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“Now this is not the end 

It is not even the beginning of the end 

But it is, perhaps, the end of the beginning”. 
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ABSTRACT 

Thermal energy storage with phase change materials (PCMs) offers a high thermal storage density 

with a moderate temperature variation. Building materials with incorporated phase change materials 

(PCMs) has been found to reduce significantly indoor temperature fluctuations whilst maintaining 

desirable thermal comfort sensation.  

This review dissertation provides an update on various methods that have been investigated by 

previous researchers to incorporate PCMs into the building structures.  

The main objective is to optimize this methods by integrating PCM at surrounding wall (gypsum 

board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and 

pavements), windows, concrete or brick masonry, underfloor heating, ceilings, thermal insulation and 

furniture and indoor appliances. 

Based on phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquid PCMs and 

liquid–gas PCMs. Among them the solid–liquid PCMs are proper for thermal energy storage. The 

solid–liquid PCMs include organic PCMs, inorganic PCMs and eutectics.  

The process of selecting an appropriate PCM is very complicated but crucial for thermal energy 

storage. The potential PCM should have a suitable melting temperature, desirable heat of fusion and 

thermal conductivity specified by the practical application. Thus, the methods of measuring the 

thermal properties of PCMs are very important.  

Suitable PCMs and a right incorporation method with building material, latent heat thermal energy 

storage (LHTES) can be economically efficient for heating and cooling buildings. However, several 

problems need to be tackled before LHTES can reliably and practically be applied. 

 

KEYWORDS: Thermal energy storage, Phase Change Materials (PCM), Building applications, Thermal 

comfort, Thermal performance. 
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RESUMO 

O armazenamento de energia térmica nos materiais de mudança de fase (PCMs) oferece uma alta 

densidade de armazenamento térmico com uma variação de temperatura moderada. Os materiais de 

mudança de fase incorporados (PCM) em materiais de construção foram descobertos para reduzir 

flutuações de temperatura internas, mantendo uma sensação de conforto térmico. 

Esta dissertação proporciona uma atualização sobre os vários métodos de incorporação de PCMs em 

materiais de construção investigados por vários autores. 

O principal objetivo é otimizar esses métodos integrando PCM na parede (painéis de gesso cartonado), 

paredes de trombe, ladrilhos cerâmicos, elementos de betão (paredes e pavimentos), janelas, blocos de 

betão ou tijolo, pavimentos radiantes, tetos falsos, isolamento térmico e mobília. 

De acordo com a sua mudança de fase, os PCMs dividem-se em três grupos: PCM sólido-sólido, PCM 

sólido-líquido e PCM líquido-gás. Entre eles, os PCM sólidos-líquidos são adequados para o 

armazenamento de energia térmica. Os PCMs sólido-líquido incluem PCMs orgânicos, PCMs 

inorgânicos e eutéticos. 

O processo de seleção de um PCM é complexo, mas crucial para o armazenamento de energia térmica. 

O PCM para ser considerado adequado deve ter uma temperatura de fusão adequada, um calor de 

fusão desejável e condutividade térmica especifica para uma determinada aplicação. Os métodos de 

medição das propriedades térmicas dos PCMs são bastante importantes. 

A escolha de um PCM adequado, um método de incorporação correto no material de construção e com 

armazenamento de energia térmica latente (LHTES) podem ser economicamente fatores eficazes para 

edifícios com aquecimento e arrefecimento. No entanto, existem alguns problemas que precisam de 

ser tratados antes que o LHTES possa ser aplicado de forma confiável e prática. 

 

PALAVRAS-CHAVE: materiais de mudança de fase (PCM), conformo térmico, calor latente, eficiência 

energética, capacidade de armazenamento. 
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INTRODUCTION 

 

 

1.1. GENERAL INTRODUCTION 

Due to European Union (EU) and worldwide high energy consumption of the buildings stock, it is 

important to take measures to reduce these needs and, consequently, reduce the EU energy 

dependency. To improve the behaviour of the buildings, regarding thermal comfort of the occupants 

and energy performance, it is necessary to use thermal insulation and the buildings thermal inertia, to 

reduce the thermal amplitudes, the winter heat losses, the summer heat gains and to store the energy 

from solar gains [2]. 

Today´s constructive quality standards have been more demanding not only in the way that we are 

designing but also in the incorporation of new and better materials, more ecological and with a more 

durability facing the changes of weather, with more comfort and less expenses. It´s very important that 

the construction´s design could create less energy dependence building. In the past years, the word 

comfort has been a very demanding challenge for companies and especially for the engineers 

involved. Do we want a beautiful house just because is aesthetically beautiful or a beautiful house 

which is practical and comfortable? The challenge begins with the new forms of construction, 

exploring different materials and in what way they can improve comfort. 

Part of the thermal building envelope, not considering thermal insulation material in itself, is the 

promising technology of phase change materials (PCM) which has received considerable attention 

over the last decade. PCMs utilize the principle of latent heat thermal storage (LHTS) to absorb energy 

in large quantities when there is a surplus and releasing it when there is a deficit. Correct use of PCMs 

can reduce peak heating and cooling loads, i.e. reduce energy usage, and may also allow for smaller 

dimensions of technical equipment for heating and cooling. An added benefit is the ability to maintain 

a more comfortable indoor environment due to smaller temperature fluctuations. Over the past few 

years there have been written several reviews on the use of PCMs in buildings for thermal energy 

storage systems and indoor climate comfort purposes [60]. 

The use of PCM as thermal storage systems for buildings has been of interest throughout the second 

half of the twentieth century. Most often latent heat storage materials are used to stabilize interior 

building temperatures. In building envelope applications, PCM stores latent heat as the ambient 

temperature rises to the melting point (most PCMs change from a solid to a liquid state). As the 

temperature cools down, the PCM returns to a solid phase and the latent heat is released. This 

absorption and release of heat takes place at a constant temperature, which is ideal to smooth external 

temperature fluctuations [81]. 
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In the Mediterranean countries the thermal behaviour of buildings is declining, due to the current trend 

of using large windows and of reducing the buildings weight and, consequently, their thermal inertia 

[3]. The selection of the type and amount of PCM to be used is a challenge owing to the different 

characteristics needed to accomplish an adequate behaviour of the buildings during winter and 

summer periods. 

The use of PCM in buildings began in the mid-1940s and this passive solar system with thermal 

storage capability was one of the first applications studied at that time [81]. When phase changing heat 

storage materials are incorporated into the building envelope or internal building structural 

components, during the day they absorb heat from the glazing and opaque enclosure. As the PCM 

melts, they stabilize the indoor temperature. At night, when the interior space temperatures decrease, 

in passive cooling scenarios, the PCM releases the stored energy, thus preventing the temperature in 

the room from getting excessively cold. 

In short, the integration of PCM in building envelope and building service equipment, is a way to 

enhance the energy storage capacity of enclosures and then to rationalize the use of renewable and 

non-renewable energies. Consequently, not only the building energy performance could be optimized, 

but also indoor thermal comfort improvement is expected because of its thermal environment 

regulated at the “thermal comfort zone” [140]. 

 

1.2. OBJECTIVES 

This paper summarizes previous works on latent thermal energy storage in building applications, 

covering PCMs, reviews commercial state-of-the-art products found on the market and shows some of 

the potential areas of use for PCMs in building applications, the impregnation methods, current 

building applications and their thermal performance analyses and furthermore building materials and 

projects using PCMs that have already been realized. There seems to be a scarcity of data published on 

actual performance in real life applications so far. However, many laboratory and full scale 

experiments have shown positive results on energy savings. Furthermore, future research opportunities 

have been explored and challenges with the technology as of today have been discussed. 

 

1.3. THESIS STRUCTURE 

The structure of this dissertation is divided into five chapters in order to achieve the main objective of 

evaluating the use of building elements with incorporated phase change materials (PCM) in order to 

increase the thermal efficiency of buildings. The content of the thesis was then organized in the 

following chapters: 

 Chapter 1 – presents the objectives of the dissertation and a brief description of each 

chapter; 

 Chapter 2 – corresponds to the bibliography collected on the phase change materials 

(PCM), first the concept of PCM and then other general concepts associated with the 

absorption of latent heat are explained; 

 Chapter 3 – in this chapter the properties of the various PCM groups are listed, 

highlighting the advantages of each, and some techniques for improving their main 

limitations are presented, then a description is made of the various forms of incorporation 

of PCM into materials and constructive elements; 

 Chapter 4 – this chapter presents current building applications and their performance 

analyses, sustained by experimental campaigns carried out by different authors.   
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 Chapters 5 – summarizes the main conclusions of the work developed and discuss 

possible perspectives of future developments/works to give continuity to the study 

presented in this dissertation. 

 

 Fig. 1.1. shows a schematic overview of the work methodology to be developed. 

 

 

Fig. 1.1 – Schematic overview of the work methodology 
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2 

PHASE CHANGE MATERIALS 

 

 

2.1. DEFINITION 

What is a Phase Change Material? A PCM is a substance composed by molecules. The principle of the 

PCM is simple. As the temperature increases, the material change phase from solid to liquid. The 

reaction being endothermic, the PCM absorbs the heat. Similarly, when the temperature decreases, the 

material changes phase from liquid to solid. The reaction being exothermic the PCM desorbs the heat 

(Fig. 2.1.). 

 

Fig. 2.1. - Water melting cycle, adp. [1] 

This kind of material has the capacity of storing and releasing energy in the form of latent heat; latent 

heat storage can be achieved through the transition from solid to liquid and vice-versa. The PCM uses 

the latent heat of phase change to control temperatures within a specific range. 

The energy used to alter the phase of the material, once the phase change temperature is around the 

desired comfort room temperature, will lead to a more stable and comfortable indoor climate as well 

as cut-peak cooling and heating loads [198]. 

In this chapter we can find references to some concepts, definitions and a survey of the different types 

of PCM. 
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2.2. PROPERTIES 

Material properties in general depend on boundary conditions, like pressure, temperature, relative 

humidity. The common materials used in construction, like concrete, brick, stone, glass, wood, 

ceramic, have a set of properties that give them greater or lesser heat storage capability and heat 

storage restitution to the surroundings.  

Thermophysical properties are those which give information about the amount of energy that such 

materials and composites can store. But the characterization of the thermophysical properties is not 

always easy and for composites many times cannot be carried out with conventional laboratory 

equipment, mostly due to the sample size [70]. The main criteria that oversee the selection of PCMs 

are [199]: 

 Possess a melting point in the desired operating temperature range (temperature range of 

application) to assure useful heat storage and extraction. Building application temperatures 

range from 15ºC (cold storage) to 70ºC (heat storage); 

 Possess high latent heat of fusion per unit mass, so that a smaller amount of material stores a 

given amount of energy; 

 High specific heat to provide additional significant sensible heat storage effects; 

 High thermal conductivity, so that the temperature gradients for charging and discharging the 

storage material are small; 

 Small volume changes during phase transition, so that a simple container and heat exchanger 

geometry can be used (less than 10%); 

 Exhibit little or no subcooling during freezing/melting cycle; 

 Possess chemical stability, no chemical decomposition and corrosion resistance to 

construction materials; 

 Contain non-poisonous, non-flammable and non-explosive elements/compounds; 

 Available in large quantities at low cost. 

It´s now time to introduce some important concepts related to calorimetry, the part of science that 

studies energy exchanges in the form of heat between bodies or systems. The concepts of thermal 

conductivity, specific heat and specific volumetric heat, thermal diffusivity, latent heat or phase 

change and enthalpy will be addressed. 

Thermal conductivity, λ in W(m.K), describes the transport of energy, in form of heat, through a body 

of mass as the result of a temperature gradient. According to the second law of thermodynamics, heat 

always flows in the direction of the lower temperature. For example, let´s focus on two very different 

materials needed to build a wall, concrete and thermal insulation. The coexistence of these materials 

provides strength and stability to the building skeleton and at the same time makes it less vulnerable to 

thermal amplitudes occurring during the day. The amount of heat, per unit time, passes through a 

thickness unit of material (m), when a temperature unit difference is established between two flat and 

parallel faces (1ºC or 1K). Consulting the ITE50 (Coeficientes de transmissão térmica de elementos da 

envolvente dos edifícios) [205] it was found that for concrete λ=2W(m.K) and for thermal insulation is 

λ=0,04W(m.K) so the difference in conductivity values between this materials indicates that the heat 

flow through the thermal insulation is fifty times lower than the heat flow that crosses the concrete 

element for the same superficial area [200]. 

The specific heat, 𝑐𝑝 in units J/(kg.K), is the amount of heat per unit mass (constant pressure) required 

to raise the temperature by one degree Celsius (1ºC). 
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The capacity of the material to storage energy is usually represented by the specific volumetric heat – 

C, which results from the product of the density by the material´s specific heat, 𝑝. 𝑐𝑝 and the units in 

which it is expressed are J/(m
3
.K) [1]. 

Thermal diffusivity, 𝛼𝑇 express in (m
2
/s), is a material-specific property for characterizing unsteady 

heat conduction. This value describes how quickly a material reacts to a change in temperature, 

(𝛼𝑇 =
λ

𝑝.𝑐𝑝
). The metals are materials with a high thermal diffusivity and they have a fast response to 

surroundings thermic changes, for example against materials such as XPS (extruded polystyrene), cork 

and others, which, because of low 𝛼𝑇, can be used as a thermal insulation. 

Below there is a table (Table 2.1) where some common materials used in building construction are 

represented according to their thermic conductivity, density, specific heat and specific volumetric heat 

[1]. 

 

Table 2.1 - Thermal conductivity, density, specific heat, specific volumetric heat of some building materials [1] 

Material 

Thermal 

conductivity 

(λ) [W/(m.K)] 

Density                                                                                                                                

(⍴) [kg/m
3
] 

Specific heat 

(cp) [kJ/(kg.K)] 

Specific 

volumetric heat 

(p.cp) [kJ/(m
3
.K)] 

Water (T=10ºC) 0,600 1000 4,181 4181 

Air (T=20ºC) 0,025 1,230 1,012 1,245 

Concrete 
1,650 

2,000 

2000-2300 

2300-2600 

0,880 

1,040 

1760-2024 

2392-2704 

Ceramic (roof tiles, 

bricks, tiles) 
0,600 1400-1600 0,840 1176-1344 

Mortar (traditional 

plasters) 

1,300 

1,800 

1800-2000 

>2000 

1,000 

1,046 

1800-2000 

>2092 

Metals (steel) 50,00 7800 0,450-0,512 3510-3994 

Wood (dense 

woods) 
0,230 750,0-820,0 1,500-2,500 1125-2050 

Calcareous stones 1,400 1800-1990 0,810 1458-1612 

Granite 2,800 2500-2700 0,790 1975-2133 

Thermal insulation: 

EPS 

XPS 

ICB 

 

0,040 

0,037 

0,045 

 

15,00-20,00 

25,00-40,00 

90,00-140,00 

 

1,550 

1,045 

0,170 

 

15,83-21,10 

26,13-41,80 

15,30-23,80 

Glass (Quartz glass) 1,400 2200 0,840 1848 
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It´s important to take into account that although heat storage capacity (that results from the product, 

𝑝. 𝑐𝑝) and restitution to stored heat, that is thermic diffusivity, are intrinsic characteristics of the 

materials but their properties are not constant. In the presence of water, temperature fluctuations or the 

simply the physical state in which the materials are found can change their properties. 

It is known that all materials interact with the environment. However, most of them lack the capability 

to alter its own properties according to the environment characteristics in which they are applied. 

Phase change materials (PCM), as the name itself advocates, possesses the capability to alter its own 

state as function of the environmental temperature the same does not occur in other traditional 

building materials [201]. 

So PCMs are latent heat storage materials, they use chemical bonds to store and release the heat. The 

thermal energy transfer occurs when a material changes from solid to liquid, or liquid to solid. This is 

called a change state or phase. PCMs, having melting temperature between 20ºC and 32ºC, were 

used/recommended for thermal storage in conjunction with both active solar storage for heating and 

cooling in buildings and passive storage, where the heat or cold stored is automatically released when 

indoor or outdoor temperature rises [7]. 

Changing of material phase can be classified into four states: solid-solid, solid-liquid, gas-solid and 

gas-liquid. For a better understanding of the concepts described above [1], takes the water as an 

example.  

A phase can be defined as an amount of fully homogeneous material (solid, liquid or gaseous). In each 

phase can exist at various pressures and temperatures or, using the terminology of thermodynamics, in 

several states. The solid phase (a) is characterized by strong molecular cohesion giving stable shape; 

the liquid phase (b) is an intermediate state; and the gaseous phase (c) is characterized by the weak 

molecular cohesion and, therefore, without form (Fig. 2.2.). 

If we consider a given body of water we recognize that it can exist in various forms. If it is initially 

liquid may became steam after heating, or a solid when cooled.  

According to Coelho et al. [79] when we supply the heat to the ice at constant pressure, the specific 

volume increases slightly and the temperature rises to 0ºC, at which point ice melts while the 

temperature remains constant (at 0ºC). At this point, by the melting point, all the heat supplied is used 

to give the change of phase, from solid to liquid. The total amount of heat, or energy, needed to the 

complete melting fusion of the ice in water is approximately 334kJ/kg. When all ice is melted, any 

Fig. 2.2. - Material physical phases (water) [160] 
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additional heat transfer causes an increase in the temperature of the liquid (up to 100ºC, boiling 

temperature, in the transition from liquid to gaseous). The energy supplied to the water at 0ºC (at the 

melt temperature) is only restored after the temperature has decreased of water to ice, in an exothermic 

reaction.  

With the illustration of the chart (Fig. 2.3.) below it is intended to synthesize the water phases. It 

represents the energy (in the form of heat) used by water, in the various states, to increase its 

temperature, allowing to observe that there is a large heat quantity associated with phase changes. In 

this process, phase change, the amount of generated energy is called “phase shift enthalpy” or only 

“enthalpy”.  

 

Fig. 2.3. – Water phases, adap. [1] 

 

The amount of energy required to raise the water temperature from 1ºC to 80ºC is approximately equal 

to the amount of heat used to melt the ice in water. The amount of heat associated with the phase 

change and the amount of heat associated with specific heat 𝑐𝑝of the material are distinguished by 

latent heat and sensible heat, respectively. 

The Fig. 2.4 pretends to illustrate the difference between latent heat and sensible heat using the water 

as an example. 
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HEAT STORAGE 

LATENT HEAT 

Phase Change 

cp(ice)≈2,11kJ/kg.ºC 

 

0ºC:     ΔH≈334kJ/kg 

SENSIBLE HEAT 

Thermal Amplitudes 

cp(water)≈4,18kJ/kg.ºC 

 

1ºC → 80ºC:     ΔH≈334 kJ/kg 

  

 
Fig. 2.4. - Latent Heat vs. Sensible Heat, adp. [1] 

So one of the most important forms of energy storage is thermal energy storage and its applications are 

very wide, from heating and cooling using waste or solar energy to high temperature energy storage 

power production and industrial processes. Thermal energy storage (TES) can be stored as a change in 

internal energy of a material as thermochemical, latent heat and sensible heat or a combination of 

these. It’s important to refer that, in this thesis, the concepts of latent heat and sensible heat have 

another distinction besides that of the thermochemical concept, and so, a brief reference is described 

below. 

 Sensible Heat 

Sensible heat storage (SHS) method is carried out by adding energy to a material to increase its 

temperature without changing its phase [112]. In sensible heat storage the quantity of stored heat 

depends on the temperature change, the heat capacity of the material, and the amount of storing 

material. In sensible heat storage a solid or a liquid material are used as a storage medium [13]. The 

storage medium can be water, bricks, sand, rock beds, oil or soil. Together with a container, an 

input/output device is attached to it to provide thermal energy for any intended application. Most 

commonly used in dwellings, SHS is used as heat storage to provide hot water for houses and offices. 

In solar heating systems, water is still used for heat storage in liquid based systems, while a rock bed is 

used for air based systems [113]. Water as storage material has the advantages of being inexpensive 

and readily available, of having excellent heat transfer characteristics. For low and high temperature 

thermal energy storage, solid materials such as metals, rocks, sand, concrete and bricks can also be 

used [112]. Thousands of materials have been identified as suitable for the use of thermal energy 

storage. Fernandez et al. [114] have proposed a proper method of selecting the best material to be used 

for long and short term sensible energy storage in order to minimize cost. By combining multiple 

objectives and usage restrictions, they are able to identify appropriate materials through evaluation of 

cost, availability and environmental aspects such as carbon footprint. There are a few advantages and 

disadvantages of both liquid and solid storage medium. For an example, liquid media such as water is 

widely available and an inexpensive sensible energy storage medium. It is non-toxic, non-combustible, 

has a relatively high specific heat and high density characteristics, and is easy to handle. However, at 

low or high temperature applications, water might freeze or boil and is thus limited by the melting and 
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freezing point of water. Furthermore, water is highly corrosive and difficult to stratify. To avoid 

freezing and corrosion problems when using water; chemical additives may be added. Other liquid 

media such as molten salts, liquid metals and organic oils may be used for applications where water is 

not suitable [115]. 

 Latent Heat 

Latent heat storage (LHS) is based on the heat release or heat absorption during phase change of a 

storage material from solid to liquid or liquid to gas or vice versa [111]. The phase change process of 

the material is adapted to store the latent heat thermal energy. There is a visible advantage of PCMs 

(paraffin wax, salt hydrates, and fused salts) over sensible heat storage materials [13,116]. LHS, 

compared to SHS, offers higher density of energy storage with near zero temperature changes. 

However, difficulties usually arise in real due to the low density change, thermal conductivity, sub 

cooling of the phase change materials, stability of properties under extended cycling and sometimes 

phase segregation [113]. Phase change materials are specifically used in latent heat energy storage 

systems, and thus PCM can also be called latent heat storage material. The thermal energy transfer of 

PCM occurs during the charging or discharging (melting or solidification) process at which the state or 

phase of the material changes from liquid to solid or from liquid to solid. At the start of the heating of 

the material, the PCM temperature rises as it absorbs the thermal energy. When the material reaches a 

specific temperature range, it will start to melt as the material begins to experience a phase transition 

from solid to liquid state. However, unlike sensible heat storage materials, during the phase transition 

process the PCM releases or absorb heat at a constant or nearly constant temperature. Many authors 

have experimented with different types of PCMs, subdividing them into organic, inorganic and 

eutectic types. However, the majority of the phase change material does not possess the recommended 

properties for an ideal thermal energy medium and thus thermal enhancers are used to improve any 

disadvantages that the medium may have. Extensive discussions for each class of phase change 

material properties can be referred from [111,117]. 

 Thermochemical 

In thermochemical energy storage system, the energy is stored after a breaking or dissociation reaction 

of chemical bonds at the molecular level which releases energy and then recovered in a reversible 

chemical reaction. Similar to the other type of thermal energy storage systems, thermochemical heat 

storage system may also undergo charging, storing and discharging processes. Fig. 2.5. illustrates the 

reversible processes of a thermochemical heat storage system [118]. Additionally, thermochemical 

heat storage may undergo various processes which include reversible chemical and photochemical 

reactions, water release from zeolites and hydrates and fuel production. The advantage of this method 

is the system is more compact due to the higher energy densities compared to SHS and LHS [13]. 

Furthermore, the system suffers little or no heat loss during the storing period where the two 

components A and B are stored separately at ambient temperature. Hence, this type of thermal energy 

storage is more suitable for long-term energy storage i.e. seasonal storage. In order to select the most 

suitable candidate for thermochemical heat storage material, several key factors may be used as a 

rough guideline. These key factors are (i) cost, (ii) ability to sustain large number of charging, storing 

and discharging cycles, (iii) availability of the material, (iv) non-toxic and non-flammable (v) 

corrosiveness, (vi) reaction rate and temperature range, (vi) energy storage density and (vii) good heat 

transfer characteristics and flow properties. 
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Fig. 2.5. - Charging, discharging and storing processes of a thermochemical heat storage system [118] 

When using PCMs for TES the most important material property is the heat storage capability, usually 

given as the enthalpy as a function of temperature (Fig. 2.6.); PCMs have a strong change in enthalpy 

in a narrow temperature range [77]. 

 

 

 

 

 

Fig. 2.6. - Enthalpy h as a function of temperature T for the case of a phase change [77] 
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In an idealized case, the enthalpy changes suddenly at a phase change temperature. The heat stored is 

then called latent heat, while heat stored with a temperature change is called sensible heat. However, 

many PCM change phase in a temperature range and this must be taken into account when applying 

such PCM in a real application. In addition, heating and cooling processes often show different 

thermal behaviour, called hysteresis (Fig. 2.7.). This includes subcooling, which means that for the 

material to change to the lower temperature phase (in a solid-liquid phase change the solid phase), a 

certain temperature lower than the phase change temperature has to be reached to start the phase 

change. At this temperature, the nucleation temperature 𝑇𝑛𝑢𝑐, a small nucleus of the lower temperature 

phase forms. Subcooling is very common when using the phase change between solid and liquid [77]. 

 

Ice is the best-known PCM used by humans with many and very different types of applications, for 

generations, inhabitants of northern artic regions have been using ice for thermal stabilization of their 

dwellings. Igloos are the first-known application of the phase-change latent heat in building structures. 

The igloo (Fig.2.8) is an ingenious invention and very effective in keeping artic people warm. Igloos 

are relatively easy to construct and made from materials found in abundance, snow and ice which 

serve simultaneously as building structural components, thermal insulation, thermal radiation shield 

and energy storage. Blocks of ice are formed into the dome shape, joined together by snow. To prevent 

excessive amount of snow and cold wind from coming into the igloo, a sunken entrance is constructed, 

along with a raised sleeping platform covered with fur for comfort and warmth. Internal igloo 

temperature circulates between 9ºC – 15ºC, when occupied, even during harsh artic winters where the 

outside temperatures can drop to -45ºC [81]. 

Fig. 2.7. - Enthalpy h as a function of temperature T for the case of a phase change 
[77] 
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2.3. CLASSIFICATION OF PCMS 

Fig. 2.9. shows the classification of energy storage materials [2]. 

 

Fig. 2.9. - Classification of energy storage materials [2] 

Materials 

Sensible heat Latent heat 

gas-liquid solid-gas solid-liquid 

organics 

Eutetics 
Single 

temperature 

Mixtures 
Temperature 

interval 

Paraffins 
(alkanes 

mixtures) 

Commercial 
grade 

Analytical 
grade 

Fatty acids 

inorganics 

Eutetics 
Single 

temperature 

Mixtures 
Temperature 

interval 

Hydrated 
salts 

solid-solid 

Chemical 
energy 

Fig. 2.8. - Igloo construction [81] 
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2.3.1. NON-COMMERCIAL/COMMERCIAL MATERIALS 

The selection of an appropriate PCM for any application requires the PCM to have melting 

temperature within the practical range of application. Several application areas have been proposed for 

PCMs studied. Table 2.2 lists the current companies that commercially produce over 100 PCMs. In 

addition to these, several PCMs have been proposed or studied by different researchers. A detailed list 

of PCMs studied or proposed for study can be found in [51, 62–65]. 

 

Table 2.2 - Commercial PCM manufactures in the world [2] 

Manufacturer PCM temperature range 
Number of 

PCMs listed 

RUBITHERM 

(www.rubitherm.eu) 
-3ºC to 100ºC 29 

Cristopia 

(http://www.cristopia.com) 
-33ºC to 27ºC 12 

TEAP 

(www.teappcm.com) 
-50ºC to 78ºC 22 

Doerken 

(www.doerken.de) 
-22ºC to 28ºC 2 

Mitsubishi Chemical 

(www.m-chemical.co.jp) 
9,5ºC to 118ºC 6 

Climator 

(www.climator.com) 
-18ºC to 70ºC 9 

EPS Ltd (epsltd.co.uk) -114ºC to 164ºC 61 

Merck   

 

2.3.2. ORGANIC/INORGANIC/EUTECTIC MATERIALS 

There are several materials that can be used as PCMs. A common way to distinguish PCMs is by 

dividing them into organic, inorganic and eutectic PCMs. These categories are further divided based 

on the various components of the PCMs (Fig. 2.10.).  

  

http://www.rubitherm.eu/
http://www.cristopia.com/
http://www.teappcm.com/
http://www.doerken.de/
http://www.m-chemical.co.jp/
http://www.climator.com/
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Fig. 2.11. shows the difference in melting enthalpy and melting temperature for some of the most 

common materials used as PCMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 - Phase change materials classification 

Fig. 2.11. – PCMs classes 
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From the observation of the Fig. 2.11. it´s possible to conclude that there are three main groups whose 

melting temperature ranges are compatible with the comfort temperature range inside a building. They 

are the fatty acids, paraffins, hydrated salts and eutectic mixtures, the latter group having a higher 

enthalpy range of fusion.  

For better understanding and a more complex interpretation of this matter the sub groups have been 

described and developed. 

 

2.3.2.1. Organic  

Organic phase change materials are divided into paraffins and non-paraffins. In general, organic PCMs 

do not suffer from phase segregation and crystallize with little or no super cooling [88]. 

Paraffins are available in a large temperature range, with a density around 900kg/m
3
, opening up for 

use in various other areas besides building related applications. The latent heat is mass based, they 

show no signs of phase separation after repeated cycling through solid-liquid transitions, and have a 

low vapor pressure. However, paraffins used as PCMs have some drawbacks. They have low thermal 

conductivity (around 0.2W/(mk)), they are not compatible with plastic containers and they are 

moderately flammable [27].  

Non-paraffins used as PCMs include fatty acids and their fatty acid esters and alcohols, glycols. Fatty 

acids have received the most attention for use as PCMs in buildings. An extensive review on fatty 

acids used for PCM purposes has been written by Yuan et al. [72]. Their melting temperatures vary 

from 5ºC to 70ºC; possess appreciable latent heat ranging from 45J/g to 210J/g but usually around 

150J/g (140MJ/m
3
). They have the advantages of congruent melting, low subcooling and vapor 

pressure, non-toxicity, good thermal and chemical stability, small volume change, self-nucleating 

behavior and biodegradability. They are also capable of thousands of thermal (melting/freezing) cycles 

without any notable degradation in thermal properties. Their high surface tension improves their 

capability of integration in a porous material matrix. However, like paraffins, the major drawback of 

fatty acids is their low thermal conductivity, ranging from 0.15W/(mk) to 0.17W/(mk) [71, 72]. 

Esterification of fatty acids with alcohols is a common method to shift the phase transition 

temperature. It enables decreasing the melting point of fatty acids with high thermal capacity. The 

production of binary and ternary PCMs by mixing fatty acids with fatty alcohols, polyethylene oxide, 

oleic acid, pentadecane or other products with low melting temperature is another possible tuning 

technic [72]. 

According to [73], other organic PCMs have received less attention by researchers such as sugar 

alcohol. Some of the polyalcohol has latent heat almost double than that of the other organic PCMs but 

their melting point ranges from 90ºC to 200°C, which is too high for building applications. 

Among them, erythritol is especially noticeable with a latent heat of fusion of 339.8J/g at 120°C. Bio-

based PCMs are organic materials produced from the biomass: soybean oils, coconut oils, palm oils 

and beef tallow. Like the other organic product, they have an interesting latent heat with good 

chemical stability and phase transition temperatures ranging from -22.77ºC to 77.83°C. Nevertheless, 

they suffer from the same problems as other organic materials [71]. 

In overall, organic PCMs have many qualities which make them suited for building applications but 

there are many organic PCMs considered flammable is a crucial drawback for which impacts the 

safety aspect of organic PCMs considerably when aimed at building applications.   
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2.3.2.2. Inorganic  

Inorganic phase change materials of interest consist of hydrated salts and metallics. For building 

applications however, metallics are not within the desired temperature range and in addition they have 

severe weight penalties making the unsuited. Hydrated salts consist of an alloy of inorganic salts and 

water and enable a cost-effective PCM due to easy availability and low cost. The phase change 

transformation involves hydration or dehydration of the salts in a process that resembles typical 

melting and freezing. The salt hydrate may either melt to a salt hydrate containing less water or to an 

anhydrous form where salt and water is completely separated [71].  

The salt hydrates possess a significant storage capacity and operate phase transition at ambient 

temperature. Many studies focused on the calcium chloride hexahydrate, sodium sulphate and 

magnesium chloride hexahydrate because of their availability, moderate costs and non-flammability. 

Salt hydrates have a density of around 1700kg/m³, which is twice higher than for paraffins. With a 

maximum latent heat of around 200J/g, their heat storage on a per volume basis is around 350MJ/m
3
, 

which is much higher than organic products. 

Another significant advantage is their thermal conductivity (around 0.5W/mK), which is also higher 

compared to organic materials. However, these products become chemically instable at high 

temperature. Heating cycles cause continuous dehydration of the PCM and the heat storage capacity 

usually degrades over time. Moreover, most salt hydrates melt incongruently with the formation of a 

lower form product. This irreversible process is an additional drawback for their long term 

performance. The liquid phase separation and segregation can be prevented by addition of gelling or 

thickening agents. Subcooling is another problem associated with salt hydrates. The phenomenon is 

characterized by a solidification of the product below its phase transition temperature. It can be 

reduced by inducing heterogeneous nucleation in the salt hydrates thanks to nucleators or direct 

contact with an immiscible heat transfer fluid [70]. 

 

2.3.2.3. Eutectic mixtures  

A eutectic is a minimum melting composition of two or more components, each of which melts and 

freezes congruently. During the crystallization phase, a mixture of the components is formed, hence 

acting as a single component. The components freeze to an intimate mixture of crystals and melt 

simultaneously without separation ([70]). Eutectics can be mixtures of organic and/or inorganic 

compounds. Hence, eutectics can be made as either organic–organic, inorganic–inorganic or organic–

inorganic mixtures ([10]). This gives room for a wide variety of combinations that can be tailored for 

specific applications. Of organic eutectic mixtures, the most commonly tested consist of fatty acids. 

Some organic eutectics that have been studied include capric acid/myristic acid ([57]), lauric 

acid/stearic acid, myristic acid/palmitic acid and palmitic acid/stearic acid ([97]) and capric acid/lauric 

acid ([107]). The most common inorganic eutectics that have been investigated consist of different salt 

hydrates. The benefits of eutectic mixtures are their ability to obtain more desired properties such as a 

specific melting point or a higher heat storage capacity per unit volume. Though it has been given 

significant interest over the last decade by researchers, the use of eutectic PCMs for use in (LHTS) 

systems is not as established as pure compound PCMs. Hence, thermos physical properties of eutectics 

is still a field for further investigations as many combinations have yet to be tested and proved. 

In conclusion, it´s possible to see that there is no a perfect product for Latent Heat Thermal Energy 

Storage (LHTES) in the temperature range 19ºC-25ºC. Fig. 2.12. shows that very few of them present 

latent heat above 20J/g. Organic PCMs offer better chemical and thermal stability with congruent 
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melting and they exhibit little or no subcooling. On the other hand, inorganic products suffer from 

cycling instability, require nucleating and thickening agents to minimize subcooling and are highly 

reactive to metal materials. Therefore, the organic PCMs seem to be the most appropriate for low 

temperature building thermal energy storage (TES) application [73]. 

 

Fig. 2.12. - Compilation of PCM thermal properties [73] 

In short, the comparison between different kinds of PCM is synthetized on Table 2.3. 

 

Table 2.3 - Comparison of the different kinds of PCMs 

Classification Advantages Disadvantages 

Organic 

PCMs 

1. Availability in a large 

temperature range 

2. High heat of fusion 

3. No supercooling 

4. Chemically stable and 

recyclable 

5. Good compatibility with 

other materials 

1. Low thermal conductivity 

(around 0.2W/mK) 

2. Relative large volume change 

3. Flammability 

Inorganic 

PCMs 

1. High heat of fusion 

2. High thermal 

conductivity (around 

0.5W/mK) 

3. Low volume change 

1. Supercooling 

2. Corrosion 
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4. Availability in low cost 

Eutectics 

1. Sharp melting 

temperature 

2. High volumetric 

thermal storage density 

Lack of currently available test 

data of thermo-physical 

properties 

  

 

To be a desirable material used in latent heat storage systems, the following criteria need to be met: 

thermodynamic, kinetic, chemical and economic properties, which are shown in Table 2.4 [8]. 

 

Table 2.4 - Selection criteria [8] 

Thermodynamic properties 

(1) Melting temperature in desired range 

(2) High latent heat of fusion per unit volume 

(3) High thermal conductivity 

(4) High specific heat and high density 

(5) Small volume changes on phase transformation and small 

vapor pressure at operating temperatures to reduce the 

containment problems 

(6) Congruent melting 

Kinetic properties 

(1) High nucleation rate to avoid super cooling 

(2) High rate of crystal growth to meet demands of heat 

recovery from the storage system 

Chemical properties 

(1) Complete reversible freezing/melting cycle 

(2) Chemical stability 

(3) No degradation after a large number of freezing/ melting cycle 

(4) No corrosiveness 

(5) No toxic, no flammable and no explosive material 

Economic properties 
(1) Effective cost 

(2) Large-scale availabilities 

 

 

2.4. CHAPTER SYNTHESIS 

In this chapter we explained the definition of PCM and introduced the various types of existing PCMs, 

divided, in general, into organic, inorganic and eutectic compounds. Organic compounds are seen as 

the most stable at thermal level. 
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It has been demonstrated that the principle of operation of PCMs is simple, but that assessing their 

effectiveness in contributing to latent heat storage and consequently increasing the energy 

performance of a building can be a challenge.  

The thermal properties are considered as the decisive criterion for choosing the most suitable PCM, 

highlighting the PCM fusion temperature as the most relevant parameter to make it effective in a given 

interior environment. Studies argue that the value of the melting temperature should not differ by more 

than 3ºC relative to the average temperature of a given space.  
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3 

PCMs FOR BUILDINGS: 
PROPERTIES AND METHODS OF 

INCLUSION 

 

 

3.1. INTRODUCTION 

PCMs utilize the principle of latent heat thermal storage (LHTS) to absorb energy in large quantities 

when there is a surplus and releasing it when there is a deficit. Correct use of PCMs can reduce peak 

heating and cooling loads, i.e. reduce energy usage, and may also allow for smaller dimensions of 

technical equipment for heating and cooling. An added benefit is the ability to maintain a more 

comfortable indoor environment due to smaller temperature fluctuations [60].  

Thermal energy storage with phase change materials (PCMs) offers a high thermal storage density 

with a moderate temperature variation, and has attracted growing attention due to its important role in 

achievement energy conservation in buildings with thermal comfort [30]. 

Various methods have been investigated by several researches to incorporate PCMs into building 

structures, and it has been found that with the help of PCMs the indoor temperature fluctuations can be 

reduced significantly whilst maintaining desirable thermal comfort. 

Using latent heat storage in the buildings can meet the demand for thermal comfort and energy 

conservation purpose. This chapter mainly focuses on latent thermal energy storage in building 

applications, impregnation PCMs into conventional construction materials, current building 

applications and thermal performance, as an introduction to chapter 4. 

 

3.2. MEASUREMENT OF THERMAL PROPERTIES OF PCMS 

3.2.1. INTRODUCTION 

As already mentioned, the process of selecting a suitable PCM is very complicated but crucial for 

thermal energy storage. The potential PCM should have a suitable melting temperature, desirable heat 

of fusion and thermal conductivity specified by practical application.  

The correct design of the building or storage system with integrated PCMs requires correct knowledge 

of the thermal properties of the PCMs used. The single data points that the phase change enthalpy at 

the melting temperature or the heat of fusion do not describe phase change materials properties with 

accuracy to perform dynamic simulations of a building or a compartment containing PCM [31]. 
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Remembering, the phase change occurs in a temperature range and not at constant temperature level, 

and therefore specific heat capacity or enthalpy of this type of material has to be known as a function 

temperature. 

There are many existing measurement techniques, among which differential scanning calorimetry 

(DSC) and differential thermal analysis (DTA) are most commonly used, nevertheless another 

measurement techniques will be mentioned as the T-history method.  

 

3.2.2. DIFFERENTIAL SCANNING CALORIMETRY (DSC) 

One of the most important properties is the enthalpy–temperature relationship, h(T). When this 

relationship is determined using conventional differential scanning calorimetry (DSC) with standard 

methods and procedures, results for PCM are often wrong. The enthalpy values from heating/cooling 

are systematically shifted to higher/lower temperatures. This temperature shift originates from a 

temperature gradient inside the PCM and depends on the heating/cooling rate and sample mass [19]. 

There are different possibilities to use a DSC in thermal analysis of PCM, but the most common used 

are the dynamic method and the step method [11]. 

The most widely used scanning mode consists of heating and cooling segments at constant rates 

(dynamic method). A typical temperature program and corresponding signal are shown in Fig. 3.1. 

 

 

Fig. 3.1. - Typical heat flow and temperature evolution during a dynamic DSC measurement with constant heating 
rate [11] 

So, after a graphic interpretation, the peaks indicate strong thermal effects of the sample at the 

corresponding temperatures. 

According to Luisa F. Cabeza et al. [19], the dynamic method is commonly used for the determination 

of melting enthalpies. For heat storage applications, the interesting value is the sum of both latent and 

sensible heat.  
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In this case, good sensitivity also for small signals is necessary. This is accomplished using the heat 

flow rate calibration. For the determination of enthalpy, a dynamic program is executed three times: 

 First, with the empty crucible to generate the baseline; 

 Second, with a standard material (usually sapphire) in the same receptacle to generate the 

standard line; 

 Third, with the sample in the same receptacle to generate the sample line. 

From the heat flux, the specific heat as a function of temperature can be obtained with the DSC 

software using the baseline, the sapphire and the sample heat–flux signal and the enthalpy is 

determined by integration. 

M. Pomianowski et al. [31] point out that measurement with different heating rates and that different 

sample masses gave results that differ considerably from each other and the dynamic mode is not the 

proper approach so instead of the dynamic mode an isothermal step mode or T-history method should 

be used. In the article, it is also mentioned that DSC in general is not suitable for heterogeneous 

materials, and the shortcomings and some sensitivity analysis of dynamic DSC measurements are 

discussed and presented in [32]. 

Another measurement routine is the step method. Here, the heating or cooling is not continuous, but 

small heating ramps are followed by periods in which the temperature is kept constant to allow the 

sample to reach thermal equilibrium. The resulting temperature program has small steps, and the 

signal created is a sequence of different peaks [19].  

A typical temperature program and resulting signal is shown in Fig. 3.2. Different peaks indicate 

different amounts of heat transferred in the respective temperature interval. 

 

Fig. 3.2. - Typical heat flow and temperature evolution during DSC measurement with the step method, here 
shown for heating [11] 
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In the step method, the evaluation considers only peak areas and the exact shape of the baseline has no 

influence on the resulting enthalpy-temperature relationship. 

The main limitation of DSC is the conditions the sample must accomplish: it should be small, pure, 

and homogeneous. This is an enormous limitation because there are many samples that cannot achieve 

homogeneous conditions since they are a composite materials or a mixture of different components.  

G. Feng et al. [56] summarized the impact of misjudged effective capacity function on the simulated 

thermal storage and releasing effect of the PCM floor. It was found that for the same PCM, the 

detected results were significantly distinct. Repeated DSC tests were arranged to discover the 

influence of heating rate and sample mass on the detected PCM parameters. Errors with 33%- 883% 

deviation for phase transition range of PCM were discovered for the improperly arranged tests. These 

parameters were used in the PCM floor simulation and a maximum difference of 20% was observed 

for the floor surface temperature, which greatly influenced the prediction of the simulation. The 

research show the importance of setting standard DSC tests and ascertaining right PCM parameters in 

simulations related to PCM system design. 

 

3.2.3. DIFFERENTIAL THERMAL ANALYSIS (DTA) 

In DTA test, the heat applied to the sample and the reference remains the same (rather than the 

temperature in DSC test). The phase change and other thermal properties can then be tested through 

the temperature difference between the sample and the reference. 

Technically, differential thermal analysis (DTA) is a technique which combines the ease of 

measurement of heating or cooling curves with the quantitative features of calorimetry. Temperature is 

measured continuously as for heating or cooling curve determinations, and the differential temperature 

measurement permits the calculation of the heat flow difference between reference and sample, which 

are kept in almost identical environments. Fig. 3.3. schematically shows a DTA apparatus using 

thermocouples for measurement [194]. 

 

Fig. 3.3. - Schematic diagram of DTA apparatus [194] 
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3.2.4. T-HISTORY METHOD 

Zhang and Jiang [22] analysed the limitations of conventional methods including conventional 

calorimetry, differential scanning calorimetry (DSC) and differential thermal analysis (DTA), and then 

put forward a new method called T-history method to determine the melting temperature, degree of 

supercooling, heat of fusion, specific heat and thermal conductivity of PCMs. They made the 

measurement of some PCMs through this method and found a desirable agreement between their test 

results and experimental date available in literatures. Hong et al. [23] modified T-history method by 

improving some improper assumptions in the method by Zhang and Jiang [22]. Peck et al. [24] also 

improved this measurement method by setting the test tube horizontally which can minimise the 

temperature difference along the longitudinal direction of the test tube to get more accurate data from 

T-history method. 

T-history method is based on an air enclosure where temperature is constant and two samples are 

introduced at a different temperature from the temperature in the air enclosure. During the heating or 

cooling process, three temperatures are registered, that of the ambient (air enclosure), and those of the 

two samples. The two samples are one reference substance whose thermal properties are known 

(frequently water) and one PCM whose thermal properties should be determined with the results of the 

test.  

At the University of Zaragoza (Spain), Marín et al. [15] made improvements in order to obtain 

enthalpy vs. temperature curves. They based their improvements on finite increments method. 

Other properties can be studied like subcooling and hysteresis analysing the enthalpy–temperature 

curves. The set-up developed is seen in Fig. 3.4. 

 

Fig. 3.4. - T-history the set-up available at the University of Zaragoza, Spain [16] 

Fig. 3.5. shows an example of h vs. T curves obtained in a T-history installation. Detailed information 

about methodology of verification of a T-History installation proposed by University of Zaragoza in 

collaboration with ZAE Bayern is given by Lázaro et al.[16]. 

Updates of this methodology can be found in the review published by Solé et al. [18]. 
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Fig. 3.5. - Enthalpy-temperature curves obtained for an organic and an inorganic PCM with the T-history method 
[16] 

3.2.5. METHODS APPRAISAL 

The difference between the methods differential scanning calorimetry (DSC) and differential thermal 

analysis (DTA) is that in the first, the energy supplied to the sample and the reference is always the 

same, with temperature differences between them (sample and reference) occurring whenever a 

reaction occurs in the sample [1]. 

The main advantages of the T-history method compared to differential scanning calorimetry (DSC) are 

[19]: 

 Precision in energy and temperature measurement; 

 Sample mass and heating and cooling rate similar to application; 

 Other properties can be studied like subcooling and hysteresis analysing the Enthalpy vs. 

Temperature curves. 

Although DSC with isothermal step mode and T-history methods are well-developed, they share the 

same shortcoming – the sample tested has to be homogeneous. In the recent publication [48], a new 

experimental set-up and various calculation methods to determine the specific heat capacity of 

inhomogeneous concrete with microencapsulated-PCM was suggested. In another publication [49], 

using experimental data from [48] authors go one step further and compare three different 

optimization algorithms to define which one is the most effective. 

 

3.3. THERMAL STABILITY OF PCMS 

For successful large scale application of PCMs into the building sector it is crucial that the PCM and 

PCM-container system can withstand cycling over an extended period of time without showing signs 

of degradation [60]. 

There are two main factors which oversee the long-term stability of PCM storage materials: Poor 

stability of the materials, e.g. supercooling and phase segregation, and corrosion between the PCM and 

the container system [77,109].  

The long term stability of the PCMs is required by the practical applications of latent heat storage, and 

therefore there should not be major changes in thermal properties of PCMs after undergoing a great 

number of thermal cycles. Thermal cycling tests to check the stability of PCMs in latent heat storage 

systems were carried out for organics, salt hydrates and salt hydrates mixtures by many researchers 

[25–29]. Some potential PCMs were identified to have good stability and thermo-physical properties.  
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Shukla et al. [109] carried out the thermal cycling tests for some organic and inorganic PCMs selected 

based on thermal, chemical and kinetic criteria, developed on chapter 2, and their results showed that 

organic PCMs tend to have better thermal stabilities than inorganic PCMs.  

Accelerated ageing tests on stearic acid and paraffin wax, both organic PCMs, have been conducted by 

Sharma et al. [28]. Both stearic acid and paraffin wax performed well and showed no regular 

degradation of their melting point over 1500 thermal cycles. However, of the fatty acids, palmitic acid 

and myristic acid showed to have the best long-term stability [96], which may make them more suited 

for building applications compared with other fatty acids. 

A comprehensive review on the thermal stability of organic, inorganic and eutectic PCMs has recently 

been given by Rathod and Banerjee [88]. This work covers the investigations on thermal stability of 

PCMs done over the past few decades. Paraffins have shown good thermal stability. For fatty acids the 

purity plays an important role. Industrial grade fatty acids may experience changes in its thermal 

behaviour over time and should be tested by accelerated ageing. Of inorganic PCMs, salt hydrates are 

the most widely studied. Most studies have shown that the thermal stability of salt hydrates is poor due 

to phase separation and supercooling. However, the thermal stability may be improved to a certain 

extent by introducing gelled or thickened mixtures and suitable nucleating materials. In general, new 

building materials, components and structures should be examined by accelerated climate ageing [50], 

the PCMs are no exception. Furthermore, a robustness assessment may also be performed [52]. 

Tyagi and Buddi [51] conducted the thermal cycling test for calcium chloride hexahydrate and found 

minor changes in the melting temperature and heat of fusion, only about 1ºC–1.5ºC and 4% average 

variation respectively during the 1000 thermal cycles. They recommend the calcium chloride 

hexahydrate to be a promising PCM for applications. 

 

3.4. HEAT TRANSFER ENHANCEMENT 

Most PCMs suffer from the common problem of low thermal conductivities, being around 0.2W/m.K 

for paraffin wax and 0.5W/m.K for hydrated salts and eutectics, which prolong the charging and 

discharging periods. Various techniques have been proposed to enhance the thermal conductivities of 

the PCMs, such as filling high-conductivity particles into PCMs [32], incorporating porous matrix 

materials into PCMs [33–38], inserting fibrous materials [39], as well as macro and micro 

encapsulating the PCMs [40,41].  

Bugaje [32] reported that the phase change time is one of the most important design parameters in 

latent heat storage systems and found adding aluminium additives into paraffin wax can significantly 

reduce the phase change time in heating and cooling processes. However, this method results in 

weight increasing and high cost of the system. Metal foams manufactured by sintering method, have 

many desirable characteristics such as low density, large specific surface area, high specific strength-

to-density ratio as well as high thermal conductivity. All these desirable properties offered by metal 

foams make them to be promising in heat transfer enhancement for PCMs.  

Boomsma et al. [33] found using open-cell metal foams in compact heat exchangers generated thermal 

resistances twice and three times lower than the best commercially available heat exchanger tested. 

Thermal transport in high porosity open-cell metal foams was experimentally and numerically 

investigated in [34, 35], in which it is found that the effective thermal conductivity increases rapidly as 

temperature increases and porosity decreases.  

Tian and Zhao [36] conducted a numerical and experimental investigation of heat transfer in PCMs 

enhanced by metal foams, and their experiment showed a significant increase of heat transfer rate. 
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Their numerical simulations employed two-equation non-thermal equilibrium model to account for 

coupled heat conduction and natural convection, and a good agreement with experimental data was 

achieved. They reported that metal foams suppress natural convection whilst promoting heat 

conduction significantly, with the overall heat transfer rate still being higher than the pure PCMs. 

Py et al. [38] impregnated paraffin wax in a graphite matrix by employing capillary forces, and a high 

thermal conductivity and stable power output were observed. Fukai et al. [39] found carbon fibers 

improved the heat exchange rate during the charge and discharge processes even when the volume 

fractions of carbon fibers were only about 1%. Zhou et al. [42] carried out relevant experiments to 

compare the effects of metal foams and graphite materials on heat transfer enhancement, and the 

results indicate that both metal foams and expanded graphite can enhance heat transfer rate in thermal 

storage system, with metal foams showing a much better performance than expanded graphite. 

 

3.5. INCLUSION OF PCMS INTO CONSTRUCTION MATERIALS 

3.5.1. INTRODUCTION 

Various methods of PCM incorporation have been investigated in the literature. Hawes et al. [20] 

considered three most promising methods of PCM incorporation: direct incorporation or impregnation, 

immersion and encapsulation.  

D. Zhou et al. [30] refer that the melting and freezing temperatures of PCMs varied slightly when 

being incorporated in building materials. In addition, PCM can be used in the form of a single 

laminated board and combined with other envelope components [33, 35]. 

 

3.5.1.1. Direct incorporation or Impregnation 

It is the simplest and the most economical method in which liquid or powdered PCM are directly 

added to building materials such as gypsum, concrete or plaster during production. No extra 

equipment is required in this method but leakage and incompatible with construction materials may be 

the biggest problems [30]. 

An example of this method is a laboratory scale energy storage gypsum wallboard produced by the 

direct incorporation of 21%-22% commercial grade butyl stearate (BS) at the mixing stage of 

conventional gypsum board production [21].  

The Fig. 3.6. shows H. Ferreira [68], experiment in which the concrete samples were impregnated in 

paraffin (RT24).  

 

 

 

 

 

 

 

Fig. 3.6 - Impregnation of RT24 [68] 
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3.5.1.2. Immersion 

In this method, the porous building material (such as gypsum board, brick, or concrete block) is 

dipped into the hot melted PCM, which is absorbed into the pores by capillary action (when a porous 

material, such as a brick or a wick, is brought into contact with a liquid, it will start absorbing the 

liquid at a rate which decreases over time, when considering evaporation, liquid penetration will reach 

a limit dependent on parameters of temperature, humidity and permeability) [78].  

The porous material is removed from the liquid PCM and allowed to cool and the PCM remains in the 

pores of the building material [38]. The great advantage of this method is that it enables one to convert 

ordinary wallboard to PCM wallboard as required, since impregnation can be carried out at practically 

any time and place [37].  

Hawes and Feldman [39] examined the mechanisms of absorption and established a means of 

developing and using absorption constants for PCM in concrete to achieve diffusion of the desired 

amount of PCM. However, as Schossig et al. [40] pointed out, leakage may be a problem over a period 

of many years for this method. 

 

3.5.2. ENCAPSULATION 

To escape the adverse effects of PCMs on the construction material, phase change materials can be 

encapsulated before incorporation. There are two principal means of encapsulation: macroencapsula-

tion and microencapsulation [78]. 

3.5.2.1. Macroencapsulation 

The technology with PCMs encapsulated in a container, for example, tubes, spheres or panels, is 

called macroencapsulation. The RUBITHERM produces a kind of PCM panels called CSM modules 

which were made from aluminium with an efficient anti-corrosion coating, shown in Fig. 3.7. [44].  

 

 

Fig. 3.7. - CSM panel containing the PCM [44] 

https://en.wikipedia.org/wiki/Brick
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They can fit many commercial PCMs. With macroencapsulated PCMs, the leakage problem can be 

avoided and the function of the construction structure can be less affected. It has the disadvantages of 

poor thermal conductivity, tendency of solidification at the edges and complicated integration to the 

building materials [78]. 

Via macroencapsulation, Zhang et al. [47] developed and tested a frame wall that integrated highly 

crystalline paraffin PCM. Results showed that the wall reduced peak heat fluxes by as much as 38%. 

However, macroencapsulation has the disadvantage of needing protection from destruction and 

requires much more work to be integrated into the building structure, and is thus expensive. 

Fig. 3.8. shows more examples of macroencapsulated PCM. 

 

Fig. 3.8. – Macroencapsulated phase change materials (PCM) [1] 

3.5.2.2. Microencapsulation 

Nowadays, microencapsulated PCMs have been used in thermal energy storage of buildings. The 

Microcapsules may be spherical, continuous-walled (Fig.3.9.), or may be asymmetric, in various 

forms. The three states of matter (solid, liquid and gaseous) can be microencapsulated. The polymeric 

film serving as a microcapsule must be compatible with PCM and building materials [1]. 

 

 

Fig. 3.9. - Microencapsulated phase change materials (PCM) [1] 

Microencapsulation is a technology in which PCM particles are enclosed in a thin, sealed and high 

molecular weight polymeric film maintaining the shape and preventing PCM from leakage during the 

phase change process (Fig.3.10.). It is much easier and more economic to incorporate the micro-

encapsulated PCMs into construction materials [78]. 
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Fig. 3.10. - Image of PCM micro-capsules in gypsum plaster. The PCM micro-capsules with an average diameter 
of 8µm are homogeneously dispersed between the gypsum crystals [40] 

 

Hawlader et al. [97] conducted thermal analyses and thermal cycle tests on microencapsulated paraffin 

and found that the microencapsulated paraffin still kept its geometrical profile and heat capacity after 

1000 cycles. Their investigation captures the influence of different parameters on the characteristics 

and performance of a micro-encapsulated PCM in terms of encapsulation efficiency, and energy 

storage and release capacity. Results obtained from a DSC show that micro-capsules prepared either 

by coacervation or the spray-drying methods have a thermal energy storage/release capacity of about 

145kJ/kg –240kJ/kg. Hence, micro-encapsulated paraffin wax shows a good potential as a solar-

energy storage material.  

Some researchers think that the microencapsulated PCMs incorporated in the buildings structures may 

affect the mechanical strength of the structure [89].  

Cabeza et al. [46] designed two concrete cubicles with the same shape and size, one with 

microencapsulated PCMs called Mopcon concrete and the other one without PCMs respectively, in 

order to find the possibility of using microencapsulated PCMs in construction materials to achieve 

sizable energy conservation without significantly decreasing the mechanical strength of the concrete 

structures at the same time. They found Mopcon concrete reached a compressive strength over 25MPa 

and a tensile splitting strength over 6MPa which had already met the requirements in general structural 

purpose. However, the applications of microencapsulated PCMs still need further investigation in the 

aspect of safety, such as fire retardation capability.  

Recently, National Gypsum produced a kind of wallboard panels with Mirconal PCM produced by 

BASF. This kind of panels is called National Gypsum ThermalCORE Panel, shown in Fig. 3.11. The 

melting point and latent capacity are 23ºC and 22 BTU/ft2, respectively. 
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Fig. 3.11. - (a) Gypsum wall board with Micronal PCM (from BASF); (b) thermalCORE phase-change drywall 
(from National Gypsum) [46] 

One of the most widely studied and disclosed constructive solutions are the use of micro-encapsulated 

PCMs in gypsum plasterboard [1]. This and other constructive solutions with PCM are developed in 

Chapter 4. 

 

3.5.3. SHAPE-STABILISED PCMS 

In recent years, a kind of novel compound PCM, the so called shape-stabilized phase change material 

SSPCM, (Fig. 3.12) has been attracting the interest of researchers [54, 55, 98–102]. It consists of 

paraffin as dispersed PCM and high-density polyethylene (HDPE) or other material as supporting 

material. 

 

 

 

 

 

 

 

 

 

 

 

Since the mass percentage of paraffin can be as much as 80% or so, the total stored energy is 

comparable with that of traditional PCMs.  

So, shape-stabilized PCM are attracting increasing attention due to their large apparent specific heat, 

suitable thermal conductivity, the ability to keep the shape of PCM stabilised in phase change process, 

as well as a good performance of multiple thermal cycles over a long period [98–100].  

Fig. 3.12. - The photos of the shape-stabilized PCM. (a) Photo of the plate and (b) electronic 
microscopic picture by scanning electric microscope (SEM) HITACHI S-450 [49] 
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Zhang et al. [54] considered the shape-stabilised PCM, which is shown above in Fig. 3.12., and found 

that it can make the thermal storage system simpler as it does not need special devices or containers to 

encapsulate the PCM. Based on the above benefits of this shape-stabilised PCM, they also proposed its 

potential application in efficient buildings used as inner linings, such as inner wall, ceiling and floor. 

Zhou et al. [55] simulated the thermal performance of a middle direct gain room with the shape-

stabilised PCM plates as inner linings and examined several influencing factors to thermal 

performance such as melting temperature, heat of fusion, location and board thickness of the shape-

stabilised PCM. Their results indicated the PCM plates were advantageous in direct-gain passive solar 

houses. 

 

3.5.4. CONTAINERS 

The conventional construction materials, such as gypsum board, concrete, brick and plaster, can be 

used to hold PCMs. Some other panels, such as PVC panels, CSM panels, plastic and aluminium foils 

can also be used to encapsulated PCMs. This subject is developed in chapter 4. 

 

3.6. POTENTIAL PCMS FOR BUILDING APPLICATIONS 

As we know, many factors influence the indoor air temperature of a building. These include climate 

conditions (outdoor temperature, wind velocity, solar radiation, and others), building structure and the 

building material´s thermophysical properties (wall thickness, area ratio of window to wall, thermal 

conductivity and specific heat of wall material), indoor heat source, air change rate per hour and 

auxiliary heating/cooling installations [78]. 

Fig. 3.13. indicates that the difference between the indoor temperature and the comfort range 

determines the heating and cooling load when there is no space heating and cooling. Therefore, the 

heating and cooling load will decrease with decreasing this temperature difference [6]. 

 

 

Fig. 3.13. - The indoor/outdoor air temperature and heating/cooling load [6] 
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For a certain building placed in a specific region, the building structure parameters such as wall 

thickness, area ratio of window to wall, cubage of the room, are known, however the outdoor 

temperature and solar energy change with the different hour and day during the entire year. Then, with 

a certain interior heat source, the natural room temperature (i.e., the room temperature without any 

active cooling or heating) depends on the material thermophysical properties (thermal conductivity, λ, 

and specific volumetric heat, C (the product of the density by the material´s specific heat, 𝑝. 𝑐𝑝)).  

If there are certain building materials whose λ and 𝑝. 𝑐𝑝 values can make the given room meet the 

condition 𝐼𝑤𝑖𝑛 = 𝐼𝑠𝑢𝑚 ≈ 0, ( being  𝐼𝑤𝑖𝑛, integrated discomfort level for indoor temperature in winter 

and 𝐼𝑠𝑢𝑚, integrated discomfort level for indoor temperature in summer), we can call these materials 

ideal building materials. This means that the indoor temperature will be in the comfort range all year 

round without auxiliary heating or cooling. As an example, Fig.3.14 shows the comparison between 

the ideal material (in reality, it is very difficult to find this kind of material) and concrete buildings [6]. 

The application of PCMs in building can have two different goals. Firstly, using natural heat, that is 

solar energy, for heating or night cold for cooling. Secondly, using artificial heat or cold sources. In 

any case, storage of heat or cold is necessary to match availability and demand with respect to time 

and also with respect to power. Basically, there are three different ways to heating or cooling a 

building. They are: 

 PCMs in building walls; 

 PCMs in other building components other than walls; 

 PCMs in heat and cold storage units. 

The first two options are passive systems, where the heat or cold stored is automatically realised when 

indoor or outdoor temperature rises or falls beyond the melting point. The last one is an active system, 

where the stored heat or cold is in containment thermally separated from the building by insulation, so 

the heat or cold is only used on demand not automatically. Some authors classified passive systems 

applications in the building envelope into two main categories, PCM “integrated” and PCM as 

“component”. PCM applications with active and passive systems are summarized in the synthetic 

diagram shown in Fig. 3.15. 

Fig. 3.14 - Indoor temperatures of a room applying concrete and ideal building materials [6] 
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Fig. 3.15. - A synthetic diagram of PCM cooling applications, adap.[14] 

The main difference between them is that component can be manufactured before the building being 

constructed and have a particular design. For example, blinds with integrated PCM are considered as 

component [7]. 

Moreover, Kalnæs and Jelle [60] presented many examples of integration of phase change materials 

for passive systems, exploring possible areas and materials where PCM can be usefully incorporated. 

Pomianowski et al. [31] presented various construction materials of the building (gypsum and wall-

boards, concrete, bricks) which where blended or combined with PCM in passive systems. Zhue et al. 

[8] presented an extensive list of PCM passive systems investigated experimentally with important 

results. Different possibilities of the use of PCM and their application in the American Solar 

Decathlon, including the descriptions of the systems and the factors that affect their performance, as 

well as results of simulations and experimentation were presented by Rodriguez-Ubinas et al. [10]. 

Soares et al. [9] also explored PCM application in passive systems, and investigated the effect of these 

systems on the energy performance of buildings. Examples of passive system applications are 

presented and developed in the chapter 4.    
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As mentioned above, PCMs incorporated in building envelopes (PCM walls, PCM roof or ceiling and 

PCM floor) used for passive solar heating in winter can increase thermal capacity of light building 

envelopes, thus reducing and delaying the peak heat load and reducing room temperature fluctuation. 

Several PCM applications in buildings such as passive solar heating, active heating and night cooling 

are shown in Fig. 3.16. [6].  

Fig. 3.16. - The forms and effects of PCM building envelope [6] 

So, PCMs can provide high latent heat thermal energy storage (LHTES) density over the narrow range 

of temperatures typically encountered in buildings. Therefore, they are taken into account for 

application. 

Thermal comfort can be defined by the operating temperature that varies by the time of the year. The 

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) have listed 

suggested temperatures and air flow rates in different types of buildings and environmental 

circumstances. Normally, the suggested room temperature is 23.5ºC–25.5ºC in the summer and 

21.0ºC– 23.0 ºC in the winter. In the building applications, the PCMs with a phase change temperature 

(18ºC–30ºC) are preferred to meet the need of thermal comfort [30]. 

As it is well known, inorganic PCMs, typically hydrated salts have some attractive properties such as a 

higher energy storage density, a higher thermal conductivity, being non-flammable, being inexpensive 

and readily available. However, they also have some obvious disadvantages such as being corrosive, 

being incompatible with some building materials and needing supporting containers. Some organic 

PCMs are getting more and more attention due to the avoidance of the problems inherent with 
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inorganic PCMs. They have little supercooling and segregation, and are compatible with and suitable 

for absorption in various building materials, though, they are flammable and have volume changes and 

low heat conductivity, which are concerns in many recent studies [20]. Eutectic or non-eutectic 

mixtures of organic or inorganic PCMs could be used to deliver the desired melting point required. 

Shape-stabilized are being applied in building envelopes due to their good thermal performance over a 

long period, and form stability during heat melting and solidification, which remarkably distinguishes 

them from common organic PCMs. Also, shape-stabilized PCMs can be easily compounded with 

common building materials for their shape stability and then can be manufactured into various 

composite building materials. Fig. 3.17 demonstrates comparative values storage capacity of building 

materials in the same conditions. 

 

Fig. 3.17. - Comparative values storage capacity of building materials in the same conditions [75] 

 

For a comprehensive understanding of the potential PCMs that can be applied in buildings, the suitable 

PCMs investigated in the literature are listed in Table 3.1. and Table 3.2. 

Table 3.1. - Thermal properties of commercial PCMs 

PCMs 

Melting 

temperature 

(ºC) 

Heat of 

fusion 

(kJ/kg) 

Specific heat 

(kJ/kg K) 

Thermal 

conductivity 

(W/m K) 

RT 20 22 172   

RT 25 25 147 2,90 (s) 1,02 (s) 

   2,10 (l) 0,56 (l) 

RT 27 26 - 28 179 1,80 (s) 0,20 

   2,40 (l)  

STL 27 27 213   

Climsel C23 23 148   
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Climsel C24 24 216   

S 27 27 190 1,50 (s) 0,79 (s) 

   2,22 (l) 0,48 (l) 

TH 29 29 188   

SP 22 A 17 22 150  0,60 

SP 25 A 8 25 180 2,50 0,60 

SP 29 29 157  0,60 

 

 

Table 3.2. - Commercial PCMs available in the International market 

PCM Name 
Type of 

Product 

Melting 

Point (ºC) 

Heat of Fusion 

(kJ/kg) 

RT 20 Paraffin 22 172 

Climsel C23 Salt hydrate 23 148 

Climsel C24 Salt hydrate 24 216 

RT 26 Paraffin 25 131 

RT 25 Paraffin 26 232 

STL 27 Salt hydrate 27 213 

S27 Salt hydrate 27 207 

RT 30 Paraffin 28 206 

RT 27 Paraffin 28 179 

TH 29 Salt hydrate 29 188 

Climsel C32 Salt hydrate 32 212 

RT 32 Paraffin 31 130 

 

 

3.7. CHAPTER SYNTHESIS 

With the above methods, extensive advances have been made on the thermal performance of PCM 

applications in buildings such as PCM walls, PCM ceiling, PCM floor with electric heating, and night 

ventilation etc. 

When selecting PCMs, their phase change temperature should be close to the average room 

temperature and appropriate values should be required for latent heat and thermal conductivity. Other 

properties such as fire characteristics and long-term stability should also be considered for organic and 

inorganic PCMs, respectively. PCMs can be integrated by direct incorporation, immersion, and 

encapsulation or as a single laminated panel. SSPCM is a promising encapsulation method due to the 
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effectiveness in reducing the danger of leakage as well as its relatively low cost. Thermal analyses 

showed that PCM walls, floor and ceiling etc. can be effective in shifting heating and cooling load 

from peak electricity periods to off-peak periods, or storing solar radiation for use during sunless 

hours. 
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4 

PCM SOLUTIONS FOR BUILDINGS 

 

 

4.1. INTRODUCTION 

The use of phase change materials (PCM) in the buildings is a possibility to achieve the reduction of 

energy dependency as it allows the use of latent heat storage to increase the thermal inertia without 

significantly increasing the building weight.  

It´s was explained in the previous chapters that PCM-enhanced materials function as lightweight 

thermal-mass components of buildings, and contribute to reducing energy use in buildings and to the 

development of “net-zero-energy” buildings through their ability to reduce energy consumption for 

space conditioning and peak loads [4]. 

The use of PCM, to ensure the thermal inertia, in addition to the use of thermal insulation and shading 

systems, allows the reduction of the winter heat losses and summer heat gains. The use of solar gains, 

night cooling and off-peak electricity will reduce the evening temperature fluctuations and peak 

temperatures, increasing comfort conditions inside buildings. These measures will lower both annual 

energy consumption and the maximum power consumption, saving energy and running costs, for both 

heating and cooling seasons, both in residential or office buildings and have potential for application 

in retrofit projects [2, 4]. 

The phase change in the PCM takes place over a small temperature span thus large amounts of energy 

can be stored by small temperature change in the PCM [2]. This means that PCM will not absorb any 

heat from the air until it has reached the desired temperature range, thus only excess heat will be 

stored. PCM can be used to store or extract heat without substantial change in temperature. Hence it 

can be used for temperature stabilization in a building. The main advantage of PCM is that, depending 

on the PCM type, it can store about 3 to 4 times more heat per volume than sensible heat in solids and 

liquids at an approximate temperature of 20°C [5]. 

Between all phase change materials possible applications in buildings, the most interesting is its 

incorporation in construction materials altering their materials thermal properties. The PCM may be 

used for thermal storage of passive solar heating being integrated in the floor, walls or ceilings, as well 

as being an integrating part of the most complex energetic system, such as heat pumps and solar panels 

[78].  

When selecting a PCM, the average room temperature should be close to the melting/freezing range of 

the material. Moreover, the day temperature and solar radiations fluctuations should allow the material 

phase change. Then many factors influence the choice of the PCM: weather, building structure and 

thermophysical properties [12]. 
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That’s why experiments must be carried out to effectively assess the use of PCM. This is one of many 

examples given in this chapter. Scalat el al. [13] conducted a full-scale thermal storage tests in a room 

lined with PCM (Emerest 2326) wallboard and the results show its efficient function as a thermal 

storage medium, the human comfort can be maintained for longer periods using PCM wallboard, after 

the heating or cooling system was stopped.  

In this chapter we will summarize current building applications and their performance analyses always 

with references to different authors. These are the PCM building applications: 

 Gypsum board and interior plaster products; 

 Ceramic floor tiles; 

 Concrete elements (walls and pavements); 

 Trombe walls; 

 Windows; 

 Concrete or brick; 

 Underfloor heating; 

 Ceilings; 

 Thermal insulation materials; 

 Furniture and indoor appliances. 

 

4.2. GYPSUM BOARD AND INTERIOR PLASTER PRODUCTS 

Through the last years, various researchers have studied and developed a vast variety of this type of 

materials. The main purpose of integrating PCM into lightweight construction materials is to increase 

their thermal mass. As a result, such products could be used to decrease temperature fluctuations in 

existing and renovated buildings as well new lightweight buildings.  

PCM has been successfully incorporated into wall materials such as gypsum wallboard and concrete to 

enhance the thermal energy storage capacity of buildings with particular interest in passive solar 

applications, peak load shifting [78]. It´s also the most studied, general and suitable solution for 

implementing PCM into buildings. Fig. 4.1. shows PCM gypsum board. 

 

 

Fig. 4.1. PCM enhanced gypsum board [14] 
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The wallboards are cheap and widely used in a variety of applications, making them very suitable for 

PCM encapsulation. However, the principles of latent heat storage can be applied to any appropriate 

building materials. Kedl and Stovall [17] and Salyer and Sircar [36] used paraffin wax impregnated 

wallboard for passive solar application. The immersion process for filling the wallboards with wax 

was successfully scaled up from small samples to full size sheets. Processes where by this PCM could 

be incorporated into plasterboard either by post-manufacturing imbibing of liquid PCM into the pore 

space of the plasterboard or by addition in the wet stage of plasterboard manufacture were successfully 

demonstrated [7]. 

Peippo et al. [202] were one of the first to discuss the use of PCM walls for short-term heat storage in 

direct-gain passive solar applications. The PCM considered was fatty acid. Approximate formulae 

were presented for optimum phase change temperature and thickness of the PCM wall. And direct 

energy savings of 5%–20% were expected.  

In Feldman et al.’s [21] experiment, a tenfold increase of energy storing capability was obtained by the 

direct incorporation of 21%–22% commercial grade butyl stearate (BS) at the mixing stage of 

conventional gypsum board production. Feldman et al. [21, 66, 67] carried out extensive research on 

the use and stability of organic compounds for latent heat storage, including fatty acids (capric, lauric, 

palmitic and stearic), butyl stearate, dodecanol and polyethylene glycol 600. In addition to the studies 

of their properties, research was also carried out on materials, which act as PCM absorbers.  

Shapiro et al. [90] investigated methods for impregnating gypsum wallboard and other architectural 

materials with PCM. Different types of PCMs and their characteristics were described. The 

manufacturing techniques, thermal performance and applications of gypsum wallboard and concrete 

block, which were impregnated with PCMs. Shapiro [91], showed several PCMs to be suitable for 

introduction into gypsum wallboard with possible thermal storage applications for the Florida climate. 

These materials were mixtures of methyl-esters namely: methyl palmitate, methyl stearate and 

mixtures of short chain fatty acids (capric and lauric acids). Although these materials had relatively 

high latent heat capacity, the temperature ranges required in achieving the thermal storage did not fall 

sufficiently within the range of comfort for buildings in hot climates. 

Various materials were considered, including different types of concrete and gypsum. The utilization 

of latent heat storage over a comfortable indoor temperature range in buildings can result in an 

increase in the thermal storage capacity in the range of 10%–130%. The PCM gypsum board was 

made by soaking conventional gypsum board in liquid butyl stearate, a PCM with phase change range 

of 16ºC–20.8ºC. The PCM gypsum board contained about 25% by weight proportion of butyl stearate. 

Its thermal properties were measured with a differential scanning calorimeter (DSC). In another study, 

investigation of the thermal performance and estimation of the benefits from the application of PCM 

gypsum board in passive solar buildings in terms of the reduction of room overheating and energy 

savings was done by Hawes et al. [20]. 

During the 1980s, several forms of bulk encapsulated PCM were marketed for active and passive solar 

applications, including direct gain. However, the surface area of most encapsulated commercial PCM 

products was inadequate to deliver heat to the building passively after the PCM was melted by direct 

solar radiation. In contrast, the walls and ceilings of building offer large areas for passive heat transfer 

[7]. Neeper [41] in his study concluded that gypsum wallboard impregnated with PCM could be 

installed in place of ordinary wallboard during new construction or rehabilitation of a building, 

thereby adding the regarding thermal storage for passive solar heating as well as creating opportunity 

for ventilate cooling and time-shifting of mechanical cooling loads. Little or no additional cost would 

be suffered for installation of PCM wallboard in place of ordinary wallboard.  
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Neeper [42] found that the thermal storage provided by PCM wallboard would be sufficient to enable 

a large solar heating fraction with direct gain. Neeper [43] examined the thermal dynamics of a 

gypsum wallboard impregnated by fatty acids and paraffin waxes as PCMs subjected to the diurnal 

variation of room temperature but not directly illuminated by the sun. He found that the diurnal 

storage achieved in practice may be limited to the range 300 kJ/m
2
–400kJ/m

2
, even if the wallboard 

has a greater latent capacity. A wide phase transition range would provide less than optimal storage, 

but would be consistent with application of the same PCM to either interior partitions or to the 

envelope of the building. The melting temperatures of these PCMs were adjusted by using mixture of 

ingredients. He examined three parameters of PCMs wall boards that may influence the energy that 

can be passively absorbed and released during a daily cycle: (a) the melt temperature of the PCM; (b) 

the temperature range over which melt occurs; and (c) the latent capacity per unit area of wall board.  

Heim and Clarke [59] conducted numerical simulations for a multi-zone, highly glazed and naturally 

ventilated passive solar building. PCM-impregnated gypsum plasterboard was used as an internal 

room lining. The results show that solar energy stored in the PCM–gypsum panels can reduce the 

heating energy demand by up to 90% at times during the heating season. 

Several authors investigated methods for impregnating gypsum and other PCMs [45, 53, 57, 58, 82-

86]. Limited analytical studies of PCM wallboard have been conducted, but few general rules 

pertaining to the thermal dynamics of PCM wallboard are available [7]. It was documented that in 

gypsum materials can be combined up to 45% by weight of PCM when reinforcing the structure with 

some additives and up to 60% by weight in wall board composites. 

Voelker et al. [69] have developed the gypsum board with integrated microencapsulated PCM, mineral 

aggregates and have added some admixtures to improve working properties of the board. The 

incorporated PCM had a melting range between 25ºC and 28ºC. The sensible and latent heat of the 

material was measured with differential scanning calorimetry (DSC) with a constant heat and cooling 

rate of 2K/min. The thermal conductivity of PCM-modified gypsum was determined with use of a 

laser flash instrument.  

The developed PCM boards were tested in the special light weight chambers. The two identical test 

chambers were built next to each other (Fig. 4.2.), and in the first one, walls were covered with PCM 

plaster boards and in the second one with ordinary plaster boards. The thickness of the gypsum board 

was varied between 1cm and 3cm. The test series were carried out under controlled variable 

conditions. It was discovered that during warm days a reduction of the peak temperature of about 3K 

in comparison to the room without PCM could be achieved. On the other hand, temperature in the test 

chamber was allowed to fluctuate from very low to very high temperatures (approximately 14ºC–

35ºC). In real building conditions, such high temperature amplitude would not be acceptable and 

therefore also utilization of the latent heat of PCM in the gypsum boards would be decreased. 

Additionally, authors do not elaborate on obtained PCM to gypsum ratio in the developed gypsum 

boards. 
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Fig. 4.2. Test rooms without PCM plasterboard [69] 

 

Kuznik et al. [74] investigated a renovation project in the south of Lyon-France using PCM 

wallboards. By testing a room in the same building that was renovated without PCM and then 

comparing it to the room with PCM, they concluded that the PCM increased the indoor thermal 

comfort, but it appeared unable to use its latent heat storage capacity for a number of durations due to 

the incomplete discharge overnight.  

The week-end of March 28th/29th is a very interesting example from a storage analysis point of view. 

The Fig. 4.3. shows the weekend of March 28th/29th for which the temperature of the rooms rises to 

about 40ºC. In such conditions, the PCM is completely in the liquid phase and there is no latent 

storage effect in the wallboard: the two rooms have very close air temperature evolutions. 

 

 

Fig. 4.3. Week-end of March 28th/29th 2007. Outside and offices air temperatures [74] 
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Kuznik et al. [75], experimental tests on composite PCM product ENERGAIN® from Dupont de 

Nemours Society that contained 60% of microencapsulated paraffin (Fig. 4.4.) and the rest was 

copolymer can be found. The thermal conductivity has been measured using a guarded hotplate 

apparatus and in the liquid state it was at 0.22W/(m.K) and in the solid at 0.18W/(m.K). The enthalpy 

of the composite PCM has been measured using DSC method at heating cooling rate of 0.05K/min. 

Melting peak temperature was obtained at 22.2ºC and freezing peak at 17.8ºC. Composite boards were 

tested in the specially designed full scale test room MINIBAT. The test room was equipped with 

thermal guard surrounding room where the temperature was stabilized at certain temperature of 

20.5ºC. The test cell was also equipped with a solar simulator located in the climatic chamber that was 

attached to the test chamber to simulate external thermal condition. The climatic chamber was 

separated from the test room with a glass. The temperature inside the climatic chamber could vary 

between -10ºC and 40ºC and could be dynamically controlled so that any temperature evolution can be 

generated. In the investigation, three types of test were conducted: 

 A summer day: temperature in the climatic chamber varied between 15ºC and 30ºC, there was 

night cooling to improve PCM storage/release effect; 

 A mid-season day: temperature in the climatic chamber varied between 10ºC and 18ºC; 

 A winter day: temperature in the climatic chamber varied between 5ºC and 15ºC, heating 

system in the test room was turned on when temperature in the room dropped below 20ºC. 

For all tested cases, the solar flux is preserved as the same. The experiment was conducted in a 

comparative manner for the test room with PCM and without PCM boards on the walls. Based on the 

results obtained, authors concluded that PCM composite is an interesting solution for the building 

application to enhance the human thermal comfort due to three reasons: 

 The PCM included in the walls reduced the overheating effect and energy stored was released 

to the room when temperature was minimum; 

 The wall surface temperature peaks were flattened; 

 The stratification of air temperature in the room with PCM was not observed as it was for 

room without PCM. 

Still the allowed temperature fluctuations for the tests were very high. For example, for a summer day 

the air temperature was allowed to fluctuate between approximately 19ºC and 32ºC for the room 

without PCM and from 19ºC to 29ºC for the room with PCM. Based on that, it can be concluded that if 

the test rooms were equipped with some additional measures to reduce temperature fluctuations, for 

example solar shadings, the utilization of PCM in the room would be smaller and also the 

improvement with regards to the room without PCM would drop. 



Review on thermal energy storage with PCM: applications for building materials 
 

49 

 

Fig. 4.4. Dupont de Nemours PCM composite wallboard [75] 

 

Athienitis et al. [76] performed an experimental and numerical simulation study in a full-scale outdoor 

test room with PCM gypsum board as inside wall lining. The PCM gypsum board used contained 

about 25% by weight proportion of butyl stearate (BS). An explicit finite difference model was 

developed to simulate the transient heat transfer process in the walls. It was shown that utilization of 

the PCM gypsum board may reduce the maximum room temperature by about 4°C during the day and 

can reduce the heating load at night significantly.  

In P. Schossig et al. [40], measurements of a full-size room equipped with microencapsulated-PCM 

plaster boards are presented. Prior to the full scale measurements, some small scale experiments with 

specially designed plate apparatus to test wall samples have been conducted. A small sample of 

50cm×50cm area was pressed between two copper plates, which can be heated and cooled 

independently. The thermal performance of the wall samples with PCM was tested for the constant 

heat flux on both sides of the sample and temperature in the middle of the sample was registered. It 

was discovered that for the samples with PCM temperature instead of rising linearly begins to deflect 

within PCM melting temperature range. Consecutively, the full scale measurements have been 

conducted in the specially built light weight test rooms. One room was equipped with the ordinary 

reference plaster and the other with the PCM plaster. Both rooms were facing south. In the article, it 

was not written how much of internal area was covered with gypsum and where the plaster boards 

were located. Within the project, two different PCM products were tested: dispersion based plaster 

with 40% weight PCM and 6mm thickness and gypsum plaster with 20% weight PCM and 15mm 

thickness. The experimental study indicated that PCM gypsum helped to decrease high and low 

temperature peaks. Over period of 3 weeks, the reference room was warmer than 28ºC for about 50h 

while the PCM room was only 5h above 28ºC. Authors pointed out that microencapsulated PCM has 

the advantage of easy application and there is no danger of leakage like with macroencapsulated PCM. 

Gypsum products as construction materials can be improved by improving their physical, mechanical, 

thermal, and sound insulation properties. Su-Gwang Jeong et al. [61] conducted a study manufactured 

heat storage gypsum board which contains two types of shape-stabilized phase change materials 

(SSPCMs). Each type of SSPCM has different phase change temperatures for targeting the heating and 

cooling seasons. Paraffinic organic PCM based shape-stabilized phase change materials (SSPCM) and 

fatty acid based SSPCM were prepared by using exfoliated graphite nanoplatelets (xGnP) to solve the 

leakage problem, retaining their efficient thermal storage quantity, and improving the thermal 

conductivity.  
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The two types of shape-stabilized phase change materials (SSPCM) composites (Hybrid SSPCM) 

were incorporated to make heat storage gypsum board. The hybrid SSPCM was manufactured for 

reducing heating and cooling load in severe season such as winter and summer by two types of PCMs 

with different phase change temperature.  

In this experiment, the maximum mix ratio of SSPCM was considered as 30wt% in the light of 

workability and banding strength of heat-storage gypsum board. All samples were made with a 

composition of gypsum and 10wt%, 20wt%, and 30wt% of hybrid SSPCM, in comparison with the 

gypsum powder weight. For the preparation of hybrid SSPCM gypsum board, the water ratio at 45% 

was selected, in comparison with gypsum powder. The prepared hybrid SSPCM has a board shape of 

100mm x 100mm x 20mm (length x width x height). The morphology and heat storage concept of 

prepared hybrid SSPCM gypsum boards are shown in Fig. 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bharat Chhugani et al. [80], investigated the effectiveness of PCM wallboards in lightweight 

buildings. The investigations have been carried out on two different types of PCM wallboards, the 

Knauf Comfortboard-23 and DuPont Energain board (Fig. 4.6.).  

 

 

 

 

 

 

 

 

Fig. 4.5. Heat storage concept of hybrid SSPCM gypsum board [61] 

Fig. 4.6. Enthalpy-temperature graph (a) Knauf Comfortboard-23; (b) DuPont Energain board 
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The experimental results showed that PCM wallboards can provide passive cooling powers of around 

8W/m
2
 under typical office room conditions. The experiments proved that PCM wallboards can almost 

store twice as much heat compared to conventional gypsum boards and can provide a passive cooling 

power which is comparable to a concrete wall with a thickness of 15cm. However, the regeneration 

behavior of PCM wallboards plays a major role in its efficiency. The results reveal that Knauf 

Comfortboard-23 shows a better regeneration behavior than the DuPont Energain board. Still, the 

average regeneration rate of the Comfortboards-23 during the summer months in the offices of the 

Energy Efficiency Center was found to be below 20%. The regeneration of the DuPont Energain board 

was nearly impossible being 1% in average. 

 

4.3. CERAMIC FLOOR TILES 

Ceramic tiles are an extensively used material for paving, yet the incorporation of PCMs into ceramic 

tiles has been rather neglected, as observed by Pomianowski et al. [31], in their review. 

Cerón et al. [87] reported the production, development and experimental method, to test its 

performance, of a prototype tile. Nonetheless, the design of the tile was rather complex requiring 

numerous layers (top stoneware tile, metal sheet, a metal container with PCM and a bottom thermal 

insulation layer). The developed tiles were tested over a period of 60 days in one side of the solar 

house placed in Madrid that had door-window toward south. It was observed, that high effectiveness 

was achieved for tiles close to the door-window where the direct solar radiation hit the tiles. The 

contribution of the tiles in the deeper location, further from the window, was very small. Therefore, 

the key conclusion was that the scheme should be limited to the portion of the floor that can receive 

the direct solar radiation.  It has been considered essential to make a new prototype of tile that could 

be placed directly on the framework (Fig. 4.7.) and not on a technical floor, since this is a more usual 

and cheaper solution for housing. It was also considered necessary to develop the system in such a 

way that it met the acoustic requirements demanded by the Technical Building Code in Spain (CTE) 

[87]. 

 

 

Fig. 4.7. Cross-section of the prototype [87] 
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Temperature were measured continuously on the surfaces of the tiles with PCM and without PCM, 

subjected to the same physical conditions (Fig. 4.8.). 

 

 

Fig. 4.8. Image of the prototype [87] 

 

The frame of the window casts a shadow on the tiles during the day (Fig. 4.9.). The effect of this 

shadow can be seen in Fig. 4.10., as discontinuities of the curves at two positions during the thermal 

storage period. The shadows on the tile with PCM significantly alter the thermal behaviour of the 

pavement, by reducing their efficiency in solar energy storage. In order to get a high efficiency in the 

process of thermal storage it is important to avoid obstacles that cause significant shadows on the 

pavement that contains PCM. The shadows caused by the aluminium frame of the window, results in a 

decrease of the surface temperature of the tile down to 6ºC over a period of one hour, with solar 

radiation 1000W/m
2
, and this reduces the amount of energy accumulated in that period [87]. 

 

 

Fig. 4.9. Monitoring of the prototypes [87] 
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Fig. 4.10. Surface temperature of the tiles with PCM and without PCM. Direct solar radiation. Magic Box 2009 [87] 

 

Hittle et al. [93] wrote an assignment which proposal consists in substituting microencapsulated phase 

change material for much, if not all of the quartz power to make it. He also was able to replace some 

of the chips without degrading the tile appearance. The tile with PCM it was named here in after. 

Putting phase change material in the floor tile dramatically increases its ability to store thermal energy. 

Also, the energy is stored at a nearly constant temperature. One application is the use of the tile in 

sunroom floors where it can absorb solar energy during the day and release it at night to reduce 

mechanical heating. Because agglomerate floor tiles have exceptional wear resistance properties, they 

are often marketed to institutional clients that have high traffic areas. He came to the conclusion that 

these tiles have structural properties that are not quite as good as agglomerate tiles without PCMs, but 

are significantly better than fired clay tiles often used in residential applications. Each prototype tile 

contains quartz chips and powder, polyester resin and encapsulated paraffin wax. Tiles were made 

with varying amounts of quartz powder, encapsulated wax and resin. The amount of quartz chips will 

be held constant to ensure structural integrity of the tile. Resin will be varied from 5% to 10% of the 

total mixture. Proportions of encapsulated wax and quartz powder will be directly dependent on each 

other. The ideal case would be a tile containing all phase change material and no quartz powder. 

One of the standard agglomerate floor tiles manufactured today consists of quart chips, quartz powder 

(filler), dyes, and a polyester binder. Components are mixed in a giant cement mixer. The mix, 

appearing and feeling much like damp sand, is placed in a vibrating vacuum assembly to remove all 

air and to compress the material. Next, the portions of material are heated to cause catalysis. Later, 

pieces are cut and polished to produce the desired tiles (Fig. 4.11.).  

 

 

Fig. 4.11. Sample tile with phase change material incorporated without and with visible clumps [93] 
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In a very intricate paper the production of novel PCM-ceramic tiles for indoor temperature control was 

described and developed by Rui M. Novais et al. [92]. The PCM was directly incorporated into 

lightweight porcelain stoneware ceramic tiles, without the need for other materials or containers. The 

incorporation of PCM in ceramic tiles increases buildings’ thermal inertia, and reduces the indoor 

space temperature variation by up to 22%. The tiles combine a dense top-layer with a porous bottom-

layer. The novelty of this investigation is the development of ceramic tiles with a PCM that was 

directly included on the porous layer of the lightweight porcelain stoneware tiles. Wood wastes 

(sawdust) were used as a pore forming agent, which is an environmental friendly approach. The 

density of these novel ceramic tiles (below 2g/cm
3
) allows their use not only in the floor, but also as 

wall coverings, which increases the surface area inside the buildings and, therefore, the energy 

savings.  

Fig. 4.12. illustrates the procedure for impregnating the bi-layered ceramic tiles with PCM. Initially, a 

beaker containing PCM was placed inside an electric oven, which was connected with a vacuum 

pump. 

 

 

Fig. 4.12. Schematic drawing of the PCM impregnation process [92] 

 

An IR camera was used to record the temperature evolution on the upper side of the tile. Fig. 4.13. 

shows the surface thermal map for the two samples measured upon heating. Differences are in 

agreement with the temperature evolution recorded by the four thermocouples. 
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Fig. 4.13. Thermal map for the upper surface of tiles without PCM (left column) andwith 8.1wt% PCM, when the 
bottom surface is heated in a hot plate during the sameperiod of time [92] 

 

Two major factors control the PCM-ceramic tiles thermal performance: (i) PCM load and (ii) PCM-

ceramic tile thermal conductivity. Higher PCM content induces narrower temperature fluctuations, yet 

reduces the PCM-ceramic tile thermal conductivity. The incorporation of 5.4wt% PCM was found to 

be the optimal content, which is a rather small amount in comparison with other PCM-building 

materials.  

Fig. 4.14. illustrate the temperature evolution inside the test cells and the temperature differential 

between the 0% PCM and 5.4wt% PCM-ceramic tiles test cells, respectively. Fig. 4.14a) confirms the 

enhancement of thermal insulation with the PCM-ceramic tiles when using a 10min dwell: 0.9ºC 

reduction on the minimum temperature and differences exceeding 1ºC on the maximum temperature. 

The overall indoor space temperature amplitude decreased about 2ºC. However, the minimum 

temperature reached inside the test cell (∼20.5ºC) is insufficient to promote the complete solidification 

of the PCM, which affects its functionality as pointed out by Voelker et al. [69]. In fact, when the 

PCM has sufficient time for the occurrence of complete melting and solidification, its performance is 

improved as confirmed in Fig. 4.14. b) and c). For example, with 90 min dwell time, the temperature 

amplitude in the test cell coated with PCM-ceramic tiles decreased by 2.7ºC. The enhancement of the 

PCM performance when its complete melting and solidification is ensured [92]. 
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Fig. 4.14. Temperature evolution inside the test cells with ceramic tiles without PCM and with 5.4 wt% PCM with 
different dwell at the peak temperatures: (a) 10 min, (b) 60 min, (c) 90 min and (d) 300 min [92] 

 

In conclusion, PCM-ceramic tiles present remarkable potential for improving the thermal comfort 

inside buildings due to their ability to reduce indoor space temperature fluctuations. Additionally, if 

associated with under-floor electric systems the energy consumption can be transferred for off-peak 

period providing substantial energy savings. 

 

4.4. CONCRETE ELEMENTS (WALLS AND PAVEMENTS) 

The thermal response of concrete walls containing PCMs has been reviewed extensively, Tung-Chai 

Ling et al. [176] shows that among the PCM types, organic PCM and particularly paraffin wax PCM, 

seems to be one of the most suitable latent heat storage materials that can be used in concrete. The 

main reasons are the chemical stability, inactivity in the alkaline environment of concrete, an 

appropriate transition temperature of about 26ºC (human thermal comfort) and low degree of super 

cooling; they are also relatively inexpensive and have desirable thermal stability. The test results of 

different means of PCM incorporation in concrete showed that: Immersion: suitable for concrete with 

a relatively high porosity. The time required for immersion is mainly controlled by (i) the absorption 

capacity of the porous concrete, and (ii) the temperature of the container in which the melted (liquid) 

PCM is filled. Basically the immersion process takes several hours. Impregnation: vacuum 

impregnation seems to be more effective compared to the simple immersion technique. By comparing 

the results of absorption behavior of PCM in different types of porous aggregates, expanded clay or 

shale aggregates are the more suitable porous materials for PCM impregnation. Direct mixing: 

encapsulation of the PCM with a chemically and physically stable shell is required before it can be 

directly mixed into concrete. The surface (shell) hardness of the PCM microcapsules can be reinforced 

by the use of Zeolite or Zeocarbon [176]. 
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In brief, most experimental studies of walls or rooms exposed to outdoor conditions have reported that 

adding PCM to building walls reduced the amplitude of the temperature oscillations at the wall surface 

and time-shifted the temperature peak. Castellón et al. [46] constructed outdoor cubicles in Lleida, 

Spain made with plain brick, plain brick with polyurethane insulation and 1.9 mass% 

macroencapsulated PCM with a melting temperature of 27°C, alveolar brick, and alveolar brick 

containing 3.3 mass% macroencapsulated PCM with a melting temperature of 25 °C. The cubicles 

were equipped with a heat pump to maintain an indoor temperature of 24 °C. Their electricity 

consumption over the course of a summer week was reduced by up to 15% and 17% by adding PCM 

to the plain and alveolar brick cubicles, respectively. However, as acknowledged by the authors, the 

performance could be further improved by optimizing the PCM melting temperature. Such 

optimization would be costly and time consuming to perform experimentally. Moreover, it remains 

unclear whether these conclusions would be valid in other parts of the world with different climates. 

Rigorous numerical simulations can address these issues by assessing the effects of the climate 

conditions and of design parameters of PCM-composite walls such as the melting temperature and the 

PCM volume fraction on the thermal load of buildings in a rapid, systematic, and rational way. 

 

4.5. TROMBE WALLS 

The concept of Trombe wall was patented by E.S. Morse in the 19
th
 century and developed and 

popularized in 1957 by Félix Trombe and Jacques Michel. In 1967, in Odeillo, France, they built the 

first house using a Trombe wall [128]. Fig. 4.15. illustrates the general classification. Each 

configuration of Trombe wall is discussed in detail next. 

 

 

Fig. 4.15. Trombe wall classification [128] 

 

Fig. 4.16. shows examples of heating-based type of Trombe wall. The first one Fig. 4.16(a) is known 

as photovoltaic (PV) Trombe wall is invented by incorporating solar cells with classic Trombe wall. 

The PV-Trombe wall not only provides space heating, but also generates electricity; meanwhile it 

brings more aesthetic value. Fig. 4.16(b) represents the first cooling-based type of Trombe wall, the 

ceramic evaporative cooing wall. The wall employs an external reflective thermal insulation blinds to 

avoid direct solar gain. 
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Fig. 4.16. (a) PV-Trombe wall with DC fan for winter heating; (b) Ceramic evaporative cooling wall [128] 

 

A trombe wall is a primary example of an indirect gain approach. A single or double layer of glass or 

plastic glazing is mounted about four inches in front of the wall’s surface. Solar heat is collected in the 

space between the wall and the glazing. The outside surface of the wall is of black colour that absorbs 

heat, which is then stored in the wall’s mass. Heat is distributed from the trombe wall to the house 

over a period of several hours. When the indoor temperature falls under that of the wall’s surface, heat 

begins to radiate into the room. Heat loss from the trombe wall can be controlled by an insulating 

curtain that is closed at night in the space between the glazing and the wall. Traditionally trombe walls 

relay on sensible heat storage, but because of the potential for greater heat storage per unit mass, the 

PCM trombe wall is an attractive concept still awaiting successful implementation [7]. Schematic 

diagram of PCM trombe wall is shown in Fig. 4.17. 

 

 

Fig. 4.17. Schematic diagram of PCM trombe wall [7] 

 

Over time, modifications have been made to Trombe walls in order to improve their efficiency. Based 

on the main utilizing functions of Trombe walls, they are classified into two types: a heating-based 

type of Trombe wall and a cooling-based type of Trombe wall. To increase the thermal resistance of 

the classic Trombe wall (Fig. 4.18.) and control supplies, another heating-based type of Trombe wall, 

which is known as composite Trombe wall or Trombe–Michel wall (Fig. 4.19.) was developed.    
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During the last decades, several modifications have been developed from the basic design of a 

classical Trombe wall and composite Trombe–Michel wall [95, 103-105]. Zalewski et al. [126] 

performed an experimental study of a small-scale composite solar wall where PCM was inserted into 

the wall in the form of brick-shaped package. The PCM used is a mixture of hydrated salts (water + 

CaCl2 + KCl + additives) with melting point of 27ºC. They concluded that the solar gains are released 

with a time lag which indicates the advantage of this composite solar wall. They also pointed out that 

the efficiency of the solar wall could be improved by limiting losses to the outside and increasing 

exchanges in the cavity.  

The Trombe-Michel solar wall or composite solar wall is a variant of the classic trombe wall with the 

aim to contribute to the thermal comfort in buildings using solar energy. The main idea of the Trombe-

Michel wall is to use the component as a part of building envelope that stores energy from solar 

radiation during the day and releases it as heat, indoor at night or in a cloudy period [94]. The thermal 

energy recovered by this type of wall passes through the storage element by conduction transfer and 

then by natural convection in a ventilated air gap. 

In conventional non-PCM applications, the storage capacity increases weight and volume of passive 

solar systems, which makes difficult their merge with, common today, lightweight construction 

methods and limits integration into the existing buildings. To alleviate this problem, conventional 

heavy weight thermal mass is replaced by PCM. For a given amount of heat storage, the phase change 

units require less space than water walls or mass trombe walls and are much lighter in weight. These 

are, therefore, much convenient to make use of in retrofit applications of buildings. Salt hydrates and 

hydrocarbons were used as PCMs in the trombe wall [7]. 

A large number of experimental and theoretical assessments have been conducted to investigate the 

energy performance and long-term reliability of the PCM based Trombe wall heat storage component-

s. It was found that the thermal performances of the Trombe wall depend on various parameters such 

as the size of air gap and vents, wall area and orientation, wall thickness, glazing, insulation and 

operation strategy [128].  In terms of the selection of Trombe wall materials, a study was carried out 

by Stazi et al. [110] during both the pre-use phase and use phase of Trombe wall on three wall 

materials: concrete, brick and aerated concrete. Considering both pre-use and use phases, the best 

Fig. 4.18. A classic Trombe wall for winter heating Fig. 4.19. A composite Trombe wall 



Review on thermal energy storage with PCM: applications for building materials 
 

60 

overall performance was obtained using the wall with aerated concrete blocks that combines a 

production cycle with low environmental impacts and high energy performances in the use phase.  

Onishi et al. [106] numerically investigated the effects of PCM as a heat storing material on the 

performance of a hybrid heating system with a CFD (computational fluid dynamics) code. Simulated 

results indicated the effectiveness of PCM and suggested the possibility of developing low-energy 

houses with the hybrid system introduced in this study. The TIM (transparent insulation materials) –

PCM (phase change material) wall system also showed the higher efficiency of solar radiation 

utilization and decreased heat losses by using corresponding PCMs [107, 108]. Fig. 4.20. shows the 

proposed two-layered passive wall system, it is a combination of a salt hydrate phase change material. 

 

Fig. 4.20. Prototype of a TIM–PCM external wall system for solar space heating and daylighting [107] 

So, initially, hydrated slats have been sampled for this purpose. Telkes [111-113], proposed the 

inclusion of PCMs in walls, partitions, ceilings and floors to serve as temperature regulators. The 

PCMs have been used to replace masonry in a trombe wall and worked on a construction similar to the 

Trombe wall, using Glauber’s salt behind a polyhedral glazing. Her work was only a first-order 

theoretical analysis demonstrating the potential for energy and space savings.  

Askew [114] used a collector panel made of a thin slab of paraffin wax and mounted behind the 

double-glazing of the building and found that the thermal efficiencies are comparable with the 

conventional flat plate collectors. Farouk and Guceri [115] studied the usefulness of the PCM wall 

installed in a building for night time home heating using Glauber’s salt mixture and SUNOCO P-116 

wax. It was observed that if the PCM wall is designed properly, it eliminates some of the undesirable 

features of the masonry walls with comparable results.  

In experiments performed by Swet [116], Ghoneim et al. [117], and Chandra et al. [118], a Glauber’s 

salt was utilized as well (sodium sulfate decahydrate with melting point 32.1°C) as a phase change 

material in a south facing Trombe wall. Experimental and theoretical tests were conducted to 

investigate the reliability of PCMs as a trombe wall. They reported that trombe wall with PCM of 

smaller thickness was more desirable in comparison to an ordinary masonry wall for providing 

efficient thermal energy storage (TES). 

Knowles [127] presented numerical results as well as approximate simple stationary state formula with 

the purpose of establishing guidelines for the design of low-mass, high-efficiency walls. One 

conclusion was that thermal resistance of the wall should be as low as possible. Exploration of binary 

and ternary composite of metals, masonry and phase change materials was studied. Compared with 

concrete, paraffin–metal mixtures were found to offer a 90% reduction in storage mass and a 20% 

increase in efficiency. 
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Bourdeau and Jaffrin [120] and Bourdeau et al. [121] simulated and tested a Trombe wall using 

chliarolithe (CaCl2 · 6H2O) as a PCM heat storage. A numerical model demonstrated that a 3.5cm wall 

using PCM could replace a 15cm thick conventional wall made of concrete. In a following project, 

Bourdeau [119] studied the behaviour of Trombe wall made of polyethylene containers placed on a 

wood shelf behind a double glazing. These experimental results were used to validate the numerical 

model, which demonstrated that a Trombe wall with latent heat storage was more efficient than 

conventional concrete walls. This research indicated that the optimum thickness of a PCM wall was of 

a factor 4 thinner than an equivalent concrete wall. 

In addition, Benson et al. [122] carried an analysis on polyalcohols used as PCM. They also performed 

numerical analysis on PCM-enhanced Trombe walls compared to conventional concrete structures. 

They found an optimum melting temperature for PCM which was close to 27°C. Numerical analysis 

demonstrated that an increase in thermal diffusivity can be beneficial to the thermal performances of 

PCM solar walls. Accordingly, laboratory tests demonstrated that diffusivity can be increased by a 

factor of five through the addition of 2% of graphite, which should lead to about 30% improvement in 

performance. They concluded that a Trombe wall containing PCM could be four times thinner and a 

factor nine lighter than its equivalence made of concrete.  

Buddhi and Sharma [123] measured the transmittance of solar radiation through phase change material 

at different temperatures and thickness. Stearic acid was used as a phase change material. They found 

that transmittance of the phase change material was more than the glass for the same thickness and 

suggested a new application of phase change material in windows/walls as a transparent insulating 

material.  

Stritih and Novak [124] presented a solar wall for building ventilation, which absorb solar energy into 

black paraffin wax (melting point, 25ºC–30ºC). The stored heat was used for heating the air for the 

ventilation of the house. The efficiency of the absorption was found to be 79%. The result of the 

simulation showed that the panel dictates the amount of stored heat as sensible or latent and that the 

melting point of the PCM has an influence on the output air temperature. The analysis for the heating 

season gave the optimum thickness of 50mm and the melting point a few degrees above the room 

temperature. 

D. Sun and L. Wang [125] studied the energy saving characteristics in winter, using an experimental 

room. They explored a new system: passive solar collector-storage wall contained PCMs on both sides 

surface. The heat transfer performance and energy saving characteristics were investigated 

theoretically and experimentally. Paraffin/expanded perlite/graphite PCMs was added into collector 

mortar layer and interior mortar layer to storage energy. Phase change temperature and latent heat are 

19.45ºC and 128.46 J/g, respectively. The illustration of passive solar collector-storage wall system 

with PCMs is shown in Fig. 4.21. A part of solar energy transmits into the room through air channel 

and vents to improve indoor temperature, a part of solar energy store in the collector mortar layer 

through PCMs and the rest solar energy is conducted slowly through massive wall to the room by 

radiation and convection. The advantage of passive solar collector-storage wall system with PCMs is 

storing more heat from sun during the day and releasing it into the building during the night. The 

results indicate that the new passive solar collector-storage wall system with PCMs can promote 

indoor air thermal circulation and decrease indoor air temperature fluctuations. Its good heat storage 

capacity can apparently improve indoor thermal environment.  
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Fig. 4.21. Illustration of passive solar collector-storage wall system with PCMs [125] 

Fiorito [129] selected five cities of different climate zones in Australia and modeled the effect of 

PCMs (n-paraffin and wax) integrated in collector–storage walls. The simulation results showed that 

PCM improved the thermal inertia of lightweight constructions and its position and melting 

temperature need to be optimized according to the corresponding climate conditions. 

Kara and Kurnuc [130] applied novel triple glazing for PCM wall (33wt% paraffin granules in the 

plasterboard) to prevent overheating in summer and their experimental results indicated that the wall 

including PCM (GR35) with relatively lower melting temperature 𝑡𝑚 = 34°𝐶 presents better 

performance than that including PCM (GR41) with 𝑡𝑚 = 45°𝐶 while both could provide 14% of 

annual heat load of the test room.  

Li and Liu [131] experimentally investigated the thermal performance of a PCM (paraffin, 𝑡𝑚 =

41°𝐶) based solar chimney under three different heat fluxes on the absorber surface and found that 

700Wm
-2

 of heat flux drives the highest air flow rate (0.04kg/s) while 500Wm
-2

 generates the highest 

average outlet temperature (20.5ºC). They also reported that phase change periods are nearly 13h50 

min for all cases investigated. 

In [128] a test was carried out for a whole day with charging period of 6.5h and discharging period of 

17.5h, respectively. Wall and air temperatures as well as air velocity in the gap were measured for 

analysis. The results showed that the PCM surface temperature increases first rapidly, then slowly and 

rapidly again during the charging process, which in turn corresponds with the three storage stages: 

sensible heat (solid), latent heat (melting) and sensible heat (liquid), respectively; The indoor 

temperature was found to be above 22ºC during the whole discharging period (17.5h) under present 

conditions, which indicates that the indoor thermal comfort could be kept for a long time by using 

PCM in collector–storage wall system. As shown in Fig. 4.22., the experimental setup comprises 

radiation source, collector–storage wall and measurement system. A test room was reconstructed into 

the collector–storage wall system for experiment, which was shown in Fig. 4.23. 
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Fig. 4.22. Schematic sketch of the experimental setup [128] 

 

 

Fig. 4.23. The photo of the experimental system [128] 
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Z. Hu et al. [132] achieves the main conclusion, the larger Trombe wall area means the more high 

efficiency. However, it is limited the total south wall area, that is, it is related to (α), the ratio of the 

Trombe wall’s area to the total wall area.  Massive wall materials and thickness contribute importantly 

to the efficiency of the wall’s heat storage and release capacity. Any material characterized by high 

storage capacity can be used to construct Trombe walls. However, the use of lightweight materials 

with high storage capacity in a relatively small volume is more preferable, such as PCM. With regard 

to the wall thickness, 30cm–40cm concrete Trombe walls have performed well in many geographical 

locations. In addition, thermal insulation on massive wall is considered a remedy for the deficiency of 

a classic Trombe wall. Glazing properties, such as the materials and the number of glazing layers 

significantly affect the performance of Trombe walls.  

However, the selection of glazing depends on many variables including the longitude and latitude of 

the project. Normally, low double glazing is recommended. Channel depth mainly contributes to the 

flow resistance. It is not only related to height of Trombe wall but also depend on the dimension of 

inlet and outlet. In addition, the structural safety should be considered when design the channel depth 

because an excessive depth of channel will results in an insufficient thickness of massive wall. 

Shading devices, such as: overhang, roller shutter and venetian blinds can control the performance of 

Trombe wall and address some of the shortcomings: overheating in hot summer and heat loss in winter 

night. Similar to thermal insulation on massive wall, proper insulation of building envelope have 

perform well.  

Due to solar radiation can strike the indoor floor or its adjacent walls directly through a window, 

therefore the design of windows should be considered including the size and position (relative to the 

Trombe wall). Solar radiation level has an important influence in generating air movement in a 

Trombe wall channel.  

Generally, Trombe wall efficiency increases with increasing of solar radiation. Moreover, for a 

building with Trombe walls located in the north hemisphere, the south facing facade (with 45° 

variations) seems to be the most effective orientation in capturing the solar gain. The wind speed and 

direction are related to the heat loss coefficient and wind pressure. The Trombe wall tends to perform 

better if the wind speed is small, and in this direction, further investigation should be carried out in the 

future. 

 

4.6. WINDOWS 

The glazed areas and the shading devices have a significant role over the energy building 

consumption, so many research studies and prototypes have been developed in the last years to 

increase the thermal and the energy efficiency of this boundary. The improvement of the thermal 

performance through the glazing area of the building can be accomplished resourcing to new 

materials, geometries and new techniques to produce solutions with higher energy efficiency [135]. 

New approaches, as the building orientation and the use of natural resources, as wind and solar 

radiation could decrease the energy needs and improve the energy transfer of these boundaries.  

From the thermal perspective, PCM windows work like the optically transparent or translucent 

Trombe walls. They usually consist of a single or multilayer glazing panel made of conventional glass, 

integrated with a layer of a transparent or translucent PCM product. Fig. 4.24. shows the different 

configuration options of semi-transparent PCM solar fenestration. 
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Fig. 4.24. Different configuration options of semi-transparent PCM solar fenestration: (a) Semitransparent 
Trombe Wall containing PCM heat sink; (b) Translucent Trombe Wall with PCM heatsink and translucent 

insulation; (c) Solar fenestration system using PCM heat sink and selective prismatic glass 

 

Nowadays, the building design frequently includes large translucent areas, mainly in offices and 

commercial buildings. However, the use of large facade glazing areas could lead to thermal and visual 

discomfort of indoor space and their occupants [134]. Windows represent a part of the building that is 

considered to lead to higher energy consumption. In warm climates dominated by cooling loads, 

excessive solar heat gain lead to an increased need for mechanical cooling. In cold climates, large 

parts of the energy escape through glazed facades, leading to a need for mechanical heating [133]. 

However, glazed facades still suffer from low thermal inertia, and have no way of storing excess heat. 

Transparent PCMs for use in windows represent an opportunity that has been explored for this 

purpose. They provide dynamic thermal characteristics and a source of natural lighting to the building. 

The energy state of these assemblies is visualized as transparent or translucent when PCM is melted 

and milky when PCM is frozen [5].  

Manz et al. [108] studied a solar facade composed of transparent insulation material and translucent 

PCM used both for solar heat storage and daylighting. The PCM was hexahydrated calcium chloride 

(CaCl2 · 6H2O) with 5% of additives. The numerical model was developed for analysis of the radiative 

heat transfer inside the PCM-enhanced solar window. The authors concluded that overall system 

performance could be improved by changing of the PCM melting temperature from 26.5ºC to about 

21ºC.  

Another semi-transparent solar window system containing PCM has been introduced by the INGLAS 

company form Friedrichshafen, Germany [142]. This technology combines design principles of 

passive solar walls with fenestration function and a semi-transparent heat reservoir. As a result, this 

solar window efficiently transfers solar light and absorbs the heat developed in the process. The 

absorbed heat is stored by the heat sink utilizing organic PCM. According to manufacture, large 

amounts of solar energy can be stored during daytime and released into the building at night, when 

PCM cools down and solidifies. 

In similar research performed in Germany, an application of semi-transparent PCM components from 

Dorken has been jointly investigated by the glass company Glaswerke Arnold and research institute 

ZAE Bayern. A complete system is made of two glass sheets on the outside and a macro-encapsulated 

PCM on the inside [5]. Fig. 4.25. shows a commercialized glazing filled with a PCM, also portraying 

the visibility in its liquid state.  
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As of today, only translucent PCMs have been used for PCM windows, though they enable relatively 

high amounts of visible light to pass through, they do not offer the same visibility as regular windows. 

PCM optical properties are changing to some degree between the solid and liquid states. 

 

 

Fig. 4.25. Illustration of a PCM filled window (left) and commercialized PCM window in its liquid state (right) 
(GlassX [141]) 

 

The solar transmittance of a commercial grade PCM was tested by Jain and Sharma [143]. For a pure 

PCM with a thickness of 4mm-30 mm the solar transmittance was found to be 90.7%–80.3%, 

respectively. Due to the fact that PCMs have low thermal conductivity, they concluded that PCMs 

may be interesting as a transparent thermal insulating medium.  

Goia et al. [144] compared a prototype PCM glazing system (DGU_PCM) with a conventional double 

glazed (DGU_CG), insulating unit with regard to the effect on thermal comfort in the winter, summer 

and mid-season. (Fig. 4.26.). The two glazing systems were measured over a six-month experimental 

campaign, and the data was used to numerically evaluate an indoor office room. The thermal 

conditions were considerably improved for most parts of the year with the PCM prototype compared 

to the regular double glazing. However, on cloudy days, the two systems showed similar properties on 

thermal comfort. The study also highlighted the importance of selecting the correct melting 

temperature for the PCM as this could affect the system negatively if not optimized. Two layers (8mm 

and 6mm) of glass compose the double glazed unit with PCM (DGU_PCM) and the air cavity (15mm) 

between the two layers was filled with commercial paraffin (RT35). The DGU_PCM element area is 

about 1 m
2
 (1.4x0.72 m

2
), inserted in an experimental test cell with 3.6m wide, 5.4 long and 3.0 high. 

The PCM was introduced into the air cavity and the volume of the PCM was 13dm
3
 (E13 kg of RT35). 

They performed a Differential Scanning Calorimetry (DSC) analysis to characterize the thermal 

properties of the PCM. According the DSC analysing the latent heat of fusion (Δh) is about 145 kJkg
-1

 

and the melting temperature about 34°C with a temperature range of 10°C. They concluded that the 

indoor conditions reached by the application of the DGU_PCM solution increased considerably the 

thermal comfort comparatively to the conventional solution (DGU_CG) for the most time of the 

different seasons. They suggest (i) the application of PCM with lower melting temperature for cold 

climates and winter season and (ii) the application of PCM with high melting temperature for hot 

climates and summer [144]. 
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Fig. 4.26. Experimental test cell with the two glazing systems (DGU_PCM and DGU_CG) [144] 

 

A similar study was performed by Weinläder et al. [146], comparing a double glazing unit combined 

with PCM compared to a regular double glazing unit. The test specimens were studied experimentally 

in an outdoor test facility and the data gained from the experiment was used for further simulations. 

The light transmittance from this solution was found to be 0.4, giving them the ability to be used as 

daylighting elements. Compared to regular double glazing they gave a more equalized energy balance, 

achieving moderate heat gains with very low heat losses. During the winter season, PCM windows 

improved the thermal comfort considerably and in the summer they shifted heat gains to later in the 

evening. However, the PCM windows cannot be used where visual contact to the environment is 

desired. 

Goia et al. [145] performed a full-scale test on a PCM glazing prototype. The test was performed on a 

south facing wall during summer, mid-season and winter days in a sub-continental climate and 

compared to a conventional double glazing for reference. The experiment showed that PCM glazing 

can reduce the energy gain in the summer by more than 50%. In the winter, heat loss reduction during 

the day was observed, however this technology might not be effective if the purpose is to achieve solar 

heat gains. The experiment also pointed out the importance of removing the stored heat during the 

night via e.g. night cooling, and selecting the correct phase change temperature, if the system is to 

function optimally. 

Grynning et al. [147] performed measurements on a state-of-the art commercial glazing including a 

PCM in a large scale climate simulator. The tested glazing was a 4-layer glazing with a prismatic glass 

in the outer pane and a PCM fill in the cavity between the inner panes. A cross-section of the window 

is shown in Fig. 4.27. 
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Fig. 4.27. Vertical cross sections of the PCM window. (GlassX, 2012). The figures illustrate the angular properties 
of the solar reflector in the outer cavity, of the solar reflector in the outer cavity, where radiation with high 

incidence angles (typical summer days) are reflected and low-angle incident radiation (typical winter days) is let 
through [147] 

 

The study showed that characterization of static components (e.g. U-value, solar heat gain coefficient, 

thermal transmittance) is insufficient for describing the performance of PCMs due to their dynamic 

nature. 

A zero energy office building using translucent PCMs in the window construction has been built in 

Kempen, Switzerland (Fig. 4.28.). In this project, each second window panel has been equipped with 

PCM windows. The aim for the windows is to effectively store solar energy during the warmer parts 

of the day, and release thermal energy throughout the colder periods of the day to reduce the total 

energy required for space heating [60]. 

 

 

Fig. 4.28. Zero energy office building from Kempen, Switzerland [60] 
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Alawadhi [148] investigated the possibility to implement PCMs in window shutters, where the goal 

was to see if the solar heat could be absorbed before it reached the indoor space. The results indicated 

that the magnitude of PCM melting temperature and its quantity in the shutter have a significant effect 

on the thermal performance of the PCM shutter. The melting point of the PCM in the shutter should be 

close to the upper temperature limit of the windows during the daytime. The PCM should be prevented 

from completely melting during the working hours and its amount should be sufficient to absorb large 

amount of heat during the daytime. When compared to foam shutters, the shutters containing a PCM 

could lead to a reduction in heat gain through the windows by as much as 23.29%. 

In this concept, shutter-containing PCM is placed outside of window areas. During daytime they are 

opened to the outside the exterior side is exposed to solar radiation, heat is absorbed and PCM melts. 

At night we close the shutter, slide the windows and heat from the PCM radiates into the rooms. 

Buddhi et al. [149] studied the thermal performance of a test cell (1mx1mx1m) with and without phase 

change material. CG lauric acid (melting point, 49ºC) was used as a latent heat storage material. He 

found that the heat storing capacity of the cell due to the presence of PCM increases up to 4ºC for 4–5 

h, which was used during night time [7].  

Mehling [150] recommended that the maximum shading temperature should be delayed by 3h and 

room temperature should be reduced by 2ºC with the application of the PCM shutter. The photograph 

of PCM shutter is shown in Fig.4.29. 

 

 

Fig. 4.29. PCM shutter [150] 

 

Soares, Costa [151] evaluated the potential of a PCM-shutter containing phase change materials. In 

their study, numerical studies were carried out to analyse the influence of the imposed external and 

internal conditions and the heat transfer coefficients of the system performance. The PCM-shutter 

system is composed by five main layers, as shown in Fig. 4.30. 
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Fig. 4.30. Schematic of the PCM-shutter [151] 

 

Shuhong Li et al. [152] conducted an experiment to investigate the dynamic thermal and energy saving 

performance of the experimental systems of two reference windows (DW + PCM and triple-pane 

window (TW + PCM)). The experiment was conducted in summer sunny days and summer rainy days 

in hot summer and cold winter in an area of China. Fig. 4.31. shows Structure comparison of the three 

kinds of windows. 

 

 

Fig. 4.31. Structure comparison of the three kinds of Windows [152] 

 

The result of the dynamic thermal performance of the TW + PCM (triple-pane window) in the sunny 

and rainy summer days shows that the TW + PCM have a good performance on reducing the 

temperature fluctuation indoors and saving the energy consumption.  

In the sunny summer day with high outdoor air temperature and strong solar radiation, the temperature 

on the interior surface of the TW + PCM is 2.7ºC and 5.5ºC lower than that of the DW + PCM and 

TW respectively, which means the overheating risk, is avoided effectively, and the heat transferred 

into room through the TW + PCM is reduced by 16.6% and 28% compared with the DW + PCM and 

TW respectively. During the discharge period of PCM in the night, the heat released from the PCM 

into the testing chamber reduces. It shows the same function with the DW + PCM on the delay of 

peak-temperature time. It can adjust the peak load of the air conditioning system and save the air-

conditioning energy consumption. 
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In the rainy summer day with low outdoor air temperature and weak solar radiation, the temperature 

on the interior surface of the TW + PCM is 0.74ºC and 1.65ºC lower than that of the DW + PCM and 

TW respectively, and the heat transferred into room through the TW + PCM is reduced by 14.7% and 

increased by 4.5% comparing with the DW + PCM and TW respectively. The TW + PCM play a good 

performance on reducing the temperature fluctuation of the interior surface and the heat entered the 

room, but it is unsatisfactory in reducing the peak heat flux of the interior surface and delaying the 

peak temperature. Fig. 4.32. shows the melting process of the paraffin MG29 in the PCM-filled 

windows in the sunny summer day and Fig. 4.33. keeps the minute of the most melted PCM, which is 

shot in 14:00 [152]. 

 

 

Fig. 4.32. The melting process of the PCM of the TW + PCM in the sunny summer day [152] 

 

 

Fig. 4.33. The melting state of the PCM in the rainy summer day (14:00) [152] 

 

Changyu Liu et al. [153] developed a mathematical model for the heat transfer that evaluated with 

good agreement the effect of (i) the glass properties; (ii) the convection heat transfer coefficient; (iii) 

the surfaces temperatures; and (iv) the air temperature. The main results show that. The influence of 

the solar radiation through the glass is significant for the heat flux increment. If the difference of 

temperatures, between the surface and the air (from the inside to the outside of the room) do not 

exceed 2°C, therefore the total heat flux effect can be neglect.  
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The convection heat transfer coefficient does not affect significantly the overall heat flux. Heat 

transfer is improved by the solar radiation in winter but has an adverse effect in summer. 

Gomes et al. [154] determined both solar and visible properties of a glazing system with venetian 

blinds using a net radiation method. They compared the numerical results with the experimental data 

measured from an outdoor test cell. They concluded that the developed model can be used to simulate 

different system configurations, such as glazing and/or shading devices (including venetian blinds) 

and the model can be introduced into building energy simulations and building design tools. The 

numerical results were compared with the experimental data and for overcast sky conditions. For these 

conditions they got excellent fitting results, but for the clear sky conditions the comparison of the 

results presented some discrepancies. A venetian blind control strategy was used and they conclude 

that is more important for southern European regions. To help designers and users to improve the 

thermal and daylighting indoor conditions they presented some design plots with information about 

how to adjust the slat orientation of the venetian blinds. 

Tiago Silva et al. developed an experimental procedure that follows a test on a cell that was located in 

Aveiro, Portugal a region with a Mediterranean climate. Considering the weather database available 

(from the weather station at the University of Aveiro) the adequate melting temperature of the PCM 

was chosen. According to the selected PCM the shape of the window blade (used as a macrocapsule) 

was defined and also the material. With the components of the window shutter prepared the system 

was assembled and applied in the outdoor test cell. Two compartments compose the test cell and each 

has two window shutters installed (two filled with PCM for one compartment and the others two 

without PCM). The performance of a window shutter with phase change materials was experimentally 

tested at fully scale. The PCM recorded to provide an extra thermal inertia for this compartment that is 

recorded and pursed by the indoor air temperatures and heat flux results were attained. 

The maximum indoor temperature of the compartment with the PCM shutter is 37.2°C which is 

16.6°C lower than the indoor air temperatures of the reference compartment. Comparing the indoor 

temperatures over time, the reduction of temperature can reach 90% (when the indoor air temperatures 

increases) and up to 35% (when the indoor air temperatures drop). For the maximum indoor air 

temperature peak the difference between both compartments is 30% to 40%. However, the minimum 

indoor air temperature peaks are similar, so for this situation the potential improvement of the PCM 

incorporation is null, proving that other features come into play such as thermal bridges losses, large 

glazing areas. Therefore an exercise of the compatibility and the optimization of these different 

features are necessary. 

The maximum and minimum heat flux measured on the internal partition wall of the reference 

compartment was 16Wm
−2

 and -8Wm
−2

, respectively. The compartment with the PCM shutter presents 

more steady results of the heat flux and the maximum heat flux recorded was 6.5Wm
−2

 and the 

minimum -3Wm
−2

. 

 

4.7. CONCRETE OR BRICK 

Adding PCMs directly into concrete has shown some promising results through lower thermal 

conductivity and an increase in thermal mass at specific temperatures. However, PCM concrete has 

shown some undesirable properties such as lower strength, uncertain long-term stability and lower fire 

resistance [177]. 

Several studies have been conducted on PCM-concrete and have shown positive effect through 

reduced indoor temperatures in warm climates [60].  
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Then, two typical construction materials, conventional and alveolar brick, were experimentally tested 

by Castell et al. [180]. Several cubicles were constructed and their thermal performance throughout the 

time was measured, as shown in Fig. 4.34.  

 

 

Fig. 4.34. PCM bricks and the test cubicles [180] 

 

The free-floating experiments showed that the PCM has reduced the peak temperatures up to 1ºC and 

smoothed out the daily fluctuations. Moreover, the electrical energy consumption was reduced about 

15% in the PCM cubicles in summer. These energy savings resulted in a reduction of the CO2 

emissions about 1kg/year/m
2
–1.5kg/year/m

2 
[180]. 

Later, to control and shape the PCMs, a new composite construction material that embedded micro-

encapsulated PCM in plastering mortar was developed and tested by Sá et al. [181], indicating the 

peak temperature of the indoor air was reduced by 2.6ºC after the PCM mortar used. That means, 

when the PCMs are used in plastering mortar, concrete, brick and cubicle, the thermal environment 

control performance could be improved, as well as the structure stability of buildings unaffected. The 

physical arrangement of this setup can be observed at the photos of the test cell/monitoring shown in 

Fig. 4.35. Regarding the monitored values registered for both test cells under Spring day conditions, 

shown in Fig. 4.36., it can be observed that the maximum internal temperature inside test cell REFM 

was of 26.3ºC, whereas the corresponding temperature in test cell PCMM was 23.7ºC [181].  
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Fig. 4.35. Photo of sensor arrangement inside pilot test cells [181] 

 

Fig. 4.36. Monitored temperatures of the pilot test cells with inner coatings made of PCMM and REFM (Spring 
day) [181] 

Combining concrete structures with PCMs have been tried in several different ways. One studied 

solution is to drill holes in the concrete which may then be filled with a PCM [178]. 

Royon et al. [179] tested the possibility of filling the already hollow areas in a hollow concrete floor 

with PCMs. The concrete was filled with paraffin PCM with a melting temperature of 27.5ºC. This test 

showed that the temperature on the other side of the hollow concrete was lower during summer 

conditions. Hence, such floors can be used as a passive thermal conditioner during the summer. 

However, more tests are needed with real life climate conditions to validate the effects (Fig. 4.37.). 
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A most surprising research was aimed at developing and testing the multifunctional performance of 

new PCM-filled structural concretes for building applications by Anna Laura Pisello et al. [177]. Such 

concretes were prepared by adding 5% in weight of encapsulated phase change material for thermal-

energy storage applications. Moreover, the included PCMs were selected in order to identify the best 

capsule geometry for structural and thermal purpose. In particular, the same paraffin PCM with 

melting temperature at 18°C was selected and industrially capsulated in two ways. The microcapsules 

included about 85%-90% of PCM in small capsules with diameter of about 17microns -20 microns. 

The second configuration concerned the macrocapsuled PCM, consisting in a sort of matrix with PCM 

microcapsules inside, having a whole diameter of 3mm-5mm and a whole PCM concentration of 80%. 

To concluded, the realistic potential to increase dynamic heat storage capacity of concretes by 

incorporation of PCM is doubtful. Firstly, the thermal mass increase is not as high as expected and 

secondly, thermal conductivity decreases significantly due to addition of PCM to concrete. As a result, 

the energy from the air has difficulty in being transported to the inside of PCM concrete construction 

within daily realistic indoor temperature variations. Moreover, maximum amount of PCM in the 

concrete is not higher than 5%–6% by weight (material is still workable), which means not much 

latent heat capacity can be introduced to sensible heat storage capacity. Consequently, 5%–6% by 

weight of PCM corresponds to approximately 12%–15% by volume of concrete, which means that the 

share of PCM in concrete is rather high and as a result, the price of the composite would be high due 

to rather high price of PCM. 

 

4.8. UNDERFLOOR HEATING 

Areas which are in direct contact with solar radiation hold large potential for storage of thermal heat 

energy. Floor solutions incorporating PCMs in areas of a building where the sun shines for large parts 

of the day may benefit from incorporating PCMs. Fig. 4.38. shows flat profiles filled with PCMs that 

were used in the floor in North House, a competitor in the US Department of Energy’s solar decathlon  

Fig. 4.37. Schematic representation of the tested concretes (not to scale) [177] 
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Fig. 4.38. Flat profiles which can be installed under floor to store and release latent thermal heat energy [60] 

 

Xu et al. [182] performed a simulation of the thermal performance of PCMs used in a passive floor 

system during the winter season. The performance on the systems was influenced by the choice of 

covering material, the air gap between the PCM and covering material and the thickness of the PCM. 

For the simulations performed, the thickness should not exceed 20mm as this would not increase the 

influence of the thermal storage significantly. 

Fig. 4.39(a) shows the structure of the box and view on the four test boxes. As reported, the 

application of PCMs in concrete floors resulted in a reduction of maximum floor temperatures up to 

16±2% and an increase of minimum temperatures up to 7±3% [183].  

A hollow concrete floor panel was incorporated with PCMs by Royon et al. [190, 191], as shown in 

Fig. 4.39(b). Thermal response to a temperature variation was also investigated, showing a decrease of 

the surface wall temperature amplitude and an increase of thermal energy stored for this novel floor. 

Clearly, it is very convenient for this method to storage energy in the PCMs. 
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Fig. 4.39. Structure of the PCM-concrete floor [190,191] 

 

Ansuini et al. [184] using a lightweight piped radiant floor prototype with an integrated PCM layer, 

with their experimental floor specimen shown in Fig. 4.40(b). A new PCM floor was also investigated 

by Huang et al. [185], as shown in Fig. 4.40(c), revealing the new PCM floor was able to release 

37,677.6 kJ heat for 16h in the pump-off period in a room of 11.02m
2
 and that accounted for 47.7% of 

energy supplied by solar water.  
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Fig. 4.40. Schematic of PCM-electric heating systems [41] 

Later, the performance of a PCM floor radiation heating system was experimentally investigated by 

Zhou et al. [186], indicating the advantages of using PCM-capillary mat combination for low-

temperature floor panel typical of solar-hot-water heating system. A two-dimensional coupled heat 

transfer model based on variable thermophysical parameters of PCM was established by Zhao et al. 

[187], concluding that the air temperature fluctuation in the cavity with PCM structure was in a 

smaller magnitude. 

A new double-layer radiant floor system with organic PCMs was proposed and tested by Xia et al. 

[188], showing that the double-layer radiant floor system with PCM could meet the thermal need of 

users under heating mode. The above research studies showed that the designed PCM floor was 

capable of achieving large-span intermittent heating and lower thermal conductivity for the decoration 

material, and helpful for adjusting the floor surface temperature in the present design.  

PCM embedded floor and a chilled ceiling also attracted researchers’ attention. Belmonte et al. [189] 

reported a numerical study on PCM incorporated into the floor, and a hydronic radiant ceiling system 

was used as the energy discharge system. Fig. 4.41 shows the structure of system and the heat balance 

on the floor inside face. The simulation results revealed that when accompanied by an air-to-air heat 

recovery system, this configuration could reduce the cooling energy demand and the energy 

consumption more than 50%. However, the degrees of occupant comfort will inevitably vary, for 

example, the predicted percentage dissatisfied (PPD) increases by 2%∼5%. In the view of thermal 

comfort study, this system is valuable to be further investigated. 
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Fig. 4.41. Structure of system and the heat balance on the floor inside face [189] 

 

In summary, studies on PCM-floor are concentrated on two aspects: (1) integrating PCMs into floor 

materials or PCM slabs as a layer in the floor construction, and (2) coupling a PCM-TES with floor 

heating system. All researchers payed their attention on energy saving for building, while few of them 

take the indoor thermal comfort into consideration in their experimental and simulation studies. 

Although most of experimental cases on PCMs were carried out, most of them were tested in the lab. 

To exactly calculate the indoor thermal comfort, a true building environment should be prepared, and 

thus field test in real building should be conducted. 

 

4.9. CEILINGS 

Implementing PCMs into roof systems does not seem to have received much attention, a few studies 

on the possible effects of PCMs in passive roof systems have been found. The thought is that PCMs 

placed on the roof will be able to absorb the incoming solar energy and the thermal energy from the 

surroundings to reduce temperature fluctuations on the inside [60]. 

Pasupathy and Velraj [192] studied the effects of a double layer of PCM for a year round thermal 

management in Chennai, India. An experiment was performed with a PCM roof panel compared to a 

reference room without the PCM panel. The PCM used was an inorganic eutectic of hydrated salts. 

The experiment showed that the PCM panel on the roof narrowed the indoor air temperature swings, 

and that such a system could perform during all seasons when the top panel had a melting temperature 

6ºC–7ºC higher than the ambient temperature in the early morning during the peak summer month, 

and the bottom panel had a melting temperature near the suggested indoor temperature.  

Kosny et al. [193] set up a naturally ventilated roof with a photovoltaic (PV) module and PCMs to 

work as a heat sink (Fig. 4.42.). The goal was that the PCM would absorb heat during the day in 

winter and release it in the night to reduce heating loads. In the summer the PCM would absorb heat to 

reduce the cooling loads in the attic beneath. A full scale experiment was performed over a whole year 

from November 2009 until October 2010 in Oak Ridge, Tennessee. 
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Fig. 4.42. PV-PCM roof [193] 

The data from the tests were compared with a conventional asphalt shingle roof. The PV-PCM attic 

showed a 30% reduction in heating loads during the winter and a 55% reduction in cooling loads. 

Furthermore, a 90% reduction in peak daytime roof heat fluxes was observed. 

Affording to Simen Edsjø Kalnæs and Bjørn Petter Jelle [60] the thought is that PCMs placed on the 

roof will be able to absorb the incoming solar energy and the thermal energy from the surroundings to 

reduce temperature fluctuations on the inside.  

Markus Koschenz [195] developed a study that describes the development of a thermally activated 

ceiling panel for incorporation in lightweight and retrofitted buildings. As alteration and refurbishment 

schemes look set to account for an increasing proportion of construction work, the focus was on 

minimizing overall panel thickness while providing ample storage capacity. It was demonstrated, by 

means of simulation calculations and laboratory tests that a 5cm layer of microencapsulated PCM 

(25% by weight) and gypsum suffice to maintain a comfortable room temperature in standard office 

buildings. The system’s features also make it ideal for use in lightweight structures, the incorporation 

of additional thermal mass offering an efficient means of moderating temperature amplitudes in this 

type of building. (Fig.4.43.) 

 

 

 

 

 

 

 

Also in his study, we can found that there are some simulation calculations for specification of 

required ceiling panel properties. Simulation calculations were performed to determine the required 

ceiling panel characteristics, based on the properties of the basic materials. Key parameters included 

the thickness of the PCM/gypsum composite layer, the proportion of paraffin and the minimum 

requirements placed on the PCM in terms of melting range and latent heat of fusion. An overall panel 

thickness of 5cm is required to store the total heat gain of 320Wh/m
2
 day. The quantity of PCM in the 

gypsum must be at least 25% by weight. In order to meet the required temperature boundary 

conditions, it is important for the melting range of the paraffin to be carefully adjusted to the specific 

situation. The region with maximum values of specific heat must therefore correspond to 21ºC–22 °C. 

Fig. 4.43. Laboratory test set-up with prototype ceiling panel [195] 

http://www.sciencedirect.com/science/article/pii/S0378778804000702#!
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To avoid large temperature gradients inside the material, the ceiling panels must exhibit good thermal 

conductivity over the entire cross-section. Here, the simulation calculations showed a mean target 

value of λ=1.2W/mK to be practicable. 

Helmut Weinläder et al. [196] carried out a research that was part of the project “Development and 

Practical Performance Testing of Building Components with PCM in Demonstration Buildings”. In 

this paper a ventilated cooling ceiling with PCM was evaluated in a long-term monitoring programme 

in two offices and a conference room. The system showed a significant cooling potential in summer 

and some considerable synergetic effects if combined with a sun protection system with PCM. While 

the ventilated cooling ceiling with PCM and the sun protection system with PCM alone reduced the 

maximum operative room temperature by 2K, the temperature reduction with both systems together 

was up to 4K. The ventilation system of the cooling ceiling would also be advantageous for the 

regeneration of the PCM blinds.  

Fig. 4.44. shows the operation modes of the ventilated cooling ceiling: During daytime, the ventilation 

is in purely circulating operation guiding the warm room air onto the PCM; during night time, cool 

outside air is used to regenerate the PCM. 

 

 

 

 

 

 

 

4.10. THERMAL INSULATION MATERIALS 

Recently, incorporation of PCMs into fibrous thermal insulation materials has received considerable 

attention. Kosny et al. [155] performed an experimental and numerical analysis of a wood-frame wall 

containing PCM enhanced fiber insulation. The wall assembly had an R-value of 4.14(m
2
K)/W (U-

value of 0.241W/(m
2
K)). For fiber insulation filled with 30wt% PCM in summer conditions, results 

showed a reduced peak hour heat gain of 23%–37% in Marseille and 21%–25% in Cairo and Warsaw. 

Lei et al. [156] developed a numerical simulation in order to calculate building energy performance by 

integrating a PCM for cooling load reduction in a tropical climate using Energy Plus. The results 

demonstrated that a small amount of heat gain reduction of 4.5% was achieved with a 10mm “solid 

PCM” layer. In addition, a meaningful heat-gain reduction of around 40.7% was obtained by adding 

another PCM layer. 

Jin et al. [157] experimentally studied the influence of PCM position on the thermal performance of 

building walls. The effects of the state of a variety of salt-hydrate PCM on its phase change 

performance were investigated with differential scanning calorimeter (DSC) examinations and cooling 

experiments.  

Fig. 4.44. Cooling (a) and regeneration mode (b) of the ventilated cooling ceiling with PCM 

http://www.sciencedirect.com/science/article/pii/S0378778814005507#!
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The results demonstrated that the PCM was in the fully melted state before cooling when the PCM 

locations were 2/5L (near internal layer), 3/5L, 4/5L, and L, while in the PCM location of 1/5L, the 

PCM was in the partially melted state prior to cooling. During the experiments, there were six 

locations for installing the PCM layer in the wall, as shown in Fig. 4.45. 

 

Fig. 4.45. - Schematic of wall construction (a) control wall (No PCMTS) (b) location 0/5L (c) location 1/5L (d) 
location 2/5L (e) location 3/5L (f) location 4/5L (g) location 5/5L [157] 

Izquierdo-Barrientos et al. [158] developed a one-dimensional transient heat transfer model using a 

finite difference method to investigate the impact of PCMs in external building walls. Furthermore, 

several external-building-wall arrangements were analysed for a typical building wall by varying the 

position of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition 

temperature of the PCM. They found that there was no important reduction in the total heat lost during 

winter regardless of the wall orientation or PCM transition temperature. 

Kuznik et al. [159] investigated an experimental method for the thermal performance of a PCM-

copolymer-composite wallboard in three different climates. The results showed that for all the cases 

tested, the ratio between the amplitude of the indoor air temperature in the cell with PCM and the 

amplitude of the reference test cell was between 0.73 and 0.78. In addition, the PCM tested kept the 

room air temperature within the comfort zone while the maximum air temperature of the room could 

be decreased by as much as 4.2°C. 

Vicente and Silva [138] investigated an experimental testing of wall elements integrated by PCM 

macro-encapsulation. The results showed that the maximum amplitude reductions were about 50% and 

80% for two different specimens. In addition, the delay time within the source specimen and the 

imposed temperature was nearly one hour but this value extended to three hours for other specimens 

with the incorporation of PCM. 
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Evola et al. [161] reported a complete evaluation methodology for optimising PCMs to enhance 

summer thermal comfort in lightweight buildings. In addition, they investigated the intensity and 

duration of the thermal comfort for the occupants. Finally, they analysed a new case study, including 

organic PCMs, on a lightweight office building. This study was useful to assist with detection of the 

most appropriate PCM and its installation pattern as a function of the climatic operating conditions 

and of the comfort requirements. 

Xing Jin et al. [162] investigated the dependence of wall thermal performance on PCM location 

leading to the most appropriate PCM locations. They evaluated a dynamic model of walls with and 

without a PCM thermal shield. The experimental results showed that the optimum location of the PCM 

thermal shield was 1/5L from the interior. In this location, the peak reduction of heat flux was 

approximately 41% and time lag was around 2h. They also evaluated the optimal location of a “thin” 

PCM layer while varying PCM thickness, melting temperature, heat of fusion and interior surface 

temperatures, to increase thermal capacity and shave peaks of heat flux within the wall. Based on a 

mathematical model, the optimal locations of the PCM layer were determined to be closer to the 

exterior surface of the wall. While the thickness, heat of fusion, and the melting temperature of PCM 

were increased, the optimal position of PCM was closer to the interior surface. 

 

4.11. FURNITURE AND INDOOR APPLIANCES 

A point that has not been investigated with the same affluence, but should be mentioned, is the 

possibility of using PCMs in furniture and other indoor appliances. The benefit of PCMs is as 

mentioned their ability to store heat in periods where there is a surplus, and release the heat when there 

is a deficit. It would be interesting to study how incorporation of PCMs into other components in a 

building besides the structural components, could benefit energy savings and thermal comfort [60].  

PCMs have already been widely studied for textile applications [163], showing that there is a 

possibility of adding PCMs to various forms of materials. The large surface area of the furniture 

exposed to the indoor environment can be ingeniously used for latent heat thermal energy storage 

(LHTES) with the integration of phase change materials (PCMs). Their appreciable energy storage 

density is an interesting asset for increasing the thermal inertia of light structure buildings and for 

extending the applicability of the TES strategy.  

PCM furniture could allow integration of LHTES in low thermal inertia dwellings without the need for 

building renovation.  

Horikiri et al. [165] used computational fluid dynamics (CFD) to assess the effect of room occupancy 

and furniture arrangement with and without heat generation in terms of local thermal comfort. Three 

different configurations of furniture and occupants were compared with the empty room case.  

The study pointed out that addition of non-heat generating furnishing in the ventilated room can 

induce complicated flow re-circulations and high local air velocities around edges of the furniture. 

However, it has little influence on room temperature and airflow buoyancy strength, compared with 

that of unfurnished room case.  

Finally, the heat generation from the TV did not have important impact on the thermal comfort and 

heat transfer. As seen in Fig. 4.46(a). This configuration includes a double panel radiator as a heat 

source, a glazed window, and a ventilation system (i.e. an inlet above the window for extracting cold 

fresh air, and an outlet on the opposite wall for exhausting warm air), respectively (denoted as model 

S0 thereafter).  
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The origin of the coordinate system is located at the mid-point of the intersection line between the 

floor and the inner wall surface with inlet slot and window along the span wise direction, as shown in 

Fig. 4.46a. Analysis of the impact of occupied room on indoor thermal comfort is carried out by three 

different layouts/scenarios with furniture and/or occupants (S1–S3) (see Fig. 4.46b–d), compared with 

the original empty model room layout/scenario S0.   

The furniture considers a cabinet (or a TV stand) with a TV at a fixed position, located at the middle 

of one side-wall opposite to the sofa, and two different types of sofa. A small sofa that has no armrest 

is located at the back wall, facing to the window wall (denoted as the layout S1) while a large sofa 

with armrest is located at the middle of one side-wall (denoted as the layout S2).  In the layout S3, two 

sofas are both included. All sofas and cabinet/TV-stand are attached to the walls, assuming that the 

gap between the walls and the non-heat generating furniture is so small that the local heat transfer and 

fluid pattern inside the gap space do not have significant influences on the domain of interest, i.e. the 

central space of the model room [165]. 

 

 

 

Fig. 4.46. Schematic views of four 3-D configurations of furniture with monitoring four lines (P1–P4): (a) layout S0, 
(b) layout S1, (c) layout S2, (d) layout S3  [165] 

 

The humidity buffering effect of materials located in the thermal zone can reduce humidity variation. 

It improves thermal comfort and decreases energy consumption of the mechanical systems for 

humidification or dehumidification.  

Yang et al. [166] conducted full-scale experiments on moisture buffering capacity of interior surface 

materials and impact of the presence of furniture in the interior space. The results showed that the 

indoor humidity variation decreased by up to 12% and the total moisture buffering potential of the 

room increased by up to 54.6% for a fully furnished case. The authors explained that furnishing 

elements present much more surface area for moisture exchange and buffering than envelope inner 
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surfaces. Furniture materials can also hold more water vapor than interior surface ones. In addition, the 

variation of moisture contents of walls screened by furnishing is not always the same as in an empty 

room. The results also indicated that a bookshelf with books and a bed with mattress present higher 

moisture buffering capacity than tables, chairs and curtains. A full-scale test hut composed of two 

identical test rooms, one on top of the other, was assembled inside a large-scale environmental 

chamber, as shown in Fig. 4.47. The envelope of the test rooms was of typical Canadian residential 

wood-framed construction. Each room had an interior dimension of 3.62m by 2.44m by 2.43m high. 

Two hygroscopic materials, uncoated gypsum board or wood panelling, were installed as the interior 

finishing materials on two of the vertical walls. The rest of the indoor surfaces were covered with 

aluminium metal sheets (0.8mm thick) to avoid any moisture interaction. Tests were carried out 

independently in each room [166]. 

 

Fig. 4.47. Configuration of two identical test rooms and the test wall assemblies [166] 

 

Mortensen et al. [167] explored the local micro-climate created by furnishing elements close to cold 

walls. A piece of furniture placed near a poorly insulated external wall can lead to condensation on the 

inner side of the building envelope. The authors used particle image velocimetry to perform a two-

dimensional experimental analysis of the airflow pattern in a small air gap between a chilled wall and 

a closet placed next to it. Two air gap widths were tested: 25mm and 50mm. Length of legs of the 

furniture varied from 0mm to 200mm. The study indicated that vertical flow dominates with similar 

behavior as in between vertical plates heated asymmetrically. The flow in the air gap was not fully 

developed and maximum velocities were found near the cold wall. Finally, the flow rate increased 

when the gap was expanded or if the furniture was elevated from the floor. 

Corcione et al. [169] published numerical studies showing a non-negligible decrease in the heat 

transfer from radiant surface systems to the furnished indoor space in comparison to an empty room 

case. The air and mean radiant temperature were also impacted.  Fontana extended this work with 

experimental investigations using a small-scale test setup to look at the impact of furniture pieces with 

different surface areas, locations and distance from the floor. The author concluded that 40% of floor 

covering with different kinds of furniture can reduce the heat flux from the radiant floor to the room 

by 25%–30%. 
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Pomianowski et al. [168] conducted a full-scale experiment concerning the influence of an internal 

obstacle on the overall heat transfer in a room when using displacement night time ventilation. The 

presence of a table changed the average convective heat transfer coefficient in the test chamber and the 

mean heat flux at the ceiling by 3.96% and 9.84% respectively, when applying an air change rate of 

6.6 h
−1

. The only noticeable drops in the temperature efficiency caused by the presence of the table 

were observed at low air change rates. The studies presented above pointed out that the influence of 

furniture cannot be neglected when designing a radiant floor system. Surprisingly, it has been found 

that Fontana [170] was the only one to publish the results of an experiment investigating the impact of 

furniture on radiant systems. As mentioned by Le Dréau [171], further experimental researches are 

required to quantify the effect of furniture on the effectiveness of radiant systems [73]. 

 

Antonopoulos and Koronaki [172] characterized the thermal capacitance, time constant and thermal 

delay of typical Greek detached houses with a one-dimensional finite-difference model. The authors 

took into account the presence of furniture thermal mass and modelled it as an equivalent one-side 

wooden slab of 6 m
2
per m

2
 of floor area and a thickness of 5cm, which gives an internal mass density 

of about 180 kg per m
2
 of floor area. No justification was given for the choice of this value. Solar load 

and internal heat gains were applied to the air node only. The results showed that the envelope, 

partition walls and furniture represented 78.1%, 14.5% and 7.4% respectively, of the total effective 

building thermal capacitance. The authors concluded that furniture/indoor mass can increase the 

building time constant and thermal delay by up to 40% (25% for interior wall partitions and 15% for 

the furnishings) [172]. As seen in Fig. 4.48., the total internal mass is often over-estimated. 

 

Fig. 4.48. Comparison between results of the survey and other published values [73] 

 

Yam et al. [173] developed a simplified building model with adiabatic envelope and no internal sun 

load to examine the nonlinear connection between internal thermal mass and natural ventilation. They 

found that a maximum indoor temperature phase shift of 6h can be reached if the fresh air is directly 

supplied from the outdoor environment, presenting periodic temperature variations. The authors 
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proposed that an appropriate amount of thermal mass should be used in building passive design 

because further increase above an optimum point does not change the phase shift of the system.  

Wolisz et al. [174] carried out a numerical analysis on the impact of modelling furniture and floor 

covering in thermal building simulations with temperature set point modulation control. The study 

cases were a massive building and a light frame building, both with very good insulation levels and 

under-floor heating systems. The furniture element was represented by an equivalent horizontal board 

of wood or metal. Long-wave radiation heat exchanges were modelled by coupling inner surfaces to a 

fictive massless black body node in a star network scheme. One internal wall had 50% of its surface 

area covered by furniture. It was found that after 4h of increased set point, an empty massive room 

was 1.2°C warmer than the one with flooring and furniture. A fully equipped massive room can have a 

time delay of more than 7h to raise its temperature by 5°C, compared to an empty room. Furnishing 

and floor covers can change cool-down times by up to 2h in the case of periodic set point control. The 

floor covering presented more significant effect on the heating time than the furniture element because 

the under-floor radiant system was used as a heating source. However, the effect of furniture became 

more important for the lightweight room with periodic set point scenario. The authors concluded that 

both the furniture and the floor covering of a room have a distinct and significant impact on the indoor 

temperature for dynamic set point control [174]. 

Raftery et al. [175] executed a sensitivity analysis on the influence of furniture on the peak cooling 

load of a large open space multi-story office building located in San Francisco. The authors used the 

Energy Plus software and varied multiple parameters such as type of HVAC system, building 

orientation, window to wall ratio, envelope thermal inertia and amount and surface area of the internal 

mass element. Two different furniture models were tested: a simplified non-geometric furniture 

element, which is not taken into account for solar radiation and long-wave heat exchange and a new 

model with a geometric representation of an equivalent furniture slab located in the center of the room, 

0.5m above the floor. With the latter, direct and diffuse solar radiation repartition can be executed 

accordingly with shading effect of the planar element on the floor. Long-wave radiation heat exchange 

can also be calculated with correct view factors. Results were presented using the median value 

following by the lower and upper quartiles in parentheses. The study found that internal mass can 

change peak cooling load by -2.28% (-5.45%, -0.67%). The geometric modelling changed peak 

cooling load by -0.25% (-1.02%, +0.23%) when compared to the non-geometric model. This 

geometric modelling had a larger effect in cases with high direct solar radiation and almost no effect 

for low solar loads. The impact was also found more important for HVAC radiant systems, which 

yield a surface temperature asymmetry. The thickness of the internal mass element had a relatively 

large impact on results. Very thin elements with a small time constant convert the solar load into a 

convective load quickly and can thus increase the peak cooling load. The authors concluded that the 

choice of modelling method is not significant compared to the uncertainty on the internal mass 

characteristics such as surface area, material properties, weight and thickness [73].  

 

4.12. SAFETY REQUIREMENTS 

The safety requirements for materials used in buildings are crucial points for the PCMs to fulfil. As 

mentioned earlier, PCMs should not be toxic or flammable. However, for many organic PCMs 

flammability and possible release of toxic fumes during combustion have been an issue. Solutions 

have been made to counter this issue, such as ignition resistant microcapsules for PCMs and the 

adding of fire retardants [60]. 
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Hence, it is of significance that manufacturers of PCMs for building applications are required to give 

reliable information about the fire performance of their products. Nguyen et al. [197] reviewed the 

work that has been carried out to improve fire safety of PCMs. This work investigated the use of fire 

retardants to increase fire resistance of composite PCMs. 

 

4.13. CHAPTER SYNTHESIS 

Incorporating phase change materials (PCM) into a building enables a more dynamic use of energy. 

Due to the storage capabilities of PCMs, excess heat can be stored during warm periods and released 

during cold periods. It may also work the other way around, storing cold energy and using it for free 

cooling systems in warm periods. The benefits of using PCMs in buildings mainly revolve around a 

decrease in energy usage along with a peak load shifting of energy required for heating or cooling and 

an increase in thermal comfort by decreasing temperature fluctuations [60]. 

Commercial products have been developed and released on the market with some success. What 

makes PCMs particularly interesting is the fact that many PCM solutions, e.g. wallboards, floor tiles, 

window, bricks and concrete can be added to the construction with fairly little alterations to the current 

way of building. 

However, there are a wide range of materials which can be used as PCMs and identifying the correct 

PCM for the specific application and for the specific climate conditions is an area which needs further 

research. Calculations of payback periods for PCM installations are also needed to further validate the 

use of the PCM technology. 

Though solutions have been tested to increase thermal conductivity for more effective absorbance and 

discharge cycles, this has come at the cost of lower latent heat storage per unit weight and unit 

volume, hence giving the PCMs less storage potential. 

Fire safety is still an issue for organic PCMs, though here as well, solutions which show promise have 

been introduced. 

The PCM technology seems promising. However, there are still some hurdles which need to be 

overcome for a large-scale application of this technology. Standards which state test methods and can 

help identify the correct PCMs for various climates, to enable proper cycling and optimization of PCM 

systems, are needed. Research into new PCM technologies is also of major importance. 
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5 

CONCLUSION 

 

 

5.1. SUMMARY OF THE MAIN FINDS AND CONCLUSIONS 

It was carried out a review of thermal energy storage using phase change materials with focus on the 

building application. The information gathered is divided into the different application of PCM. From 

the research, it can be concluded that PCM application for passive solutions in construction materials 

has been studied for a couple of decades and by many academics.  

There are several materials that can be used as phase change materials. A common way to distinguish 

them is by dividing into organic, inorganic and eutectic PCMs. These categories are divided based on 

the various components of the PCMs. Paraffin and binary organic acids are the mainly phase change 

materials used in envelopes. 

Flammability risk is still an issue so all products with PCM shall be tested with respect to fire 

retardation and accomplish necessary fire codes and standards. Suitable thermal properties of PCMs 

and their composites, such as, thermal conductivity, thermal diffusivity, specific volumetric heat and 

specific heat capacity have to be determined as a function of temperature to properly determine 

dynamic performance and potential for the entire energy storage system. Regarding measurements of 

thermal properties of PCMs and their composites, some experimental methods are presented. For 

specific heat capacity measurements, DSC isothermal step mode, DTA and T-history methods can be 

recommended. On the contrary, results from DSC dynamic mode might be dependent on sample size 

and temperature ramp. 

Heat stored in the PCM during high temperature periods (days) should be discharged during low 

temperature periods (nights) to be able to perform on the consecutive day, so phase change materials 

can decrease energy consumption, shift the peak loads of cooling energy demand, decrease 

temperature fluctuations providing a thermally comfortable environment, and reduce the electricity 

consumption. The thermal inertia, which can be defined as ‘time lag’ and ‘decrement factor’, is one of 

the important parameters to estimate the thermal performance of the buildings. 

When studying the potential of PCM products, boundary condition (temperature fluctuation, heat 

transfer on the surface) and heating loads in experimental set ups and in simulations have to represent 

realistic condition, otherwise their performance will be either over or underestimated. When used in 

buildings, PCMs can be incorporated into other building materials. This topic has attracted a lot of 

interest as it will allow buildings to be built in a similar way that they are built today, but with 

materials that have an increased thermal energy storage capacity. In the reviewed literature it was 

recognizable that wall systems integrating PCMs have received the most attention.  
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As most PCMs designed for building applications go through a liquid phase, encapsulation is needed 

to avoid complications such as leaking of PCM to the surface and spreading of low viscous liquids 

throughout the material. Therefore, methods such as direct incorporation and immersion of PCMs in 

building materials are not well suited for long-term applications. 

Nevertheless few detailed studies on the overall effect of PCMs in real life constructions, commercial 

PCM products have already been used in several projects.  

Gypsum materials can be combined by up to 45% by weight of PCM when strengthening the structure 

with some additives and up to 60% by weight in the wall board composites. On the other hand, in the 

concrete materials only up to approximately 6% (by weight) of PCM has been implemented.  

When looking for PCM in the glazed envelopes, only few researches can be found and much less work 

has been documented comparing to the opaque constructions with PCM. Based on the reviewed 

studies, it can be concluded that PCM in glazing, shading and shutters might be an interesting addition 

to the building envelope in order to minimize solar heating loads. Application of PCM in the glazed 

surfaces shall be carefully designed, since on one hand, it can help reduce solar thermal loads during 

the hot season, but on the other hand, it can decrease thermal resistance of windows and by that 

increase heat losses during the cold season. Therefore, potential of PCM in the glazed envelopes 

should be carefully studied with respect to the climate condition. 

PCM-ceramic tiles present remarkable potential for improving the thermal comfort inside buildings 

due to their ability to reduce indoor space temperature fluctuations. 

The accurate potential to increase dynamic heat storage capacity of concretes by incorporation of PCM 

is doubtful. Firstly, the thermal mass increase is not as high as expected and secondly, thermal 

conductivity decreases significantly due to addition of PCM to concrete. Only, 5%–6% by weight of 

PCM corresponds to approximately 12%–15% by volume of concrete, which means that the share of 

PCM in concrete is rather high and as a result, the price of the composite would be high due to rather 

high price of PCM. 

Furnishing elements offer a large surface area exposed to the indoor environment, which makes them a 

good candidate for PCM integration. It can be an interesting solution for the implementation of passive 

latent heat thermal energy storage (LHTES) systems without construction work and thereby improving 

thermal inertia and energy flexibility of light buildings. Though, the integration of PCM in furniture 

raises new issues concerning their defiance with fire regulation, recycling process and total life cycle 

analysis. 

It can be concluded, that potential of latent heat application should always be compared to realistic and 

relevant reference systems/constructions, heat storage potential of PCM technologies should always be 

analyzed taking into account thermal properties of PCMs/PCM composites but also heat transfer 

condition on the surface. 

 

5.2. SUGGESTIONS FOR FUTURE WORK 

Further investigations still need to be carried out on the incorporation methods for PCMs to be 

embedded in existing building structures, long-term stability and any other problems which may affect 

the safety, reliability and practicability of the thermal energy storage used in buildings. 

In published studies, most of the information concerning high-temperature PCMs lacks completeness. 

Consequently, it is necessary for researchers to attach importance to completing and providing various 

aspects of information when actively conducting experiments to develop new materials. The most 
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important items of information are thermal conductivity in the operating temperature range, specific 

heat in different phase states, environmental impacts, costs and other factors, so as to be able to 

measure each material’s application value more comprehensively and objectively. 

There is no standard method (such as British Standards or EU standards) developed to test for PCMs, 

making it difficult for comparison to be made to assess the suitability of PCMs to particular 

applications. A unified platform such as British Standards, EU standards needs to be developed to 

ensure same or similar procedure and analysis (performance curves) to allow comparison and 

knowledge gained from one test to be applied to another. 

In PCM research community there is a lack of one thermal analyses (TA) method convenient to 

measure larger PCM samples. T-history is the suitable candidate. Is important to get in consensus 

among all researchers to suggest a common instrumental setup, data analysis and presentation of final 

results. 
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