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Resumo 

Cianobactérias subaéreas são microorganismos que habitam ambientes que podem ser 

considerados extremos, estão geralmente em contacto direto com o ar e o seu acesso 

á água está altamente dependente do clima de uma certo local, devido a isso elas estão 

mais suscetíveis a dessecação, elas podem estar sob luz solar direta experienciando 

altos níveis de radiação UV e porque elas não estão submergidas, a turvidez da água, 

que bloqueia parte da radiação é uma camada de proteção que elas não têm ao 

contrário das cianobactérias aquáticas. Em vez disso, elas têm outros mecanismos que 

as ajudam a sobreviver nesses tipos de ambientes, elas conseguem produzir vários 

metabolitos secundários para combater tipos específicos de perigos característicos de 

ambientes terrestres. Uma vez que esses metabolitos secundários são moléculas 

bioactivas que podem ter potenciais usos biotecnológicos, e considerando a diferença 

de condições ambientais entre ambientes aquáticos e terrestres, as cianobactérias 

subaéreas podem ser consideradas um bio-recurso inexplorado que pode ser fonte de 

um diferente conjunto de compostos bioativos, alguns dos quais podem ser tóxicos para 

os humanos. Nessa perspectiva, tapetes de cianobactérias terrestres foram colhidos ao 

longo da região hidrográfica 2 de Portugal, no norte do pais, e diversas estirpes foram 

isoladas usando os meios Z8 e BG110. A diversidade das estirpes isoladas foi 

determinada através da sua identificação usando uma abordagem polifásica, que 

consistiu na observação morfológica das estirpes e da amplificação do gene do 16S 

rRNA para cada uma, e usando as sequências consensus do gene do 16S rRNA uma 

árvore filógenética de maximum likelihood foi construida para avaliar as suas 

semelhanças relativamente a outras estirpes e entre elas. O seu potencial 

biotecnológico foi determinado através da examinação da presença dos genes PKS e 

NRPS através de amplicação por PCR, e revelou que o gene NRPS tinha uma alta 

prevalência nas amostras ambientais colhidas e nos isolados obtidos e que o gene PKS 

tinha muito pouca presença nas amostras ambientais. Para avaliar a sua capacidade de 

produzir cianotoxinas, uma amplificação por PCR foi feita usando vários primers 

especifícos que amplificavam genes envolvidos na sintese de cianotoxinas, e apesar de 

não ter sido detectada a presença de nenhum gene de cyanotoxinas em nenhum dos 

isolados rastreados, foi descoberto que a presença do gene sxtI, envolvido na sintese 

da saxitoxina, era muito alta nas amostras ambientais terrestres, e que genes envolvidos 

na sintese de microcistinas, nodularinas e cilindrospermopsinas foram também 

detetados, revelando que os tapetes terrestres podem possuir cianobactérias 

produtoras de cianotoxinas. 



  
 

Palavras-chave: Cianobactérias, ambientes terrestres, biorecursos, cianotoxinas, 

compostos bioativos, potencial, biotecnologia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

Abstract 

Subaerial cyanobacteria are microorganisms inhabiting environments that can be 

considered extreme, they are generally in direct contact with air and their access to water 

is highly dependent on the weather of a certain location, because of that they are more 

prone to desiccation, they can be under direct sunlight experiencing high levels of UV 

radiation and because they are not submerged, water turbidity, that blocks part of the 

radiation is a layer of protection that they don’t have unlike aquatic cyanobacteria. 

Instead, they have other mechanisms that help them survive in these types of 

environments, they can produce several secondary metabolites to combat specific types 

of hazards characteristic of terrestrial environments. Since those secondary metabolites 

are bioactive molecules that can have potential biotechnological usage, and considering 

the difference of environmental conditions between aquatic and terrestrial environments, 

subaerial cyanobacteria can be considered an untapped bioresource that can be the 

source of a different array of bioactive compounds, some of which may also be toxic to 

humans. In that perspective, cyanobacterial terrestrial mats were collected along 

Portugal’s hydrographic region 2, in the north of the country, and several strains were 

isolated using Z8 and BG110 media. The isolated strains diversity was determined 

through their identification them using a polyphasic approach, which consisted of 

morphological observation of the strains and the amplification of the 16S rRNA gene for 

each one, and using consensus sequences of the 16S rRNA gene a maximum likelihood 

phylogenetic tree was built to assess their similarities relatively to other strains and to 

each other. Their biotechnological potential was determined by examining the presence 

of the PKS and NRPS genes through PCR amplification, and it revealed that the NRPS 

gene had a high prevalence both in the environmental samples collected and the isolates 

obtained and that the PKS gene had very little presence in the environmental samples. 

To access their capacity to produce cyanotoxins, a PCR amplification was made using 

several specific primers that targeted genes involved in the synthesis of cyanotoxins, 

and although it was not detected the presence of any cyanotoxin genes in any of the 

isolates screened for, it was discovered that the presence of sxtI gene, involved in 

saxitoxin synthesis, was very high in terrestrial environmental samples, and that genes 

involved in the synthesis of microcystin, nodularin, and cylindrospermopsin were also 

detected, revealing that terrestrial mats can host cyanotoxin-producing cyanobacteria.   

Keywords: Cyanobacteria, terrestrial environments, bioresources, cyanotoxins, bioactive 

compounds, potential, biotechnology. 
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1. Introduction: 

1.1. Framework: 

Cyanobacteria, previously known as blue-green algae due to the fact that most 

cyanobacteria produce phycocyanin pigments that give them a blueish color, belong to 

a group of gram-negative photosynthetic bacteria whose fossil records, the stromatolites, 

indicate that they date back to approximately 3.5 billion years ago (Awramik et al., 1983), 

at a stage in which oxygen was first beginning to develop on planet earth. They are 

believed to be some of the first organisms to appear on our planet and have 

accompanied its development throughout many of its stages, including the continental 

drift and the formation of the continents and oceans as we know them today (Santucci, 

2005; Paerl et al., 2000). In that sense, given how much the planet has changed since 

those 3.5 billion years ago, a number factors, namely UV radiation, and other abiotic 

factors during that period have in a way contributed to their evolution and to the 

development of defense mechanisms against the environmental stresses they faced in 

a wide variety of environments (Garcia-Pichel, 1998). 

Their resilience has contributed to their survival and worldwide presence even in 

the most extreme habitats (Paerl et al., 2000). As a result, they are virtually present 

anywhere on the planet. They can occur in freshwater environments, like rivers and 

lakes, and higher salinity environments, like brackish waters, salt waters at sea, and can 

even endure extreme salinities in salterns (Tkavc et al., 2010). Cyanobacteria can also 

be found in many terrestrial environments present in biocrust communities on top of other 

organisms (Singh et al., 2017), on rocks, soil and man-made infrastructures (Vázquez-

Nion et al., 2016) and they can also survive in other extreme environments like hot 

springs (Subudhi et al., 2018), in hot and arid deserts (Alwathnani & Johansen, 2011), 

cold deserts (Vincent, 2007) or survive in low to no sunlight irradiation conditions like in 

caves (Vasiliki, 2015).  

Their ability to resist a broad range of environmental conditions can be attributed 

to their metabolic plasticity and to their ability to produce secondary metabolites which 

can aid them in their survival in a particular environment (Paul et al, 1999; Paerl et al., 

2000). They have a remarkable ability to survive in extreme conditions where many other 

microorganisms would perish, for example, some strains have a huge tolerance to low 

or to high temperature (Schmidt et al., 2011; Alwathnani & Johansen, 2011), to high 

salinity (Tkavc et al., 2010), to low and high pH values (Lopez-Archilla et al., 2004; 

González-Toril et al., 2003), to desiccation (Potts, 1999) and to exposure to high UV 

radiation or even in lack of sunlight irradiation (Singh et al., 2017; Lamprinou et al., 2015). 

So, considering the variety of extreme environments throughout our planet and each of 
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their specific set of harmful/stressful conditions, the microorganisms that are able to 

inhabit them are more likely to have unusual ways of surviving in them, and are thus 

considered a good source for finding new bioactive compounds/substances that might 

have potential for biotechnological uses (Harvey, 2000). 

In this work the object of study were subaerial cyanobacteria, which according to 

Schlichting (1975) can be defined as being subaerial organisms inhabiting any object 

above the soil, litter or water surface, meaning those directly in contact with air, although 

some authors include endolithic forms, which refers to those inhabiting partly on or inside 

the surface, as also being subaerial cyanobacterial (Pentecost & Whitton, 2012). 

Subaerial environments can be considered extreme environments to 

cyanobacterial mainly due to stress factors like temperature, lack or excess of UV 

radiation and desiccation (Pentecost & Whitton, 2012). Because subaerial cyanobacteria 

are not submerged in water, and are generally in direct contact with air and exposed to 

sun radiation their temperature can rise quickly and they are susceptive to lose water 

quickly and to have to endure long periods of dryness depending on the weather 

(Pentecost & Whitton, 2012). One particular characteristic that allows subaerial 

cyanobacteria to survive in an environment with such a low contact with water is their 

ability to produce extracellular polymeric substances (EPS) which keeps the mats 

together by working like a glue and prevents loss of water, EPS are produced by most 

subaerial filamentous cyanobacteria, because of that they are the first colonizers of the 

terrestrial mats especially in dry locations (Garcia-Pichel & Wojciechowski, 2009). Their 

relative wetness varies along the year due to seasonal variations in precipitation and 

temperature, and it can be classified as mesic, for surfaces that remain wet for long 

periods, and xeric, for surfaces which are rarely wet (Fletcher, 1973). Temperature is 

another stress that subaerial cyanobacteria have to endure, they experience much wider 

temperature changes than cyanobacteria in aquatic habitats. (Pentecost & Whitton, 

2012). Relative humidity, temperature and intensity of UV irradiation are all factors that 

are determined by the weather of a geographical location. Each region of the planet has 

its own climacteric conditions, and the north of Portugal can be classified as a region 

with a temperate climate (Kottek, 2006). Nutrient availability can limit the growth of 

cyanobacteria in terrestrial environments where major nutrients like nitrogen (N) can be 

in deficiency, but heterocystous cyanobacteria have the ability to fix N2 (Wolk et al., 

1994), acting as N2 providers to other microorganisms in terrestrial mats (Belnap, 2002). 

Although subaerial cyanobacteria can - much in the same way as aquatic 

cyanobacteria - produce bioactive secondary metabolites with potential biotechnological 

usefulness (Lamprinou et al., 2015; Martins et al., 2008), they are still understudied when 
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in comparison with their aquatic counterparts and are pretty much an unexplored 

resource with the potential to yield new bioactive compounds, especially in Portugal. The 

secondary metabolites that cyanobacteria produce are products that rarely have a role 

in their primary metabolism, growth or reproduction but cyanobacteria have evolved to 

somehow benefit from their production, depending on the type of habitat (Paul et al, 

1999). Cyanobacteria strains may produce specific secondary metabolites that help 

them survive and resist biotic or abiotic stresses present in a particular environment. For 

example, it has been shown that subaerial cyanobacteria from caves, which are dark 

and nutrient-limited environments, have antibacterial activity against human pathogenic 

bacteria (Vasiliki, 2015). This happens probably as a response to hinder the growth of 

other microorganisms and give themselves a competitive advantage over the limited 

resources in caves. It has also been shown that subaerial cyanobacteria present in 

building rooftops and trees are able to produce mycosporine-like amino acids (MAAs), 

that are a UV absorbing compounds that act as a defense mechanism against high UV 

radiation (Singh et al., 2017). Also, most subaerial cyanobacteria have a thick sheath or 

extracellular matrix that can protect them from desiccation, which can be particularly 

helpful in terrestrial environments (Potts, 1999). The secondary metabolites besides 

being beneficial to their survival, have shown potential for biotechnological applications 

(De la Coba et al., 2009). 

During the last decades, cyanobacteria have gained a lot of attention as great 

sources of bioactive compounds with potential for pharmacological and biotechnological 

applications, such as antiviral activity (Lopes et al., 2011), anti-carcinogenic (Leão et al., 

2013), anti-microbial (Martins et al., 2008), anti-obesity (Castro et al., 2016) and many 

others. Because they are considered a reliable object of study for the discovery of new 

drugs and other potentially useful compounds many institutions recognize their 

importance and make an effort to catalog and organize their cultures in microbial 

biological resource centers (mBRCs) (Janssens et al., 2010). These are culture 

collections that are managed to ensure their preservation and to provide publically 

access to the strains and to their related information. LEGE’s culture collection (LEGE 

CC) hosted at CIIMAR is a good example of a cyanobacterial biological resource center 

and it hosts over 380 strains comprising of 46 genera and several of those strains have 

already shown the capability or potential to produce several bioactive compounds, some 

of those are toxins (Ramos et al., 2018). LEGE CC strains are derived from many 

environments, 93% of those are from aquatic environments (2% hypersaline, 46% 

marine, 11% brackish and 34% freshwater), 3% from terrestrial environments and 4% 
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with unknown origin. They are also producers of secondary metabolites, such as 

microcystin, that have toxic effects on human beings (Saker et al., 2005). 

1.2. Cyanobacterial secondary metabolite machinery: NRPS and PKS 

The synthesis of secondary metabolites in cyanobacteria can occur by 

deciphering the genetic code on the ribosome or it can happen non-ribosomally on a 

protein template, via polyketide synthases (PKSs) or non-ribosomal polypeptide 

synthetase (NRPS) (Shih et al., 2013). They can also be synthetized via a pathway that 

combines both types. In this case they are called hybrid PKS-NRPS (Fisch, 2013). An 

example of this is the case of the compound trichloroleucine that is a direct precursor of 

barbamide, which is the final product in the assembly chain, that displays molluscicidal 

activity and is produced by a marine strain of cyanobacteria (Chang et al., 2002). 

PKSs and NRPSs are big multifunctional protein complexes that have a modular 

organization, where each module carries all the essential information for recognition, 

activation and modification of one substrate into the growing peptide chain (Fisch, 2013). 

Each module can be divided into different domains, each responsible for a specific 

biochemical reaction. The structure of the final product being assembled depends on the 

number of those modules and on their organization within each enzyme, so each enzyme 

is responsible for the production of only one specific type of peptide (Schwarzer & 

Marahiel, 2001). 

Benthic filamentous cyanobacteria are generally a greater source of secondary 

metabolites than unicellular bacteria (Tidgewell et al, 2010). This is partly due to 

filamentous and colonial cyanobacteria apparently having larger genomes making them 

more likely to accommodate PKS and NRPS pathways (Shih et al., 2013). Despite that, 

smaller sized unicellular cyanobacteria also have the potential to equally produce 

potentially useful natural compounds, for example, Cyanobium sp. – a small unicellular 

picocyanobacterium has the potential to produce hierridin B, which is a compound that 

shows antitumoral activity (Leão et al., 2013). By using molecular methods, in 

combination with chemical methods like the LC-MS analysis, we can use the NRPS and 

PKS genes as a method to assess the potential of newly isolated strains to produce 

bioactive secondary metabolites (Brito et at., 2015) 

Most cyanotoxins are synthetized by both of NRPS and PKS complexes, such is 

the case of, for example, the toxin cylindrospermopsin (Kellman et al., 2006). 

 NRPS are mega enzymes that function as protein templates that direct the 

formation of compounds from monomers to molecules, responsible for assembling the 

non-ribosomal peptides (NRP), derived from the secondary metabolism of mostly 

microorganisms, in a process that has no need for ribosomes and messenger RNA 
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(mRNA) (Kastin, 2013). Their production can be attributed to determined gene clusters 

that encode a particular NRPS that is responsible for assembling only one type of 

peptide. 

It is via this assemblage mechanism that many useful bioactive compounds and 

toxins are produced in cyanobacteria. For example, it is via NRPS and PKS that both the 

toxins microcystin and nodularin, which are very similar in structure, are produced 

(Jungblut & Neilan, 2006). Other secondary metabolites produced non-ribosomally are 

for example the immunosuppressant cyclosporine and antibiotics such as gramicidin S, 

tyrocidin A, and surfactins (Kleinkauf & Von Döhren, 1996). 

 

1.3. Polyphasic approach  

The classical approach for the identification of cyanobacteria is based solely on 

their phenotypical characters, mainly based on their morphological characters and it was 

widely used before several technological advances took place, namely the introduction 

of electron microscopy and very particularly molecular methods, and since those 

advances its taxonomical system has been revised several times (Komarek, 2014). But 

the identification of cyanobacteria based only in morphological characters will not lead 

to a proper classification, because their shape may vary a lot, they can be simple 

unicellular organisms or multicellular types that form different types of thallus. Traditional 

classification would group them together in accordance with their phenotypical 

similarities but molecular analyses indicate that morphologically similar strains can be 

phylogenetically distant, which is the case of the cryptic groups described by Komarek 

(2014).  

In fact, the study of phenotypical and molecular characteristics has revealed a 

few points (Komarek, 2016) that are: that the location of the thylakoids in the cell is 

somewhat in agreement with clusters derived from molecular sequencing, that the 

coccoids morphotypes are heterogeneous, and that different groups of unicellular and 

colonial strains are more related to some clusters of filamentous bacteria than to each 

other.  

 According to Komarek (2014) a polyphasic approach should be used to identify 

cyanobacteria in which molecular sequencing should be the primary method for 

cyanobacterial identification while being combined with other criteria, like morphological 

or ecological observations, chosen depending on the nature of the samples and taking 

into consideration which criteria would prove more helpful in the identification. This 

molecular approach is based on the sequencing of the 16S rRNA gene, that despite 

being a much conserved gene, allowing to compare groups of very different organisms, 
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it also has 9 variable zones that allow distinction inside the same group of organisms 

and is thus used to distinguish cyanobacteria into the proper taxonomic groups, at least 

at the genus level (Komarek, 2016). 

In subaerial cyanobacteria, taxonomical identification is normally difficult because 

they generally have a simple morphology, so there is a special emphasis in using a 

molecular approach which should be employed for the sake of determining whether there 

is more diversity than indicated by classical taxonomy (Komarek, 2016). 

1.4. Cyanotoxins 

Many genera of cyanobacteria are known to produce a wide variety of toxic 

secondary metabolites known as Cyanotoxins, being a major concern for public health 

(Van Apeldoorn et al., 2017). They are usually associated with harmful algal blooms in 

aquatic environments where cyanobacteria grow very rapidly due to eutrophication while 

at the same time producing cyanotoxins. This phenomenon usually is attributed to 

anthropogenic causes, such as nutrient pollution (Heisler et al., 2008) and is also 

associated with the global temperatures increase that seem to favor their growth (Paul 

et al., 2008). Molecular methods based on the detection of the gene involved in their 

production can be employed for monitoring their presence in the environment as an early 

warning signal (Moreira et al., 2014), but that does not necessarily mean the cyanotoxin 

is being produced. The presence of the cyanotoxins in the environment should be 

complementarily quantified through chemical analytical or immunological methods. The 

table 1 summarizes the cyanotoxins screened for in this study: 

Table 1. Summary of cyanotoxins screened in this study. 

Structure Cyanotoxin Primary target on mammals 

Cyclic peptides Microcystins Liver 

Nodularin Liver 

Alkaloids Saxitoxin Nervous system 

Anatoxin Nervous system 

Cylindrospermopsin Liver 

 

They also have shown to have toxic effects on other animals (e.g Puerto et al., 

2011) and plants (Freitas et al., 2015). 

1.5. Aim of the study 

Subaerial cyanobacteria are an understudied group when compared to aquatic 

cyanobacteria, which inhabit in ecological conditions that can be considered extreme. 

This exploratory work was conducted with the aim to isolate, identify and asses their 

diversity of in the north of Portugal, by mean of a culture-dependent, polyphasic 

approach. At the same time, I aimed to evaluate the biotechnological potential of 

subaerial cyanobacteria by screening for PKS and NRPS, and to check their ability for 
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producing cyanotoxins. In both cases, a PCR-based approach was followed by using the 

DNA from the environmental samples (eDNA) and the isolates (gDNA). 

2. Methodology: 

2.1. Sampling 

2.1.1. Sampling locations 

Two areas in the north of Portugal were selected to collect the samples, both in 

close proximity to freshwaters bodies, less than 300 meters from a body of water. One 

was an urban park called “Parque da Cidade” located in Porto and the other was 

Portugal’s Hydrographic Region 2 (RH2- Região Hidrográfica 2 in Portuguese), both 

locations situated in the north of Portugal. Portugal’s climate in the north is classified as 

Csb according to Kottek et al. (2006), meaning it has a warm temperate climate with a 

dry and warm summer. 

“Parque da Cidade” has an area of 83 hectares and is located near the coast in 

the north of Portugal, it has 3 lakes connected via underground pipes and their water is 

used to feed the irrigation system of the park. The samples were collected from several 

surfaces along the pathways throughout the park and in proximity to the 3 lakes. “Parque 

da Cidade” is located just a few kilometers south of the Leça river, whose hydrographic 

basin incorporates the RH2 region. 

 

Figure 1. Parque da Cidade satellite aerial view marked with the sampling points (1-8) 
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The figure 1 shows the satellite aerial view of the park with the sampling points 

marked on it. 

The RH2 region has an area of 3 400 km2 and comprises mainly of 3 hydrographic 

sub-basins of 3 rivers and their affluents, they are the Cávado, Ave and Leça sub-basins, 

the region also comprises of the basins of smaller coastal streams along the coast of the 

region. The samples were collected on several surfaces but always in close proximity to 

rivers. The figure 2 shows the area and delimitation of the RH2 region. 

 

Figure 2. Hydrographic region 2 sampling area. 

2.1.2. Sample retrieval 

The samples were collected on the 4th of January 2018, during winter, in “Parque 

da Cidade” where 8 samples were retrieved, and in the RH2 region on the days 21st 

March and 4th of April 2018, when 11 and 9 samples were retrieved, respectively. The 

samplings were performed during an atypical winter/early spring season, when 

precipitation in the north of Portugal has hit historical records. Overall, 28 samples were 

collected in both sampling locations. The samples were collected during a seasonal 

period of the year which has the highest annual precipitation and the lowest annual 

temperatures of the year. The sampling days, especially on the 4th of January, were rainy 

with only mild raining on the days 21 of March and 4 of April, as such the majority of the 

surfaces chosen to collect the samples were well wet which facilitated the sampling 

process. 
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The samples were collected from several types of surfaces and ranged from 

several types of microbial communities, such as lithophilous communities inhabiting in 

rocks and soil (wet or near puddles) or inhabiting in cement or paint from man-made 

infrastructures, epixylous communities in wooden tables in a park, corticolous 

communities on the bark of a tree and epimetallous communities on the top of an iron 

faucet with continuously running water near a fountain, but the majority were lithophilous 

communities collected from granitic rocks either in nature or used in man-made 

infrastructures, and according to their relative humidity they can be classified as mesic, 

but mostly during winter because of higher rates of precipitation, nevertheless the 

samples collected were well wet and had a moist texture (with the exception of samples 

ENV001 and ENV002 that had a drier texture than the rest). The table 2 describes the 

characteristics of each sampling location. Some of those locations were chosen as 

sampling locations because they are frequently used by people. Indeed, the sampling 

sites include parks and freshwater beaches (for example, the park tables and a water 

fountain have been sampled). 

Table 2. Description and coordinates of sampling locations. 

Location Coordinates Site/ Sample 
code 

Description Sampling date 
(dd.mm.yyyy) 

Parque da Cidade 41.170673, 
-8.683185 

ENV 001 Granitic rock; wall 04.01.2018 

Parque da Cidade 41.169606, 
-8.681526 

ENV 002 Xistic rock; wall 04.01.2018 

Parque da Cidade 41.168846, 
-8.680552 

ENV 003 Water puddle/soil 04.01.2018 

Parque da Cidade 41.168099, 
-8.679720 

ENV 004 Soil 04.01.2018 

Parque da Cidade 41.167030, 
-8.679810 

ENV 005 Granitic rock; wall 04.01.2018 

Parque da Cidade 41.167554, 
-8.673021 

ENV 006 Granitic rock 04.01.2018 

Parque da Cidade 41.167554, 
-8.673021 

ENV 007 Granitic rock 04.01.2018 

Parque da Cidade 41.169001, 
-8.675250 

ENV 008 Paint/ wall 04.01.2018 

Alto Rabagão’s dam 41.728973, 
-7.870867 

ENV 011 Granitic rock 21.03.2018 

Alto Rabagão’s dam 41.728949, 
-7.870855 

ENV 012 Granitic rock 21.03.2018 

Caniçada’s dam 41.675939, 
-8.183609 

ENV 013 Granitic rock; fontain 21.03.2018 

Parque dos Moinhos 41.635672, 
-8.137095 

ENV 014 Granitic rock; wall 21.03.2018 

Praia Fluvial da Esperança 41.577053, 
-8.167206 

ENV 015 Granitic rock; near river 21.03.2018 

Praia Fluvial da Esperança 41.577083, 
-8.166437 

ENV 016 Fountain/ iron 21.03.2018 

Park near Queimadela’s 
dam 

41.504593, 
-8.161730 

ENV 017 Wooden table 21.03.2018 

Travassos 41.405603, 
-8.207057 

ENV 018 Granitic rock near water 
drainage 

21.03.2018 

Travassos 41.405345, 
-8.206949 

ENV 019 soil 21.03.2018 

Travassos 41.404152, 
-8.207644 

ENV 020 Granitic wall near water 
drainage 

21.03.2018 
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Park near Queimadela’s 
dam 

41.504693, 
-8.161734 

ENV 035 soil 21.03.2018 

Barcelos 41.527236, 
-8.622714 

ENV 049 Granitic rock; very close to river 04.04.2018 

Barcelos 41.527064, 
-8.622775 

ENV 050 Granitic rock; stairs 04.04.2018 

Penide’s dam 41.550096, 
-8.538160 

ENV 051 Granitic rock; wall 04.04.2018 

Praia Fluvial de Merelim 41.593770, 
-8.464680 

ENV 052 Tree (Quercus) 04.04.2018 

Praia Fluvial dos Moinhos 41.654854, 
-8.399625 

ENV 053 Wall; cement 04.04.2018 

Praia Fluvial da Navarra 41.613448, 
-8.385260 

ENV 054 Granitic rock; inside windmill 04.04.2018 

Praia Fluvial da Navarra 41.613448, 
-8.385260 

ENV 055 Granitic rock; wall inside 
windmill 

04.04.2018 

Park near river Ave 41.529815, 
-8.273271 

ENV 056 Granitic rock; tank/fountain 04.04.2018 

Santo Tirso’s park 41.355048, 
-8.457896 

ENV 057 Cement; ground 04.04.2018 

 

2.1.3. Sample collection process 

The itinerary plan was made in Google Maps and GPS coordinates were used to 

reach each chosen sampling location.  

The samples were collected with a stainless steel spatula or knife which was used 

to scrape the cyanobacterial mats off of rocks into a 50mL Falcon tube, and whenever 

necessary a Pasteur pipette was used to help collect the mats from more humid surfaces 

that would sometimes be partially submerged in small puddles by collecting small 

cyanobacterial mat portions that were scraped off into the more wet parts of the surface. 

After collecting a sample, the Falcon tube was properly labeled with a code which served 

to identify the location from where each sample came from and a correspondence was 

made between each code and sample location characteristics, then the falcon tube was 

temporarily stored in a thermal box for transportation to the lab.  

During the sample collection procedure, disposable nitrile gloves were used and 

the collection materials (spatula and knife) were always sterilized with alcohol (ethanol 

at 70%) and cleaned before and after each sample collection, all in an effort to avoid 

cross-contamination between samples. 

One of the samples was lyophilized, after it was observed in the microscope it 

had a big community of cyanobacteria, to allow in the future to look for substances with 

potential biotechnology uses. That particular sample (ENV55) was collected inside an 

abandoned water mill, on the margin of river Cávado. 

2.2. Sample processing: culturing and isolation 

At the laboratory, the sample processing procedure was performed in aseptic 

conditions. It consisted in distributing a small portion of biomass from each collected 
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environmental sample in 4 types of media (solid Z8, solid BG110, liquid Z8 and BG110) 

and in two 1,5µL Eppendorf tubes, one for the microscopic observation of the 

environmental samples and the other for extracting the sample environmental DNA 

(eDNA) which was used for molecular screening. The rest of the environmental biomass 

was left inside the falcon tube and stored at a temperature of -20C° as backup.  

The raw environmental samples were observed through light microscopy using a 

Leica DMLB microscope (Wetzlar, Germany) to check for cyanobacterial presence and 

their predominance in each sample. Each sample was cultured in two liquid enrichment 

media, BG110 (Andersen, 2005) and Z8 (Kotai, 1972), and were allowed to grow freely, 

some of them were attempted to isolate via micromanipulation at a later date. The solid 

BG110 and Z8 mediums in petri dish agar plates, with an agarose concentration of 1.2%, 

were the primary method used to isolate the environmental samples. All the media for 

the raw environmental samples were prepared with cycloheximide, at a concentration of 

0.025%, to prevent the growth of eukaryotic microorganisms. 

To isolate in solid media a bit of biomass from the environmental sample were 

placed and spread along an agar plate using a streaking technique, that consisted in 

making a series of strokes in the agar plate in which the last series of strokes had a more 

diluted concentration of microbial biomass than the first series. Strokes were made with 

the help of an inoculation loop that was sterilized in an infrared loop sterilizer after each 

series of strokes were made. Eventually, isolated colonies appeared in the more diluted 

strokes and were picked up with the help of a disposable surgeon’s blade or an 

inoculation loop to be placed in a new agar plate containing the same medium they were 

originally picked up from, and the process was repeated if deemed necessary. When two 

isolated colonies with a different macroscopic appearance appeared on the same agar 

plate, they were picked up and placed into two new separate agar plates. Colonies 

though to be isolated were picked up from the agar plate and inoculated in liquid media 

inside an Erlenmeyer flask where they were allowed to grow, after further confirmation 

of a monoculture in the flask, an aliquot was collected for extracting the genomic DNA 

(gDNA) of the isolated strain. All cultures were kept in LEGE’s isolation room at a 

temperature of 20°C, under artificial light with a period of 14h light/10h dark and a light 

intensity of (12 mol photons m−2 s −1). Strain isolates will be deposited at LEGE Culture 

Collection at CIIMAR (Porto, Portugal). 

2.3. Morphological observation 

After isolation, the strains were observed and characterized according to their 

morphotypes using a Leica DMLB microscope (Leica Microsystems GmbH, Wetzlar, 

Germany), and their microphotographs were captured with a Leica ICCA Camera 
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System at magnifications of 400x and 1000x, using the Qwin Leica software (Leica 

Microsystems GmbH) the microphotographs were properly processed. Morphometric 

characteristics of each strain were measured directly of the microscopic preparation 

(using an aliquot from the liquid culture medium) at a magnification of 1000x, length and 

width or diameter were the characters measured 20 times in different individuals of each 

strain. 

2.4. Molecular methods 

2.4.1. DNA extraction 

Two methodologies were used to extract DNA. For eDNA extraction of raw 

environmental samples retrieved directly from the field, the DNeasy powersoil kit 

(QIAGEN, Netherlands) commercial kit was used due to being more suitable for the DNA 

extraction of mucilaginous subaerial cyanobacteria samples which are soil-like samples 

that may contain a lot of sediment and various kinds of debris. The extraction procedure 

was followed accordingly to the protocol provided by the manufacturer of the kit. For 

instance, the Vortex Genie 2 (MoBio laboratories, USA) was used and set at maximum 

vortex speed for a period of 10-15 minutes to properly mix and prepare the environmental 

samples for extraction. 

For the gDNA extraction of both the isolated strains and the strains from LEGEcc 

(serving as positive controls for the molecular screenings), their respective 

cyanobacterial biomass, collected from the cultures was harvested by centrifugation. The 

biomass would be centrifuged at 10000 X g for 10 minutes and if after that a pellet was 

not observed the G-force would be increased to 16000 X g and the biomass was 

centrifuged again 10 minutes. After a pellet formed in the 1.5µL Eppendorf tube the liquid 

medium present in it would be removed and discarded with the aid of a micropipette, 

replacing it with ddH20 water. The biomass was then stored at -20°C for the DNA 

extraction to be performed at a later date. After the cells were harvested, the DNA 

extraction of the isolated strains and of the positive controls strains was performed using 

the Purelink Genomic DNA Mini Kit (Invitrogen, USA), and the protocol for extracting 

DNA from gram-negative bacterial cell was followed according to the manufacturer 

instructions. 

Finally, all the extracted DNA was stored in 1,5µL Eppendorf tubes in a freezer 

at a temperature of -20°C. 

After completing the DNA extraction procedure an electrophoresis was always 

performed afterward to confirm that the DNA was indeed successfully extracted. Agarose 

gel (Ultrapuretm Agarose, Invitrogen, USA) at 1% concentration was prepared using a 
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Tris-Acetate EDTA buffer solution (TAE Ultrapuretm, Invitrogen, USA) at 1x (40mM Tris-

acetate and 1mM EDTA), to stain the gel 2µL of SYBRsafe (Invitrogen, USA) was used. 

Five microliters of extracted DNA mixed with 0.5µL of loading buffer was loaded into the 

gel, 1µL of molecular marker (1Kb Plus DNA Ladder) was loaded. The gel ran at a 

voltage of 90V during 45 minutes and was visualized and photographed in the 

transilluminator Molecular Imager® GEL DOCTM with the software Image LabTM(USA). 

2.4.2. PCR screening 

a) Primers: 

To check if the isolated strains and environmental samples had cyanobacteria 

with the potential to produce secondary metabolites, several genes were targeted and 

amplified using specific primers through the method of Polymerase Chain Reaction 

(PCR) with the aim to screen for their presence. Most of the genes targeted belong to 

gene clusters related to the production of cyanotoxins (toxicity potential screening), and 

others were genes from the NRPS and PKS gene clusters that are responsible for 

encoding non-ribosomal peptides and polyketide peptides that are able to produce 

potential bioactive metabolites (biotechnological potential screening). Prior to all other 

screenings, the isolates and environmental samples were also screened for the presence 

of the 16S gene by using the cyanobacterial group-specific primer set 

CYA106F/CYA781R (Nübel et al., 1996). This amplification was used to check if there 

was any cyanobacterial DNA in the environmental samples and isolates in order to 

validate the extraction. 

The primers used are listed in table 3 along with their target genes and their target 

groups. The primers used for the toxicity screening were the PKDF/PKDR (Ouahid et al. 

2005), the HEPF/HEPR primers which were used to target a domain that is located in 

both the mcyE and ndaF genes to detect potential microcystin and nodularin producing 

strains (Jungblut and Neilan, 2006), the SxtI682F/sxtI877R (Lopes et al., 2012), the 

anaC-genF/anaC-genR (Rantala-Ylien, 2011), the cylnamR/ cylnamR (Mihali et al. 2008) 

and the CYTLATF/CYTLATR primers which were used to target the  amidinotransferase 

(AMT) gene whose presence in a cyanotoxin gene cluster is unique to 

Cylindrospermopsin producing cyanobacteria (Kellman et al., 2006). The primers used 

for the assessment of biotechnological potential were the DKF/DKR and MTF2/MTR 

targeting the PKS and NRPS genes, respectively (Moffit et al. 2001; Neilan et al. 1999).  
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Table 3. Target genes and their respective primers, target groups, primer sequences, amplified fragment size and positive 

controls. 

Target 
gene 

Primer pair Target group Primer sequence (5’_3’) size 
(bp) 

Positive control References 

mcyD PKDF1; 
PKDR1 

microcystin 
producers  
 

GACGCTCAAATGATGAAAC 
GCAACCGATAAAAACTCCC 

657 Microcystis 
aeruginosa LEGE 
91339 

Ouahid et al. 
2005 

mcyE / 
ndaF 

HEPF; 
HEPR 

Microcystin and 
nodularin 
producers  
 

TTTGGGGTTAACTTTTTTGGGCATAGTC 
AATTCTTGAGGCTGTAAATCGGGTTT 

472 Microcystis 
aeruginosa LEGE 
91339 

Jungblut and 
Neilan, 2006 

sxtI SxtI682F; 
sxtI877R 

Saxitoxin producers GGATCTCAAAGAAGATGGCA 
GCCAAACGCAGTACCACTT 

195 Aphanizomenon 
gracile LMECYA40 

Lopes et al., 
2012 

anaC anaC-genF; 
anaC-genR 

Anatoxin producers TCTGGTATTCAGTCCCCTCTAT 
CCCAATAGCCTGTCATCAA 

366 Anabaena sp. 
LEGE X-002 

Rantala-Ylien, 
2011 

cyrJ cynsulF; 
cylnamR 

Cylindrospermopsin 
producers 

ACTTCTCTCCTTTCCCTATC 
GAGTGAAAATGCGTAGAACTTG 

586 Cylindrospermopsis 
raciborskii LEGE 
97047 

Mihali et al. 
2008 

AMT  CYTLATF; 
CYTLATR 
 

Cylindrospermopsin 
producers 

ATTGTAAATAGCTGGAATGAGTGG 
TTAGGGAAGTAATCTTCACAG 

1105 Cylindrospermopsis 
raciborskii LEGE 
97047 

Kellman et al., 
2006 

PKS DKF; 
DKR 

Polyketide 
producers  

GTGCCGGTNCC(A/G)TGNG(T/C)(T/C)TC 
GCGATGGA(T/C)CCNCA(A/G)CA(A/G)(C/A)G 

650-
700 

Microcystis 
aeruginosa LEGE 
91339 

Moffit et al. 
2001 

NRPS MTF2; 
MTR 

Non-ribosomal 
peptide producers 

GCNGG(C/T)GG(C/T)GCNTA(C/T)GTNCC 
CCNCG(AGT)AT(TC)TTNAC(T/C)TG 
 

~1000 Microcystis 
aeruginosa LEGE 
91339 

Neilan et al. 
1999 

16S CYA106F; 
CYA781R  
 

Cyanobacteria, 
plastids 

CGG ACG GGT GAG TAA CGC GTG A 
GAC TAC TGG GGT ATC TAA TCC CAT T 

675 Microcystis 
aeruginosa LEGE 
91339 

Nübel et al. 
1996 

 

b) PCR amplification: 

Each pair of primers listed in table 3 were used in the PCR reactions, the 

components and concentrations per reaction of 20 µL were: 1x GoTaq buffer, 2.5 mM 

for MgCl2, 1 µM for each primer, 0.5 mM for the dNTP mix, 0.5 U for GoTaqR Flexi DNA 

polymerase, the final volume of each reaction was 20 µL and 1 µL of that volume was 

the DNA template. The volumes per reaction are listed in table 4. 

Table 4. Mastermix preparation volumes for each component of the PCR reaction. 

Components Volume per reaction 
(1x) 

Molecular biology water 7.9 

5x Buffer 4 µL 

MgCl2 2 µL 

Forward primer 2 µL 

Reverse primer 2 µL 

Deoxynucleotides (dNTP’s) 2 µL 

Taq Polymerase 0.1 

DNA template 1 µL 

Total: 20 µL 
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The PCR reactions were made using a Biometra T-Professional Standard 

Gradient Thermocycler (Germany) and the PCR conditions for each pair of primers are 

described in table 5. 

Table 5. PCR conditions for each primer set. 

Primer pair PCR reaction References 

Initial Denaturation PCR  cycles Final extension 

PKDF1; 
PKDR1 

94 °C 
5 min 

35  cycles 72 °C 
7 min 

Ouahid et al. 2005 

95 °C 
60 s 

54 °C 
30 s 

72 °C 
1 min 

HEPF; 
HEPR 

92 °C 
2 min 

35  cycles 72 °C 
5 min 

Jungblut and Neilan, 
2006 92 °C 

20 s 
52 °C 
30 s 

72 °C 
1 min 

SxtI682F; 
sxtI877R 

94 °C 
3 min 

35  cycles 72 °C 
7 min 

Lopes et al., 2012 

94 °C 
10 s 

52 °C 
20 s 

72 °C 
1 min 

anaC-genF; 
anaC-genR 

94 °C 
2 min 

25  cycles 72 °C 
5 min 

Rantala-Ylien 2011 

94 °C 
30 s 

50-60°C 
30 s 
 

72 °C 
30 s 

cynsulF; 
cylnamR 

94 °C 
3 min 

30  cycles 72 °C 
7 min 

Mihali et al. 2008 

94 °C 
10 s 

55-65°C 
20 s 

72 °C 
1-3min 

CYTLATF; 
CYTLATR 
 

94 °C 
3 min 

30  cycles 72 °C 
7 min 

Kellman et al., 2006 

94 °C 
10 s 

50-55°C 
20 s 

72 °C 
1 min 

DKF; 
DKR 

94 °C 
2 min 

30  cycles 72 °C 
7 min 

Moffit et al. 2001 

94 °C 
5 s 

65 °C 
10 s 

72 °C 
20 s 

MTF2; 
MTR 

94 °C 
2 min 

35  cycles 72 °C 
7 min 

Neilan et al. 1999 

93 °C 
10 s 
 
 

51 °C 
20 s 

72 °C 
1 min 
 

CYA106F; 
CYA781R  
 

94 °C 
5 min 

35 cycles 72 °C 
7 min 

Nübel et al. 
1996 94 °C 

1 min 
60 °C 
1 min 

72 °C 
1 min 

 

After PCR amplification, all PCR products would be analyzed and visualized via 

electrophoresis in an agarose gel ((Ultrapuretm Agarose, Invitrogen, USA) at a 

concentration of 1.5% which was stained with 2µL of SYBRsafe (Invitrogen, USA). The 

selected voltage and running time was 90V and 45 minutes. The agarose gel was 

visualized and photographed in the transilluminator Molecular Imager® GEL DOCTM with 

the software Image LabTM(USA), and the presence or absence of the amplified target 

gene was observed for each environmental sample and for each isolate by looking at the 

position of the positive controls in the gel and by using the molecular markers to check if 

a fragment was present (or absent) in the expected position according to its amplified 

molecular size. 

The strains used as positive controls for the molecular screenings were retrieved 

from the LEGE Culture Collection. They have been previously confirmed by sequencing 

to have the target genes, making them suitable to be used as positive controls.  
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2.4.3. Sequencing 

Environmental samples that exhibited positive PCR results (i.e presence of the 

gene) for each cyanotoxin target gene were selected and sequenced.  

The 16S rRNA gene was amplified and sequenced for all the isolates obtained, 

in order to identify the cyanobacteria and thus assess the diversity of the samples. 

In this case, for sequencing purposes, the PCR preparation involved triplicating 

the number of reactions for each environmental sample (or isolate), in order to have 

enough amplified product to enable sequencing. So the final volume of PCR product per 

sample (and isolate) to be loaded into the 1.5% agarose gel was 60 µL. The primers and 

PCR conditions used were the same used for the screening and are listed in table 5. The 

electrophoresis ran at 90V for 60 minutes, then the amplified fragments were observed 

in the CSMICRODOC system (Cleaver scientific, UK) transilluminator coupled with a 

Canon PowerShot G9 camera. Then, bands with the expected size were excised from 

the gel and collected to be purified using the Nztech - genes & enzymes (NZYGelpure, 

Portugal) purification kit, following the manufacturer’s instructions. The check the efficacy 

of the DNA purification, an electrophoresis (90V; 45 minutes) ran in a 1% agarose gel, 

and the purified DNA was mixed with loading buffer, corresponding to a tenth of the total 

loaded DNA, with the aid of a micropipette. All the purified PCR products and the 

respetive pair of primers were sent to GATC Biotech (Germany) to be sequenced.    

2.5. Sequence analysis 

The forward and reverse sequences (i.e. 5’ and 3’) obtained from the same PCR 

product were examined in the bioinformatic software Geneious (v.8) and were 

assembled together (de novo assembly), their chromatograms were analyzed to check 

the quality of the sequences and to determine if further sequences were needed to form 

a consensus sequence (i.g. if the quality was bad on either one of the forward or reverse 

sequences). The sequences were usually trimmed at the extremities due to bad quality. 

Then, the consensus sequences of each strain isolate were compared with the 

sequences in the GenBank® database using the BLAST®n (Basic Local Alignment 

Search Tool for nucleotides) tool available in the NCBI (National Center for 

Biotechnology Information) and compared with other cyanobacterial sequences in the 

GenBank® database to check for similarities and to help in their identification. 

2.6.  Phylogenetic analyses 

To assess the relative position of our isolated strains relatively to each other and 

other reference strains a phylogenetic 16S rRNA gene-based tree was built based on 

the Maximum Likelihood method using the software MEGA7 (Molecular Evolutionary 
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Genetics Analysis Version 7.0). First, all the sequences were aligned using the algorithm 

ClustalW (Kumar et al, 2016) and then visually inspected. This multiple sequences 

alignment consisted of (1) the 16S rRNA consensus sequences of each strain isolate 

obtained in this study; (2) the best hit sequences of each isolates’ sequence obtained in 

this study (the isolates sequences were previously compared with the sequences in the 

GenBank® database using the Blast® tool; if the best hit was an unidentified 

cyanobacterium then a second sequence belonging to the closest identified 

cyanobacteria was also retrieved and used in the construction of the tree); and (3) 11 

reference strains collected from LEGE’s Cyanotype database and from GenBank, in 

order to obtain a reliable representation of the diversity of the cyanobacteria. The model 

of substitution has been chosen according to the AICc criteria. Thus, the phylogenetic 

tree was built using the model GTR+G+I and with all the positions with a coverage of 

less than 97% site coverage removed. The labels in the phylogenetic tree were edited 

using the Inkscape software (V. 0.92; free software). 

3. Results and Discussion 

Although isolations attempts through micromanipulation were made using the 

liquid culture mediums containing the environmental samples those did not yield any 

success due to the fact that the strains exhibited poor growth in the liquid enrichment. 

Due to time constraints and deadlines the idea of any further attempts at 

micromanipulation was abandoned. So both the Z8 and BG110 liquid mediums holding 

each sample served only as a sort of a backup in laboratory and the raw sample was 

allowed to grow, this most likely changed the community and the relative amount of 

certain strains of cyanobacteria in the sample because some strains are more capable 

of growing in those mediums than others, such is the case of opportunistic strains that 

can easily dominate in these mediums. Instead, all of the strains were isolated through 

solid media on agar plates. 

Following Komarek and co-authors’ (2014) criteria for identification of 

cyanobacteria, all isolates were properly identified using a polyphasic approach based 

mainly on molecular methods (amplification and sequencing of the 16S rRNA gene) 

combined with the strain morphological characteristics, 7 isolates could be identified to 

the taxonomic level of species, 13 isolated were identified to their genus and 5 were 

identified to their order. A few exceptions happened: 

• For the isolate JPS1 no molecular data has been obtained due to the lack of 

biomass available in the liquid culture to properly perform a DNA extraction, so 
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that isolate was not identified. Only its morphological characteristics were able 

to be determined.  

• For the isolates JPS13 and JPS26, it was only possible to obtain 1 sequence out 

of each one, corresponding for both strains to the reverse sequence (primer 

CYA785R). Blasting those sequences and comparing them with those in 

GenBank database along with their microscopical observation and 

characterization would allow us to conclude that they most likely belong to the 

genera Wilmottia and Timaviella, respectively. For all the other isolated strains I 

have obtained 2 or more sequences that were assembled together to form a 

consensus sequence that was used to build the phylogenetic tree. Since there 

was only 1 sequence for the isolates JPS13 and JPS26 it was not possible to 

produce a consensus sequence, consequently they were not included in the 

phylogenetic tree. 

3.1. Morphological characterization and strain identification 

A total of 26 strains were isolated, characterized according to their morphological 

features (morphotypes) and their morphometric characteristics (i.e cell diameter or cell 

length and width) were measured under light microscopy. Morphological observations 

revealed 17 different cyanobacterial morphotypes (figure 3) and three main types of 

morphologies were distinguished as well, the filamentous cyanobacteria with 

heterocysts, filamentous cyanobacteria without heterocysts (non-heterocytous) and 

unicellular cyanobacteria (table 6). 
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Figure 3. Diversity of different morphotypes among strains; (image C at 400x magnification, all others at 1000x); A-  

Microcoleus sp.; B- Nostoc sp.; C- Roholtiella edaphica; D- Timaviella sp.; E- Tolypothrix sp.; F- Nodosilinea epilithica; 

G- Wilmottia sp.; H- Tolypothrichaceae; I- Leptolyngbyaceae; J- Leptolyngbya sp. 1; K- Leptolyngbya sp. 2; L- 

Tychonema sp.; M- Synechococcales sp. 1; N- Nostocales; O- Synechococcales sp. 2; P- Macrochaete sp. 
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; Q- unidentified unicellular strain; Scale Bar= 10 µm.

Table 6. Isolated strains, their respective identification (Komarek et al., 2014) with each correspondent morphotypes 
represented in figure 3 and their classification according to: 1-  Unicellular, 2- heterocytous filamentous 3- non-
heterocytous filamentous; the colors indicate: green- strains isolated using Z8 medium; blue- Strains isolated using 
BG110 medium. 

Isolated ID Order Morphotype 
(represented 
in figure 3) 

Nº isolados 
obtidos 

Sampling 
location 

JPS001 No molecular info n.i Q-1 1,72 ± 0,31 ENV001; 
Parque da 
Cidade 

JPS002 Microcoleus vaginatus Oscillatoriales A-2 3 ENV003; 
ENV 4 
Parque da 
Cidade 

JPS004 Nostoc sp. Nostocales B-3 1 ENV003; 
Parque da 
Cidade 

JPS005 Roholtiella edaphica Nostocales C-3 1 ENV004; 
Parque da 
Cidade 

JPS007 Timaviella circinata Synechococcales D-2 1  ENV005; 
Parque da 
Cidade 

JPS008 Timaviella sp. Synechococcales D-2 3 ENV005; env 
6;Parque da 
Cidade; 
ENV054; 
Praia Fluvial 
da Navarra # 

JPS009 Tolypothrix sp. Nostocales E-3 1 ENV005; 
Parque da 
Cidade 

JPS010 Nodosilinea epilithica Synechococcales F-2 2 ENV006; 
Parque da 
Cidade 

JPS013 Wilmottia sp. # Oscillatoriales G-2 2 ENV006; 
Parque da 
Cidade; 
ENV016; 
Praia Fluvial 
da 
Esperança 
 

JPS014 unidentified 
Tolypothrichaceae 

Nostocales H-3 1 ENV006; 
Parque da 
Cidade 

JPS015 unidentified 
Leptolyngbyaceae 

Synechococcales I-2 1 ENV007; 
Parque da 
Cidade 

JPS016 Leptolyngbya sp. 1 Synechococcales J-2 2 ENV011; 
ENV012; Alto 
Rabagão’s 
dam 

JPS017 Leptolyngbya sp. 2 Synechococcales K-2 0,89 ± 0,10 x 
0,83 ± 0,14 

ENV012; Alto 
Rabagão’s 
dam 

JPS018 Tychonema sp. Oscillatoriales L-2 1,82 ± 0,27 x 
2,38± 0,25 

ENV013; 
Caniçada’s 
dam 

JPS019 unidentified 
Synechococcales sp. 1 

Synechococcales M-2 0,89 ± 0,11 x 
1,11 ± 0,12 

ENV014; 
Parque dos 
Moinhos 

JPS021 Tychonema sp. Oscillatoriales L-2 1,75 ± 0,34 x 
2,36 ± 0,22 

ENV018; 
Travassos 

JPS022 Tychonema sp. Oscillatoriales L-2 1,62 ± 0,27 x 
2,58 ± 0,18 

ENV020; 
Travassos 

JPS023 unidentified Nostocales Nostocales N-3 1,39 ± 0,28 x 
1,51 ± 0,23 

ENV020; 
Travassos 

JPS024 unidentified 
Synechococcales sp. 2 

Synechococcales O-2 1,57 ± 0,38 x 
0,91 ± 0,14 

ENV035; 
Park near 
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Queimadela’s 
dam 

JPS025 Macrochaete sp. Nostocales P-3 2,82 ± 0,41 x 
2,29 ± 0,32 

ENV049; 
Barcelos 

# based on a singleton only 

It was observed during the identification process, when comparing the sequences 

of the isolates from this study with their more similar sequences from GenBank, that most 

of the obtained strains are similar to other terrestrial strains from other studies that 

examined cyanobacterial diversity in extreme habitats. For example, our JPS002 and 

JPS003 isolates, which are very similar to each other, both revealed to be have high 

similarity with an uncultured cyanobacterium (acc.nbr: KC463588) (figure 6. and Annex 

A) from soil crust from a study conducted in south of Africa (Dojani et al., 2015), JPS007 

and JPS008 show a 99% similarity with an uncultured cyanobacterium (acc.nbr: 

HQ188993) in the dry valleys of the high Himalayas and Antarctica (Schmidt et al., 2011) 

3.2. Isolation and diversity analysis 

 

 

Figure 4. Number of strains isolated per -order level. 

In total 26 strains were isolated from both the urban park “Parque da Cidade” and 

from the hydrographic region “RH2” both situated in the north of Portugal. From these, 

15 of the isolates obtained have an origin in “Parque da Cidade” and 11 have an origin 

in the “RH2” region. The figure 4 shows the number of strains obtained per -order: 

Eleven strains belong to the order Synechococcales, which is an order that can 

have over 70 genera with unicellular (including colonial forms) and filamentous types, 

and it is a group that is not defined as monophyletic (Komarek et al., 2014).  

Synechococcales, 
11

Oscillatoriales;
8

Nostocales; 
6

No molecular Info, 
1
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Eight strains isolated belonged to the Oscillatoriales order, which is a group that 

has the morphological characteristics of not having true-branching, heterocysts or 

akinetes, and with cells shorter than wide. 

Six strains belonged to the order Nostocales, which is an order of filamentous 

cyanobacteria that can have very diversified thalli and have specialized cells such as 

heterocysts and akinetes (Komarek et al., 2014). The heterocysts are responsible for 

fixating atmospheric nitrogen, which means that in environments deprived of nitrogen, 

for example in the BG110 medium, the cyanobacteria that possess those cells have an 

advantage over other strains are not able to fix N2. In that sense, in such conditions 

heterocytous cyanobacteria are able to outcompete them and outgrow other colonies 

that might have formed in other conditions (Pentecost & Whitton, 2012).  

Of the 26 isolated strains, 21 were isolated using the Z8 solid medium while 5 

were isolated using the BG110 solid medium. All of the strains isolated using the BG110 

solid medium belonged to the Nostocales order, something that was to be expected 

because it is in accordance with the fact that they fix dinitrogen. Although there are some 

unicellular or non-heterocytous cyanobacteria that are also capable to fix N2 (Berrendero 

et al., 2016), none was isolated in this work. The low number of strains successfully 

isolated by using the BG110 solid medium, in comparison with the number of strains 

isolated from the Z8 solid medium, can be attributed to their slow growth and colony 

formation in that media, fact that was observed during the isolation process. Sometimes 

no growth would occur at all, or the growth would be so minimal that no isolated colonies 

would appear, thus not allowing for the isolation process to proceed for those particular 

plates. In conclusion, the strains in the Z8 medium grew faster and yielded more isolates 

(mostly from the Synechococcales and Oscillatoriales order, only 1 Nostocales strain) 

than in the BG110 medium. However, as said, with BG110 it was possible to obtain new 

diversity that was not possible with Z8. 

It is to note that while the most predominant strain of cyanobacteria present in 

the environmental sample – and that were observed under the microscope would 

possibly be isolated, this was not certain due to the ubiquity and opportunistic behavior 

of certain strains. This is a major point that possibly determined the diversity of the 

isolates obtained, which was performed following a culture-dependent approach. Still, in 

most cases the predominant strain in the environmental sample would be the one 

isolated. For example, two Microcoleus vaginatus strains were isolated from the sample 

ENV003, whichwas dominated by Microcoleus strains (figure 5), although during the 

isolation process two isolated colonies with different macroscopic characteristics 

appeared in the agar plate (at the time assumed to be different strains). They were 
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separated into two Petri dishes in order to be isolated: both yielded the same strain 

belonging to the genus that dominated the environmental sample. 

 

Figure 5. A- ENV003 environmental sample showing Microcoleus spp. B- Microscopic preparation of biomass collected 

from the ENV003 agar plate, during the later stages of isolation, showing the Microcoleus vaginatus strain. Scale bar= 

10 µm.

Almost all the isolated strains are filamentous cyanobacteria, which are capable 

of producing an exopolysaccharide (EPS) matrix that promotes the stabilization of the 

mats and helps maintain favorable conditions (preventing the loss of water) that allow 

colonization of other microorganisms (Mager & Thomas, 2011). Filamentous strains 

similar to Microcoleus traditionally recognized as EPS producers, are the group of 

organisms to first colonize a dry terrestrial-like environment (Garcia-Pichel & 

Wojciechowski, 2009). Only one non-filamentous unicellular strain strain was isolated (I 

was not able to identify it).  

A higher number of non-heterocystous strains were isolated from the Z8 but this 

might be due to the faster growth occurring in this medium, which seemed to favor the 

growth of non-heterocystous strains. Still, 6 heterocystous strains were isolated, and 

although they were less prominent than the non-heterocystous strains they are known to 

play an important role as nitrogen contributors in terrestrial environments (e.g biocrusts) 

by fixing dinitrogen (Belnap, 2002). 

 The characteristics of a terrestrial surface (e.g texture, slope, chemical 

composition) may determine the cyanobacteria strain or groups that are able to attach 

on it, successfully colonize and dominate it (Pentecost & Whitton, 2012). The table 6 

gives an insight into the type of surface and the strain isolated, and it is noted that all the 

strains belonging to the genus Timaviella (figure 3-D) were isolated from a biocrust on 

top of granitic surfaces, from two distanced locations correspondent to sites ENV005 and 

ENV006 (same location) and to ENV054.  
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3.3.  Phylogenetic results  

In order to verify the relative positioning of the isolates obtained, a Maximum 

likelihood (ML) tree was constructed with the sequences from the isolates, their Best Hits 

and some reference strains. 

 The phylogenetic tree consisted of 12 clusters (figure 6), which were defined by 

being monophyletic groups with a bootstrap value of 70% or higher and had to include 

at least 1 isolate strain or 1 reference strain. An exception was made to the Cluster D 

which had a bootstrap value lower than 50% but was defined as a cluster because it is 

a monophyletic group that includes the isolate strain JPS004 (Nostoc sp.) and a 

matching reference strain (Nostoc punctiforme), and also no other bootstrap values 

justified the definition of another clade, that would include either of these trains. For the 

most part, the species or genus attributed to the isolates match with the reference strains 

they are clustered with. However, some isolates are not clustered with any reference 

strain being only matched by another strain (Best hit) with a high bootstrap value support.  

Clade A (Figure 6) comprises of 3 Tolypothrix strains and one Kryptousia strain, 

all belonging to the Tolypothrichaceae family, it includes: the isolate JPS009 that has 

been identified to the genus level only Tolypothrix sp. the Best hit strain Tolypothrix UAM 

357 and 2 reference strains, Tolypothrix distorta ACOI 731 and the Kryptousia microlepis 

CENA343 strain, which is placed more distantly in relation the previous strains. The 

genus Kryptousia despite being morphologically similar to the Tolypothrix has been 

distinguished from it through molecular methods (Alvarenga et al., 2017). Still they are 

closely related, as it is shown in the phylogenetic tree (figure 6). The clade B includes 

the isolate obtained in this study (JPS014) – an unidentified Tolypothrichaceae and two 

Best Hit strains, an unidentified cyanobacteria (acc.nbr: KC463244) and the strain 

Hassallia cf. pseudoramosissima ACSSI 158 (Tolypothrichaceae family), although no 

reference strain is present. This clade is supported by a high bootstrap value of 99%. 

The clade C (figure 6) includes the isolated strain (JPS005) identified as Roholtiella 

edaphica, its respective Best hit Roholtiella edaphica AR5 strain and the reference strain 

Roholtiella edaphica CCALA 1063. Clade D (figure 6) includes the isolated strain 

(JPS004), the Best hit strains, Nostoc commune NTC and an unidentified 

cyanobacterium (acc.nbr: JX255093) and the reference strain Nostoc punctiforme PCC 

73102. With a low bootstrap value (<50 %) this clade was only defined to illustrate the 

close proximity of the isolate JPS004 (Annex A) to the reference strain according to the 

topology of the tree, relatively to the other strains, and they have shown a 97% of 

similarity by blasting them. So, according to molecular data only we can say that they 

belong to the same genus (Kim et al., 2014; Yarza et al., 2014), but not the same species 
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(Stackebrandt et al.,2006). Clade E (figure 6) includes the isolate strain (JPS023), and 

the Best hit Nostoc sp. NQAIF313, the clade does not integrate a reference strain but is 

supported by a high bootstrap value of 99%. Strain JPS023 has morphological 

characteristics (table 6 and figure 3) that fit those of nostoc spp (Komarek, 2013). 

However, since it is placed distantly from the “true” clade of the genus Nostoc - which 

comprsises Nostoc punctiforme PCC 73102 (Komárek et al, 2014) – the strain JPS023 

is classified as an unidentified Nostocales (figure 6). 

Clade F (figure 6) also does not include a reference strain being only supported 

by a high bootstrap value of 100% as well, it includes the isolated strain (JPS025) 

identified as Macrochaete sp. and the respective best hits that are an unidentified 

cyanobacterium (acc.nbr: JN020217) and Macrochaete santannae CCALA 1093. Clade 

G (figure 6) includes the isolated strain (JPS020) identified as Wilmottia sp., and 2 Best 

hit strains, an unidentified cyanobacterium (acc. nbr: LC103289) and Wilmottia stricta 

16PC, and the reference strain Wilmottia murrayi CCALA 843 that is the more distanced 

strain from the clade. Clade H was subdivided into 2 clades (figure 6). Clade H1 included 

3 isolated strains (JPS018, JPS021 and JPS022) all identified as belonging to the genus 

Tychonema, and 4 Best hit strains: Tychonema sp. LEGE 07216, Phormidium autumnale 

VUW11, Phormidium autumnale VUW2 and an unidentified Oscillatoriales (acc.nbr: 

KR002123), and the reference strain Tychonema bornetii NIVA CYA 60 that was more 

closely related to the isolate JPS021. In a particular study (Shams et al., 2015) it is 

possible to observe how the Tychonema genus is closely related to the Phormidium 

autumnale strains and how they are separated in different clusters which was not 

observed in this work (figure 6): the JPS022 and JPS018 Tychonema strains are more 

closely related to 2 Phormidium autumnale strains than to each other. So, Subclade H1 

can be further subdivided into 3 groups: The first including the strains Tychonema sp. 

JPS021, Tychonema sp. LEGE 07216 and the reference strain Tychonema bornetii NIVA 

CYA 60 and supported by a bootstrap value of 91% supporting this group, the second 

including the strains Tychonema sp. JPS018 and Phormidium autumnale VUW11 strains 

but with a bootstrap value of 96% supporting this group, and the third including 

Tychonema sp. JPS022, Phormidium autumnale VUW and the unidentified 

Oscillatoriales strain. But most importantly, all the Tychonema sp. strains isolated in this 

work are integrated in a subcluster with a matching reference strain that belongs to the 

same genus. Subclade H2 (figure 6) was integrated by 3 isolates strains identified as 

Microcoleus vaginatus, this subclade although it did not have a reference strain it was 

backed up by a high bootstrap value of 99%, and was integrated by the Best hit strains, 

Phormidium cf. autumnale JR6, Oscillatoria nigro-viridis PCC 7112, Tychonema sp. SAG 
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23.89, Microcoleus vaginatus PUPCCC 120, the unidentified cyanobacterium 

HL201307-70 (acc.nbr: KU515188) and HL201307 (acc.nbr: KU515125). Overall, clade 

H shows how related the genera Tychonema, Phormidium, Microcoleus and Oscillatoria 

are, which is illustrated the topologies and bootstrap values and by the fact that strains 

with different genus. Clade I (figure 6) can be subdivided into 2 subclades and it is 

supported by a bootstrap value of 95%. The clade I1 is comprised mostly of strains 

belonging to the Timaviella genus. It comprises 2 isolate strains (JPS008 and JPS012) 

identified as Timaviella sp. and one isolate strain (JPS007) identified as Timaviella 

circinata, and the Best hit strains Timaviella circinata GR4T, Timaviella sp. Us-6-3 and 

the unidentified strains B10912H (acc. nbr: FM175896) and B10912H (acc. nbr: 

HQ188993), this subclade is supported by a bootstrap value of 100%. The subclade I2 

comprises 3 strains belonging to the Nostocales, Synechococcales and Oscillatoriales 

indicating that they are phylogenetically close. The isolated strain is only identified has a 

Synechococcales and it indicates a close relation to a Nostoc punctiforme MACC-287 

strain (forming a small group supported by a bootstrap value of 100%), and to an 

unidentified Oscillatoriales (acc. nbr: FJ788926). Clade J (figure 6) is comprised mostly 

of Leptolyngbya strains, it includes 2 isolated strains (JPS016 and JPS017) identified as 

Leptolyngbya, 1 unidentified Leptolyngbyaceae isolated strain, the reference strain 

Leptolyngbya boryana AM M-101, it also includes the strains Plectolyngbya hodgsonii, 

Leptolyngbya sp. CENA377, Leptolyngbya sp. NIES-3755, Plectonema sp. SAG 38.90 

an unidentified cyanobacterium (acc.nbr: JQ770050) and another one (acc.nbr: 

HQ755632). Clade K (figure 6) comprised of a Limnothrix redekei NIVA CYA 277/1 strain 

and two reference strains, the Pseudanabaena sp. PCC 7367 strain and the 

Pseudanabaena sp. PCC 6802. Clade L (figure 6) comprised of two isolate strains 

(JPS010 and JPS011) identified as Nodosilinea epilithica that are very closely related, 

an Halomicronema excentricum TFEP1 strain, Leptolyngbya sp. PCC 7375 strain, a 

nodosilinea nodulosa UTEX 2910 strain and an unidentified Pseudanabaenaceae strain 

DPG1-KK5. 
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Figure 6. Maximum likelihood (ML) phylogenetic tree based on partial 16S rRNA gene sequence. Isolated strains from 
this study are in bold and have the JPS code. Reference strains are marked with an (R). Only bootstrap values >50% 
are indicated below the nodes.
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3.4. Toxicity screening 

In the table 7 the data relative to the presence of toxin producing genes in 

presented.  

Table 7. Environmental samples screening for the presence of genes involved in cyanotoxin production; n.i: no information 

obtained for this samples; target genes and pairs of primers: mcyD- PKDF1/PKDR1, mcyE- HEPF/HEPR, sxtI- 

SxtI682F/SxtI877, anaC- anaC-genF/anaCgenR, cyrJ- cynsulF/cylnamR, AMT- CYTLATF/CYTLATR. 

Location Samples mcyD 
PKDF1/PKDR1 

mcyE 
HEPF/HEPR 

SxtI 
SxtI682F/SxtI877R 

anaC 
anaC-genF 
anaC-genR 

cyrJ 
cynsulF/
cylnamR 

AMT 
CYTLATF/
CYTLATR 

Parque da Cidade ENV 001 n.i n.i n.i n.i n.i n.i 

Parque da Cidade ENV 002 n.i n.i n.i n.i n.i n.i 

Parque da Cidade ENV 003 
- - + - - + 

Parque da Cidade ENV 004 
+ - + - - + 

Parque da Cidade ENV 005 
+ + + - + + 

Parque da Cidade ENV 006 
- - + - - + 

Parque da Cidade ENV 007 
- - + - - + 

Parque da Cidade ENV 008 
- + + - - + 

Alto Rabagão’s 
dam 

ENV 011 
- - + - - - 

Alto Rabagão’s 
dam 

ENV 012 
- + - - - - 

Caniçada’s dam ENV 013 
+ - - - - - 

Parque dos 
Moinhos 

ENV 014 n.i n.i n.i n.i n.i n.i 

Praia Fluvial da 
Esperança 

ENV 015 n.i n.i n.i n.i n.i n.i 

Praia Fluvial da 
Esperança 

ENV 016 
- - + - - - 

Park near 
Queimadala’s dam 

ENV 017 
- - + - - - 

Park near 
Queimadala’s dam 

ENV 018 
- - - - - - 

Travassos ENV 019 n.i n.i n.i n.i n.i n.i 

Travassos ENV 020 
- - - - - - 

Travassos ENV 035 
- + - - - - 

Barcelos ENV 049 
- + - - - - 

Barcelos ENV 050 
- + + - - - 

Penide’s dam ENV 051 
- + + - - - 

Praia Fluvial de 
Merelim 

ENV 052 
- - + - - - 

Praia Fluvial dos 
Moinhos 

ENV 053 
- - + - - - 

Praia Fluvial da 
Navarra 

ENV 054 
- - + - - - 

Praia Fluvial da 
Navarra 

ENV 055 
- - + - - - 

Park near river Ave ENV 056 
- - - - - - 

Santo Tirso’s park ENV 057 
+ - - - - - 

Positive controls 
LEGE 91339 LEGE 91339 LMECYA 39 LEGE X-002 

LEGE 
97047 

LEGE 
97047 
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The molecular screening of each environmental sample gave me preliminary 

results and indicated if the target gene I was trying to amplify was present or absent in 

the environmental sample. If the environmental sample showed absence of the target 

gene, for example for a cyanotoxin, I would know in advance that it would not be possible 

to isolate a strain that had the potential to produce that specific cyanotoxin. On the other 

hand, the presence of the target gene observed in the environmental sample did not 

meant that we would be able to isolate the organism that possessed it in its genome. 

Furthermore, these preliminary PCR results also served to monitor for the presence of 

the genes involved in cyanotoxin production in the terrestrial environment and to assess 

their biotechnological potential in a bioprospecting perspective.   

The results of the PCR-based screening for the presence of genes involved in 

the production of toxins show that the genes associated with the production of several 

cyanotoxins, more specifically, associated with the production of microcystin, saxitoxin 

and cylindrospermopsin may be present in subaerial mats present in surfaces ranging 

from soil, rock, wood and iron. However, since false positives may occur it is highly 

advisable to sequencing amplicons with the expected size (Kurmayer et al., 2017) in 

order to validate PCR results. The gene anaC associated with the production of anatoxin 

did not show the presence in any of the samples, similarly, the cyrJ gene associated with 

the production of cylindrospermopsin only seemed to be present in one of the samples 

from “Parque da Cidade”. Most of the sites sampled show at least the presence of one 

gene associated the production of cyanotoxins (only 3 sites showed no presence of 

cyanotoxin genes, and 5 sites without data to be presented), and the gene sxtI 

associated with the production of saxitoxin was the most frequent and widespread 

among the cyanotoxin gene present in the samples (15 samples showed positive results 

for the presence of sxtI). The mcyD and mcyE genes were also quite widespread through 

the study area. These results obtained only reveal the presence of the genes in terrestrial 

environments and not the actual presence of cyanotoxins in the environment, which 

should be complemented with analytical or biochemical assays (Kurmayer et al., 2017). 
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Figure 7. Some examples of sampling sites whose samples showed positive results for the presence of cyanotoxins. 

In figure 7 we can see a few places that showed positive PCR results for the 

toxicity screening, these were places inside anthropogenic agglomerations near places 

usually frequented by people, inside small towns, parks or in freshwater beach facilities. 

For example, image ENV006 from a park comprised of 3 lakes inside it, “Parque da 

Cidade”, shows the sampling location of sample006 that showed positive results for the 

gene sxtI, in fact, most of the samples collected in “Parque da Cidade” show the 

presence of the gene sxtI. A previous study on the lakes of this park have shown that 

the lakes had concentrations of microcystin-LR (MC-LR) with values ranging from 0.20 

µg MC-LR eq/L and 10.2 µg MC-LR eq/L (Morais et al., 2014), since the irrigation system 

of the park is being fed with water from the lakes that are in a eutrophic state with a high 

concentration of cyanobacterial cells, it is plausible to assume that some strains present 

in the lake are reaching several parts of the park. Comparing the strains identified in that 

study with the isolates obtained in the present study, no isolates from the terrestrial mats 

seemed to match the strains identified from the lakes, which can be due to the fact that 

the planktonic strains identified in that study are not able to properly colonize the 

terrestrial environments, examining the benthic mats present in the lakes might reveal a 

cyanobacterial diversity more similar to the terrestrial mats. Still, the genes mcyD and 

mcyE responsible for the production of MC were present in terrestrial mats in the park. 

Considering the park, it is highly frequented by people, contact with cyanotoxins derived 

from subaerial cyanobacteria it’s a possibility but unlikely to be in high enough 

concentrations to cause even any minor adverse effects. People can possibly enter in 
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contact with terrestrial cyanotoxins by interacting with fountains (ENV013 and ENV016), 

sitting in park tables (ENV017), walking on stairs containing cyanobacterial mats and 

contaminating their shoes (ENV050) or by touching a wall (ENV053). All these places 

were sampled and showed the presence of genes associated with the production of 

cyanotoxins but they do not represent any danger to public health because the 

concentration of cyanotoxins should be very low and also contamination via dermal 

contact is not as dangerous as contamination via oral ingestion. The potential presence 

of cyanotoxins in terrestrial biofilms or mats, present for example in the soil, represents 

a bigger danger to animals who might be attracted to eating them, effects of terrestrial 

cyanotoxins were investigated before with but with no conclusive results (McGorum et 

al., 2015).  

All of the isolates screened for potential toxicity did not show presence for any of 

the cyanotoxin genes screened. Even though some isolated strains belong to genera 

that are known for being cyanotoxin producers, for example, the isolate Tolypothrix sp. 

JPS009 a genus known to have strains capable of producing microcystins (Aboal et al., 

2005) the results indicate that should not be able to produce them.  For the isolates JPS 

25 (Macrochaete sp.), JPS 24 (Synechococcales), JPS 16 (Leptolyngbya sp.), JPS 13 

(Wilmottia sp.), JPS 5 (Roholtiella edaphica), JPS004 (Nostoc sp.) and JPS001 

(unidentified cyanobacterium) no information regarding their potential toxicity was 

obtained, so the presence of cyanotoxin genes is uncertain.  

The environmental samples represented in table 8 correspond to some positive 

PCR results, and they were selected to be sequenced. When it was possible the 

sequences for each sample would be assembled together to form the correspondent 

consensus sequence that would be Blasted to obtain the most similar sequence in the 

GenBank database corresponding to an identified strain. 

Table 8. Potential toxic environmental samples sent for sequencing; n.c – no consensus, Blast results in annex B. 

Target gene Environmental sample Location Best hit Similarity 

cyrJ ENV_011 Alto Rabagão’s dam n.c n.c 

mcyD ENV_004 Parque da Cidade n.c n.c 

ENV_013 Caniçada’s dam n.c n.c 

mcyE ENV_005 Parque da Cidade Nostoc sp. 
(acc.nbr:KC699835) 

94% 

ENV_012 Alto Rabagão’s dam Nostoc sp. 
(acc.nbr:KC699835) 

94% 

sxtI ENV_006 Parque da Cidade Nostoc sp. (acc.nbr: 
CP026681.1) 

97% 

 

For the genes cyrJ and mcyD no consensus was obtained for the environmental 

samples selected due to bad quality of the sequences, so they could not be used to 

validate the PCR results (annex B). For the mcyE gene and the sxtI gene, with a similarity 
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of 94% and 97% respectively (annex B), the environmental samples shown that some 

strains similar to Nostoc spp. were present. 

3.5.  Biotechnological potential analysis 

In table 9, the results for the screening of PKS and NRPS genes in the 

environmental samples and isolates are presented.  

Table 9. PKS and NRPS results for the environmental samples and isolates 

Location Environm
ental 

Samples 

PKS 
DKF/DKR 

NRPS 
MTF2/ 
MTR 

Parque da Cidade ENV 001 n.i n.i 

Parque da Cidade ENV 002 n.i n.i Isolates 
ID 

Location Isolates NRPS 
MTF2/MTR 

Parque da Cidade ENV 003 

- + 

No molecular 
info 

ENV001; 
Parque da 
cidade 

JPS 1 n.i 

Parque da Cidade ENV 004 

- + 

Microcoleus 
vaginatus 

ENV003; 
Parque da 
cidade 

JPS 2 
- 

Parque da Cidade ENV 005 

- + 

Microcoleus 
vaginatus 

ENV003; 
Parque da 
cidade 

JPS 3 
- 

Parque da Cidade ENV 006 

- + 

Nostoc sp. ENV003; 
Parque da 
cidade 

JPS 4 
- 

Parque da Cidade ENV 007 

- + 

Roholtiella 
edaphica 

ENV004; 
Parque da 
cidade 

JPS 5 
- 

Parque da Cidade ENV 008 

- + 

Microcoleus 
vaginatus 

ENV004; 
Parque da 
cidade 

JPS 6 
+ 

Alto Rabagão’s 
dam 

ENV 011 

- + 

Timaviella 
circinata 

ENV005; 
Parque da 
cidade 

JPS 7 
- 

Alto Rabagão’s 
dam 

ENV 012 

- + 

Timaviella sp. ENV005; 
Parque da 
cidade 

JPS 8 
- 

Caniçada’s dam ENV 013 

- + 

Tolypothrix sp. ENV005; 
Parque da 
cidade 

JPS 9 
+ 

Parque dos 
Moinhos 

ENV 014 n.i n.i Nodosilinea 
epilithica 

ENV006; 
Parque da 
cidade 

JPS 10 
- 

Praia Fluvial da 
Esperança 

ENV 015 n.i n.i Nodosilinea 
epilithica 

ENV006; 
Parque da 
cidade 

JPS 11 
- 

Praia Fluvial da 
Esperança 

ENV 016 

- + 

Timaviella sp. ENV006; 
Parque da 
cidade 

JPS 12 
+ 

Park near 
Queimadala’s dam 

ENV 017 

- + 

Wilmottia sp. # ENV006; 
Parque da 
cidade 

JPS 13 
- 

Park near 
Queimadala’s dam 

ENV 018 

- + 

unidentified 
Tolypothrichace
ae 

ENV006; 
Parque da 
cidade 

JPS 14 
- 

Travassos ENV 019 n.i n.i unidentified 
Leptolyngbyacea
e 

ENV007; 
Parque da 
cidade 

JPS 15 
- 

Travassos ENV 020 

- + 

Leptolyngbya sp. 
1 

ENV011; 
Alto 
Rabagão’s 
dam 

JPS 16 

- 

Travassos ENV 035 

- + 

Leptolyngbya sp. 
2 

ENV012; 
Alto 
Rabagão’s 
dam 

JPS 17 

- 
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Barcelos ENV 049 

- + 

Tychonema sp. ENV013; 
Caniçada’s 
dam 

JPS 18 
+ 

Barcelos ENV 050 

- + 

unidentified 
Synechococcale
s sp. 1 

ENV014; 
Parque dos 
Moinhos 

JPS 19 
+ 

Penide’s dam ENV 051 

- + 

Wilmottia sp. ENV016; 
Praia Fluvial 
da 
Esperança 

JPS 20 

+ 

Praia Fluvial de 
Merelim 

ENV 052 
- - 

Tychonema sp. ENV018; 
Travassos 

JPS 21 
- 

Praia Fluvial dos 
Moinhos 

ENV 053 
- - 

Tychonema sp. ENV020; 
Travassos 

JPS 22 
+ 

Praia Fluvial da 
Navarra 

ENV 054 
- + 

unidentified 
Nostocales 

ENV020; 
Travassos 

JPS 23 
+ 

Praia Fluvial da 
Navarra 

ENV 055 

- - 

unidentified 
Synechococcale
s sp. 2 

ENV035; 
Park near 
Queimadela’
s dam 

JPS 24 

+ 

Park near river 
Ave 

ENV 056 
+ + 

Macrochaete sp. ENV049; 
Barcelos 

JPS 25 
- 

Santo Tirso’s park ENV 057 

+ + 

Timaviella sp. # ENV054; 
Praia Fluvial 
da Navarra 

JPS 26 
- 

Positive controls LEGE 
91339 

LEGE 
91339 

Positive control 
LEGE 91339 

# based on a singleton only 

Overall, most of the stains isolated that were screened through PCR for the NRPS 

gene have revealed that the majority of the samples have strains which have those 

genes present in them, and 9 isolates also showed the presence of that gene. On the 

other hand, PKS gene only had 2 samples which showed positive results. Once again, 

these results should be confirmed by sequencing in the future (something that will allow 

to assess the potential chemodiversity, as well). 

4. Conclusion 

In this study it was revealed the diversity of subaerial cyanobacterial isolates 

obtained from several types of terrestrial surfaces. The culture-dependent approach 

yielded 26 isolated strains which exhibited a total of 17 different morphotypes belonging 

to three taxonomic orders. Non-heterocytous strains were the most prevalent and 

belonged to the orders Synechococcales and Oscillatoriales, the less predominant forms 

were the Nostocales. The phylogenetic distribution of the isolates was in accordance 

with the morphological classification, and the isolates could be grouped in according to 

their phylogenetically affinity in a heterocystous group corresponding to the Nostocales 

order, and then a non-heterocystous group corresponding to the Oscillatoriales or the 

Synechococcales order.  

The PCR-based screenings for potential toxicity that were performed allowed us 

to check that, much like planktonic and benthic aquatic cyanobacteria, the terrestrial 

mats included strains that also have the potential to produce several cyanotoxins. 

Although the mere presence of the gene in the environment does not mean the 
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production of the cyanotoxin because it’s expression is determined by several factors, 

the molecular screening allowed us to see that they are present in terrestrial biofilms and 

mats along the RH2 region in the north of Portugal in quite a widespread manner, and 

where saxitoxin producing strains were more frequent in terrestrial environments of the 

study area, as we observed by targeting the sxtI gene. Although they revealed to be 

capable to produce cyanotoxins it is very unlikely that subaerial cyanotoxin-producing 

cyanobacteria will cause public health-related problems due to the lack of contact people 

have with them and to the fact that it is practically impossible to reach high enough 

concentrations to cause adverse effects on people, but analyzing their presence in 

terrestrial habitats can give some insight to their ecological functions and to why 

cyanobacteria produce them. In terms of biotechnological potential, they showed a high 

presence of the NRPS gene in the environmental samples only indicating that they are 

potentially a good source of bioactive compounds that are produced via a non-ribosomal 

pathway. 
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6. Annexes 

Annex A (Blast results of the isolated strains): 

Isolate ID Isolate Consensus 
size 

Best hits Query 
cover 

E-
value 

Identity Ascension 
nbr 

No molecular info JPS_001 - sem extração - - - - 

Microcoleus 
vaginatus 

JPS_002 649 Uncultured bacterium clone 
HL201307-3 16S ribosomal RNA 
gene, partial sequence 

100% 0 99% KU515125 

Tychonema sp. SAG 23.89 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 99%   

KM019964 

Microcoleus 
vaginatus 

JPS_003 606 Uncultured bacterium clone 
HL201307-70 16S ribosomal RNA 
gene, partial sequence 

100% 0 100% KU515188 

Phormidium cf. autumnale JR6 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 100% KT753320 

Nostoc sp. JPS_004 610 Uncultured bacterium clone 
abscm03.1.109 16S ribosomal RNA 
gene, partial sequence 

100% 0 99% JX255093 

Nostoc commune NTC 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 99% MF398191 

REFERENCE STRAIN: Nostoc 
punctiforme PCC 73102, complete 
genome 

100% 0 97% CP001037 

Roholtiella 
edaphica 

JPS_005 572 Roholtiella edaphica AR5 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 100% MF002049 

Microcoleus 
vaginatus 

JPS_006 632 Microcoleus vaginatus PUPCCC 
120.5 16S ribosomal RNA gene, 
partial sequence 

100% 0 100% KM384755 

Timaviella 
circinata 

JPS_007 633 Uncultured cyanobacterium clone 
B10912H 16S ribosomal RNA gene, 
partial sequence 

100% 0 99% HQ188993 

Timaviella sp. Us-6-3 16S ribosomal 
RNA gene, partial sequence 

100% 0 99% MH688850 

Timaviella sp. JPS_008 619 Uncultured cyanobacterium clone 
B10912H 16S ribosomal RNA gene, 
partial sequence 

100% 0 99% HQ188993 

Timaviella sp. Us-6-3 16S ribosomal 
RNA gene, partial sequence 

100% 0 99%  MH688850 

Tolypothrix sp. JPS_009 626 Tolypothrix sp. UAM 357 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 99% HM751846 

Nodosilinea 
epilithica 

JPS_010 608 Pseudanabaenaceae 
cyanobacterium DPG1-KK5 16S 
ribosomal RNA gene, partial 
sequence; and 16S-23S ribosomal 
RNA intergenic spacer, tRNA-Ile 
and tRNA-Ala genes, complete 
sequence 

100% 0 99% EF654067 

Nodosilinea 
epilithica 

JPS_011 623 Pseudanabaenaceae 
cyanobacterium DPG1-KK5 16S 
ribosomal RNA gene, partial 
sequence; and 16S-23S ribosomal 
RNA intergenic spacer, tRNA-Ile 

100% 0 99% EF654067 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_186463002
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_186463002
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_186463002
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and tRNA-Ala genes, complete 
sequence 

Timaviella sp. JPS_012; 
best hit 

629 Uncultured cyanobacterium partial 
16S rRNA gene, clone CL4.E8 

100% 0 99% FM175896 

Timaviella circinata GR4 partial 16S 
rRNA gene, type strain GR4T 

100% 0 99% LT634149 

Wilmottia sp. # JPS_013 - - - - - - 

unidentified 
Tolypothrichaceae 

JPS_014 619 Uncultured cyanobacterium clone 
BksYy19200 16S ribosomal RNA 
gene, partial sequence 

100% 0 99% KC463244 

Hassallia cf. pseudoramosissima 
ACSSI 158 16S ribosomal RNA gene, 
partial sequence 

100% 0 99% KY283057 

unidentified 
Leptolyngbyaceae 

JPS_015 662 Uncultured bacterium clone YT-2 
16S ribosomal RNA gene, partial 
sequence 

100% 0 96% JQ770050 

Plectonema sp. SAG 38.90 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 95% KM019916 

Leptolyngbya sp. 
1  

JPS_016 
  
  

599 
  
  

Uncultured organism clone 
ELU0037-T187-S-
NIPCRAMgANb_000372 small 
subunit ribosomal RNA gene, 
partial sequence 

100% 0 98% HQ755632 

Leptolyngbya sp. NIES-3755 DNA, 
complete genome 

100% 0 96% AP017308 

Leptolyngbya sp. CENA377 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 95% KR137598 

Leptolyngbya sp. 
2 

JPS_017 619 Plectonema sp. SAG 38.90 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 97% KM019916 

Tychonema sp. JPS_018 566 Phormidium autumnale VUW11 
16S ribosomal RNA gene, partial 
sequence 

100% 0 100% GQ451408 

unidentified 
Synechococcales 
sp. 1 

JPS_019 569 Nostoc punctiforme MACC-287 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 99% MH702235 

Wilmottia sp. JPS_020 616 Uncultured bacterium gene for 16S 
rRNA, partial sequence, clone: 
OTU15 

100% 0 99% LC103289 

Wilmottia stricta 16PC 16S 
ribosomal RNA gene and 16S-23S 
ribosomal RNA intergenic spacer, 
partial sequence 

100% 0 97% KY288986 

Tychonema sp. JPS_021 637 Tychonema sp. LEGE 07216 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 100% KU951840 

Tychonema sp. JPS_022 653 Oscillatoriales cyanobacterium 
Alignment_Isolate6 16S ribosomal 
RNA gene and 16S-23S ribosomal 
RNA intergenic spacer, partial 
sequence 

100% 0 99% KR002123 

Phormidium autumnale VUW2 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 99% GQ451409 

unidentified 
Nostocales 

JPS_023 442 Nostoc sp. NQAIF313 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 98% KJ636965 

unidentified 
Synechococcales 
sp. 2 

JPS_024 629 Pseudanabaenaceae 
cyanobacterium VUW6 16S 
ribosomal RNA gene, partial 
sequence 

100% 0 99%  GQ451430 

Macrochaete sp. JPS_025 626 Uncultured cyanobacterium clone 
cher4_2B_90 small subunit 
ribosomal RNA gene, partial 
sequence 

100% 0 98% JN020217 

Macrochaete santannae CCALA 
1093 clone operon 2 16S ribosomal 

100% 0 96% KT336441 
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RNA gene, partial sequence; 16S-
23S ribosomal RNA intergenic 
spacer, tRNA-Ile and tRNA-Ala 
genes, complete sequence; and 
23S ribosomal RNA gene, partial 
sequence 

Timaviella sp. # JPS_026 - - - - - - 

# based on a singleton only 

Annex B (Blast results of the environmental samples for the cyanotoxin genes): 

Toxins Environmental 
sample 

Consensus 
sequence 
size 

Best hits Query 
cover 

E-
value 

Identity Accession nbr 

CYN ENV_011 None All sequences bad - - - - 

mcyD ENV_004 None All sequences bad - - - - 

ENV_013 None All sequences bad - - - - 

mcyE ENV_005 430 Nostoc sp. 152 microcystin synthetase gene cluster, 
complete sequence; and hypothetical protein gene, 
partial cds 

100% 0% 94% KC699835.1 

ENV_012 396 Nostoc sp. 152 microcystin synthetase gene cluster, 
complete sequence; and hypothetical protein gene, 
partial cds 

100% 2,00E-
172 

94% KC699835.2 

sxt ENV_006 140 Uncultured bacterium clone contig49114 genomic 
sequence 

100% 4,00E-
61 

99% KP445187.1 

Nostoc sp. 'Peltigera membranacea cyanobiont' N6 
chromosome, complete genome 

100% 2,00E-
58 

97% CP026681.1 

Aphanizomenon gracile partial sxtI gene for O-
carbamoyltransferase, strain NIVA-CYA 655, isolate 
AB2008/16 

100% 4,00E-
24 

80% HG917839.1 

 

 

 

 

 

 


