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Nitric oxide reductase (NOR) from denitrifying bacteria is an integral membrane protein that catalyses the two
electron reduction of NO to N,0, as part of the denitrification process, being responsible for an exclusive reaction,
the N-N bond formation, the key step of this metabolic pathway. Additionally, this class of enzymes also
presents residual oxidoreductase activity, reducing O, to H,O in a four electron/proton reaction. In this work
we report, for the first time, steady-state kinetics with the Pseudomonas nautica NOR, either in the presence of
Keywords: its physiological electron donor (cyt. cssp) or immobilised on a graphite electrode surface, in the presence of its
NOR known substrates, namely NO or O,. The obtained results show that the enzyme has high affinity for its natural
substrate, NO, and different kinetic profiles according to the electron donor used. The kinetic data, as shown by
the pH dependence, is modelled by ionisable amino acid residues nearby the di-nuclear catalytic site. The catalytic
mechanism is revised and a mononitrosyl-non-heme Fe complex (Feli-NO) species is favoured as the first catalytic
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intermediate involved on the NO reduction.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bacterial nitric oxide reductase (NOR) is an integral membrane
enzyme that catalyses the nitric oxide (NO) reduction to nitrous oxide
(N,0) in a two electron/proton reaction. NORs have been isolated from
different denitrifying organisms, such as Paracoccus denitrificans [1,2],
and several Pseudomonas species, such as stutzeri [3,4], aeruginosa [5]
and nautica [6], currently known as Marinobacter hydrocarbonoclasticus
[7]. This enzyme belongs to the bacterial denitrification pathway
(NO3” — NOz — NO — N30 — N,), where NOg3' is the electron accep-
tor, being reduced to N, in consecutive redox reactions, mediated by
different metalloenzymes [8,9]. The step catalysed by NOR is the most
exquisite in the denitrification pathway, since it is when the N-N
double bond is formed, being its molecular mechanism the less under-
stood, causing controversy during the last decade [9,10].

NORs belong to the heme-copper oxidases (HCuO) superfamily and
can be classified as ctNOR, gNOR, and qCuNOR. All NORs contain a 12
transmembrane alpha helixes domain with high structural homology
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with the HCuO catalytic subunit, with a catalytic di-iron centre instead
of a mixed Fe/Cu catalytic centre [8], although different NOR subclasses
present distinct electron transfer centres, physiologic electron donors
and number of subunits. cNOR are heterodimeric and receive electrons
from soluble periplasmic c-type cytochromes (or azurin), while gNOR
and qCuNOR (presenting a binuclear Cu centre) can be homodimeric
and heterodimeric and transfer electrons from the membrane quinol
pool for substrate reduction [8,9].

Ps. nautica NOR is purified as a cytochrome bc complex, composed by
two subunits. The small subunit, the NorC, is anchored to the membrane
and carries a low-spin heme ¢ with a His-Met coordination. The large
subunit, also named the catalytic subunit, harbours a low-spin heme b,
with a bis-His coordination and an unusual catalytic binuclear iron
centre, composed by a heme b (heme bs) magnetically coupled to a
non-heme iron (Feg) [11-13]. Heme b; was considered to be high-
spin [12,14]. However, the first resolved crystal structure of the
Ps. aeruginosa NOR revealed the presence of the proximal His residue
coordinating the iron within the catalytic heme along with a p-oxo
bridge between the two catalytic iron atoms [15]. Additionally,
Mossbauer spectroscopy performed with the Ps. nautica NOR, proved
unequivocally that the heme bs is low-spin, for both ferric and ferrous
states [6].

NORs, as mentioned, are classified as members of the HCuO super-
family. Its catalytic subunits share a strong structural homology,
possessing 12 central transmembrane helices and six conserved histi-
dines responsible for anchoring the low-spin electron transfer heme
and binuclear catalytic centres. Although, HCuO carry a mixed binuclear
Fe/Cu catalytic centre responsible for O, reduction, in particular cases, its
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ability for NO reduction has been observed as well [16,17]. Similarly, be-
sides the NO reduction, NORs have the ability of reducing O, to H,O in a
four electron/proton reaction [18-21]. Nevertheless, independently
from the substrate, NORs are non-electrogenic, which means that these
enzymes are incapable of pumping protons across the plasmatic
membrane [22].

The mechanism for NO reduction remains unclear and is still the
subject of intense discussion [8,10,23-26]. Currently, the cis and trans-
mechanisms are the two proposed models. The cis-mechanism de-
scribes the NO reduction by the binding of two NO molecules to the
same iron site, while the other iron centre plays a role of electron trans-
fer and/or assist on the catalytic process [6,27,28]. The trans-mechanism
proposes the binding of one substrate molecule to each of the iron sites
of the binuclear centre, with the formation of a [FeNO]”, complex
[5,29-31].

Several attempts have been made to mimic the unique NOR heme/
non-heme iron binuclear centre. Besides inorganic model compounds
[32] (and references therein), an engineered sperm whale myoglobin
was constructed [33,34]. It successfully reproduced the NOR active
centre with the magnetic coupling between the two iron sites, but
experiments carried out in the presence of NO have shown low reduc-
tase activity [33-35]. Recently, Resonance Raman Spectroscopy was
used to investigate the NO reduction mechanism in these modified
myoglobins, and the formation of a stable heme-NO complex as a reac-
tion intermediate was pointed. However, the authors' own characterisa-
tion of the catalytic active form revealed a five-coordinated high-spin
heme, considerably different from the six-coordinated low-spin heme
bs in the native NOR [6,15].

The O, reduction mechanism for NORs has not yet been elucidated
as well, although it is assumed that only the catalytic heme b5 is in-
volved, with the possible formation of a ferryl intermediate, similar to
what is described for the cytochromes c oxidases [36]. Direct electro-
chemical studies with Ps. nautica NOR have shown no changes in the
catalytic heme b redox potential under NO turnover [37]. Also, an in-
tense catalytic current near its redox potential, under O, turnover was
observed. This is consistent with a possible heme b3-O, complex for-
mation, not yet characterised in this class of enzymes. From the
voltammetric assays conducted previously with the immobilised
Ps. nautica NOR, it was possible to attain the redox potential for each
of the enzyme metal centre, as well as evaluate the substrate reduction
(NO and 0O;) [20,37]. From these latest results, a low redox potential for
the catalytic Feg was observed, suggesting a cis-Feg mechanism for the
NO reduction process [37].

Steady-state kinetics under NO reduction has been reported previ-
ously [11,38]. In all the reported studies the high concentration of
substrate (in the low micromolar scale) inhibits the enzyme activity.
This inhibition was primarily explained by the binding of one substrate
molecule to the enzyme's oxidised form, considered as the enzyme's
inactive form. This hypothesis was strongly supported by the stability
of heme Fe'-nitrosyl compounds [11]. Lachmann and co-workers
used flow-flash measurements in single turnover conditions demon-
strating that substrate concentration controlled the intramolecular
electron transfer (ET) in the NO reduction mechanism and the substrate
binding to the inhibition site occurs before the electron redistribution to
the catalytic centre [39]. Recently, a theoretical study developed with
DFT calculations has indicated a weak interaction between NO and the
oxidised binuclear iron centre, suggesting an inhibitory profile caused
by nitrate formation from a side reaction [28]. In contrast, other authors
have assumed that the inhibition profile was due to the binding of three
substrate molecules to the binuclear iron centre of NOR [38]. Such a
kinetic mechanism should be revised considering the new insights on
the catalytic binuclear iron centre structure and the heme b3 spin state
[6,15].

In this work we report steady-state kinetics, using the Ps. nautica NOR,
together with its physiological electron donor (cyt. css2), or adsorbing the
enzyme to a graphite electrode, that mimics its physiological electron

partner, in the presence of NO or O, as substrates. The determined kinetic
parameters confirm the high affinity and turnover of this enzyme for NO.
The use of different electron donor systems allowed us to review the pro-
posed mechanisms and substrate inhibited forms present on the NO
reduction process. Also, pH dependence experiments in turnover condi-
tions gave new insights of the influence of ionisable groups close to the
catalytic cavity, which may be responsible for the modulation of the
chemical environment near the enzyme active site.

2. Materials and methods
2.1. Protein purification

Ps. nautica cells were grown as described by Prudéncio et al. [40]. The
NOR enzyme was purified from bacterial membrane extracts and
biochemically and spectroscopically characterised, as previously
described [6].

Soluble cytochromes (cyt. ¢4, Cs49, Cs51 and cssp) were purified from
the Ps. nautica soluble crude extract, as reported elsewhere [41-46].
Horse heart cytochrome ¢ was purchased from Sigma. In order to use
the cytochromes as the electron donors, pure protein samples were
reduced with excess of sodium ascorbate, briefly centrifuged and applied
into a His-Trap column (General Electrics), equilibrated with 100 mM
potassium phosphate buffer (KPB) pH 7.0. The eluted fraction was
collected immediately, closed in an anaerobic flask and the atmosphere
within was replaced with argon, in order to prevent the heme re-
oxidation. The protein concentrations were determined using the
correspondent molar extinction coefficients reported in the literature:
€411 nm =295 MM~ ! cm™! (as isolated NOR) [6] and €417 nm =
158.94 mM' cm~! (reduced cyt. css,) [46].

2.2. Electron transfer under O, turnover

Reduced soluble c-type cytochromes were mixed with Ps. nautica
NOR in order to evaluate their efficiency on the direct ET process. The
experiments were conducted aerobically in 100 mM KPB pH = 7.0,
0.01% (w/v) n-dodecyl-p-D-maltoside (DDM) with a cytochrome/NOR
molar ratio of 100. Spectroscopic changes were monitored at the specif-
ic wavelengths for the Soret, alpha and beta peaks of each of the
employed cytochromes.

2.3. Protein immobilisation to the graphite electrode surface

The Ps. nautica NOR was immobilised on a graphite electrode surface
using the solvent casting technique. Volumes from 7 to 14 pL of a 45 pM
pure protein sample were applied on the electrode surface. Primarily,
the graphite electrode was treated by immersion in a diluted HNO3
solution, rinsed in deionised water, hand polished with 5, 1 and
0.3 um alumina, briefly sonicated and finally rinsed with deionised
water.

2.4. Direct electrochemical studies

NO and O, reduction and the corresponding obtained catalytic
currents were investigated using NOR immobilised on a rotating graph-
ite disk electrode (RDE) by linear sweep voltammetry technique. The
graphite modified RDE was set as the working electrode, and a platinum
wire and a saturated calomel electrode (SCE), were the secondary and
reference electrodes, respectively. The three electrode system was con-
nected to a pPAUTOLAB potentiostat and the data was acquired with the
GPES software. The assays were conducted in a one compartment cell,
using as electrolyte solution, a buffer composed by a 20 mM mixture
of sodium citrate, 2-(N-Morpholino)ethanesulfonic acid (MES), 4-(2-
Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) and N-(1,1di-
methyl-2-hydroxyethyl)-3-amino-2-hydroxypropanesulfonic  acid
(AMPSO), equilibrated at pH 7.6. Catalytic assays performed under
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substrate dependence were accomplished using a scan rate of 50 mVs ™!
and a constant angular speed of 2000 RPM.

The coverage on the electrode surface was determined with cyclic
voltammetry (CV) at scan rates from 1 to 5 Vs~ !, aiming the surface
coverage determination. The voltammograms exhibited the previous
characterised heme b3 redox process, which was used to determine the
electrode surface coverage (I') [20,37]. All the assays were conducted
under atmosphere controlled conditions, inside an anaerobic chamber
(MBraum). All the potential values and voltammograms are presented
in reference to the normal hydrogen electrode (NHE).

2.5. Steady-state kinetics with the reduced cyt. css»

NO consumption using the reduced cyt. css; in solution was
measured with an ISO-NO Mark II electrode, with a 2 mm sensor in an
appropriate reaction vessel, as described by Timéteo et al. [6]. The
supporting buffer was a 20 mM mixture buffer (see text above) pH 7.6,
0.02% (w/v) DDM, containing 20 1M of reduced Ps. nautica cyt. ¢ss». NO
aqueous solution was added from a 100 uM (at 20 °C) stock solution as
described elsewhere [6,11], and the reaction was started with the addi-
tion of the enzyme (70 nM).

0, consumption was measured with a modified Clark type electrode
(Hanstech) in chronoamperometric assays. The platinum electrode was
set as the working electrode, the silver as the secondary electrode and a
third reference electrode (SCE) was added. The three electrodes were
connected to a JAUTOLAB potentiostat and the potential was set
constant at — 0.7 V vs SCE during all the experiments. Data acquisition
and treatment were done with the GPES software. The experiments
were conducted anaerobically in a 20 mM mixture buffer (see text
above) pH 7.6 0.02% (w/v) DDM with 30 puM of reduced cyt. css,. O,
was added from a water solution containing the dissolved gas
(278 UM at 20 °C) [47], and the reaction was started with the addition
of the enzyme (500 nM).

2.6. pH dependence experiments

The pH dependence experiments were done using the immobilised
enzyme on the RDE as previously described (see text above). The previ-
ous electrolyte solution (20 mM mixture buffer) was equilibrated at
different pH values, from 2.5 to 9.7. Different volumes of NO dissolved
in water were added to the electrolyte solution, in order to attain a
catalytic response for substrate concentration dependence for each pH
solution. The data were acquired as reported previously for the
steady-state kinetic assays with the immobilised enzyme.

3. Results and discussion
3.1. Direct electron transfer

When immobilised on a graphite electrode, Ps. nautica NOR response
shows high heterogeneous electron transfer rate constants (k) for the
four metal centres, where the higher values belong to the binuclear
iron centre (129 and 73 s~ ! for heme b; and Feg, respectively), indicat-
ing an efficient electron transfer between the electrode and the catalytic
iron centre [37]. When working with immobilised enzymes it is essen-
tial to ensure that these remain in its active state when adsorbed. In
this work, NOR remains active when immobilised, since the measured
catalytic current increases with the increase of substrate concentration
(NO or 0;) and the kinetic parameters determined with the enzyme
in solution and immobilised are in the same order of magnitude and
comparable with other isolated NORs [6,11] (see Table 1).

3.2. Specificity of the electron donors

Physiologically, cNORs receive electrons from small soluble periplas-
mic proteins, such as c-type cytochromes [15,48], or azurin [24].

Table 1
Kinetic parameters for the NO and O, reduction, with different electron donors.

Electron donor Cyt. Cs52 Graphite RDE

Substrate NO 0, NO 0,

keat (s™1) 304 +17 09+0.1 11.56 + 0.8 nd.

Ky (LM) 3.6 + 0.8 49.1 £+ 32 1.0 + nd. x 1072 334 4+ 27
Ky (uM) 6.2 + 0.7 - 22 +02 -

K; (LM) 9.7 + 04 56.3 £ 2.8 - 543 £ 47

n.d. — not determined

Ps. nautica NOR was shown to use electrons delivered from the periplas-
mic cyt. ¢ssp under NO turnover [6,48] and, as expected, the same
electron donor is effective under O, turnover as it is shown in Fig. 1.
From the purified c-type cytochromes, the reduced cyt. css, presents
the higher re-oxidation rate when in the presence of NOR, in air saturat-
ed conditions, confirming its role as the Ps. nautica NOR physiological
electron donor.

3.3. NO and O reduction at NOR modified electrodes

NO and O, consumptions were investigated independently. The
kinetic response towards the different substrates (NO and O,) was eval-
uated with the bacterial NOR immobilised on the graphite RDE (Fig. 2).

Earlier, Cordas et al. demonstrated a kinetic response for this same
enzyme and for the same substrates, but using a modified stationary
pyrolytic graphite electrode [20,37]. Now, a rotating disk electrode
was used to ensure a convective flow of the dissolved substrate towards
the electrode surface, eliminating substrate diffusion issues, and simul-
taneously allowing the fast product removal away from the immobilised
enzyme [49].

Under this experimental setup it is possible to perform steady-state
kinetic experiments and evaluate the kinetic profile for each substrate
reduction with two distinct electron donor systems: the physiological
electron donor — reduced cyt. cs5» or with an electrochemical one,
with the enzyme immobilised to a graphite RDE, mimicking the role of
the physiological partner.

In the presence of 0,, a catalytic wave develops starting around 0 V
reaching a limiting value around —0.35 V (Fig. 2B). When in the

T 0.040
g x50
3 00351
22
- @
c 2 0.0304
o £
=] m
o 2
S5 0.025; .
58
o O 00204
£
v @
£ 2 00154
2=
Q r
'§E 0.010 x50
&
£ 0.005- |l|
Q
: I
> 0.000-

Csg9

535 3¢

Cyt. ¢
Cyt. ¢y

Cyt. Coyg

Cyt. €551
Cyt. ¢’

Cyt. 55z
Cyt. ¢,

oyt

Cyt. o551

Cyt. cs5;

Ps. nautica Ps. nautica
Fig. 1. Horse heart c-type cytochrome (Cyt. ¢) and several Ps. nautica cytochromes re-
oxidation rate without (white bars) or with (black bars) Ps. nautica NOR in air saturated
conditions (experimental details described in the Materials and methods section). The
original version of the figure can be seen in supporting information — Fig. S.1.
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Fig. 2. (A) NO and (B) O, reduction using the Ps. nautica NOR modified RDE. The cyclic voltammograms were obtained withav = 50 mVs~ !, ® = 5000 rpm and substrate concentration
of 20 and 56 uM for NO and O, respectively (electrolyte solution and electrochemical cell composition are described in the Materials and methods section). C — Detail from panel A, in-
dicating catalytic current development under NO turnover, a voltammogram subtraction (Ps. nautica NOR-RDE + NO menus Ps. nautica NOR-RDE) and the cathodic wave derivative for
the experiment with Ps. nautica NOR immobilised on RDE in the presence of substrate (black line) and without enzyme in the presence of substrate (dashed line).

presence of NO, also a catalytic current develops, at lower poten-
tials, starting close to —0.45 V and reaching the limiting current
near — 0.6 V (Fig. 2A). In order to ensure that the observed enhanced
current is not due to the substrate reduction at the electrode surface, the
subtraction of the control voltammograms and the derivatives of the ca-
thodic waves (obtained in the presence of NO and O,) and controls
were performed (Figs. 2 and S.2 in supporting information). In the
absence of substrates or adsorbed enzyme, no catalytic currents are
observed. In both cases, either with O, or NO as substrate, sigmoidal
shape and plateau limiting currents are attained, which are characteris-
tic of steady-state electrochemical conditions. Clearly, the waves devel-
oped in the presence of NO and O, are distinct, not only in terms of the
potential values where they start to develop but also in their shape and
intensity (Fig. 2). This is in agreement with the results reported earlier,
with the same enzyme adsorbed to a stationary pyrolytic graphite elec-
trode [37]. The variation on the potential value corresponding to the
catalytic current initial development can be explained by the two catal-
ysis' different mechanisms, namely with which of the Fe sites is in-
volved in the substrate reduction. NO reduction may require the
participation of the non-heme Feg, with the development of a catalytic
current near its midpoint redox potential (—369 mV vs. NHE [37]).
This is also supported by the extreme low redox potential value report-
ed for a non-heme Fe nitrosyl model compound, which mimics the NOR
non-heme Feg centre [50]. This evidence and the unchanged midpoint
redox potential of the NOR catalytic heme b3, under NO turnover,
suggest the formation of a non-heme Fe nitrosyl (or dinitrosyl) species
when NO is reduced [37]. On the other hand, O, reduction probably
demands the formation of a heme b3 Fe-0, complex, analogously to

the terminal oxidases [36]. Therefore, the development of a catalytic
current at the potential value close to the one reported for the heme
b3 midpoint redox potential (— 162 mV vs. NHE [37]) is observed. The
direct participation of heme bs; on the NO reduction process will be
discussed further. However, previous results have shown that the
heme b3 midpoint redox potential is not altered when the enzyme
reduces NO, which implies that heme b3 probably maintains its axial
ligands during NO turnover [37]. The catalytic current shape and inten-
sity are related to the turnover rate and number of electrons involved in
the reduction process amongst other factors, such as the mass transport
regime and the interfacial electron transfer. In the case of NO, since NOR
presents higher turnover for NO reduction rather than for O, (Table 1),
in the tested experimental conditions, namely the range of the electrode
rotation speed values, it is not unexpected that the sigmoidal shape is
less pronounced under NO turnover (Fig. 2 — panel C). Also, O, reduc-
tion not only has a smaller turnover but additionally has twice the elec-
trons involved in the process, showing a different catalytic profile, with
a more intense and better defined catalytic current than the NO reduc-
tion process (Fig. S.2).

3.4. NO reduction activity in solution and immobilised system

NO reduction activity was conducted with Ps. nautica NOR in solu-
tion, receiving electrons directly from its physiological electron donor
(reduced cyt. cs52), monitoring the substrate consumption. Initial rates
were determined for every assay. For all the deduced rate equations
(see supporting information), steady-state and initial rate conditions
were assumed. The experiments performed with the isolated NOR and
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Fig. 3. Substrate dependence of NO reduction for the Ps. nautica NOR: A — NOR in solution
using reduced cyt. ¢ss, and B — immobilised NOR on a graphite RDE (experimental details
described in the Materials and methods section).

the reduced cyt. css; in the presence of NO revealed a substrate inhibi-
tion profile (Fig. 3A). The correspondent Hanes-Woolf and double
reciprocal plots of the experimental data revealed the shape of a parab-
ola and hyperbola, characteristic for a substrate inhibition profile [51]
(see supplementary information — Fig. S.3).

In order to fit the experimental data shown in Fig. 3A, the following
simplified kinetic model was assumed under NO turnover:

E,eq + NO % E(NO) + NO 2 E(NO), “$ E,,, + N,0 (1)

Ereqd + NO < E(NO),. 2)

Eq. (1) describes the overall reaction catalysed by the enzyme in the
presence of NO, with the consecutive binding of two substrate mole-
cules to the enzyme active form, and consequent formation of N,O
[18]. In this work, E..q represents the enzyme fully reduced state
(heme c Fe''/heme b Fe''/heme b5 Fe''/Fel}), characterised as the enzyme
active state [6]. The centre presents two possible substrate binding sites
and the coordination of a NO molecule to the enzyme active form in an
incorrect order which could lead to the formation of a non-reactive
species (Eq. (2)). If this is the case, a high compulsory order on the
substrate binding is required (see text below). The velocity equation
for the proposed mechanism was deduced (Eq. (3)) and used to fit the
experimental data, as shown in Fig. 3A. The best fit is presented in the
same figure (Fig. 3A) with a solid line, and the correspondent kinetic
parameters are listed in Table 1. The determined constants are in

agreement with previous reports for the same [6] and other isolated
bacterial NORs [11,15].

kcat [E]
V= KKK KK 3)
(1 LT 7>
NO]  [Nop T K;[NO]

Steady-state kinetics under NO concentrations, with the immobilised
Ps. nautica NOR and using the electrode as the electron donor, show a
kinetic profile different from the previous presented when using the
reduced cyt. css; (Fig. 3B). The variations on the obtained catalytic cur-
rents were plotted as function of substrate concentration (Fig. 3B).
Scan rate and electrode rotation dependence were performed in order
to assure a convective flow to the electrode, eliminating substrate
mass transfer limitations. The different kinetic profiles are detected in
the lower NO concentrations (until 8 uM) or in the higher range (see
supplementary information — Fig. S.4).

When using the electrode as the biochemical partner, the experi-
mental data obtained under NO reduction (Fig. 3B) describes a hyper-
bolic behaviour tolerating higher substrate concentrations. On the
other hand, since the enzyme presents a high turnover it becomes
very difficult to achieve reproducible results on the lower substrate con-
centration level. The simplified kinetic model assumed was expressed
previously in Eq. (1). A mathematical equation can be deduced (see
supporting information) for the measured current intensity, which is
proportional to the substrate reduction rate [49]. The deduced kinetic
equation is presented below (Eq. (4)), and the best fit to the experimen-
tal data is presented in Fig. 3B (solid line), with the correspondent kinet-
ic features indexed in Table 1.

_ I'imax

I= LB KKGY “)
e
[NOJ

[NOJ?

Since substrate concentration is higher than K; or K, (S > K; and
S > K3), the substrate saturation condition is ensured, so [ = [ ,.x =
nFAk.., I, where n is the number of electrons exchanged (n = 2), F the
Faraday constant (96485C.mol.~ 1), A the electrode area (geometric
area 0.126 cm?) and T the electrode coverage (I' = 2.16 x 10 —""
mol cm™2). Therefore, the turnover rate constant ke, can be estimated
and compared with the previous determined with the enzyme in solu-
tion (see Table 1 and Results and discussion section, respectively). For
both electron donor systems, the binding of the two substrate mole-
cules to the enzyme catalytic centre is assumed to occur as a two con-
secutive steps, based on the knowledge of the NOR crystal structure,
which presents a short Fe - Fe distance in its catalytic cavity (3.9 A).
Consequently, it is proposed that two NO molecules can be accommo-
dated, but only after rearrangements on the catalytic centre [15]. The
different dissociation constants for the substrate binding observed in
the two electron donor systems (Table 1) and the different kinetic pro-
files can be related with the electron pathways for the catalytic site.
When reduced cyt. css5 is used as electron donor, it is proposed that
this protein docks with the NorC subunit, being the electrons trans-
ferred from there to the binuclear catalytic centre via the low-spin
heme b. When the enzyme is immobilised on the electrode surface,
electrons can flow directly from the electrode towards the catalytic di-
iron site [37].

3.5. The NO inhibitory profile

NOR kinetic studies performed over time have shown an inhibitory
profile on the lower substrate concentration range [11,38]. The model
we propose describes a highly compulsory ordered mechanism, where
the substrate binding order is relevant, because: 1) if the first substrate
molecule is not bond to the correct iron site, an inhibited species can be
formed, probably a heme b; Fe'-NO complex, 2) in the enzyme active
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form (fully reduced state) the catalytic heme bs is in a low-spin state
with the permanence of the oxo-bridge [6], that breaks before or after
substrate coordination and 3) the catalytic di-iron centre presents a
short Fe—Fe distance making impossible to accommodate two NO
molecules at the same time, without rearrangements upon the first NO
molecule binding [15]. The transition of a substrate inhibition to a hyper-
bolic kinetic profile strongly suggests that this inhibition is due to an
intramolecular ET rather than the formation of a heme b; Fe'-NO
complex, as previously proposed [11]. The disappearance of the inhibi-
tion profile when the enzyme is adsorbed to the electrode, can be
explained by the quick/efficient electron transfer between the catalytic
centre and the electrode (c.a. 73 s~ ! [37]). Lachmann and co-workers
[39] used spectroscopic methods to determined re-oxidation rate
constants of the NOR metal co-factors under NO turnover, however,
the determined values present substrate concentration dependence
and are lower (c.a. 12 s~ ! [39]) than the ones determined for the direct
ET between the enzyme and the graphite electrode [37].

3.6. Oxygen reduction activity in solution and immobilised system

Oxidoreductase activity was also studied with the Ps. nautica NOR,
using the same approaches as described for its natural substrate. The
data were obtained with the previous mentioned electron donors
(reduced cyt. css5, in solution and immobilised NOR on a graphite
RDE) and the result treatment was done as stated for NO reduction.

Data obtained in the presence of O, equally describe a substrate
inhibition (Fig. 4A and B), independently from the redox partner used.
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Fig. 4. Substrate dependence of O, reduction for the Ps. nautica NOR: A — NOR in solution
using reduced cyt. cs5, and B — immobilised NOR on a graphite RDE (experimental details
described in the Materials and methods section).

Due to the substrate stoichiometry, an appropriate kinetic model was
considered and explained by Eqs. (4) and (5):

e

E,eq + 0, < EO, 3 E,, +H,0 (5)
Ki

EO, + 0, — E(0O,),. (6)

The model shows a simplified representation for O, reduction.
Eq. (5) describes the binding of one substrate molecule to the enzyme
active form and consequent water formation. We propose the binding
of a second substrate molecule to the enzyme active centre with the
consequent development of a substrate inhibition scenario with the
formation of a non-reactive species (Eq. (6)), decreasing the substrate
reduction rate, as observed experimentally, see Fig. 4A and B. In the
presence of the reduced cyt. css; in solution, the simplest velocity equa-
tion based on the proposed mechanism is translated by Eq. (7) [51] and
the best fit to the experimental data is shown in Fig. 4A, with the kinetic
parameters summarised in Table 1 and compared further.

kea [E]¢[05]

T 1100+ 97) (7)

Steady-state kinetic studies in the presence of O, have been reported
using chemical electron donors [18,21], or applying flow-flash
technique, in single turnover experiments [19], but this is the first
report showing steady-state oxidoreductase activity of an isolated
bacterial NOR with its physiological electron donor.

With the NOR immobilised on a graphite RDE, in the presence of O,
as the substrate (Fig. 4B), the data show an identical inhibitory profile,
as previously described for the assay with the cyt. css, (Fig. 4A). The
same kinetic model was used (Eqs. (4) and (5)), with the correspondent
deduced equation expressed in terms of catalytic current and used to fit
the experimental data (Eq. (8)).

Imax [02]
Jo— tmax©@) 8
(K + 0] + %) ©

In this specific case, k¢ is unable to be estimated correctly, since the
total enzyme adsorbed to the electrode is much lower than the amount
used in the experiments conducted in solution, and required for a linear
catalytic response (0.5 pM). According to Table 1, the determined kinet-
ic parameters under O, reduction are similar to the previous deter-
mined ones, which can point to the same inhibition process for the O,
reduction mechanism. This shows that the intramolecular electron
transfer rate is not limiting the O, reduction process, as proposed for
NO reduction. The mechanism for O, reduction by this class of enzymes
has not been elucidated yet, but it is proposed to be analogous to the
HCuO mechanism, involving the O, binding to the catalytic heme bs.
Since a non-allosteric site was reported for NOR, the inhibited species
can be due to the binding of an O, molecule to the catalytic site, namely
the non-heme Feg, resulting in a modified conformation of the catalytic
site, enabling the catalysis, or the presence of a substrate molecule near
the catalytic heme bs. A detailed characterisation on the O, reduction in
the NOR di-iron site demands more experiments to confirm these
assumptions.

3.7. pH dependence experiments

The kinetic experiments using the immobilised RDE Ps. nautica NOR,
in the presence of NO, under pH dependence exhibited a typical bell
shape curve (Fig. 5), usually seen in pH dependence experiment [51].
For the first time, the pH scale was enlarged to more acidic pH values.
Previous reports were only focused on the neutral and basic part of
the pH scale, from pH 5 to 9 [19,21].
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Fig. 5. pH dependence of Ps. nautica NOR under NO turnover, preformed with the enzyme
immobilised on a graphite RDE.

At every pH value, NOR kinetic profile was evaluated and a theoret-
ical line was fitted, using the model described by Eq. (1) (with the
correspondent rate equation — Eq. (7)). Different kinetic models with
only three or four protonable residues were assessed (supporting infor-
mation — Fig. S.5A and S.5B), but the best residual plot was achieved
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employing five ionisable residues (Fig. S.6) as presented in Scheme 1.
Our own previous electrochemical studies on Ps. nautica NOR per-
formed in non-turnover conditions, revealed the presence of five
protonable groups on the catalytic binuclear centre vicinity [37]. These
residues can be responsible for modulating the chemical environment
of the catalytic irons and therefore influence the catalytic response.
With this, a kinetic mechanism considering five protonated forms,
beginning from the model described in Eq. (1) was assumed and it is
described in Scheme 1.

As previously, in the kinetic mechanism the enzyme active form was
assumed to be the reduced catalytic di-iron site (E,eq). The protein glob-
al charge was assumed neutral in one of the protonated forms (as a for-
malism), with variation on the global charge due to the protonation/
deprotonation. The dissociation constant designations are presented
as the Michaelis-Menten formalism (pK,,). The three proton enzyme
form (Hs3-E;eq, in Scheme 1) considered to be more active, therefore,
the turnover rates of the other enzymatic forms with ability to
catalyse the substrate are affected by an adjustment parameter (3),
commonly introduced in kinetic systems to improve the fitting to the
proposed model.

A simplification of this model (Scheme 1) can be assumed, since K;
and K, are much lower than the substrate concentration (K; and
K, << [NQ]), leading to two assumptions: 1) the equilibrium presented
in Eq. (1) is right shifted, with the total amount of enzyme approximate-
ly equal to the enzyme form bound to the substrate (with two substrate
molecules) and 2) for NO concentration higher than K; and K, the rate
for NO reduction is approximately equal to I'y,.x. Therefore, the kinetic
model can be resumed to Scheme 1-grey box and the kinetic expression

Scheme 1. Kinetic model for the Ps. nautica NOR with five dissociable groups. Only the non-protonated form is catalytic inactive. The three protonated forms show the higher catalytic
turnover, and the remaining protonated forms show their k... affected by different adjustment parameters — (3; to 4.


image of Fig.�5
image of Scheme�1

382 A.G. Duarte et al. / Biochimica et Biophysica Acta 1837 (2014) 375-384

for the catalytic response in terms of pH dependence is given by Eq. (9),
which is totally independent of the dissociation constants for substrate
binding.

[H+} Kﬂ3 [H+] : Kﬂz Kaza 4
(l +[5] I<a2 + BZ [H+] +[53 I<a] I<g2 +ﬁ4 I max

H2
1+ [H+]2 + [HJF} Kuz Ka3Ka4Kus
K. K, " K, ' [HT
7) 2

Ko, Ko,
H]?

4 [HJFP

The best fit to the data is exhibited in Fig. 5 (solid line), with the
following parameters: pK,; = 3.47 + 0.35, pKi; = 4.50, +0.59,
pKaz = 5.27 £ 0.61, pKay = 7.70 £ 0.79, pKys = 8.64 £ 0.81,p; =
0.99 + 0.10, P, =093 +£0.09, PR3 =009+ 005 and Py=
0.36 + 0.04. This is in agreement with the kinetic profile previously
published by other authors [21], at least at higher pH values.

The pK, values achieved are in agreement with the values deter-
mined in non-turnover conditions [37], while the adjustment parame-
ters (7 and 3;) show that there is no considerable difference in the
catalytic activity between the two, three and four protonated forms.
Therefore, we do believe that residues containing dissociable groups
near the di-iron catalytic centre vicinity are responsible for modulating
the binuclear iron centre potential as well as the chemical environment.
Some residues can be crucial, not only for substrate binding, reduction

g|tH)

— F

/°\F

and diffusion towards the catalytic site, but also essential for electron
transfer from the heme ET centres (hemes b and c¢) and proton transfer
from the periplasmic side of the membrane, through the transmem-
brane polypeptide chain, until it reaches the catalytic centre.

3.8. New insights on the catalytic mechanism of NO reduction

There is an intense discussion concerning the mechanism of enzy-
matic reduction of NO by NORs. Different hypothetical mechanisms
are still in debate and until now there is no unequivocal proof that elects
or disclaims one of proposed models. Based on the presented results, we
revised the mechanism proposing, for NO reduction, the consecutive
binding of two substrate molecules to the di-iron site (Scheme 2). The
lack of the characterisation of relevant catalytic intermediates for NO
reduction leads us to consider both cis and trans-mechanisms. The
enzyme active form is proposed to be the fully reduced state (Scheme
2-a), with both catalytic iron sites in the ferrous state [6]. The binding
of NO to the non-heme Feg could force the opening of the oxo/hydroxo
bridge, leaving this group bound to the Fe''-heme b3 (Scheme 2-b). The
formation of this first catalytic intermediate is favourable since high-
spin non-heme [FeNO]” compounds show a strong and stable Fe— NO
bond, corresponding almost to a covalent interaction [25], while the
ferrous-heme nitrosyl complexes are also stable but quite unreactive
[52]. The existence of the hydroxyl group on the catalytic heme b3

|2'/
e

Scheme 2. NO reduction mechanism with the trans and cis-Feg models. The cis-Feg mechanism is presented with the possibility of one or both NO molecules binding to the non-heme iron.
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axial position would protect this iron site reactivity towards NO, as it
could be used to orientate the entrance of a second NO molecule, or to
stabilise a Feg-hyponitrite formation (see text below). This is also sup-
ported by the electrochemical studies developed in our research
group, which show an unchanged heme b; midpoint redox potential
during NO turnover [37].

From this first intermediate species, the Fel-mononitrosyl
(Scheme 2-b), we can envisage the two assumed mechanisms. Assum-
ing a trans-mechanism, the protonation or removal of the hydroxyl
group on the heme b site would produce the water formation, leaving
the ferrous heme bs site free to coordinate the second NO molecule
(Scheme 2-c), which can go further into the NO reduction, with the
hyponitrite formation between the two Fe sites (Scheme 2-d), and
after a double protonation this intermediate could release a water
molecule and N0, the reaction product. The di-iron centre, after suffer-
ing rearrangements can restore the catalytic centre initial form, now on
a ferric form (Scheme 2-i), ready for the next turnover. Kumita et al.
published an EPR characterisation of freeze-quenching samples and
found transition reaction intermediates prior to N,O formation,
supporting the supposed trans-mechanism [5]. However, the replace-
ment of the hydroxyl group for a substrate molecule should produce a
shift on the catalytic heme midpoint redox potential (as discussed
earlier in the text), which has not been detected yet, and so, this is
contrary to the postulated on the trans-mechanism [37].

The same first intermediate (Fell-NO — Scheme 2-b) can react with
the second NO molecule, without displacement of the OH group coordi-
nated to the catalytic heme Fe site. So in a cis-Feg mechanism, the
second substrate molecule can coordinate to the Feg site or only ap-
proach the catalytic cavity enough to react and form a Fep-dinitrosyl/
Feg-hyponitrite complex, respectively (see Scheme 2-e and f). The
remaining hydroxyl group, beyond protecting the heme Fe site against
NO and orientating the second NO molecule (Scheme 2-g and h), can
be essential for: 1) stabilising the Feg-dinitrosyl/Feg-hyponitrite species
formed and 2) transferring the reducing equivalents from the heme b3
Fe site, with the consequent oxygen atom abstraction, enhancing the
N-N bond formation.

Dinitrosylated iron complexes have been intensively studied, since
they are relevant in biological systems, and often common in Fe-Sulfur
clusters [53,54]. In general, Fe-nitrosylated species are more frequent
in five or six-coordinating systems while dinitrosylated forms seem to
be more common in lower coordination environments, with four or
five coordination ligands [55,56]. Making a closer observation of the
cNOR non-heme Feg site, which presents a three histidine and a
glutamate coordination, it does not seem probable the formation of a
Feg-dinitrosyl complex, due to the high number of coordinating ligands.
Also, studies on the modified sperm whale myoglobin indicated
that only two histidines and a glutamate residue are essential for the
non-heme Feg coordination and consequent NO reduction [57].

It is our conviction that a cis-Feg mechanism is more favourable,
since the remaining hydroxyl group coordinated to the heme b3 can
be seen as a major key step on the NO reduction mechanism, being
responsible for hyponitrite formation and/or stabilisation, as well as
assisting on the H,O molecule abstraction, triggering the N,O release
from the catalytic centre.

The mechanism indicated in Scheme 2, proposes a few hypothetical
catalytic intermediates that have not been identified yet, and further
studies focusing on the reaction intermediates detection should be
attained in the future.

4. Concluding remarks

In this work it is presented, for the first time, a complete steady-state
kinetic study on NOR in the presence of both substrates NO and O, in
which the correspondent kinetic parameters were determined. The
assays were done in the presence of the natural electron donor, the
cyt. css2 (in close physiological conditions), or using an alternative

electron donor system, a graphite rotating electrode mimicking the en-
zyme redox partner. The enzyme affinity for both substrates was evalu-
ated, as well as the turnover, confirming a higher value for NO reduction
and the residual activity of NOR for O,. The observed kinetic behaviour
under high NO concentrations, in conditions where the enzyme is
immobilised, shows that NOR can perform NO reduction with a similar
turnover, without an inhibitory effect, observed in the solution assays
using cyt. cssp as redox partner. The inhibition at lower substrate
concentrations was attributed to the enzyme intramolecular electron
transfer rate limitations. Investigation of the NOR activity under pH
dependence was obtained for the first time on lower pH values, show-
ing the relevance of the ionisable residues/groups surrounding the
binuclear catalytic centre which can modulate the di-iron catalytic
centre redox potential and reactivity.

The kinetic and electrochemical studies conducted allow new
insights into the O, and NO reduction mechanism, with the possibility
of revising the latter one. From the results, it seems presumable that
the mechanism for NO reduction requires the binding of the two
substrate molecules in two consecutive steps. Therefore we propose
the formation of a Feg-mononitrosyl, as the first catalytic intermediate,
which can evolve to a Feg-dinitrosyl/Feg-hyponitrite, in a cis-Feg catalyt-
ic mechanism or to a [FeNO]’, species, supporting a trans-mechanism.
Further studies are necessary to detect the possible catalytic
intermediates.
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