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Abstract: In mammals subverted as hosts by protozoan
parasites, the latter and/or the agonists they release are
detected and processed by sensors displayed by many
distinct immune cell lineages, in a tissue(s)-dependent
context. Focusing on the T lymphocyte lineage, we review
our present understanding on its transient or durable
functional impairment over the course of the develop-
mental program of the intracellular parasites Leishmania
spp., Plasmodium spp., Toxoplasma gondii, and Trypano-
soma cruzi in their mammalian hosts. Strategies employed
by protozoa to down-regulate T lymphocyte function may
act at the initial moment of naı̈ve T cell priming, rendering
T cells anergic or unresponsive throughout infection, or
later, exhausting T cells due to antigen persistence.
Furthermore, by exploiting host feedback mechanisms
aimed at maintaining immune homeostasis, parasites can
enhance T cell apoptosis. We will discuss how infections
with prominent intracellular protozoan parasites lead to a
general down-regulation of T cell function through T cell
anergy and exhaustion, accompanied by apoptosis, and
ultimately allowing pathogen persistence.

Introduction

Infections caused by the intracellular protozoa Leishmania spp.,

Trypanosoma cruzi, Plasmodium spp., and Toxoplasma gondii are

associated with high morbidity and a heavy economic toll. These

unicellular eukaryotes display complex life cycles whose successful

completion relies on shuttling between different hosts. Particular

selective pressures during host–pathogen coevolution shaped the

developmental program of each parasite, giving rise to distinct

clinical conditions (Box 1).

Protective immunity against parasitic infection is critically

dependent on the development of a multifunctional T cell

response that directly kills infected cells or induces phagocyte

activation to destroy intracellular parasites [1–3]. As blood or

tissue pathogens, their transmissibility to the insect vector or

definitive host is low, and thus these pathogens devised strategies

to dampen the T cell response and increase the time available for

parasite transmission [4].

After breaching epithelial barriers, intracellular protozoa

rapidly deploy strategies to resist innate mechanisms employed

by infection site–recruited immune cells, such as macrophages or

dendritic cells (DCs) [5,6]. These cells are also responsible for the

transition between innate immunity and the onset of the adaptive

response. As such, inhibiting the signals emanating from antigen-

presenting–cells (APCs) represents an ingenious strategy to delay

or hamper T cell responses [7], allowing rapid parasite replication

and dissemination during the acute stage of infection. Neverthe-

less, adaptive immunity eventually develops and is generally

associated with control of acute parasite infection [8–10]. Yet,

even in the presence of a robust T cell response, complete

pathogen eradication is rarely achieved, signalling the onset of

chronic infection, which may remain clinically silent throughout

the host’s life or give rise to complications several years after

primary infection. Chronic parasite persistence has a profound

impact on the effector capacity of T cells, inducing their gradual

loss of function in a phenomenon known as T cell exhaustion [11].

Spanning both acute and chronic stages of infection is the

programmed death of T cells, a homeostatic mechanism that

ensures the elimination of most specific T cells after clearance of a

foreign threat, yet allows the survival of a small number of memory

cells capable of long-term, antigen-independent survival [12].

However, by interfering with the apoptotic T cell process, parasites

may subvert the mechanisms of memory formation and reduce the

numbers of specific T cells available to fight the pathogen in the

long term [13].

Here, we review the current understanding of how intracellular

protozoan parasites subvert the host T cell immunity during the

full length of their developmental program within the mammalian

host, through mechanisms that favour the occurrence of T cell

anergy, exhaustion, and apoptosis.

Subverting the Signals Required for T Cell Activation
Results in Delayed or Anergic T Cell Responses

T cell anergy was initially described as a state of non-

responsiveness induced in vitro at the time of T cell stimulation,

via T cell receptor (TCR), in the absence of a costimulatory signal

[14]. Lack of costimulation results in defective nuclear recruitment

of the transcription factors required to initiate IL2 transcription

[7]. In this sense, anergy is usually induced in T cells that bind

their cognate peptide-MHC complexes displayed in the surface of
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not fully mature APCs, hence unable to provide adequate

costimulation [15]. In alternative, T cell anergy may be induced

after expression of immunomodulatory molecules by APCs,

including the ATP-catabolizing enzymes CD39 and CD73 or

the tryptophan-metabolizing enzyme indoleamine-2,3-dioxygen-

ase (IDO) [16]. These observations link the requirement of an

inflammatory and/or immunogenic environment to efficient T cell

activation (Table 1).

Even though the infection site and the anatomical location of

acute replication differ among the pathogens discussed here (Box

1), intracellular parasites share similar mechanisms to disturb the

functions of APCs and preclude effective T cell priming during the

acute phase of infection. For instance, in mice and humans, acute

toxoplasmosis is associated with a transient, anergic-like suppres-

sion of T cell function [17–19]. In vitro studies unveiled the ability

of T. gondii to down-modulate antigen presentation and costimu-

latory molecules in the infected APC [20–22]. Furthermore, a

strong association between reduced DC-derived signals and

decreased magnitude of the specific CD8 T cell response was

observed after infection of mice with tachyzoites of the lethal RH

strain, which is capable of remarkable dissemination through host

tissues within the first few days after infection [19].

In murine L. donovani infection, parasites colonize the liver and

quickly replicate, but hepatic infection self-resolves within one

month [10]. A recent study found that LIGHT (a TNF

superfamily ligand) signalling through the lymphotoxin-beta

receptor (LT-bR) was detrimental to the onset of the specific

CD4 T cell response, which may explain the rapid increase in

hepatic parasite numbers during the first week after inoculation.

An antibody therapy blocking LT-bR engagement by LIGHT

resulted in increased TNF production by hepatic CD4 T cells,

faster granuloma maturation and decreased hepatic parasite loads

[23]. In contrast with the liver, the spleen is the site of chronic

parasite persistence during murine visceral leishmaniasis. After L.

donovani infection in mice, the expansion and activation of splenic

CD8 T cells is delayed and lower in magnitude, when compared

with a prototypical acute infection [24]. A similar delay in the

onset of the splenic CD8 response was found during murine T.

cruzi infection [25].

Increased expression of immunomodulatory molecules in APCs

has also been noted in parasite infections [26–28]. Dendritic cells

expressing ATP-metabolizing enzymes or IDO emerge in the local

lymph nodes shortly after intradermal infection of mice with L.

amazonensis and L. major, respectively. These DCs were poor

inducers of T cell proliferation and, importantly, the T cell

response could be restored by blocking the adenosine receptor A2B

or IDO [26,27]. Interestingly, loss of IDO activity was recently

proposed as a biomarker for the restoration of the immune

response in treated leishmaniasis patients [29].

The liver stage of Plasmodium infection is very silent, both

clinically and immunologically, possibly due to a lack of

recognition of the intrahepatocytic merozoite by innate immunity

[30]. After deposition in the dermis, most sporozoites do not reach

the blood stream but are instead conveyed to the local lymph

nodes and digested inside DCs [31]. In mice inoculated with

irradiated sporozoites, CD8 T cells, primed by DCs in the skin-

draining lymph nodes, are able to migrate to the liver, recognize

infected hepatocytes, and provide protection [32]. Similarly, mice

given prophylactic chloroquine at the time of live sporozoite

inoculation are protected against subsequent challenge [33]. The

success of both immunization strategies seems to advent from the

development of a robust intrahepatic CD8 T effector/memory

response associated with high IFN-c production [34]. Thus,

efficient CD8 T cell priming can occur during Plasmodium

infections, and it is important to gain further knowledge of the

properties of the activated/matured APCs generated with these

immunization strategies, with the aim of optimizing vaccine

design.

Contrasting with hepatic infection, the blood stage of malaria is

noticeably immunogenic and, conversely, immune evasion mech-

anisms mediated by Plasmodium become apparent [30]. Splenic

DCs recognize and internalize Plasmodium-infected red blood cells

(pRBCs) but fail to stimulate T cells [35,36]. This ability correlates

with strain lethality [37] and is possibly caused by a systemic DC

activation that occurs very early after inoculation (1 to 4 days),

before the peak in parasitemia (days 4 to 7). As a consequence,

presentation of parasite antigens is short-lived, as activated DCs

Box 1. Developmental Programs of
Intracellular Parasitic Protozoa in the
Mammalian Host and Associated Clinical
Conditions

The kinetoplastids Leishmania spp. and T. cruzi and the
apicomplexans Plasmodium spp. all rely on insect vectors
for transmission to the mammalian host. After deposition
in the dermis through the bites of infected sand flies,
Leishmania parasites reside inside host phagocytes and,
depending on the infecting species, can either cause
localized cutaneous lesions (e.g., L. major) or visceral
leishmaniasis (L. donovani, L. infantum), a chronic disease
characterized by amastigote accumulation in visceral
compartments such as the spleen or the liver.

T. cruzi metacyclic trypomastigotes are transmitted by
the reduviid bug and cause an acute infection that lasts
some weeks and is characterized by systemic infection of
multiple host nucleated cells, within which the parasite
persists in a cytoplasmic location. Development of
adaptive immunity restricts parasite numbers and signals
the beginning of chronic infection, which may persist for
the life of the host. About two-thirds of the infected
patients will never be afflicted by clinical disease during
the chronic phase, while the remaining may develop
chagasic cardiomyopathy or digestive complications such
as megacolon or megaesophagus, usually 10 to 30 years
after the initial infection.

Anopheline mosquitoes transmit Plasmodium sporozoites
to the dermis of the host, initiating a developmental
program that starts with parasite migration to the liver.
The liver stage of infection is clinically silent but results in
remarkable replication of the merozoite form inside
hepatocytes. Merozoite egress from hepatocytes and
infection of erythrocytes initiates the blood stage of
infection and is responsible for the pathological sequelae
that are typically associated with malaria, which include
acidosis, anaemia, and cerebral malaria.

The apicomplexan T. gondii can infect humans through
ingestion of undercooked meat containing viable tissue
cysts or water contaminated with parasite oocysts. An
early acute phase, which usually passes unnoticed or
causes mild flu-like symptoms, is characterized by remark-
able parasite dissemination in the body due to the virtually
unlimited host cell range of the tachyzoite form. Strong
pressure posed by adaptive immunity induces parasite
differentiation to semidormant bradyzoites that form
tissue cysts in the brain and muscle, initiating chronic
infection that may last for the life of the individual.
Complications arise in the case of acquired immunodefi-
ciency and manifest as toxoplasmic encephalitis.
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become unable to phagocytose pRBCs, compromising T cell

activation [38].

Parasite-derived molecules may directly inhibit T cell activation.

Trans-sialidase, a glycoside hydrolase shed by T. cruzi, sialylates

the surface of activated CD8 T cells, reducing their affinity to

cognate peptide-MHC and decreasing their cytotoxicity [39].

Inhibition of trans-sialidase restored the CD8 T cell function and

increased mice survival [39]. In addition, AgC10, a T. cruzi GPI-

anchored mucin, binds to L-selectin in the surface of T cells and,

by interfering with the phosphorylation of TCR-associated signal

transducers, is capable of blocking IL2 transcription, rendering T

cells anergic during acute infection in mice [40].

Although anergy is viewed as a process regulating the initial

phase of the T cell response, the emergence of regulatory T cells

(Tregs) expressing immunomodulatory molecules, such as CTLA-

4, IDO, or ATP-metabolizing enzymes, during parasite infection

may contribute to sustaining T cell anergy during the chronic

phase [41–44].

Chronic Parasite Infection Leads to Exhaustion of Specific
T Cells

Immune exhaustion corresponds to a loss of effector function of

antigen-experienced T cells that occurs in a progressive manner,

starting with decreased proliferative ability, IL-2 production, and

cytotoxic function, followed by an incapacity to produce IFN-c
and TNF-a, and culminating with physical deletion at terminal

stages [11,45]. Exhausted T cells present high and sustained

expression of inhibitory molecules such as programmed death-1

(PD-1), T-cell immunoglobulin, and mucin domain-containing

protein-3 (TIM-3) and lymphocyte-activated gene-3 (LAG-3) [11]

(Table 1).

T cell exhaustion associated with chronic infection was initially

reported in viral models as specific CD8 T cells that failed to

produce cytokines [46]. Recent work conjectured a similar pattern

for chronic parasitic infections [47].

The occurrence of T cell exhaustion in viral models has been

classically associated with concomitant high and persistent antigen

levels [11]. In contrast, chronic parasite infections are character-

ized by lower pathogen burden, which is generally tissue-

restricted, suggesting alternative driving forces in the induction

of T cell exhaustion. For instance, acute T. gondii infection is

usually controlled by the development of adaptive immunity,

leading to parasite encystation and latency (Box 1). Nevertheless,

this does not preclude subsequent exhaustion of CD8 T cells.

Indeed, infection of C57Bl/6 mice with T. gondii cysts of the ME49

strain causes death in 7 weeks, associated with parasite reactivation

in the brain and concurrent with decreased numbers of brain-

infiltrating CD8 T cells and their reduced production of IFN-c
and granzyme B, an indication of cellular exhaustion [48].

Increased PD-1 expression accompanied T cell exhaustion, and a

treatment blocking the PD-1/PD-L1 pathway resulted in

reinvigorated T cell function and prevented animal demise

[48,49]. Recent data suggests that the CD40/CD40L axis plays

a crucial role in the rescue of exhausted CD8 T cells in the context

of a-PD-L1 therapy [1]. Importantly, reinvigoration of the CD8 T

cell response through CD40L-CD40 signalling occurred not only

in a CD8-intrinsic manner, but also by boosting CD4 helper cell

function through induction of increased production of IL-21 [1], a

cytokine previously shown to alleviate CD8 T cell exhaustion in

viral models [50,51].

In murine L. donovani infection, splenic CD8 T cells exhibit

exhaustion around 4–5 weeks after inoculation, with reduced

production of IFN-c, TNF, and granzyme B [24]. PD-1

expression in parasite-specific CD8 T cells and PD-L1 expression

in splenic DCs paralleled the decrease in T cell function and

blocking PD-1/PD-L1 interactions could reduce splenic parasite

burden [24]. In cutaneous leishmaniasis caused by L. mexicana,

expression of PD-1 in peripheral blood CD8 T cells correlates

with lesion severity being found in patients with diffuse but not

localized lesions [52].

In contrast, parasite-specific CD8 T cells do not undergo

functional exhaustion after mice infection with T. cruzi. Further-

more, after drug cure, CD8 T cells adopted a central memory

phenotype and protected against reinfection [53], a finding at odds

with the view that exhausted T cells are dependent on antigen

persistence and lost after antigen removal [11]. However, early

studies in human patients affected by chronic Chagas disease

evidenced a functional impairment of T cells that correlated with

severity of cardiac pathology [54–56]. The reason for this

dichotomy may lie in the much longer timeframe of human

infection (1–2 years in mice versus decades in humans),

presumably having a more severe impact on the functionality of

T cells.

In line with findings in chronic viral infection [57–59], during

parasitic disease, not only CD8 T cells are subjected to functional

exhaustion. Parasite-specific splenic CD4 T cells up-regulate PD-1

and LAG-3 and become exhausted by day 30 after mice infection

with P. yoelii–infected RBCs [60]. Simultaneous blockade of PD-1

and LAG-3 increased the numbers of multifunctional CD4 T cells

Table 1. T cell anergy versus T cell exhaustion.

Unresponsive
state

Differentiation
state affected Driving forces

General characteristics of the unresponsive
state

T cell anergy Naı̈ve/Effector Impaired antigen presentation Impaired activation and proliferation

Reduced costimulation Defective differentiation and effector function

Expression of immunomodulatory molecules (IDO, CD73, CD39) Apoptosis

Regulatory cytokines (IL-10, TGF-b)

T cell exhaustion Effector Antigen persistence, chronic activation Progressive impairment of effector function

Regulatory cytokines (IL-10, TGF-b) Expression of inhibitory receptors (PD-1, TIM-3,
LAG-3)

Suboptimal priming (while in the naı̈ve state) Decreased expression of common c chain
cytokine receptors

Apoptosis

doi:10.1371/journal.pntd.0002567.t001
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that produce IFN-c, TNF, and IL-2 and accelerated parasite

clearance [60]. In contrast, blockade of either PD-1 or LAG-3

alone had only modest effects on the recovery of functional CD4 T

cells or decrease in parasitemia, suggesting that inhibitory

receptors may play independent roles in the induction and/or

maintenance of the exhausted state and that combined therapies

might be more efficient in improving T cell fitness [61].

Importantly, caution has to be taken when classifying exhausted

CD4 T cells based solely on the expression of PD-1. A recently

described CD4 T cell subset, termed T follicular helper cells (Tfh),

which is essential for B cell–mediated immunity, is characterized

by the expression of PD-1 in association with the B cell follicle-

homing chemokine receptor, CXCR5. In this context, it is

interesting to note that a-PD-L1/a-LAG-3 therapy dramatically

increased P. yoelli–specific humoral responses and the numbers of

germinal centre B cells, presumably due to the accompanying

increase in the number of Tfh cells. These findings suggest that

therapeutic blockade of inhibitory receptors during chronic

parasite infection may have beneficial effects that extend beyond

the recovery of exhausted T cells. Finally, increased expression of

PD-1 and LAG-3 has been recapitulated in T cells from human

patients infected with P. falciparum [60,62].

It is worth mentioning, however, that despite their deleterious

role in sustaining T cell exhaustion during chronic infections,

inhibitory receptors protect host tissues during acute infection by

dampening potentially pathogenic T cell responses. During acute

T. cruzi infection in mice, ablating PD-1 signalling augments

cardiac inflammation due to increased infiltration of activated

CD4 and CD8 T cells [63]. Similarly, blocking the PD1/PD-L1

pathway during P. berghei ANKA infection promotes CD8 T cell

Figure 1. Mechanisms of T cell contraction after immune response resolution. T cell contraction after resolution of an immune response is
usually accomplished through a combination of mitochondria- and death receptor–dependent mechanisms. As a result of T cell expansion, survival
factors as IL-2 become scarce, and signalling through survival pathways, like the phosphoinositide 3-kinase (PI3-K)/Akt pathway, ceases, allowing
FoxO3-dependent Bim induction. Bim promotes mitochondrial outer membrane permeabilization (MOMP) by relieving the inhibitory effect that
antiapoptotic Bcl-2 and Bcl-xL exert on proapoptotic Bax and Bak. MOMP results in cytochrome-c release from the mitochondria, enabling activation
of a supramolecular complex, the apoptosome that activates caspase-3. By processing numerous cellular substrates, activated caspase-3 ensures
completion of the execution phase of apoptosis. T cell activation also induces Fas ligand expression in T cells, which, by engaging the death receptor
Fas, enables caspase-8 activation at the death-inducing signalling complex (DISC). Caspase-8 then activates caspase-3. If the levels of caspase-8–
activated caspase-3 are not sufficient to undertake apoptotic cell death, a mitochondrial amplification loop may occur through caspase-8–mediated
Bid cleavage. This generates tBid, a proapoptotic Bcl-2 family member that promotes MOMP by activating Bax and Bak.
doi:10.1371/journal.pntd.0002567.g001
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infiltration in the brain and augments the incidence of exper-

imental cerebral malaria (ECM) in otherwise ECM-resistant Balb/

c mice [61]. Thus, signalling through inhibitory receptors appears

to be a homeostatic mechanism that regulates effector cell function

at the peak of the response.

While T cell exhaustion is usually associated with chronic

infection, a recent study in the L. major mouse model suggests that

the fate of exhausted T cells may be influenced by the events at the

acute phase. Infection of otherwise resistant C57Bl/6 mice with

arginase-deficient (arg2/2) L. major causes chronic persistence of

cutaneous lesions associated with exhaustion of specific CD4 T

cells from the draining lymph nodes. The appearance of exhausted

CD4 T cells at the chronic phase appears to be a consequence of the

reduced primary CD4 response after infection with the

transgenic/attenuated parasite [64]. Possibly, the curtailed acute

response to arg2/2 parasites precludes effective parasite elimination,

which subsequently fosters the exhaustion of effector CD4 T

cells due to antigen persistence. Alternatively, it cannot be ruled

out that arg-deficient parasites are less fit in inducing APC

activation and maturation. This would preclude efficient T cell

activation and favour anergy. Given that the transcriptional profiles

of anergic and exhausted T cells partially overlap [65], it is plausible

that a naı̈ve T cell primed under suboptimal conditions is more

prone to undergo functional exhaustion at later stages of infection,

unveiling a possible relationship between the two states of T cell

responsiveness.

Figure 2. The uptake of apoptotic T lymphocytes by parasite-hosting phagocytes contributes to the remodelling of the parasite-
hosting tissue as a bona fide protective niche. Increased rates of T cell apoptosis occur during parasite infection, mediated either by death
receptor– or mitochondria-dependent mechanisms. Upon clearance, these apoptotic cells induce an alternative state of activation in phagocytes
associated with production of suppressive mediators as TGF-b and IL-10, as well as promoting parasite growth. Suppressive cytokines act on effector
T cells and, together with antigen persistence and inhibitory T cell receptors, induce exhaustion of these cells. Additionally, inhibition of antigen
presentation and costimulation, acting along with suppressive cytokines or enzymes (as IDO, which catabolizes tryptophan), may render naı̈ve T cells
anergic and unresponsive throughout infection. Eventually effector, anergic, or exhausted T cells undergo programmed cell death, fuelling the pool
of apoptotic corpses and aiding perpetuation of the suppressive state.
doi:10.1371/journal.pntd.0002567.g002
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Immunoregulatory cytokines may also contribute to down-

regulate T cell function by inducing or maintaining the states of

exhaustion and anergy in protozoan infections [11,66]. IL-10

impairs monocyte and dendritic cell maturation, inducing their

deaths [67], which in turn may affect T cell effector function

[68]. In the context of parasite infections, IL-10 can play a

protective role by limiting tissue damage, as suggested by the

increased mortality observed in T. gondii and P. chabaudi

infections after IL-10 signalling neutralization [69,70], or

promote chronicity, as its neutralization during experimental

visceral leishmaniasis improved CD4 T cell responses and led to

disease resolution [71].

Finally, it is important to envision T cell exhaustion from a

host–parasite co-evolution perspective. In this sense, T cell

exhaustion may have evolved as a mechanism to avoid the

immunopathology that would otherwise result from chronic

pathogen persistence. Importantly, despite losing partial effector

function, exhausted T cells may still apply some degree of immune

pressure on the pathogen to attain the dynamic equilibrium that

characterizes chronic infection [11,72].

T Cell Apoptosis As a Pathological Component of
Protozoan Infections

Apoptosis of T lymphocytes during the contraction phase of an

immune response occurs through re-stimulation of activated T-cells

in a process termed activation-induced cell death (AICD), or results

from the absence of survival factors, known as activated T cell

autonomous death (ACAD) or death by neglect [12]. AICD is

usually accomplished through a death receptor-dependent mech-

anism. Upon activation, expression of death ligands, such as Fas

ligand (FasL, CD95L) or TNF increases in T cells, allowing caspase-

8 processing in the death-inducing signalling complex (DISC). In

contrast, ACAD is mediated by the relative balance of the Bcl-2

family members [12]. In particular, the increased expression of the

pro-apoptotic member Bim in T cells after cytokine deprival relieves

the inhibitory effect anti-apoptotic Bcl-2 and Bcl-xL exert on Bax

Table 2. Impact of targeted inhibition of suppressive or apoptotic T cell pathways in the outcome of parasitic infection.

Suppressive pathway
targeted Parasite Therapeutic approach Infection outcome Reference

T cell anergy Leishmania donovani Administration of an anti-LTbR
mAb (blocks LIGHT binding to
LTbR), started at the day of
infection

Increased TNF production by hepatic
CD4 T cells and promoted granuloma
maturation and parasite clearance
in the liver

[23]

Leishmania major Administration of an IDO
inhibitor, initiated 14 days
after infection

Increased CD4 T cell proliferation
and reduced footpad swelling and
parasite burden

[27]

Trypanosoma cruzi Treatment with inactive T. cruzi
trans-sialidase, started at the day
of infection

Treatment reverted the glycosylation
status of CD8 T cells, decreased acute
phase parasitemia and promoted
mice survival

[39]

T cell exhaustion Toxoplasma gondii Anti-PD-L1 therapy, starting at
5 weeks post-infection

Augmented IFN-c and granzyme
B production by CD8 T cells and
controlled Toxoplasma recrudescence

[48]

Leishmania donovani Anti-PD-L1 therapy, initiated
at day 15 after infection

Rescued L. donovani–specific CD8
T cells from exhaustion with increased
IFN-c production and reduced splenic
parasite burden

[24]

Plasmodium yoelii Anti-PD-L1 and anti-Lag3 therapy,
starting at day 14 post-infection

Reinvigorated splenic CD4 and CD8
T cells, improved anti-Plasmodium
humoral responses and decreased
parasitemia

[60]

T cell apoptosis Trypanosoma cruzi Administration of zVAD
(pan-caspase inhibitor), initiated
at day 7 after infection

Reduced T cell apoptosis, promoted
type 1 responses and reduced
parasitemia

[77]

Treatment with zLEHD (caspase-9
inhibitor), starting at 4 days post-
infection

Protected mesenteric lymph node
T cells from apoptosis and promoted
their cytokine production

[78]

Administration of an anti-FasL,
starting at 11 days after infection

Therapy protected T cells from AICD,
improved cytokine secretion and
decreased parasitemia

[90]

Therapy with zIETD (caspase-8
inhibitor), initiated 4 days
after infection

Treatment inhibited T cell expansion
and resulted in increased parasitemia

[95]

Plasmodium berghei Anti-IFN-c treatment, daily,
starting the first day after infection

Treatment prevented the deletion of
parasite-specific CD4 T cells during
acute phase of blood stage infection

[75]

Anti-IFN-c and anti-IL-12 treatment
initiated 1 day before infection

Treatment promoted differentiation of
long-lived memory CD4 T cells and
decreased parasitemia

[75]

doi:10.1371/journal.pntd.0002567.t002
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and Bak. This results in mitochondrial outer membrane permea-

bilization (MOMP) and apoptosome formation [12] (Figure 1).

Several studies demonstrate that T cell apoptosis occurs during

natural or experimental infections with Leishmania spp. [73],

Toxoplasma gondii [74], Plasmodium spp. [75], and Trypanosoma cruzi

[76]. Furthermore, some studies showed evidence of augmented T

cell responses and increased mouse survival after caspase

inhibition during protozoan infection [77–79]. However, it is

frequently hard to discern from published work whether T cell

death is pathological or physiological [13,80]. This is particularly

notorious through the acute phase of infection, during which a

high turnover of T cells is expected and reflects the emergence and

shutdown of the primary response. Yet, even during the early

stages, regulation of apoptosis may impact the mechanisms of T

cell memory formation and compromise immunity during chronic

infection [81]. In this section, we examined the findings that

support a pathological component for T cell apoptosis during

protozoan infections, proceeding either through a death receptor

or mitochondria-dependent mechanism.

Involvement of death receptors. The first hint that death

receptor–mediated apoptosis of T cells exerts a negative impact in

the immune response during parasite disease came from studies

revealing augmented T cell responses in Fas, Faslg (FasL), or

TNF-deficient mice after parasite infection [82–86]. These studies,

however, also evidenced the importance of death receptor

signalling in the clearance of inflammatory infiltrates. Supporting

these results is the finding that serum levels of FasL are elevated in

patients chronically infected with P. falciparum [87], T. cruzi [88],

and L. donovani [89].

Further analysis defined the kinetics of Fas and FasL expression

and T lymphocyte apoptotic death during infection. Splenic CD4

and CD8 T cells start to express CD95 around the second to third

week after murine T. cruzi infection, which correlates with their

death by AICD [76,90]. Treatment with an anti-FasL, but not

anti-TNF or anti-TRAIL antibodies, could rescue both subsets

from apoptosis, improving T cell effector functions and protecting

mice from death [76,90].

Importantly, mice vaccinated with an adenoviral vector

expressing two T. cruzi–dominant epitopes presented improved

CD8 T cell functionality and decreased parasitemia after parasite

challenge, a phenotype attributed to the lack of CD95 expression

in parasite-specific CD8 T cells [76]. Recently, the RIG-I–like

receptor LGP2 was shown to repress CD95 expression in activated

CD8 T cells in a murine model of West Nile virus infection [91].

While a potential role for LGP2 in parasitic infections remains to

be addressed, this data has implications for vaccine design and

how it could fine-tune the immune response with the aim to

hamper death receptor signalling and improve T cell survival.

Also, the decreased levels of parasitemia in immunized and

infected animals may explain the lack of CD95 expression in CD8

T cells, due to lower immune activation [76].

Nevertheless, previous work has shown accelerated mice

mortality after T. cruzi infection in the absence of Fas signalling

[92], possibly due to excessive renal inflammation [93] and altered

cytokine patterns that favour the expansion of a non-protective

Th2 response [90]. Additionally, a recent study has revealed that a

polymorphism in the Fas promoter is associated with protection in

childhood malaria [94]. The protective Fas allele was associated

with higher expression of CD95 in PBMCs, which was interpreted

as facilitating T lymphocyte death and decreased immunopathol-

ogy. These examples further demonstrate the dual roles played by

death receptors, in particular Fas, during infection. On the one

hand, death receptor triggering may compromise T cell immunity,

but on the other hand, it prevents the pathogenic accumulation of

activated T cell clones and limits tissue pathology.

Finally, some studies aimed to address the magnitude and

functional properties of the T cell response after parasite infection

of Casp8 (caspase-8)-deficient mice or in the presence of caspase-8

inhibitors [77,95]. These, however, yielded conflicting results and

should be interpreted in view of the known role of caspase-8 in the

activation of NF-kB after TCR triggering [96].

Death by neglect. The limitation of survival factors upon

clonal expansion of activated T cells induces Bim expression in T

cells, triggering the mitochondrial pathway of apoptosis, in a

process known as death by neglect. By partnering with Fas-

dependent mechanisms, Bim-mediated apoptosis ensures clear-

ance of most effector T cell clones, yet allows the survival of a

minute number of self-sustaining memory T cells [97].

Perhaps the clearest example of how Bim-mediated T cell

apoptosis negatively affects the immune response during parasite

infection comes from the L. major mouse model. While long-term

immunity to L. major infection in resistant strains is thought to be

dependent on the persistence of a small number of parasites in

sheltered niches regulated by IL-10–producing effector or

regulatory T cells [98,99], sterile cure could be achieved after

Bim ablation [100]. These mice exhibited increased numbers of

parasite-specific CD4 T cells that produced IFN-c at the infection

site and draining lymph node and were protected from reinfection,

suggesting again that interfering with T cell death may boost

vaccine efficiency.

Recent evidence suggests that heightened expression of inflam-

matory mediators during the acute stages of infections exacerbates

the contraction phase of the immune response, compromising the

establishment of T cell memory [81]. During acute blood-stage

Plasmodium infection in mice, a significant proportion of parasite-

specific T cells undergo apoptotic demise. These could be saved by

blocking IFN-c signalling, but not TNF or Fas [75]. In a recent

study, a Plasmodium-encoded homologue of the macrophage

migration inhibitory factor (PMIF) was shown to potentiate the
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pany a suboptimal CD8+ T-cell response: reversal by
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inflammatory response during acute blood-stage infection in mice.

As a result, the differentiation of splenic T cells is diverted towards

formation of short-lived terminal effector cells that die in a Bim-

dependent manner [101]. PMIF ablation or IL-12/IFN-c
neutralization instead promoted the differentiation of long-lived

memory T cells and ameliorated protection after reinfection [101].

Thus, a large proportion of T cell deaths during protozoan

infection might be the result of differentiation of terminal effector

T cells. In this sense, parasites exploit a host homeostatic pathway

to curtail the magnitude and duration of the T cell response.

Finally, it is important to recognize that this increased rate of

apoptotic T cell death is not without immunological consequences.

Phagocyte internalization of dying cells suppresses production of

inflammatory mediators but, instead, promotes expression of

TGF-b and IL-10 [102]. Due to their suppressive effects on APCs

functions, apoptotic cells may contribute to induce or maintain

anergy and exhaustion in T cells, helping to perpetuate a state of

down-regulated T cell function (Figure 2). Furthermore, internal-

ization of apoptotic cells may actually fuel parasite growth inside

macrophages, as observed for T. cruzi and L. major [103,104].

Concluding Remarks and Therapeutic Implications
The role of T cell immunity in controlling protozoan infection is

clearly established, as demonstrated by parasite reactivation in the

context of T cell immunodeficiency, such as co-infection with

HIV. Intracellular parasites engage in complex and long-lasting

interactions with the mammalian host during the full length of

their developmental programs. Such intricate co-existence pro-

vides several targets for therapeutics to intersect the infection and

ameliorate T cell function (Table 2).

Nevertheless, some caveats should be highlighted as we set the

stage to design future experiments in this area. First, experimental

routes of infection do not always reflect accurately the events of a

natural infection, particularly those early events associated with

parasite establishment. Moreover, in humans, protozoan infection

is often silent or less aggressive than mouse models, while also

having a longer timeframe. An additional caveat in studies with

human patients is the lack of analysis in deep tissues during the

chronic phase, as often only peripheral blood is available. All this

demands the introduction of alternative models that mimic the

natural routes and more closely resemble human infection. An

illustrative example comes from rats infected with T. gondii that

develop a long-lasting chronic infection similar to human infection

[105,106]. However, this model remains poorly documented in

the literature. Also, non-human primates (NHP) have proven to be

faithful models of several human infectious diseases, particularly in

AIDS research [107,108]. Unfortunately, the use of NHP models

in parasitic infections has been limited to pre-clinical drug or

vaccine evaluation or clinical description of the infection [109–

111], though recent studies have started to employ these models

for more in-depth immunological descriptions [112,113], (VR,

ACS, ML, AO, RS, and JE, submitted manuscript).

The mechanisms of impaired T cell function that we reviewed

here should be considered as complementary in effecting the

immune escape responsible for parasite persistence and disease. In

this context, the design of novel immunotherapies, such as

therapeutic vaccines, may gain advantage in incorporating

strategies that converge to restore immune competence.

Acknowledgments

The authors would like to thank Anne-Marie Anderson, Bernard Krust,

and Rui Appelberg for critical reading and contribution to the manuscript.

References

1. Bhadra R, Gigley JP, Khan IA (2011) Cutting edge: CD40-CD40 ligand

pathway plays a critical CD8-intrinsic and -extrinsic role during rescue of

exhausted CD8 T cells. J Immunol 187: 4421–4425.

2. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, et al. (2007)

Multifunctional TH1 cells define a correlate of vaccine-mediated protection

against Leishmania major. Nat Med 13: 843–850.

3. Schussek S, Trieu A, Apte SH, Sidney J, Sette A, et al. (2013) Immunisation

with AMA-1 confers sterile infection-blocking immunity against Plasmodium

sporozoite challenge in a rodent model. Infect Immun 81: 3586–3599.

4. Yazdanbakhsh M, Sacks DL (2010) Why does immunity to parasites take so

long to develop? Nat Rev Immunol 10: 80–81.

5. Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat

Immunol 3: 1041–1047.

6. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, et al.

(2012) Modulation of mammalian apoptotic pathways by intracellular

protozoan parasites. Cell Microbiol 14: 325–333.

7. Fathman CG, Lineberry NB (2007) Molecular mechanisms of CD4+ T-cell

anergy. Nat Rev Immunol 7: 599–609.

8. Spence PJ, Langhorne J (2012) T cell control of malaria pathogenesis. Curr

Opin Immunol 24: 444–448.

9. DosReis GA (2011) Evasion of immune responses by Trypanosoma cruzi, the

etiological agent of Chagas disease. Braz J Med Biol Res 44: 84–90.

10. Engwerda CR, Ato M, Kaye PM (2004) Macrophages, pathology and parasite

persistence in experimental visceral leishmaniasis. Trends Parasitol 20: 524–

530.

11. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12: 492–499.

12. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells.

Nat Rev Immunol 7: 532–542.

13. Gavrilescu LC, Denkers EY (2003) Apoptosis and the balance of homeostatic

and pathologic responses to protozoan infection. Infect Immun 71: 6109–6115.

14. Jenkins MK, Pardoll DM, Mizuguchi J, Chused TM, Schwartz RH (1987)

Molecular events in the induction of a nonresponsive state in interleukin 2-

producing helper T-lymphocyte clones. Proc Natl Acad Sci U S A 84: 5409–5413.

15. Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat

Immunol 11: 21–27.

16. Chappert P, Schwartz RH (2010) Induction of T cell anergy: integration of

environmental cues and infectious tolerance. Curr Opin Immunol 22: 552–

559.

17. Voisin MB, Buzoni-Gatel D, Bout D, Velge-Roussel F (2004) Both expansion

of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes

Key Learning Points

N The initial encounter between an intracellular protozoan
parasite and the host’s dedicated antigen-presenting
cells is a multilayered interaction that often results in an
inability of the latter to efficiently prime naı̈ve antigen-
specific T cells. This leads to delayed or anergic T cell
responses, providing a window of time for parasite
replication, dissemination, and sheltered establishment
in the host.

N Chronic parasite persistence, acting along with immu-
nosuppressive factors, profoundly affects the effector
function of specific T cells, leading to their progressive
loss of cytotoxic or helper activities in a phenomenon
known as T cell exhaustion.

N By diverting T cell differentiation towards the formation
of terminal effectors, intracellular parasites exacerbate
the contraction phase of the T cell response, negatively
influencing the establishment of a durable T cell memory
and reducing the number of specific T cells available in
the long-term.

N A delicate balance between T cell expansion and T cell
death has to be attained in order to impose sufficient
immune pressure on the parasite while also avoiding the
immunopathology resulting from the accumulation of
activated T cell clones.

PLOS Neglected Tropical Diseases | www.plosntds.org 8 February 2014 | Volume 8 | Issue 2 | e2567



participate in hyporesponsiveness of the lung-associated immune system during

acute toxoplasmosis. Infect Immun 72: 5487–5492.

18. Luft BJ, Kansas G, Engleman EG, Remington JS (1984) Functional and

quantitative alterations in T lymphocyte subpopulations in acute toxoplasmosis.

J Infect Dis 150: 761–767.

19. Haque S, Dumon H, Haque A, Kasper LH (1998) Alteration of intracellular

calcium flux and impairment of nuclear factor-AT translocation in T cells

during acute Toxoplasma gondii infection in mice. J Immunol 161: 6812–6818.

20. McKee AS, Dzierszinski F, Boes M, Roos DS, Pearce EJ (2004) Functional

inactivation of immature dendritic cells by the intracellular parasite

Toxoplasma gondii. J Immunol 173: 2632–2640.

21. Butcher BA, Kim L, Panopoulos AD, Watowich SS, Murray PJ, et al. (2005)

IL-10-independent STAT3 activation by Toxoplasma gondii mediates

suppression of IL-12 and TNF-alpha in host macrophages. J Immunol 174:

3148–3152.

22. Wei S, Marches F, Borvak J, Zou W, Channon J, et al. (2002) Toxoplasma

gondii-infected human myeloid dendritic cells induce T-lymphocyte dysfunc-

tion and contact-dependent apoptosis. Infect Immun 70: 1750–1760.

23. Stanley AC, de Labastida Rivera F, Haque A, Sheel M, Zhou Y, et al. (2011)

Critical roles for LIGHT and its receptors in generating T cell-mediated

immunity during Leishmania donovani infection. PLoS Pathog 7: e1002279.

doi:10.1371/journal.ppat.1002279.

24. Joshi T, Rodriguez S, Perovic V, Cockburn IA, Stager S (2009) B7-H1

blockade increases survival of dysfunctional CD8(+) T cells and confers

protection against Leishmania donovani infections. PLoS Pathog 5: e1000431.

doi:10.1371/journal.ppat.1000431.

25. Martin DL, Weatherly DB, Laucella SA, Cabinian MA, Crim MT, et al. (2006)

CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant

trans-sialidase epitopes. PLoS Pathog 2: e77. doi:10.1371/journal.ppat.0020077.

26. Figueiredo AB, Serafim TD, Marques-da-Silva EA, Meyer-Fernandes JR,

Afonso LC (2012) Leishmania amazonensis impairs DC function by inhibiting

CD40 expression via A2B adenosine receptor activation. Eur J Immunol 42:

1203–1215.

27. Makala LH, Baban B, Lemos H, El-Awady AR, Chandler PR, et al. (2011)

Leishmania major attenuates host immunity by stimulating local indoleamine

2,3-dioxygenase expression. J Infect Dis 203: 715–725.

28. Cortez M, Huynh C, Fernandes MC, Kennedy KA, Aderem A, et al. (2011)

Leishmania promotes its own virulence by inducing expression of the host

immune inhibitory ligand CD200. Cell Host Microbe 9: 463–471.

29. Gangneux JP, Poinsignon Y, Donaghy L, Amiot L, Tarte K, et al. (2013)

Indoleamine 2,3-dioxygenase activity as a potential biomarker of immune

suppression during visceral leishmaniasis. Innate Immun 19: 564–568.

30. Liehl P, Mota MM (2012) Innate recognition of malarial parasites by

mammalian hosts. Int J Parasitol 42: 557–566.

31. Amino R, Thiberge S, Martin B, Celli S, Shorte S, et al. (2006) Quantitative

imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12:

220–224.

32. Chakravarty S, Cockburn IA, Kuk S, Overstreet MG, Sacci JB, et al. (2007)

CD8+ T lymphocytes protective against malaria liver stages are primed in skin-

draining lymph nodes. Nat Med 13: 1035–1041.

33. Belnoue E, Costa FT, Frankenberg T, Vigario AM, Voza T, et al. (2004)

Protective T cell immunity against malaria liver stage after vaccination with live

sporozoites under chloroquine treatment. J Immunol 172: 2487–2495.

34. Nganou-Makamdop K, van Gemert GJ, Arens T, Hermsen CC, Sauerwein

RW (2012) Long term protection after immunization with P. berghei

sporozoites correlates with sustained IFNgamma responses of hepatic CD8+
memory T cells. PLoS One 7: e36508. doi:10.1371/journal.pone.0036508.

35. Ing R, Segura M, Thawani N, Tam M, Stevenson MM (2006) Interaction of

mouse dendritic cells and malaria-infected erythrocytes: uptake, maturation,

and antigen presentation. J Immunol 176: 441–450.

36. Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, et al. (1999)

Plasmodium falciparum-infected erythrocytes modulate the maturation of

dendritic cells. Nature 400: 73–77.

37. Wykes MN, Liu XQ, Beattie L, Stanisic DI, Stacey KJ, et al. (2007)

Plasmodium strain determines dendritic cell function essential for survival from

malaria. PLoS Pathog 3: e96. doi:10.1371/journal.ppat.0030096.

38. Lundie RJ, Young LJ, Davey GM, Villadangos JA, Carbone FR, et al. (2010)

Blood-stage Plasmodium berghei infection leads to short-lived parasite-

associated antigen presentation by dendritic cells. Eur J Immunol 40: 1674–

1681.

39. Freire-de-Lima L, Alisson-Silva F, Carvalho ST, Takiya CM, Rodrigues MM,

et al. (2010) Trypanosoma cruzi subverts host cell sialylation and may

compromise antigen-specific CD8+ T cell responses. J Biol Chem 285: 13388–

13396.

40. Alcaide P, Fresno M (2004) The Trypanosoma cruzi membrane mucin AgC10

inhibits T cell activation and IL-2 transcription through L-selectin. Int

Immunol 16: 1365–1375.

41. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, et al. (2008)

CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271–

275.

42. Fallarino F, Grohmann U (2011) Using an ancient tool for igniting and

propagating immune tolerance: IDO as an inducer and amplifier of regulatory

T cell functions. Curr Med Chem 18: 2215–2221.

43. Haque A, Best SE, Amante FH, Mustafah S, Desbarrieres L, et al. (2010)
CD4+ natural regulatory T cells prevent experimental cerebral malaria via

CTLA-4 when expanded in vivo. PLoS Pathog 6: e1001221. doi:10.1371/

journal.ppat.1001221.

44. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, et al. (2007)

Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T

cells mediates immune suppression. J Exp Med 204: 1257–1265.

45. Jin HT, Jeong YH, Park HJ, Ha SJ (2011) Mechanism of T cell exhaustion in a

chronic environment. BMB Rep 44: 217–231.

46. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, et al.
(1998) Viral immune evasion due to persistence of activated T cells without

effector function. J Exp Med 188: 2205–2213.

47. Gigley JP, Bhadra R, Moretto MM, Khan IA (2012) T cell exhaustion in
protozoan disease. Trends Parasitol 28: 377–384.

48. Bhadra R, Gigley JP, Weiss LM, Khan IA (2011) Control of Toxoplasma

reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1
blockade. Proc Natl Acad Sci U S A 108: 9196–9201.

49. Bhadra R, Gigley JP, Khan IA (2012) PD-1-mediated attrition of polyfunc-

tional memory CD8+ T cells in chronic toxoplasma infection. J Infect Dis 206:
125–134.

50. Yi JS, Du M, Zajac AJ (2009) A vital role for interleukin-21 in the control of a
chronic viral infection. Science 324: 1572–1576.

51. Elsaesser H, Sauer K, Brooks DG (2009) IL-21 is required to control chronic

viral infection. Science 324: 1569–1572.

52. Hernandez-Ruiz J, Salaiza-Suazo N, Carrada G, Escoto S, Ruiz-Remigio A,
et al. (2010) CD8 cells of patients with diffuse cutaneous leishmaniasis display

functional exhaustion: the latter is reversed, in vitro, by TLR2 agonists. PLoS
Negl Trop Dis 4: e871. doi:10.1371/journal.pntd.0000871.

53. Bustamante JM, Bixby LM, Tarleton RL (2008) Drug-induced cure drives

conversion to a stable and protective CD8+ T central memory response in
chronic Chagas disease. Nat Med 14: 542–550.

54. Albareda MC, Laucella SA, Alvarez MG, Armenti AH, Bertochi G, et al.

(2006) Trypanosoma cruzi modulates the profile of memory CD8+ T cells in
chronic Chagas’ disease patients. Int Immunol 18: 465–471.

55. Laucella SA, Postan M, Martin D, Hubby Fralish B, Albareda MC, et al.

(2004) Frequency of interferon- gamma -producing T cells specific for
Trypanosoma cruzi inversely correlates with disease severity in chronic human

Chagas disease. J Infect Dis 189: 909–918.

56. Albareda MC, Olivera GC, Laucella SA, Alvarez MG, Fernandez ER, et al.
(2009) Chronic human infection with Trypanosoma cruzi drives CD4+ T cells

to immune senescence. J Immunol 183: 4103–4108.

57. Chang DY, Song SH, You S, Lee J, Kim J, et al. (2013) Programmed death-1

(PD-1)-dependent functional impairment of CD4 T cells in recurrent genital

papilloma. Clin Exp Med E-pub ahead of print. doi:10.1007/s10238-013-
0245-6.

58. Pallikkuth S, Fischl MA, Pahwa S (2013) Combination Antiretroviral Therapy

With Raltegravir Leads to Rapid Immunologic Reconstitution in Treatment-
Naive Patients With Chronic HIV Infection. J Infect Dis 208: 1613–1623.

59. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, et al. (2006) PD-1

expression on HIV-specific T cells is associated with T-cell exhaustion and
disease progression. Nature 443: 350–354.

60. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, et al. (2012)
Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-

stage Plasmodium infection. Nat Immunol 13: 188–195.

61. Hafalla JC, Claser C, Couper KN, Grau GE, Renia L, et al. (2012) The
CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host

resistance to Plasmodium-induced acute immune pathology. PLoS Pathog 8:

e1002504. doi:10.1371/journal.ppat.1002504.

62. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, et al. (2013)

Chronic exposure to Plasmodium falciparum is associated with phenotypic

evidence of B and T cell exhaustion. J Immunol 190: 1038–1047.

63. Gutierrez FR, Mariano FS, Oliveira CJ, Pavanelli WR, Guedes PM, et al.

(2011) Regulation of Trypanosoma cruzi-induced myocarditis by programmed
death cell receptor 1. Infect Immun 79: 1873–1881.

64. Mou Z, Muleme HM, Liu D, Jia P, Okwor IB, et al. (2013) Parasite-Derived

Arginase Influences Secondary Anti-Leishmania Immunity by Regulating
Programmed Cell Death-1-Mediated CD4+ T Cell Exhaustion. J Immunol

190: 3380–3389.

65. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, et al. (2007) Molecular
signature of CD8+ T cell exhaustion during chronic viral infection. Immunity

27: 670–684.

66. Jankovic D, Kugler DG, Sher A (2010) IL-10 production by CD4+ effector T
cells: a mechanism for self-regulation. Mucosal Immunol 3: 239–246.

67. Estaquier J, Ameisen JC (1997) A role for T-helper type-1 and type-2 cytokines

in the regulation of human monocyte apoptosis. Blood 90: 1618–1625.

68. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation

and functions of the IL-10 family of cytokines in inflammation and disease.

Annu Rev Immunol 29: 71–109.

69. Freitas do Rosario AP, Lamb T, Spence P, Stephens R, Lang A, et al. (2012)

IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical

mechanism for protection from severe immunopathology during malaria
infection. J Immunol 188: 1178–1190.

70. Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, et al. (2007)

Conventional T-bet(+)Foxp3(2) Th1 cells are the major source of host-

PLOS Neglected Tropical Diseases | www.plosntds.org 9 February 2014 | Volume 8 | Issue 2 | e2567



protective regulatory IL-10 during intracellular protozoan infection. J Exp Med

204: 273–283.
71. Murray HW, Lu CM, Mauze S, Freeman S, Moreira AL, et al. (2002)

Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor

blockade as immunotherapy. Infect Immun 70: 6284–6293.
72. Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection.

Cell 138: 30–50.
73. Banerjee R, Kumar S, Sen A, Mookerjee A, Mukherjee P, et al. (2011) TGF-

beta-regulated tyrosine phosphatases induce lymphocyte apoptosis in Leish-

mania donovani-infected hamsters. Immunol Cell Biol 89: 466–474.
74. Gavrilescu LC, Denkers EY (2001) IFN-gamma overproduction and high level

apoptosis are associated with high but not low virulence Toxoplasma gondii
infection. J Immunol 167: 902–909.

75. Xu H, Wipasa J, Yan H, Zeng M, Makobongo MO, et al. (2002) The
mechanism and significance of deletion of parasite-specific CD4(+) T cells in

malaria infection. J Exp Med 195: 881–892.

76. Vasconcelos JR, Bruna-Romero O, Araujo AF, Dominguez MR, Ersching J,
et al. (2012) Pathogen-induced proapoptotic phenotype and high CD95 (Fas)

expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral
vaccine. PLoS Pathog 8: e1002699. doi:10.1371/journal.ppat.1002699.

77. Silva EM, Guillermo LV, Ribeiro-Gomes FL, De Meis J, Nunes MP, et al.

(2007) Caspase inhibition reduces lymphocyte apoptosis and improves host
immune responses to Trypanosoma cruzi infection. Eur J Immunol 37: 738–

746.
78. de Meis J, Ferreira LM, Guillermo LV, Silva EM, Dosreis GA, et al. (2008)

Apoptosis differentially regulates mesenteric and subcutaneous lymph node
immune responses to Trypanosoma cruzi. Eur J Immunol 38: 139–146.

79. Begum-Haque S, Haque A, Kasper LH (2009) Apoptosis in Toxoplasma gondii

activated T cells: the role of IFNgamma in enhanced alteration of Bcl-2
expression and mitochondrial membrane potential. Microb Pathog 47: 281–

288.
80. Guillermo LV, Pereira WF, De Meis J, Ribeiro-Gomes FL, Silva EM, et al.

(2009) Targeting caspases in intracellular protozoan infections. Immunophar-

macol Immunotoxicol 31: 159–173.
81. Jameson SC, Masopust D (2009) Diversity in T cell memory: an embarrass-

ment of riches. Immunity 31: 859–871.
82. Huang FP, Xu D, Esfandiari EO, Sands W, Wei XQ, et al. (1998) Mice

defective in Fas are highly susceptible to Leishmania major infection despite
elevated IL-12 synthesis, strong Th1 responses, and enhanced nitric oxide

production. J Immunol 160: 4143–4147.

83. Lopes MF, Nunes MP, Henriques-Pons A, Giese N, Morse HC, 3rd, et al.
(1999) Increased susceptibility of Fas ligand-deficient gld mice to Trypanosoma

cruzi infection due to a Th2-biased host immune response. Eur J Immunol 29:
81–89.

84. Conceicao-Silva F, Hahne M, Schroter M, Louis J, Tschopp J (1998) The

resolution of lesions induced by Leishmania major in mice requires a functional
Fas (APO-1, CD95) pathway of cytotoxicity. Eur J Immunol 28: 237–245.

85. Hu MS, Schwartzman JD, Yeaman GR, Collins J, Seguin R, et al. (1999) Fas-
FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice.

Infect Immun 67: 928–935.
86. Oliveira CF, Manzoni-de-Almeida D, Mello PS, Natale CC, Santiago Hda C,

et al. (2012) Characterization of chronic cutaneous lesions from TNF-receptor-

1-deficient mice infected by Leishmania major. Clin Dev Immunol 2012:
865708.

87. Kern P, Dietrich M, Hemmer C, Wellinghausen N (2000) Increased levels of
soluble Fas ligand in serum in Plasmodium falciparum malaria. Infect Immun

68: 3061–3063.

88. Rodrigues V Jr, Agrelli GS, Leon SC, Silva Teixeira DN, Tostes S Jr, et al.
(2008) Fas/Fas-L expression, apoptosis and low proliferative response are

associated with heart failure in patients with chronic Chagas’ disease. Microbes
Infect 10: 29–37.

89. Eidsmo L, Wolday D, Berhe N, Sabri F, Satti I, et al. (2002) Alteration of Fas

and Fas ligand expression during human visceral leishmaniasis. Clin Exp
Immunol 130: 307–313.

90. Guillermo LV, Silva EM, Ribeiro-Gomes FL, De Meis J, Pereira WF, et al.
(2007) The Fas death pathway controls coordinated expansions of type 1 CD8

and type 2 CD4 T cells in Trypanosoma cruzi infection. J Leukoc Biol 81: 942–
951.

91. Suthar MS, Ramos HJ, Brassil MM, Netland J, Chappell CP, et al. (2012) The

RIG-I-like receptor LGP2 controls CD8(+) T cell survival and fitness.
Immunity 37: 235–248.

92. Boyer MH, Hoff R, Kipnis TL, Murphy ED, Roths JB (1983) Trypanosoma

cruzi: susceptibility in mice carrying mutant gene lpr (lymphoproliferation).

Parasite Immunol 5: 135–142.

93. Oliveira GM, Masuda MO, Rocha NN, Schor N, Hooper CS, et al. (2009)

Absence of Fas-L aggravates renal injury in acute Trypanosoma cruzi infection.

Mem Inst Oswaldo Cruz 104: 1063–1071.

94. Schuldt K, Kretz CC, Timmann C, Sievertsen J, Ehmen C, et al. (2011) A -

436C.A polymorphism in the human FAS gene promoter associated with

severe childhood malaria. PLoS Genet 7: e1002066. doi:10.1371/journal.

pgen.1002066

95. Silva EM, Guillermo LV, Ribeiro-Gomes FL, De Meis J, Pereira RM, et al.

(2005) Caspase-8 activity prevents type 2 cytokine responses and is required for

protective T cell-mediated immunity against Trypanosoma cruzi infection.

J Immunol 174: 6314–6321.

96. Su H, Bidere N, Zheng L, Cubre A, Sakai K, et al. (2005) Requirement for

caspase-8 in NF-kappaB activation by antigen receptor. Science 307: 1465–

1468.

97. Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, et al. (2008)

Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune

responses and prevention of autoimmunity. Immunity 28: 197–205.

98. Pagan AJ, Peters NC, Debrabant A, Ribeiro-Gomes F, Pepper M, et al. (2012)

Tracking antigen-specific CD4(+) T cells throughout the course of chronic

Leishmania major infection in resistant mice. Eur J Immunol 43: 427–438.

99. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002)

CD4+CD25+ regulatory T cells control Leishmania major persistence and

immunity. Nature 420: 502–507.

100. Reckling S, Divanovic S, Karp CL, Wojciechowski S, Belkaid Y, et al. (2008)

Proapoptotic Bcl-2 family member Bim promotes persistent infection and limits

protective immunity. Infect Immun 76: 1179–1185.

101. Sun T, Holowka T, Song Y, Zierow S, Leng L, et al. (2012) A Plasmodium-

encoded cytokine suppresses T-cell immunity during malaria. Proc Natl Acad

Sci U S A 109: E2117–2126.

102. Erwig LP, Henson PM (2007) Immunological consequences of apoptotic cell

phagocytosis. Am J Pathol 171: 2–8.

103. Freire-de-Lima CG, Nascimento DO, Soares MB, Bozza PT, Castro-Faria-

Neto HC, et al. (2000) Uptake of apoptotic cells drives the growth of a

pathogenic trypanosome in macrophages. Nature 403: 199–203.

104. Ribeiro-Gomes FL, Otero AC, Gomes NA, Moniz-De-Souza MC, Cysne-

Finkelstein L, et al. (2004) Macrophage interactions with neutrophils regulate

Leishmania major infection. J Immunol 172: 4454–4462.

105. Zenner L, Estaquier J, Darcy F, Maes P, Capron A, et al. (1999) Protective

immunity in the rat model of congenital toxoplasmosis and the potential of

excreted-secreted antigens as vaccine components. Parasite Immunol 21: 261–

272.

106. Zenner L, Foulet A, Caudrelier Y, Darcy F, Gosselin B, et al. (1999) Infection

with Toxoplasma gondii RH and Prugniaud strains in mice, rats and nude rats:

kinetics of infection in blood and tissues related to pathology in acute and

chronic infection. Pathol Res Pract 195: 475–485.

107. Hurtrel B, Petit F, Arnoult D, Muller-Trutwin M, Silvestri G, et al. (2005)

Apoptosis in SIV infection. Cell Death Differ 12 Suppl 1: 979–990.

108. Evans DT, Silvestri G (2013) Nonhuman primate models in AIDS research.

Curr Opin HIV AIDS 8: 255–261.

109. Porrozzi R, Pereira MS, Teva A, Volpini AC, Pinto MA, et al. (2006)

Leishmania infantum-induced primary and challenge infections in rhesus

monkeys (Macaca mulatta): a primate model for visceral leishmaniasis.

Trans R Soc Trop Med Hyg 100: 926–937.

110. Grimaldi Jr G (2008) The utility of rhesus monkey (Macaca mulatta) and other

non-human primate models for preclinical testing of Leishmania candidate

vaccines. Mem Inst Oswaldo Cruz 103: 629–644.

111. Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, et al. (2013)

Plasmodium coatneyi in rhesus macaques replicates the multisystemic

dysfunction of severe malaria in humans. Infect Immun 81: 1889–1904.

112. Trott KA, Richardson A, Hudgens MA, Abel K (2013) Immune Activation and

Regulation in Simian Immunodeficiency Virus-Plasmodium fragile-Coinfected

Rhesus Macaques. J Virol 87: 9523–9537.

113. de-Campos SN, Souza-Lemos C, Teva A, Porrozzi R, Grimaldi G, Jr. (2010)

Systemic and compartmentalised immune responses in a Leishmania

braziliensis-macaque model of self-healing cutaneous leishmaniasis. Vet

Immunol Immunopathol 137: 149–154.

PLOS Neglected Tropical Diseases | www.plosntds.org 10 February 2014 | Volume 8 | Issue 2 | e2567


