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Abstract 

Cancer is a serious health problem in the world, both in terms of morbidity and mortality. 

Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading 

cause of cancer death among men in Western countries. Currently, prostate serum 

antigen (PSA) is the most used biomarker for PCa diagnostic. However, the PSA 

screening has limited sensitivity and specificity and PSA is not able to differentiate 

aggressive from indolent PCa.  

Metabolomics is a powerful analytical tool with which biomarkers and therapeutic targets 

can likely be discovered because cancer cells have the capacity to modify many 

homeostatic systems within the body and consequently change the production, the use 

and consequently the levels of many metabolites. Metabolomics allows the discovery of 

biochemical signatures and with these signatures it is possible to investigate several 

metabolic pathways, and the differences between cancer and healthy metabolic 

phenotypes.  

In this work a GC-MS was used as analytical platform to prove the concept that metabolic 

alterations were able to discriminate PCa cell lines (22RV1; PC3; DU145; LNCaP) from 

normal prostate cell line (PNT2). For that, in the first part of the work, we evaluated 

alteration in the volatiloma (extracellular metabolites) obtained at pH 7 and pH 2. In both 

approach, volatiloma revealed to be able to differentiate PCa cell lines from normal 

prostate cell line. The altered VOCs (volatile organic compounds) include ketones, 

aldehydes and organic acids. In the second part of the work, we evaluated alteration in 

intracellular metabolites and for that a derivatization protocol was used before GC-MS 

analysis. Once again the results reveal that metabolic alterations were able to differentiate 

PCa cell lines from normal prostate cell line. The altered metabolites include amino acids, 

sugars, steroids, and fatty acids. By evaluating the altered metabolites it was also possible 

to conclude that the main disrupted metabolic pathways, in consequence of neoplastic 

progression, were linked to the energetic metabolism, protein metabolism and lipid 

metabolism.  

 

Key words: Prostate cancer; Metabolomics; Cell Lines; Volatile Carbonyl Compounds; 

Gas Chromatography /Mass Spectrometry. 
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Resumo 

      
O cancro é um grave problema de saúde, em todo o mundo, tanto em termos de 

morbilidade como de mortalidade. O cancro da próstata (PCa) é o cancro mais 

frequentemente diagnosticado nos homens e o segundo cancro mais mortal para os 

homens nos países Ocidentais. Atualmente, o biomarcador mais usado para o 

diagnóstico desta doença é o antigénio específico da próstata (PSA). Contudo, este 

biomarcador tem uma sensibilidade e uma especificidade limitadas para o rastreio do 

cancro da próstata e, além disso, o PSA não é capaz de diferenciar cancros da próstata 

agressivos de cancros da próstata indolentes.     

 A metabolómica é uma poderosa ferramenta analítica, que pode ser usada para a 

descoberta de novos biomarcadores mas também de novos alvos terapêuticos. Isto é 

possível uma vez que as células cancerígenas têm a capacidade de modificar vários 

sistemas homeostáticos do organismo e consequentemente alterar a produção, o uso e 

os níveis de diversos metabolitos. A metabolómica permite descobrir a assinatura 

metabólica e, assim, utilizando esta assinatura é possível investigar várias vias 

metabólicas e as diferenças entre o fenótipo cancerígeno e o fenótipo saudável.   

Neste trabalho foi usada a técnica de GC-MS como plataforma analítica, como prova de 

conceito de que as alterações metabólicas são capazes de discriminar linhas celulares de 

cancro da próstata (22RV1; PC3; DU145; LNCaP) da linha celular de próstata normal 

(PNT2). Para isso, na primeira parte do nosso trabalho, avaliamos as alterações no 

volatiloma (metabolitos extracelulares) at pH 7 e a pH 2. Em ambas as abordagens, o 

volatiloma mostrou ser capaz de diferenciar as linhas celulares de cancro da próstata da 

linha celular normal. Os compostos orgânicos voláteis (VOCs) alterados incluem cetonas, 

aldeídos, e ácidos orgânicos. Na segunda parte do trabalho, avaliamos alterações nos 

metabolitos intracelulares, usando um protocolo de derivatização, prévio á análise por 

GC-MS. Mais uma vez, os resultados revelaram que as alterações metabólicas foram 

capazes de diferenciar as linhas celulares cancerígenas da linha celular normal. Os 

metabolitos alterados incluem aminoácidos, açúcares, esteróides e ácidos gordos. A 

avaliação dos metabolitos alterados permite concluir que as principais vias metabólicas 

alteradas, em consequência da progressão neoplásica, são o metabolismo energético, o 

metabolismo proteico e o metabolismo lipídico.    

Palavras-chave: Cancro da próstata; Metabolómica; Linhas celulares; Compostos 

carbonílicos voláteis; Cromatografia gasosa/espetroscopia de massa. 
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Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death
among men in Western countries. Current screening techniques are based on the measurement of serum prostate
specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate
biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to
discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that
allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique
metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic
pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study,
we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and
immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and
thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been
reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use
of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond
sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation.
Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful
tool in the discovery of new biomarkers for PCa detection.

Translational Oncology (2016) 9, 357–370

Introduction
Systems biology applied to cancer research encompasses the “omics”
tools, including genomics, transcriptomics, proteomics, and metabo-
lomics, which complement each other and are capable of measuring
changes in several entities (genes, transcripts, proteins, or metabolites,
respectively) simultaneously, providing an overview of various
physiological or pathological conditions [1–3].

Metabolomics can provide an idea of the physiological status of a
biological system, and therefore, alterations in the “normal”
metabolome may be indicative of disease. These alterations in the
“normal” metabolome have the potential to deliver new diagnostic
markers for the detection and prognosis of diseases and to monitor the
response to therapeutic interventions [4]. Metabolomics also has the
potential to give new understanding of the phenotypic changes

resultant from genetic alterations, environmental influence, and
toxicological influence [5].

The term metabolomics includes the assessment of all the
endogenous metabolites produced by the organism including small
molecule intermediates and end products of biochemical reactions in
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a cell (approximately ≤1500 Da), as well as exogenous metabolites,
such as drugs, products from the body flora, and food. Instead of genes
and proteins that participate in these biological processes, the
metabolites produced are indicators of what is happening in the
metabolism of a cell in physiological or pathophysiological conditions.
Thus, metabolites can be altered in such diseases as cancer [1,6–9].
As neoplastic cells have a unique metabolic phenotype related to

cancer development and progression, the identification of dysfunc-
tional metabolic pathways through metabolomics can be used to
identify cancer biomarkers and discover therapeutic targets [5,6,10].

Prostate Cancer
Prostate cancer (PCa) is the second most diagnosed cancer in men
[11], principally affecting men over 50 years old [12], and is the fifth
leading cause of cancer-related deaths in men worldwide [11].
Statistically, in 25% of men worldwide with PCa that develop
metastatic disease [13], the bones are the principal targets of PCa
metastasis [14]. Given that PCa has a long latency period and is
potentially curable, it is essential to develop efficient and precocious
screening methods for its early detection and characterization [12].
The quantification of prostate serum antigen (PSA) and the digital

rectal examination are the most common screening techniques used
for PCa diagnosis. However, performing a prostate biopsy is
mandatory for a final diagnosis [12]. Serum PSA levels higher than
4.0 ng/ml are a sign of PCa [14], although PSA is not able to
differentiate patients with aggressive PCa from those with indolent
disease [15]. The value of PSA screening is also controversial because
of its limited sensitivity and specificity [1,16]. Recent studies
suggested that certain PCa patients may present with PSA levels
below 4.0 ng/ml [14]. This fact leads to false negatives, as no reliable
cutoff values exist to demonstrate the unequivocal presence of PCa
[16,17]. Furthermore, PSA levels may be affected by several other
factors, such as age, prostatitis, urinary tract infection, and benign
prostate hyperplasia, leading inevitably to false-positive results
[14,16,18,19].
The biopsy analysis can also provide false-negative results when the

tumor is small; when the cancer cells are distributed heterogeneously;
and in early PCa stage when, histologically, the tumor appears benign
[20–22]. Thus, samples obtained during the biopsy for histopatho-
logic analysis may not be representative of the cancer [23].
The lack of a consistent biomarker for PCa diagnosis and

monitoring highlights the need for novel, specific, sensitive, and
cost-effective biomarkers to implement the best treatment approach
in a precocious state of the disease [14].

Altered Metabolism of PCa Cells
In 1920, Otto Warburg discovered that cancer cells, unlike
nonmalignant cells, preferentially produce ATP through the
glycolytic pathway (anaerobic pathway) instead of the Krebs cycle,
even in the presence of oxygen. This capability of cancer cells to
sustain high rates of glycolysis for ATP generation is known as the
Warburg effect [24–26].
Despite the relevance of the Warburg effect in cancer cells, the

Krebs cycle and oxidative phosphorylation also play an important role
in many types of cancer, including PCa. Recent evidence suggests that
increased citrate oxidation is an important metabolic characteristic in
PCa that supports the high cellular energy demand [27]. One of the
major functions of prostate cells is the production of citrate, PSA, and
polyamines, such as spermine, which are the major components of

prostatic fluid. Therefore, prostate cells have a distinct metabolic profile as
they produce specific compounds [1,16]. The production of citrate by
prostate cells is very high in comparison with other organs [28]. Unlike
other cells in the organism, prostate cell metabolism significantly favors
citrate synthesis over citrate utilization, which makes the prostate
peripheral zone epitheliumunique among human cells [29]. Usually, cells
degrade citrate in aerobic ATP production, with citrate being oxidized
during the Krebs cycle as part of the intermediary metabolism of glucose.
However, nonmalignant prostate cells accumulate and secrete citrate. The
oxidation of citrate is catalyzed by mitochondrial aconitase (m-aconitase).
In normal prostate cells, m-aconitase is inhibited by the high intracellular
concentrations of zinc, leading to citrate accumulation (Figure 1) [28,29].
Extensive metabolic alterations occur when prostate cells experience
neoplastic transformation. One of the most relevant alterations is citrate
oxidation, because cancer cells are unable to accumulate zinc, andwithout
elevated levels of zinc, m-aconitase is no longer inhibited and can catalyze
citrate oxidation [2,4,27,28,30]. This transformation of citrate accumu-
lation in healthy prostate cells to oxidized citrate in malignant prostate
cells results in more efficient energy production. This is probably an early
event in the progression tomalignancy and precedes the histopathological
identification of malignant cells [27,31,32].

For citrate synthesis, oxaloacetate and acetyl-coenzyme A (acetyl-
CoA) are essential, but whereas oxaloacetate is regenerated in the
Krebs cycle, acetyl-CoA is consumed. To ensure that cancer cells have
the needed energy for rapid proliferation, it is necessary to maintain
elevated rates of citrate oxidation, and thus, the availability of
acetyl-CoA is required. Some studies suggested that to maintain this
accelerated citrate oxidation, alterations in fatty acid metabolism are
needed to provide both ATP and acetyl-CoA [27,33,34] (Figure 1).

Beyond the Krebs cycle and glycolysis, glucose also can be degraded
by the pentose phosphate pathway. This metabolic pathway provides
NADPH and ribose-5-phosphate (important for the synthesis of
nucleic acids and nucleotides), thus promoting anabolic reactions and
redox homeostasis. In a recent study, Tsouko et al. (2014)
demonstrated that androgen receptor (AR) signaling augmented the
levels of glucose-6-phosphate dehydrogenase (G6PD) (key enzyme
for pentose phosphate pathway), NADPH, and ribose synthesis in
hormone-sensitive PCa cells and castrate-resistant PCa (CRPC) cells.
After inhibition of mammalian target of rapamycin with rapamycin,
the upregulation of G6PD is abolished. Hence, these studies revealed
a relationship between the upregulation of G6PD via AR and
mammalian target of rapamycin. These results suggested the
importance of pentose phosphate pathway for PCa growth [35].

Cell proliferation and intercellular signaling are dependent on
increased lipid biosynthesis. Acetyl-CoA also plays an important role
in this metabolic alteration because it is a precursor for lipogenesis and
cholesterogenesis and can be produced by transformation of citrate in
the cytosol [1]. Sterol regulatory element-binding protein–1, an
essential transcription factor for lipogenesis, is also implicated in AR
transcriptional regulation. Beyond increased lipogenesis, sterol regula-
tory element-binding protein–1 also increased reactive oxygen species
production and the expression of NADPH oxidase, which leads to
proliferation, migration, and invasion of PCa cells [36–38]. In PCa
cells, the levels of choline and creatine are increased because there is an
augmentation of membrane synthesis for cell proliferation [16].

Glutamine also has an important role in the maintenance of
lipogenesis, as well as to provide intermediates for the Krebs cycle
through glutaminolysis (where glutamine is transformed into glutamate
by glutaminase and then glutamate is transformed into
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α-ketoglutarate). The observation that the glutamine transporter and
glutaminase are both overexpressed in PCa cells was proof of the
importance of this mechanism in PCa [38–40]. The α-ketoglutarate
derivate from glutamine can contribute to the formation of citrate when
incorporated into the Krebs cycle (oxidation pathway); however,
α-ketoglutarate can also be transformed into citrate by the reversal of the
tricarboxylic acid cycle through reductive carboxylation. This alteration
of oxidation to reductive carboxylation is promoted by hypoxia and
leads to lipid synthesis and tumor growth [41]. The tumor-stromal
interactions also have an important role in PCa development. The
myofibroblastic microenvironment, formed from the interaction of
cancer cells with “cancer-associated fibroblasts”, is important for the
reverse Warburg effect. Cancer-associated fibroblasts in the myofibro-
blastic microenvironment undergo the Warburg effect, induced by
epithelial cancer cells, and secrete lactate and pyruvate. The lactate and
pyruvate are taken up by the PCa cells and used for the Krebs cycle,
anabolic metabolism, and cell proliferation [38,42,43].

Metabolomics Studies in PCaModel Systems and Biological Fluids
The most common models and biological fluids used to perform

metabolomics studies are tissue and cultured cell lines and human
urine, serum/plasma, prostatic fluid/seminal fluid, respectively.

The use of urine as a sample for metabolomics studies has many
advantages compared with serum: urine is easier to obtain and handle,
needs less sample preparation, and has higher amounts of metabolites
and a lower protein content [12,44,45]. Blood plasma/serum has
some advantages compared with urine, as the diurnal variation and
the intra- and intervariability are lower. However, serum and plasma
are more complex matrices than urine, having a higher concentration
of proteins, and sample collection is more invasive [5].

Seminal fluids, obtained by ejaculation, come from the seminal
vesicles, prostate, and epididymis. Prostatic fluid is collected after
prostate massage, and the composition of this biofluid is simpler than
seminal fluid [46,47]. The use of seminal/prostatic fluids has some
advantages compared with the use of other biofluids, as these samples
are richer in prostatic metabolites because the metabolites do not
need to cross blood-tissue barriers once they are naturally secreted
into the seminal/prostatic fluid. Thus, seminal/prostatic fluids are
less affected by confounding factors. However, these biofluids may
be difficult to collect in men with erectile dysfunction, and a portion
of men may have personal or ethical problems with giving these types
of samples [48].

The collection of tissue samples is more invasive than the collection
of other matrices; however, the use of matched malignant and normal

Figure 1. Schematic illustration of the most significantly altered metabolic pathways in PCa cells. Dashed lines = downregulated
pathway; continuous line = upregulated pathway. Metabolites overexpressed in PCa cells are shown in bold. TCA, tricarboxylic acid
(cycle); AAs, amino acids; DNA, deoxyribonucleic acid; GNMT, glycine N-methyltransferase; SARDH, sarcosine dehydrogenase; G6P,
glucose-6-phosphate; 6P, 6-phosphate; 3PG, 3-phosphoglycerate; CoA, coenzyme A.
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adjacent prostate tissue is a good strategy to reduce intraindividual
variability in metabolomics studies [49].
In vitro models are increasingly used because of interindividual

variability, and difficulties enrolling patients in these models are
nonexistent. In addition, cell lines have a perfectly defined cell state
which allows the analysis of a targeted metabolic status [2,50,51].

However, they do not efficiently simulate the complex cell-cell and
cell-matrix interactions occurring within an organism [2,52].

There are two different metabolomics approaches to discover
biomarkers for cancer: the top-down approach and the bottom-up
approach. Both approaches have advantages and disadvantages. The
top-down approach has the advantage of starting the metabolome

Table 1. Metabolomic Studies Performed in Urines from PCa Patients

PCa Subject
Group

Control Group Analytical
Platform

Statistical
Methods

Total Metabolites
Found/Discrimina-
t i v e Me t abo l i t e s
Found

Discriminatory Metabolites/Biomarkers Metabolic Pathways Dysregulated Ref.

n= 13 n= 24 GS-MS Binary strings,
Similarity
coefficients

91/21 Butyrolactone, methyl vinyl ketone,
methylamine, N-ethylformamide,
acetonitrile dimethylamino, pyridine,
N-methyl-formamide, acetaldehyde,
acetamide, 1-methyl-piperidine,
1-piperidineacetonitrile, dimethylamine,
pyrrole, methacrolein, N-N-dimethylamine,
3-methyl-pyridine, 2-methyl-1H-pyrrole,
2-octanone, 1-ethyl-1H-pyrrole,
2-n-butylacrolein and methyl propyl disulfide

NS [65]

n= 59 n= 51 LC-MS
GS-MS

Wilcoxon P test,
hierarchical
clustering,
nonparametric
tests

583/34 Sarcosine (+) Alterations in glycine synthesis
and degradation

[53]

n= 106 n= 57
(33 patients with
no evidence of
malignancy plus 24 HC)

GC-MS Nonparametric
statistical tests
and ROC

NS/0 No relevant differences in sarcosine levels
between patients with and without PCa

[61]

n= 3 n= 5 LC-MS NS NS/5 1.Sarcosine
2.Proline
3.Kynurenine (+)
4.Uracil (+)
5.Glycerol 3-phosphate (+)

1. Alterations in glycine synthesis
and degradation
Sarcosine is an intermediate
compound in the metabolism of choline.
2. Alteration in amino acids metabolism
3. Alteration in kynurenine pathway
4. Alteration in pyrimidine metabolism
5. Alteration in energetic metabolism

[55]

n= 25 PCa patients
developing
biochemical
recurrence

n= 29 PCa patients
who remained
recurrence-free

GC-MS ROC 8/2 Sarcosine (+)
Cysteine (+)
(in the group developing
biochemical recurrence)

Alterations in glycine synthesis
and degradation

[56]

n= 33 n= 23
(13 HC plus 10
patients with BPH)

GC-MS Nonparametric
statistical tests
and ROC

NS/1 Sarcosine (+) Alterations in glycine synthesis
and degradation

[57]

n= 86 n= 45 LC-MS ROC NS/1 Diagnostic value of sarcosine was modest;
relationship with clinicopathologic
parameters was not found

Alterations in glycine synthesis
and degradation

[58]

n= 20 n= 28 (8 patients with
BPH plus 20 HC)

GC-MS PCA
ROC

81/5 Dihydroxybutanoic acid (+), xylonic acid (+),
pyrimidine (−), ribofuranoside(−),
and xylopyranose(−)

Alterations in carbohydrate and
energy metabolism

[60]

n= 211 n= 134 GC-MS ROC NS/1 Sarcosine (+) Alterations in glycine synthesis
and degradation
Sarcosine is an intermediate
compound in the metabolism of choline.

[59]

n= 32 n= 32 LC-MS
GC-MS

PCA
PLS-DA

1132/15 1. Glycine (−), serine(−), threonine (−),
alanine (−)
2. Glutamine (−), citrate (−), aconitate (−),
succinate (−)
3. Sucrose (−), sorbose (−), arabinose (−),
arabitol (−), inositol (−), galactaric acid (−)
4.Carnitines (−)

1. Alteration in amino acids metabolism
2. Disturbance in energy metabolism
3. Dysregulation in carbohydrates
degradation
4. Alteration in long-chain fatty
acids metabolism

[63]

n= 59 n= 43 GC-MS RF
LDA

196/4 1. 2,6-dimethyl-7-octen-2-ol (−),
3-octanone (−), 2-octanone (−)
2. Pentanal (+)

1. Increase of utilization of these
metabolites for increased
energy consumption
2. Inflammatory conditions via
the excessive production of
reactive oxygen species, known
to induce lipid peroxidation

[64]

BPH, benign prostatic hypertrophy; GS-MS, Gas chromatography–mass spectrometry; HC, healthy controls; LDA, linear discriminant analysis; LC-MS, Liquid chromatography–mass spectrometry; NS,
not specified; PCA, Principal component analysis; PLS-DA,Partial least squares discriminant analysis RF, random forest; ROC, receiver-operator characteristic.
(+): levels increased in PCa; (−): levels decreased in PCa.
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Table 2. Metabolic Studies in Serum/Plasma from PCa patients

PCa Subject
Group

Control Group Analytical
Platform

Statistical
Methods

Total Metabolites
Found/
Discriminative
Metabolites
Found

Discriminatory Metabolites/Biomarkers Metabolic Pathways
Dysregulated

Ref.

n= 962 n= 1061 HC GC-MS Conditional
logistic
regression

NS/5 Palmitic acid (+), stearic acid (−),
myristic acid (+), linolenic acid (+),
eicosapentaenoic
acids (+)

Alteration in lipid metabolism [70]

n= 85 HG
plus n= 120
LG

n= 114 HC F I A - M S / M S
LC-MS/MS

ROC and
logistic
regression
model

112/5 1. Lysophosphatidyl-choline
(C16:0 and C18:0) (−)
2. Serotonin (−)
3. Aspartic acid (+)
4. Ornithine (−)

1. Alteration in lipid
metabolism
2. Alteration in growth
inhibition and induction
of apoptosis
3. Alteration in protein
biosynthesis
4. Ornithine decarboxylase
overexpression

[75]

n= 561 n= 1034 HC GC-MS
LC-MS

Wilcoxon
signed rank
tests and
χ2 tests

7/3 Choline (+), vitamin B2 (+),
methylmalonic acid (−)

Alteration in membrane
phospholipidic metabolism

[71]

n= 134 n= 666 HC LC-MS ROC 19/7 Glutamine (−), alanine (+),
valine (−), isoleucine (+),
tryptophan (−), ornithine (+),
lysine (+)

Alteration in free amino
acid metabolism

[73]

n= 28
Serum from
patients developing
biochemical
recurrence

n= 30
Serum from
patients with
recurrence free
5 years after
prostatectomy

LC-MS
GC-MS

ROC 9/3 Cystathionine (+),
homocysteine (+), cysteine (+)

Alteration in methionine
metabolism

[56]

n= 36
Fasting plasma
from PCa patients
3 months after
the therapy
initiation

n= 36
Fasting plasma
from PCa before
starting androgen
deprivation therapy

LC-MS
GC-MS

t tests 504/56 1. DHEAS (−), epiandrosterone
sulfate (−), androsterone sulfate (−),
cortisol (−), 4-androsten-3β (−),
17β-diol disulfates 1 & 2 (−),
5α-androstan-3β (−) 17β-diol
disulfate (−), pregnen-diol disulfate (−),
pregn steroid monosulfate (−) and
andro steroid monosulfates 1 & 2 (−).
2. Cholate (+), glycocholate (+),
taurocholate (+), chenodeoxycholate (+),
taurochenodeoxycholate (+),
ursodeoxycholate (+),
hyodeoxycholate (+), deoxycholate (+),
taurodeoxycholate glycodeoxycholate (+),
glycochenodeoxycholate (+),
7-ketodeoxycholate (+)
glycochenodeoxycholate (+),
glycolithocholate sulfate (+),
taurolithocholate 3-sulfate (+),
glycocholenate sulfate (−), and
taurocholenate sulfate (−)
3. Carnitines (−), ketone bodies (−),
dicarboxylic acids
4. 2-hydroxybutyrate (−) and
branched-chain keto-acid
dehydrogenase complex products (−)

1. Steroids metabolism
2. Bile acids and intermediates
of bile acid metabolism
3. Lipid oxidation
4. Markers of insulin resistance

[78]

n= 290 n= 312 Fluorometric assay ROC 1/1 Sarcosine (+) Alterations in glycine synthesis
and degradation

[66]

n= 105 n= 36 ESI-MS/MS PCA and
HCA

390/35 Phosphatidylethano-lamine (+),
ether-linked phosphatidylethanola
mine (+), ether-linked
phosphatidylcholine (+)

Alteration in lipid metabolism [72]

n= 1122
(813 serum
from patients with
nonaggressive PCa
plus 309 serum
from patients with
aggressive PCa
(Gleason score 8))

n= 1112 LC-MS ROC NS/1 Sarcosine (+) Alterations in glycine synthesis
and degradation

[67]

n= 25 n= 100 HC Immunoassay NS 4/1 Insulin (+) Alteration in energetic
metabolism

[76]

n= 64 n= 50 HC LC-MS PCA 480/49 Azelaic acid, uric acid, tryptophan, lysoPC Alteration in fatty acids [69]
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evaluation using a real sample (urine or plasma) that could be used in a
clinical practice. However, urine and plasma are complex biological
matrices and have metabolites from different origins, and the
metabolites may be more diluted. The advantage of the bottom-up
approach (starts with the metabolic analyses of cell lines) is that cultured
cell lines are a simpler biological system with less interference factors. In
fact, studies with immortalized cultured cells are important to eliminate
confounding factors, such as the age of patients, smoking habits, diet,
and other diseases that influence the intervariability in plasma and urine.
Nevertheless, the findings in cultured cell lines may not be directly
extrapolated to the real disease as it is practically impossible to simulate
complex cell–cell and cell–matrix interactions in cell cultures of PCa.
Both approaches used together can be useful tools to obtain metabolic
information that can discriminate the metabolic pathways in PCa cells.

Studies with Human Fluids and Model Systems
Urine Studies. Table 1 summarizes the major metabolites and

metabolic pathways that have been found to be dysregulated in
metabolomics studies performed on urine samples from PCa patients.
One of the most relevant metabolomics studies was performed by

Seekumar et al. (2009), where sarcosine (N-methylglycine)was discovered

as possible biomarker in urine for PCa. Sarcosine, an intermediate
product in the synthesis and degradation of glycine, was found to be
highly elevated during PCa progression tometastasis andwas not detected
or was presented at very low concentrations in the urine of healthy
individuals [53]. Carcinogenesis alters the biosynthesis of sarcosine,
although the importance of sarcosine in carcinogenesis remains unknown.
It is known that glycineN-methyltransferase (GNMT) has a significant role
in the metabolism of PCa tissues. This enzyme catalyzes the conversion of
glycine to sarcosine and also participates both in the metabolism of
methionine and in gluconeogenesis [54]. Similar results were achieved in
other studies performed with different analytical platforms using urine as
the matrix (Table 1) [55–59]. However, other studies concluded that
urinary sarcosine levels were not significantly different between PCa
patients and healthy controls (Table 1) [60,61]. According to Issaq and
Veenstra (2011), several causes for such divergences can be associated to
different study design andmethods, which can have diverse specificities and
sensitivities, and also to interindividual differences [62].

Others common metabolic alterations detected in urine from PCa
patients are alterations in amino acids, organic acids, sphingolipids,
fatty acids, and carbohydrates. Dysregulation of carbohydrate
degradation occurs because carbohydrates can be used by cancer

TABLE 2 (continued)

PCa Subject
Group

Control Group Analytical
Platform

Statistical
Methods

Total Metabolites
Found/
Discriminative
Metabolites
Found

Discriminatory Metabolites/Biomarkers Metabolic Pathways
Dysregulated

Ref.

PLS (18:0/0:0), 3-oxo-9,11-tridecadienoic acid,
3-hydroxy-tetradecanedioic acid,
6-hydroxy-pentadecanedioic acid,
5-(2-methylpropyl)-2-oxooxolane-3-carboxylic
acid, 5-butyl-2-oxooxolane-3-carboxylic acid,
lysoPE (0:0/18:2), LysoPE (18:2/0:0),
lysoPC (18:2/0:0), cortolone-3-glucuronide,
pregnanetriol glucuronide, androstenedione,
decanoic acid, menthol glucuronide,
citronellol glucuronide,
l-α-amino-1H-pyrrole-1-hexanoic acid,
lysoPC (0:0/18:2), phenylalanyl phenylalanine
3β,16α-dihydroxyandrostenone sulfate,
2-tert-butyl-1,4-benzenediol sulfate, indoxyl
sulfuric acid,10-dihydroxy-12Z,15Z-
octadecadienoic acid,12,13-dihydroxy-9Z,
15Z-octadecadienoic acid, 5,16-dihydroxy-
9Z,12Z-octadecadienoic acid, 27-nor-
5β-cholestane-3α,7α,12α,24,25-pentol glucuronide,
hexadecanedioic acid phenylacetylglutamine,
heptadecanoic acid, n-[(3α,5β,7β)-7-hydroxy-24-oxo-
3-(sulfooxy)cholan-24-yl]-glycine, n-[(3α,5β,7α)-
3-hydroxy-24-oxo-7-(sulfooxy)cholan-24-yl]-glycine,
glycochenodeoxycholate-3-sulfate, 5-isopropyl-2-
methylphenol, sulfate, 5-carboxy-α-chromanol glucuronide,
indole-3-carboxaldehyde, androsterone sulfate,
5α-dihydrotestosterone sulfate and etiocholanolone sulfate

metabolism, amino acids
metabolism, lysophospholipids
metabolism, and bile acids
metabolism and alteration in
steroid hormone biosynthesis
pathway

n= 70
40 LG PCa plus
30 HG PCa

n= 32 HC 1H-NMR PCA,
OPLS-DA
and ROC

NS/4 1.Alanine (+), pyruvate(+)
2.Sarcosine (+) glycine (−)

1. Alteration in energetic
metabolism and lipogenesis
2. Alterations in glycine
synthesis and degradation

[68]

n= 29 n= 21 BPH NMR
LC-MS
GC-MS

PCA and
ROC

348/53 1. Acylcarnitines
2. Choline (glycerol-phospholipids)
3. Arginine

1. Alteration in fatty acids
metabolism
2. Alteration in membrane
phospholipidic metabolism
3. Alteration in amino acids
metabolism

[74]

BPH, Benign prostatic hypertrophy; DHEAS, dehydroepiandrosterone sulfate; HC, Healthy Controls; HCA, hierarchical clustering analysis; GS-MS, Gas chromatography–mass spectrometry; HG, high
grade; LC-MS, Liquid chromatography–mass spectrometry; LG, low grade; NS, Not specified; OPLS-DA, orthogonal partial least squares discriminant analysis; PCA, principal component analysis; PLS,
Partial least squares; ROC, Receiver-Operator Characteristic.
(+): levels increased in PCa; (−): levels decreased in PCa.
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cells for energy production. Alterations in carnitine profiles were also
detected; carnitines and their derivatives are important for conserva-
tion of regular mitochondrial function as well as the transport of
activated long-chain fatty acids from the cytoplasm to the
mitochondrial compartment. The results also suggested disturbances
in energy metabolism, including the Krebs cycle, which were expected
given the Warburg effect and the alteration of the activity of
m-aconitase, as previously explained (Table 1) [60,63].

Potentiality of urinary volatile organic compounds to discriminate
between PCa samples and controls was also evaluated in several
different studies. In these studies, volatile organic compounds were
able to differentiate urine from PCa patients and from control
individuals (Table 1) [64,65].

Plasma and Serum Studies. A summary of metabolomics studies
performed on serum and plasma samples can be found in Table 2.

Studies evaluating sarcosine as a biomarker for PCa were performed
in serum samples using different analytical platforms [fluorometric
assay, liquid chromatography–mass spectrometry (LC-MS), and
1H-nuclear magnetic resonance (NMR)]. The results showed that
PCa samples had elevated levels of sarcosine and could distinguish
low-grade from high-grade PCa, suggesting plasmatic level of
sarcosine as a good biomarker for PCa (Table 2) [66–68].

Beyond the alteration in sarcosine levels, metabolomics studies of
serum/plasma from PCa patients also revealed alterations in fatty acids,
amino acids, lysophospholipids, bile acids, and metabolites related to the
steroid hormone biosynthesis pathway. The alteration in fatty acids is
related to changes in lipid β-oxidation necessary to provide energy for
abnormal cell proliferation (Table 2) [69,68,70–75]. Alterations in
energetic metabolism are also common [68,76] (Table 2), and increased
levels of glucose in serum samples at the time of PCa diagnosis were
associated with an increased risk of recurrences after therapy with radical
prostatectomy or radiation therapy [77].

Serum and plasma metabolomics studies can also be used to assess
alterations in the metabolic profile caused by medical treatment. The
metabolic profile of fasting plasma from PCa patients before starting
androgen deprivation therapy and 3 months after the therapy
initiation was analyzed [78]. As expected, steroid levels decreased
during androgen deprivation therapy, whereas the levels of most bile
acids and their metabolites increased with therapy. Bile acids have an
important role in the control of serum lipids, glycemic regulation, and
energy homeostasis. Lower levels of metabolites related to lipid

metabolism after 3 months of treatment were also observed. Carnitines,
ketones, dicarboxylic acids, and the levels of 2-hydroxybutyrate and
branched-chain keto-acid dehydrogenase complex products (bio-
markers of insulin resistance) were also present in lower levels after
the therapy, indicating a reduction in the catabolic state [78].

Prostatic Fluid and Seminal Fluid Studies. Table 3 presents a
summary of metabolomics studies performed in prostatic fluid and
seminal fluid from PCa patients.

Prostatic and seminal fluids are other biofluids that may be used to
perform PCa metabolomics studies to discover alterations in cancer
cell metabolism and noninvasive biomarkers for PCa detection.

As explained previously, normal prostate cells have the ability to
accumulate zinc and consequently accumulate citrate. However, PCa
cells lose this ability. Several metabolomics studies support this
theory. The analysis of prostatic and seminal fluid using different
analytical platforms (fluorescence technique and NMR) revealed
reduced levels of zinc and citrate in PCa groups when compared with
the controls (Table 3) [46,79–82]. Kline et al. (2006) also concluded
that citrate level tests outperform the PSA test in PCa detection.
Additionally, the analysis of citrate in semen has the same efficacy as
the analysis of citrate in prostatic secretion for detecting PCa [81].

Another important function of normal prostate cells is the synthesis
of polyamines, such as spermine and myo-inositol. The analysis of
prostatic and seminal fluid from PCa patients showed significantly
decreased levels of spermine and myo-inositol (Table 3) [80,82]. Serkova
et al. (2008) also demonstrated that the reduction in citrate, spermine,
and myo-inositol levels is independent of the patient’s age [82].

Ex Vivo Tissue Studies. Table 4 presents a summary of
metabolomics studies performed in PCa tissues.

The value of sarcosine as a PCa biomarker was also evaluated in
prostate tissue samples using different analytical platforms. The levels of
sarcosine were increased in PCa samples (Table 4) [15,53,59,83]. Results
also revealed that sarcosine levels were significantly elevated in metastatic
PCa and clinically localized PCa tissue samples, whereas in benign
samples, sarcosine was not detected. These results indicate that sarcosine
may be a good biomarker for monitoring disease progression and
aggressiveness [53].

Other metabolites, namely citrate, lactate, and alanine, were
frequently altered in PCa tissue samples. These results suggest
alterations in citrate synthesis (Krebs cycle) and in energetic
metabolism. As previously explained, the PCa cells switch from

Table 3. Metabolomic Studies in Prostatic and Seminal Fluid from PCa Patients

PCa Subject Group Control Group Analytical
Platform

Statistical Methods Total Metabolites
Found/Discriminative
Metabolites Found

Discriminatory
Metabolites/Biomarkers

Metabolic Pathways Dysregulated Ref.

n= 13 (prostatic fluid) n= 28 chronic prostatitis,
n= 28 adenoma n= 22 HC

Fluorescence Student’s t test and
Kolmogorov-
Smirnov test

1/1 Zinc (−) Lose capability to accumulated zinc [79]

n= 4 (prostatic fluid) n= 10 BPH
n= 12

NMR Multiple regression NS/3 1. Citrate (−)
2. Spermine (−) and
myo-inositol (−)

1. Alteration in energetic metabolism
2. Alteration in polyamines synthesis

[80]

n= 3 (seminal fluid) n= 3
n= 1 BPH

NMR NS NS/1 Citrate (−) Alteration in energetic metabolism [46]

n= 21 (seminal fluid)
n= 7

(prostatic fluid)

n= 16 (seminal fluid)
n= 17 (prostatic fluid)

NMR ROC NS/1 Citrate (−) Alteration in energetic metabolism [81]

n= 52
(prostatic fluid)

n= 26 NMR LR and ROC 9/3 1. Citrate(−)
2. Myo-inositol (−)
and spermine (−)

1. Alteration in energetic metabolism
2. Alteration in polyamines synthesis

[82]

BPH, Benign prostatic hypertrophy; LR, logistic regression; NMR, Nuclear magnetic resonance; NS, Not specified; ROC, Receiver-operator characteristic.
(+): levels increased in PCa; (−): levels decreased in PCa.

368 Biomarker Discovery in Human Prostate Cancer Lima et al. Translational Oncology Vol. 9, No. 4, 2016

 



	

12	

	

Table 4. Metabolomic Studies in Prostate Cancer Tissue

PCa Subject Group Control Group Analytical
Platform

Statistical Methods Total Metabolites
Found/Discrimi-
native Metabolites
Found

Discriminatory Metabolites/Biomarkers Metabolic Pathways Dysregulated Ref.

n= 21 n= 66
Benign
prostate tissue

MRS LDA NS/6 1. Citrate (−)
2. Taurine (+), glutamate (+)

1. Reduced citrate synthesis
(Krebs cycle)
2. Alteration in energy metabolism

[85]

n= 10
Malignant
human
prostate tissue

n= 10
BPH

1H-NMR Nonparametric test
of Kruskal-Wallis

NS/3 1. Citrate (−)
2. Choline (+)
3. Myo-inositol (+)

1. Reduced citrate synthesis
(Krebs cycle)
2. Increased membrane turnover
3. Altered membrane metabolism

[86]

n= 15
Adenocarcinoma

n= 1
HC

1H-NMR Linear regression analysis NS/2 1. Citrate (−)
2. Spermine (−)

1. Reduced citrate synthesis
2. Reduced spermine synthesis
(amino acid synthesis)

[87]

n= 27
Adenocarcinoma

n= 44
BPH

MRS NS 22/3 1. Citrate (−)
2. Choline (+)
3. Lipid/lysine ratio (+)

1. Reduced citrate synthesis
2. Increased membrane turnover
3. Increased cellular proliferation

[88]

n= 20 n= 33
Benign tissue

1H-NMR Nonparametric
Spearman correlation
coefficients

NS/8 1. Choline (+), phosphocholine (+),
glycerophospho-choline (+)
2. Taurine (+)
3. Myo-inositol (+), scyllo-inositol (+)
4. Citrate (−), polyamines (−)

1. Alteration in phospholipid
membrane synthesis and hydrolysis
2. Alteration in energy metabolism
3. Altered membrane metabolism
4. Reduced citrate and polyamines synthesis

[89]

n= 15 n= 32
Benign
prostatic tissue

1H-NMR Z statistics NS/5 Phosphocholine (+), glycerol-
phosphocholine (+),
phosphor-ethanolamine (+),
glycerophospho-ethanolamine (+),
ethanolamine (−)

Alterations on phospholipid
membrane assembly and catabolism

[92]

n= 16 n= 82
Benign
prostate biopsies

1H-NMR NS NS/2 1. Lactate (+)
2. Alanine (+)

1. “Warburg effect”
2. Intensification in glycolytic
flux and increased protein
synthesis in cancer cells

[90]

n= 18 n= 30 1H-NMR LR NS/7 tCho/Cit (+), Cho/Cr (+),
GPC + PC)/Cr (+), Lac/Al (+) Cit/Cr (−)

Alterations in citrate synthesis
(Krebs cycle), in membrane
turnover, and in energetic
metabolism

[84]

n= 12 Localized
PCa n= 14
metastatic PCa

n= 16 Benign
tissue
adjacent to PCa

LC-MS
GC-MS

Wilcoxon P test,
hierarchical clustering,
nonparametric tests

626/60 1. Sarcosine (+)
2. Uracil (+)
3.Kynurenine (+)
4. Glycerol-3-phosphate (+),
5. Leucine (+), proline (+)

1. Alterations in glycine
synthesis and degradation
Sarcosine is an intermediate
compound in the metabolism
of choline.
2. Alterartion in pyrimidine
metabolism
3.Alteration in Kynurenine pathway
4. Alteration in energetic metabolism
5. Alteration in amino acids metabolism

[53]

n= 27 n= 54 NMR NS NS/NS Omega-6 PUFA (+) Alteration in lipid metabolism [95]
n= 16

patients with
chemical failure

n= 32
Patients without
recurrence after
prostatectomy

1H-NMR PCA NS/6 1. Spermine
2. Myo-inositol, phosphoryl, scyllo-inositol
3. Choline
4. Glutamate, glutamine

1. Reduced spermine synthesis
(amino acid synthesis)
2. Altered membrane metabolism
3. Alteration in phospholipid
membrane synthesis and hydrolysis
4.Alteration in energy metabolism

[93]

n= 41 n= 108
Benign adjacent
prostate tissue

1H-NMR Binary logistic regression
and multivariate
linear regression

13/6 1. Choline compounds (+)
2. Myo-inositol (−), scyllo-inosito (+)

1. Alteration in phospholipid
membrane synthesis and hydrolysis
2. Altered membrane metabolism

[94]

n= 92 n= 92 GC-MS Nonparametric statistical
tests and ROC

NS/1 Sarcosine (+)
(sarcosine levels were not related with
tumor stage, grade or
biochemical recurrence)

Alterations in glycine synthesis
and degradation. Sarcosine is an
intermediate compound in the
metabolism of choline.

[83]

n= 331 n= 178 GC-MS
LC-MS

ROC 469/200 1. Sarcosine (+)
2. Kynurenine (+)
3. Proline (+)
4. Uracil (+)
5.Glycerol-3-phosphate (+), threonine (+)
citrate (−) ADP-ribose (−)
15-hydroxyeicosatetraenoic acid(−)
6.Polyanines (−)

1. Alterations in glycine
synthesis and degradation
Sarcosine is an intermediate
compound in the metabolism of choline.
2. Alteration in kynurenine pathway
3.Alteration in amino acids metabolism
4.Alterartion in pyrimidine metabolism
5.Alteration in energetic metabolism
6.Reduced polyamines synthesis

[15]

n= 11
Localized PCa
plus n= 10
metastatic PCa

n= 11
Benign adjacent
prostate samples

GC-MS ROC NS/1 Sarcosine (+) (progressive elevation from
benign tissue to localized tumors and
metastatic disease)

Alterations in glycine synthesis
and degradation
Sarcosine is an intermediate
compound in the metabolism of choline.

[59]

(continued on next page)

Translational Oncology Vol. 9, No. 4, 2016 Biomarker Discovery in Human Prostate Cancer Lima et al. 369



	

13	

	

citrate accumulation to citrate oxidation when becoming malignant.
PCa cells also undergo the Warburg effect, all of which explain these
alterations (Table 4) [15,84–91].

It is also well established that cancer cells have elevated
proliferation rates, and this is reflected in alterations in membrane
metabolism. Several metabolomics studies performed in PCa tissue
revealed an increase of choline levels in PCa samples, which indicates
alterations in phospholipid membrane synthesis and hydrolysis
(Table 4) [84,86,88,89,92–94]. Because this elevated proliferation
rate also increases cell energy requirements, PCa samples also have
alterations in lipid metabolism (as lipids may be used by the cells to
produce energy) (Table 4) [49,95].

Beyond the study of the metabolic pathways involved in cancer
development, it is also important to assess which metabolic pathways
are involved in the growth of bone metastases. The results obtained
from a study [78] revealed a significant increase in cholesterol levels in
bone metastases tissues from PCa patients. The metabolic profile
from PCa bone metastases indicates high energy metabolism, which
may be related to highly proliferating cells. This conclusion was based
on the elevated levels of certain metabolites, such as threonine,
glutamate, phenylalanine, citrate, fumarate, glycerol-3-phosphate,
and fatty acids. Another relevant metabolic alteration in PCa bone
metastases tissue was the elevated levels of myo-inositol-1-phosphate,
which may indicate active cell signaling involving inositol-based
compounds as second messengers. Inositol-based molecules are
related to the activation of protein kinase C, and the activation of
this molecule is important for cell proliferation, apoptosis, differen-
tiation, invasion, and angiogenesis. The concentration of sarcosine
was increased in bone metastases from PCa and from other cancers,
which reveals that sarcosine may not be specific to PCa. Metabolites
such as threonine, asparagine, fumarate, and linoleic acid are present
in high levels in samples from bone metastases. The levels of these
metabolites were also increased in samples of primary prostate tissues
from patients with confirmed bone metastases. Linoleic acid, an
essential fatty acid, was associated with PCa progression. Further-
more, linoleic acid may also be associated with the inflammatory
response because linoleic acid is transformed into arachidonic acid.
Arachidonic acid is a precursor for prostaglandins, which have an
important role in inflammation [96].

In Vitro Studies. Table 5 summarizes general information on in
vitro metabolomics studies in PCa-derived cell lines.

The biological relevance of sarcosine was evaluated in four
immortalized PCa cell lines, in primary benign prostate epithelial
cells, and in an immortalized benign prostate epithelial cell line.
Sarcosine levels were increased in malignant cell lines when compared
with benign cell lines [53,97]. Furthermore, alterations in the
expression of the enzymes involved in sarcosine metabolism influence
cell proliferation, invasion, and cell death, which suggest the
importance of sarcosine in PCa metabolism (Table 5) [53,59]. In
an effort to understand the role of sarcosine in PCa progression,
Sreekumar et al. (2009) evaluated the role of androgen signaling and
the genes ERG and ETV1 (important mediators of PCa progression).
The results showed that after treatment with androgens, cell lines that
were ERG positive and ETV1 positive had increased GNMT
expression and decreased sarcosine dehydrogenase (SARDH)
expression [53].

In agreement with the results from metabolomics studies
performed in other matrices (urine, plasma/serum, and tissues),
presented here previously, alterations in amino acid metabolism were
also observed in the studies performed in PCa cell lines. PCa cells lines
revealed alterations in the levels of certain amino acids, such as
leucine, valine, or isoleucine (Table 5) [97–99].

The increase of lactate and alanine levels in PCa cell lines is
frequently observed in metabolomics studies. These alterations
suggest changes in cellular energy metabolism (Table 5) [97–100].

As reported for other matrices, metabolomics studies in PCa also
revealed that PCa cells experience alterations in membrane
metabolism with changes, for example, in choline metabolite levels
(Table 5) [98,101]. Androgen signaling has an important role in the
development and progression of PCa. In fact, one current therapy for
metastatic PCa is the use of antiandrogen agents; however, with the
progression of the disease, patients normally develop resistance to this
therapy, and it is currently impossible to predict if the cancer will
progress into a castration-resistant state. The androgen-responsive cell
lines can be characterized by increased levels of spermine, N-acetyl-
spermine, serine, threonine, lysine, homocysteine, asparagine,
alanine, and glutamic acid, as well as decreased levels of
S-adenosylmethionine, with a simultaneous increase in levels of its
breakdown product, homocysteine. These findings indicate that
androgen-responsive cell lines have an elevated methylation activity.
Androgen treatment resulted in further perturbations in amino acid
metabolism and in a shift toward increased methylation.

TABLE 4 (continued)

PCa Subject Group Control Group Analytical
Platform

Statistical Methods Total Metabolites
Found/Discrimi-
native Metabolites
Found

Discriminatory Metabolites/Biomarkers Metabolic Pathways Dysregulated Ref.

n= 95 n= 95
Normal adjacent
prostate tissue

GC-MS
LC-MS

ROC,
Univariate Cox regression,
Kaplan-Meier analyses,
and multivariate Cox
regression analyses

820/9 1. Gluconic acid (−), maltotriose (−)
2. Aminoadipic acid (+)
3. Cerebronic acid (+),
glycerophosphoethanol-amine (+),
2-hydroxybehenic acid (+), tricosanoic acid (+)
4. Isopentenyl pyrophosphate (+)
5. 7-methylguanine (+)

1. Alteration in carbohydrate metabolism
2. Increased fatty acid synthesis
3. Alteration in lipid metabolism
4. Intermediate in the steroid
synthesis pathway, indicates
an increase of cholesterol levels
5. DNA damage

[49]

n= 30 LG PCa plus
n= 81 HG PCa

n= 47
Normal
adjacent tissue

MRS PCA, PLS and PLS-DA 23/2 1. Citrate (−)
2. Spermine (−)

1. Reduced citrate synthesis
2. Reduced spermine synthesis

[91]

BPH, Benign prostatic hypertrophy; Cho/Cr, choline/creatinine; Cit/Cr, citrate/creatinine; GS-MS, Gas chromatography–mass spectrometry; (GPC + PC)/Cr, (glycerol-phosphocholine +
phosphoryl-choline)/creatinine; HC, Healthy Controls; HG, High grade; Lac/Al, lactate/alanine; LC-MS, Liquid chromatography–mass spectrometry; LDA, Linear discriminant analysis; LG, Low
grade; LR, Linear regressionMRS, magnetic resonance spectroscopy; NMR, Nuclear magnetic resonance; NS, Not specified; PCA, Principal component analysis; PLS, partial least squares; PLS-DA, partial
least squares discriminant analysis; tCho/Cit, total choline/citrate.
(+): levels increased in PCa; (−): levels decreased in PCa.
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Table 5. Metabolomic Studies Performed in Human PCa-Derived Cell Lines

Cancer Cell Lines Control Group Analytical
Platform

Statistical
Methods

Total
Metabolites
Found/
Discriminative
Metabolites
Found

Discriminatory Metabolites/Biomarkers Metabolic Pathways
Dysregulated

Ref.

AD prostate carcinoma
LNCaP cell line

Androgen-independent
prostate carcinoma
PC-3 cell line

MRS NS 3/2 Uptake of ethanolamine and
N,N′-dimethylethanolamine (+)
(principally in AD cells in
presence of androgens)

Alteration in membrane
lipid synthesis

[101]

VCaP, DU145,
22RV1, and LNCaP

PrEC and RWPE LC-MS
GC-MS

Wilcoxon
P test,
hierarchical
clustering,
nonparametric
tests

1/1 Sarcosine (+) Alterations in glycine
synthesis and degradation

[53]

Androgen-nonresponsive
PC3 and DU145 cell lines
Androgen-responsive
VCaP (treated with
synthetic androgen)
and LNCaP cell lines

RWPE LC-MS HCA 1553/674 Malignant cell lines
1. Sarcosine (+)
2. Threonine (+), phenylalanine (+),
alanine (+), creatine (+),creatinine (+),
citrulline (+), tryptophan (−),
1-methyl tryptophan (−) and
kyneuric acid (−)
Androgen-responsive cell lines
3. Serine (+), threonine (+), lysine (+),
homocysteine (+), asparagine (+),
alanine (+), glutamic acid (+)
4. S-adenosylmethionine (−), homocysteine (+)
Androgen treatment resulted in further
perturbations in amino acid metabolism
and increased methylation.

1. Alterations in glycine
synthesis and degradation
Sarcosine is an intermediate
compound in the
metabolism of choline.
2. Alteration in amino
acids metabolism
3. Alteration in amino
acids metabolism
4. Elevated methylation
activity

[97]

PC3 and LNCaP treated
with LY294002
(inhibitor of the PI3K
signaling pathway) or
17AAG (inhibitor of
the HSP90 protein chaperone)

PC3 and LNCaP
untreated

MRS PCA NS/24 After both treatments: lactate (−),
alanine (−), fumarate (−)
LY294002 treatment: phosphocholine (−),
glutathione (−), glutamine (+), valine (+),
leucine (+), isoleucine (+)
17AAG treatment: phosphocholine (+),
citrate (+), glutamine (−), valine (+),
leucine (+), isoleucine (+), myo-inositol (+),
taurine (+)

PI3K and HSP90 inhibition [102]

Low-invasiveness
WPE1-NB14 and
high-invasiveness
WPE1-NB11 cell lines

RWPE-1 1H-NMR PLS-DA NS/10 1. Leucine (−), valine (−), isoleucine (−),
glutamine (−), glutamate (−),
β-hydroxyisovalerate (−)
2. Glycine (−)
3. Lactate, alanine
4. Phosphocholine (+)

1. Increased protein
synthesis and amino
acid catabolism
2. Alterations in methylation
and synthesis and
degradation of sarcosine
3. Alteration in energetic
metabolism;
4. Alteration in choline
metabolism

[98]

Androgen-nonresponsive
PC3 and androgen-
responsive LNCaP cell lines

PNT1A 1H-NMR Two-way
analysis of
variance
followed by
Bonferroni
posttest

NS/3 Glucose consumption (+)
PC3 cells:
Lactate (+)
Alanine (+)
Lactate/alanine ratio (+)

Increased levels of oxidative
stress in PC3 cells.
Androgen-responsive and
-nonresponsive PCa cells
showed different glycolytic
metabolism profiles.

[100]

DU145, PC3, and LNCaP
(knockdown of GNMT,
SARDH, or PIPOX and
overexpression of GNMT,
SARDH, or PIPOX
(convert sarcosine
back to glycine)

RWPE GC-MS ROC NS/1 Overexpression of GNMT: sarcosine (+)
(increase in invasion).
Knockdown of GNMT: sarcosine (−)
(reduction in cell proliferation, invasion,
and greater percentage of cell death)
Overexpression of SARDH or PIPOX:
sarcosine (−) (reduced invasion)
Knockdown of SARDH: sarcosine (+)
(increase proliferation and invasion)
Knockdown of PIPOX: sarcosine (+)
(increased invasion)

Alteration in glycine
synthesis and degradation

[59]

CRPC cell C4-2, 22Rv1
and LNCaP-abl

Androgen receptor
positive LNCaP
and MDA-PCa-2a
and
MDA-PCa-2b

LC-MS HCA 150/38 CRPC cells:
1. Sugars and intermediates associated
with energy metabolism and signaling (+)
AD cells
2. Carnitines, amino acids, and their
methylated derivatives (+)

1. Alteration in energy
metabolism and signaling
2. Alteration in amino
acid metabolism

[99]

(continued on next page)
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Androgen-nonresponsive cell lines and androgen-responsive cell lines also
have differences in their glycolytic metabolism profiles.
Androgen-dependent PCa cells and androgen-independent PCa cells
also show differences in membrane lipid synthesis (Table 5) [97,100,101].

Metabolomics studies in cell lines may also be used to evaluate the
alterations that occur after a pharmacological therapy. The treatment
of PCa cells appears to lead to changes in energetic metabolism and
choline metabolism (Table 5) [102]. Dichloroacetate (DCA) is an
inhibitor of pyruvate dehydrogenase kinase, and inhibition of this
enzyme has the potential to reverse the Warburg effect due to the
increased pyruvate uptake into mitochondria. After treatment
with this drug, the highly metastatic cells showed significantly
lower levels of lactate/metabolite ratios [Lac/Cr, Lac/Cho, Lac/Al,
and Lac/(Cho + Cr + Al)], whereas in poorly metastatic cells, no
changes in lactate/metabolite ratios were found after the treatment.
These findings suggest that highly metastatic cells are more dependent
on lactate production (Table 5) [103].

Conclusions and Future Directions
The introduction of PSA testing has radically altered how PCa is
diagnosed andmanaged. However, this test may lead to a false-positive or
false-negative diagnosis. This drawback has given rise to serious efforts
toward the discovery of new biomarkers, preferentially noninvasive,
which have better specificity and sensitivity.

Because metabolic alterations are the last step in the cellular
response to diseases, metabolomics can be successfully used to
discover new biomarkers for cancer. In this regard, several studies
have been conducted to characterize the metabolic profile of PCa.

One of the major obstacles in data interpretation is that the
metabolic profile is influenced by various factors, such as age, diet,
drugs, and chronobiological variations, among others. Additional
problems include sample preparation, the analytical procedures, and
the statistical platforms used. Major differences in these conditions
can compromise the comparison of results among different studies
and consequently compromise the discovery of new biomarkers.
Another intrinsic difficulty with metabolomics studies is the massive
amount of data produced that is difficult statistically to analyze.
Despite these difficulties, metabolomics is a powerful tool for the
discovery of new biomarkers for PCa detection, biomarkers indicative
of cancer prognosis, disease progression, and therapeutic response, as
well as identifying new therapeutic targets.

The metabolomics studies described in this review revealed
different results, but almost all studies in urine, plasma/serum,

prostatic fluids, tissues, and cell lines associated PCa with decreased
levels of citrate and polyamines and increased levels of choline, lactate,
and amino acids.

Further studies are still needed to confirm the results of these
studies and identify an inexpensive, noninvasive, sensible, and specific
biomarker for PCa.
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Aims 

 

Prostate cancer is the second most diagnosed cancer in men, with 1.1 million new cases 

diagnosed in all world, in 2012 (1). The quantification of prostate serum antigen (PSA) and 

the digital rectal examination are the most common screening techniques used for PCa 

diagnosis. Nevertheless, to reach a final diagnosis it is mandatory to perform a prostate 

biopsy (PB) (2). However, PSA screening is controversy due to its limited sensitivity and 

specificity. PSA is specific for prostate diseases, in general, but not specific for PCa (3-5). 

Therefore, it is urgent and necessary discover new biomarkers in order to establish a 

confident, rapid, specific, noninvasive and economic methodology for early PCa diagnosis 

and prognosis. In this sense, metabolomics has been increasingly playing an important 

role in the discovery of new biomarkers. Many metabolomic studies have been conducted 

in multiple matrices (cells, tissues and biofluids) in order to improve diagnostic 

approaches, revealing promising results (6-15). However, the studies related with VOCs, 

for this specific pathology, are limited.  

In order to contribute to the discovery of new PCa biomarkers and to better understand 

the prostatic cancer mechanism, the aims of this study are based on the realization of a 

complex metabolomic study, using four different prostatic cancer cell lines and one normal 

prostate cell line. In order to achieve this goal, the present work was subdivided in the 

following tasks: 

1) Application of a metabolomic approach based on HS-SPME/GC-MS analytical 

technique to study the exometabolome (VOCs) of 4 prostate cancer cell lines 

(PC3, 22RV1, LNCaP, DU145 cell lines) with different grades and features and a 

non-tumoral cell line (PNT2 cell line), as well as to search for significant 

differences between them; 

2) Study of the exometabolome at two different pHs (pH 2 and 7) in order to infer 

what is the ideal pH for the extraction of volatile organic compounds and 

discrimination of potential biomarkers; 

3) Screening, identification and statistical analysis of VOCs that contribute for 

separation between cell lines and consequent discovery of potential biomarkers;  

4) Application of a metabolomic approach based on GC-MS technique to reveal the 

endometabolome (intracellular metabolites such as AAs, organic acids; fatty acids, 

sugars and steroids) of the all prostate cell lines (tumorals and non-tumoral), as 

well as to search for significant differences between them; 
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5) Screening, identification and statistical analysis of intracellular compounds (AAs, 

organic acids; fatty acids, sugars and steroids) that contribute for separation 

between cell lines and consequent discovery of potential biomarkers;  

6) Integration of the results obtained through the two GC-MS techniques, in order to 

better understand the metabolic pathways changed in prostate cancer; 

As far as we know, this is the first time that a complex metabolomics study is performed in 

vitro, not having been executed any study of VOCs profiling in in vitro prostate cancer cell 

models. 
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Prostate cancer (PCa) is the second most diagnosed cancer in men, and is the fifth 

leading cause of cancer-related deaths in men worldwide (1). In 2014, in the United 

States, 233 000 men were diagnosed with PCa and 29 480 men died due to this cancer. 

(16). The five-year survival for men with metastatic disease is very low (28%) and this 

occurs because of the development of resistance to castration, nerveless PCa has a long 

latency period and is potentially curable (2).  

Age, diet, genetics, the pre-existence of sexually transmitted infections, the exposure to 

toxic metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons are some of 

the factors involved in the development of PCa (17-20). 

Currently, prostate serum antigen (PSA) is the most used biomarker for PCa diagnostic. 

However, the PSA screening has limited sensitivity and specificity (17, 21, 22) and PSA is 

not able to differentiate aggressive from indolent PCa (3, 4). Therefore, discovery of new 

biomarkers for PCa diagnostic is urgent and has the potential for substantial public health 

benefit.   

An ideal cancer biomarker must be monitored in biological samples obtained by 

noninvasive procedure and inexpensive to allow frequent measurements, sensitive and 

specific for a particular cancer, and should appear altered in early stages of the disease. 

Additionally, it must be capable to depict the evolution of the tumor and the metastatic 

onset or spread (17).  

Metabolomics is a powerful analytical tool with which biomarkers and therapeutic targets 

can likely be discovered as cancer cells have the capacity to modify many homeostatic 

systems within the body and, consequently, change the production, the use and the levels 

of many metabolites (23, 24). Metabolomics allows the discovery of biochemical 

signatures and with these signatures it is possible to investigate several metabolic 

pathways, and the differences between cancer and healthy metabolic phenotypes (23). 

An early intervention is possible using metabolomics since it is believed that metabolic 

alterations precede neoplastic proliferation. Thus, in theory, it is possible to detect early 

and avoid cancer development and to reduce neoplastic proliferation and invasion of local 

or distant tissues by precocious treatment (3).  

In the design of experimental and analytical models of cancer, it is very important to be 

aware that metabolic profile can be altered by other factors not related to the cancer, like, 

age, diet, drugs, chronobiological variations, among others,  being very important to 

control these effects in order to obtain reliable results, the cell lines are the ideal model to 

overcome these problems (23). The advantages of using cell lines in metabolomics 
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studies are the nonexistence of interindividual variability or difficulties enrolling patient 

controls in the studies. In fact, in cell lines studies there are less confounding factors as, 

for example, age, concurrent pathologies, diet, tabagic habits and influence from different 

tissues. In addition, cell lines have a perfectly defined cell state which allows the analysis 

of a targeted metabolic status. Metabolic alterations that do not appear in studies using 

animal models or human subjects due to sample biological complexity are reveled. Cell 

lines are less complicated to control, less expensive and the results are easier to interpret 

and more reproducible when compared with other samples like biofluids or tissue from 

humans or animal models. Also, ethical problems inherent to the use of animal models or 

human subjects are obviated (25-27). However, none of these models are perfect 

because it is practically impossible to simulate complex cell–cell and cell–matrix 

interactions in cell cultures of prostate cancer and these interactions are very important for 

metabolic alterations that happen with tumor progression (26, 28). 

Volatile organic compounds (VOCs) correspond to a carbon-based chemical group, with 

low molecular weight and high volatility. These compounds are emitted from the human 

body and can reflect the metabolic condition of an individual. VOCs, odorous and non-

odorous, vary in relative abundance with age, gender, health status, lifestyle behaviors, as 

well as, with genetic background (29, 30). VOCs, prove to have a great potential to 

provide new biomarkers of cancer detection. Some works have already focused on the 

application of VOCs analyses to different cancers, namely breast, lung, head and neck, 

esophago-gastric, skin, colorectal, liver and renal (31-38). In these works, several different 

matrices were used to the identification of VOCs, one of the most used matrix was breath, 

however other matrices were used with success, namely, cell lines, urine, plasma, gastric 

content and fecal samples (39-43).VOCs analyses were also applicated in PCa with 

success. In these studies, VOCs were able to differentiate urine from PCa patients and 

control individuals (7, 44). In these works the analytical platform used was GC-MS. For 

GC separation, it is necessary to use elevated temperatures and the metabolites must be 

volatilized in the injector port. For these reasons, GC can only be used in thermally stable 

compounds. GC-MS has the highest resolving power, but can only be used to analyze 

volatile compounds and certain substances, such as fatty acids and organic acids, with 

low molecular weights, being an ideal technique to VOCs analysis (45-47).  GC-MS, 

compared to LC-MS, has higher sensitivity, robustness and reproducibility, and the 

identification of unknown metabolites is possible using the extensive spectrum databases 

available, which is a very important tool to identify unknown compounds (45). 
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Materials and Methods 

 

Chemicals 

All chemicals and reagents were analytical grade. RPMI-1640 medium, and 4-

fluorobenzaldeyde (used as internal standard) were purchased from Sigma-Aldrich Co. 

(St. Louis, MO, USA). The antibiotic mixture penicillin/streptomycin (10000 U/mL/10000 

µg/mL), heat inactivated fetal bovine serum (FBS) and trypsin 0.25%-EDTA were 

purchased from GIBCO Invitrogen (Barcelona, Spain).  Hydrochloric acid (HCl) and 

sodium hydrogencarbonate were obtained from Merck (Darmstadt, Germany). Sodium 

chloride (NaCl) was from VWR (Leuven, Belgium).   

 

Cell Culture 

PCa immortalized cell lines (PC3, 22RV1, DU145 and LNCaP) and normal prostate 

epithelium immortalized cell line (PNT2) were provided by Portuguese Oncology Institute-

Porto (Table 1). All cell lines were grown in RPMI-1640 supplemented with 10% of FBS 

and 1% of penicillin/streptomycin. All cell lines were maintained at 37°C and 5% CO2. 

Cells were grown to 80% confluency, before passage. 

 
Table 1: Characteristics of prostate cell lines used in this study. 

 PNT2 22RV1 PC3 DU145 LNCaP 

Organism Homo 

sapiens 

Homo 

sapiens 

Homo sapiens Homo 

sapiens 

Homo sapiens 

Age 33 years NA 62 years 69 years 50 years 

Ethnicity NA NA Caucasian 
 
Caucasian 

 

Caucasian 

Tissue Prostate Prostate Prostate; 

derived from 

metastatic site: 

bone 

Prostate; 

derived from 

metastatic 

site: brain 

Prostate; 

derived from 

metastatic site: 

left 

supraclavicular 

lymph node 

Morphology Epithelial Epithelial Epithelial Epithelial Epithelial 

Culture 

Properties 

Adherent Adherent Adherent Adherent Adherent 
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 PNT2 22RV1 PC3 DU145 LNCaP 

Disease Healthy 

 

Carcinoma Grade IV, 

adenocarcinoma  
Carcinoma 

 

Carcinoma 

Tumorigenic No Yes Yes Yes Yes 

AR 

expression  

Yes Yes No No Yes 

Metastatic 

potential 

 NA High Moderate Low 

 

 

 

VOCs collection from extracellular medium 

All cell lines were plated in 75 cm2 culture flasks and grown to 100% confluency in RPMI-

1640 medium. After the cells had reached 100% confluency the medium was discarded 

and replaced with 15 mL of fresh RMPI-1640 medium, and left to grow for 48h, together 

with three controls (cellular medium without cells). After the 48h, the extracellular medium 

from flasks with cells and without cells (controls) was collected, centrifuged (2000 x g for 

10 minutes at 4 ⁰C), the supernatant separated in two aliquots (one to use for volatile 

profiling at pH 7 and other to use for volatile profiling at pH 2) and immediately frozen at    

-80 ⁰C until analysis. The same procedure, for all cell lines (four PCa cell lines and one 

normal cell line), was used for the four consecutive passages (passage number 3, 4, 5 

and 6) each passage was performed in triplicate, resulting in a total of 60 experiments.  

 

VOCs extraction from cell lines 

The method used was based on those previously developed by Monteiro et al (2014), with 

some modifications. Briefly, stored samples were thawed slowly at low temperatures, in 

order to minimize the loss of VOCs. All samples were analyzed at the pH of the medium 

culture around pH 7 (pH between 7.395 and 7.956) and at pH 2 (pH between 1.846 and 

2.466). For acidification a fixed volume of 5M HCl was used (2.5 µL for pH 7 controls; 50 

µL for pH 2 samples; and 52 µL for pH 2 controls). For GC–MS analysis 2 mL of sample 

were put into a 10 mL glass vial added with the internal standard (4-fluorobenzaldehyde, 

10 µL with a concentration of 10 µg/mL) and salt (NaCl, 0.59 g). For the extraction a 

DVB/PDMS fiber coating was used, with 9 min of incubation and 24 min of extraction at 

68°C with agitation (38). 

NA: Not available; AR: Androgen receptor  
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GC–MS system and data acquisition 

 

GC–MS analysis 

The GC-MS conditions for VOCs analysis were previously optimized by Monteiro et al. 

(2014). A Scion-436 gas chromatograph coupled to a Bruker SQ (single quadrupole) 

equipped with a SCION SQ ion trap mass detector and a Bruker Daltonics MS workstation 

software version 6.8, with a VF-5 MS (30 m x 0.25 mm x 0.25 µm) column (Varian) was 

used. A CombiPAL automatic autosampler (Varian, Palo Alto, CA) was used and 

experimental conditions were previously described (38). The carrier gas used was helium 

C-60 (Gasin, Portugal) (flow of 1 ml/min) and the injector port was heated to 230 °C. The 

analysis was performed in Full Scan mode. The oven temperature was fixed at 40 °C for 1 

min, then increasing to 250 °C (rate 5 °C/min), held for 5 min, then increasing to 300 °C 

(rate 5 °C/min) and held for 1 min. The transfer line temperature was 280 °C, manifold 

temperature was 50 °C and the trap temperature was 180 °C. The mass range was 40 - 

350 m/z, with a scan rate of 6 scan/s. All samples were injected randomly.  

To ensure reproducibility, quality control samples (QCs) were injected three times per day. 

These QCs were a pool of all samples (the samples from the five cell lines and the 

respective controls) (48), this pool was aliquoted (2 mL vials) and immediately frozen at    

-80 ⁰C until analysis.      

 

Statistical analysis 

Prior to statistical analysis of results, all chromatograms were pre-processed: baseline 

correction (used to the raw data before peak detection to remove random noise and 

baseline shift), peak detection (the aim is to detect all peaks avoiding as possible false 

positives), chromatogram deconvolution (to decompose overlapped chromatographic 

signals), and alignment (to adjust for any minor variation in retention time), for these 

corrections the program MZmine was used (49), the parameters used to accomplish these 

were: RT range 2.8-34.0 min; m/z range 50-250; MS data noise level 1.0´104; m/z 

tolerance 0.5; chromatogram baseline level 1.0´103; peak duration range 0.02-0.30 min. 

Also all ions with a RSD (relative standard deviation) greater than 30% as well as ions 

(m/z) coming from the column, the fiber and responsible for temporal interference were 

removed from the matrix. The obtained data was also normalized for the total area of the 

chromatograms (division of peak area for the sum of the areas of all peaks). The statistical 

treatment includes an unsupervised (PCA) and a supervised analyzes (PLS-DA), after a 
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pareto (Par) scaling, to determine which VOCs were significantly different between PCa 

lines and normal cell line. Model robustness was estimated by R2X (variance explained by 

the X matrix, i.e. GC-MS data), R2Y (variance explained by the Y matrix, i.e., sample 

class) and Q2 (goodness of prediction). All VOCs with VIP (Variable Importance 

Projection) values greater than one were considered potential relevant VOCs for the 

separation among cell lines. For these relevant compounds an univariate analysis was 

performed, using Shapiro-Wilk test (to determine normality distribution of data), and 

unpaired Student’s t-test with Welch correction (for normal distribution) test or unpaired 

Mann-Whitney test (for non-normal distribution) to calculated the p value. In addition the 

percentage of variation, uncertainty of the variation quotient, as well as, the effect size and 

its uncertainty, were calculated (50). Bonferroni correction was used to adjust p-values for 

multiple comparisons by setting the significance cut off to p value (0.05) divided by the 

number of compounds simultaneously tested in univariate statistical analyses. 

Finally, to confirm the robustness of the PLS-DA models, a randomized Monte Carlo 

cross-validation (MCCV) (7 blocks, 500 runs) was performed (using a software developed 

in the University of Aveiro), (51) obtaining the prediction power (Q2) and confusion 

matrices for original and permuted data for all PLS-DA models. When a minimal 

overlapping of the distribution of original and permuted classes was obtained, PLS-DA 

models were considered robust. Classification rates, specificity (spec.) and sensitivity 

(sens.) were also acquired for all PLS-DA models through a receiver operating 

characteristic (ROC) map.   

 

 

Results 

 

VOCs analysis obtained at pH 7 

After data acquisition by GC-MS, the data were used to perform the multivariate analyses, 

namely PCA and PLS-DA. A total of 239 features were detected in the chromatograms 

obtained at pH 7. 

The reproducibility of the analytical method is confirmed by the QCs projection on axis 1 

and 2 (Figure 1) (all QCs samples are grouped (orange color). Furthermore, the 

multivariate analyses prove that VOCs are able to discriminate PCa cell lines from normal 

prostate cell line and between the different PCa cell lines. This discriminant capability is 

observed not only in PLS-DA analysis but also in PCA (Figure 2).  
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Figure 1: PCA with QCs samples (in orange) and VOCs from all cell lines and controls (blue) (R2X 
= 0.357) 

 

 

Figure 2: PCA (A) (R2X = 0.445) and PLS-DA (B) with VOCs from all cells line (R2X = 0.438; R2Y = 
0.459; Q2 = 0.44) (PNT2 (normal cells): green; PC3 (PCa cells): light blue; DU145 (PCa cells): red; 
LNCaP (PCa cells): yellow; 22RV1 (PCa cells): dark blue) 

To evaluate which VOCs were responsible for this separation, each cancer cell line was 

compared separately with the normal cell line, namely 22RV1 vs PNT2, PC3 vs PNT2, 
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DU145 vs PNT2 and LNCaP vs PNT2. An optimal separation between PCa cell lines and 

normal cell line was observed (Figure 3). 

 

 

   

 

 

 

 

 

 

 

 
 

 

All VOCs with VIP (Variable Importance Projection) values greater than one were 

considered potentially relevant for the separation among cell lines. Hence, a total of 23 

VOCs were considered relevant to differentiate 22RV1 from PNT2; 16 VOCs were 

considered relevant to differentiate PC3 from PNT2; 27 VOCs were considered relevant to 

differentiate DU145 from PNT2 and 21 were considered relevant to differentiate LNCaP 

from PNT2. The identification of VOCs selected by the statistical approaches was done by 

using the National Institute of Standards and Technology (NIST 14) data base spectra 

library and by comparing experimental Kovats indexes and kovats indexes from literature. 

To confirm the importance of these metabolites univariate analysis was performed to 

calculate the p value, the variation quotient and the effect size.  

After univariate analysis the VOCs that were taken into account, were those with p<0.05; 

relevant value of variation quotient; and relevant effect size. Therefore, a total of eight 

VOCs proved to be relevant to differentiate 22RV1 from PNT2, eight VOCs proved to be 

relevant to differentiate PC3 from PNT2, seven VOCs proved to be relevant to 

differentiate DU145 from PNT2 and seven proved to be relevant to differentiate LNCaP 

from PNT2. All these results are shown in detail in Table 2 (22RV1 vs PNT2), Table 3 

(PC3 vs PNT2), Table 4 (DU145 vs PNT2) and Table 5 (LNCaP vs PNT2).These VOCs 

Figure 3: PLS-DA from PCa cell line vs normal cell line. A: 22RV1 (PCa cells) (dark blue) vs 
PNT2 (normal cells) (green) (R2X=0.436; R2Y=0.989; Q2=0.967). B: PC3 (PCa cells) (light blue) 
vs PNT2 (normal cells) (green) (R2X=0.667; R2Y=0.985; Q2=0.973). C: DU145 (PCa cells) (red) 
vs PNT2 (normal cells) (green) (R2X=0.401; R2Y=0.959; Q2=0.884). D: LNCaP (PCa cells) 
(yellow) vs PNT2 (normal cells) (green) (R2X=0.486; R2Y=0.97; Q2=0.931). 

A B 

C D 
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include ketones, alcohols, aldehydes, among others. From these VOCs two stand out, 

namely, 1,3-benzothiazole and pentadecan-2-one because they reveal to be important for 

the separation among all PCa cell lines and normal cell line. However, several other 

VOCs were identified and were also able to discriminate between cancer and normal cell 

lines, namely, 3,7-Dimethyloct-7-en-1-ol (22RV1 vs PNT2, PC3 vs PNT2, DU145 vs 

PNT2), 2-methylundecanal, (PC3 vs PNT2, DU145 vs PNT2 and LNCaP vs PNT2), 2,7-

dimethyloctan-1-ol  (PC3 vs PNT2), 2-(1-4-Methylcyclohex-3-en-1-yl)propan-2-ol (PC3 vs 

PNT2), decan-1-ol (DU145 vs PNT2), 1-methoxypropan-2-yl acetate (LNCaP vs PNT2), 

and 1,4-xylene  (LNCaP vs PNT2). Some unidentified VOCs were also important for the 

discrimination between cancer and normal cell lines (Table 2; Table 3; Table 4; Table 5) 

(Figure 4; Figure 5; Figure 6; Figure 7).   
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Table 2: List of metabolites selected in PLS-DA of 22RV1 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines obtained at pH 7. 

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental KI MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

3-Methylbut-3-en-1-ol 3.57 67/68 730 749 881 763-32-6 >0.05    7.3 ± 5.4    
1-Methoxypropan-2-yl 
acetate 

6.47 58/72 850 863 911 108-65-6 >0.05    30.4± 16.7    0.85± 0.81 

Unknown 8.3 58/69 NA 930 NA NA >0.05         
Unknown  10.87 56 NA 1016 NA NA 0.0204    62.5± 47.4     
2,6-Dimethyloct-7-en-
2-ol 

12.5 67 1064 1070 851 18479-
58-8 

>0.05       

Nonan-2-one 13.06 58 1092 1088 900 821-55-6 >0.05         
Unknown 14.21 55 NA 1127 NA NA >0.05   80.1 ± 47.2      1.12± 0.83 
2,7-Dimethyloctan-1-
ol (dihydro citronellol) 

14.26 56 69 1130 1128 727 15250-
22-3 

>0.05         

Naphthalene 15.83 51/102/127 1182 1182 914 91-20-3 0.0011P     49.2 ± 8.8     1.76± 0.92 
6-Ethyl-2-
methyldecane 

16.32 57/71/85 1185 1198 878 62108-
21-8 

>0.05           

3,7-Dimethyloct-7-
en-1-ol (α-citronellol) 

16.71 
 

67/81 
 

1214 
 

1212 
 

791  0.0096   48.8± 20.3    1.26± 0.85 

1,3-Benzothiazole 16.98 
 

135/108 
 

1229 
 

1222 
 

896 95-16-9 <0.000
1P 

   75.0 ±6.8    6.91 ± 2.10 

Unknown 17.03 69/ 67 NA 1224 NA NA 0.0011P    58.3± 22.2    1.46± 0.88 
Unknown 19.51 140/125/57 NA 1313 NA NA 0.0024   14.6± 3.8   1.43± 0.87 
Unknown 20.18 72 NA 1338 NA NA >0.05         
2-Methylpropyl 3-
hydroxy-2,2,4-
trimethylpentanoate 

20.33 56 71 1331 1344 783 NA >0.05         

5-Pentyloxolan-2-one 
or γ-Nonanoic lactone 

20.63 85 1363 1355 818 104-61-0 >0.05         

Unknown 23.12 158 NA 1452 NA NA >0.05         
Unknown 23.34 85 NA 1461 NA NA >0.05         
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Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental KI MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Unknown 24.1 58 119 NA 1491 NA NA <0.000
1P 

  63.5± 4.7   4.03 ± 1.38 

Hexadecane 26.6 57 85 1600 1596 907 544-76-3 >0.05       
Pentadecan-2-one 28.78 58 59 71 1698 1689 835 2345-28-

0 
<0.000
1P 

  203.5 ± 5.4   7.34 ± 2.22 

Unknown 28.87 57 85 NA 1693 NA NA 0.0003P   58.6 ±10.1   1.76 ± 0.92 
 

 
 
 

 

 

 

 

 

 

 

 

KI: Kovat indices; not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 2.17x10-3 (0.05 divided by 23 
analyzed VOCs); RT: Retention Time.  

	

Figure 4: Boxplots from the metabolites important for the separation between 22RV1 (PCa cells) and 
PNT2 (normal cells), after univariate analysis, obtained at pH 7. 
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Table 3: List of metabolites selected in PLS-DA of PC3 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination 
between PCa and normal cell lines obtained at pH 7. 

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

1,4-Xylene 6.57 91 865 867 907 106-42-3 >0.05    10.74± 6.87     
Unknown  10.87 56 NA 1016 NA NA >0.05         
2,6-Dimethyloct-7-
en-2-ol 

12.5 67 1064 1070 851 18479-
58-8 

>0.05         

Nonan-2-one 13.06 58 1092 1088 900 821-55-6 >0.05         
Unknown 14.21 55 NA 1127 NA NA >0.05         
2,7-Dimethyloctan-
1-ol 

14.26 56 69 1130 1128 727 15250-
22-3 

<0.0001P    74.48± 7.9    5.91± 1.84 

2-(1-4-
Methylcyclohex-3-
en-1-yl)propan-2-ol 
(α-Terpineol) 

16.14 93/136 1190 1192 869 10482-
56-1 

<0.0001P   58.47± 4.51   7.22± 2.18 

3,7-Dimethyloct-7-
en-1-ol (α-
citronellol) 

16.71 
 

67/81 
 

1212 
 

1212 
 

791 6812-78-
8 

<0.0001P   58± 21.18    1.52± 0.88 

1,3-Benzothiazole 16.98 
 

135/108 
 

1229 
 

1222 
 

896 95-16-9 <0.0001P    70.22 ±7.35   7.03 ± 2.13 

Unknown 17.03 69/67 NA 1224 NA NA >0.05         
2-Methylundecanal 18.86 58/71 1306 1289 810 110-41-8 0.0029P   58.67±11   1.54± 0.89 
Unknown 20.18 72 NA 1338 NA NA >0.05         
2-Methylpropyl 3-
hydroxy-2,2,4-
trimethylpentanoate 

20.33 56/71 1331 1344 783 NA >0.05         

Unknown 24.1 58/119 NA 1491 NA NA <0.0001P   177.78± 
6.14 

  6.03 ± 1.87 

Pentadecan-2-one 28.78 
 

58/59/71 
 

1698 
 

1689 
 

835 2345-28-
0 

<0.0001P   848.29 ± 
6.06 

  10.53 ±3.07 
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Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Unknown 28.87 57/85 NA 1693 NA NA <0.0001P    181.87 
±4.63 

  8.1 ± 2.42 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 3.12x10-3 (0.05 divided by 16 
analyzed VOCs); RT: retention time. 

	

Figure 5: Boxplots from the metabolites important for the separation between PC3 (PCa cells) and PNT2 (normal 
cells), after univariate analysis, obtained at pH 7. 
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Table 4: List of metabolites selected in PLS-DA of DU145 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines obtained at pH 7. 

Chemical name 
(IUPAC) or 
common name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

4-Methylpentan-2-
one 

3.71 57  735 755 862 108-10-1 >0.05   45.57 ±28.50    

4-Methylpent-3-en-
2-one 

4.81 55 83 798 798 869 141-79-7 >0.05   22.18± 13.60     

1-Methoxypropan-
2-yl acetate 

6.47 58 72 850 863 911 108-65-6 >0.05   72.03±8.56   1.11±0.85 

1,4-Xylene 6.57 91 865 867 907 106-42-3 >0.05   89.15±32.29    
Unknown 9.22 59 NA 961 NA NA 0.0414    32.26± 15.95    0.92± 0.83 
Unknown 9.95 58/85 NA 985 NA NA >0.05    20.36± 12.46     
Unknown  10.87 56 NA 1016 NA NA >0.05    62.5± 47.4    0.76± 0.80 
4,6-
Dimethylheptan-2-
one 

11.91 78/84 1045 1050 836 19549-
80-5 

>0.05         

2,6-Dimethyloct-7-
en-2-ol 

12.5 67 1064 1070 851 18479-
58-8 

>0.05   46.05±30.73    

Nonan-2-one 13.06 58 1092 1088 900 821-55-6 >0.05         
Unknown 14.21 55 NA 1127 NA NA >0.05       
2,7-Dimethyloctan-
1-ol 

14.26 56/69 1130 1128 727 15250-
22-3 

>0.05       

Unknown 14.62 55 NA 1141 NA NA >0.05       
3,7-Dimethyloct-7-
en-1-ol 

16.71 
 

67/81 
 

1214 
 

1212 
 

791 6812-78-
8 

<0.001P   73.13± 23.15    1.86± 0.95 

1,3-Benzothiazole 16.98 
 

135/108 
 

1229 
 

1222 
 

896 95-16-9 0.0348   23.35±8.56   1.02±0.84 

Unknown 17.03 69/67 NA 1224 NA NA 0.0010P    23.26±6.27    1.63± 0.91 
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Chemical name 
(IUPAC) or 
common name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Decan-1-ol 18.3 55/69 1257 1269 888 112-30-1 0.0251   18.24±6.65   1.01±0.84 
2-
Methylundecanal 

18.86 58/71 1306 1289 810 110-41-8 0.0037    31.88± 10.31    1.41± 0.88 

Unknown 19.51 140/125/57 NA 1313 NA NA >0.05    9.18±5.37     
2-Methylpropyl 3-
hydroxy-2,2,4-
trimethylpentanoate 

20.33 56/71 1331 1344 783 NA 0.0267   32.07± 16.86    

5-Pentyloxolan-2-
one (γ-Nonanoic 
lactone) 

20.63 85 1363 1355 818 104-61-0 >0.05   65.35± 36.32    

Unknown 23.12 158 NA 1452 NA NA >0.05   64.14± 37.74    
Unknown 23.97 57/69 NA 1486 NA NA 0.0338   20.39± 7.80  0.96± 0.84 
Unknown 24.1 58/119 NA 1491 NA NA >0.05       
Hexadecane 26.6 57/85 1600 1596 907 544-76-3 >0.05   31.52± 18.52    
Pentadecan-2-one 28.78 

 
58/59/71 
 

1698 
 

1689 
 

835 2345-28-
0 

0.0007P   58.66 ±10.04   1.89 ± 0.96 

Unknown 28.87 57/85 NA 1693 NA NA >0.05       
 

 

 

 

 

 

KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 1.85X10-3 (0.05 divided by 27 analyzed 
VOCs); RT: retention time. 
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Figure 6: Boxplots from the metabolites important for the separation between DU145 (PCa cells) and PNT2 (normal 
cells), after univariate analysis, obtained at pH 7. 
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Table 5: List of metabolites selected in PLS-DA of LNCaP (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines obtained at pH 7. 

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental KI MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

3-Methylbut-3-en-2-
ol 

2.95 58 737 725 724 10473-14-
0 

0.0018P   34.78±7.88   1.48±0.88 

1-Methoxypropan-2-
yl acetate 

6.47 58/72 850 863 911 108-65-6 0.0447   70.57±18.49   1.11±0.83 

1,4-Xylene 6.57 91 865 867 907 106-42-3 0.0011P   182.61± 24.11   1.56±0.89 
Unknown 8.3 58/69 NA 930 NA NA >0.05   11.59±10.16    
Unknown 9.95 58/85 NA 985 NA NA 0.0204   30.56±10.07   1.04±0.83 
Unknown  10.87 56 NA 1016 NA NA >0.05    55.61± 31.41     
4,6-Dimethylheptan-
2-one 

11.91 78/84 1045 1050 836 19549-80-
5 

>0.05   11.34±8.23    

Nonan-2-one 13.06 58 1092 1088 900 821-55-6 >0.05       
Unknown 14.21 55 NA 1127 NA NA >0.05   38.6±26.35    
2,7-Dimethyloctan-1-
ol 

14.26 56/69 1130 1128 727 15250-22-
3 

>0.05   32.61± 28.71    

Benzyl acetate  15.15 150 1164 1159 801 140-11-4 >0.05   159.11± 37.11   0.94± 0.82 
6-Ethyl-2-
methyldecane 

16.32 57/71/85 1185 1198 878 62108-21-
8 

>0.05   20.83± 10.32    

Decanal 16.44 56/57/70 1206 1203 880 112-31-2 0.0068   83.27± 29.23    

3,7-Dimethyloct-7-en-
1-ol 

16.71 
 

67/81 
 

1214 
 

1212 
 

791 6812-78-8 >0.05   137.92± 28.06   1.14± 0.84 

1,3-Benzothiazole 16.98 
 

135/108 
 

1229 
 

1222 
 

896 95-16-9 <0.0001P   69.91± 7.11   5.96±1.86 

Unknown 17.03 69/67 NA 1224 NA NA 0.0023P    34.1±15.37    1.05± 0.83 
2-Methylundecanal 18.86 58/71 1306 1289 810 110-41-8 0.0045   71.77±15.15   1.37±0.86 
Unknown 19.51 140/125/57 NA 1313 NA NA >0.05       
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Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental KI MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

2-Methylpropyl 3-
hydroxy-2,2,4-
trimethylpentanoate 

20.33 56/71 1331 1344 783 NA >0.05         

Unknown 24.1 58/119 NA 1491 NA NA 0.0016P   36.55±7.49   1.63±0.9 
Pentadecan-2-one 28.78 

 
58/59/71 
 

1698 
 

1689 
 

835 2345-28-0 <0.0001P   73.12 ±9.26   2.27 ±1.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 2.38X10-3 (0.05 divided by 21 
analyzed VOCs); RT: retention time. 

 

	

Figure 7: Boxplots from the metabolites important for the separation between LNCaP (PCa cells) and PNT2 (normal 
cells), after univariate analysis, obtained at pH 7. 
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A new PLS-DA models using only discriminant metabolites (Figure 8) was performed. To 

prove the robustness of the models, a MCCV validation was performed for all 

comparisons, using GC-MS full data but also using just the discriminant metabolites 

described before. The results of this validation prove that all created models are robust for 

the discrimination between PCa cell lines and normal cell line (Table 6 and Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 8: PLS-DA from PCa cell line vs normal cell line with the set of discriminant VOCs. A. 22RV1 (PCa 
cells) (dark blue) vs PNT2 (normal cells) (green) (R2X=0.889; R2Y=0.971; Q2=0.957). B. PC3 (PCa cells) 
(light blue) vs PNT2 (normal cells) (green) (R2X=0.987; R2Y=0.979; Q2=0.974). C. DU145 (PCa cells) (red) 
vs PNT2 (normal cells) (green) (R2X=0.831; R2Y=0.738; Q2=0.66). D. LNCaP (PCa cells) (yellow) vs PNT2 
(normal cells) (green) (R2X=0.891; R2Y=0.94; Q2=0.925). 
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Figure 9: Q2 distribution and ROC plot of true and permuted classes obtained by Monte Carlo 
cross validation for 22RV1 (PCa cells) vs PNT2 (normal cells) obtained at pH 7. 

 

Table 6: MCCV parameters of true and permuted classes obtained for pH 7 when considering GC-
MS full data and the set of discriminant VOCs.  

Models 

True classes Permuted classes 

LV Q2 
CR 

(%) 

Sens

. (%) 

Spec

. (%) 
LV Q2 

CR 

(%) 

Sen

s. 

(%) 

Spec

. (%) 

GC-MS full data  

22RV1 vs PNT2 5 0.91 100 100 100 1 -0.28 47 47 47 

PC3 vs PNT2 2 0.99 100 100 100 1 -0.29 48 49 48 

DU145 vs PNT2 3 0.94 100 99 100 1 -0.42 47 44 50 

LNCaP vs PNT2 4 0.90 100 100 100 1 -0.29 48 48 48 

Set of discriminant VOCs  

22RV1 vs PNT2 1 0.94 100 100 100 1 -0.26 48 48 47 

PC3 vs PNT2 1 0.98 100 100 100 1 -0.14 49 44 54 

DU145 vs PNT2 1 0.72 87 100 75 1 -0.34 47 42 51 

LNCaP vs PNT2 2 0.96 100 100 100 1 -0.32 45 45 45 

 

 

 

 

 

 

LV:  no. of latent variables; Q2:  median predictive power; CR: classification rate; sens.: sensitivity, 
spec.: specificity. 
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VOCs analysis obtained at pH 2 

The same samples analyzed at pH 7 were also analyzed at pH 2. It is important to use 

two different pH levels because variations of pH can lead to the alteration of the VOCs 

ionization state, consequently VOCs that are undetected at pH 7, can be detected at pH 

2. Despite the alteration of pH, the analytical procedure and the statistical treatment used 

for VOCs obtained at pH 2 were the same used for pH 7. A total of 221 features were 

detected in the chromatograms from pH 2 samples. 

The multivariate analysis of chromatograms obtained at pH 2, shows that the analytical 

method is reproducible, which can be seen in Figure 10 (all QCs samples are projected 

together in the space formed by the first three PCA axes). Furthermore, the multivariate 

analyses prove that VOCs obtained at pH 2 are also able to discriminate PCa cell lines 

from normal prostate cell line and between the different PCa cell lines, this discriminant 

capability is observed not only in PLS-DA analysis but also in PCA (Figure 11). 

 

   

 
Figure 10: PCA with QCs samples (in orange) and VOCs from all cell lines and controls (blue) 
obtained  at pH 2 (R2X = 0.562). 
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Figure 11:  PCA (A) (R2X = 0.582) and PLS-DA (B) (R2X = 0.526; R2Y = 0.457; Q2 = 0.437) with 
VOCs from all cells line obtained at pH 2 (PNT2 (normal cells): green; 22RV1 (PCa cells): dark 
blue; PC3 (PCa cells): light blue; DU145 (PCa cells): red; LNCaP (PCa cells): yellow).  

 

To evaluate which were the VOCs responsible for this separation all cancer cell lines were 

compared with the normal cell line, namely 22RV1 vs PNT2, PC3 vs PNT2, DU145 vs 

PNT2 and LNCaP vs PNT2. An optimal separation between PCa cell lines and normal cell 

line was observed (Figure 12). 
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Figure 12: PLS-DA from PCa vs PNT2 obtained at pH 2. A. 22RV1 (PCa cells) (dark blue) vs 
PNT2 (normal cells) (green) (R2X=0.586; R2Y=0.976; Q2=0.956). B. PC3 (PCa cells) (light blue) 
vs PNT2 (normal cells) (green) (R2X=0.721; R2Y=0.976; Q2=0.957). C. DU145 (PCa cells) (red) 
vs PNT2 (normal cells) (green) (R2X=0.788; R2Y=0.987; Q2=0.969). D. LNCaP (PCa cells) 
(yellow) vs PNT2 (normal cells) (green) (R2X=0.729; R2Y=0.989; Q2=0.983). 
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Despite some VOCs detected at pH 2 are the same detected at pH 7, as expected, the pH 

alteration promoted the detection of different VOCs that were not detected at pH 7, 

principally organic acids. As previously explained all VOCs with VIP values greater than 

one were considered potentially relevant for the separation among cell lines (a total of 32 

VOCs for 22RV1 vs PNT2, 25 VOCs for PC3 vs PNT2, 21 VOCs for DU145 vs PNT2 and 

24 for LNCaP vs PNT2). To confirm the importance of these metabolites univariate 

analysis was performed to calculate the p value, the variation quotient and the effect size. 

In Table 7 (22RV1 vs PNT2), Table 8 (PC3 vs PNT2), Table 9 (DU145 vs PNT2) and 

Table 10 (LNCaP vs PNT2) are shown, in detail, all these results.  

After univariate analysis the VOCs that were taken into account, were those with p<0.05; 

relevant value of variation quotient; and relevant effect size. Therefore, a total of 11 VOCs 

proved to be relevant to differentiate 22RV1 from PNT2, 19 VOCs proved to be relevant to 

differentiate PC3 from PNT2, 13 VOCs proved to be relevant to differentiate DU145 from 

PNT2 and 13 proved to be relevant to differentiate LNCaP from PNT2. Comparing to pH 

7, the statistical analyses of results of pH 2, revealed more discriminant VOCs. From 

these VOCs eight stand out, namely, cyclohexanone, 4-methylheptan-2-one, 2-

methylpentane-1,3-diol, 4-methylbenzaldehyde, 1-(3,5-dimethylfuran-2-yl) ethanone, 

methyl benzoate, nonanoic acid and decanoic acid because they reveal to be important 

for the separation between all PCa cell lines and normal cell line. Other VOCs revealed to 

be more specific of each cell line, only allowing discrimination between some cell lines, 

namely, 4-methylpent-3-en-2-one (22RV1 vs PNT2, PC3 vs PNT2, DU145 vs PNT2), 5-

methylheptan-2-one (PC3 vs PNT2, DU145 vs PNT2 and LNCaP vs PNT2), 

phenylethanol (22RV1 vs PNT2, PC3 vs PNT2, DU145 vs PNT2), 4-methylnonanoic acid 

(22RV1 vs PNT2 and LNCaP vs PNT2), benzyl acetate (22RV1 vs PNT2 and LNCaP vs 

PNT2), 5-methyl-2-propan-2-ylcyclohexan-1-ol (PC3 vs PNT2 and LNCaP vs PNT2), 1-

ethoxypentane (DU145 vs PNT2 and LNCaP vs PNT2), methyl nonanoate (22RV1 vs 

PNT2),  2-ethoxy-2-methylbutane (PC3 vs PNT2), hexanoic acid (PC3 vs PNT2), 

phenylmethanol (PC3 vs PNT2), 2,4-dimethylheptan-1-ol (PC3 vs PNT2), benzoic acid 

(PC3 vs PNT2), 6-pentyloxan-2-one (PC3 vs PNT2). Some unidentified VOCs were also 

important for the discrimination between cancer and normal cell lines (Table 7; Table 8; 

Table 9; Table 10) (Figure 13; Figure 14; Figure 15; Figure 16) 
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Table 7: List of metabolites selected in PLS-DA of 22RV1 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines obtained  at pH 2. 

Chemical name 
(IUPAC) or 
common name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

2-Ethoxy-2-
methylbutane  

2.49 59 728 707 683 919-94-8  >0.05    26.6± 19.9     

Unknown 4.18 
 

70 NA 773 NA NA >0.05       

4-Methylpent-3-en-
2-one 

4.81 55/83/98 798 798 855 141-79-7  <0.0001P    47.2± 7.1    3.44± 1.24 

Cyclohexanone 7.2 98/70 894 891 904 108-94-1  <0.0001P    81.1± 7.0    7.72±2.32 
2-Methylheptan-2-ol 7.25 59 885 893 748 625-25-2  >0.05       
4-Methylheptan-2-
one 

8.44 58/59 943 934 928 6137-06-
0 

<0.0001P    28.6±6.3    2.10±0.97 

Hexanoic acid 10 87 990 987 959 142-62-1  >0.05         
2-Methylpentane-
1,3-diol 

10.65 57/89 1005 1009 682 149-31-5 0.0105    10.7± 3.8    1.17± 0.84 

Phenylmethanol 11.33 77 1036 1031 799 100-51-6  >0.05   35.5±19.6    
2,4-Dimethylheptan-
1-ol  

11.91 57 1030 1050 731 18450-
73-2  

>0.05   32.7±20.1    

Phenylethanol 12.14 77/122 1055 1058 847 1517-69-
7  

<0.0001P    38.1 ±7.9    2.36 ±1.02 

4-Methyl-
benzaldehyde  

12.82 91/119/120 1095 1080 953 104-87-0  0.0022    10.6±3.0    1.47± 0.88 

1-(3,5-
Dimethylfuran-2-yl) 
ethanone 

12.99 123/138 1057 1086 760 22940-
86-9 

<0.0001P    47.8± 5.3    4.79± 1.56 

Methyl benzoate 13.15 77/105/136 1094 1091 921 93-58-3 <0.0001P    42.2± 3.9    5.51± 1.74 
Benzyl acetate 15.15 90/135 1164 1159 770 140-11-4 <0.0001P    35.17±6.1    2.75±1.10 
Benzoic acid 15.33 122 1170 1165 837 65-85-0 >0.05         
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Chemical name 
(IUPAC) or 
common name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

5-Methyl-2-propan-
2-ylcyclohexan-1-ol 
(DL-menthol) 

15.66 71/75/81 1175 1176 914 2216-51-
5  

>0.05         

Methyl nonanoate 17.09 87/129 1225 1226 745 1731-84-
6  

<0.0001P   366.0± 7.9   6.46±1.98 

4-Methyloctanoic 
acid  

17.22 99 1208 1231 882 54947-
74-9  

0.0447    30.4± 20.7     

Ethyl 2-
phenylacetate 

17.44 164 1246 1238 918 101-97-3  >0.05    31.9± 19.8     

Unknown 17.52 96 NA 1241 NA NA >0.05         
Unknown 17.71 81 NA 1248 NA NA >0.05         
5-Butyloxolan-2-one 
(γ-octalactone) 

17.79 85 1261 1251 866 104-50-7  >0.05    18.1± 15.2     

Nonanoic acid 18.33 73/115 1273 1279 909 112-05-0  <0.0001P    55.6± 8.8    3.47± 1.25 
Unknown 18.55 66/117 NA 1278 NA NA <0.0001P    94.9± 11.8    6.05± 1.88 
4-Methylnonanoic 
acid 

19.5 60/113 1308 1313 798 45019-28 <0.0001P   1217.1±11.7   5.79± 1.81 

5-Pentyloxolan-2-
one (γ-Nonanoic 
lactone) 

20.63 85 1363 1355 890 104-61-0  >0.05         

Decanoic acid 20.94 60/73/129 1373 1367 931 334-48-5  0.0027   71.1± 14.0   1.47± 0.88 
Unknown 22.2 73 NA 1416 NA NA >0.05    20.9± 17.1     
5-hexyloxolan-2-one 
(γ-decalactone) 

23.32 85 1470 1460 909 706-14-9  >0.05       

Undec-2-enoic acid 23.83 99 1479 1481 635 15790-
94-0  

>0.05      

6-Pentyloxan-2-one 
(δ-decalactone) 
 

23.97 99 1496 1486 863 705-86-2  >0.05         

KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 1.56X10-3 (0.05 divided by 32 
analyzed VOCs). 
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Figure 13: Boxplots from the metabolites important for the separation between 22RV1 (PCa cells) and 
PNT2 (normal cells), after univariate analysis, at pH 2. 
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Table 8: List of metabolites selected in PLS-DA of PC3 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between PCa 
and normal cell lines obtained at pH 2. 

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

2-Ethoxy-2-
methylbutane 

2.49 59 728 707 683 919-94-8  0.0342   38.26± 19.77    0.94±0.81 

1-Ethoxypentane 3.63 59/70 760 752 786 17952-
11-3 

0.0056       

Unknown 4.18 70 NA 773 NA NA >0.05   34.73± 20.54     
4-Methylpent-3-en-2-
one 

4.81 55/83/98 798 798 855 141-79-7  <0.0001P    62.38± 7.88    4.54± 1.5 

Cyclohexanone 7.2 98/70 894 891 904 108-94-1  <0.0001P    50.48± 5.88    4.53±1.5 
4-Methylheptan-2-one 8.44 58/59 943 934 928 6137-06-

0 
0.0003P    38.37±8.84    2.11±0.98 

5-Methylheptan-2-one 9.35 58/71 971 965 714 18217-
12-4 

<0.0001P    51.58± 6.11    4.48± 1.48 

Hexanoic acid 10 87 990 987 959 142-62-1  0.0092   40 ±16.66    1.18±0.84 
2-Methylpentane-1,3-
diol 

10.65 57/89 1005 1009 682 149-31-5 <0.0001P    45.1± 5.81    3.95± 1.36 

Phenylmethanol 
 

11.33 77 1036 1031 799 100-51-6  0.0189    33.69± 15.3    1.04± 0.83 

2,4-Dimethylheptan-1-
ol 
 

11.91 57 1030 1050 731 18450-
73-2  

0.0210    35.32 ±16.5    1.02 ±0.83 

Phenylethanol 12.14 77/122 1055 1058 847 1517-69-
7  

<0.0001P    69.81 ±8.12    5.2 ±1.66 

4-
Methylbenzaldehyde 

12.82 91/119/120 1095 1080 953 104-87-0  <0.0001P    38.0±2.98    6.20± 1.92 

1-(3,5-Dimethylfuran-
2-yl) ethanone 

12.99 123/138 1057 1086 760 22940-
86-9 

<0.0001P    41.51± 5.09    4.06± 1.38 

Methyl benzoate 13.15 77/105/136 1094 1091 921 93-58-3 <0.0001P    53.12± 4.1    6.95± 2.11 
Benzoic acid 15.33 122 1170 1165 837 65-85-0 0.0331    37.17±17.66    1.01±0.82 
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Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

5-Methyl-2-propan-2-
ylcyclohexan-1-ol 
(DL-menthol) 

15.66 71/75/81 1175 1176 914 2216-51-
5  

0.0068    45.82±18.48    1.27±0.85 

Unknown 17.52 96 NA 1241 NA NA 0.0321    30.2±14.74    0.95±0.82 
5-Butyloxolan-2-one (γ-
Octalactone) 

17.79 85 1261 1251 866 104-50-7  >0.05    28.49± 17.02     

Nonanoic acid 18.33 73/115 1273 1279 909 112-05-0  <0.0001P    59.85± 7.41    4.54± 1.5 
Unknown 18.55 66/117 NA 1278 NA NA <0.0001P    91.07± 11.48    5.74± 1.8 
Decanoic acid 20.94 60/73/129 1373 1367 931 334-48-5  <0.0001P   250.44± 18.1    2.42± 1.03 
Unknown 22.2 73 NA 1416 NA NA 0.0004P    38.38± 10.98    1.71±0.91 
5-hexyloxolan-2-one 23.32 85 1470 1460 909 706-14-9  >0.05       
6-Pentyloxan-2-one 
(δ-decalactone) 

23.97 99 1496 1486 863 705-86-2  0.0006P    39.93±11.98    1.64±0.9 

 
 
KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 2.00X10-3 (0.05 divided by 25 
analyzed VOCs); RT: retention time. 
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Figure 14: Boxplots from the metabolites important for the separation between PC3 (PCa cells) and PNT2 (normal cells), after univariate analysis, at pH 2. 
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Table 9: List of metabolites selected in PLS-DA of DU145 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines obtained at pH 2. 

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

1-Ethoxypentane 3.63 59/70 760 752 786 17952-
11-3 

0.0010p    31.16± 9.21   1.58±0.89 

4-Methylpent-3-en-2-
one 

4.81 55/83/98 798 798 855 141-79-7  <0.0001p    48.54± 9.03   2.8±1.11 

Cyclohexanone 7.2 98/70 894 891 904 108-94-1  <0.0001p    82.41± 7.28   7.59±2.28 
4-Methylheptan-2-
one 

8.44 58/59 943 934 928 6137-06-
0 

<0.0001p    36.06±6.93   2.51±1.05 

5-Methylheptan-2-
one 

9.35 58/71 971 965 714 18217-
12-4  

<0.0001p    27.47±5.97   2.1±0.97 

Hexanoic acid 10 87 990 987 959 142-62-1  >0.05         
2-Methylpentane-1,3-
diol 

10.65 57/89 1005 1009 682 149-31-5 <0.0001p    25.79± 3.95   2.95± 1.14 

Phenylmethanol 11.33 77 1036 1031 799 100-51-6  >0.05       
2,4-Dimethylheptan-1-
ol 
 

11.91 57 1030 1050 731 18450-
73-2  

>0.05        82.41± 
7.28 

Phenylethanol 12.14 77/122 1055 1058 847 1517-69-
7  

<0.0001p    38.79 ±8.76    2.16 ±0.99 

4-
Methylbenzaldehyde 

12.82 91/119/120 1095 1080 953 104-87-0  <0.0001p    32.04±2.39    6.29± 1.94 

1-(3,5-Dimethylfuran-
2-yl)ethanone 

12.99 123/138 1057 1086 760 22940-
86-9 

<0.0001p    46.45± 6.01    3.96± 1.36 

Methyl benzoate 13.15 77/105/136 1094 1091 921 93-58-3 <0.0001p    51.06± 5.58    4.84± 1.57 
Benzoic acid 15.33 122 1170 1165 837 65-85-0 >0.05         
5-methyl-2-propan-2-
ylcyclohexan-1-ol 
(DL-menthol) 

15.66 71/75/81 1175 1176 914 2216-51-
5  

0.0447    27.4±14.89    0.84±0.81 
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Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Nonanoic acid 18.33 73/115 1273 1279 909 112-05-0  <0.0001p    31.32± 6.29    2.33± 1.02 
5-Pentyloxolan-2-one 20.63 85 1363 1355 890 104-61-0  >0.05   13.92±11.08     
Decanoic acid 20.94 60/73/129 1373 1367 931 334-48-5  <0.0001p   268.37± 8.66   5.21±1.67 
Unknown 22.2 73 NA 1416 NA NA >0.05         
5-hexyloxolan-2-one  
(γ - Decalactone) 

23.32 85 1470 1460 909 706-14-9  >0.05       

6-Pentyloxan-2-one (δ-
decalactone) 
 

23.97 99 1496 1486 863 705-86-2  >0.05         

 
 
 
 
 
 
 
 

KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cut off p value of 2.38x10-3 (0.05 divided by 21 analyzed 
VOCs); RT: retention time. 
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Figure 15: Boxplots from the metabolites important for the separation between DU145 (PCa cells) and PNT2 (normal cells), after 
univariate analysis, obtained at pH 2. 
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Table 10: List of metabolites selected in PLS-DA of LNCaP (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines obtained at pH 2. 

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

2-Ethoxy-2-
methylbutane 
 

2.49 59 728 707 683 919-94-8  >0.05         

1-Ethoxypentane 3.63 59/70 760 752 786 17952-
11-3 

0.0001p    35.34± 8.69    1.95± 0.95 

4-Methylpentan-2-one 3.71 58 735 755 907 108-10-1  >0.05       
Cyclohexanone 7.2 98/70 894 891 904 108-94-1  <0.0001P    80.15± 7.33    7.19±2.18 
4-Methylheptan-2-
one 

8.44 58/59 943 934 928 6137-06-
0 

0.0014p    26.3±7.86    1.52±0.88 

5-Methylheptan-2-
one 

9.35 58/71 971 965 714 18217-
12-4 

0.0014p    20.36±5.95    1.5±0.88 

Hexanoic acid 10 87 990 987 959 142-62-1  >0.05       
2-Methylpentane-1,3-
diol 

10.65 57/89 1005 1009 682 149-31-5 <0.0001p    24.26±5.53    1.97± 0.95 

Phenylmethanol 11.33 77 1036 1031 799 100-51-6  >0.05       
2,4-Dimethylheptan-1-
ol 
 

11.91 57 1030 1050 731 18450-
73-2  

>0.05       

4-
Methylbenzaldehyde 

12.82 91/119/120 1095 1080 953 104-87-0  0.0005p    18.39±4.31    1.85± 0.93 

1-(3,5-Dimethylfuran-
2-yl) ethanone 

12.99 123/138 1057 1086 760 22940-
86-9 

0.0003p    21.78± 5.5    1.75± 0.91 

Methyl benzoate 13.15 77/105/136 1094 1091 921 93-58-3 <0.0001P    22.45± 4.27    2.33± 1.01 
Benzyl acetate 15.15 90/135 1164 1159 770 140-11-4 0.0090   23.73±7.0   1.19±0.84 
Benzoic acid 15.33 122 1170 1165 837 65-85-0 >0.05       
5-methyl-2-propan-2-
ylcyclohexan-1-ol 
(DL-menthol) 

15.66 71/75/81 1175 1176 914 2216-51-
5  

0.0019p    42.1±13.39    1.57±0.89   



	

63	

	

Chemical name 
(IUPAC) or common 
name 

RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Ethyl 2-phenylacetate 17.44 164 1246 1238 918 101-97-3  >0.05       
Nonanoic acid 18.33 73/115 1273 1279 909 112-05-0  <0.0001P    66.28± 7.67    5.09± 1.64 
4-Methylnonanoic 
acid 

19.5 60/113 1308 1313 798 45019-28 <0.0001P   3242.3±10.9  65.79± 2.07 

5-Pentyloxolan-2-one 20.63 85 1363 1355 890 104-61-0  >0.05         
Decanoic acid 20.94 60/73/129 1373 1367 931 334-48-5  0.0122   74.5± 19.0   1.13± 0.83 
Unknown 22.2 73 NA 1416 NA NA >0.05       
5-hexyloxolan-2-one 23.32 85 1470 1460 909 706-14-9  >0.05       
6-Pentyloxan-2-one 23.97 99 1496 1486 863 705-86-2  >0.05       
 
 
 
 
 
 
 
 
 
 
 
 

KI: Kovat indices; NA: not available; P Alterations remaining significant after Bonferroni correction, with cut-off p value of 2.08x10-3 (0.05 divided by 24 
analyzed VOCs) RT: retention time. 
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 Figure 16: Boxplots from the metabolites important for the separation between LNCaP ( PCa cells) and PNT2 (normal cells), after 

univariate analysis, obtained at pH 2. 
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New PLS-DA models using just these set of discriminant metabolites (Figure 17) were 

performed. To prove the robustness of the models a MCCV validation was performed for 

all comparisons, using GC-MS full data and also using discriminant VOCs obtained at pH 

2 described before. Results of these validations prove that all created models are robust 

for the discrimination between PCa cell lines and normal cell line (Table 11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: PLS-DA from PCa cell line vs normal cell line with the set of discriminant VOCs obtained at pH 

2. A. 22RV1 (PCa cells) (dark blue) vs PNT2 (normal cells)(green) (R
2
X=0.824; R

2
Y=0.977; Q

2
=0.945). B. 

PC3 (PCa cells) (light blue) vs PNT2 (normal cells) (green) (R
2
X=0.924; R

2
Y=0.945; Q

2
=0.919). C. DU145 

(PCa cells) (red) vs PNT2 (normal cells) (green) (R
2
X=0.927; R

2
Y=0.933; Q

2
=0.9). D. LNCaP (PCa cells) 

(yellow) vs PNT2 (normal cells) (green) (R
2
X=0.868; R

2
Y=0.945; Q

2
=0.926). 

A B 

C D 
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Table 11: MCCV parameters of true and permuted classes obtained for pH 2 when considering 

GC-MS full data and the set of discriminant VOCs.  

Models 

True classes Permuted classes 

LV Q2 
CR 

(%) 

Sens. 

(%) 

Spec. 

(%) 
LV Q2 

CR 

(%) 

Sens

. (%) 

Spec. 

(%) 

GC-MS full data  

22RV1 vs PNT2 1 0.99 100 100 100 1 -0.34 47 47 47 

PC3 vs PNT2 1 0.98 100 100 100 1 -0.31 49 48 49 

DU145 vs PNT2 1 0.98 100 100 100 1 -0.34 49 49 49 

LNCaP vs PNT2 1 0.98 100 100 100 1 -0.39 47 48 46 

Set of discriminant VOCs  

22RV1 vs PNT2 1 0.97 100 100 100 1 -0.21 48 49 47 

PC3 vs PNT2 1 0.96 100 100 100 1 -0.27 46 47 45 

DU145 vs PNT2 1 0.93 100 100 100 1 -0.24 47 47 46 

LNCaP vs PNT2 2 0.94 100 100 100 1 -0.20 46 46 47 

 

 

 

 

 

Discussion 

 

Comparative analysis of VOCs in PCa and normal cell lines obtained at pH 7 

In this work we showed the potentiality of VOCs at physiological pH to discriminate 

different PCa cell lines from normal prostate cell line, indicating that the volatilome may be 

a valuable source of biomarkers for PCa detection. The results revealed significantly 

altered VOCs in all PCa cell lines when compared with normal cell line, namely 1,3-

benzothiazole (decreased in the extracellular medium of all PCa cell lines except DU145) 

and pentadecan-2-one (increased in all PCa cell lines). However, considering the different 

VOCs it is possible to discriminate PCa with different grades of aggressiveness, for 

example, 2,7-dimethyloctan-1-ol and 2-(1-4-methylcyclohex-3-en-1-yl)propan-2-ol, are 

significantly altered specifically in high metastatic potential cell line (PC3); the significant 

increase of decan-1-ol levels is a characteristic alteration of cell line with moderated 

metastatic potential (DU145); and the significant alteration of 3-methylbut-3-en-2-ol, 1-

methoxypropan-2-yl acetate and 1,4-xylene levels is characteristic of cell line with low 

LV – no. of latent variables, Q
2
 – median predictive power, CR – classification rate, sens. – 

sensitivity, spec. – specificity. 
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metastatic potential (LNCaP). It is also possible to discriminate between androgen-

responsive cell lines from androgen-nonresponsive cell lines using 3,7-Dimethyloct-7-en-

1-ol, since this metabolite is just significantly decreased in the androgen-nonresponsive 

cell lines (PC3, DU145 and 22RV1). Theoretically 22RV1 is an androgen receptor positive 

cell line, however, since the culture medium was not supplement with androgen we 

theorize that this cell line develop androgen independency for a mechanism similar to 

what happens in clinical practice after hormone deprivation therapy. This phenome was 

already addressed by other work groups (52).      

The integration of VOCs in metabolic pathways is, at the moment hard to performed, 

because volatilomic is a recent study approach, however using the human metabolome 

data base (HMDB), a free use date base that contains 41,993 metabolite entries, it is 

possible to see if some of those metabolites found in our samples were already found by 

other researchers in biological matrices. Table 12 does an interconnection between our 

results (significantly altered identified metabolites) and this date base (53-55). 

 

 

Table 12: Significantly altered metabolites important for the separation between PCa and normal 

cell lines, after univariate analysis, obtained at pH 7. 

Chemical name HMDB number Matrices previously 
found 

Cellular locations 

3-Methylbut-3-en-2-
ol 

HMDB39779 NA Cytoplasm 
Extracellular 

1-Methoxypropan-2-
yl acetate 

NA NA NA 

1,4-Xylene HMDB59924 Feces; Saliva  Membrane 
2,7-Dimethyloctan-
1-ol 

NA NA NA 

2-(1-4-
methylcyclohex-3-
en-1-yl)propan-2-ol 

HMDB37171 NA Extracellular 
Membrane 

Naphthalene HMDB29751 Feces; Salive Membrane 
3,7-Dimethyloct-7-
en-1-ol 

HMDB37171 NA Extracellular 
Membrane 

Decan-1-ol HMDB11624 Feces Extracellular 
Membrane 

1,3-Benzothiazole HMDB32930 NA  Cytoplasm 
Extracellular 

2-Methylundecanal HMDB31734 NA  Membrane 
Pentadecan-2-one HMDB31081 Saliva  Membrane 

    

 

 

NA: not available; HMDB: Human Metabolome Database. 
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From all significantly altered metabolites pentadecan-2-one is the VOCs that changes 

more and is specific for the cells (does not exist in the cellular medium). Pentadecan-2-

one is a ketone, and the increase of ketones levels was previously reported for PCa and 

other cancers (7, 37, 44, 56, 57). The production of pentadecan-2-one may be explained 

by the increased fatty acid oxidation and increased protein metabolism, characteristic of 

cancer which leads to ketones production (58). 

The alteration in aldehydes (e.g. 2-methylundecanal) is also a common alteration related 

with cancer, including PCa (7, 37, 44, 59). The alteration in aldehyde profiling can be 

explained by an alteration in lipid peroxidation, which is induced by the increased of ROS 

levels characteristic of cancer cell metabolism and inflammation. Beyond lipid 

peroxidation, aldehydes can also result from amino acid and carbohydrate catabolism. 

Other possible explanation for the aldehydes levels variation can be related to the 

aldehyde dehydrogenase (responsible for the aldehydes oxidation to carboxylic acids) 

activity (increased activity of these enzyme leads to reduction in aldehydes levels and 

down-regulation of these enzyme leads to increase in aldehydes levels) (7, 58-60).  

The hydrocarbon metabolism is well described in cancer metabolism. In our study, several 

alcohols were altered in PCa cell lines, namely, 3-methylbut-3-en-2-ol 3,7-Dimethyloct-7-

en-1-ol, 2,7-dimethyloctan-1-ol, 2-(1-4-methylcyclohex-3-en-1-yl)propan-2-ol, and decan-

1-ol, this alteration may be due to the alteration in hydrocarbon metabolism once alcohols 

are end-products of this metabolism (61, 62). Other well described characteristic of cancer 

cells is their rapid growth; this rapid growth implies an increase of cellular membrane 

synthesis. The alcohols may be metabolized, by the cell to carboxylic acids and these 

used to the synthesis of cellular membrane precursors (63). 

We also observed an alteration in aromatic hydrocarbon (1,4-xylene) the presence of 

these molecules was previously related with the presence of ROS (58, 64).  Naphthalene, 

a cycloalkane, was significantly altered, the presence of these molecules is also related 

with the presence of ROS and oxidative stress (61).  Significant alteration in 1,4-xylene 

levels was previously detected in  exhaled breath of PCa patients (65). 

Our results were concordant with the results of previously volatiloma analysis of PCa urine 

samples since some compounds significantly altered in this study belong to the same 

classes (ketones, alcohols, aldehydes) of compounds significantly altered in previously 

studies, however since, analytical conditions were different (e. g. different equipment, 

fiber, column and temperature gradient programme) the direct comparison of the results is 

not possible (7, 66).       
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Comparative analysis of VOCs in PCa and normal cell lines obtained at pH 2 

Like VOCs analyzed at physiological pH, the volatilome obtained at pH 2 is also able to 

differentiate PCa cell lines from normal prostate cell line, taking into account the quality of 

the two models (R2X = 0.526; R2Y = 0.457; Q2 = 0.437 for pH 2 vs R2X = 0.445; R2Y = 

0.463; Q2 = 0.446 for pH 7) the discriminant capability of these two models is similar. 

However some of the discriminate metabolites were not the same in the two models, so 

the acidification of the samples markedly influences the detected volatilome (e. g. 

detection of organic acids).  

VOCs namely cyclohexanone, 4-methylheptan-2-one, 2-methylpentane-1,3-diol, 4-

methylbenzaldehyde, 1-(3,5-dimethylfuran-2-yl)ethanone, methyl benzoate, nonanoic acid 

and decanoic acid are significantly altered in all PCa cell lines when compared with 

normal cell line. These VOCs are significantly decreased in extracellular medium of all 

PCa cell lines except decanoic acid that is increased in all PCa cell lines. Also, some 

VOCs namely, 2-ethoxy-2-methylbutane, hexanoic acid, phenylmethanol, 2,4-

Dimethylheptan-1-ol, benzoic acid, and 6-pentyloxan-2-one, can discriminate PCa with 

different aggressiveness, for example, 2-ethoxy-2-methylbutane, hexanoic acid, 

phenylmethanol, 2,4-Dimethylheptan-1-ol, benzoic acid, and 6-pentyloxan-2-one, are 

significantly decreased specifically in high metastatic potential cell line (PC3) and, 1-

ethoxypentane, is significantly decreased specifically in moderated and low metastatic 

potential cell line (DU145 and LNCaP, respectively). 4-Methylpent-3-en-2-one and 

Phenylethanol can discriminate androgen-responsive cell lines from androgen-

nonresponsive cell lines, these metabolites are just significantly decreased in the 

androgen-nonresponsive cell lines (PC3, DU145 and 22RV1).  

Some of the VOCs significantly altered in the comparison PCa vs normal prostate cell 

lines are produced by cells (do not exist in the cellular medium) namely, 4-methylnonanoic 

acid, hexanoic acid and 6-pentyloxan-2-one.       

The majority of the VOCs significantly altered were decreased in cancer cell lines in 

comparison with normal cell line this observation was previously made in other 

metabolomics studies with urine from PCa patients (7, 67). The cancer cells may use 

these metabolites for their metabolic processes more extensively then normal prostate 

cells, converting these VOCs in other metabolites than cannot be analyzed by our 

methodology (7, 67).  
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As performed for pH 7, Table 13, make an interconnection between our results at pH 2 

(significantly altered identified metabolites) and HMDB. As for pH 7 it is possible to see if 

some of those metabolites found in our samples at pH 2 were already found by other 

researchers in biological matrices (53-55).  

 

 

Table 13: Significantly altered metabolites important for the separation between PCa and normal 

cell lines, after univariate analysis, obtained at pH 2. 

Chemical name HMDB number Matrices previously 

found 

Cellular 

locations 

2-Ethoxy-2-

methylbutane 

NA NA NA 

1-Ethoxypentane NA NA NA 

4-Methylpent-3-en-2-one HMDB31563 Feces 

Saliva 

Cytoplasm 

Extracellular 

Cyclohexanone  HMDB03315 Feces NA 

4-Methylheptan-2-one NA NA NA 

5-Methylheptan-2-one NA NA NA 

Hexanoic acid HMDB00535 Blood 

Cerebrospinal Fluid  

Feces 

Saliva 

Urine 

Cytoplasm 

Extracellular 

Membrane 

 

2-Methylpentane-1,3-diol NA NA NA 

2,4-Dimethylheptan-1-ol NA NA NA 

Phenylethanol HMDB32619 Feces 

Saliva 

Cytoplasm 

Extracellular 

4-Methylbenzaldehyde HMDB29638 Feces 

Saliva  

Cytoplasm 

Extracellular 

1-(3,5-Dimethylfuran-2-

yl)ethanone 

HMDB32159 NA Cytoplasm 

Extracellular 

Methyl benzoate HMDB33968 NA Cytoplasm 

Extracellular 

Benzyl acetate HMDB31310 Saliva Cytoplasm 

Extracellular 
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Chemical name HMDB number Matrices previously 

found 

Cellular 

locations 

Benzoic acid HMDB01870 Blood 

Feces 

Saliva 

Urine 

Cytoplasm 

Extracellular 

Endoplasmic 

reticulum 

5-methyl-2-propan-2-

ylcyclohexan-1-ol 

HMDB03352 Blood 

Feces 

Saliva 

Urine 

Extracellular  

Membrane 

Methyl nonanoate HMDB31264 NA Extracellular 

Membrane 

Nonanoic acid HMDB00847 Feces 

Saliva 

Extracellular 

Membrane 

4-Methylnonanoic acid HMDB34849 NA Extracellular 

Membrane 

Decanoic acid HMDB00511 Blood 

Breast Milk 

Saliva 

Urine 

Extracellular   

Membrane 

6-Pentyloxan-2-one HMDB37116 NA Membrane 

 

 

Some VOCs previously associated with cancer in other metabolomics studies namely, 

phenylmethanol, nonanoic acid, decanoic acid were also significantly altered in this work 

(68, 69).   

Several VOCs significantly altered in pH 2 belong to the same class of the VOCs 

significantly altered in pH 7, namely ketones (cyclohexanone; 4-methylheptan-2-one; 5-

methylheptan-2-one; 1-(3,5-dimethylfuran-2-yl)ethanone; 6-pentyloxan-2-one;  and 4-

methylpent-3-en-2-one), aldehydes (4-methylbenzaldehyde) and alcohols (2-

methylpentane-1,3-diol; phenylethanol; 5-methyl-2-propan-2-ylcyclohexan-1-ol; 

phenylmethanol; 2,4-dimethylheptan-1-ol). 

Significantly alteration in some ethers (1-ethoxypentane and 2-ethoxy-2-methylbutane) 

and organic acids (methyl benzoate; benzyl acetate; nonanoic acid; 4-methylnonanoic 

acid; decanoic acid; hexanoic acid) were also observed. Ethers can be found naturally in 

NA: not available; HMDB: Human Metabolome Database 
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fats and may be in the origin of acids and alcohols during lipid hydrolysis, which may 

explain the reduction of these VOCs levels, observed in PCa cell lines (62). 

Alteration in organic acids was previously described in urine and serum of PCa patients 

(67, 69). Organic acids can be involved in several biological processes, including cell 

signaling, energy storage, energy source, and cellular membrane integrity, so the 

alteration in these VOCs indicated that cancer cells have alteration in energy and lipid 

metabolism (67).  
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Materials and Methods 

 

Chemicals 

All chemicals and reagents were analytical grade.  

RPMI-1640 medium, phosphate buffered saline 1% (PBS), norvaline, methyl linolelaidate, 

desmosterol and N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) were purchased 

from Sigma-Aldrich Co (St. Louis, MO, USA). The antibiotic mixture penicillin/streptomycin 

(10000 U/mL/10000 µg/mL), heat inactivated fetal bovine serum (FBS) and trypsin 0.25%-

EDTA were purchased from GIBCO Invitrogen (Barcelona, Spain). Sodium 

hydrogencarbonate was obtained from Merck (Darmstadt, Germany) and methanol was 

from VWR (Leuven, Belgium). 

 

Cell Culture 

PCa immortalized cell lines (PC3, 22RV1, DU145 and LNCaP) and normal prostate 

epithelium immortalized cell line (PNT2) were provided by Portuguese Oncology Institute-

Porto (see Table 1, Chapter 3) for detail information about cell lines).  All cell lines were 

grown in RPMI-1640 medium supplemented with 10% of FBS and 1% of penicillin-

streptomycin. All cell lines were maintained at 37°C under 5% CO2. Cells grow to 80% 

confluency, before passage. 

 

Samples collection 

All cell lines were plated and grown to 100% confluency in RPMI-1640 medium. Forty 

eight hours after cells reach 100% confluency the medium was collected for VOCs 

analysis (see Chapter 3) and cells were washed with PBS solution. The PBS is rejected 

and the cells were scrapped with ice cold methanol and transferred to falcons in ice and 

centrifuged at 3000 x g for 10 minutes at 4 ⁰C. After this, the methanol was separated 

from the pellet and immediately frozen at -80 ⁰C until analysis. The same procedure, for all 

cell lines, was used for the four consecutive passages, (passage 3 to 6) each passage 

was performed in triplicate, resulting in a total of 60 experiments.  

 

Metabolites extraction from cell lines 

AA, fatty acids, sugars and steroids may not be analyzed directly by gas chromatography 

because of their low volatility and polarity and need to be previously derivatized. The 

method used was previously developed by Pereira et al. (2012), with some adaptations. 
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Briefly, the samples were centrifuged (3000 x g for 10 minutes at 4 ⁰C) (to ensure the total 

exclusion of any remains pellet) transferred to a glass vial and the internal standards 

(10µL/mL) norvaline, methyl linolelaidate and desmosterol were added. One mL of each 

sample was evaporated under a nitrogen stream and 50 µL of dichloromethane plus 50 µL 

of the derivatization reagent, MSTFA, was added to the residue. The vial was vortexed 

and heated for 30 min at 80 °C. 50 µL of remain residue was transfer to the glass vial 

used for GC–MS analysis (70). All extractions and analysis were performed in triplicate. 

 

GC–MS system and data acquisition 

 

GC–MS analysis 

The GC–MS conditions were based on those previously optimized by Pereira et al. (2012) 

with some adaptations. An EVOQ-436 gas chromatograph equipped with a Bruker Triple 

Quadrupole mass detector and a Bruker MS workstation software version 8.2 were used. 

The chromatographic separation was accomplished using a column Rxi-5Sil MS (30 m x 

0.25 mm x 0.25 µm) column (Restek). A CombiPAL automatic autosampler (Bruker) was 

used for all experiments. One µL of sample was injected using split mode (ratio 1/10), the 

carrier gas used was helium C-60 (Gasin, Portugal) (flow of 1 ml/min) and the injector port 

was heated to 250 °C. The analysis was performed in Full Scan mode. The oven 

temperature was fixed at 70 °C for 2 min, increasing to 250 °C (rate 15 °C/min), held for 2 

min, finally increasing to 300 °C (rate 10 °C/min) and held for 8 min. The transfer line 

temperature was 250 °C and manifold temperature was 40 °C. The mass ranged from 50 

to 1000 m/z. The emission current was 50 µA and the electron multiplier was set in 

relative mode to an auto tune procedure. All mass spectra were acquired in the electron 

impact (EI) mode (70). To ensure reproducibility of the methodology, quality control 

samples (QCs) were injected (48), four times per day. To produce these QCs a pool of all 

samples (from the five cell lines) were made, then this pool was immediately frozen at -80 

⁰C until analysis. 

 

Statistical analysis 

The statistical approach used was the same used for VOCs profiling (see Chapter 3).   

Prior to statistical analysis all chromatograms were pre-processed: baseline correction, 

peak detection, chromatogram deconvolution, and alignment, for these corrections the 

program MZmine was used (49), the parameters used to accomplish these were: RT 
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range 3.60-24.0 min; m/z range 50-500; MS data noise level 1.0´104; m/z tolerance 0.3; 

chromatogram baseline level 2.0´104; peak duration range 0.02-0.30 min. All ions (m/z) 

with a RSD greater than 50% (48), as well as ions (m/z) coming from the column, were 

removed. The obtained data was next normalized for the total area of the chromatograms. 

The statistical treatment included an unsupervised (PCA) and a supervised analysis (PLS-

DA) to determine which compounds were significantly different between PCa cell lines 

and normal cell line. To confirm the results, univariate analysis was performed for all 

metabolites relevant for the separation among cell lines, by calculating the p value, 

percentage of variation and uncertainty of the variation quotient, as well as, the effect size 

and its uncertainty (50). 

Bonferroni correction was used to adjust p-values for multiple comparisons by setting the 

significance cutoff to p value (0.05) divided by the number of compounds simultaneously 

tested in univariate statistical analyses. 

To confirm the robustness of the models, a MCCV was used (51). The identification of 

compounds selected by statistical approaches was done by using the National Institute of 

Standards and Technology (NIST 14) data base spectra library kovat indices and also by 

using standards. 

 

 

Results 

 

After GC-MS analysis, the obtained data were used to perform multivariate analyses, 

namely PCA and PLS-DA. A total of 150 features were detected in the chromatograms. 

The reproducibility of the analytical method is confirmed by the QCs projection on axis 1 

and 2 (Figure 18) (all QCs samples are grouped (orange color). Furthermore, the 

multivariate analyses prove that VOCs are able to discriminate PCa cell lines from normal 

prostate cell line and between the different PCa cell lines. This discriminant capability is 

observed not only in PLS-DA analysis but also in PCA (Figure 19). 
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Figure 18: PCA with QCs samples (orange) and all cell lines samples and controls (blue) (R
2
X = 

0.652). 

 

 

 

 

 

 

 

 

 

Figure 19: PCA (A) (R
2
X = 0.314) and PLS-DA (B) (R

2
X = 0.618; R

2
Y = 0.386; Q

2
 = 0.35) with 

metabolites from all cells line (PNT2 (normal cells): dark blue: green; 22RV1 (PCa cells): dark blue; 

PC3 (PCa cells): light blue; DU145 (PCa cells): red; LNCaP(PCa cells): yellow;).  

To evaluate which metabolites were responsible for this separation, all cancer cell lines 

were compared with the normal cell line, namely 22RV1 vs PNT2, PC3 vs PNT2, DU145 

vs PNT2 and LNCaP vs PNT2. An optimal separation between each PCa cell lines and 

normal cell line was observed (Figure 20). 
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All metabolites with VIP values greater than one were considered potential relevant for the 

separation among cell lines. Hence, a total of 30 metabolites were considered relevant to 

differentiate 22RV1 from PNT2, 37 metabolites were considered relevant to differentiate 

PC3 from PNT2, 46 metabolites were considered relevant to differentiate DU145 from 

PNT2 and 38 were considered relevant to differentiate LNCaP from PNT2. To confirm the 

importance of these metabolites, univariate analysis was performed to calculate the p 

value, the variation quotient and the effect size. After univariate analysis the VOCs that 

were taken into account, were those with p<0.05; relevant value of variation quotient; and 

relevant effect size. Therefore, a total of 22 VOCs proved to be relevant to differentiate 

22RV1 from PNT2, 20 VOCs proved to be relevant to differentiate PC3 from PNT2, 24 

VOCs proved to be relevant to differentiate DU145 from PNT2 and 26 proved to be 

relevant to differentiate LNCaP from PNT2. All these results are shown detail in Table 14 

(22RV1 vs PNT2), Table 15 (PC3 vs PNT2), Table 16 (DU145 vs PNT2) and Table 17 

(LNCaP vs PNT2).  

After univariate analysis, metabolites with p<0.05 and relevant variations quotient and 

effect size values were considered important for the separation among cell lines and 

potential biomarkers for PCa. These metabolites include amino acids, fatty acids, steroids 

and sugars. From these metabolites eight  stand out, namely, ethanolamine, lactic acid, L-

Figura 20: PLS-DA from PCa vs PNT2. A. 22RV1 (PCa cells) (dark blue) vs PNT2 (normal 

cells) (green) (R
2
X=0.724; R

2
Y=0.978; Q

2
=0.964). B. PC3 (PCa cells) (light blue) vs PNT2 

(normal cells) (green) (R
2
X=0.709; R

2
Y=0.887; Q

2
=0.817). C. DU145 (PCa cells) (red) vs 

PNT2 (normal cells) (green) (R
2
X=0.722; R

2
Y=0.916; Q

2
=0.879). D. LNCaP (PCa cells) 

(yellow) vs PNT2 (normal cells) (green) (R
2
X=0.734; R

2
Y=0.932; Q

2
=0.894). 

A 

C D 

B	
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valine, L-leucine, L-threonine, lyxofuranose, and L-tyrosine, because they revealed to be 

important for the separation among all PCa cell lines and normal cell line. However, 

several other metabolites were identified and were also able to discriminate between 

different cancer cell lines and normal cell lines, namely, L-alanine, (PC3 vs PNT2; DU145 

vs PNT2; LNCaP vs PNT2), 3-hydroxyisovaleric acid (PC3 vs PNT2; DU145 vs PNT2; 

LNCaP vs PNT2), urea, (22RV1 vs PNT2; PC3 vs PNT2; DU145 vs PNT2), 

phenylalanine, (22RV1 vs PNT2; PC3 vs PNT2; LNCaP vs PNT2),  ribofuranose, (22RV1 

vs PNT2; PC3 vs PNT2; LNCaP vs PNT2) talofuranose, (22RV1 vs PNT2; DU145 vs 

PNT2; LNCaP vs PNT2), sorbose, (22RV1 vs PNT2; DU145 vs PNT2; LNCaP vs PNT2), 

cholesterol, (22RV1 vs PNT2; PC3 vs PNT2; LNCaP vs PNT2), glycerol, (DU145 vs 

PNT2; LNCaP vs PNT2), 2-hydroxyiminohexanoic acid, (22RV1 vs PNT2; LNCaP vs 

PNT2), palmitoleic acid (22RV1 vs PNT2; DU145 vs PNT2), methyl 2-acetamido-2-deoxy-

3-O-methyl-a-D-galactopyranoside, (DU145 vs PNT2; LNCaP vs PNT2), 2-butenoic acid, 

(DU145 vs PNT2), erythrotetrofuranose, (DU145 vs PNT2), palmitic acid (LNCaP vs 

PNT2), 13-octadecenoic acid (LNCaP vs PNT2). Some unidentified metabolites were also 

important for the discrimination between cancer and normal cell lines (tables 14, 15, 16 

and 17) (figures 21, 22, 23 and 24).             
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Table 14: List of metabolites selected in PLS-DA of 22RV1 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines 

Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Ethanolamine, 2TMS 
derivative 

5.08 102/147 1021 1027 890 17165-
52-5  

<0.0001p  97.18± 18.37   3.8±1.35  

Lactic Acid, 2TMS 
derivative* 

5.43 73/147 1066 1057 927 17596-
96-2  

<0.0001p    84.79± 7.44   7.43±2.29 

Glycine, 2TMS 
derivative 

6.14 102/147/204  S 950 7364-42-
3 

0.0004P    834776.33 ± 
190.83 

  0.46 ± 0.80 

ß-Alanine, 2TMS 
derivative 

6.9 102/176 1190 1186 899 17891-
86-0  

<0.0001p    83.07 ± 21.15      2.52± 1.07 

2-Butenoic acid, 2-
[(trimethylsilyl)oxy]-, 
trimethylsilyl ester 

6.96 73/147 1186 1192 793 55590-
70-0 

>0.05    29.61 ± 20.94     

L-Valine, 2TMS 
derivative 

7.17 144/218  S 920 7364-44-
5  

<0.0001p    92.03± 12.16   5.20± 1.7 

Urea, 2TMS derivative 7.43 
 

73/147 1249 
 

1219 
 

921 18297-
63-7  

0.0002p   36.52± 9.04    1.93± 0.97 

L-Leucine, 2TMS 
derivative 

7.94 
 

102/158 
 

 S 931 7364-46-
7 

<0.0001P    72.24± 10.06    4.29 ± 1.47 

L-Proline, 2TMS 
derivative 

8.01 73/142/216  S 909  7364-47-
8  

>0.05    21.11 ± 17.59     

Unknown 8.54 147/204 NA 1277 NA NA  0.0309   55.75±17.47   1.04± 0.84 
L-Threonine, 2TMS 
derivative 

8.77 73/117/130  S 737 7536-82-
5  

0.0187  37.40± 17.94   1.02±0.84   

Glycerol, 3TMS 
derivative 

8.92 103/147/205 1289 1297 789 6787-10-
6 

>0.05    32.43 ± 19.85  

L-Aspartic acid, 3TMS 
derivative 

9.93 100  S 890 55268-
53-6  

>0.05       

L- Glutamine, 3TMS 
derivative 

10.73 73/75/246  S 570 70591-
28-5 

<0.0001P   122.43± 13.48   2.36± 1.04 
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Phenylalanine, 2TMS 
derivative 

10.84 73/147/218  S 876  2899-52-
7  

0.0075   29.96 ± 8.45   1.23 ± 0.87 

Unknown 11.77 73 NA 1646 NA NA >0.05  54.68± 39.46      
Ribofuranose, 
tetrakis(trimethylsilyl) 
ether  

12.09 73/147/217 1671 1690 864 NA 0.0011p  37.95± 11.34   1.60±0.91    

Lyxofuranose, 
tetrakis(trimethylsilyl) 
ether 

12.15 73/147/217 1671 1698 859 NA <0.0001P  57.89± 13.12    2.43±1.06    

Talofuranose, 
pentakis(trimethylsilyl) 
ether  

12.87 73/103/147/191 1823 1803 720 NA 0.0003p  47.78± 11.98    2.00±0.98    

Sorbose, 5TMS 
derivative 

13.02 103/217 1867 1826 809 NA <0.0001P  73.09± 10.30    4.22±1.45    

L-Tyrosine, 3TMS 
derivative*  

13.06 73/100/218/280  S 923 51220-
73-6  

0.0002p   43.50 ± 7.52   1.92 ± 0.96 

Allopyranose, 5TMS 
derivative 

13.24 217 1829 1859 862 NA >0.05       

Palmitic Acid, TMS 
derivative 

13.77 73/132/129/313  S 935 55520-
89-3 

>0.05  13.54± 6.80     0.86± 0.83    

Galacturonic acid, 
5TMS derivative 

14.04 75 1943 1924 729 NA >0.05   115.65± 78.05    

Unknown 14.25 73/145/311 NA 1934 NA NA  <0.0001p   222.97± 14.87   3.03± 1.17 
Unknown 14.42 117 NA 1942 NA NA >0.05     
Unknown  14.94 117/129/339 NA 1966 NA NA 0.0106   25.74± 8.04   1.16± 0.85 
Unknown 15.14 117/129/145/341 NA 1975 NA NA  0.0252   24.74± 8.62   1.04± 0.84 
9-Hexadecenoic acid, 
TMS derivative 
(palmitoleic acid) 

15.8 55/75/145 2027 2006 701 NA <0.0001P   284.19± 18.01   2.81± 1.13 

Cholesterol, TMS 
derivative 

23.06 129/329/368  S 912 1856-05-
9  

0.0004P   110.38± 15.40   1.96± 0.97 
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KI: Kovat indices; S: Identified using standards; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value 
of 1.67x10-3 (0.05 divided by 30 analyzed metabolites). 

	

Figure 21: Boxplots from the metabolites important for the separation between 22RV1 (PCa cells) and PNT2 (normal cells), after univariate analysis. 
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Table 15: List of metabolites selected in PLS-DA of PC3 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 

PCa and normal cell lines 

Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Unknown  4.56 69/140 NA 983 NA NA >0.05    69.1 ± 27.4    0.90± 0.87 
Ethanolamine, 2TMS 
derivative 

5.08 102/147 1021 1027 890 17165-
52-5  

0.0052  54.1± 21.8  1.41±0.93  

Lactic Acid, 2TMS 
derivative 

5.43 73/147  S 927 17596-
96-2  

<0.0001P    31.8± 6.2   2.38±1.10 

L-Alanine, 2TMS 
derivative 

5.94 116/147/190  S 935 27844-
07-1 

0.0034    24.9±8.5    1.18± 0.90 

Glycine, 2TMS 
derivative 

6.14 102/147/204  S 950 7364-
42-3 

0.0015    111.1 ± 27.0    1.35 ± 0.93 

Sarcosine, 2TMS 
derivative 

6.32 73 1161 1134 845 7364-
43-4  

>0.05         

β-Alanine, 2TMS 
derivative 

6.9 102/176 1190 1186 899 17891-
86-0  

0.0066    78.5± 18.5    1.43 ± 0.94 

2-Butenoic acid, 2-
[(trimethylsilyl)oxy]-, 
trimethylsilyl ester 

6.96 73/147 1186 1192 793 55590-
70-0 

>0.05    28.8 ± 12.2     

3-Hydroxyisovaleric 
acid, 2TMS derivative 

7.1 73/131 1216 1202 937 55124-
90-8 

<0.0001p    802.1 ± 48.5    1.84± 1.00 

L-Valine, 2TMS 
derivative 

7.17 144/218  S 920 7364-
44-5  

<0.0001p    62.10± 15.2   2.40± 1.10 

Urea, 2TMS 
derivative 

7.43 
 

73/147  S 921 18297-
63-7  

<0.0001p   45.1± 9.4   2.36± 1.09 

L-Leucine, 2TMS 
derivative 

7.94 
 

102/158 
 

 S 931 7364-
46-7 

0.0420    25.2±12.6   1.00 ± 0.88 
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

L-Proline, 2TMS 
derivative 

8.01 73/142/216  S 909 7364-
47-8  

>0.05         

Unknown 8.54 147/204 NA 1277 NA NA  0.0006p    44.7±12.7    1.67±0.97 
L-Threonine, 2TMS 
derivative 

8.77 73/117/130  S 737 7536-
82-5  

0.0104   39.3± 16.3   1.18±0.90   

L-Aspartic acid, 3TMS 
derivative 

9.93 100  S NA NA >0.05         

L- Glutamine, 3TMS 
derivative 

10.73 73/75/246  S 570 70591-
28-5 

>0.05   35.7± 19.3   0.73± 0.86 

Phenylalanine, 
2TMS derivative 

10.84 73/147/218  S 876 2899-
52-7  

0.0056 35.6±13.2    1.34±0.92    

1,2-Benzisothiazol-
3-amine, TMS 
derivative 

11.7 207 1605 1637 626 NA >0.05       

Unknown  11.77 73 NA 1646 NA NA >0.05 37.5±36.7      
Ribofuranose, 
tetrakis(trimethylsilyl) 
ether  

12.09 73/147/217 1671 1690 864 NA 0.0028 36.9±12.5   1.41±0.93    

Lyxofuranose, 
tetrakis(trimethylsilyl) 
ether 

12.15 73/147/217 1671 1698 859 NA 0.0017 37.9±12.2    1.53±0.95    

Tridecanoic acid, 
TMS derivative 

12.43 117 1705 1739 688 169597-
14-2  

>0.05       

Sorbose, 5TMS 
derivative 

13.02 103/217 1867 1826 809 NA >0.05 21.2±13.2      

L-Tyrosine, 3TMS 
derivative 

13.06 73/100/218/280  S 923 51220-
73-6  

0.0322   27.8± 10.5   1.04± 0.89 
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Allopyranose, 5TMS 
derivative 

13.24 217 1829 1859 862 NA >0.05       

Allofuranose, 
pentakis(trimethylsilyl) 
ether 

13.36 147 1853 1877 785 NA >0.05   93.0± 69.3    

Unknown  13.61 73/117/129 NA 1904 NA NA <0.0001P   182.7± 16.8   2.97± 1.22 
Palmitic Acid, TMS 
derivative 

13.77 73/132/129/313  S 935 55520-
89-3 

>0.05       

Galacturonic acid, 
5TMS derivative 

14.04 75 1943 1924 729 NA >0.05       

Unknown 14.25 73/145/311 NA 1934 NA NA  0.0008p   132.5± 18.4   2.18± 1.06 
Unknown  14.94 117/129/339 NA 1966 NA NA >0.05 16.4±9.5      
Unknown 15.14 117/129/145/341 NA NA NA 18748-

91-9  
0.0032 29.5±9.8    1.48±0.94    

Unknown  16.78 75/129 NA 2051 NA NA <0.0001p 56.5±9.1    3.52±1.35    
Methyl 2-acetamido-
2-deoxy-3-O-methyl-
a-D-
galactopyranoside, 
2TMS 

17.94 73/117 2134 2105 660 56196-
89-5  

>0.05   196.9± 50.0   1.05± 0.89 

Cholesterol, TMS 
derivative 

23.06 129/329/368  S 912 1856-
05-9  

<0.0001p   65.9± 7.6   3.01± 1.23 

 

 

 

 

KI: Kovat indices; S: Identified using standards; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 1.39x10-

3 (0.05 divided by 36 analyzed metabolites). 
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Figure 22: Boxplots from the metabolites important for the separation between PC3 (PCa cells) and PNT2 (normal cells), after univariate analysis 
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Table 16: List of metabolites selected in PLS-DA of DU145 (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines 

Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Ethanolamine, 
2TMS derivative 

5.08 102/147 1021 1027 890 17165-
52-5  

<0.0001p  80.14± 
18.04 

 2.92±1.31  

Lactic Acid, 2TMS 
derivative 

5.43 73/147  S 927 17596-
96-2  

0.0213    18.06±7.62   1.03±0.85 

L-Alanine, 2TMS 
derivative 

5.94 116/147/190  S 935 27844-
07-1 

<0.0001p    53.75±8.88   3.26± 1.20 

Glycine, 2TMS 
derivative 

6.14 102/147/204  S 950 7364-
42-3 

>0.05        

Hydracrylic acid, 
2TMS derivative 

6.41 127 1151 1140 842 55162-
32-8  

>0.05         

ß-Alanine, 2TMS 
derivative 

6.9 102/176 1190 1186 899 17891-
86-0  

<0.0001p    729.64± 
20.99 

   2.95± 1.14 

2-Butenoic acid, 2-
[(trimethylsilyl)oxy]-, 
trimethylsilyl ester 

6.96 73/147 1186 1192 793 55590-
70-0 

<0.0001p    130.36 ± 
12.10 

   2.57±1.06 

3-Hydroxyisovaleric 
acid, 2TMS 
derivative 

7.1 73/131 1216 1202 937 55124-
90-8 

<0.0001p    789.83 ± 
18.65 

   3.37± 1.23 

L-Valine, 2TMS 
derivative 

7.17 144/218  S 920 7364-
44-5  

<0.0001p    58.58± 
11.82 

  2.76± 1.10 

Urea, 2TMS 
derivative 

7.43 
 

73/147 1249 
 

1219 
 

921 18297-
63-7  

<0.0001p    47.59± 9.66    2.31± 1.01 

L-Leucine, 2TMS 
derivative 

7.94 
 

102/158 
 

 S 931 7364-
46-7 

<0.0001P    45.52± 
10.07 

   2.97 ± 
1.16 
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

L-Proline, 2TMS 
derivative 

8.01 73/142/216  S 909 7364-
47-8  

>0.05         

Unknown 8.54 147/204 NA 1277 NA NA  <0.0001p    56.86± 
15.31 

   2.05± 0.97 

L-Threonine, 2TMS 
derivative 

8.77 73/117/130  S 737 7536-
82-5  

0.0499   26.44± 
13.94  

 0.86±0.81   

Glycerol, 3TMS 
derivative 

8.92 103/147/205 1289 1297 789 6787-
10-6 

0.0005p    60.06± 
18.39 

  1.84±0.93  

Erythrotetrofuranos
e, tris-O-
(trimethylsilyl) 

9.74 73/129217 1326 1387 673 NA 0.0001p    39.31± 9.51    2.03± 0.96 

L-Aspartic acid, 
3TMS derivative 

9.93 100  S NA NA >0.05         

Creatinine, N,N,O-
tris(trimethylsilyl) 

10.2
6 

75 1445 1447 758 NA >0.05    51.11± 46.5  

L- Glutamine, 3TMS 
derivative 

10.7
3 

73/75/246  S 570 70591-
28-5 

>0.05         

Phenylalanine, 
2TMS derivative 

10.8
4 

73/147/218  S 876 2899-
52-7  

0.0447 20.14±10.71      

1,2-Benzisothiazol-
3-amine, TMS 
derivative 

11.7 207 1605 1637 626 NA >0.05         

Unknown  11.7
7 

73 NA 1646 NA NA >0.05     

Lyxofuranose, 
tetrakis(trimethylsilyl) 
ether 

12.1
5 

73/147/217 1671 1898 859 NA 0.0001p 42.84± 10.66    2.01±0.96    



	

90	

	

Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Tridecanoic acid, 
TMS derivative 

12.4
3 

117 1705 1739 688 169597-
14-2  

>0.05   63.28±58.62    

Talofuranose, 
pentakis(trimethylsilyl
) ether  

12.8
7 

73/103/147/ 
191 

1823 1803 720 NA 0.0224 25.94±11.29    1.04±0.83    

Sorbose, 5TMS 
derivative 

13.0
2 

103/217 1867 1826 809 NA 0.0009p 37.57±11.5    1.59±0.89    

L-Tyrosine, 3TMS 
derivative 

13.0
6 

73/100/218/ 
280 

 S 923 51220-
73-6  

0.0406   20.27±8.1 0.9±0.81    

Allopyranose, 5TMS 
derivative 

13.2
4 

217 1829 1859 862 NA >0.05       

Allofuranose, 
pentakis(trimethylsilyl
) ether 

13.3
6 

147 1853 1877 785 NA >0.05       

Unknown  13.6
1 

73/117/129 NA 1904 NA NA 0.0018   82.93± 
11.28 

  2.05± 0.97 

Palmitic Acid, TMS 
derivative 

13.7
7 

73/132/129/ 
313 

 S 935 55520-
89-3 

>0.05       

Galacturonic acid, 
5TMS derivative 

14.0
4 

75 1943 1924 729 NA >0.05       

Unknown 14.2
1 

131 NA 1932 NA NA >0.05   47.15± 
41.17 

   

Unknown  14.2
5 

73/145/311 NA 1934 NA NA  0.0078   70.10±16.23   1.26±0.85 

Unknown 14.4
2 

117 NA 1942 NA NA >0.05   63.22±58.62    

Unknown 14.4
7 

117/327 NA 1944 NA NA 0.0002p   71.71±10.89   1.91±0.94 
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Unknown  14.9
4 

117/129/339 NA 1966 NA NA 0.0014   27.91±7.39   1.31±0.87 

Unknown 15.1
4 

117/129/145/ 
341 

NA 1975 NA NA  >0.05   11.09± 7.51    

9-Hexadecenoic 
acid, TMS derivative 
(palmitoleic acid) 

15.8 55/75/145 2027 2006 701 NA 0.0048   85.75±23.12   1.02± 0.83 

Unknown  17.3 55 NA 2075 NA NA >0.05       
Methyl 2-acetamido-
2-deoxy-3-O-methyl-
a-D-
galactopyranoside, 
2TMS 

17.9
4 

73/117 2134 2105 660 56196-
89-5  

0.0037   88.07± 
16.92 

  1.42± 0.87 

6,9-Octadecadiynoic 
acid, methyl ester 

18.8
7 

77 2112 2148 637 56847-
03-1  

>0.05       

Unknown 19.0
0 

73/117 NA 2154 NA NA <0.0001P   326.66± 
19.57 

  2.5± 1.04 

Cholesterol, TMS 
derivative 

23.0
6 

129/329/368  S 912 1856-
05-9  

>0.05   20.85± 
12.10 

   

KI: Kovat indices; S: Identified using standards; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 
1.14x10-3 (0.05 divided by 44 analyzed metabolites). 
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 Figure 23: Boxplots from the metabolites important for the separation between DU145 (PCa cells) and PNT2 (normal cells), after univariate analysis. 
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Table 17: List of metabolites selected in PLS-DA of LNCaP (PCa cells) vs PNT2 (normal cells) (VIP>1) as potentially important for discrimination between 
PCa and normal cell lines 

Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Unknown  4.56 69/140 NA 983 NA NA 0.0001p    70.35± 
22.44 

   1.82± 0.94 

Ethanolamine, 2TMS 
derivative 

5.08 102/147 1021 1027 890 17165-
52-5  

<0.0001p  89.19± 
17.26 

  3.47±1.28  

Lactic Acid, 2TMS 
derivative 

5.43 73/147  S 927 17596-
96-2  

<0.0001p    55.39± 7.88   3.83±1.36 

L-Alanine, 2TMS 
derivative 

5.94 116/147/190  S 935 27844-
07-1 

0.0171    24.11± 9.88    1.13± 0.85 

Glycine, 2TMS 
derivative 

6.14 102/147/204  S 950 7364-
42-3 

0.0042    118.14 ± 
20.13 

   1.57 ± 0.91 

ß-Alanine, 2TMS 
derivative 

6.9 102/176 1190 1186 899 17891-
86-0  

<0.0001p    87.83 ± 
21.39   

   2.73± 1.12 

2-Butenoic acid, 2-
[(trimethylsilyl)oxy]-, 
trimethylsilyl ester 

6.96 73/147 1186 1192 793 55590-
70-0 

>0.05    20.13 ± 
14.41 

    

3-Hydroxyisovaleric 
acid, 2TMS 
derivative 

7.1 73/131 1216 1202 937 55124-
90-8 

<0.0001p    3161.67 ± 
34.43 

    2.40± 1.04 

L-Valine, 2TMS 
derivative 

7.17 144/218  S 920 7364-
44-5  

<0.0001p    71.40± 
10.70 

  3.92± 1.38 

Urea, 2TMS 
derivative 

7.43 
 

73/147 1249 
 

1219 
 

921 18297-
63-7  

>0.05    8.39 ± 7.20     

L-Leucine, 2TMS 
derivative 

7.94 
 

102/158 
 

 S 931 7364-
46-7 

<0.0001P    51.55±9.06    2.97 ± 1.16 
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

L-Proline, 2TMS 
derivative 

8.01 73/142/216  S 909 7364-
47-8  

>0.05         

Unknown 8.54 147/204 NA 1277 NA NA  0.0321   93.47± 25.21   1.07± 0.84 
p-Toluic acid, TMS 
derivative 

8.64 65/119/193 1282 1282 818 NA >0.05  16.04± 
10.59   

     

L-Threonine, 2TMS 
derivative 

8.77 73/117/130  S 737 7536-
82-5  

0.0445   27.58± 
14.13  

 0.88±0.82   

Glycerol, 3TMS 
derivative 

8.92 103/147/205 1289 129 789 6787-
10-6 

0.0004p    58.18± 
15.77 

  1.97±0.97  

L-Aspartic acid, 
3TMS derivative 

9.93 100  S NA NA >0.05 25.32±22.2        

L- Glutamine, 3TMS 
derivative 

10.73 73/75/246  S 570 70591-
28-5 

<0.0001P   108.67± 
12.83 

  2.29± 1.03 

Phenylalanine, 
2TMS derivative 

10.84 73/147/218  S 876 2899-
52-7  

0.0036 42.45±13.45    1.59±0.91    

1,2-Benzisothiazol-
3-amine, TMS 
derivative 

11.7 207 1605 1637 626 NA >0.05     

Unknown  11.77 73 NA 1646 NA NA >0.05 40.90±32.77      
Ribofuranose, 
tetrakis(trimethylsilyl) 
ether  

12.09 73/147/217 1671 1690 864 NA 0.0004p 42.26±10.73   1.96±0.96    

Lyxofuranose, 
tetrakis(trimethylsilyl) 
ether 

12.15 73/147/217 1671 1898 859 NA <0.0001P 48.11±11.13    2.23±1.02    

Talofuranose, 
pentakis(trimethylsilyl) 
ether  

12.87 73/103/147/191 1823 1803 720 NA 0.0056 29.01±16.04    0.85±0.83    
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Name RT Characteristic 
ions 

KI from 
literature 

Experimental 
KI or 
standards 

MS-R 
match 

Cas 
number 

p value Variation % 
(uncertainty) 

Effect size 
(uncertainty) 

Sorbose, 5TMS 
derivative 

13.02 103/217 1867 1826 809 NA <0.0001P 64.31±10.68    3.41±1.26    

L-Tyrosine, 3TMS 
derivative 

13.06 73/100/218/280  S 923 51220-
73-6  

<0.0001P 44.38±9.74    2.28±1.03    

Allopyranose, 5TMS 
derivative 

13.24 217 1829 1859 862 NA >0.05     

Allofuranose, 
pentakis(trimethylsilyl) 
ether 

13.36 147 1853 1877 785 NA >0.05     

Unknown  13.61 73/117/129 NA 1904 NA NA <0.0001P   64.27± 7.16   2.80± 1.13 
Palmitic Acid, TMS 
derivative 

13.77 73/132/129/313  S 935 55520-
89-3 

0.0424   21.27± 8.34   0.95± 0.84 

Galacturonic acid, 
5TMS derivative 

14.04 75 1943 1924 729 NA >0.05       

Unknown  14.94 117/129/339 NA 1966 NA NA >0.05   15.5± 7.07    
Unknown 15.14 117/129/145/341 NA 1975 NA NA 0.0256   20.39± 7.37   1.02± 0.84 
Unknown  15.62 57/69/84/ NA 1997 NA NA <0.0001P   147.83± 10   3.53± 1.29 
Unknown  16.28 117 NA 2028 NA NA >0.05   25.39± 16.87    
Methyl 2-acetamido-
2-deoxy-3-O-methyl-
a-D-
galactopyranoside, 
2TMS 

17.94 73/117 2134 2105 660 56196-
89-5  

0.0050   374.03± 
35.88 

  1.57± 0.91 

13-Octadecenoic 
acid, TMS derivative 

19.72 69/75/117 2228 2187 634 NA <0.0001P   560.66± 
18.06 

  3.54± 1.29 

Cholesterol, TMS 
derivative 

23.06 129/329/368  S 912 1856-
05-9  

0.0004p   73.42± 14.39   1.58± 0.91 

 KI: Kovat Indices; S: Identified using standards; NA: not available; P Alterations remaining significant after Bonferroni correction, with cutoff p value of 1.37x10-3 (0.05 divided 
by 38 analyzed metabolites). 
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 Figure 24: Boxplots from the metabolites important for the separation between LNCaP (PCa cells) and PNT2 (normal cells), after univariate analysis. 
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New PLS-DA models using only discriminant metabolites (Figure 25) was performed. To 

prove the robustness of the models, a MCCV validation was performed for all 

comparisons, using GC-MS full data but also using just the discriminant metabolites 

described before, was also performed new PLS-DA models using just these set of 

discriminant metabolites (Figure 25). The results of these validations proved that all 

created models are robust for the discrimination between PCa cell lines and normal cell 

line (Table 18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: PLS-DA from PCa cell line vs normal cell line with the set of discriminant metabolites. A. 22RV1 
(PCa cells) (dark blue) vs PNT2 (normal cells) (green) (R2X=0.845; R2Y=0.962; Q2=0.947). B. PC3 (PCa 
cells) (light blue) vs PNT2 (normal cells) (green) (R2X=0.77; R2Y=0.932; Q2=0.895). C. DU145 (PCa cells) 
(red) vs PNT2 (normal cells) (green) (R2X=0.855; R2Y=0.903; Q2=0.864). D. LNCaP (PCa cells) (yellow) vs 
PNT2 (normal cells) (green) (R2X=0.814; R2Y=0.938; Q2=0.919). 

A B 

C D 
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Table 18: MCCV parameters of true and permuted classes obtained for derivatized metabolites 
when considering GC-MS full data and the set of discriminant compounds.  

Models 

True classes Permuted classes 

LV Q2 
CR 

(%) 

Sens. 

(%) 

Spec. 

(%) 
LV Q2 

CR 

(%) 

Sens

. (%) 

Spec. 

(%) 

GC-MS full data  

22RV1 vs PNT2 4 0.93 100 100 100 1 -0.22 45 45 45 

PC3 vs PNT2 1 0.87 98 95 100 1 -0.38 47 47 46 

DU145 vs PNT2 2 0.93 100 100 100 1 -0.26 47 47 47 

LNCaP vs PNT2 4 0.92 100 100 100 1 -0.25 47 45 49 

Set of discriminant compounds  

22RV1 vs PNT2 1 0.97 100 99 100 1 -0.30 48 48 47 

PC3 vs PNT2 2 0.93 100 100 100 1 -0.32 48 47 49 

DU145 vs PNT2 1 0.94 100 100 100 1 -0.30 47 47 47 

LNCaP vs PNT2 2 0.96 100 100 100 1 -0.27 49 47 50 

 

 

 

 

Discussion 

 

In this work, we revealed the potentiality of metabolome for discrimination different PCa 

cell lines from normal prostate cell line, which indicates that the metabolome may be a 

valuable source of biomarkers for PCa detection in the future. The results revealed 

metabolites significantly decreased in all PCa cell lines when compared with normal cell 

line, namely ethanolamine, lactic acid, L-valine, L-leucine, L-threonine, lyxofuranose, and 

L-tyrosine significantly increased in all PCa cell lines. However, considering different 

metabolites is possible to discriminate PCa with different aggressiveness, for example, 

glycerol is significantly decrease in low (LNCaP) and moderated (DU145) metastatic 

potential cell line (but not in in high metastatic cell line (PC3)) and methyl 2-acetamido-2-

deoxy-3-O-methyl-a-D-galactopyranoside is significantly increased in DU145 and in 

LNCaP but not in PC3; the significant increase of 2-butenoic acid levels and the significant 

decrease of erythrotetrofuranose levels are characteristic alterations of cell line with 

moderated metastatic potential (DU145); and the significant increase of palmitic acid, and 

13-octadecenoic acid are characteristic of LNCaP, a cell line with low metastatic potential. 

LV: no. of latent variables; Q2: median predictive power; CR: classification rate; sens.: sensitivity; 
spec.: specificity. 
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It is also possible discriminate between androgen-responsive from androgen-

nonresponsive PCa cell lines, using urea, since this metabolite is significantly decreased 

in androgen-nonresponsive PCa cell lines (22RV1, PC3 and DU145); significant increase 

of palmitic acid, and (E)-13-octadecenoic acid are others characteristic of androgen-

responsive PCa cell line (LNCaP).     

All living cells have in common most of the biochemical pathways in the body, for 

example, metabolic pathways involving energy and amino acid catabolism occurs similarly 

in all cells. However, cancer cells have unique features, consequence of their extremely 

proliferative capacity and resistance to apoptosis and, therefore, most certainly have 

some metabolic pathways altered (enhanced or diminished) (23). This theory was 

evaluated in this work, and the results show, as expected, alteration in several metabolic 

pathways, mostly energetic metabolism, lipid metabolism or protein metabolism.    

As previously explained (see Chapter 1), the prostate cell has a unique metabolic profile, 

once one of the major functions of these cells is production and accumulation of citrate 

(components of the prostatic fluid) (71). Unlike other human cells, the prostate cell does 

not use, preferentially, citrate in Krebs cycle, for ATP production (aerobic ATP 

production)¸ even in the presence of oxygen, prostate cell produces ATP mainly by the 

glucose oxidation which leads to pyruvate production and, consequently, to lactate 

production. However, prostate cells that undergo neoplastic transformation lose this ability 

to citrate accumulation and use citrate for Krebs cycle (26, 72-74). This well described 

alteration may explain the reduction of the levels of lactate observed in this study.  

The significant increase in glutamine levels is another indicator of possible alterations in 

Krebs cycle related with PCa once, through glutaminolysis, delivers intermediates (α-

ketoglutarate) for the Krebs cycle. Glutamine is also important for lipogenesis (75, 76). 

The alteration in energetic metabolism, related with PCa, is also observed, in the 

significant levels alteration of several carbohydrates, namely ribofuranose, lyxofuranose, 

talofuranose, and sorbose, since carbohydrates can be used by cancer cells for energy 

production. The described alterations in carbohydrates were also observed in other 

metabolomics PCa studies (13, 66).  

Mucin are glycoconjugates, and the increase in their levels is associated with cancer, 

once these compounds are involved  in signaling cell growth and survival, inducing tumor 

progression (77). These important roles of mucin in cancer may explain the significant 

increase in the mucin fragment methyl 2-acetamido-2-deoxy-3-O-methyl-a-D-

galactopyranoside (78) observed in our study.  
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The alteration in sarcosine levels in PCa is one of the most studied metabolic alterations 

related with PCa and one of the most promising potential biomarkers for PCa (6). In this 

work, we were unable to confirm the significant increase of sarcosine levels related with 

PCa, however, a significant alteration in glycine levels was observed. Glycine is a 

precursor of sarcosine so the alteration of this metabolite may suggest alteration in the 

metabolic pathway involved in sarcosine synthesis. Glycine is also an important protein 

precursor and provide C2N subunit for purines synthesis (79).             

Beyond glycine, several other amino acids were altered in PCa samples, namely, alanine, 

valine, leucine, threonine, phenylalanine and tyrosine, which may indicate the increased 

protein synthesis. The increase in protein metabolism is essential to cancer cell maintain 

the elevated proliferative state. This metabolic alteration was previously focused in other 

metabolomics PCa studies (66, 80, 81).  

The urea cycle uses ammonia to produce urea, as urea is less toxic than ammonia. The 

main source of ammonia is the degradation of proteins and, as previously explained, 

cancer cells have increased requirement of proteins which may explain the decreased 

levels of urea in PCa cells observed in our study.  

Other important indicator of alteration in proteins metabolism observed in our study is the 

significant increase of 3-hydroxyisovaleric acid levels. This leucine metabolite has an 

important role in protein metabolism once 3-hydroxyisovaleric acid stimulates protein 

synthesis and prevents protein catabolism (82).   

The elevated cholesterol levels observed in PCa cells was previously described in other 

metabolic studies using prostatic tissue from PCa patients (13, 83). The PCa cells have 

the ability to synthetise cholesterol, furthermore, a study performed by Awad et al (2001) 

revealed that in vitro supplementation with cholesterol increase cell proliferation, 

migration, and invasion in PCa cell lines (84). The relevant role of cholesterol in PCa 

metabolism may be due to the increased need of membrane biosynthesis in cancer cells, 

the need of growth factor signaling and cholesterol may have an important role in 

castration resistance of PCa, once cholesterol can be converted in vivo to androgens (83).    

The alteration in lipid metabolism, particularly, on phospholipid membrane constituents 

assembly and catabolism, is confirmed by the significant decreased ethanolamine levels. 

Ethanolamine is one of the principal components of cellular membrane, once 

ethanolamine is the precursor and the degradation product of phosphatidylethanolamine 

(abundant phosphoglyceride of human cellular membrane). The alteration in ethanolamine 

levels in PCa cells was previously observed by other authors (85, 86).  Mintz et al (2008), 
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using radiolabel ethanolamine, demonstrated that PCa cells shown an increase in 

ethanolamine uptake when compared with normal prostate cells (principally in androgen-

responsive cells in presence of androgens) (85-87). Glycerol is another important 

metabolite involved in lipid metabolism, once glycerol is present in the composition of 

triglycerides and phospholipids. The catabolism of these lipids, to produce energy, leads 

to the formation of glycerol, and glycerol can also be converted to glucose (the principal 

cellular source of energy). Therefore, the dysregulation in glycerol levels is indicative of 

alteration in lipid metabolism and of the high energy demand characteristic of cancer cells, 

to sustain its high proliferation state (53-55).  

Significant alterations in organic acids, namely 13-octadecenoic acid and 2-butenoic acid, 

was also observed in our study, as well as in other PCa metabolomics studies (67, 69, 

88). Fatty acids can be produced by the β-oxidation of lipids to produce energy but can be 

involved in other cellular mechanisms, namely cell signaling and cellular membrane 

integrity, so the alteration in these metabolites indicates that cancer cells have alteration 

in energetic and lipid metabolism (67, 69, 88).  

In this study we also observed a significant increase in palmitic acid levels in PCa 

samples. The increase of palmitic acid levels, in plasma, was previously associated, in a 

prospective case-control study, with the risk of PCa (9). Palmitic acid is produced in vivo 

from other fatty acids and from de novo lipogenesis, so the significant increase of palmitic 

acid levels is indicative of alteration in lipid metabolism principally the increase in fatty acid 

synthesis (9). Besides palmitic acid, palmitoleic acid is another fatty acid significantly 

increases in PCa cells. 
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Conclusion and future perspectives 

 

Currently, PCa diagnostic is performed by using PSA as biomarker, however, this 

biomarker has low sensibility and specificity. These drawbacks have given rise to serious 

efforts to the discovery of new biomarkers, preferentially noninvasive, that have better 

specificity and sensitivity. A novel biomarker is required to be specific for PCa and not 

altered or expressed in other human tissues or in other diseases, which will bring major 

benefits for patient health. Since metabolic alterations are the last step in cellular 

response to diseases, metabolomics can be successfully used to discover new 

biomarkers for cancer. 

In this study, we evaluated the alterationsin prostate exometabolome, more specifically 

the volatilome (Chapter 3) and intrametaboloma (Chapter 4) caused by the cancer 

development, using different PCa cell lines with different aggressiveness and hormone 

dependent and hormone independent. The results prove that, in both approaches, 

metabolomics alterations are capable of discriminating the different cell lines, therefore is 

a powerful tool to discover new biomarkers for PCa.  

In the third Chapter of this work, we identified several altered VOCs related to PCa. Most 

of them were low molecular weight compounds such as ketones, aldehydes and organic 

acids, indicating alteration in lipid and energy metabolism of PCa cells. 

In this Chapter was performed a comparative analysis of VOCs in PCa and normal cell 

lines obtained at pH 7 and pH 2 and the results in both show some potential biomarkers 

for PCa were discover. In pH 7 the VOCs that stand out as potential biomarkers for PCa 

was pentadecan-2-one which was increased in all PCa cell lines when compared with 

normal cell line. It was also possible to discriminate PCa with different grades of 

aggressiveness using, 2,7-dimethyloctan-1-ol and 2-(1-4-methylcyclohex-3-en-1-

yl)propan-2-ol, which are significantly altered specifically in high metastatic potential cell 

line (PC3),  significant increase in decan-1-ol levels is a characteristic alteration of cell line 

with moderated metastatic potential (DU145) and the significant alteration of 3-methylbut-

3-en-2-ol, 1-methoxypropan-2-yl acetate and 1,4-xylene levels is characteristic of cell line 

with low metastatic potential (LNCaP). Moreover, was also possible the discrimination 

between androgen-responsive cell lines from androgen-nonresponsive cell lines using 

3,7-dimethyloct-7-en-1-ol, since this metabolite is just significantly decreased in the 

androgen-nonresponsive cell lines (PC3, DU145 and 22RV1). In the results of the 

comparative analysis of VOCs in PCa and normal cell lines obtained at pH 2 the VOCs 
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that stand out were, cyclohexanone, 4-methylheptan-2-one, 2-methylpentane-1,3-diol, 4-

methylbenzaldehyde, 1-(3,5-dimethylfuran-2-yl)ethanone, methyl benzoate, nonanoic acid 

and decanoic acid which were significantly altered in all PCa cell lines when compared 

with normal cell line. It was also possible to discriminate PCa with different grades of 

aggressiveness using 2-ethoxy-2-methylbutane, hexanoic acid, 1-phenylmethanol, 2,4-

dimethylheptan-1-ol, benzoic acid, and 6-pentyloxan-2-one, are significantly decreased 

specifically in high metastatic potential cell line (PC3) and, 1-ethoxypentane, is 

significantly decreased specifically in moderated and low metastatic potential cell line 

(DU145 and LNCaP, respectively). Moreover, was also possible the discrimination 

between androgen-responsive cell lines from androgen-nonresponsive cell lines using 4-

methylpent-3-en-2-one and 1-phenylethanol can discriminate androgen-responsive cell 

lines from androgen-nonresponsive cell lines, these metabolites are just significantly 

decreased in the androgen-nonresponsive cell lines (PC3, DU145 and 22RV1). 

The integration of VOCs in specific metabolic pathways is still very difficult, needing more 

studies to accomplish this goal. Moreover, it was also evaluated the influence of pH in the 

volatilome. Acidification of the samples markedly influences it (e. g. detection of organic 

acids) but the quality of the PCA and PLS-DA models produced were not markedly 

different.    

The results of the evaluation of alterations in intrametaboloma were concordant with the 

results of the evaluation of volatiloma, in both approach, the results reveal alterations in 

lipid and energy metabolism of PCa cells. Alteration in protein metabolism was also 

observed in intrametaboloma. The alteration in these metabolic pathways can be 

explained by the well-known features of cancer cells, namely, their extremely proliferative, 

growth and migration capacity, and resistance to apoptosis. To sustain these elevated 

proliferation rates, the energy demand increases, as well as the protein synthesis. 

Alterations in lipid metabolism have also an important paper in the sustain of these 

elevated proliferation rates, once intercellular signaling are dependent on increased lipid 

biosynthesis, as well as, the increased cellular membrane synthesis is dependent on 

increased lipid biosynthesis and lipids also can be used for the cell to produce energy. 

The discriminative metabolites include ethanolamine, lactic acid, L-valine, L-leucine, L-

threonine, lyxofuranose, and L-tyrosine, metabolites significantly altered in all PCa cell 

lines when compared with normal cell line; significant decreased in glycerol levels and the 

significantly increased in methyl 2-acetamido-2-deoxy-3-methyl-galactopyranoside levels 

is characteristic of low (LNCaP) and moderated (DU145) metastatic potential cell line (but 
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not in in high metastatic potential cell line (PC3); the significant increase of 2-butenoic 

acid levels and the significant decrease of erythrotetrofuranose levels are characteristic 

alterations of cell line with moderated metastatic potential (DU145); and the significant 

increase of palmitic acid, and 13-octadecenoic acid are characteristic of LNCaP, a cell line 

with low metastatic potential. It is also possible discriminate between androgen-

responsive from androgen-nonresponsive PCa cell lines, using urea, since this metabolite 

is significantly decreased in androgen-nonresponsive PCa cell lines (22RV1, PC3 and 

DU145); significant increase of palmitic acid, and 13-octadecenoic acid are others 

characteristic of androgen-responsive PCa cell line (LNCaP).      

Up to date and according to the scientific literature, the most promising biomarker for PCa 

is sarcosine. In our work, once we not have available sarcosine standard, the formal 

identification of these metabolite was not accomplish, so we were unable to confirmed the 

value of sarcosine as PCa biomarker. However, we observed significant alteration in 

glycine levels and once sarcosine occurs as an intermediate product in the synthesis and 

degradation of this amino acid, we can conclude that this metabolic pathway is altered in 

consequence of PCa.  

The evaluation of these latter compounds (aminoacids, sugars, fatty acids and steroids) 

has the advantage to be easier to relate alterations in these metabolites with known 

metabolic pathways. Allowing the discover of potential biomarkers for PCa but also, 

allowing a better understand of which are the most important metabolic pathways altered 

in consequence of cancer development and progression and, consequently, may permit 

the discover of new therapeutic targets and the development of new therapeutic 

approaches. However, the study of the alterations in exometaboloma has the advantage 

of being potentially easier to translate these results for real samples, like urine, once these 

metabolites are secreted by cells.   

One of the advantages of metabolomics is that it allows improve the sensibility and 

specificity of biomarkers by using not just one metabolite but a panel of several 

metabolites, so it is possible with the interaction from results of different studies to achieve 

better discriminant capability.  

One limitation of the present study is that some compounds were not identified using 

standards, and despite, our best effort to correctly identify these metabolites, the formal 

identification of compounds is only accomplished by using standards. 

It is important to emphasize that for a possible use in the clinical practice is mandatory to 

prove the translability of results for real samples. Once it is practically impossible to 
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simulate complex cell–cell and cell–matrix interactions in cell cultures of prostate cancer 

and these interactions are very important for metabolic alterations that happen with tumor 

progression, so the translability of results for real samples is not guaranteed. 

It is also necessary to develop more work with the objective of better understand the 

cellular source and the metabolic pathways responsible for the production and 

consumption of the VOCs.  

Despite the limitation of the study, the results reveal the potential of metabolomics, in 

both, extra and intracellular, approaches to discriminated between groups (PCa vs normal 

prostate cell lines), which may lead to the identification of new biomarkers for PCa. 

However, further studies are still needed to confirmed our results, and find out an 

inexpensive, noninvasive, sensible and specific biomarker for prostate cancer. 
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