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ABSTRACT  

Glycosylation is one of the most abundant forms of protein posttranslational modification. O-

glycosylation is a major type of protein glycosylation, comprising different types and structures 

expressed in several physiologic and pathologic conditions. The understanding of protein 

attachment site and glycan structure is of the utmost importance for the clarification of the role 

glycosylation plays in normal cells and in pathological conditions. Neoplastic transformation 

frequently shows the expression of immature truncated O-glycans. These aberrantly expressed O-

glycans have been shown to induce oncogenic properties and can be detected in premalignant 

lesions, meaning that they are an important source of biomarkers. This article addresses the recent 

application of genetically engineered cancer cell models to produce simplified homogenous O-

glycans allowing the characterization of cancer cells O-glycoproteomes, using advanced mass 

spectrometry methods and the identification of potential cancer-specific O-glycosylation sites. This 

article will also discuss possible applications of these biomarkers in the cancer field.  
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Introduction to protein glycosylation  

Glycosylation is a major posttranslational modi- fication of proteins. There are two main types of 

protein glycosylation in eukaryotes: the N- glycosylation and the O-glycosylation. N- glycosylation 

consists of an oligosaccharide chain covalently linked to an asparagine residue of a polypeptide 

chain, occurring in the consen- sus peptide sequence: Asn-X-Ser/Thr. N-glycans share a common 

pentasaccharide core region and can be further processed generating three main types: 

oligomannose (or high-mannose), complex and hybrid [1]. These glycans are fur- ther modified, 

presenting different terminal structures. In contrast, O-glycosylation is char- acterized by the 

addition of one of six different monosaccharides: these are a-GalNAc, b-GlcNAc, a- Man, a-Fuc, b-

Xyl, b-Glc and b-Gal, to a hydroxyl group of serine, threonine and tyrosine residues [2]. The 

different types of O-glycans are classified according to the initiating monosaccharide linked to the 

protein. The initiation of O-glycan via an N-acetylgalactosamine (GalNAc) is called mucin-type O-

glycosylation and is distinct from the others as its initiation is controlled by an extended family of up 

to 20 polypeptide Gal- NAc-transferases, with potential for generating the most differentially 

regulated glycoproteome and lack of any clearly defined peptide consen- sus acceptor peptide 

sequence motif.  

 

Mucin-type O-glycosylation (functions & specificities)  

Mucin-type O-glycosylation is very diverse since it depends on the activity of enzymes codified by 

50–100 distinct genes. The first step in mucin type O-glycosylation is per- formed by up to 20 

polypeptide GalNAc- transferases (GalNAcTs) [3]. This highly evolu- tionary conserved family of 

enzymes catalyzes the transfer of N-acetylgalactosamine from the sugar donor UDP-GalNAc to the 

hydroxyl group of a serine or threonine [4]. This initial step is crucial for defining the site where the 

O- glycans are attached. The different GalNAcTs show distinct and partially overlapping peptide 

substrate specificities [5]. The pat- tern of expression of individual GalNAcTs shows cell and tissue 

specificities during development and differentiation, thus con- tributing to heterogeneity regarding 

sites of O-glycosylation [3]. A second level of complexity in mucin O-glycosylation is the processing 
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of carbohydrate chains by other glycosyltransferases that are responsible for the definition of the 

final O-glycan structures (elongation and termination steps). After the first gly- can (GalNAc) is 

added forming the Tn antigen, eight core structures can be synthesized [1]. The most common, the 

core 1 structure, also known as T antigen, is synthesized by the Gal- transferase (C1GalT1), which 

adds Gal to GalNAc (FIGURE 1) [6].  

The activity of C1GalT1 depends on a molecular chaperone COSMC [7]. Another common core 

structure synthesized in normal cells contains a branching GlcNAc attached to core 1 and is named 

core 2. Core 2 is synthesized by the core 2 b1– 6 N-acetyl glucosaminyl transferases (C2GnT). The 

extension of the core structures is catalyzed by b3/4 Gal-Ts and b3/4 Gn-Ts (FIGURE 1), leading to 

the formation of type 1 and type 2 chains. The Lewis and ABO glycan-based blood group antigens 

are common terminal structures, which are present in many glycoconjugates.  

 

Biosynthesis of truncated O-glycan structures in cancer  

One of the most consistent features of cancer cells is the expres- sion of immature O-glycans [8–

10]. These truncated structures are known as simple mucin-type carbohydrate antigens: T antigen 

(Galb1-3GalNAca1-O-Ser/Thr), STn antigen (NeuAca2-6- GalNAca1-O-Ser/Thr) and Tn antigen 

(GalNAca1-O-Ser/Thr) (FIGURE 1) [6].  

These simple mucin-type carbohydrate antigens are essen- tially not produced in normal and 

benign tissues, which nor- mally express more mature O-glycans. This observation explains the 

absence of truncated O-glycoproteins circulating in the blood of healthy individuals or individuals 

with benign conditions, which instead usually present more mature O-gly- cans. On the other hand, 

cancer cells produce, secrete and shed many different O-glycoproteins with truncated O-glycans, 

which reach the circulation and may be detectable in the serum. However, it is known that 

nonsialylated glycoproteins are cleared from circulation through receptors expressed by the innate 

immune system [11]. Previous studies have shown that sialylated structures ST and STn antigens 

are readily detectable in cancer patients’ sera [12–15]. Two classical serological bio- marker assays 

used in cancer, CA19–9 [16] and CA72.4 [17–19], are based on the detection of sialylated O-glycans, 

and espe- cially the latter that detects STn demonstrates that proteins expressing the STn 

glycoforms circulate in cancer patients’ serum.  

Several mechanisms have been shown to underlie the expres- sion of truncated STn antigens in 

cancer, being associated with poor prognosis and tumor aggressiveness. One mechanism is the 

altered expression of the sialyltransferase ST6GalNAc-I, which is the main STn synthase [20,21]. 

Overexpression of this enzyme in cell lines can override the normal O-glycan elonga- tion 

machinery resulting in high STn expression [21,22]. Another mechanism may be the reduction of 

core 1 elongation that leads to accumulation of Tn, which serves as a substrate for ST6GalNAc-I. 

The core 1 synthase C1GALT1 is dependent on a specific chaperone Cosmc, and previous studies 

have reported hypermethylation or somatic mutations of the COSMC chaperone gene [7,23–26], 

leads to the expression of Tn and STn. Finally, cancer-associated relocation of the polypep- tide 

GalNAc-Ts within the Golgi apparatus and from Golgi to endoplasmatic reticulum may also explain 

the increased expres- sion of truncated O-glycans [27,28].  

 

Engineered cell models for characterization of O-glycoproteome using advanced mass 

spectrometry technology  

The definition of the O-glycoproteome has been a major chal- lenge in the field due to technical 

difficulties related to the complexity and heterogeneity of glycan functions and structures at 

individual glycosylation sites. The recent use of genomic editing tools has allowed the development 

of isogenic cell sys- tems that along with extensive application of mass spectrometry methods uses 
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electron transfer dissociation (ETD) fragmenta- tion. Glycopeptide O-glycosite identification based 

on ETD-MS2 has been applied for high throughput site-specific O-GalNAc proteomics. These 

technologies have enabled the pre- cise determination of protein O-glycosylation sites in cells [29–

31]. These tools have greatly evolved in the past years and show unlimited potential to revolutionize 

the glycobiology field.  

The approach using zinc-finger nucleases targeting the knockout of COSMC gene has been applied 

in a number of human cancer cell lines originating from different organs [30]. These so-called 

isogenic cell models have been shown to pro- duce stable cells expressing homogenous truncated 

O- glycosylation with Tn and/or STn O-glycans [29,30,32].  

These cell models have allowed the generation of unlimited amounts of material for 

straightforward isolation and identifica- tion of GalNAc-O-glycopeptides from total cell lysates, or 

even from secretions using lectin chromatography before and after sialydase treatment followed by 

nanoflow liquid chromatogra- phy tandem mass spectrometry with ETD for glycan site deter- 

mination [33]. Alternative methodologies to lectin enrichment such as metabolic labeling with azide 

modified sugar (GalNAz) combined with click chemistry have been previously used for 

characterization of O-GalNAc glycoproteomes [34,35]. This pro- cess has been shown to be very 

useful for several studies. It involves a step in which the azido sugars are fed to cells or organisms 

for later identification of the glycoproteins contain- ing the azido sugars. This methodology has also 

some disadvan- tages since the cell’s epimerase is able to epimerize GalNAz to GlcNAz and 

therefore the produced O-glycoproteome data must be analyzed with care. The enrichment using 

lectin chromatography has shown to have advantages over this and other methods, such as 

oxidation of glycans and methods based on charge affinity, as previously discussed elsewhere [36]. 

Using lectin chromatography followed by advance Mass Spectrometry, hundreds of unique O-

glycoproteins and O-glycosylation sites have been identified in several cell line models from 

different tissues [30,31]. Further extensions of this strategy have been developed combining the dif- 

ferential analysis of the function of specific GalNAc-T isoforms, the generation of isogenic cell 

models with and without a specific GalNAc- T, allowing the identification of nonredundant 

functions of individual members of the GalNAc- T family [32,37]. Furthermore, similar strategies 

have been applied targeting the O-mannose gly- coproteome, revealing important targets in this 

additional type of O-glycosylation [30,38].  

Broad knowledge of O-glycosites allows for the analysis of novel biological functions of gly- 

cosylation as the recent discovered mechanism for regulation for proprotein convertase process of 

proteins [37]. Furthermore, these new tools enable a fast and simple understanding of which O-

glycoproteins can be found in a particular cell model and which enzymes may play a role on that 

specific glycosylation. This is particularly important given the complexity of O-glycosylation and the 

many and very efficient GalNAc-Ts controlling O-glycans sites on pro- teins [3], already addressed 

in this review. The O-glycoproteins found in the culture media of these engineered cell models also 

open for an illustration of which O-glycoproteins are secreted/shed and that have potential to be 

used as a biomarker. A similar lectin enrichment- based O-glycoproteomic strategy has therefore 

also been applied to cancer patient serum sam- ples [39]. In fact, although the cell line models allow 

for unlimited sample availability and extensive O-glycoproteome analyses, from a bio- marker 

perspective, the use of data from these model systems needs to be combined with data obtained 

from in vivo settings, such as cancer patients serum and tumor tissues [36].  

 

Application of O-glycoproteins as biomarkers in cancer  

Several proteomic studies used for the discovery of cancer biomarkers in the serum have been 

designed to interrogate the general proteome without taking into account the aberrant glycosy- 
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lated forms produced by cancer cells [40]. Many cancer biomarkers currently used in the clinics are 

based on circulating O-glycoproteins that are detected in estab- lished serological assays (CA125, 

CA15–3, CEA, CA19.9) [41]. Most of these serological assays are used for cancer patient follow-up 

and monitoring patient response to treatment. How- ever, these serological assays may also show 

elevated levels in non-neoplastic and inflammatory conditions therefore limiting their use in 

screening applications for cancer diagnosis [41,42]. The characterization of cancer O-

glycoproteomes using the engi- neered cell models described above provides a massive amount of 

information on potentially functionally important glycosites and on O-glycoproteins that can be 

used as possible targets for the development of more specific serological assays for applica- tion in 

cancer. The focus on specific isolated protein targets and their changes in O-glycan structures 

should allow for more detailed studies on cancer-specific O-glycoforms and the evalua- tion of their 

potential as biomarkers. This knowledge may also provide the dissection of the role of specific O-

glycans conferring oncogenic properties to cancer cells and the interactions of O-glycans interfering 

with the immune response in patients with cancer [43].  

 

Expert commentary  

The application of genetic engineered approaches targeting spe- cific glycosylation-related genes 

for the generation of cancer cell models displaying homogeneous glycans has allowed the char- 

acterization of the cancer cell O-glycoproteome when combined with advanced mass spectrometry 

methods. These approaches and the information generated have allowed a major progress toward 

the identification of possible biomarkers in several dis- eases, including cancer.  

The identification of tumor-derived glycoproteins constitutes possible biomarkers with potential-

enhanced specificity and that can be detected in the serum of patients with cancer. Combination of 

these data with glycoproteomics analysis of serum and tissue samples, as well as complementary 

methods that can be applied in general diagnostic laboratories, such as those based on 

immunoenzymatic methods, proximity ligation assays and others, is likely to be developed 

targeting some of the recently identified biomarkers.  

Such biomarkers may improve and enlarge the serological application targets for the detection of 

cancer, eventually improving early diagnosis.  

 

Five-year view  

Cell models with targeted genetic manipulation of glycosylation-related genes combined with 

advanced mass spec- trometry methods have opened a new era in the glycobiology field:  

 

  .  The recent works applying these approaches to characterize specific function of a single 

glycosyltransferase showed that these strategies are going to provide important biological 

information regarding the function of glycosylation in physi- ological and pathological conditions;   

 .  Further developments of the analytical equipment and bioin- formatic tools analyzing polyomic 

(genomics, transcriptomics, proteomics, glycomics and metabolomics) data will provide further 

relevant information in the context of complex dis- eases systems;   

 .  The adaptation of the glycoproteomic analysis to serum sam- ples from cancer and normal control 

individuals will allow the validation of some of the recently described O-glycosites on glycoproteins 

identified in the cell model systems.  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Key issues  
   .  Mucin-type O-glycosylation is a common and diverse form of posttranslational 

protein modification. These different structures are expressed with cell and tissue 

specificity and show major alterations in pathologic conditions. These major changes 

include the expres- sion of immature truncated O-glycans, such as Tn and STn antigens.   

   .  The development of genetically engineered cell models, combined with liquid 

chromatography tandem mass spectrometry with electron transfer dissociation for glycan 

site specification, has allowed the characterization of the O-glycoproteome of cancer 

cells.   

   .  The O-glycoproteome of cancer cells constitutes a major source of O-

glycoproteins identification and opens for their potential as biomarkers of this disease and 

can provide massive information contained in the glyco-code of a cancer cell.  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Figure 1. Cell lines O-glycoproteome characterization. Schematic representation depicting the 
initial biosynthetic pathways of O-linked protein glycosylation (A) and glycoengin- eering of cells 
used to define the O-glycoproteome of cancer cells. The genetic targeting of COSMC, a molecular 
chaperone of the Core1 Synthase (C1GalT1) results in a simplification of the cell O-glycosylation 
leading to an homogeneous truncated GalNAc (Tn) and NeuAc-GalNAc (STn) O-glycans (B). Tryptic 
digestion and neuraminidase treatment of the O-glycopro- teins (C) allows for further isolation of 
GalNAc glycopeptides using VVA lectin chromatography (D). Peptides and O-glycan sites 
identification is achieved by nLC-MS/MS analysis (E).  
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