T4. The number of CC (Chloride cells) and GC (Goblet 

cells) per interlamellar space also increased with the exposure to nTiO2, at T2, however without 

a clear relationship with the concentration. Metal deposits were found in gill macrophages, 

distributed consistently trough all treatments, failing to demonstrate any cause-effect relation 

between concentrations and time of exposure. 

 

Overall, the present study indicates that under ecologically-relevant concentrations of nTiO2 

caused moderately histopathological lesions in gills of S. senegalensis. Although, the alterations 

in mucocytes indicated responses to the challenge, the exposure to TiO2 promoted osmotic 

imbalance. The present ex vivo study significantly contributed to define further procedures to 

nanotoxicity studies. 
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Resumo 
 

 

Com o rápido aumento do consumo a nível mundial e a falta de legislação de nanomaterias 

produzidos (ENM), espera-se um aumento da produção artificial e, consequentemente, um 

aumento da quantidade de nanopartículas (NPs) libertadas para o meio ambiente. A maioria 

das nanopartículas presentes no ambiente aquático, como as de óxido de titânio nTiO2, 

originam alterações histopatológicas nos peixes, criando várias implicações na saúde e, 

consequentemente, têm efeito sobre a saúde do meio aquático. 

 
 

Os efeitos causados pela exposição a duas concentrações realistas e ambientalmente 

relevantes de nTiO2 (20 e 200 μgL-1, mais controlos) foram avaliados em brânquias de peixes 

(S. senegalensis), através de uma abordagem ex vivo de curto prazo, o que significa que a 

exposição foi realizada após a dissecção de brânquias dos peixes. Foram analisadas 

alterações em brânquias, como a formação de depósitos metálicos e alterações de trocas 

gasosas em células epiteliais e de cloro. Técnicas histológicas padrão foram acopladas com 

técnicas fluorescentes para avaliar as alterações acima mencionadas. Foram utilizadas 

abordagens quantitativa e qualitativas. 

 

 

Em geral, as principais alterações observadas nas brânquias expostas aos tratamentos foram o 

descolamento epitelial, autólise das células de cloro e hipertrofia das células de muco, onde 

200 μg nTiO2 L-1 induziu alta severidade e disseminação. O índice de condição histopatológico 

global (Ih) aumentou a exposição às nTiO2 na água em T2 e T4. O número de CC (células de 

cloro) e GC (células de muco) por espaço interlamelar também aumentou após as brânquias 

terem sido expostas a nTiO2, porém sem uma relação clara com a concentração. Os depósitos 

de metal foram encontrados em macrófagos, distribuídos de forma consistente através de 

todos os tratamentos, não demonstrando qualquer relação causa-efeito entre as concentrações 

e o tempo de exposição. 

 

 

Em geral, o presente estudo indica, que, sob concentraçõs ecológicamente relevantes de 

nTiO2, existem lesões histopatológicas moderadas em brânquias de S. senegalensis. Embora 

as alterações nos mucócitos indicassem resposta ao desafio, a exposição de nTiO2 promoveu 

um desequilíbrio osmótico. O presente estudo contribuiu significativamente para definir 

procedimentos adicionais em estudos ex vivo de nanotoxicidade. 
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1. Introduction 
 

 

Nanoparticle (NPs), defined as particles with a size ranging between 1 and 100 nm on at least 

one dimension, have become rapidly introduced on the global economy, regarding 

nanotechnology products with a worth estimated at $26 billion, and expected to reach about $65 

billion by 2019 (Winkler, 2016), overtaking the market at an increasing pace. Due to their 

nanoscale size, they have greater surface to volume ratio than bulk forms, which offers them 

unique physicochemical properties, namely larger reactivity and mobility (Rauscher et al., 

2014), leading to numerous applications from biomedical to electronic science, cosmetic and 

pharmaceutical industries and environmental remediation. 

 

Engineered nanomaterials (ENMs) are synthesized worldwide in various forms, shapes and 

sizes allowing adjustment to different functionalities but also increasing the scale by which 

entrance in the ecosystem occur. With the increase of world-wide consumption and lack of 

legislation of NPs, it is expected an increase of artificial production and consequently, an 

increase of the number of NPs that are released into the environment (Piccinno et al., 2012; 

Canesi et al., 2009). Their presence in the aquatic environment is likely to be non-uniform with 

higher concentrations in near-shore waters which are more impacted by run-off, wastewater 

discharge, and proximity to human populations (Gottschalk et al., 2011). When entering the 

aquatic environment, NPs will be subjected to several transformations, like dissolution, 

aggregation and sedimentation that will change their physico-chemical properties, which may 

influence their bioavailability and toxicity to aquatic organisms (Piccinno et al., 2012). 

Consequently, concerns about the safe use and environmental impacts of NPs in aquatic 

systems have been increasing and are essential for Environmental Risk Assessment in order to 

ensure the correct management of associated risk and, the safety of these manufactured 

materials, which are still poorly understood (Piperigkou et al., 2016; Toropova and Toropov, 

2013). 

 
Among all nanoparticles, Titanium dioxide nanoparticles (nTiO2) are widely used due to their 

unique properties like, chemical composition, surface structure, solubility, shape and 

aggregation and photocatalytic properties, mainly ultra-violet (UV). These NPs are widely used 

in the production of industrial sunscreens, toothpaste, shampoo, paper products, plastic, ink, 

food and food colour, as additive in paint and building materials, in surface coatings and water 

treatments to destroy chemicals such as PCB, pesticides and other complex organic 

contaminants (Nel et al., 2006; Chen and Mao, 2007, Mu and Sprando, 2010). Although 

knowledge about the real concentrations of nTiO2 is lacking, they have been detected in soil, 

surface water, wastewater and sewage sludge (Li et al., 2015) and the usual estimated 

concentrations ranged from 0.7 to 24.5 µgL-1 (Mueller and Nowack, 2008; Pérez et al., 2009). It 

is predicted that the concentration in surface water is 0.02 µgL-1, while values up to 4 µgL-1 are 

found in sewage treatment waters (Gottschalk et al.,2009). 
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The toxicity of nTiO2 to aquatic organisms is commonly attributed to three mechanisms: i) 

physicochemical stress in organs and tissues (cytotoxicity) caused by their size, shape and 

surface properties (Libralato et al., 2013; Vale et al., 2014); ii) chemical toxicity associated with 

NPs capacity to adsorb contaminants in the media (Pettibone et al., 2008; Cho et al., 2010); iii) 

phototoxicity associated with the formation of reactive oxygen species when nTiO2 are irradiated 

by UV light (Garvas et al., 2015). Some studies revealed several effects of nTiO2 in freshwater 

species such as: decreased immune response against pathogens (Blaise et al., 2008), 

increased bioaccumulation of contaminants associated with NPs and possible combined effects 

with other pollutants (Sun et al., 2009; Hu et al., 2011; Fan et al., 2012, Tan et al., 2012), 

immunotoxicity, cytotoxicity and oxidative stress as well as physiological and reproductive 

alterations (Menard et al., 2011; Jovanović and Palić, 2012; Boyle et al., 2013; Diniz et al., 

2013; Vale et al., 2014). It was also reported that prolonged exposure of fish to nTiO2 induced 

biochemical and histopathological alterations in their gills, liver and intestines (Blaise et al., 

2008; Boyle et al., 2013; Federici et al., 2007). Similar effects have been observed in 

invertebrate marine species (Blaise et al., 2008; Boyle et al., 2013; Federici et al., 2007). 

 
 

Despite extensive research on freshwater species, few studies have been focusing on marine 

organisms. Despite their diversity and abundance, most studies have examined effects on a few 

representative species including Pseudomonas spp. (bacteria), Thalassiosira spp. (diatoms) 

and Mytilus spp. (mussels). For example, an in vivo study exposing M. galloprovincialis to nTiO2 

revealed increased oxidative stress in digestive gland and, also effects on gene transcription 

(Barmo et al., 2013). Studies with marine fish are also scarce. Injection of Trachinotus carolinus 

with nTiO2 led to genotoxicity and accumulation of nTiO2 in the kidney, gills, liver and muscle 

(Vignardi et al., 2015). Another study, reported sub-lethal adverse effects of nTiO2 on the early 

developmental stages of the brackish water species Oryzias latipes (Paterson et al., 2011). In 

fact, despite their relevance, estuarine and brackish water species, are seldom used in NP 

experiments. Indeed, these species may be more subjected to NPs toxicity, since the dynamic 

estuarine environment may increase the speciation of dissolved ions and the complexation of 

insoluble NPs, leading to sedimentation, and potential re-suspension after remobilization of 

sediments (Baker et al., 2014). 

 

 
Among other marine organisms, fish is often chosen as model organism, due to their ecological 

and economical relevance. The gills are considered a target organ to assess the toxicity of 

several contaminants, because they are the main entry route of waterborne toxic substances 

and comprise important physiological functions, such as, gas exchange and ion transport 

(Stentiford et al., 2003; Riba et al., 2004, 2005; Costa et al. 2009, 2010, 2011). Thus, fish gill 

histopathology is regarded as an important tool in this research area being used in a growing 

number of studies, both in situ and ex situ (Stentiford et al., 2003; Riba et al., 2004, 2005; Costa 
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et al. 2009, 2010, 2011). However, mechanistic data on the etiology of gill histopathological 

lesions and alterations in fish exposed to ecologically-relevant concentrations of NPs is scarce. 

 

In Environmental Toxicology, histopathological analyses has been tested and proposed as an 

efficient and sensitive biomarker to assess the health and environmental status of organisms 

exposed to environmental chemicals (Teh et al., 1997; Handy et al., 2002; Wester et al., 2002; 

Stentiford et al., 2003), mostly because they reflect organism health more realistically than 

biochemical biomarkers and can thus be better extrapolated to community- and ecosystem-level 

effects of toxicity (Au, 2004). Nevertheless, the establishment of cause-effect relationships 

between pathology and contamination is difficult through qualitative approaches. In order to fill 

this constrain, histopathological indices were developed providing numerical data based on a 

semi-quantitative approach, linking the qualitative and quantitative approaches. These indices 

are built taking the biological significance and, also the dissemination of histopathological 

changes, thus conferring also a wider biological significance (Costa et al., 2009; Vethaak and 

Wester, 1996). Still, fish histopathology is far from being standardized, having problems in 

establishing cause-effect relationships in higher vertebrates, as well as the lack of specificity of 

most biomarker candidates. Furthermore, there are yet few studies with fish exposed to 

environmentally realistic concentrations of TiO2 and even fewer concerning histopathology. 

 

In vitro studies are considered the fastest and most convenient approach to assess the toxicity 

of NPs (Park et al., 2009), due to minor ethical issues, easier logistics and decreased 

confounding effects compared to in vivo studies. These methodologies are well-established 

being, therefore, an important tool for mechanism-oriented studies. However, one constrains of 

this approach is usually attributed to the absence of intercellular interactions. Thus, as 

suggested by Valant & Drobne (2011) in a study using isolated digestive glands 

(hepatopancreas) of a model invertebrate to assess the biological reactivity of nTiO2, ex vivo 

test systems arise as a suited approach to the fast screening of the biological potential of 

nanoparticles. Conversely, this model is poorly explored in the environmental toxicology, even 

knowing its potential as a tool to asses NPs toxicity. 
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2. Objectives 
 

 

The present work aims to assess the histopathological effects caused by the exposure of flatfish 

(S. senegalensis) to realistic concentrations of nTiO2, through a short-term ex vivo approach, 

meaning that exposures were accomplished after dissection of gills from the fish. 

 

Specifically, this Thesis intends to: 
 

 

1. Identify histopathological lesions and alterations in the gills of S. senegalensis 
after the exposure to n TiO2; 

 
2. Assess time- and dose-responsiveness of effects from exposure; 

 
3. Establish a link between potential and detectable n TiO2 in gills and the 

effects observed; 
 

4. Evaluate if ex vivo assays with fish gills are an appropriate method to assess 

the effects of NPs. 

 

S.  senegalensis is a benthic teleost of important value for fisheries and aquaculture in Southern 

Europe. The species inhabits soft bottoms of coastal areas, especially estuaries, which function 

as breeding and nursing grounds, where it feeds on small invertebrates (Cabral and Costa, 

1999; Cabral, 2000). Combined with its relative abundance, these characteristics contribute to 

the species projected value as a sentinel for environmental contamination (Jiménez-Tenorio et 

al., 2007), being successfully employed in field surveys (Stentiford et al., 2003) or laboratorial 

exposures to sediments (Riba et al., 2004, 2005; Jiménez-Tenorio et al., 2007; Costa et al., 

2008), surveying histopathology and other effects and responses to toxicity (Costa et al. 2009, 

2010, 2011). 
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3. Materials and methods 
 

 

3.1. Test solutions 

 

The nTiO2 nanoparticles (99.5%) were commercially obtained from aeroxide© P25. These NPs 

are pure titanium dioxide with high specific surface area and a mixture of anatase and rutile 

crystal structure. A stock solution with the concentration of 4 mgL-1 was prepared with seawater 

and then diluted with seawater to two target concentrations (20 and 200 µg nTiO2 L-1). 

 

3.2. Bioassays 
 

 

Two independent experiments were performed at University of Aveiro laboratory (Fig. 3.1). The 

bioassays consisted of ex vivo experiments using excised gills from S. senegalensis which were 

exposed to the test solutions for 2h (T2) and 4h (T4), experiment A and B respectively. The fish 

were obtained from Aquacria aquaculture and acclimatized for 15 days. 

 

For each experiment: 24 tubes were filled with 4ml of each test solution (sea water, 20 and 200 

µg nTiO2 L-1) and placed under constant gentle shaking; eight fish (±140 g) were collected from 

the rearing system and the gills were immediately excised; the eight arches obtained from each 

fish were distributed among the three treatments, to obtain two aches per tube (figure 1). The 

two remaining arches were immediately fixed in Bouin-Hollande (T0 gill samples). After the 

exposure times (T2 and T4) the gill samples were also fixed. Afterwards, samples were washed 

in water and archived in 70% v/v ethanol, for subsequent histopathological analysis. 
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Figure 3.1 – Scheme of the two-independent ex vivo bioassays, experiment A and B. Gill of S. 
senegalensis were exposed for 2 and 4h to two concentrations of nTiO2. For each experiment, 
gills were excised from fish (eight in total) and the branchial arches (eight) were randomly 
distributed among the three treatments (control, 20 and 200 µg nTiO2 L-1) to obtain two arches 
per treatment. The remaining two arches were fixed immediately after the excision and 
correspond to T0 gill samples. 

 

3.3. Histology 
 

 

Gill samples were prepared for histological analyses. In brief: the samples were dehydrated with 

a progressive series of ethanol (95% and 100% v/v respectively), intermediate impregnation 

with xylene and embedded in paraffin. Gills sections of 5µm thick, were obtained using a rotary 

microtome (Leica JUNG RM2035) and, at least 8 sections per slide were obtained. The slides 

were dewaxed and rehydrated with progressive series (30 seconds each) of Xylene, 100%, 

95%, 70% v/v Ethanol and distilled water for 6 minutes and 3 distinct staining protocols were 

applied: i) Nuclear Fast Red, during 10 min, as contrastant, to detect nanomaterial deposits 

(Costa and Costa,2012); ii) Acridine Orange Fluorochrome (for 40 min), to identify mitochondria 

in chloride cells (Costa and Costa, 2012), and iii) Standard Tetrachromic procedure, combining 

Alcian Blue (30 min), Weigert’s Haematoxylin (10 min) and Van Gieson’s dye (6 min), following 

Costa & Costa (2012) and Martins et al. (2016), for the detections of evident lesions and 

alterations and to reveal mucous substances and chloride cells respectively. 
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After each staining, the slides were cleared with Xylene and mounted with DPX resinous media 

(BHD, Pool, UK) and then rested for 24 hours. Four slides with (6-12 sections each) were 

prepares for each sample. A Leica DMLB microscope, equipped with a DFC480 digital camera, 

was used for the microscopic analysis. Image processing and analysis was performed with the 

software IrfanView, Image J (Schneider et al., 2012). 

 

3.4. Gill Histopathology 
 

 

Quantitative analyses were performed in gill samples by counting the chloride cells (CC), goblet 

cells (mucocytes) (GC) and metal deposits (MD) per interlamellar space (IS). Data were 

expressed as mean number of each gill cell metrics per interlamellar space. 

 

Semi-quantitative histopathological conditions indices were estimated for each individual, 

according to their biological significance of each surveyed alteration within the surveyed organ 

(score). The weight of alterations ranged between 1 (low severity) and 3 (high severity) and the 

score ranged from 0 (absent alteration) to 6 (diffuse alteration). The respective pathological 

alterations were classified into three reaction patterns: circulatory disturbance/inflammatory 

responses, regressive and progressive alterations. In table 3.1 are presented the 

histopathological alterations surveyed and their respective weights. The histopathological 

indices were estimated trough the following formula proposed by (Costa et al., 2013): 
 
 
 
 
 
 

 

where wj is the weight of the jth histopathological alteration; ajh is the score attributed to the hth 

individual for the jth alteration and Mj is the maximum possible score, which normalizes Ih to a 

value between 0 and 1. As well as the global histopathological indice (Ih), partial indices 

including the different reaction patterns, I1 (circulatory disturbances/inflammatory responses), I2 

(regressive changes) and I3 (progressive alterations) were also calculated. 
 

 

In order to assess the accuracy of the observation, a blind review was performed at the end of 

the histopathological analyses in 25% of the samples with a 12.8% error. 
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Table 3.1 – Histopathological alterations observed in the gills of S.senegalensis and their respective 
condition weights (w) 

 
 

 

Reaction pattern Histological alterations  w 
     

 Circulatory  Infiltration of inflammatory cells 1b 

 disturbances/Inflammatory      

 responses      

 Regressive  Epithelial lifting  1b 

   Structure alterations of 1b 

   lamellae    

      2b 

   Goblet (mucous) cells  

   degeneration  2c 

   Chloride cells autolysis  2b 

   Apoptosis    

 Progressive  Epithelial cell hypertrophy  2b 
 
 

2b  
• Goblet cell hypertrophy

 

2a 
 

• Interlamellar/ epithelial 

hyperplasia

 
 

a Bernet et al. (1999) 

 

b Costa et al. (2009) 

 

c Martins and Costa (2015) 

 

 

3.5. Statistical analyses 
 

Shapiro-Wilks tests were performed to analyse the normality of the data obtained, followed by 

Levene test to analyse the homogeneity of variances. Due to the invalidation of at least one of the 

tests, the non-parametric Kruskal-Wallis one-way ANOVA followed by the Mann-Whitney U post hoc 

test was employed for temporal comparisons as well as for gender and age comparisons. 

Spearman’s rank statistic was applied to establish correlations. The statistical analysis was assessed 

using Statistica 8.0 software (Starsoft, USA). 
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4. Results 
 

 

4.1. Gill histopathology 

 

Excised gills of S. Senegalensis (T0 gill samples) of each experiment (2h and 4 h of exposure) 

exhibited normal morphology (Fig. 4.1A), presenting well-defined lamellae attached to filaments, 

in accordance with previous descriptions for gills of juveniles of the species (Costa et al., 2009; 

Costa et al., 2010). The gill epithelium included pavement cells, goblet cells (mucocytes) and 

chloride cells, the latter type cells mostly located in the interlamellar space. The controls 

revealed some alterations of the epithelia relatively to T0 gills, namely, epithelial lifting and 

alterations of the epithelia structure (Fig. 4.1B). 

 
These alterations were also observed in gill exposed to nTiO2 treatments, however with higher 

severity and dissemination (Fig. 4.1C). Gills exposed to 200 µg nTiO2 L-1 for 2 h and 4 h 

presented, in general, higher severity and diffusion of lesions. Among the most significant 

alterations, chloride autolysis and goblet cell hypertrophy were the most remarkable. Chloride 

cells (cc) were mainly found in the interlamellar space (as expected), however the cells 

evidence autolytic processes: vacuolated appearance of chloride cells indicating fluid retention 

and possible swelling and, also a nucleus compressed against the plasmalemma (Fig. 4.1C, 

inset). This alteration was mostly observed in gill exposed to both concentrations for 2h. Goblet 

cell hypertrophy (Fig. 4.1D, inset) was also observed in all nTiO2 treatment, although gill 

exposed to 200 µg nTiO2 L-1, at T2 presented higher severity and dissemination (Fig. 4.1D). It 

was also observed moderate apoptosis (Fig.4.1C, inset), presence of inflammatory cells (Fig. 

4.1F) and interlamellar hyperplasia (Fig. 4.1D) in nTiO2 treatments, although with low severity 

and dissemination. Metal deposits were found in gill macrophages (forming black deposits), 

distributed consistently trough all treatments (Fig. 4.1F), failing to demonstrate any cause effect 

with higher concentrations and time of exposure. 
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Figure 4.1 – Gill histopathological sections of S.senegalensis stained with tetrachrome stain (A,B,C,D,E) 
and NFR (F); (A) Overall aspect of the morphology of the gills obtained from T0 gill samples (gill excised 
and immediately fixed), exhibiting normal gill filament (fl), lamella (lm), pillar cells (pc), pavement cells (pv), 
chloride cells (cc) and goblet cells (gc); (B) Overall aspect of control samples, exhibiting epithelial lifting 
(white arrowhead) and structure alterations (black arrowhead); (C) Gill exposed to 200 µg nTiO2 L- 1 at T4 
showing epithelial lifting (arrowhead) and chloride cell autolysis (cca) ; inset chloride cell autolysis (white 
arrowhead) and apoptosis (black arrowhead); (D and inset) hypertrophied goblet cells (arrows) and 
apoptosis (black arrowhead) present in gills exposed to 200 µg nTiO2  L-1; (E) interlamellar hyperplasia  
(arrows) observed in gills exposed to 20 µg nTiO2 L-1 treatment at T2; (F) metal deposits (white arrow), 
forming black deposits, macrophages (mmc) and interlamellar hyperplasia (black arrow) observed 
in gills exposed to 20 µg nTiO2 L-1 treatment at T4. 
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4.2. Quantitative histopathological measurements 

 

Significantly higher number of chloride cells per IS were obtained in gills exposed to nTiO2 

treatments comparing to T0 gill samples and control treatment (Mann-Whitney U, p<0.01), at T2 

(Fig. 4.2A). Conversely, no significant differences were observed between T0 gills and controls 

and between all treatments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2 - Comparison of the mean number of chloride cell (A), goblet cells (B) and metal deposits (C) 
per interlamellar space (IS) between gills exposed to control, 20 and 200 µg nTiO2 L-1 treatments, for 2 
(T2) and 4 h (T4) and T0 gill samples (gill excised and immediately fixed). * and **indicate significant 
differences between treatments and its respective control, p < 0.05 and p < 0.01, respectively (Mann 
Whitney U test). # and ## mean significant differences to its respective T0, p < 0.05 and p < 0.01 
respectively (Mann Whitney U test). Error bars indicate standard deviation. 

 
 

The number of goblet cells per IS were significantly higher in 20 µg nTiO2 treatment T2 (Fig. 

4.2B). On the other hand, at T4, the number of GC/IS decreased in gills exposed to nTiO2 

relatively to T0 samples and control treatment, being significantly different in gill exposed to 20 

µg nTiO2 L-1 (Mann-Whitney U, p < 0.05). 
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No significant differences were observed between T0 gill samples and treatments (control, 20 and 

200 µg nTiO2 L
-1

) for both times of exposure (Fig 4.2C). 

 

4.3. Gill Histopathological condition indices 

 

Gills exposed to nTiO2 for 2h revealed significantly higher global histopathological condition 

indice (Ih) compared to T0 and control gills (Fig.4.3). At this time point (T2) and considering 

exposures to nTiO2, the concentration of 200 µg nTiO2 L-1 yielded the highest Ih value, being 

significantly different from the respective T0 gill samples and from the controls (Mann-Whitney 

U, p < 0.01). At T4, the highest Ih value was also registered for gills exposed to 200 µgL-1 nTiO2, 

being significantly different to T0 gills and 20 µg nTiO2 L-1 treatment (Mann-Whitney U, p < 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3 - Comparison of the average histopathological indice (Ih) between gills exposed to control (C) 
and 20 and 200 µg nTiO2 L-1 treatments for 2 (T2) and 4 h (T4) and basal Ih from gills at the beginning of 
the experiment (T0 gills excised from fish and immediately fixed)..* and ** indicate significant differences 
between treatments and its respective control, p < 0.05 and p < 0.01, respectively (Mann Whitney U test). 
# and ## mean significant differences to its respective T0, p < 0.05 and p < 0.01 respectively (Mann 
Whitney U test). Ϯ indicate significant differences between nTiO2 treatments. Error bars indicate standard 
deviation. 

 

In general, the average histopathological indices score obtained for the different reaction 

patterns exhibited similar variations as the global indices. Accordingly, gills exposed to nTiO2 

treatments for 2h (T2) yielded higher of each individual indices (I1, I2, and I3) comparing to T0 

and control gills (Fig. 4.4), however, the significant differences were only obtained for I2 and I3 

indices (Fig. 4.4B, 4.4C), Mann-Whitney U, p<0.05 and p<0.01, respectively. No significant 

differences were observed between nTiO2 treatments, however, the results show a tendency: 

the increase of indices for each reaction pattern with the increase of nTiO2 concentrations in 

water.At T4, the pattern was similar to T2, for I2 indice. Conversely, the progressive alterations 

reaction pattern indice (I3 were significantly lower for 20 µg nTiO2 L-1, relatively to T0 samples at 

both sampling times (Fig. 4.4C). Significant differences between nTiO2 treatments were only 

observed for I3, at T4. 
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significantly higher values for nTiO2 treatments relatively to T0 samples (p < 0.05). Conversely, 

the progressive alterations reaction pattern partial indice (I3) were significantly lower for 20 µg 

nTiO2 L-1, relatively to T0 samples (Fig. 4.4C). Significant differences between nTiO2 treatments 

were only observed for I3, at T4. No significant differences were observed regarding circulatory 

disturbances/inflammatory (I1), for both sampling times (Fig. 4.4A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 – Comparison of gill histopathological indices for each reaction pattern between gills exposed 
to control (C) and 20 and 200 µg nTiO2 L-1 treatments for 2 (T2) and 4 h (T4) and gills at the beginning of 
the experiment (T0 gills excised from fish and immediately fixed). Circulatory disturbances/Inflammatory 
response (I1); Regressive alterations (I2); Progressive alterations (I3). * and **indicate significant 
differences between treatments and its respective control, p < 0.05 and p < 0.01, respectively (Mann 
Whitney U test). # and ## mean significant differences to its respective T0, p < 0.05 and p < 0.01 
respectively (Mann Whitney U test). Ϯ indicate significant differences between nTiO2 treatments. Error bars 
indicate standard deviation. 

 

4.4. Correlation analyses 

 

H Spearman’s statistic showed the highest correlations between Ih, I3 (R=0.71, p<0.05) and I2 

(R=0.79, p<0.05), demonstrating that progressive and regressive alterations were fundamental 

to increase the histopathological indice. Regressive responses (I2) showed the highest 

correlations were obtained with apoptosis (R=0.67, p<0.05) and epithelial lifting (R=0.66, 

p<0.05). For the progressive responses (I3), goblet cell hypertrophy (R=0.79, p<0.05) was the 

main alteration to affect this specific histopathological indice. Neither goblet cell, chloride cell 
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nor metal deposits mean value were highly correlated with any of the most significant 

alterations found trough the Spearman’s statistic. 
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5. Discussion 
 
 

 

The present work is the first ex vivo experiment which used gills of S. senegalensis to assess 

the toxicity of nTiO2. Few studies were done using ex vivo testing to assess TiO2, such as 

Valant & Drobne (2011) which assessed the biological reactivity of TiO2 by ex vivo testing, and 

Brun et al. (2015), which assessed the titanium dioxide nanoparticle impact and translocation 

trough ex vivo gut epithelia. 

 

The ex vivo test system employed in the present study provides evidence that gills were 

moderately affected in the presence of nTiO2 in water. However, it is also relevant to note that 

some condition of the bioassays may also affect the normal functions of gills. 

 

5.1. Exposure to nTiO2 promote osmotic imbalance 

 

The presence of environmentally relevant concentrations of nTiO2 in the water yielded 

moderately histopathological lesions, mainly CC autolysis e GC hypertrophy. In fact, the nTiO2 

increased the severity and dissemination of these alterations, as showed by the increment of 

the Ih relatively to T0 gill and control treatment, after 2 h of exposure. Representative 

correlations between the Ih and the respective responsive patterns were found, demonstrating 

that progressive and regressive alterations were fundamental to increase the histopathological 

indice (Van Dyk et al. 2009). Goblet cell hypertrophy and epithelial lifting showed high 

correlations when compared to histopathological indice. Progressive alterations, such as, 

hyperplasia and hypertrophy are considered protective measures against toxicants (Mallatt et 

al., 1985), possibly resulting in an unbalanced osmotic regulation, gas exchange and rapid 

mucous release. 

 

Additionally, the highest concentrations of nTiO2 (200 µg L-1) induced the highest Ih value at both 

experiments, being significant at 4 h of exposure. These changes are not considered specific to 

nTiO2 exposures, being reported to occur in fish exposed to a wide variety of pollutants from 

heavy metals to organic compounds, like PAHs (Martins M. et al., 2015, Martins C., 2015, 

Martins M., et al 2016a). From the few histological studies done so far, Federici, (2007), 

demonstrated that changes in mucocytes morphology would occur when fish gills were exposed 

to 0.5 mg nTiO2 L-1. Federici, (2007), also demonstrated interlamellar hyperplasia. Accordingly, 

Xia Dong et al., (2011), hyperplasia occurred when fish were exposed to 1, 2, 3 and 4 mg nTiO2 

L-1, which caused fusion of some areas as well as gill injuries were also aggravated when 

exposed to higher concentration. During our study, it was also demonstrated that hyperplasia 

was a histopathological alteration, although not too severe or disseminated. 
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In addition to the histopathological lesions, the number of chloride cells increased in gill 

exposed to nTiO2 comparing to control treatments, for 2h. It is well known that these cells are 

involved in ion transport in order to maintain the osmotic balance. As such, the present results 

may indicate that the immune system is reacting to the presence of nTiO2 in the water, 

producing more CC in gills. In fact, changes in number, size and distribution of CC in teleosts 

have been attributed to salinity (Karnaky et al., 1976) and also to metals (Giari et al., 2007). 

However, the results revealed that prolonged exposures, i.e. 4 hours of exposure (T4) does not 

imply the increase of CC, in ex vivo experiments. This may be attributed to the absence of a 

systemic biological system when considering ex vivo, which may result in a deficit of 

osmoregulation. 

 

5.2. Alterations in mucocytes reveal response to challenge 

 

Mucous secretion (especially on the gill epithelium) is considered a defensive mechanism 

against toxicants (Handy et al., 1989). This common response of the mucus layer is excessive 

mucus production of mucosubstances, like glycoproteins and glycolipids, with the consequent 

swelling of epithelial cells followed by a change in the number of goblet cells (Bols et al., 2001). 

In the present study, the number of goblet cells per interlamellar space changed as a response 

to the exposure to nTiO2, however the pathway was time-dependent. Whereas the number of 

GC increased at T2, prolonged exposure (T4) decreased the number of this mucocytes. These 

results suggested a defensive mechanism toward the challenge, while a prolonged exposure to 

nTiO2, may overwhelmed the ability of immune system responses to cope with the injury, 

resulting in a decreasing number of goblet cells. In fact, changes in mucous cell function 

(number and size of goblet cells) have already been reported in studies when fish were exposed 

to distinct substances, like metals and organic toxicants (Costa et al., 2009; López-Galindo et 

al., 2010; Martins et al., 2015; Martins et al., 2016). In addition, excessive mucus production has 

also been documented in gills of rainbow trout after exposure to carbon based NPs (Smith et 

al., 2007). This response may be particularly critic in ex vivo systems, since they have not the 

same intercellular interactions as in vivo systems, compromising the organism immuno-

response capability. The consequences of the reduction of mucus cells can enhance the 

infection potential, reduce lubrification of gill structures with consequent damage and hinder the 

excretion and regulation of metals and other ions. 

 

5.3. No clear evidence of nTiO2 uptake from standard histological methods 

 

Regarding metal deposits count, no significant differences were found between treatments or 

time of exposure. This result point to the problem commonly associated agglomeration of NPs 

in water. It is well known that NPs tend to agglomerate, especially in salt water, due to the 

increase of ionic strength which reduces the negativity of electrophoretic mobility of the particles 

(Batley et al., 2013). In addition, the bioavailability of NPs is influenced by the presence of 
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organic matter in water, changes in pH and ions (Baker et al., 2014). In fact, the Dynamic light 

scattering analysis indicated agglomeration of NPs, (data not shown). Probably this fact influenced 

the toxicity of the exposures since, generally, NPs agglomeration is associated with the increment 

of NP’s size and the decrease of NP’s toxicity. 

 

Some authors pointed that NP toxicity may be driven by the surface chemistry (reactivity) of the 

particles (Shaw and Handy, 2011). Parameters such as pH and light exposure (UV or natural) may 

modify the physiochemical characteristic of particles and make them more or less biologically 

active. It is pointed that nTiO2, when exposed to UV or natural light, due to their photocatalytic 

activity, can generate radical oxygen species (ROS), possibly inducing oxidative stress in cells 

(Xiong et al., 2011). In the present study, these parameters were monitored in both experiments 

and no differences were observed between control and nTiO2 treatments (data not shown). 

 

Although metal deposits were found in gill macrophages, they were consistently distributed through 

all treatments. Generally, this response of the immune defence system is efficient in organisms 

and several NP aggregates will be expected in gill macrophage in in vivo experiments. Conversely, 

ex vivo systems may have limited this response. However, other methods, such as Transmission 

Electron Microscopy (TEM), would added information about this issue. 

 

5.4. The ex vivo bioassays generated significant confounding factors 

 

The lesions observed in gills exposed to control treatment (sea water) showed severe epithelial 

lifting and, also, alterations of the structure of lamellae. The gills, because of their direct and 

permanent contact with water, are particularly sensitive to adverse environmental conditions 

(Thophon et al. 2003), including abrupt changes of salinity (Arjona et al., 2007). In addition, they 

are important organs since they perform vital functions such as gas exchange and ion 

osmoregulation. Through effective mechanisms of osmoregulation, euryhaline teleosts are able to 

cope with changes in salinity by the active transport of salts in the gills (Lin et al., 2004). In 

particular, S. Senegalensis, which is an estuarine species, is able to acclimate to different osmotic 

conditions during short-term exposure (Arjona et al., 2007). 

 

In fact, common alterations recorded in the present study, such as epithelial lifting, epithelial cell 

proliferation and lamellar fusion, have also been found in studies addressing osmoregulation in 

fish. Is the example of the in vivo work with Liza aurata fish after the exposure to acute increase in 

salinity (Arjona et al., 2007). 
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This effect is a protective response to salinity stress since reduce gill surface area however, the 

efficiency of gas exchange will be severely affected. At the same time, changes in salinity also 

affect mitochondria-rich cells, i.e. chloride cells. The chloride cells of the gill secretory epithelium of 

euryhaline fish, such as S. senegalensis, adapt to the increment of salinity by stimulating chloride 

secretion, which basically pump salt from the blood to the outside medium and, in a second 

adaptation, by increasing the number and size of chloride cells (Arjona et al., 2007). In the present 

study, the gills were exposed to treatments immediately after excision and directly to sea water 

medium. Probably, these experimental conditions, i.e., ex vivo exposure in seawater, triggered 

acute salinity stress, to which gills responded primarily with the alterations of the epithelial 

structure, however without significant chloride cell alterations, probably due to the short-time of the 

experiments (2 and 4 hours). In fact, the second adaptation mechanism takes place after days or 

weeks to the increment of salinity (Karnaky KJ JR, Kinter LB, Kinter WB, Stirling., 1976). 

 

Ex vivo test reported in this study is well suited to the fast screening of the biological potential of 

nanoparticles. Nonetheless, important factors should be assessed while preparing an ex vivo test, 

such as the preparations of the solutions in the right environment, salinity and NPs characterization 

is important to avoid confounding factors. 

 

Nonetheless, some improvements have to be implemented such as (i) the use of nanoparticulate 

TiO2, suspended in a physiological solution; (ii) the assess of the cell viability; (iii) the evaluation of 

the NP agglomeration using TEM (Transmission Electron Microscopy) and evaluation of their 

shape and size. 
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6. Conclusions 

 

Overall, findings from this study indicate, that under ecologically relevant concentrations, nTiO2, 

can cause moderate effect on gills of S. Senegalensis in short-time exposures. However, 

several parameters, such as pH of the exposure media or the presence of other molecules, may 

modify the physiochemical characteristic of particles and make them more or less biologically 

active than original or primary particle characteristics. It is, therefore, required to have a good 

understanding of the characteristics of particles to better understand their biological potential. 

 

In conclusion, the ex vivo tests reported in this study are well suited to the fast screening of the 

biological potential of nanoparticles, however, several issues have to be taken into account 

such as the medium for NPs and organ exposure. The data obtained from these experiments 

may significantly contribute to define further procedures to nanotoxicity studies. 
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