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Summary 

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-

translationally targeted to the organelle by the soluble factor PEX5. Besides a role as a 

receptor, and probably as a chaperone, PEX5 also holds the key to the matrix of the 

organelle. Indeed, the available data suggest that PEX5 itself pushes these proteins 

across the peroxisomal membrane using as driving force the strong protein-protein 

interactions that it establishes with components of the peroxisomal membrane 

docking/translocation module (DTM). In recent years, much has been learned on how this 

transport system is reset and kept fine-tuned. Notably, this involves covalent modification 

of PEX5 with ubiquitin. Two types of PEX5 ubiquitination have been characterized: 

monoubiquitination at a conserved cysteine, a mandatory event for the extraction of PEX5 

from the DTM; and polyubiquitination, probably the result of a quality control mechanism 

aiming at clearing the DTM from entangled PEX5 molecules. Monoubiquitination of PEX5 

is transient in nature and the factors that reverse this modification have recently been 

identified. 
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1. Introduction 

 Peroxisomes are single membrane-bound organelles involved in numerous metabolic 

pathways (Hu et al. 2012; Islinger et al. 2010; Michels et al. 2006; Wanders and 

Waterham 2006). Their importance for human health and development is dramatically 

illustrated by a group of genetic diseases, the peroxisomal biogenesis disorders, in which 

peroxisome functions are partially or even completely impaired (Waterham and Ebberink 

2012). Peroxisomal biogenesis disorders are caused by mutations in PEX genes, which 

encode proteins specifically involved in peroxisome maintenance and inheritance, the so-

called peroxins (Distel et al. 1996). The majority of mammalian peroxins are components 

of the peroxisomal protein import machinery (PIM) (Fig. 4.4.1). Collectively these proteins 

ensure the correct delivery of newly synthesized proteins to the organelle lumen. Most 

PIM peroxins are part of one of two functional/structural units: PEX13, PEX14, and the 

“Really Interesting New Gene” (RING) peroxins PEX2, PEX10, and PEX12 compose the 

membrane-embedded docking/translocation module (DTM; Agne et al. 2003; Oeljeklaus 

et al. 2012; Reguenga et al. 2001); the two peroxisomal “ATPases associated with diverse 

cellular activities” (AAA ATPases), PEX1 and PEX6, together with their peroxisomal 

membrane anchor, PEX26, comprise the receptor export module (REM; Matsumoto et al. 

2003; Birschmann et al. 2003). The peroxisomal protein shuttling receptor PEX5 and its 

adaptor protein PEX7 complete the list of mammalian peroxins that integrate the PIM 

(Dodt et al. 1995; Fransen et al. 1995; Braverman et al. 1997). In addition to peroxins, the 

mammalian PIM also comprises other proteins, which are mostly involved in 

ubiquitination/deubiquitination events. Due to the fact that their function is not restricted to 

the PIM they are not classified as peroxins. 

 The mammalian peroxins referred to above have orthologs in all peroxisome-

containing organisms characterized so far, from yeasts and fungi to plants (Kiel et al. 

2006; Schluter et al. 2006). Strikingly, however, the reverse is not true. Indeed, several 

peroxins found in plants and lower eukaryotes do not exist in mammals. Apparently, 

evolution led to simpler PIMs. At least two different mechanisms seem to be behind this 

simplification. In one case, the function of two yeast/fungi/plant peroxins, PEX4 and 

PEX22, ended up being carried out by a family of mammalian ubiquitin-conjugating 

enzymes (E2D1/2/3) involved in many other pathways. In another case, a peroxin (PEX5) 

acquired the capacity to perform two different tasks (import of both PTS1- and PTS2-

containing proteins; see below section 2.1) (Braverman et al. 1998; Galland et al. 2007; 

Otera et al. 1998; Woodward and Bartel 2005), each of which is performed by a different 

peroxin in yeasts/fungi (see Schliebs and Kunau 2006, and references cited therein). 

Despite these differences, the basics of the mechanism of protein import into the 

peroxisomal matrix remained relatively well conserved during evolution (Galland and 

Michels 2010; Grou et al. 2009a; Hu et al. 2012; Platta et al. 2013; Ma and Subramani 

2009). 

 

2. The PEX5-mediated peroxisomal matrix protein import pathway 

 The import pathway of newly synthesized proteins into the matrix of the organelle is 

generally described using a PEX5-centered perspective and can be divided into two parts 

(see Fig. 4.4.2). The first part comprises three steps, all independent of cytosolic ATP, 
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and culminates with the translocation of the cargo protein across the peroxisomal 

membrane, as briefly explained below. The second part, on the other hand, includes the 

energy-requiring steps necessary to reset the protein transportation system. As we shall 

see, ubiquitin plays a major role here. 

 

 2.1 The ATP-independent steps 

 Peroxisomal matrix proteins possess one of two types of peroxisomal targeting 

signals (PTSs). The majority of them harbor a PTS type 1 (PTS1), a tripeptide with the 

sequence S-K-L or a variant present at their extreme C-termini (Brocard and Hartig 2006; 

Gould et al. 1989). A few peroxisomal matrix proteins possess instead a PTS2. This is an 

N-terminal degenerated nonapeptide with the sequence (R/K)-(L/V/I)-X5-(H/Q)-(L/A) 

(Kunze et al. 2011; Lazarow 2006; Swinkels et al. 1991). In contrast to the PTS1, which 

remains intact upon import, the PTS2 is generally cleaved in the peroxisomal matrix by a 

serine protease (Kurochkin et al. 2007; Schuhmann et al. 2008). In mammals, plants and 

many other organisms, all peroxisomal matrix proteins are transported to the peroxisome 

by PEX5 (Otera et al. 1998; Braverman et al. 1998; Galland et al. 2007; Woodward and 

Bartel 2005). This is a 70-kDa monomeric protein which in vivo displays a dual subcellular 

localization, peroxisomal and cytosolic, reflecting its role as a shuttling receptor (Costa-

Rodrigues et al. 2005; Dodt et al. 1996; Shiozawa et al. 2009). Interestingly, binding of 

PEX5 to newly synthesized matrix proteins that are oligomeric in their native state strongly 

inhibits their oligomerization, suggesting that PEX5 is also a chaperone/holdase (Freitas 

et al. 2011). This property is probably crucial to avoid premature oligomerization in the 

cytosol of proteins that no longer expose their PTS1 upon oligomerization (Luo et al. 

2008; Tanaka et al. 2008). Structurally, PEX5 comprises two main domains: 1) a natively 

unfolded N-terminal half that interacts with the peroxins PEX7, PEX13, and PEX14 

(Braverman et al. 1998; Carvalho et al. 2006; Costa-Rodrigues et al. 2005; Otera et al. 

2000; Saidowsky et al. 2001); and 2) a structured C-terminal half possessing seven 

tetratricopeptide repeats (TPRs) domains (Gatto et al. 2000). The interaction between 

PEX5 and PTS1 proteins is direct and sufficient to ensure that these proteins are 

efficiently targeted to the organelle. The interaction involves the PTS1 peptide on one side, 

and the TPR domains of PEX5 on the other, but the N-terminal half of PEX5 also 

contributes for the interaction (Braverman et al. 1998; Freitas et al. 2011; Gunkel et al. 

2004; Klein et al. 2001; Klein et al. 2002; Oshima et al. 2008). The PTS2-PEX5 interaction 

requires the adaptor protein PEX7 (Galland et al. 2007; Lazarow 2006; Otera et al. 1998; 

Woodward and Bartel 2005; Braverman et al. 1998). In lower eukaryotes, PEX5 does not 

interact with PEX7, and therefore the receptor function of PEX5 is restricted to PTS1 

proteins. In these organisms, targeting of PTS2 proteins is ensured by a species-specific 

receptor (PEX20, PEX18 or PEX21) which displays structural/functional similarities with 

the N-terminal half of mammalian PEX5, including the capacity to interact with PEX7 

(Dodt et al. 2001; Lazarow 2006; Schliebs and Kunau 2006; Einwachter et al. 2001). We 

refer to these peroxins as PEX5-like proteins. 

 Following cargo recognition, PEX5 interacts with the DTM in a reversible manner; 

this docking step is then followed by the temperature-dependent insertion of PEX5 into 

the DTM (Costa-Rodrigues et al. 2004; unpublished results). PEX5 at this stage displays 
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a transmembrane topology having most of its polypeptide chain facing the peroxisomal 

matrix, whereas a 2-kDa N-terminal portion remains exposed to the cytosol (Gouveia et al. 

2003a; Gouveia et al. 2000). Importantly, insertion of PEX5 into the DTM is a cargo 

protein-dependent process (Gouveia et al. 2003b). These observations are at the basis of 

the current model proposing that PEX5 pushes cargo proteins across the peroxisomal 

membrane as it gets inserted into the DTM (Azevedo et al. 2004; Grou et al. 2009a; 

Oliveira et al. 2003). Remarkably, in vitro import experiments have shown that neither 

insertion of PEX5 into the DTM nor translocation of cargo proteins across the peroxisomal 

membrane are affected by non-hydrolyzable ATP analogs or by ATP depletion of the 

import assays (Alencastre et al. 2009; Oliveira et al. 2003; unpublished results). Likewise, 

ionophores have no effect on any of these events (Alencastre et al. 2009), in agreement 

with the fact that the peroxisomal membrane is readily permeable to small ions/molecules 

(Antonenkov and Hiltunen 2012; Rokka et al. 2009). Apparently, the PIM uses neither the 

energy of ATP hydrolysis nor a membrane potential to transport proteins from the cytosol 

into the organelle matrix. Altogether, these findings led us to propose that the driving force 

for the cargo protein translocation step resides in the strong protein-protein interactions 

that PEX5 establishes with components of the DTM (Oliveira et al. 2003). 

 

 2.2. Resetting the peroxisomal protein import machinery 

 The interaction of DTM-embedded PEX5 with components of this membrane module 

is essentially irreversible (Costa-Rodrigues et al. 2004). Therefore, it is not surprising that 

extraction of the receptor back into the cytosol requires energy input. Understanding the 

details of this extraction step was a difficult but particularly interesting task because it 

ended up revealing that the DTM is also an ubiquitin ligase. Indeed, PEX5 is 

monoubiquitinated every time it passes through the DTM, a mandatory modification for its 

subsequent ATP-dependent extraction back into the cytosol. 

 

 2.2.1. PEX5 monoubiquitination 

 As stated above, DTM-embedded PEX5 exposes approximately 2 kDa of its N 

terminus to the cytosol. This small N-terminal domain includes a cysteine-containing motif 

that is conserved not only in PEX5 proteins from all organisms, but also in PEX5-like 

proteins. Interestingly, deletion of the first 17 amino acids of human PEX5, which contains 

this motif, does not affect its capacity to get inserted into the DTM in a cargo-dependent 

manner, but renders it completely incompetent in the export step (Costa-Rodrigues et al. 

2004). Likewise, deletion of the first 19 N-terminal amino acids of Pichia pastoris PEX20 

also interferes with the normal recycling step (Leon et al. 2006). Similar results were 

observed when the conserved cysteine of both P. pastoris PEX20 and human PEX5 was 

replaced by a serine (Carvalho et al. 2007a; Leon and Subramani 2007). Clearly, this 

conserved cysteine residue has a determinant role in the receptor recycling step but the 

reason why it is so important became apparent only when this residue was found to be 

monoubiquitinated (Carvalho et al. 2007b; Williams et al. 2007). This modification is 

absolutely required for the next step of the PEX5-mediated protein import pathway, the 

extraction of monoubiquitinated PEX5 back into the cytosol (Carvalho et al. 2007b; Platta 

et al. 2007). Recent data confirmed that the PEX5-like proteins, PEX20 and PEX18, are 
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also ubiquitinated at the conserved cysteine residue (Hensel et al. 2011; Liu and 

Subramani 2013). 

 The reason why a cysteine, and not the classical lysine residue, is the acceptor of 

ubiquitin in this reaction remains unknown. This is even more puzzling when we take into 

consideration the fact that substitution of the conserved cysteine residue in PEX5 by a 

lysine results in a seemingly normal protein that enters the DTM, receives a single 

ubiquitin molecule and is exported back into the cytosol as efficiently as the wild type 

protein in in vitro assays. Furthermore, when expressed in embryonic fibroblasts from a 

PEX5 knockout mouse, this PEX5 mutant protein is capable of restoring peroxisomal 

protein import, again, as efficiently as the wild type PEX5 protein (Grou et al. 2009b). 

Nevertheless, some hypotheses regarding the conserved cysteine have been formulated. 

These include the possibility to deubiquitinate cytosolic Ub-PEX5 using a non-enzymatic 

mechanism (see below section 2.2.4) or the potential to block the DTM under some 

conditions (e.g., oxidative stress) through chemical modification of the conserved cysteine 

residue (e.g., oxidation, glutathiolation, nitrosylation, etc.). Obstruction of the DTM by 

export-incompetent PEX5 molecules would result in a cytosolic localization for newly 

synthesized peroxisomal enzymes (e.g., catalase, epoxide hydrolase and glutathione S-

transferase κ), a situation that might be advantageous under some stress conditions (see 

also Fransen et al. 2012 and Grou et al. 2009b). 

 

 2.2.2. PEX5 dislocation 

 It is presently believed that monoubiquitination of DTM-embedded PEX5 serves no 

purpose other than preparing the receptor for the export step. Several arguments support 

this idea. First, as stated above, insertion of cargo-loaded PEX5 into the DTM in an in 

vitro import system is not affected when ATP is removed from the assays (Oliveira et al. 

2003). Under these conditions, monoubiquitination of PEX5 at the DTM is no longer 

possible because the ubiquitin-activating enzyme (E1) uses ATP to activate ubiquitin. 

Likewise, PEX5 proteins lacking the conserved cysteine are still able to enter the DTM 

where they acquire the expected transmembrane topology (Carvalho et al. 2007a; 

Carvalho et al. 2007b). Furthermore, and in agreement with these findings, PEX5-

mediated import of pre-thiolase, a PTS2 protein, and its processing in the peroxisomal 

matrix are also not affected by removal of ATP from import reactions and similar results 

were obtained recently in our laboratory when studying the import pathway of a PTS1 

protein (Alencastre et al. 2009; unpublished results). Thus, monoubiquitination is 

necessary neither for the docking/insertion steps of PEX5 into the DTM nor for cargo 

protein translocation and release into the peroxisomal matrix. On the other hand, as 

stated above, PEX5 mutant proteins that cannot be monoubiquitinated are not substrates 

for the REM and accumulate at the DTM. Furthermore, monoubiquitination of PEX5 in in 

vitro import assays using a GST-ubiquitin fusion protein leads to the same outcome 

(Carvalho et al. 2007b). Altogether, these findings suggest that it is not the covalent 

modification of PEX5 per se that prepares the receptor for the export step (e.g., by 

inducing a conformational alteration of PEX5), but rather that the ubiquitin moiety in the 

DTM-embedded Ub-PEX5 conjugate provides a context-specific “handle” for the REM. 
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 How the REM peroxins, PEX1 and PEX6, recognize DTM-embedded Ub-PEX5 

remains largely unknown. Nevertheless, recent data suggest that the interaction between 

Ub-PEX5 and the REM may not be direct (Miyata et al. 2012). Indeed, using a 

mammalian in vitro import/export assay the authors found a cytosolic protein that 

stimulated export of PEX5 from the DTM. The protein was identified as AWP1, an 

ubiquitin-binding protein best known for its participation in the NF-κB signaling pathway 

(Chang et al. 2011). Further biochemical characterization of this protein led the authors to 

propose that AWP1 mediates the interaction between monoubiquitinated PEX5 and the 

REM (Miyata et al. 2012). 

 

 2.2.3. PEX5 deubiquitination 

 Export of monoubiquitinated PEX5 from the DTM can be easily observed using a 

mammalian peroxisomal in vitro assay, particularly if the export reaction is made in the 

presence of a general deubiquitinase (DUB) inhibitor (e.g., ubiquitin aldehyde) (Grou et al. 

2009b). In contrast, all attempts to detect the mammalian or yeast Ub-PEX5 thioester 

conjugate in cytosolic fractions obtained from cells/organs yielded negative results; Ub-

PEX5 could only be detected in organelle fractions (Grou et al. 2009b; Williams et al. 

2007). Apparently, in vivo Ub-PEX5 is deubiquitinated very rapidly after export from the 

DTM. The factors that catalyze this deubiquitination step have been recently identified. 

Using biochemical approaches, UBP15 in Saccharomyces cerevisiae and USP9X in 

mammals have been identified as the DUBs acting on Ub-PEX5. Interestingly, however, 

knockout and knockdown of UBP15 and USP9X genes, respectively, did not result in the 

cytosolic accumulation of Ub-PEX5 (Debelyy et al. 2011; Grou et al. 2012). Obviously, 

there are other ways to deubiquitinate PEX5. These may include other less specific/active 

DUBs (Debelyy et al. 2011; Grou et al. 2012) or, as proposed previously, even a non-

enzymatic mechanism because the thioester bond linking ubiquitin to PEX5 is much more 

labile than the typical isopeptide bond found in most ubiquitin conjugates (Grou et al. 

2009b). Indeed, soluble Ub-PEX5 (but not DTM-embedded Ub-PEX5) is easily disrupted 

in the presence of 5 mM glutathione (a physiological concentration) displaying a half-life of 

just 2.3 min (Grou et al. 2009b). 

 

 2.2.4. The ubiquitin-conjugating enzymes (E2s) and the ubiquitin ligase(s) (E3) 

 of the PEX5-mediated protein import pathway 

 In order to react with a protein, ubiquitin has first to be activated by the ATP-

dependent ubiquitin-activating enzyme (E1) yielding a thioester intermediate. This 

activated form of ubiquitin is then transferred to the catalytic cysteine of an ubiquitin-

conjugating enzyme (E2). Finally, the Ub-E2 thioester conjugate is recruited by an 

ubiquitin ligase (E3) to the vicinity of the protein substrate which will then react with the 

activated ubiquitin (Spasser and Brik 2012). The specificity of a given protein 

ubiquitination reaction is thus imposed by the particular E2/E3 pair that catalyses that 

reaction (Metzger et al. 2013). 

Most eukaryotic organisms have 1-2 E1s, dozens of E2s and an even larger number 

of E3s (e.g., more than 600 in mammals) (Hutchins et al. 2013). The latter can be 

grouped into several different classes (Metzger et al. 2012), but of relevance here are the 
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RING family of ubiquitin ligases (Deshaies and Joazeiro 2009). These E3s are 

characterized by a small protein domain (the RING domain) that binds two Zn2+ ions and 

adopts a typical cross-braced folding (Budhidarmo et al. 2012). RING domains have two 

distinct functions. First, they interact directly with E2s acting as recruitment platforms for 

Ub-E2 conjugates; second, they increase the reactivity of the E2-bound ubiquitin by 

repositioning the ubiquitin molecule further exposing the thioester bond to nucleophile 

attack (Metzger et al. 2013). This activation phenomenon is frequently explored in in vitro 

ubiquitination assays to test whether a RING domain really has E3 activity and also to 

define the E2(s) that are accepted by a given E3. Several experimental readouts are used 

in these assays, including monitoring auto-ubiquitination of the E3, ubiquitination of model 

substrates or even E3-dependent reactivity of the E2-Ub conjugate with single amino 

acids (e.g., lysine and cysteine) (Wenzel et al. 2011; Swanson et al. 2001). In many of 

these assays, proximity of the nucleophilic protein/amino acid substrate to the RING-E2-

Ub, more than its identity, is the crucial factor. This is achieved either by simply increasing 

the concentration of the substrate or by fusing it to the RING domain. 

E3s can also be classified according to the mechanisms they use to recruit 

substrates. Some E3s possess substrate recruiting domains in other regions of their 

polypeptide chain (Metzger et al. 2013). Many, however, are subunits of larger proteins 

complexes and depend on other partners of the complex to recruit the substrate (e.g., 

Cullin RING ligases; Sarikas et al. 2011). These are frequently referred to as multi-subunit 

E3s (see also Metzger et al. 2013). 

Which E2s and E3s participate in the PEX5-mediated protein import pathway? The 

first answer to this question was provided by two independent studies on yeast PEX4, an 

E2 long-known for its involvement in peroxisomal protein import (Wiebel and Kunau 1992). 

Indeed, it was shown that yeast strains lacking PEX4 do not monoubiquitinate PEX5 at 

the conserved cysteine residue (Williams et al. 2007), and are unable to recycle 

peroxisomal PEX5 back into the cytosol (Platta et al. 2007). Interestingly, and in contrast 

to the majority of E2s which are soluble proteins, PEX4 is stable and active only when 

bound to the peroxisomal membrane by another protein, PEX22 (Koller et al. 1999). 

Orthologs of both PEX4 and PEX22 have been found using bioinformatic analyses in 

several yeasts/fungi and plants, suggesting that all these organisms have a peroxisomal 

E2 dedicated to the peroxisomal protein import pathway (Kiel et al. 2006; Schluter et al. 

2006; Zolman et al. 2005). Strikingly, however, no orthologs could be found in mammals 

and many other organisms. Proteomic studies aiming at identifying new mammalian 

peroxisomal proteins also failed to reveal the existence of a peroxisome-bound E2 

(Islinger et al. 2007; Kikuchi et al. 2004; Wiese et al. 2007). An explanation for these 

negative findings was provided by a biochemical characterization of the mammalian E2. 

Using an in vitro system that recapitulates all steps of the peroxisomal protein import 

pathway, it was found that a low-speed centrifugation of post-nuclear supernatants was 

sufficient to separate peroxisomes from the E2 activity involved in PEX5 

monoubiquitination. Purification of this activity led to the identification of three almost 

identical cytosolic E2s, E2D1/2/3 (UbcH5a/b/c in humans) (Grou et al. 2008), a group of 

E2s involved in many other biological pathways (Gonen et al. 1999; Saville et al. 2004). 
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As stated above, monoubiquitination of PEX5 at the conserved cysteine occurs at the 

DTM after cargo protein-dependent insertion of the receptor into this membrane module. 

Importantly, monoubiquitination of PEX5 can also be observed in an in vitro system 

comprising highly pure rat liver peroxisomes and recombinant E1 and UbcH5c (Grou et al. 

2008), a finding strongly suggesting that the DTM itself is the E3 ligase catalyzing this 

unconventional ubiquitination. Three of the five core components of this module are the 

RING peroxins, PEX2, PEX10 and PEX12 and thus they are the most obvious candidates 

to perform this function. Interestingly, several studies suggest that PEX5 can still enter the 

DTM in cells lacking RING peroxins (Agne et al. 2003; Chang et al. 1999; Collins et al. 

2000; Dodt and Gould 1996). Apparently, and similarly to multi-subunit E3s, the substrate-

recruiting function of the DTM/E3 resides not in the RING peroxins but rather in other 

subunits of the complex.  

Detailed mechanistic data on how the DTM monoubiquitinates PEX5 are still scarce. 

In vitro ubiquitination assays using recombinant RING domains from yeast and plant 

peroxins have shown that they all display E3 activity when assayed with human UbcH5 

(Kaur et al. 2013; Williams et al. 2008) or with yeast PEX4 (Platta et al. 2009). Thus, in 

principle, any of the three RING peroxins could promote monoubiquitination of PEX5 at 

the conserved cysteine. However, data supporting this possibility are not yet available, 

despite some attempts (Platta et al. 2009). A definite answer to this question will probably 

require reconstituting a major part of the DTM/E3 using purified components and 

determine which of the RING peroxins, if any individually, is capable of promoting the 

correct type of ubiquitination, at the correct amino acid residue of PEX5. Such 

experiments may turn out to be quite demanding specially if we take into consideration 

very recent in vivo data suggesting that RING peroxins are not redundant and that all 

three together are required for receptor mono- and polyubiquitination (Liu and Subramani 

2013, and see below section 3). 

 

3. Polyubiquitination of PEX5 

 Monoubiquitination of PEX5 is not the only type of ubiquitination occurring at the 

DTM. In yeast mutant strains lacking PIM components that act at late steps of the 

pathway (i.e., PEX5 monoubiquitination and its ATP-dependent dislocation from the DTM), 

small amounts of polyubiquitinated PEX5 are detected in peroxisomes (Kiel et al. 2005a; 

Platta et al. 2004; Kragt et al. 2005). Furthermore, the steady-state levels of PEX5 are 

diminished in some of these mutant strains (Collins et al. 2000; Koller et al. 1999) 

suggesting that this polyubiquitination event targets PEX5 for proteasomal degradation. A 

similar decrease in the steady-state levels of PEX5 in human cell lines from some patients 

with Peroxisome Biogenesis Disorders was also reported (Yahraus et al. 1996; Dodt and 

Gould 1996). Further characterization of this phenomenon in yeasts revealed that 

polyubiquitination of PEX5 is mediated by the multipurpose E2s Ubc1/Ubc4/Ubc5 (Kiel et 

al. 2005a; Kragt et al. 2005; Platta et al. 2004). Polyubiquitination of PEX5 does not seem 

to occur at the conserved cysteine residue; rather, one or two lysines located near the 

conserved cysteine have been identified as the ubiquitination sites (Kiel et al. 2005b; 

Williams et al. 2007). Although polyubiquitination of PEX5 has not yet been detected in 

wild type strains, and substitution of those two PEX5 lysines by arginines has no 
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phenotypic effects (Platta et al. 2007), it is possible, nevertheless, that this alternative way 

to remove PEX5 from the DTM is important whenever the normal recycling mechanism 

cannot be used, e.g. if PEX5 becomes entangled in the DTM. 

 

4. Conclusions 

 The first clue that ubiquitin should play some role in the peroxisomal protein import 

pathway dates back to 1992 when one of the yeast genes involved in this pathway was 

found to encode the ubiquitin-conjugating enzyme, PEX4 (Wiebel and Kunau 1992). The 

awareness, a few years later, that the three RING peroxins present in all peroxisome-

containing organisms might well be members of a vast family of ubiquitin ligases E3s 

(Joazeiro and Weissman 2000), fed this suspicion. However, the main mechanistic 

connection between ubiquitin and the PIM remained elusive for many years, and only in 

2007 did we understand that ubiquitination at the PIM is not simply a manifestation of the 

quality control ubiquitin-proteasome system. Rather, ubiquitination is a mandatory step of 

this protein sorting pathway, occurring every single time a PEX5 molecule delivers a 

cargo protein into the matrix of the organelle. Clearly, the disruption of the Ub-PEX5 

thioester conjugate by the thiol reagents commonly used in SDS-PAGE analyses tricked 

many researchers in the field, us included, for too long. 

 Any new finding ends up raising more questions than those it solved. One of the 

numerous questions still waiting for an answer is why a cysteine and not a lysine residue 

is used as the ubiquitin acceptor in PEX5. Also, the enzymology of the RING peroxins 

remains vastly unknown. How do they function? How are they regulated? In principle, 

either a single RING domain or a dimer of RINGs (Metzger et al. 2013) should be 

sufficient to catalyze monoubiquitination of PEX5. Why then are the three RING peroxins 

non-redundant and all necessary for receptor monoubiquitination (Liu and Subramani 

2013)? Is it possible that the three RING peroxins are actually modules of a multi-RING 

E3 ligase? Obviously there are still many other new findings to be made. 

 

FIGURE LEGENDS 

 

Fig. 4.4.1. Components of the peroxisomal protein import machinery (PIM). 

The components of the PIM are organized into structural/functional units. The 

Docking/Translocation Module (DTM), a membrane-embedded protein complex 

comprises: PEX13, PEX14, and the RING peroxins PEX2, PEX10, and PEX12, whereas 

PEX1 and PEX6 and their membrane-anchor, PEX26, constitute the Receptor Export 

Module (REM). The Shuttling Receptor (R), a cargo protein (CP), ubiquitin (Ub), AWP1 (a 

soluble protein involved in receptor recycling), and the ubiquitin-conjugating enzyme E2 

are also depicted. In some organisms the E2 is bound to the peroxisomal membrane via a 

membrane anchor (dashed-line shape). 

 

Fig. 4.4.2. The PEX5-mediated protein import pathway. 

The PEX5-mediated protein import pathway comprises eight steps. The PIM 

intermediates are referred to as stages, which are numbered 0 to 4 (some substages “a” 

and “b” are of conceptual nature). PEX5 (stage 0) binds a cargo protein (CP) in the 
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cytosol (stage 1a). It then docks at the Docking/Translocation Module (DTM; stage 1b), 

where it gets inserted with the concomitant translocation of the cargo protein into the 

organelle matrix (stage 2). PEX5 is then monoubiquitinated (stage 3a), so that it can be 

recognized by the Receptor Export Module (REM) and dislocated into the cytosol, in an 

ATP-dependent manner (stage 3b to stage 4b). Finally, cytosolic Ub-PEX5 is 

deubiquitinated probably by a combination of enzymatic (DUBs) and non-enzymatic 

(GSH) mechanisms regenerating free PEX5 (stage 0). Strategies/reagents that have been 

used to block this pathway at different steps are indicated (). Note that ATPγS, a non-

hydrolyzable ATP analogue is efficiently used by the ubiquitin-activating enzyme (E1), but 

not by the REM. Ub, ubiquitin; E2, ubiquitin-conjugating enzyme; DUBs, deubiquitinases; 

GSH, glutathione; GST-Ub, GST-tagged ubiquitin; cyt, cytosol; mat, peroxisomal matrix. 
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