
This is the post peer-review accepted manuscript of:

Pedro Pinto, Tiago Carvalho, João Bispo, Miguel António Ramalho, João M. P. Cardoso.

“Aspect Composition for Multiple Target Languages using LARA,” in Computer

Languages, Systems and Structures, Elsevier, Vol. 53, Sept. 2018, Pages 1-26.

The published version is available online at: https://doi.org/10.1016/j.cl.2017.12.003

Copyright © 2018 Elsevier Ltd. All rights reserved.

Copyright © 2019 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a

registered trademark of Elsevier B.V.

©2018 Elsevier. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be obtained from Elsevier.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/187229751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.cl.2017.12.003

Aspect Composition for Multiple Target Languages using LARA

Pedro Pinto∗, Tiago Carvalho, João Bispo, Miguel António Ramalho, João M. P. Cardoso
Department of Informatics Engineering

Faculty of Engineering, University of Porto

Abstract

Usually, Aspect-Oriented Programming (AOP) languages are an extension of a specific target programming

language (e.g., AspectJ for Java and AspectC++ for C++). Although providing AOP support with target

language extensions may ease the adoption of an approach, it may impose constraints related with constructs

and semantics. Furthermore, by tightly coupling the AOP language to the target language the reuse potential

of many aspects, especially the ones regarding non-functional requirements, is lost. LARA is a domain-specific

language inspired by AOP concepts, having the specification of source-to-source transformations as one of

its main goals. LARA has been designed to be, as much as possible, independent of the target language

and to provide constructs and semantics that ease the definition of concerns, especially related to non-

functional requirements. In this paper we propose techniques to overcome some of the challenges presented

by a multilanguage approach to AOP of cross-cutting concerns focused on non-functional requirements and

applied through the use of a weaving process. The techniques mainly focus on providing well-defined library

interfaces that can have concrete implementations for each supported target language. The developer uses

an agnostic interface and the weaver provides a specific implementation for the target language. We evaluate

our approach using 8 concerns with varying levels of language agnosticism that support 4 target languages

(C, C++, Java and MATLAB) and show that the proposed techniques contribute to more concise LARA

aspects, high reuse of aspects, and to significant effort reductions when developing weavers for new imperative,

object-oriented programming languages.

Keywords: LARA, AOP, Aspect Composition, Aspect Modularity, Aspect Reuse, Language Agnostic

1. Introduction

Aspect-Oriented Programming (AOP) [1] is a paradigm that aims at increasing program modularity

by specifying code related with crosscutting concerns (e.g., logging, profiling, autotuning) into separate

entities called aspects. It is common for an AOP approach to be focused on a specific target language (e.g.,

AspectJ [2] for Java and AspectC++ [3] for C++). When moving crosscutting concerns to an aspect, we5

are effectively moving code from a source file to an aspect file. As such, for seamless integration between

∗Corresponding author
Email address: p.pinto@fe.up.pt (Pedro Pinto)

Preprint submitted to Computer Languages, Systems and Structures November 28, 2018

aspect and application code, we need access and support to language features. In fact, most well-known

AOP languages are extensions of their target language [4]. The most relevant benefits from this approach are

being able to specify additional behavior transparently in the aspect language, and a possibly lower learning

curve for aspect developers, since they should be familiar with the target language.10

Despite the benefits provided by such approaches, coupling an AOP language to its target language

can present some drawbacks. For instance, any restrictions and limitations of the target language may be

propagated to the AOP approach (e.g., AspectC++ [3], which extends C++, inherits its limited reflection

capabilities). Moreover, tying such an approach to its target language may prevent opportunities for tooling

reuse between AOP approaches of different target languages. Therefore, developing an aspect-oriented15

approach for a new language from the ground up is non-trivial and a significant undertaking, since common

parts between language-specific AOP approaches that can be reused are few or non-existent.

We propose these two problems can be solved, or significantly reduced, if we adopt an approach that is,

as much as possible, agnostic to the target language. On one hand, it allows the development of an AOP

language with features that are independent of the target language; on the other hand, it enables tooling20

reuse, which can significantly reduce the effort needed to support new target languages. This can include

compilers and/or interpreters for the AOP approach in addition to a well-defined API. Since aspects may be

defined independently of the target language and the underlying framework may be the same, there are also

new opportunities to explore, such as the possibility to reuse aspect code between different target languages,

and the development of aspect libraries that support more than one target language.25

LARA [5] is a Domain-Specific Language (DSL) for source-to-source transformations and analysis, in-

spired by AOP concepts [1]. LARA explores the idea that it is possible to have a single programming

language, agnostic to the target language, capable of selecting points of interest and expressing source code

transformations. To apply LARA aspects we use weavers, tools that translate the abstract concerns described

in LARA to a concrete language.30

However, a multilanguage aspect-oriented approach presents new challenges. The first challenge is how

to specify, in a target-independent way, queries of specific points in the code. Previous work on the LARA

language [5, 6] provides a solution for this first challenge, which is presented in Section 2.1. The second

challenge is defining additional behavior for the application in a language-independent way. One of the ways

LARA currently adds additional behavior is to allow insertions of arbitrary strings around the points of35

interest it captures. Figure 1 shows a LARA aspect that modifies source code to log function calls. Line

3 queries the code and selects all calls inside functions (i.e., select function.call end). The join point

function represents the code for a function while the join point call represents the code for a function

call. To this selection, we apply the rule inside the apply block (lines 4-8), which inserts the code inside the

brackets (i.e., %{}%) before all captured calls. The inserted code prints the name of function where the call40

happened (i.e., $function.name), and the name of the called function (i.e., $call.name).

Although a powerful mechanism, raw code insertion can also become complex and error prone. For

2

1 aspectdef LogCall

2

3 select function.call end

4 apply

5 $call.insert before %{

6 printf("[[$function.name]]->[[$call.name]]\n");

7 }%;

8 end

9 end

Figure 1: An example of a LARA aspect that inserts a print instruction before function calls.

instance, syntax verification of the inserted code during aspect compilation is not guaranteed and is dependent

on the implementation of the tool. Also, this example is not inserting the necessary includes for the function

printf (i.e., <stdio.h>). In this paper, we build upon our current solution and present techniques to better45

overcome the challenge of specifying additional behavior in a language-independent way.

The main contribution of this work is a multilanguage1 AOP approach that enables weaving of reusable

advices, at the aspect and language level. More specifically, this paper addresses the following points:

• A comprehensive and updated description of the LARA framework and its components;

• The Weaver Generator, a tool that provides a base implementation of a weaver based on an initial50

Language Specification;

• A systematic classification of pointcuts and advices regarding reuse and composition;

• A set of techniques using the LARA framework for reuse and composition: generic weaver libraries,

user library bundles and overlapping Language Specifications;

• A set of language-independent aspect libraries and examples for several crosscutting concerns that55

apply the presented techniques;

• Evaluation of our approach regarding the impact of the techniques in aspect code and the effort of

developing a new weaver using the LARA framework.

Furthermore, the techniques that lead to our multilanguage support also result in improved code reuse,

both at the weaver level and at the aspect level. We consider the developed aspects become more concise60

and are less likely to produce incorrect code, since in most cases the user can abstract from writing code in

the target language.

This work is an extension of the paper LARA as a Language-Independent Aspect-Oriented Programming

Approach [7], presented in SAC’17. This paper was extended and improved in multiple ways. There is a new

1Please note that the target languages of our weavers are imperative, possibly Object-Oriented, programming languages.

3

section describing the LARA framework and how to use it to develop a new weaver. Another new section was65

added where we present several possibilities for aspect reuse and composition. Since the submission of the

previous work, we developed a new type of interface, bundles, which provide the users with library building

features. This was integrated in the description of our approach and in the evaluation. One of the weavers

presented in the previous paper, which targets C, was replaced by a newer weaver, which targets both C

and C++. The examples in the previous paper were replaced with 8 new examples targeting 4 languages,70

and their evaluation section was augmented and updated. The related work section was heavily restructured

and augmented in order to provide better comparisons across several dimensions.

The remainder of this paper is organized as follows. In Section 2, we present the LARA framework, its

components and how it can be used to develop new weaving environments. Then, we enumerate possible

options for aspect reuse and composition in Section 3, and, in Section 4, we describe how our approach75

implements these concepts, based on features of the framework and further techniques to improve aspect

modularity and multilanguage support. Next, we discuss in Section 5, the results obtained when evaluating

the developed techniques and the estimated effort of developing a new weaver. Finally, in Section 6 we

present and review related work, and we conclude the paper, drawing our main conclusions in Section 7.

2. The LARA Language and Framework80

Unlike many AOP approaches, the LARA-based approach was designed to be, as much as possible,

agnostic to the target language and to specify insertions and code transformations for any supported target

code. This was achieved by decoupling LARA from the target language model, which is a specification of the

points of interest of the target language, as well as their attributes. When using LARA code to transform

the input source code in a specific target language we need a weaver, which connects the language model85

and the target code representation, e.g., an Abstract Syntax Tree (AST).

The language model, named Language Specification in our approach, has three main components, which

are currently specified in XML files. First, the join point model specifies which code structures a weaver can

capture. Furthermore, in LARA, join points have relations between them, based on which points can be

selected from others. For instance, we can select functions from within files and this is defined in the join90

point model. Then, the attribute model specifies which attributes are available in each join point, which can

be as simple as the name of a function, or include semantic information, such as the type of a variable or

number of iterations of a loop. Finally, the action model defines weaver-specific actions, which are used to

advise the code (e.g., code insertions or loop transformations).

Figure 2 shows the general structure of a weaver based on the LARA framework. The LARA Engine,95

as all the components in the framework, is developed in Java. It is a generic component, which can be

used by all LARA weavers and contains a compiler and interpreter for the LARA language. It needs a

Language Specification to know which points in the code are available (join points). When instructed by the

LARA Engine about weaving-related operations, the Weaving Engine queries and transforms the internal

4

Figure 2: The general structure of a weaver based on the LARA framework.

representation (IR) of the Source-to-Source Compiler. The compiler parses the input code and builds the100

IR, which is changed according to LARA aspects. At the end of execution this component also generates

back source code representing the altered program. We used source-to-source compilers as an example since

most of our tools (and all presented here) follow a source-to-source compilation flow. However, this is not

mandatory and a new weaver can have back-ends targeting multiple platforms, in source, binary or bytecode

form.105

LARA considers two separate groups of developers: weaver developers and aspect developers. This sepa-

ration is similar to Stephanies and Joes introduced by August et al. [8]. The weaver developers (Stephanies)

are few, but their work enables AOP approaches for new languages that can be used by many aspect devel-

opers (Joes). Additionally, the effort spent on the side of the weaver developer has the potential to multiply

its payoff, in proportion to the number of users of the weaver.110

2.1. The LARA Language

LARA [5] is a domain-specific language, inspired by AOP concepts [1], for programming strategies

mostly regarding non-functional concerns addressed by code transformations, monitoring and instrumen-

tation. Strategies are sets of related aspects that provide support for weaving a number of related concerns.

LARA provides semantics that allow to query and modify points of interest in the target source code, and115

supports arbitrary JavaScript code to provide general-purpose computation (very useful for programming

advices based on application properties).

This section presents a brief overview of the LARA language. For more detailed information please refer

to previous work [5, 6]. Syntactically, LARA aspects have six main keywords, select, apply, condition,

exec, insert and def. The first two can be seen in the aspect presented in Figure 1. These two keywords120

are used to select points of interest in the code and apply actions over them, i.e., they are used to specify

pointcut expressions and advices, respectively. A select statement in LARA (line 3) is commonly known

as a pointcut definition in AOP literature [1]. In a select statement one can define pointcut expressions by

means of join points and optional filters based on the attributes of each join point. The pointcut expression

is a chain of join points that follows the hierarchy defined in the join point model. This means that a join125

5

point in a chain can only be selected if the previous join point can select it. The apply block (lines 4-8) is

used to advice a join point [1] (we note here that the join points in the programming code are known as join

point shadows [9], but for simplicity we refer here to them as join points). Inside this block, users act over

the selected join points using weaver-defined actions.

The condition keyword is used to declare a block of conditions that must hold true for the advice to130

be applied, i.e., to further filter the set of join points on which an advice will act. It is common to use

join point attributes to perform this filtering operation. The exec keyword is used inside apply blocks to

execute weaver-specific actions over a join point. LARA has two default actions, def and insert, which

have their own specific syntax and are used to define the value of a join point attribute and to inject code

in the program, respectively. All other actions are added by the weaver developer and are executed with the135

exec keyword. An example can be seen in Figure 13, where the DeclareVariable action is used to declare

a variable of a provided type in the selected scope.

The LARA language follows a simple declarative model using the presented keywords to specify pointcut

expressions and advices. However, some strategies require more complex computations and an imperative

programming model has been selected. For those cases, LARA adopted the syntax and semantics of the140

JavaScript programming language.

LARA strategies are composed of modular units, known as aspect definitions or aspectdefs. They

are independent modules that can be called from within other aspectdefs, receive parameters and return

outputs. They can be defined in separate files and can be imported as libraries, at the file granularity. This

is performed with the import keyword at the top of an aspect file, and makes all aspectdefs inside the145

imported file available in the current aspect file.

LARA has some different concepts compared to common AOP approaches in terms of join point types,

pointcut definition and advising format [10]. LARA join points are usually structural, due to the source-to-

source weaving nature in which LARA was designed. This means that the join points that can be selected

in a pointcut expression are generally syntactic, part of the program structure. For instance, existing LARA150

weavers do not have a function execution join point (as in other common approaches [2, 3]). However, they

allow the selection of calls to a function or entry and exit points of that function, which can be used to

provide these missing behavioral join points. In the context of this work, LARA only supports statically

known join point information (called attributes, in LARA). For instance, it is possible to know the control

variable of a loop but it is not always possible to statically know the number of iterations of that loop.155

LARA uses scoping pointcuts [10] defined as join point chains that follow a hierarchical join point se-

lection. It respects the join point hierarchy model (code structure) and can access static information (e.g.

function.body.call{name=="getX"}), hence no dynamic conditions can be achieved with a LARA point-

cut, as presented in this paper. Type patterns are available in LARA by means of select filters, boolean

expressions that compare attributes of a join point to the intended values. It is possible to filter a join point160

based on specific conditional matching of attributes as well (e.g., regular expressions matching). Further-

6

more, one can also use composition of pointcut expressions by using select operators, e.g., the join operator

(::) performs a natural join.

In the context of the work described in this paper, advices in LARA are executed at weaving time,

advising the selected join points (more precisely, join point shadows) iteratively, as specified by the execution165

of actions. The actions that each weaver provides are the real pointcut actuators, and can be divided into

structural and behavioral actions [10]. Structural actions are usually known as introductions [10] and intend

to add new code members, such as variables or functions, or to extend class functionality (e.g. add new

interfaces). On the other hand, behavioral actions are actuators that will add behavior to the program,

whether by native code injection or by code transformations.170

2.2. Supported Types of Pointcut Definition

LARA supports several types of join points (e.g., syntactic, semantic, execution). Most of the join points

implemented in our weavers are of the syntactic and semantic kind, since they better fit our approach (i.e.,

source-to-source transformations), however LARA does not force a specific model, and it is entirely possible

to develop a LARA weaver mostly based on execution events, e.g., as in AspectJ. Below, we present a list of175

common types of pointcuts, their description and if (and how) they are supported in LARA. We also present

some comparisons to AspectJ since it is the most well-known AOP approach and its semantics have been

used by many other approaches.

2.2.1. Syntactic Pointcuts

Syntactic pointcuts refer to static elements in the source code that use join points such as classes,180

functions or loops. Approaches such as AspectJ can interact with some syntactic elements, in what is called

Introductions, to change the program’s hierarchical structure.

As mentioned before, most of our aspects written in LARA use syntactic join points. Since most aspects

for our use cases are concerned with elements of the source code, the join point models of the weavers we

developed usually implement syntactic join points.185

For instance, Figure 1 captures and changes any code location matching a function call, while also

capturing the encapsulating function. Then, the name of both the function being called and the surrounding

function (attributes of those join points) are used in the code that is inserted before the call. This simple

example uses only static information that can be collected from source code analysis.

2.2.2. Execution Pointcuts190

These pointcuts refer to events that occur during program execution, such as calling a function or setting

the value of a field. These pointcuts are common in AspectJ and in other approaches that follow a similar

model. Below is an example of an AspectJ pointcut expression, which captures assignments to a field called

age from class Person:

7

195
pointcut setAgePointcut(Integer newValue) : set(* Person.age) && args(newValue);

In our weavers, such pointcut expressions are usually built using syntactic join points. For instance, the

following LARA code, which uses only syntactic elements, can be used to emulate the AspectJ code above:

200
setAgePointcut : select var{name==’age’, isField ==true , reference ==’write ’, declarator ==’Person ’} end

In this query, we select variable references and filter those by their name, whether they are a field, whether

the reference is a write to that variable and by their declarator. In the case of a field, the declarator is the

name of the class the field belongs to. This is an example on how syntactic constructs can be used to capture205

runtime events.

Alternatively, we could add the set join point, with the same name and semantics as in AspectJ, to the

join point model exposed by the weaver. Thus, we would have a mixed join point model with both syntactic

and execution join points. The resulting pointcut expression would be:

210
setAgePointcut : select set{name==’age’, class ==’Person ’} end

This query looks for all field sets and filters them by field name, and parent class, using the attributes

of the set join point. This results in shorter and more readable code, since most of the work is performed

inside the weaver, looking for assignments to fields.215

2.2.3. Semantic Pointcuts

Semantic pointcuts are those that are based on the meaning of the source code, and require a more refined

analysis of the underlying AST. These are commonly present in LARA aspects. For instance, information

such as the type of variables or loop iteration counts is often used to filter selected join points.

The following example selects loops with a small number of iterations as candidates for loop transforma-220

tions, such as a full loop unrolling:

select loop{isInnermost ==true , iterationCount <=32} end

This LARA code will select all loops and then filter out non-innermost ones as well as loops with a number225

of iterations greater than 32. This information needs to be calculated from the AST using the initial value,

stopping condition and step of the loop. Keep in mind this operation will not always be available, based on

static information alone. In such cases, the attribute will return the value undefined. On the other hand,

if this information is available, it can be used for instance to find good candidates for parallelization, where

we look for outermost loops with a large number of iterations. Loop transformations and general program230

optimizations are one of the areas where LARA has been used frequently, making these pointcuts necessary.

8

A more complex example, from ANTAREX project2, uses LARA and semantic pointcuts to find implicit

casts inside kernels of HPC applications. With this information, and the ability to change the types of

variable declarations, it is possible to write strategies to avoid some of these casts and improve the execution

time of the application kernels.235

2.2.4. Control Flow Pointcuts

Control flow pointcuts match control flow events, for instance, if a certain function is currently in the call

stack. While this type of pointcut is commonly used in AspectJ, LARA does not directly support it, nor is

it part of any join point model presented in this paper (mostly due to our static source-to-source approach).

However, it is possible to implement flow-based pointcuts by using low-level code insertions that can be240

encapsulated in LARA libraries and used by other LARA aspects. The join point models used in LARA are

rich enough to provide mechanisms to specify control flow pointcuts similar to AspectJ and/or other custom

or more generic possibilities (e.g., look to a sequence of code blocks considering basic blocks).

The example below shows a possible LARA library (ControlFlow) that provides similar functionality to

that provided by AspectJ’s cflow. It is based on the example in Figure 1, and in this case uses the control245

flow library as a way to restrict the application of the advice code:

var cflow = new ControlFlow($program);

// ...

$call.insert before clow.cflowbelow($targetFunction ,250

%{

printf("[[$function.name]]->[[$call.name]]\n");

}%

);
255

The code inserted by the user remains the same, and the changes consist in the use of the control flow

library and its cflowbelow method. A possible implementation is for the library to automatically add the

code needed to maintain a call stack, when the cflow variable is instantiated (the variable $program is a

previously selected join point that represents the current program). The function cflowbelow could wrap

the code provided by the user with code that checks the call stack and tests whether the target function260

is on the current frame but not the one being currently executed. In this example, this target function

is represented by $targetFunction, a function join point that was selected beforehand by the user. A

difference to AspectJ’s equivalent pointcut is that in this example we are clearly selecting calls that appear

bellow the target function and this is all we interact with. With AspectJ’s cflowbelow, all join points below

the provided target join point are automatically matched.265

Another example is the within pointcut used in AspectJ, which matches when the executing code belongs

to a certain class. Note that the semantics of the pointcut within will differ according to the target language,

2http://www.antarex-project.eu/

9

the main modular unit in Java is the class, but in C or MATLAB is the file. Consider the code below,

where the code in Figure 1 is modified to include the equivalent of a within pointcut.

270
// ...

select file{name == targetFile }. function.call end

apply

$call.insert before %{

printf("[[$function.name]]->[[$call.name]]\n");275

}%;

end

// ...

AspectJ’s concept of within is already contained in the join point chain that is used for LARA pointcut280

expressions. In this example we can filter the matched function calls by explicitly defining in which file the

calls should be. Since this is a C example, we are using the file as the modular unit, as opposed to Java,

where we would likely use classes. AspectJ’s concept of withincode is also covered if we use the attributes

of the function join point to filter the pointcut.

As a final note, since the concepts of a control flow library are generic across multiple target languages,285

the library can be designed with a language-independent interface, allowing each weaver to provide its own

implementation, bound to its target language. More information on this kind of libraries is presented in

Section 3.2.1 and in Section 4.2.

2.3. Compiler and Interpreter

The LARA compiler (LARAC) converts LARA aspects into an intermediate representation (Aspect-IR)290

based on the provided target language model [5]. LARAC is responsible for handling usual compile-time

verifications, such as existence of called aspects and the existence of a select for an apply, as well as

validating the aspects according to the Language Specification. The latter task includes pointcut validation

(e.g., checking if the join point exists in the Language Specification) and action validation (e.g., checking

whether action arguments are valid). After compilation, a weaving environment can take the generated295

Aspect-IR and interpret the aspects and apply actions to the target code.

The LARA interpreter (LARAI) has been developed to simplify integration of the LARA language on

different weaving environments. LARAI executes most of the code defined in a LARA file (e.g., loop and

conditional statements), the weaver being responsible for performing weaving-related tasks. A standalone

version of the interpreter has been used for different purposes [11]: as a scripting language based on the300

JavaScript syntax, to execute external tools, to coordinate compilation flows (e.g., instrumentation →

optimization → compilation → execution → profiling) or to define design-space exploration schemes [12].

However, as a standalone tool, the interpreter cannot carry out weaving-related tasks, such as selecting points

in the code and applying actions. In order to do so, LARAI must be connected to a Weaving Engine that

is responsible for building an IR (e.g., AST) for the target application, select join points, retrieve attribute305

information, apply actions, and generate the modified code.

10

To ease development of new weaving environments, LARAI provides a Java API for Weaving Engines,

which works as a bridge between the LARA interpreter and the IR of the target application. This interface

reduces the effort needed to develop a new weaver and requires the implementation of abstract classes by

the weaver developer:310

• WeaverEngine: abstract class representing the Weaving Engine, which includes, among other facilities,

begin and close methods which the interpreter uses to start and end the weaving process.

• JoinPoint classes: the join point abstraction classes represent join point instances, and there is one for

each type of join point (e.g., file or function). They provide methods to select other join points, to

retrieve attributes and to apply actions.315

As an example of the level of framework reuse it is possible to achieve with LARAI, consider the attribute-

based filters that can be defined in a select statement for each join point (e.g., see Figure 6). The weaver

developer only needs to implement the methods that return each join point type and each join point attribute,

being the responsibility of LARAI to request the required join points, attributes and perform the filtering.

Additionally, this API allows LARAI to provide out-of-the-box, to all weavers, a customized integrated320

development environment that contains a LARA aspect editor with syntax checker and integrated controls

for weaving actions, as well as a language specification guide.

2.4. The Weaver Generator

Even with the LARAI API, developing a Weaving Engine from the ground up can still require a consid-

erable amount of effort, mostly due to the fact that each join point in the Language Specification requires a325

class, each with code that connects the Weaver Engine to the interpreter. Additionally, manually maintain-

ing the Weaver Engine in sync with the Language Specification join points, select relations, attributes and

actions is too costly and error prone.

Fortunately, a significant part of this effort can be automated. The Language Specification and LARAI

weaver-related interactions have a close association, as all the possible weaving requests are described in the330

specification. To complement the weaving API provided by LARAI, we have developed the Weaver Generator

which generates the skeleton of a new Weaving Engine from a Language Specification. This generator allows

quicker development of new weaving environments, as the developer just needs to implement the abstractions

provided by the skeleton. Although the number of generated classes that have to be extended is similar to the

number of classes that had to be manually created, the generator implements all required infrastructure and335

interfacing code. All join points are generated as abstract classes, and their selects, attributes and actions

are added to the class as abstract methods. The abstract class guarantees that the join point implementation

conforms to the description in the Language Specification, as it forces the weaver developer to implement

the attributes and actions specified. The work left for the developer is essentially focused on writing code

11

Figure 3: Representations of the code generated by the Weaver Generator (Interface), the code developed by the weaver

developer (Weaving Engine), and the code of the source-to-source compiler .

for the abstract methods, which would consist in accessing the IR for selection, attribute queries and action340

purposes, working directly on the chosen IR.

As an example, Figure 3 shows a small part of the Kadabra weaver, which targets the Java programming

language. To develop the weaver, the Language Specification is given to the Weaver Generator, which

generates the abstract classes (see the Interface area). Kadabra uses an existing Java-to-Java compiler,

Spoon [13], which builds the IR for Java code (see the Source-to-Source compiler area). The work of the345

weaver developer is to implement the Weaving Engine component and the concrete join point classes (see

the Weaving Engine area), which bridges the generated interface and Spoon. In the example, this effort

corresponds to the development of the concrete classes KadabraEngine, JMethod and JBody, which extend

the automatically generated abstract classes.

The Weaver Generator allows weavers to be developed incrementally. The Language Specification does350

not have to be completely defined when the weaver is initially developed. Whenever required, the Language

Specification can be upgraded with new join points, attributes and actions and given again to the generator.

New classes are added to the Weaving Engine and existing classes are updated with new selections, attributes

and actions. Since the Weaver Generator works at the abstract classes level, it does not conflict with the

code implemented by the weaver developer.355

Figure 4, on the left side, shows part of the Language Specification for a weaver. The specification is

divided into three models, specified as XML files: join point hierarchy, artifacts and actions. The join point

hierarchy defines available join points and how to select them. The example declares a join point named

function, which is able to select its parameters (which are var join points) and body (the declaration of

the var and body join points is omitted in the figure). We can use aliases when we intend to give a specific360

meaning to the type of join point we want to select. For instance, in this example we use the alias param

12

Figure 4: Example of a join point definition in a Language Specification: the join point function and its selectable join points,

attributes and actions.

to specify that we want the parameters of the code, but they are internally join points of type var. The

artifacts model defines the attributes of a join point, such as function name and return type. The actions

model defines the actions that can be applied to the join points.

Based on the Language Specification, the generator creates the abstract classes, and the weaver developer365

implements the concrete classes. The class Function shows the bridge between the LARA interpreter and

the source-to-source compiler as it uses a node from the AST of the compiler to get attributes or to apply

the clone action.

2.5. Mapping Between Join Points and Input Applications

Based on the general structure of a weaver presented in Figure 2, consider an example weaver for C, such as370

the one presented in Figure 5. The figure shows the weaving process of LARA and how the aspect is mapped

to the input C application. The join points defined in the Language Specification are understood by the

LARA Engine and the Weaving Engine and they communicate with an interface based on this specification.

In a LARA aspect, select and apply blocks use join point information (structure, attributes and actions)

in order to define pointcuts and advice, mapping user strategies to the join points of the weaver and operations375

on those points. On the other side, a compiler parses the source code of a C application and builds its

Intermediate Representation (IR), in this case an Abstract Syntax Tree (AST), mapping the input application

into a structure that can be changed during weaving. Finally, in the core of the weaver, the Weaving Engine

translates join points into actual IR elements, as well as user intentions into concrete changes in the AST.

In this example, the join points representing programs, files, functions and loops are translated to concrete380

AST nodes, Program, Translation Unit, Procedure and ForLoop, respectively.

We note that the Language Specification does not need to provide a one-to-one mapping to the target

language or selected IR. Instead, it needs only to specify which parts are considered points of interest and

13

Figure 5: An example C weaver and the mappings between aspects, join points, the internal compiler representation and the

source code.

which attributes they have.

3. Composable and Reusable AOP Approaches385

This section presents the main features we consider are needed to support aspect composition and reuse,

as well as multilanguage capabilities. We describe possible implementations for each feature, dividing the

features into two groups: pointcut features and advice features.

3.1. Pointcut

In this section we present mechanisms to improve composition, reuse and multilanguage support at the390

pointcut level.

3.1.1. Generic Syntax for Pointcut Expressions

Pointcuts can benefit from a mechanism that allows defining points in the code in a way that is agnostic

to the target language. For instance, SourceWeave.NET [14] uses XML to specify pointcut expressions for

.NET languages. In our approach, the structure of the LARA language remains the same, regardless of395

the target language. Figure 6 shows three examples of select statements, which define pointcuts in LARA

(see Section 2.1 for more details about the syntax of the language). When writing an aspect for another

language, the names of the join points and the names of their attributes may change, but the syntax of the

select mechanism remains the same, agnostic to the underlying target language. For LARA, this mechanism

can help users write aspects for different target languages since the syntax is the same and, when languages400

share a common join point model, even use the same select expressions.

14

1 // selecting all declarations of variables

2 select vardecl end

3 // ...

4

5 // selecting a specific function (based on the name)

6 select function{name == ’kernel ’} end

7 // ...

8

9 // selecting an innermost loop inside a specific function (based on the name)

10 select function{’kernel ’}.loop{isInnermost == true} end

11 // ...

Figure 6: An example of the mechanism used by LARA to capture join points. The syntax remains the same regardless of the

join points being selected.

3.1.2. Common Join Point Model

Several languages share common structural and behavioral concepts. For instance, there are common

syntactic elements across Java, Matlab and C++ (e.g., function, loop and statement are shared syntactic

constructs). Similarly, one can also identify common behavioral concepts, such as function calls, or getting405

and setting values of variables or fields. It is possible to identify and capture such elements with pointcut

expressions which can target multiple languages, assuming they all share these same elements.

The approach presented in this paper exploits the fact that our target languages share syntactic con-

structs, since they are all imperative languages. Each weaver has its own join point model but there is a

common subset shared between all supported languages. However, this is not enforced by the LARA frame-410

work, but rather a consequence of our design choices for each weaver and for the framework. Because of this

characteristic, it is possible to write pointcut expressions which can be used in languages such as Java and

C++. In our current approach, a pointcut expression that uses a join point that is not available for the

current language (i.e., outside of the shared subset) will result in an error saying the desired join point is not

part of the model for that language. Compose* [15], a different approach with a focus on message passing,415

uses behavioral join points that are shared across multiple languages.

3.1.3. Advice Inheritance

This idea applies Object-Oriented Programming (OOP) concepts to AOP, namely the possibility of

extending and overriding advices. With this idea we can reuse the same pointcut and apply different advices.

For instance, consider a case where you intend to log assignments to fields of a specific class, but you don’t420

want to specify how to perform the logging operations. You could define your point and mark the advice as

abstract. Whoever intends to use that aspect needs to extend it and implement the advice, e.g., providing

implementation to log to the console or to a log file. While this can be used as a way to enhance general

reuse, it can also be a platform to support multiple target languages. If all our target languages share a

join point model (e.g., AspectJ’s execution model), we can extend the abstract aspect, reuse the pointcut425

15

1 // main aspect definition which logs calls to ’setters ’ to a file

2 aspectdef Main

3 var fileLogger = new LogToFile ();

4 call SettersAdvisor(fileLogger);

5 end

6

7 // an ’advisor ’ with a well defined pointcut that delegates the advice to the input aspectdef

8 aspectdef SettersAdvisor

9 input Actuator end

10 select methodCall{name ~= ’set’} end // ~= is the regex match operator

11 apply

12 call Actuator($methodCall);

13 end

14 end

15

16 // ’actuator ’ that logs to a file

17 aspectdef LogToFile

18 input $methodCall end

19 // ... code that logs to a file information about the $methodCall join point

20 end

21

22 // ’actuator ’ that logs to the console

23 aspectdef LogToConsole

24 input $methodCall end

25 // ... code that logs to the console information about the $methodCall join point

26 end

Figure 7: An example of LARA code that illustrates how to have clearly defined pointcut code which can be reused for multiple

advices.

definition and simply override the advice with concrete implementations for each of the languages we intend

to target.

We can emulate this feature (at least its practical consequences) even though LARA has no direct support

for OOP applied to aspect definitions. In LARA, aspect definitions are first-class objects which can be passed

as arguments to other aspect definitions. In order to emulate the results of advice inheritance, we first define430

multiple actuator aspects with only advice code that works on join points taken as parameters. Then, we

have a single aspect definition which provides a concrete pointcut, our selector. This aspect takes another

aspect as an input and calls it using the selected join points. At this point, we can execute this selector aspect

with different actuator aspects, which will result in applying different modifications to the same pointcut.

Figure 7 shows an example based on logging concerns that uses this technique. In the Main aspect definition435

we instantiate the advice we want (line 3). It is the file logger in the example but it could also be the console

logger. Then, this instance is passed to SettersAdvisor, which has a well defined pointcut and that calls

the logger on the selected join points. In this way, we can have a single, well-defined pointcut which can be

reused for multiple advice definitions.

16

3.1.4. Aspect Multiversioning440

The main idea of a multiversioning approach is that there is a way to signal (implicitly or explicitly) what

is the current target language. This information is used to switch between multiple user-provided versions of

the pointcut, each targeting a different language. When the target language changes, the pointcut expression

is automatically chosen based on whatever mechanism is available.

We can identify a few mechanisms which can be used to signal the current language. The weaver can set a445

flag or attribute which can be explicitly checked in the aspect code and used, e.g., with conditional statements,

to choose the correct pointcut. An alternative is the definition of multiple pointcut expressions which are

marked with the language they are targeting, using either naming schemes or annotations. Finally, it is also

possible to write these pointcut definitions in multiple files and follow a naming scheme or use a configuration

file so that the weaver can automatically choose the correct version. These two latter approaches are implicit450

and transparent to the users, as they may just provide alternative pointcut versions and let the weaver pick

them according to the target language.

While this may lead to a more verbose user definition of the pointcut, it may also lead to a more direct

and more refined set of selected points. This is because, for each version, the developer can use language-

specific features that would otherwise not be possible (e.g., when using a common join point model). Another455

advantage of this approach is that it may lead to less initial effort when developing a tool or framework that

supports multiple languages. Such a tool can simply consist of multiple weavers glued together and a system

that 1) decides which weaver to call based on the input language, and 2) extracts the relevant aspects from

the multiversioned code developed by the user.

3.1.5. Merged Join Point Model460

This idea is the opposite of the Common Join Point Model. We have different join point models for

different languages, but instead of accepting a shared common subset, the pointcut expressions accept struc-

tures or behaviors that are language specific. To be more precise, the weaver would take the union of the

sets of join points for all supported languages, rather than their intersection, as would happen in Common

Join Point Model. The tool is responsible for checking the correct model for the current target language and465

decide whether or not the pointcut is valid.

Following this implementation means not raising an error when the join point is invalid, but rather fail

gracefully (for this pointcut) or try to resume execution with available information. If this was implemented

in the LARA framework, one of two possibilities would happen when the pointcut chain refers to a join point

unavailable in the current language. The selection of that specific join point returns nothing and, if there is470

a selection chain, the chain is interrupted and nothing is advised. The alternative is that the specific join

point is dropped from the chain and the tool tries to continue the execution from the next point in the chain.

17

3.2. Advice

In this section we present possible implementations to improve composition, reuse and multilanguage

support at the advice level.475

3.2.1. Interface

The idea of using interfaces relies on three concepts. First, the definition of aspect interfaces (conceptually

similar to OOP interfaces) which provide a contract that any implementing weaver has to follow. Second,

the definition of such contracts so that they describe common concerns at a high abstraction level. Finally,

the development of aspect libraries implementing these interfaces in ways that are specific to some purpose480

or target language.

The main idea is to have a standard library of aspects which every conforming approach implements. In

this way, the original definition presents the interface, which is the same regardless of which weaver is being

used or which language is being targeted. Based on this, each weaver is responsible for implementing this

interface for its target language. As an example, consider the act of logging a function call with native code485

insertions. After the selection of the call, we can insert the logging code around it, describing exactly which

code is inserted (e.g., a call to printf in C or to System.out.println in Java). With an interface, we

could call a Logger library that provides the aspect log, which takes a join point and the text to print, and

the library implementation for that language automatically deals with inserting the logging code.

If concerns are specified at this proposed high level, it becomes easier to generate abstractions and let490

weavers deal with the details concerning specific languages. An added benefit of this approach is that we

end up specifying our intents in a more declarative programming style, rather then just specifying how to

directly change the code by insertions or any other means. As a downside, each specific concern might need

its own library which needs to be implemented by the weaver developer, although this can be ameliorated if

interfaces can be built on top of other interfaces.495

3.2.2. Pointcut Inheritance

Much like the idea that was presented for pointcuts, this applies OOP concepts to AOP approaches. In this

case, it would result in the ability to declare abstract aspect definitions or pointcuts, which can be extended.

This enables reuse of predefined advices, since they can be applied to many different pointcuts, depending on

how these pointcuts are concretely implemented. For instance, one can completely re-implement a pointcut500

and change the set of join points affected by the advice, or can simply refine an existing pointcut with

further filtering, without changing the actions to be performed. An example of inheritance can be seen in

AspectJ [2], in which we can have abstract aspect with one or more abstract pointcuts and a specific advice.

Then, it is possible to extend those aspects and define concrete implementations of the pointcuts.

From the general idea that inheritance can lead to aspect reuse, it is possible to see how one can extend505

this idea to a paradigm that targets multiple languages. It is possible to have an abstract pointcut and

associated advice and then implement the concrete pointcut for each of the target languages, since one

18

1 // selects all method calls whose name contains ’get’ and calls an aspect definition with the advice

2 aspectdef LogGetters

3 select methodCall{name ~= ’get’} end

4 apply

5 call LogMethodCall($methodCall);

6 end

7 end

8

9 // selects all method calls whose name contains ’set’ and calls an aspect definition with the advice

10 aspectdef LogSetters

11 select methodCall{name ~= ’set’} end

12 apply

13 call LogMethodCall($methodCall);

14 end

15 end

16

17 // receives a mathod call join point and inserts code to be executed before

18 aspectdef LogMethodCall

19 input $methodCall end

20 $methodCall.insert before ’System.out.println (" Calling [[$methodCall.name]]");’;

21 end

Figure 8: An example of LARA code that illustrates how to have clearly defined advice code which can be reused for multiple

pointcuts.

knows how to select the desired points for each of those languages. Compared to the other OOP idea

presented before, Advice Inheritance, this seems harder to implement, since it relies on an advice capable of

targeting multiple languages, while the former needs only a common model of join points and an agnostic510

way of expressing the pointcut.

As an aside, while we do not have OOP features applied to aspect definitions in LARA, we can somewhat

emulate the practical results of this concept, by taking an advice and simply plugging different pointcuts.

This way, we change the set of points that are targeted by redefining only the pointcuts. To this end, we

can have an aspect definition which has only the advice part implemented and that takes, as input, a join515

point (since they are treated as first-class objects in LARA). This means that any other aspect definition

can redefine the pointcut and pass the selected points to the aspect that will advise the application. An

example of this mechanism is shown in Figure 8. In this simple example, aspect definition LogMethodCall

has the advice code, which will print the name of the methods right before they are called (lines 14–17).

The other two aspect definitions each define their own pointcut and then pass the captured join points to520

LogMethodCall. So weaving either LogGetters or LogSetters will log calls to getters or setters, respectively,

but the advice code is reused.

19

3.2.3. Aspect Multiversioning

This idea is similar to multiversioning applied to pointcuts. There is a mechanism that indicates, im-

plicitly or explicitly, which language is being currently targeted. The user develops multiple versions of the525

advice and switches to the correct one based on a explicitly flag or lets the weaver take all versions and pick

the correct one based on its implicit knowledge of the current target language.

An example of the multiversioning idea applied to advices can be seen in UniAspect [16], where anno-

tations are used to identify pieces of advice code that are meant for specific languages. For instance, code

inside the block @Java{...} is meant to advise Java programs, whereas code inside a @C{...} block would530

be targeting C programs. In this example, the user provides different versions inside the same source file,

but a general approach would allow using different files as mentioned in the pointcut section.

3.2.4. Common Language for Advices

A final possibility to improve multilanguage support at the advice level would be to have advices specified

in a common language, which abstracts the behavior from the target language. We consider two possible535

approaches: translation, execution, and code generation for specific concerns.

We can have generic advices that use a high-level language (e.g., a custom DSL) to write the code that

specifies the behavior to be executed at/added to the join point. The weaving framework can provide a

parser and an internal representation for this language, which each implementation has then to translate to

the target-language. This path allows to specify advices in a completely agnostic way and provides some540

reuse of the underlying framework. On the other hand, designing a common language that can be translated

to many other languages can impose many constraints and limits the applicability and potential evolution

of this solution.

A second approach is to directly execute the advice written in a common language, instead of translating

it to the target language. Consider an advice written in a language such as JavaScript. A weaver can insert545

hooks to a JavaScript interpreter that executes the advice code and provides the additional behavior. It can

be a feasible solution for target languages such as C++ and Java, which have robust interpreters (namely,

V8 and Nashorn). The downsides of this approach include higher execution overhead, when compared with

execution of native code, and providing an interface between the original application and the advice execution

engine.550

4. LARA Approach

In this section we describe features and techniques we use in order to achieve modular and composable as-

pects, which in turn lead to more reusable aspects that may even target different languages. The techniques

include LARA libraries, bundles of user code, and defining the join point model in a way that increases

compatibility between languages, while maintaining most language features intact. The first technique is our555

implementation of Interface (Section 3.2.1) for the weaver side. The second technique is our implementation

20

of Aspect Multiversioning (Section 3.2.3) for the developer side, which also uses some concepts defined in

Interface. Finally, the third technique is our implementation of Common Join Point Model (Section 3.1.2).

From the language description presented in Section 2.1 we can also say our select statement is an implemen-

tation of Generic Syntax for Pointcut Expressions (Section 3.1.1). The benefits of these techniques can be560

harnessed across several levels, depending on where they can be implemented: at the LARA framework level

(becomes available to all weavers), at the weaver developer level (becomes available to all weaver users) or

at the weaver user level.

4.1. General Composition and Modularity Techniques

As explained in Section 2.1, LARA aspect definitions (or aspectdefs) are treated as independent modular565

units which can be called from within other aspectdefs. They can be parameterized as well and are generally

treated as functions (they are callable, execute a set of instructions, including advices, and return output

values). This helps separating sub-concerns of larger strategies, leaving individual aspectdefs to perform

well-defined tasks, improving the modularity of the entire program and maintainability of aspect code.

For instance, imagine using LARA aspects to instrument code and collect runtime data for either execu-570

tion time, energy consumption or memory usage. Whatever the case may be, users will likely also want to

save those results to a file. Therefore, in addition to the concern that instruments the code, one also needs

to log the resulting data, a concern which can be reused. Taking this idea a step further, in LARA aspects

we can also import other compilation units with one or more aspectdefs, meaning the reused aspect code

does not need to be in the same aspect compilation unit. This also means that users may develop their own575

aspect libraries, reuse them and distribute them.

These features, alongside the fact LARA treats join points and aspect definitions as first-class objects,

allows us to make use of the techniques presented in Section 3. For instance, with the technique presented

in Figure 7, we can have clearly defined pointcuts and then use several aspect definitions to add different

behavior to the application, effectively promoting reuse at the pointcut level. Conversely, the technique580

presented in Figure 8 allows us to define additional behavior for a common concern once, and then use it for

multiple different pointcuts, promoting reuse at the advice level.

The features presented in this section were already part of the LARA language [5, 6] at the time of

this work. They are the building blocks that allow us to develop our ideas regarding aspect reuse and

multilanguage support.585

4.2. Generic Aspect Libraries

As already explained, LARA was developed as a modular AOP approach and supports the import of

libraries. We can have very simple JavaScript-based libraries, called from anywhere inside an aspectdef,

that are useful for simple tasks, such as code generation. Please see the example in Figure 1 and consider we

have a JavaScript library, CodeGen, that provides the function println, which can generate source code590

for printing information. Lines 5-7 of Figure 1 can be replaced with:

21

var code = CodeGen.println("[[$function.name]]->[[$call.name]]");

$call.insert before ’[[code]]’;595

The benefits of using code generation libraries are threefold. First, there is the obvious reuse of code. A

developer can write the code generation library, test it and use or provide it to other developers. Secondly,

an important benefit is that aspect developers may need to write less native code, letting the library do

this for them. In turn, this will likely speed up aspect writing and make it less error prone, as well as also600

improve intelligibility. Finally, we can also think of having weaver developers write their own versions of such

a library, in a way that targets their supported languages. This would transform this into a multilanguage

library.

Most uses of LARA require more complex operations than this simple code generation operation. There

is added complexity when defining pointcuts and, generally, the advice code to be weaved is considerably605

more complex than the previous example. However, even at this level, we can still find aspect definitions

repeating the same concerns, meaning we could likely develop an abstraction and include those in a library.

Aspect definition libraries are used when there are common tasks that query and modify the target code.

Examples include monitoring, such as timing parts of the program (e.g., function and loop execution), and

logging activities, such as error conditions and function calls.610

Consider the example presented in Figure 9, in which two weavers (Clava3 for C/C++ and MATISSE4 for

MATLAB) are applying the same concern over an application. For the sake of space, the original application

input is not presented. In this example, assume we intend to log function calls before they happen. As can

be seen in Figure 9(a), the aspects definitions are different because we need to insert different native code

for each target language. However, if we abstract from the code that needs to be inserted and consider the615

high-level operation of logging, we can extract this concern and implement it as a library with a well-defined

interface. Furthermore, weaver developers can implement this library for their own target language and

provide them alongside their weavers, which is represented in Figure 9(b). In the example, both Clava and

MATISSE have their own implementation of the logging library, which is distributed with the weaver. At

this point, we can actually use the same exact aspectdef for both weavers/languages. By doing this, we620

not only improve aspect reuse, but also add support for multilanguage aspect libraries. This is the concept

we present as Generic Aspect Libraries and that is an implementation of the concept of Interface that was

presented in Section 3.

Although the example presents a case where we can use the same aspect definition for multiple languages,

this may not always be the case. Possible reasons include differing join point models or even situations625

where the aspect developer is required to provide language-specific code to be inserted. Nonetheless, by

3https://specs.fe.up.pt/tools/clava
4https://specs.fe.up.pt/tools/matisse

22

Figure 9: An example of a concern which can be abstracted to a high-level library. With this, it is possible to migrate from

having an aspect for each target language (a) to having a single aspect that can be used for multiple languages (b).

using libraries, we still achieve the benefits presented earlier. More concretely, we improve reuse, readability

and maintainability, and we reduce the need to write native code, making aspect coding less error-prone.

Because these libraries have a very well-defined interface, we can move from one language to another and

expect the same behavior.630

For a more concrete example, see Figure 10, which shows a LARA aspect using the Timer library that

can be used to perform simple timing measures of points in the code. Line 1 imports the library, and line

5 creates an instance of a timer library. Line 7 selects function calls and line 9 uses the timer instance to

insert a timing measure around selected calls and a print of the result. When targeting languages like C

or C++, this library automatically adds the needed include directives. Multiple weavers can provide their635

own implementation of this aspect library for their target language. This results in a generic library, which

allows aspect developers to write strategies at a higher abstraction level. The LARA aspect presented in

Figure 10 can be used to weave source code from multiple languages, as long as there are weavers targeting

those languages that implement their version of the Timer library.

For an example input C program, a weaver like Clava would generate the code in Figure 11. Both640

setup code and timing/printing code are highlighted differently. The program now measures and prints the

execution time of all function calls in the application, using native C code commonly applied for this task.

As mentioned, the library automatically deals with inserting the needed directives so the aspect developer

needs only to worry about describing the intents of the behavior to be added, rather than focusing on the

23

1 import Timer;

2

3 aspectdef TimeCalls

4 // Create microseconds timer that prints information to the console

5 var timer = new Timer("MICROSECONDS");

6 // Time all calls

7 select call end

8 apply

9 timer.time($call , "Time:");

10 end

11 end

Figure 10: LARA aspect using a Timer library to measure execution times of all function calls.

details of how and where to insert code.645

A further step is to standardize libraries between weavers. Since libraries can be developed at the weaver

level, if two weavers share the same API (e.g., Timer) we can enable aspect code compatibility between

weavers, at the library level. So far, we have started the implementation of three libraries that are part

of our standard LARA library of aspects. For now, we have libraries to instrument an application and

measure, around arbitrary code points inside a function, the time and energy consumption. Moreover,650

we also developed a library that is used to log information, either to the console or to a file. Any weaver

developer wishing to conform to this standard needs to provide implementations of these libraries that follow

the defined interface.

From the description of this technique, we can see these libraries are developed at the weaver side. That is,

weaver developers provide their implementations of the library interfaces for their specific weavers/languages.655

Bundles are a technique that intends to provide the same benefits to our end users, i.e., the ones writing

aspects and using weavers.

4.3. Bundles

Aspect library bundles exist so that end users can also develop their multilanguage aspect libraries and

distribute them. This is a compromise between the concepts of Interface and Aspect Multiversioning from660

Section 3, since a user provides a library interface with corresponding implementations, but also marks each

version as targeting a specific weaver. The weaver then reads all needed files and imports the correct ones.

This process is transparent to the end user that just intends to use a library distributed as a bundle.

Figure 12 exemplifies how a bundle can be used. In this example, let us assume the user wants to write

an aspect that instruments an application in order to generate a dynamic call graph of its execution. For the665

user writing an aspect, in (a), the only needed action is adding an import statement, as if any other library

was being imported. When executing the weaver with the input application and the aspects to be weaved, the

user also configures the weaver to include the folder containing the bundle. For a user wanting to distribute

a bundle, in (b), we need a directory with subdirectories targeting all supported weavers (one per weaver),

24

1 #define _POSIX_C_SOURCE 199309L

2 #include <time.h>

3 #include <stdio.h>

4

5 double bar() {

6 // ...

7 }

8

9 double foo() {

10 // ...

11 struct timespec ct_start_0 , ct_end_0;

12 clock_gettime(CLOCK_MONOTONIC , &ct_start_0);

13 a += bar ();

14 clock_gettime(CLOCK_MONOTONIC , &ct_end_0);

15 double ct_duration_0 = ((ct_end_0.tv_sec + ((double) ct_end_0.tv_nsec / 1000000000)) -

16 (ct_start_0.tv_sec + ((double) ct_start_0.tv_nsec / 1000000000))) * (1000000);

17 printf ("Time:%fus\n", ct_duration_0);

18 // ...

19 }

Figure 11: The resulting C code when applying the aspect presented in Figure 10. We highlight the code inserted for setup

and timing and printing calls.

as well as a configuration file (lara.bundle) which tells the system how to import the files. Additionally, a670

user developing a library bundle can also provide a lara subdirectory, which is always included regardless

of which weaver is being used. This mechanism provides an efficient way for the user to develop and import

aspect code shared between different implementations.

Because these libraries are developed and provided by users, the interface to the library can be different

depending on the language. As opposed to weaver-provided libraries, the interface of libraries provided in675

bundles is not enforced. However, we believe they still provide the same benefits.

Figure 12: A LARA aspect importing a library provided in a bundle.

25

4.4. Common Language Specifications

We present one last set of techniques that improve aspect code reuse and support for multilanguage

aspects. If besides the library APIs, weavers also share the part of the Language Specification used in an

aspect (e.g., the call join point, in Figure 10), the aspect can be fully compatible between weavers, even in680

cases where the target language is not the same.

When designing a new weaver, one of the first steps is the definition of the Language Specification, which

states the points in the code that may be selected, their attributes and the actions that can be applied over

them. Internally, when developing our weavers, we have taken some care to make sure there is at least some

overlap between the join points and attributes available for all weavers. In our case, it helps that all target685

languages are imperative and share similar constructs such as functions, function calls, loops, statements

and expressions. This is the concept of Common Join Point Model presented in Section 3.

An important issue to keep in mind is that while we recommend trying to maintain a degree of compat-

ibility between Language Specifications of different weavers, this is not enforced, nor do we think it should

be. Besides sharing join points and attributes among weavers, which we have already seen in some examples,690

we can also consider two more techniques, generic weaver actions and join point aliases.

Below is a list with the subset of join points that are common to the weavers Clava, Kadabra and

MATISSE, alongside a short description.

Application. The entire application. Useful to get information such as the type of the program (C/C++ in

Clava) or to apply program-wide transformations.695

File. A file or compilation unit. Used to add new functions or classes to a specific file. This is also the main

modular unit in C and MATLAB programs.

Class. A class declaration. The main modular unit for Java programs. Used to change and extend or query

a specific class.

Function. A function definition. Used to perform several operations at the function level, which include700

changing it, cloning it or introducing code at it’s entry and exit points for instrumentation.

Loop. A loop, including its head and body. Used mostly for performance profiling and subsequent optimiza-

tion.

If. An if statement. Used mainly to perform analyses, such as branch frequency and control flow.

Statement. A statement within a function. A base class for all other statements. Rarely used by itself except705

for some extensive analyses.

Call. A call to a function. Often used in instrumentation and in dynamically adaptable code.

26

Table 1: List of attributes that are shared in the common subset of join points of the weavers Clava, Kadabra and MATISSE.

Join Point Attribute Description

File
name name of the file
path path to the file in the system

Class name name of the class

Function
name name of the function
type return type of the function

Loop

controlVar loop control variable
isInnermost whether the loop is innermost of a nest
isOutermost whether the loop is outermost of a nest
nestedLevel 0 for outermost loops, +1 for each successive loop in the nest

Call name name of the function being called

Declaration
name name of the declared variable
type type of the declared varaible

Variable
name name of the variable being used
reference type of use of the variable: read or write
type type of the variable being used

Declaration. The declaration of a variable. This is often used to change the type or initial value of a variable.

Variable. A reference to a variable, which can be a read or a write. This is useful for instrumentation.

There are a three exceptions which are not reflected in the list. First, because C programs do not710

have classes, it is not possible to select them. However this does not result in an error in Clava, since it

uses a shared model between C and C++. This means that no classes will be found and execution will

resume normally. Second, it is not possible to select classes in MATISSE. Although MATLAB supports

classes this feature was never a priority or a necessity for the work developed with this weaver, so it was

never implemented. Finally, it is not possible to select declarations in MATLAB using MATISSE. Since715

MATLAB does not have a concrete concept of variable declaration, we decided to not implement such join

point.

Table 1 shows, for each shared join point, which attributes are also shared among the weavers Clava,

Kadabra and MATISSE. In this list there are three exceptions, the type attribute for the join points Function,

Declaration and Variable are not part of the language specification provided by MATISSE. The reason is that720

MATISSE targets MATLAB, a language that is dynamically typed and does not provide type inference,

resulting in very limited information about types that can be extracted at compile time.

27

1 aspectdef DeclareVariableInLoop

2 select loop end

3 apply

4 exec DeclareVariable(Type.FLOAT ,’X’+$loop.rank ,3);

5 end

6 condition

7 /*...*/

8 end

9 end

Figure 13: An example of how a LARA action can be used for variable declaration.

4.4.1. Generic Weaver Actions

Since weavers have access to a complete IR of the original program, certain code transformations (e.g.,

loop transformations) may be easier to implement in the weaver itself than within LARA aspects. The lan-725

guage specification allows the definition of custom actions, which are implemented by the weaver developer.

For instance, consider the case where we intend to declare a variable inside a given scope. Depending on

the language, there can be several syntactic and semantic rules associated with this action. While this could

be done with insertions of native code, a weaver action provides greater control and robustness (e.g., check

whether there is a variable with the same name in the given scope, update the symbol table or warn the730

user if the declaration shadows another variable). Figure 13 shows an example of a LARA aspect that uses

a weaver action (invoked using exec) to declare a variable inside the scope of all the loops in the given code.

If several weavers conform to the same standard for actions and provide the same semantics, we can have

generic weaver actions, even if such actions are considered weaver specific, as mentioned in Section 2.1. For

instance, if two weavers, one for Java and one for C, both implement the DeclareVariable action (seen in735

Figure 13) with the same interface and semantics, it is considered a generic action. These actions improve

the development of language-independent aspects using LARA.

4.4.2. Join Point Aliases

In certain cases, there are points of interest in the code that are similar between languages, but that can

have different names due to nature, history or conventions of the language (e.g., function in C vs method740

in Java). To increase compatibility between weavers, when specifying a language, the weaver developer can

use join point aliases, which allows referring to the same join point using different names. For instance, in

Kadabra, a Java weaver, function is an alias for method, which means that we can capture methods with

any of the following select statements:

745
// these select statements are equivalent because function is an alias for method

select method end

// ... advice code here

select function end750

28

// ... advice code here

With join point aliases, instead of forcing a single denomination to all languages, weavers can use their

conventional denomination and still have compatibility with more generic aspects.

5. Evaluation755

In this section we evaluate the approach using three weavers that target different languages: Kadabra5

for Java, Clava6 for C/C++ and MATISSE7 for MATLAB. The aspect code used for this evaluation can

be found in our online public repository8. In this evaluation we counted the number of logical lines of source

code (i.e., SLoC) using LocMetrics9, except for LARA aspects, where we used a custom tool that implements

part of our heuristic for counting LARA lines of code10.760

5.1. Tooling Reuse

One of the objectives of this approach was to enable tooling reuse between weavers that target different

languages, using LARA as their aspect language. We assume that when developing a new weaver, developers

will most likely reuse existing grammars, parsers and ASTs for the target language, and this should not count

towards the programming effort. For instance, both Clava and Kadabra use third-party compiler frameworks765

(Clang [17] and Spoon [13], respectively) to parse the code and obtain the AST. MATISSE reuses a custom

parser and AST that was originally developed to translate MATLAB to C.

As already explained in Section 2, the LARA Framework is written in Java and contains a compiler, an

interpreter and a tool to generate initial weaver implementations. The compiler parses LARA aspects and

creates an intermediate representation in XML which can then be interpreted. The Weaver Generator is a770

tool that accepts a Language Specification and generates a skeleton weaver for that specification. The task

of the weaver developer is to fill in the blanks and write the code that connects the points in the specification

to the nodes in the AST of the source code. Using the Weaver Generator, and having a parser and AST for

the target language, it is possible to have a working prototype in a few hours.

Figure 14 shows the logical source lines of code (SLoC), for the Kadabra, Clava and MATISSE weavers,775

divided into three components. LARA is the code size of the LARA framework, which is shared by all

weavers. This represents the largest part of the total code and takes care of compiling and interpreting

LARA aspects. The Generated Code slice represents LARA API code that is automatically produced by the

Weaver Generator. This is the interface between a weaver implementation and the framework and consists

5https://specs.fe.up.pt/tools/kadabra
6https://specs.fe.up.pt/tools/clava
7https://specs.fe.up.pt/tools/matisse
8https://github.com/specs-feup/specs-lara/tree/master/2017 COMLAN
9 http://www.locmetrics.com/

10https://web.fe.up.pt/ specs/projects/lara/doku.php?id=lara:docs:stats

29

Kadabra Clava MATISSE

LARA Framework Generated Code Weaving Engine

24457
77.9%

2902
9.2%

4029
12.8%

24457
78.5%

4163
13.4%

2555
8.2%

24457
84.3%

2034
7.0%

2531
8.7%

Figure 14: Lines of code for each weaver divided into components: LARA framework, auto-generated API and weaver engine.

mainly of abstract classes that the weaver developer needs to implement. Finally, Weaving Engine refers780

to code that is actually implemented by the weaver developer. This is a fairly small part of the total code

and illustrates how much work one saves by using our framework when developing a weaver for a new target

language. All weavers in Figure 14 have been in development for at least a year and support rich language

specifications. Still, their size is a fraction of the LARA Framework, about an order of magnitude smaller.

The amount of code of the LARA Framework is indicative of the possible effort required to start an AOP785

approach from scratch. It is a medium-sized project and we estimate that, with its current features and field

testing, represents well over an year of investment for a small team. Please note that the LARA framework

is generic and does not have code specific to any target language. The LARA compiler, interpreter and

generator used by these weavers are the same. Our approach allows a weaver developer to use an already

existing target language compiler, significantly reducing the effort when developing a weaver from the start.790

For this reason, information about the compilers used is not included.

5.2. Impact of the Presented Techniques

Table 2 presents measurements of logical lines of source code (SLoC), disregarding blank lines and com-

ments, taken from a set of LARA aspects for three concerns. Logging, timing code fragments and measuring

energy consumption are three concerns we’ve used multiple times in previous research, with multiple target795

languages. We decided to develop libraries that encapsulate common operations performed to add the de-

sired behavior. As these were general enough, we also decided to include them as part of standard LARA

libraries and distribute them with our weavers. The left side of the table, under User Aspects, corresponds

to the code that is written by a user of our weavers. We measured simple example aspects that apply these

concerns on small native applications, which can somewhat account for the similarity between aspects. There800

are two versions of aspects, one version that uses no API and relies on the default features of LARA, which

we consider our starting point, and one version that uses the API of the developed libraries. On the other

hand, the right side of the table, under Weaver Libraries, corresponds to the code of the developed libraries.

30

Table 2: Logical lines of source code for both user-developed aspects and aspects distributed as a library by our weavers. Library

code has shared parts (Weaver-Agnostic) and parts tied to each language (Weaver-Specific). User code is divided in aspects

using the developed libraries (With API) and aspects weaving those concerns natively (Without API).

User Aspects Weaver Libraries

Aspect Language With API Without API (NSLoC %) Weaver-Specific Weaver-Agnostic

Logger

C

14

20 (50.0%)
110

126
C++ 17 (41.2%)

Java 9 (44.4%) 21

MATLAB 14 (50.0%) 33

Timer

C

6

17 (35.3%)
114

28
C++ 15 (26.7%)

Java 10 (30.0%) 32

MATLAB 7 (28.6%) 23

Energy

C

6

12 (25.0%)
32

39
C++ 12 (25.0%)

Java 15 (46.7%) 31

MATLAB 32 (71.9%) 28

Again, it is divided in two, part of the code of the library is specific to the weaver, and the other part is

shared between all implementations. The Logger library is used to incrementally build a message and then,805

at a specified join point, log it to a file or a console. The Timer library is used to time execution time around

a join point (e.g. call or loop) and print the measured result. Finally, the Energy library works in a similar

way but measures energy consumption (it relies on RAPL [18]).

Comparing user-developed aspects with and without using the provided libraries, we can see a generalized

reduction in SLoC when using libraries. There is a single cases where the code using the API is larger and810

another where SLoC remains the same. For every other case, there is, on average, a reduction of 41.3% of

SLoC. The largest reduction, when measuring energy consumption in MATLAB applications, represents

a reduction of 81.3%. In this case, the MATLAB aspect without API has the code of a function needed

to measure energy. All other versions were inserting calls to already existing native libraries to interface

with RAPL. This explains why the aspect code for MATLAB is around twice as large as the code for other815

languages, which in turn explains the largest reduction in SLoC. There is a case where we increase SLoC

by migrating to the API version, from 9 to 14. This happens with the Java version of Logger, and can

be explained by the fact that the original aspect was inserting calls to an existing internal library used for

31

IO operations. In the context of logging, this code was responsible for writing text to a file in the system.

The interface of our developed library ended up being more verbose than the original implementation of the820

concern for Kadabra/Java.

One important thing to note about these results, is that the code that uses the APIs is the exact same for

every language. As an example, the aspect that instruments the code to measure execution time using the

Timer library is the same for C, C++, Java and MATLAB. This is a consequence of the libraries providing

functionality with a very high-level interface, where the user declares the intents, rather than specifying825

where and how to change behavior. The results presented in this table are mainly due to the technique

Generic Aspect Libraries, presented in Section 4.

The weaver-specific portion of the weaver libraries (columnWeaver-Specific) is responsible for weaving the

same concerns as the code in the user aspects that does not use our API (column Weaver-Specific). However,

the library code encapsulates the concerns over a well-defined interface and also performs additional checks.830

This has the effect of increasing the SLoC of this part of the code, which explains some of the large increases

between the two.

In this table we can also see that a considerable part of the implementation of the libraries is shared be-

tween different weavers. This is possible because the Language Specifications of our weavers overlaps on the

critical points needed to implement these concerns. Since our weavers all target imperative languages, the835

specifications share similar join points and attributes for common language constructs. This is the technique

Common Language Specifications, as presented in Section 4. On average, 52.9% of the concrete implemen-

tations for each weaver is language agnostic and shared by all weavers. The rest of the implementation, the

part which cannot be shared, differs mainly for two reasons. First, there are parts of the programs we wish

to target, whose model is not common between weavers. This is normal and is not exposed to end users, as840

they only see the library interface. Second, different languages require different native code to be inserted

to perform the same tasks.

In the column Without API we can see between parentheses the percentage of SLoC of the aspect that

corresponds to native code insertions (NSLoC %). A significant part of the code of the aspects has native

code since this is the main mechanism of providing additional behavior to the application. On average,845

37.5% of all lines of code are written in the target language rather than in LARA. By moving to aspects that

use the provided APIs (column With API) we no longer rely on direct insertion of native source code, at

least on the user side. The implementation of the library inside each weaver makes use of insertions, but the

user does not have to worry about these details. Instead, aspect developers can simply state their intentions

using the high-level APIs for the presented concerns. Besides the obvious advantage of reducing the effort850

needed to write aspects, we also consider this leads to more robust programming, since the user inserts less

native code (possibly unchecked by the weaver), which is more likely to contain errors.

The SLoC measurements in Table 3 correspond to example aspects that advise the code in order to

instrument it for two purposes. One is for generating a call graph and the other for generating a report for

32

Table 3: Logical lines of source code for both user-developed aspects and user-developed libraries distributed as bundles. Library

code has shared parts (Weaver-Agnostic) and parts tied to each language (Weaver-Specific). User code is divided in aspects

using the developed libraries (With Bundle) and aspects weaving those concerns natively (Without Bundle).

User Aspects Bundle Libraries

Aspect Language With Bundle Without Bundle (NSLoC %) Weaver-Specific Weaver-Agnostic

DynamicCallGraph

C
9 27 (29.6%) 34

21
C++

Java 9 142 (14.1%) 103

MATLAB 9 44 (25.0%) 45

RangeValueMonitor

C
9 60 (36.7%) 93

20
C++

Java 9 134 (15.7%) 121

MATLAB 9 71 (36.6%) 67

the range of values taken by variables, both based on runtime information. Since these concerns were a bit855

more specific than the ones presented in Table 2, we decided not to distribute them with our weavers, but

instead develop library bundles, as if they were user-developed libraries. This intends to measure the impact

of the Bundles technique, presented in Section 3.

The conclusions for the results presented in this table are approximately the same as for the results

of Table 2. For instance, using the API provided by the library bundle, SLoC is greatly reduced when860

compared to not using it. On average, we see a reduction of 83.7% in SLoC. These libraries still provide

a high-level abstraction to deal with the described concerns. As with the previous examples, the original

aspects (not using bundles) also contained native code insertions. On average, 24.6% of the SLoC of these

aspects corresponds to native code insertion. The aspects using the libraries distributed as bundles no longer

rely on the user writing native code in the aspect and specifying where it should be inserted. Despite the865

similarities, we still see some relevant differences between the results presented in each table.

There is also a considerable amount of shared aspect code in the implementations of the library. For

each concern, on average 22.2% of the code of each weaver implementation is shared between all languages.

The examples of Table 2 focused on more general tasks and the differences between weaver-specific imple-

mentations of the libraries were mostly due to native code insertions. On the other hand, the examples of870

Table 3 perform more specialized weaving with more complex logic. This code is not extracted to a library as

easily, and we feel it justifies our initial decision of not including these concerns as standard aspect libraries

distributed with all our weavers. This is also the reason why, in this case, the SLoC of user aspects not

using API is closer to the SLoC of the weaver-specific implementation parts of the libraries. There is less to

abstract in the original aspect code and less to share among implementations.875

Although SLoC is the same per concern, we can see that SLoC for user aspects using bundles is discrim-

33

Table 4: Logical lines of source code for analysis aspects developed to target all languages support by our weavers.

Aspect LoC

StaticCallGraph 10

DetectRecursion 16

StaticCodeReport 99

inated by language. With the exception of the aspects for C and C++, which are shared, the other aspects

are different for each language. These changes result from small incompatibilities in the Language Specifi-

cation of each weaver. The interface to these libraries expects to receive certain join points, the selection of

which 1) cannot be abstracted and hidden inside the library, and 2) is slightly different among weavers.880

Table 4 presents SLoC counts for another set of aspects, this time for static analysis of source code.

They are considered analysis aspects, since they do not add additional behavior or change the structure of

the original program, but rather collect static information about its source code. These are aspects we have

developed over time and decided to make independent of the target language, since they were used in all

weavers but with different implementations. StaticCallgraph builds a call graph based on the structure of885

the source code, which is outputted as a DOT file. DetectRecursion builds another graph representation of

the program and checks if there are cycles, reporting their size if there are any. This aspect makes use of an

external JavaScript graph library, which is loaded into the aspect. Finally, StaticCodeReport generates a

report of the source code of the application with information about the structure of the code and the number

of specific constructs (e.g., how many loops exist, discriminated by type). These aspects can be used by any890

of our weavers without changes. This is only possible since our weavers share, at least partially, join points,

as well as their attributes and actions.

5.3. Enabling Higher-Level Aspects

In this section we presented several aspects that exemplify some of the opportunities this approach can

enable. We do not think aspect developers should initially aim to write language-independent aspects, as895

they should not sacrifice expressiveness and legibility for this purpose. They should, however, follow a coding

– refactoring – library cycle, as with any other programming language. In the case of aspects, this cycle

should enable more generic aspects, written at a higher abstraction level that hides many complexities of the

underlying target language and reduces the quantity of raw insertions of native code. We present tools and

techniques that enable such a cycle, and that can be applied both at the aspect and target language level900

(e.g., aspect API and multilanguage aspect API, respectively).

In addition, if it is possible to standardize a set of common join points, actions and library APIs, we

think this can enable further reuse, more specifically if performed at the weaver developer level. Keep in

mind that we do not think it is necessary for all weavers to implement all common features; given the breath

34

of variety in programming languages, we consider partial (or even none) compatibility between weavers to905

be perfectly acceptable.

6. Related Work

The most well-known AOP approaches extend their target language with AOP concepts, e.g., AspectJ

[2] extends Java and aims at providing better modularity for Java programs. AspectJ describes pointcuts

lexically (e.g., call(set*(..))) and has a very mature tool support11. AspectJ join points are limited910

to object-oriented concepts, such as classes, method calls and fields, and several authors have proposed

extensions to AspectJ. AspectC++ [3] is an AOP extension to the C++ programming language inspired by

AspectJ, and uses similar concepts, adapted to C++. Both AspectJ and AspectC++ do not consider join

points related to local variables, statements, loops, and conditional constructs. AspectMatlab [19] is another

example of an AspectJ-inspired language, for MATLAB in this case. It adds some distinctive features915

related with MATLAB programs, such as the ability to capture multidimensional array accesses and loops.

6.1. Compiler Optimization Approaches

A number of approaches address concerns that are usually out of scope for traditional AOP (e.g., code

transformations, compiler optimizations). CHiLL [20] is a declarative language focused on recipes for loop

transformations. CHiLL recipes are scripts, written in separate files, which contain a sequence of transfor-920

mations to be applied in the code during a compilation step. The PATUS framework [21] defines a DSL

specifically geared toward stencil computations and allows programmers to define a compilation strategy for

automated parallel code generation using both classic loop-level transformations (e.g., loop unrolling) and

architecture-specific extensions (e.g., SSE). LARA takes a similar approach to source-to-source transforma-

tions with the use of actions, which are defined in the language specification and implemented by a weaver.925

One can select join points for optimization (e.g., loops), filter them based on their attributes and then apply

transformation actions.

6.2. Term Rewriting Approaches

There are several term rewriting-inspired approaches for code analysis and transformation, such as Strat-

ego/XT [22] and Rascal [23]. Term rewriting can also be used as the back-end component of AOP ap-930

proaches [24, 25], as it provides a common framework for pattern matching and code transformation that

can abstract from the target language. Such approaches require the complete grammar for each target lan-

guage, which makes it possible to reuse the framework for different languages. Strategy reusability between

languages may also be possible, as long as the grammars have common parts. LARA, on the other hand,

promotes the usage of existing compiler frameworks (e.g. Spoon [13]) for parsing, analysis and transforma-935

tions, and its join point model does not require a one-to-one correspondence to the provided intermediate

11Spring framework (https://spring.io) and Eclipse plugin (https://eclipse.org/aspectj)

35

representation. Another distinct feature of LARA, for the weaver developer side, is that weavers can be built

in an incremental fashion, adding join points, attributes and actions as needed.

6.3. General Reuse In Aspect-Oriented Approaches

There are some approaches that focus on the issue of aspect reuse, but do not take into account multi-940

language support. For instance, ParaAJ [26] is an extension to AspectJ that uses the concept of parametric

aspects to avoid bounding an aspect to a specific class, type or method. This allows greater reuse of the

aspect code, and has been used to overcome some of the shortcomings of AspectJ related to its lack of reuse

and parameterization, e.g., in the applicability of software patterns [27]. Another extension to AspectJ,

Meta-AspectJ [28], offers a language that generates AspectJ code based on templates and automatic type945

inference for AspectJ constructs. Because this approach is also an extension to Java, it can use any of its

features to parameterize the generated AspectJ code, e.g., reflection. CaesarJ [29] is a different AOP lan-

guage that is based on the idea of developing aspects as reusable components. By relying on Object-Oriented

Programming concepts, the approach treats aspects as classes and is able to control how they are applied.

Wrappers are able to dynamically extend objects with new behavior in a way that promotes reuse while950

solving the problem of integrating both structural and behavioral changes.

LARA was designed with aspect reuse in mind and includes the concept of aspect definitions as modular

units. These units, aspectdefs, can have parameters and return values, and work as procedures which can

be called from within other aspect definitions. Hence, LARA has had support for this type of aspect reuse

since its inception.955

6.4. Multilanguage Approaches

LARA has been inspired by many AOP approaches, including AspectJ and AspectC++, but differs from

these efforts in several ways. Unlike most approaches, LARA has been designed so that it is decoupled from

a specific target language. In a similar way, Jackson and Clarke [14] envision a multilanguage approach,

SourceWeave.NET, using an XML AOP language in the context of the .NET framework. This approach960

is tied to .NET and every new language one wants to support needs a parser that builds a CodeDOM

graph, the representation expected by SourceWeave.NET. To alleviate this problem, one can use approaches

such as Wu et al. [30], which explore component-based parsing. These can be used to promote reuse and

composition at the parsing-level, by defining parsers for each component of the language (e.g., expression,

statement, class). SourceWeave.NET, by having the same intermediate representation, allows the usage of965

reusable aspects, agnostic to the target language. However, the join points that one can select are already

defined, coarse-grained and cannot be changed. These characteristics impose a limitation on what can be

exposed from the target language and captured within aspects.

Weave.NET [31] provides a language-independent approach for .NET languages that weaves existing

components written in any supported .NET language into the original application. These components and the970

application need not be in the same language. This approach shares many similarities with SourceWeave.NET

36

except for two main differences. First, Weave.NET works at the assembly level, over the Common Language

Infrastructure of .NET. Second, Weave.NET’s original and concern languages can be different and freely

intermixed. Aspect specifications are also described as XML scripts that have a reference to an external

implementation of the additional behavior to be included. The programming and join point model follow975

that defined by AspectJ.

UniAspect [16] targets shared application components in different languages and uses a common rep-

resentation of the components to apply the aspects. It provides support for languages such as C, Java,

C#, JavaScript and Python, and translates programs in each of these languages into its Unified Code

Model, on which the weaving is performed. UniAspect keeps a similar syntax to AspectJ and introduces @980

annotations for identifying the target language. Inside a single aspect, one can write advice code for multiple

languages by marking each code fragment with the corresponding @ annotation.

Compose* [15] is a language-independent AOP framework focused on the Composition Filters model. It

enables the specification, agnostic to the target language, of message filters and dispatch mechanisms which

have both structural and behavioral effects. Because the language used to specify concerns was developed985

with concepts such as messages and entities in mind, the specification of a concern is completely independent

of programming language and can be reused to target different languages. With this approach one can

indicate where and under what conditions message passing is altered, and additional behavior is provided

by the user separately in source files of the target language. This approach uses a common intermediate

representation, mostly focused on the structure of the program, and makes no assumptions about front-990

ends, which means that any parser and compiler can be changed to generate the intermediate representation

that Compose* expects. The filters resulting from the concern specification are translated to a language-

independent control flow model which is then converted to specific target languages by language-specific

weavers, which are also responsible for weaving the code in final application.

Another multilanguage approach is presented by Gray and Roychoudhury [24]. They make use of the995

DMS [32] framework and its Rule Specification Language (RSL) to define new join point languages (similar

to AspectJ) and to target multiple languages. RSL is agnostic to the target language and is used to define

rules to manipulate the internal representations that are generated by the parsers for specific languages.

User-developed aspects are translated to parameterized RSL rules. For every new language that one intends

to target, the weaver developer needs to develop tools such as lexer, parser and code generator. Furthermore,1000

the weaver developer needs to define implementations of RSL for the join point language for the new target

language. Compared to our LARA approach, one of the drawbacks is that, while the approach supports

multiple languages, each aspect is bound to a specific target, since the user needs to write native code in the

advice. In more recent work [25], the authors use metamodels for both the aspect language (front-end) and

for RSL rules (back-end), coupled with model transformation descriptions (with ATL [33]) to transform from1005

one model to the other. This allows a controlled flow from an input aspect to the automatically generated

low-level RSL transformation rules. Still, both the aspect languages and the generated RSL transformations

37

are heavily tied to a specific target language, meaning that while there is a lot of tooling reuse in the

framework, there is very little that can be reused in an aspect from one language to the other.

6.5. Extendability of Multilanguage AOP Approaches1010

In this subsection we compare the presented multilanguage approaches across two dimensions we consider

important to the scope of this paper, extendability at the language specification level and extendability at

the weaver level.

6.5.1. Language Specification Extensions

Compared to other approaches, LARA provides more flexibility in the join point model, which is based on1015

composable select expressions (similar to functional queries [34]). Hence, LARA supports arbitrarily complex

join point hierarchies, including different models of join points, e.g., MATISSE includes annotation-based

join points based on comments. The way LARA supports attributes and actions is conceptually similar

to the variables thisJoinPoint and tjp used in AspectJ and AspectC++, respectively, which contain meta-

information related to the join point. However, attribute and action information in LARA are specified in1020

the Language Description (attribute and action models, respectively) and can be extended by the weaver

developer. This means that different languages can have substantially different join points and attributes

while still 1) maintaining a common subset and 2) using the same aspect language, LARA.

In SourceWeave.NET [14], Weave.NET [31] and UniAspect [16], the points of execution one can target

are closely tied to the underlying framework so extending this model is not an easy task and cannot be1025

performed on a language basis. Similarly, the set of execution points one captures with Compose* [15] is

tied to the Composition Filters model and cannot be extended.

The approaches of Gray and Roychoudhury [24] and Roychoudhury et al. [25] allow different aspect

languages for different target languages, which means the user interface is a bit more expressive in relation

to the target language, but there is no aspect reuse between languages.1030

Our approach stands on a middle ground where we allow sharing common language specifications without

actually enforcing them. Therefore, for some concerns, one can actually develop a single aspect that is used

to target multiple languages.

6.5.2. Weaver Extensions

With weaver extensions we mean adding a support for weaving a new language with the existing frame-1035

work. This makes sense only for approaches that are not an extension of their target language, i.e., approaches

such as AspectJ are bound to Java and it does not make sense to consider adding support for new languages.

SourceWeave.NET [14] uses a common intermediate representation for all languages it supports. In

order to add support for a new language, a weaver developer needs a new parser that can convert the

target language into the used representation, CodeDOM. At the back-end, support is also needed with code1040

generators and/or compilers that can take a CodeDOM representation and generate assembly code. In

38

regard to adding support for new languages, Weave.NET [31] needs less work. Because it works at the CLI

level, a compiler that transforms the target application into a .NET internal representation is sufficient. This

seems simpler but may be more restrictive in the languages that can actually be added, as it may not be

straightforward to compile any language to CLI code representations.1045

In order to extend UniAspect [16], one needs to implement the front- and back-ends for the new target

language according to their Unified Code Model (UCM) and Unified Code Object representations. This

means extending the underlying UNICOEN framework with support for 1) parsing the new language and

building the UCM representation, and 2) taking a UCM representation and generating back the source code

for the new target language.1050

Compose* [15] can also be extended with support for new languages by using any existing parser or

compiler for the desired language and implementing a type harvester. This basically collects type and

structural information from the parser and provides it in the format needed by the Core, the language-

independent part of Compose*. At the back-end level, the weaver developer needs to implement a weaver,

which will translate the language-independent representation into the target language and inject it into the1055

application. If a new type of language is being considered, the developer may also need to augment the Core

component with the concepts of entity and message for that language. As an example, entities are object

instances in Java and files in C, while messages are method calls in Java and function calls in C.

As for the approaches of Gray and Roychoudhury [24] and Roychoudhury et al. [25], if the needed tooling

doesn’t exist in DMS, the weaver developer needs to add support for a new language domain. Following1060

this, the developer may want to develop a new aspect language that is closely tied to the target or reuse

an existing one if the join points needed are already covered. Additionally, the developer needs to define a

new metamodel for the aspect language, if a new one is developed, in the approach of Roychoudhury et al.

[25]. Finally, the developer needs to add support at the back-end. In the former approach [24], some ad-hoc

conversions methods from the aspect language to RSL rules that target the new language are needed. The1065

latter approach needs the development of ATL rules to convert models from the aspect language into models

of RSL rules, which the RSL back-end will transform into RSL code.

In our approach, a new weaver is needed to add support for a new language. The weaver developer starts

by writing a Language Specification, which defines the join points that are available and how they can be

captured, their attributes, as well as the actions one can perform over them in order to advice the application.1070

Alternatively, the developer can also take one existing specification and change it to suit the needs of the new

language. Besides reducing the amount of work, this has the added benefit of join point, attribute and action

sharing, which leads to reuse in the aspect code, greatly enhancing compatibility between languages. Then,

the developer uses the Weaver Generator to automatically generate a skeleton implementation of the weaver

based on the target language specification. This is the interface between the work of the weaver developer1075

and the rest of the LARA framework. At this point, the developer needs a front-end that can parse the

target language and build some kind of intermediate representation. Here, there is a lot of freedom, as the

39

developer can choose an existing tool, e.g., a source-to-source compiler, or build one from scratch. For the

weaver to work, the developer needs to make the connections between the chosen intermediate representation

and the LARA framework by implementing the skeleton methods.1080

6.6. Aspect Reuse in Multilanguage Approaches

Table 5 presents an overview of the multilanguage approaches regarding their implementations to achieve

reusable aspects, for both pointcuts and advices, following the definitions of Section 3. For pointcuts, most

mentioned approaches share, for their supported languages, a common join point model. For SourceWeave.NET [14],

Weave.NET [31], UniAspect [16] and Compose* [15], this is a common execution model, since they are be-1085

havioral based. For our LARA approach, it is a shared syntactical and semantic model, since LARA follows

a structural approach and it is possible to capture semantic join point attributes based on source code prop-

erties. This sharing of models is encouraged but not enforced, as it would limit individual implementations

for specific languages. In the case of Gray and Roychoudhury [24] and Roychoudhury et al. [25], the aspect

language is translated to language-specific RSL rules. Therefore it is tied to a specific language and there is1090

no possibility of aspect reuse between languages.

As for advices, SourceWeave.NET [14], Weave.NET [31], Compose* [15] and LARA rely on an interface

implementation while UniAspect [16] and LARA use multiversioning. As mentioned before, UniAspect uses

annotation to mark pieces of code as advice code for specific target languages. SourceWeave.NET and

Weave.NET both use the interface concept since, in the XML descriptors, the user specifies the name of1095

the class and method that have the advice code, but the code itself is defined externally. Compose* works

similarly, as in the concern specification the user writes the entity and message names, the code of which still

needs to be provided separately from the concern. As for our LARA approach, we expose the interface of

libraries for specific concerns and then let weaver developers implement them for concrete target languages

and distribute the implementation with the weavers. For advices, the approaches of Gray and Roychoudhury1100

[24] and Roychoudhury et al. [25] do not provide reuse of aspect code.

Our presented approach and UniAspect [16] follow a multilanguage implementation in which aspects are

self-contained and can, therefore, be used directly to target multiple languages. On the other hand, with

SourceWeave.NET [14], Weave.NET [31] and Compose* [15] one needs to write native code, separate from

the aspect code and this will be weaved into the application according to specified strategy. With the works1105

of Gray and Roychoudhury [24] and Roychoudhury et al. [25], the advice part of the aspect is written in

the target language and encapsulated in the aspect itself. This means that, while we consider all these

approaches to be multilanguage, with the first five, one may target multiple languages with a single aspect,

while with the last two, one needs to change the aspect code to reflect the new target language.

40

Table 5: Classification of the multilanguage approaches according to the possible implementations for reusable pointcuts and

advices, presented in Section 3.

Approach Pointcut Advice

SourceWeave.NET [14] common (behavioral) interface (descriptor)

Weave.NET [31] common (behavioral) interface (descriptor)

UniAspect [16] common (behavioral) multiversioning (annotation)

Compose* [15] common (behavioral) interface (messages)

Gray and Roychoudhury [24] n/a n/a

Roychoudhury et al. [25] n/a n/a

LARA
common (structural) interface (library)

common (semantic) multiversioning (bundle)

7. Conclusions1110

This paper focused on the use of LARA in the context of aspect composition and multilanguage targeting.

We presented the LARA framework, composed by the LARA language, its compiler and interpreter and a

weaver generator. We showed how the initial design of LARA and its most recent developments contribute

to highly modular and composable aspect code, which we believe is the base for multilanguage support. We

enumerated several possible options for aspect composition and reuse at both the pointcut and advice level,1115

and then presented our techniques to achieve these goals. The techniques include the development of weaver-

and user-side libraries with clearly defined interfaces and concrete implementations for each target language,

and also sharing sets of common join points and attributes across different languages. We discussed the

impact of the proposed techniques, and showed that our approach is able to enhance multilanguage support

and, at the same time, to improve aspect code reuse, while also enabling more concise and less error-prone1120

aspects. Furthermore, we also showed that, by using the components of the LARA framework, we can

significantly reduce the effort needed to develop new weavers and provide support new target languages.

As future work we plan to continue the development of aspect libraries, extending and improving the

implementations of existing ones, as well as adding new concerns as needed. We will also focus on improving

the existing bundle system to allow greater flexibility for the user when implementing libraries that share1125

code. Finally, we intend to further explore the opportunities provided by a single AOP approach in projects

that use several target languages and customized tool flows. We intend to extend the LARA framework to

support dynamic actions, as a way to instruct the weaver that the LARA code in those actions should be

executed during application runtime, instead of relying only on insertion of native code.

41

Acknowledgments1130

This work was partially funded by the ANTAREX project through the EU H2020 FET-HPC program

under grant no. 671623. João Bispo acknowledges the support provided by Fundação para a Ciência e a

Tecnologia, Portugal, under Post-Doctoral grant SFRH/BPD/118211/2016.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, Aspect-oriented1135

programming, in: European conference on object-oriented programming, vol. 1241, Springer, 220–242,

1997.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An overview of AspectJ,

in: European Conference on Object-Oriented Programming, Springer, 327–354, 2001.

[3] O. Spinczyk, A. Gal, W. Schröder-Preikschat, AspectC++: An Aspect-oriented Extension to the C++1140

Programming Language, in: Proceedings of the Fortieth International Conference on Tools Pacific:

Objects for Internet, Mobile and Embedded Applications, CRPIT ’02, Australian Computer Society,

Inc., Darlinghurst, Australia, Australia, 53–60, 2002.

[4] J. Fabry, T. Dinkelaker, J. Noyé, E. Tanter, A Taxonomy of Domain-Specific Aspect Languages, ACM

Comput. Surv. 47 (3) (2015) 40:1–40:44, ISSN 0360-0300.1145

[5] J. M. P. Cardoso, T. Carvalho, J. G. F. Coutinho, W. Luk, R. Nobre, P. Diniz, Z. Petrov, LARA:

an aspect-oriented programming language for embedded systems, in: Proceedings of the 11th annual

international conference on Aspect-oriented Software Development, ACM, 179–190, 2012.

[6] J. M. P. Cardoso, J. G. F. Coutinho, T. Carvalho, P. C. Diniz, Z. Petrov, W. Luk, F. Gonçalves,

Performance-driven Instrumentation and Mapping Strategies Using the LARA Aspect-oriented Pro-1150

gramming Approach, Softw. Pract. Exper. 46 (2) (2016) 251–287, ISSN 0038-0644.

[7] P. Pinto, T. Carvalho, J. Bispo, J. M. Cardoso, Lara as a Language-Independent Aspect-Oriented

Programming Approach, in: Proceedings of the Symposium on Applied Computing, ACM, 1623–1630,

2017.

[8] D. August, K. Pingali, D. Chiou, R. Sendag, J. Y. Joshua, et al., Programming multicores: Do appli-1155

cations programmers need to write explicitly parallel programs?, IEEE Micro (3) (2010) 19–33.

[9] E. Hilsdale, J. Hugunin, Advice weaving in AspectJ, in: Proceedings of the 3rd international conference

on Aspect-oriented software development, ACM, 26–35, 2004.

42

[10] I. Nagy, On the Design of Aspect-Oriented Composition Models for Software Evolution, Ph.D. thesis,

Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Netherlands,1160

2006.

[11] J. M. Cardoso, T. Carvalho, J. G. Coutinho, R. Nobre, R. Nane, P. C. Diniz, Z. Petrov, W. Luk,

K. Bertels, Controlling a complete hardware synthesis toolchain with LARA aspects, Microprocessors

and Microsystems 37 (2013) 1073 – 1089, special Issue on European Projects in Embedded System

Design: EPESD2012.1165

[12] J. M. P. Cardoso, J. G. de F. Coutinho, R. Nane, V.-M. Sima, B. Olivier, T. Carvalho, R. Nobre, P. C.

Diniz, Z. Petrov, K. Bertels, F. Gonçalves, H. van Someren, M. Hübner, G. Constantinides, W. Luk,

J. Becker, K. Krátký, S. Bhattacharya, J. C. Alves, J. C. Ferreira, The REFLECT Design-Flow, Springer

New York, New York, NY, 13–34, 2013.

[13] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, L. Seinturier, Spoon: A library for implementing1170

analyses and transformations of java source code, Software: Practice and Experience 46 (9) (2016)

1155–1179.

[14] A. Jackson, S. Clarke, Sourceweave. net: Cross-language aspect-oriented programming, in: International

Conference on Generative Programming and Component Engineering, Springer, 115–135, 2004.

[15] A. de Roo, M. Hendriks, W. Havinga, P. Durr, L. Bergmans, Compose*: a Language- and Platform-1175

Independent Aspect Compiler for Composition Filters, 2, 2008.

[16] A. Ohashi, K. Sakamoto, T. Kamiya, R. Humaira, S. Arai, H. Washizaki, Y. Fukazawa, UniAspect: a

language-independent aspect-oriented programming framework, in: Proceedings of the 2012 workshop

on Modularity in Systems Software, ACM, 39–44, 2012.

[17] clang: a C language family frontend for LLVM, https://clang.llvm.org/, accessed: 2017-08-01, 2017.1180

[18] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, C. Le, RAPL: Memory power estimation and cap-

ping, in: 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED),

189–194, 2010.

[19] T. Aslam, J. Doherty, A. Dubrau, L. Hendren, AspectMatlab: An Aspect-oriented Scientific Pro-

gramming Language, in: Proceedings of the 9th International Conference on Aspect-Oriented Software1185

Development, ACM, New York, NY, USA, 181–192, 2010.

[20] G. Rudy, M. M. Khan, M. Hall, C. Chen, J. Chame, A programming language interface to describe

transformations and code generation, in: International Workshop on Languages and Compilers for

Parallel Computing, Springer, 136–150, 2010.

43

https://clang.llvm.org/

[21] M. Christen, O. Schenk, H. Burkhart, Patus: A code generation and autotuning framework for par-1190

allel iterative stencil computations on modern microarchitectures, in: IEEE International Parallel &

Distributed Processing Symposium (IPDPS), IEEE, 676–687, 2011.

[22] M. Bravenboer, K. T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.17. A language and toolset for

program transformation, Science of Computer Programming 72 (1-2) (2008) 52 – 70.

[23] P. Klint, T. Van Der Storm, J. Vinju, Rascal: A domain specific language for source code analysis and1195

manipulation, in: Source Code Analysis and Manipulation, 2009. SCAM’09. Ninth IEEE International

Working Conference on, IEEE, 168–177, 2009.

[24] J. Gray, S. Roychoudhury, A Technique for Constructing Aspect Weavers Using a Program Trans-

formation Engine, in: Proceedings of the 3rd International Conference on Aspect-oriented Software

Development, AOSD ’04, ACM, New York, NY, USA, 36–45, 2004.1200

[25] S. Roychoudhury, J. Gray, F. Jouault, A Model-Driven Framework for Aspect Weaver Construction,

in: S. Katz, M. Mezini, C. Schwanninger, W. Joosen (Eds.), Transactions on Aspect-Oriented Software

Development VIII, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–45, 2011.

[26] K. Aljasser, P. Schachte, ParaAJ: Toward Reusable and Maintainable Aspect Oriented Programs, in:

Proceedings of the Thirty-Second Australasian Conference on Computer Science - Volume 91, ACSC1205

’09, Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 65–74, 2009.

[27] K. Aljasser, Implementing design patterns as parametric aspects using ParaAJ: The case of the singleton,

observer, and decorator design patterns, Computer Languages, Systems & Structures 45 (2016) 1–15.

[28] D. Zook, S. S. Huang, Y. Smaragdakis, Generating AspectJ programs with meta-AspectJ, in: Generative

Programming and Component Engineering, vol. 4, Springer, 1–18, 2004.1210

[29] I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, Transactions on Aspect-Oriented Software Develop-

ment, chap. An Overview of Caesarj, Springer-Verlag, Berlin, Heidelberg, 135–173, 2006.

[30] X. Wu, B. R. Bryant, J. Gray, M. Mernik, Component-based LR parsing, Computer Languages, Systems

& Structures 36 (1) (2010) 16–33.

[31] D. Lafferty, V. Cahill, Language-independent aspect-oriented programming, in: ACM SIGPLAN No-1215

tices, ACM, 1–12, 2003.

[32] I. D. Baxter, C. Pidgeon, M. Mehlich, DMS: program transformations for practical scalable software

evolution, in: 26th International Conference on Software Engineering (ICSE), IEEE, 625–634, 2004.

[33] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool, Science of computer

programming 72 (1) (2008) 31–39.1220

44

[34] M. Eichberg, M. Mezini, K. Ostermann, Pointcuts as functional queries, in: Asian Symposium on

Programming Languages and Systems, Springer, 366–381, 2004.

45

	Introduction
	The LARA Language and Framework
	The LARA Language
	Supported Types of Pointcut Definition
	Syntactic Pointcuts
	Execution Pointcuts
	Semantic Pointcuts
	Control Flow Pointcuts

	Compiler and Interpreter
	The Weaver Generator
	Mapping Between Join Points and Input Applications

	Composable and Reusable AOP Approaches
	Pointcut
	Generic Syntax for Pointcut Expressions
	Common Join Point Model
	Advice Inheritance
	Aspect Multiversioning
	Merged Join Point Model

	Advice
	Interface
	Pointcut Inheritance
	Aspect Multiversioning
	Common Language for Advices

	LARA Approach
	General Composition and Modularity Techniques
	Generic Aspect Libraries
	Bundles
	Common Language Specifications
	Generic Weaver Actions
	Join Point Aliases

	Evaluation
	Tooling Reuse
	Impact of the Presented Techniques
	Enabling Higher-Level Aspects

	Related Work
	Compiler Optimization Approaches
	Term Rewriting Approaches
	General Reuse In Aspect-Oriented Approaches
	Multilanguage Approaches
	Extendability of Multilanguage AOP Approaches
	Language Specification Extensions
	Weaver Extensions

	Aspect Reuse in Multilanguage Approaches

	Conclusions

