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Abstract

Mutual information neuro-evolutionary system (MINES) presents a novel self-governing approach to

determine the optimal quantity and connectivity of the hidden layer of a three layer feed-forward neural

network founded on theoretical and practical basis. The system is a combination of a feed-forward neu-

ral network, back-propagation algorithm, genetic algorithm, mutual information and clustering. Back-

propagation is used for parameter learning to reduce the system’s error; while mutual information aides

back-propagation to follow an effective path in the weight space. A genetic algorithm changes the incom-

ing synaptic connections of the hidden nodes, based on the fitness provided by the mutual information

from the error space to the hidden layer, to perform structural learning. Mutual information determines

the appropriate synapses, connecting the hidden nodes to the input layer; however, in effect it also links

the back-propagation to the genetic algorithm. Weight clustering is applied to reduce hidden nodes hav-

ing similar functionality; i.e. those possessing same connectivity patterns and close Euclidean angle in

the weight space. Finally, the performance of the system is assessed on two theoretical and one empirical

problems. A nonlinear polynomial regression problem and the well known two-spiral classification task

are used to evaluate the theoretical performance of the system. Forecasting daily crude oil prices are

conducted to observe the performance of MINES on a real world application.
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Chapter 1

Introduction

Neural networks (NNs) are extensively used in various fields of study and had been one of the most

popular areas of research in the past years [50][45]. The applications of NNs are broad and diverse.

In a comprehensive study, Paliwal and Kumar (1999) [45] categorise the applications of NNs into the

following areas where traditionally, statistical techniques were used: accounting and finance, health and

medicine, engineering and manufacturing, marketing and decision making. Indeed, NNs can be used

as an alternative “to traditional statistical models” [45], such as regression, and are also widely used in

classification [83] and business applications [50].

A three layer feed-forward neural network (FFNN), with an input layer, one hidden layer and an

output layer, is the simplest form of a NN comprising of hidden nodes. Despite their simplicity, three

layer FFNNs are widely used due to the “universal approximation theorem”1 [26], asserting that any

continuous function defined on a unit hypercube can be desirably approximated by a composed linear

sum of continuous functions of one variable. The theorem simply states that, a NN with one hidden layer

is sufficient for any mapping problem (see Section 2.2.2.1 for further detail). However, the theorem does

not propose a way to realise how a single hidden layer is optimal “in the sense of learning time, ease of

implementation, or (more importantly) generalization” [26].

To obtain an optimal hidden layer, the NN is required to be trained by a simultaneous consideration

of the number of hidden nodes, the synaptic connections and the associated synaptic weights. Nonethe-

less, as Haykin (2009) [26] notes, “there are currently no well defined rules” to develop a “specialized

structure” for a NN at hand. Hence, the issue of configuring the appropriate structure of a hidden layer

remains an open problem in the field of NN training. The underlying research illuminates a novel and

theoretically well founded technique to determine the structure of the hidden layer and the contributed

synaptic weights in a three layer FFNN.

In this chapter, the main ideas and motivations of mutual information neuro-evolutionary system

(MINES), is briefly explained. The scope of the current research - i.e. the limitations, main objectives

and hypothesis - is addressed. A brief overview of the system is also presented. Finally, the involved

challenges and the achieved contributions of the underlying research is discussed.

1The theorem is also called the “Kolmogrov theorem.” [21]
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1.1 Problem Statement

The performance of a NN is highly dependent on the structure and the contributed weights. Weight

adjustment is usually carried out by parameter learning techniques, while structure is sought to be opti-

mized through structural learning [62]. However, the two techniques are not totally independent of each

other and there is an intertwined relation between them. For instance, the outcome and efficiency of a

NN is highly influenced by the structure, making weight adjustment insufficient as the only technique

used for NN optimization. In fact, the two procedures must be carried out simultaneously in order to

achieve a close to optimal NN for a given problem at hand. Concerning this, and by focussing on neuro-

evolution (NE), Stanley and Miikkulainen [63] assert that structural optimization along with adjustments

to synaptic weights leads to a superior performance.

To find a desirable NN, the hypothesis space must therefore explore all free parameters constituting

the set of entire possible configurations [70] and synaptic weights, having the predefined number of input

and output layer nodes, but flexible hidden layers size. However, difficulty arises in such situations:

first, the number of possible structures or configurations, alongside synaptic weights, is too large to

exhaustively search; second, for many structural configurations, the decision surface is fairly likely to

fall into a local minimum, especially when conventional parameter learning techniques such as back-

propagation (BP) are used; third, the number of potential synaptic connections increases exponentially

with the number of existing nodes (see Section 2.2.2).

Reducing the number of free parameters make search the hypothesis space more possible. Focusing

on a three layer FFNN, the number of free parameters can typically be reduced (see Section 2.2.2) by

decreasing the number of hidden nodes (node-redundancy), eliminating synaptic connections (pruning)

and imposing same synaptic weights on some connections (weight-sharing). Conventionally, the pre-

mentioned techniques are often carried out on a trial and error basis to find optimal configurations with

respect to the underlying problem. In other words, the procedures are often problem based in a way that

each technique must be applied several times to a problem to reveal the optimal number of parameters

and configurations.

In a different approach - with the aid of information theory - a light NN structure can be obtained by

avoiding hidden nodes having high pair-wise mutual information (MI). The NN, otherwise, would often

possess more than necessary hidden nodes. To reduce the number of hidden nodes, they should be sub-

stituted by fewer, jointly sharing less information, while in total conveying the same level of information

from the error space as before. MINES pursues a conceptually similar approach utilizing an evolutionary

algorithm - the genetic algorithm (GA). The goal is to evolve new hidden nodes, mutually possessing less

information in pairs, but still capable of reducing the total error of the network. The evolution, which is

only applied to the receptive connectivity patterns, may reduce the number of contributed hidden nodes,

or it may only change the connections without significantly affecting their quantity.
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1.2 Assumptions and Limitations
MINES, in concept, is able to be extended to a multi layer FFNN (see Section 7.2). The assumption

of a three layer FFNN, with an input layer, one hidden layer and an output layer, is to focus on the

evaluation of the basic strength and capabilities of the ideas adopted through minimizing the involved

factors. Nevertheless, the imposed limitation is also justifiable as the universal approximation theorem

(addressed at the beginning of this chapter) assures that a FFNN with one hidden layer is potentially

sufficient for any mapping problem.

It is worth noting that, although GA, BP and clustering have all been combined in MINES, the

central aim of the research is not to demonstrate the benefit of the concurrent adaptation of these systems;

rather, they mainly provide a means for the MI to appropriately participate in both the structural and

parameter learning procedures (see Figure 1.1) to demonstrate that the information provided from the

error space is able to determine the configuration of the hidden layer.

1.3 Hypothesis and Objectives
The central hypothesis of the underlying research is to demonstrate that by aligning the MI of the output

of a hidden node and the corresponding residual error of the system, the proper receptive fields connec-

tivity pattern of the hidden node, in relation to the other incorporating elements, can be determined so

that the evolving hidden layer would form an optimal, or close to optimal, FFNN.

In brief, the most important objectives of this thesis are primarily to illustrate the following proper-

ties:

• A single hidden layer can properly be structured with the aid of MI by simultaneously aligning the

outputs of the incorporating hidden nodes with the residual errors.

• A concurrent parameter and structural learning can be achieved by indirectly connecting the BP to

the GA via MI.

• The comprising system of NN, BP, GA, MI and clustering can result to an optimal, or close to an

optimal, NN.

• MI is a competent statistical tool which is capable of conveying information from the error space

to the hidden layer.

• Even though for continuous random variables MI cannot be measured precisely, when combined

with appropriate techniques, the dependency of the underlying variables (i.e. their linear or non-

linear co-movements) are eventually revealed, albeit being estimated by the naive histogram tech-

nique [64].

• On the application of daily crude oil price forecasting, MINES is automatically capable of discrim-

inating between the most strong input signals and the rest through searching possible receptive

fields connectivity patterns.
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1.4 System Overview
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Figure 1.1: MINES diagram

As it will be further described in Chapter 4, MINES achieves the addressed objectives by a simulta-

neous consideration of parameter and structural learning to train a three layer FFNN. It alternately uses

GA and BP alongside the other: the GA is responsible for changing the structure, while BP reduces the

cost function. Each GA individual is associated to a hidden node (not necessarily unique) in the FFNN

and controls the receptive connectivity pattern of that hidden node. The fitness of each GA individual is

the MI between output of the associated hidden node and the NN’s residual error. The residual error is

the remaining error of the system after the exclusion of a specific hidden node. In each stage, the relative

ranks of the cooperating hidden nodes, provided by the respective MIs, decide the final integrated hidden

layer. MINES intends to create a hidden layer comprised of nodes being highly correlated with the error

space. In this perspective, hidden nodes with low MI need to be replaced by those delivering higher

information.

It must be noted that, the MI depends on the total state of the representing hidden node, including

its receptive connectivity patterns and the associated synaptic weights. This is where GA and BP are

indirectly connected through MI: the former controls the connectivity patterns, while the latter adjusts

the synaptic weights. To this end, a successful combination of structural and parameter learning has been

established by alternatively running BP for some iteration steps, followed by applying a GA generation.

Since the GA evolution is based on the fitness function, being the MI, the role of MI is revealed as

the indirect connector of the GA and BP in the following fashion: (1) BP is paused, run after several

iterations; (2) MIs are measured, providing the fitness values; (3) GA determines the appropriate local

structure; (4) BP is resumed from usually a new point in the weight space, adjusted previously by GA;

(5) GA is re-applied to the current population; (6) the whole training procedure stops when the system

converges.

Note that, in step (5) in above, individuals of the current population have same connectivity pat-
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terns, but different synaptic weights in comparison to the previous generation. Connectivity patterns are

encoded directly from related genotypes (individuals) to the corresponding phenotypes (hidden nodes),

while synaptic weights are encoded indirectly.

It is worth mentioning that, in MINES the incoming weight vectors are clustered to eliminate hidden

nodes with similar functionality. Similar hidden nodes do not often need to be incorporated into a NN

with the intention of achieving a light structure.

1.5 Challenges
Coordinating of the cooperative systems, implemented in MINES, is one of the foremost challenges of

the underlying research. MIs, on the other hand, must be estimated for continuous random variables.

Given a hidden node, the residual errors and the produced values of the hidden node are considered

as two continuous random variables which their MIs must be estimated. The collaborating systems

in MINES must therefore be chosen so that they could sufficiently disclose the real values of MI to

the system over long run. As a result, adjusting the involved parameters of the systems incorporated

in MINES is regarded as another challenge of the research. The latter must be addressed properly to

correctly tune the final system.

1.6 Contributions
To the greatest extent, this thesis contributes to the field of machine learning by applying information

theory in the area of NN training. More specifically, the most important and outstanding contributions

of the current research can be summarised as follow:

• A three layer FFNN is converged to an optimal, or close to optimal, NN through evolving the

receptive fields of the hidden layer by maximising the MI measured between a hidden node and

the associated residual error assigned as the fitness function of GA individuals (see Chapters 5 and

6).

• A novel NN training system, simultaneously hybridising structural and parameter learning, is

achieved by employing MI conveying informations from the error space to the hidden layer (see

Chapters 5 and 6).

• An optimal, or close to optimal, number of hidden nodes is automatically achieved through the

system’s convergence (see Chapters 5 and 6).

• The proposed system, MINES, is a multi-applicable system performing well on three different

problems from three different areas; including regression, classification and business forecasting

(see Chapters 5 and 6).

• MINES shows to be robust against overfitting on the experimented polynomial regression problem

(see Sections 5.1.5 and 5.1.6).
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• MINES is incorporated with an automatically pruning technique distinguishing the most important

input signals from the rest, when applied to the daily crude oil forecasting problem (see Section

6.4).

The most general and conceptual idea of MINES, accompanied by some carried out preliminary tests

on the polynomial regression problem [56], was presented in the eleventh congress on evolutionary

computation (IEEE CEC 2009) [60], held in Trondheim, Norway in 2009.

1.7 Thesis Outline
Chapter 2 deals with the most fundamental understandings required to comprehend the general concept

of the underlying research area. The Chapter starts with a short description of artificial NNs followed

by a broad introduction of parameter and structural learning utilised in NN training. It then focuses on a

concise review of evolutionary algorithms, which have been introduced subsequently, to highlight their

roles in NN training (related literature is provided extensively in Section 3.2). Finally the chapter is

concluded by presenting the motivations behind the proposing system by a thorough comparison with

the preceding systems.

Chapter 3 provides a broad literature of the works associated to MINES in four categories: infor-

mation based systems, neuro-evolutionary systems, hybridization of GA and BP, and pruning, weight-

sharing and neurogenesis.

Chapter 4 explains the implementation and stepwise methodology used in MINES. The details of

GA and clustering are presented precisely. The effect of setting the number of GA generations and

BP iterations are generally explained. A separate section elucidates the mechanism which leads to the

convergence of MINES toward a steady FFNN.

Chapter 4 proposes the mathematical foundations required to support the implementation of

MINES. The implementation demands an extensive understanding about the creation of a FFNN together

with an in depth knowledge of BP algorithm and the way weight vectors with similar functionality are

clustered. The chapter covers the concept of MI, defined based on conditional probability, while dis-

tinguishing its properties in relation to the classical Pearson’s correlation. An exhaustive mathematical

definition of entropy and MI, followed by the histogram technique used for the calculation and approxi-

mation of the underlying measurements, are provided afterwards.

Chapter 5 and 6 experiment the applications of MINES on three diverse areas: the polynomial

regression problem, the two-spiral classification task and the daily crude oil price forecasting as a real

world business application.

Chapter 7 summarises the significance of MINES and the specification of the system concisely

alongside the future directions.



Chapter 2

Background

This chapter provides a fundamental overview of the topics discussed in the literature and the systems in-

volved in MINES. The chapter starts with a brief overview of the artificial NN, followed by a conceptual

discussion of the fundamental procedures involved in NN training making input-output mapping possi-

ble. In the widest scope, the training procedures can be divided into two categories: parameter learning

and structural learning. The BP algorithm, as the most important and widely used parameter learn-

ing technique, is presented in detail. Thereafter, some important structural learning techniques (node-

redundancy, pruning, weight-sharing and cascade correlation neural network (CCNN))are explained.

Evolutionary techniques and learning classifier systems (LCSs) were briefly addressed as alternative

tools for NN training (additional literature is presented in Section 3.2).

Section 2.3 introduces MI based on information theory and present it as a strong statistical tool

called a “generalized measure of correlation” [64] in comparison to the “Pearson correlation”. The ad-

vantage of using MI over the conventional correlation was discussed following by an example presenting

that a vanishing Pearson correlation does not necessarily imply the independence of the underlying vari-

ables.

Subsequently, Section 2.4 deals with the mathematical definition and calculation of entropy and

MI. Section 2.4.1 introduces the entropy and MI for discrete random variables. Section 2.4.2 defines the

histogram technique, using estimation from discrete case, to approximate entropy and MI for continuous

random variables. The approximation is required for the calculation of the fitness values of the GA

individuals in MINES. Section 2.4.3 explores those parameters affecting the accuracy of the histogram

technique when calculating entropy and MI. The discovery of the parameters aids to understand correct

settings required for the calculation of MI in MINES. It will be shown that the most important parameter

in this regard is the number of histogram bins and the size of underlying data set.

Finally, Section 2.5 introduces the motivators of MINES while presenting the basic ideas leading

to the creation of the system. The rationales behind incorporating the subcomponents forming the inte-

grated system are also discussed.
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Figure 2.1: A three layer fully connected FFNN (URL: http://www.dtreg.com/mlfn.htm).

2.1 Artificial Neural Networks

The artificial NN was originally motivated from the human brain. It is primarily a highly simplified

representation of the way the human brain works. Human brain mechanisms are nonlinear and highly

parallel, completely different from conventional digital computers. The brain has the ability to create

its own mechanisms through experience with its environment. Neurons are the main components of the

human brain which process and transmit information, while communicating via chemical and electrical

synapses [26]. Likewise, NNs are formed by computing cells, called neurons, which can align in-line

or parallel to each other. NNs can, to some extent, replicate the parallel processing ability of the human

brain. Each neuron consists of some input and output terminals, through which neurons interact with

each other. These resemble synapses of the nerve cells in the human brain. Similar to the human brain,

NNs learn from their environment and can store what they learn by adjusting the inter-neuron connections

or weights [26].

2.2 Neural Network Training

Training a NN is a process of finding synaptic weights and connections that reduce the error of the net-

work over the training data. In its broadest sense, NN training is divided into two categories: parameter

learning and structural learning. The former concentrates on the adjustment of synaptic weights, while

the latter mainly deals with the number of hidden layers, number of hidden nodes and the configuration

of synaptic connections. Evolutionary techniques can also be used in NN training and therefore can be

considered separately.

2.2.1 Parameter Learning

In parameter learning within a NN the goal is to find the suitable weights. This usually involves an opti-

mization procedure over continuous variables. Evolutionary techniques - such as GA - can be exploited

in this regard to adjust synaptic weights in a NN [40], but the typical procedure is BP.
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2.2.1.1 Back-Propagation and Algorithm

BP is a continuous parameter learning algorithm based on a method called the “steepest descent” [26].

The BP algorithm usually starts from a random point in the weight space. It reduces the error by em-

ploying a point to point search technique towards a minimum point in the neighbourhood by using an

approximation in the direction of the tangent line to the weight space at the current point. The approxi-

mation is provided by a parameter called “learning rate”, being usually set by the user1.

The learning rate cannot be chosen unboundedly as this may cause oscillation [23] [26] in the

learning process: a big learning rate may point out to a point in the error space producing higher error

compared to the current position. In fact, the smaller the learning rate, the smoother the learning path

towards the next adjacent minimum [26]. However, a very small learning rate increases the number of

training iterations and time [23] [26].

To use a large learning rate, but at the same time avoid system instability, another parameter called

“momentum constant” is usually adopted to the BP algorithm. The momentum constant is especially

beneficial where the curvature of the error space is almost flat [23]; however, it can also smooth the path

where the weight approaches its minimum.

Algorithm

Given a FFNN, the output value of node k is compared to the respective desired values to obtain the

node’s error [25]:

ek(n) = dk(n)− yk(n) (2.1)

where, in Equation 2.1, n is the training iteration, ek is the node error and yk and dk are, respectively,

the output and the desired values.

Using Equation 2.1, the instantaneous value of the total error energy - i.e. the mean squared error

(MSE) - is defined as [25]:

ζ(n) = 1/2

l−1∑
k=0

(ek(n))
2 (2.2)

where l is the number of output nodes of the NN.

Equation 2.2 is used for sequential training, whereas in the batch mode the sum of MSEs over the

entire epoch is considered in the training procedure2 [25]; i.e.:

Z(n) =

s−1∑
p=0

ζp(n)

where s is the size of the training epoch and ζp is the instantaneous value of the total error energy for

pattern p.

The method of the steepest descent requires to obtain the derivative of ζ(n) with respect to the

elements of the weight matrix. For a NN with no hidden layer - only comprised of input and output

1MINES, in contrary, is adopted with an automatically adjusted learning rate system explained in Section 4.2.1.
2Sequential training is a process in which input vectors are presented to the network one-by-one; for each presentation respec-

tive weights adjustments are applied. In the batch training all inputs are presented to the network to calculate the cost function of

the network; weights are then adjusted for the entire batch of inputs [26].
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layers - the sensitivity of the cost function with respect to the synaptic weights are obtained as follow:

∂ζ(n)

∂wij(n)
= −

l−1∑
k=0

ek(n)ϕ′k(vk(n))
∂vk(n)

∂wij(n)
(2.3)

wherewij is the receiving synaptic weight of node i, incoming from node j from previous layer, vk is the

induced local field of node k and ϕ′ is the derivative of the activation function. All the elements of the

weight matrix, subsequently, are shifted equal to the amount of the assigned learning rate in the direction

of the derivative vector. Usually, the procedure continues til the MSE goes lower than a predefined

threshold.

Each layer (neuron) of a multilayer NN can be regarded as a NN with no hidden layer; considering

its input layer as the output layer of the previous neuron and its output layer as the input layer of the

subsequent neuron. Hence, the error calculation formula for a multilayer NN is similar to a NN with no

hidden layer. However, the training procedure of a multilayer NN converts to a recursive form called

BP algorithm. This is because the weight adjustments of each layer depends on the modification of the

previous layer, as will be shown accordingly.

Define L as the final output layer of the network. The sensitivity of the cost function with respect

to the nodes’ incoming weights in layer L is calculated as:

∂ζ(n)

∂wijL(n)
= ei(n)ϕ′i

L
(vi

L(n))yj
L−1(n) (2.4)

where n is the iteration number that the steepest descent algorithm is currently working on, ei is the error

of output node i; ϕ′i
L is the derivative of the activation function of output node i, viL is the induced

local field of node i and yjL−1 is the output of node j in the previous layer.

By defining delta as follow:

δk
L(n) = ϕ′k

L
(vk

L(n))ek(n)

Equation 2.4 becomes more compact:

∂ζ(n)

∂wijL(n)
= δk

L(n)yj
L−1(n) (2.5)

For a layer back, the delta is calculated with the following formula:

δi
L−1(n) = ϕ′i

L−1
(vi

L−1(n))

L−1∑
k=0

δk
L(n)wk,i+1

L(n) (2.6)

Equation 2.6 makes derive the derivative of the cost function with respect to layer L− 1:

∂ζL(n)

∂wijL−1(n)
= −δiL−1(n)yj

L−2(n) (2.7)

Thus, from Equations 2.5 and 2.7, the BP algorithm can be calculated recursively for every layer since

delta is defined in a recursive form in Equation 2.6.

2.2.2 Structural Learning

Structural learning, in contrast to the parameter learning, deals with the manner in which the neurons and

nodes of a NN are structured [26]. Essentially, structural learning is engaged with discrete parameters,
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mainly the number of nodes and their connections [62]. Structural learning is an important practice as it

can reduce the number of free parameters in the network.

In a FFNN, the number of free parameters increases exponentially with the nodes’ existing

synapses. For instance, in a fully connected FFNN, when the number of input layer nodes increases

by one, the number of synapses, ϕ, increases so that:

ϕ = 2η (2.8)

where η is the number of existing hidden nodes in the next layer. The reason is that, for each hidden

node there exist two states with regard to the newly added input node: being connected or not.

In the same manner, when the number of hidden nodes increases by one, the number of synapses

increases so that:

ϕ = 2ι + 2o (2.9)

where ι is the number of nodes of the previous layer (which could be the input layer or the preceding

hidden layer) and o is the number of nodes of the immediate next layer (which could be the output layer

or the succeeding hidden layer). The reason is again the state of the newly added hidden node which can

be connected or disconnected to the existing nodes of the immediate preceding or succeeding layer.

The above discussion indicates that, in a FFNN any attempt to reduce the number of free parameters

would be of interest, subject to not compromising the performance of the system. Nonetheless, there is

currently no all-embracing technique to illustrate a way to reduce free parameters in NNs [26]. However,

there exist some common ad hoc procedures to address the problem. Some of the important techniques

are as follow:

1. Reducing the number of nodes (Node Redundancy)

2. Fixing the number of nodes, but reducing the number of synapses or connections (Pruning)

3. Fixing both the number of nodes and connections, but constraining the choice of synaptic weights

(Weight-sharing)

4. Incrementally adding new nodes (CCNN)

Note that, depending on the system being designed, a combination of above techniques can also be

used to develop a specialized NN. Other alternative techniques can also be addressed from the fields

motivated from natural biology applied in NN. Neurogenesis, for instance, is an example in this regard.

Neurogenesis or the artificial morphogenesis of NNs is a process of creating neurons structure based

on information of a chromosome [40] (a literature applying neurogenesis to NN structural learning is

surveyed in Section 3.4).

The above mentioned techniques (except Neurogenesis) are explained thoroughly in the subsequent

sections.
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2.2.2.1 Node Redundancy

In a NN, the number of nodes of the input and output layer are often fixed since they are imposed by

the implementing model. Hence, the practice of reducing the number of nodes is usually restricted

to the hidden layers. In fact, the number of hidden nodes is an important parameter in NN structural

learning. Excess hidden nodes often lead to overfitting and poor generalization [23] [5]. A network with

a shortage of hidden nodes on the other hand is not able to train well and is over general for a given task.

Generalization is a crucial aim of any NN training.

The issue of the number of the contributed hidden nodes becomes more highlighted when a FFNN

with a single hidden layer is used. It has been shown by Hornik et al (1989) [30] that a FFNN with one

hidden layer is a “universal approximator” - i.e. when equipped with BP algorithm, it can approximate

any function, given that sufficient number of hidden nodes are provided [79]. In terms of forecasting

accuracy, additional hidden layers provide no advantage; though, may result in faster learning in certain

cases [47]. However, Boers and Kuiper (1992) [4] mathematically presented that a FFNN with additional

hidden layers (called a modular NN) is more likely to find weights with better generalization ability

among the entire weight space (see Section 3.4). Nevertheless, their claim is only valid when every

pattern in the epoch is invariant to the input-nodes’ permutations. This makes the hidden nodes be also

invariant to any permutation among themselves, provided that all the incoming and outgoing synaptic

weights goes under the same permutation.

Pendharkar and Rodger (2003) [47] point out that the hidden layer determines the complexity of

the forecasting model. They approximated the number of hidden nodes, η, for a fully connected FFNN

to be as twice as the number of input nodes, ι, plus one; i.e.:

η = 2ι+ 1 (2.10)

However, Equation 2.10 is only a good approximation for a small sample size; for a bigger sample size

the number of hidden nodes must be increased.

The number of contributed hidden nodes strictly plays an important role in a fully connected NN.

However, this is not a crucial issue in a partially connected NN as long as appropriate synaptic connec-

tions have been established. In fact, a partially connected NN may have the same performance as a fully

connected one, while is benefiting from fewer or more number of hidden nodes. Section 2.2.2.2 provides

more information about partially connected FFNNs.

2.2.2.2 Pruning

In a FFNN the number of free parameters can be decreased by reducing the number of connections,

without reducing the number of hidden nodes. In this fashion, usually the number of hidden layer nodes

is determined in advance while the synaptic connections are subject to change. A typical way to this

practice is pruning. Pruning is a process of disconnecting some of the synaptic connections of a usually

fully connected NN with the ultimate goal of achieving an optimal structure [5]. Pruning, therefore,

results in a partially connected NN with lighter architecture having fewer synaptic connections.

In a partially connected FFNN the degree of connectivity - or the free parameters - is lower than a
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fully connected one. Indeed, a fully connected FFNN has the highest degree of connectivity with the

given number of nodes for each layer. The degree of connectivity is closely related to the number of

synaptic weights which ought to be optimized [79]. Usually, lower number of free parameters leads to

lower training time along with a better performance over new data (i.e. a better generalization perfor-

mance) [5]. In fact, “a network that is too big for a particular classification task is more likely to overfit

the training data” and show a poor generalization performance [5]. Therefore, the smallest network per-

forming well on the training data mainly presents a better generalization capability. Pruning additionally

improves the accuracy of a NN by eliminating irrelevant input signals. It also has a significant role in

the ability of local-learning over the input space. Furthermore, when equipped with BP algorithm, a

partially connected FFNN is usually regarded as “a class of the most stable” NNs which “is widely used

and admitted in most applications” [79].

2.2.2.3 Weight-Sharing

Weight-sharing is an applied constraint technique in which some synaptic connections are constrained

to have the same weights. Weight-sharing is a process through time: the constrained weights often differ

from one training step to another, but within every step they are updated in a fashion that they share the

same synaptic weights [52]. The shared weights can be imposed to the synaptic connections of any layer

or any position in the network. When using the standard BP algorithm, the weight-sharing technique

requires updating weights in a way that the shared synapses are set to the sum or the average of the

constrained weights [52]. A very advanced and interesting example of the weight-sharing technique can

be found in the work conducted by Saito and Nakano (2002) [56] (see Section 3.4.2).

2.2.2.4 Cascade Correlation Neural Network

In CCNN hidden nodes are incorporated in the network in an incremental, bottom-up fashion. CCNN

illustrates a structural learning technique to determine the minimal number of required hidden nodes

by providing a path in the weight space possessing the highest absolute correlation between the most

recently added hidden node’s output and the network’s error. The motivation is to train hidden nodes so
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Figure 2.2: The architecture of CCNN [52]



25 2.2. Neural Network Training

that they can detect the residual error of the existing network. It also tries to improve the speed of the BP

learning algorithm [14].

The conventional CCNN procedure starts with a NN which has no hidden nodes: all input nodes

are connected to the output nodes. The Quickprop algorithm, which is the same as the delta rule (see

Equation 2.3) with no hidden node, is then performed to train the direct input-output connections [14]. If

the error is greater than a desired upper bound, a hidden node is added. The added hidden node receives

connections from all the input nodes. Note that at this stage the output of the hidden node is not yet

connected to the network’s output-node, it is only connected to the inputs. The incoming synapses of the

hidden node are adjusted so that the correlation, or covariance, between the output of the added hidden

node and the network’s error becomes maximized. More precisely, the covariance of the output of the

most recently added hidden node and the network’s error is calculated according to the following formula

[52]:

cov(V,E) =

p∑
i=1

(Vi − V̄ )(Ei − Ē) (2.11)

where in that p is the number of input patterns, while Vi and Ei are, respectively, the hidden node’s

output and the error of the ith pattern; whereas, V̄ and Ē are the mean values of Vi and Ei, respectively.

Afterwards, the hidden node is connected to the output node. While the previously adjusted incoming

weights are kept frozen, the hidden nodes’ outgoing synapses are trained by the “Quickprop” process

to minimize the network’s MSE. The procedure continues in such a way that each newly added hidden

node is connected to every node in the input layer and also to all the formerly added hidden nodes; this

is when the system is cascaded. When a new hidden node is added, the incoming synaptic weights of

the formerly added hidden nodes remain unchanged; just the newly created synapses, and those existing

directly between the input and output layer nodes, are trained.

Figure 2.2 illustrates the architecture of CCNN in three stages. The first stage (the top left corner

of the figure) is when the system starts from no hidden nodes. The second stage (the bottom left corner

of the figure) is when one hidden node is added to the system. The third stage (the bottom right corner

of the figure) is when a second hidden node comes into the operation in a newly cascaded layer.

2.2.3 Evolutionary Learning

Evolutionary learnings adopt the application of evolutionary techniques in NN learning or related fields.

Evolutionary techniques are based on natural selection and genetics. Darwin’s principle of natural selec-

tion is used computationally in evolutionary algorithms through artificial gene recombination, mutation,

selection and replacement. The principle implies that favourable heritable traits become common in

successive generations. All evolutionary computing techniques are faithful to the idea of finding the

fittest solution by evolving an initially random population of solutions in a way that fitter outcomes are

generated over time.

GA can be referred as the most popular class of evolutionary algorithm invented by John Holland

(1975) [29]. They use techniques inspired by evolutionary biology such as inheritance, mutation, selec-

tion, crossover (also called recombination). GA usually starts with a randomly created initial population.

Members of the population are then evaluated according to an objective function; its value is called fit-
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ness or the objective value. A subset of the population is selected based on the fitness of the members.

A new population is created from the previously selected members by crossover and mutation. In GA,

selection is done by providing more chance to the fitter members which results to the increase of the

average fitness in each generation. Crossover makes the algorithm search the space of possible solu-

tions, while mutation avoids the system trap in local minima (literature of the applications of GA in NN

learning can be found in Chapter 3).

The application of GA in NN is usually known as NE. NE is the “artificial evolution of NNs using

genetic algorithms” [63]. GA can be applied to evolve both the weights and architecture of a NN. When

GA is exploited to evolves the weights, the architecture is usually predefined and fixed. However, the

GA can also be used to evolve the structure. Nevertheless, as Yao [76] note “there is no systematic way

to design an optimal (near optimal) architecture for a particular task”. A constructive algorithm starts

with a minimal network (i.e. a network with minimal number of hidden nodes and synaptic connections)

to form the structure; whereas, a destructive algorithm does the opposite: starts with a maximal network

and prunes the unnecessary connections and nodes.

Systems using NE are divided to those using a direct or an indirect encoding scheme between

genotypes and phenotypes. In the direct encoding all connections, nodes and weights of the phenotype

are exactly coded in the genome [16]. The direct encoding is employed by most of the NE systems [63].

In contrast, indirect encoding is based on the rules coded in the genome to construct a phenotype [12].

Indirect encoding has the advantage of employing more compressed codes than the direct encoding since

there is no need to explicitly code all the connections, nodes and information into the genome (literature

of NE can be found in Chapter 3).

Memetic Algorithm (MA) is another branch of evolutionary systems for combinatorial optimization

problems. ”MA is inspired by Dawkins notion of a meme defined as a unit of information that reproduces

itself while people exchange ideas” [39]. Similar to GA, where genes are passed to the next generation,

memes are also passed generation by generation. However, before being passed to the next generation,

memes are usually ”adapted by the people who transmit them”. MA can be considered as a hybridization

of GA and a local search in the space of locally optimal solutions instead of the space of all candidate

solutions. Hence, in any generation, the population of individuals consists solely of local optima.

LCS, first introduced by John Holland [29], is a “rule-based” system applying GA on the reinforce-

ment learning. A rule, also called a classifier, is formed by a “condition” and “action” string [59]. Typical

LCS conditions and actions are strings of characters from the ternary alphabet {0, 1,#}; where in that #

acts as a wild-card. The possible rules are searched by evolutionary computing techniques and heuristics

(structural learning), while reinforcement learning assigns utilities to them (parameter learning). LCS

has a close analogy with NN [61]: rule’s condition can be observed as the collection of the node’s input-

signals, node’s connectivity-patterns and node’s synaptic-weights; while, rule’s action can be regarded as

the node’s output signal. Due to their analogy with NNs, the study of LCSs would introduce alternative

techniques that can be used in NN learning.

Due to the complexity of LCS, Wilson [71] presented an alternative system called ZCS: the zeroth-
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level classifier system. ZCS - a successor of LCS and a predecessor of XCS - inherits much of the

Holland’s original framework but is simplified to increase understandability and performance.

XCS, introduced by Wilson [72], was a form of LCS altered the former way of calculating the rule’s

fitness. In XCS, the rule’s fitness of GA is based on its accuracy of prediction in payoff rather than on

the expected payoff itself. In general, XCS performs better than its predecessor LCS.

The most recent successor of XCS is the novel system introduced by Smith and Jiang [62] called

mutual information learning classifier system (MILCS). MILCS, in contrary to XCS, is directly based

on supervised learning. It uses MI to maximize correlation between outputs and error. Hence, it is

advantageously explicit compared to XCS about accuracy and generalization. Although developed from

XCS, MILCS has also an interesting similarity to the CCNN [62]. In the process of training a focussed

hidden node, the CCNN usually sets the incoming weights of the hidden node to values close to zero

when maximizing the correlation of its output and the network’s residual-error. Moreover, later variations

of CCNN, in contrast to the original prototype, do not necessarily employ a fully connected system. In

fact, in CCNN some of the hidden nodes might be disconnected (or connected by values close to zero)

to the preceding nodes. In this sense, MILCS is comparable to CCNN since the latter can be pruned and

go through a type of structural learning.

2.3 Mutual Information versus Correlation
Correlation tends to find the co-movement of two random variables based on their co-placement above or

under their expected values. Hence, it is quite likely that the calculated correlation turns out to be zero,

while in reality a tense interrelationship exists between the variables. This is stated more mathematically

by Freund and Walpole (p. 452) [19]:

“if two random variables are uncorrelated they are not necessarily independent”

Section 2.3.1 demonstrates the above fact by a numerical example.

Two discrete random variables X and Y , by definition, are independent if for all x and y in their

range (p. 104, 126) [19]:

p(x, y) = p(x)p(y) (2.12)

where in that:

p(x, y) = p(X = x, Y = y) (2.13)

is the joint distribution (probability) function of X and Y , and:p(x) = p(X = x)

p(y) = p(Y = y)

By dividing both sides of Equation 2.12 by p(y), we have:

p(x) =
p(x, y)

p(y)
(2.14)
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However, the right hand side of Equation 2.14 is by definition (p. 54) [19] equal to the conditional

probability of the event X = x given Y = y. Hence:

p(x) = p(x | y) (2.15)

Equation 2.15 indicates that, given that X and Y are independent, the conditional probability of x

given y has nothing to do with y. Since a similar argument holds true for Y , it can be concluded that,

when X and Y are statistically independent, “the occurrence or non-occurrence of either of them does

not affect the probability of the other” (p. 58) [19].

As an absence of correlation (a zero correlation) does not guarantee the independence of the un-

derlying variables.Hence, a superior measurement must be utilized to verify their dependence. Since

statistical dependency is defined based on conditional probability, the new measurement logically needs

to be based on the conditional probability to fully examine the existing dependency.

MI, in contrast to correlation, tends to calculate the interdependence of two variables by using the

conditional probability. In fact, MI vanishes if, and only if, all samples are statistically independent [27].

MI, therefore, has many significant advantages over the conventional correlation. For example, MI is able

to measure the general dependency of variables, while correlation can only measure their existing linear

relations [38][11]. Since it deals with probabilities, MI is applicable on both symbolic and numerical

sequences [38]. This is clearly in contrast to correlation, which is based on simple algebraic operations,

restricting its application only to numerical random events. MI also shows more sensitivity, making it

desirable, especially, when high precision is required. Moreover, since it is defined by a logarithmic

term, MI is convenient for many mathematical manipulations.

Another important attribute of MI is its invariance property under invertible transformations of

random variables [26]. To state this property in mathematical terms, suppose U and V are two invertible

transformations of random variables X and Y :U : x −→ f(x)

V : y −→ g(y)

where x and y are the sample values of X and Y , respectively. The invertible property of MI states that

the MI of X and Y is equal to the MI of U and V :

I(X,Y ) = I(U, V ) (2.16)

The above mentioned property is completely in contrast to the general characteristic of correlation

being not invariant with respect to the transformation of coordinates [27]. If it can be named, the only

disadvantage of MI over conventional correlation is attributed to its sign: MI is always positive3, whereas

correlation can either be positive or negative, defining correlation and anti-correlation [27], respectively.

Hence, when using MI, accompanying techniques are required to generally differentiate between a co-

movement and an anti-co-movement.
3In the continuous case, the MI can also be negative, but when variables are discrete or when the MI is estimated through

discrete variables (like the histogram technique introduced in Section 2.4.2.), it is always positive[35]
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2.3.1 Dependent but Uncorrelated Series

Consider the following two series with equi-probable outcomes (i.e. equal to 25% each):

X = (−1,−1

2
, 0,

1

2
, 1)

Y = X2 = (1,
1

4
, 0,

1

4
, 1)

Then:

E(X) = E(X3) = 0 (2.17)

Using Equation 2.17, it can be shown that the covariance of X and Y is zero:

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X3)− E(X)E(X2) = 0

meaning that the two variables are uncorrelated. However, it is far obvious that the two series are

perfectly related, as one is the squared of the other one. For instance, considering the event A:

A = (X = −1

2
, Y = 1)

we have: 
p(X = − 1

2 , Y = 1) = 2
16 = 1

4

p(X = − 1
2 ) = 4

16 = 1
4

p(Y = 1) = 8
16 = 1

2

However:

p(X = −1

2
)p(Y = 1) =

1

8

indicating that for the event A:

p(x, y) 6= p(x)p(y)

confirming that X and Y are not statistically independent.

2.4 Measuring Entropy and Mutual Information
The MI plays a central role in the functionality of MINES. It is assigned as the fitness function of the

GA individuals (see Section 4.4.2). To this sense, correct measurement of MI is crucially important.

In theory, when probabilities are known, the MI can be measured accurately. However, in general, the

probabilities are not known and have to be estimated from measurements [64].

In Section 2.4.1, the definition of entropy and MI and their mathematical relations for discrete

random variables will be given. In addition, assuming the probabilities are known, the way entropy

and MI are measured are addressed. The formulas and the detailed proofs are essential to explore since

they provide the basis of understanding the mathematical nature of entropy and MI required for their

estimation in continuous case.

Section 2.4.2 deals with the estimation of entropy and MI for continuous random variables. Equa-

tions 2.22, 2.23, 2.29 and 2.30, derived for discrete random variables in Section 2.4.1, are also true in

continuous case. Nevertheless, the proofs have not been provided again since an estimation from the
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Figure 2.3: Relationships of the entropies and MI between two random variablesX and Y

discrete case (i.e. the histogram technique) has been used to measure the entropy and MI for continuous

random variables. The estimation of entropy and MI is often necessary for continuous random variables

as the “explicit knowledge of respective probability distributions” are not usually known [64].

When finite size samples are used, the histogram technique is susceptible to “systematic errors”. For

this reason, Section 2.4.3 provides a very detailed and exact mathematical proof of the errors involved in

the measurement of entropy and MI when dealing with histogram technique. Further information about

calculating the MI of a hidden node in MINES is provided in Section 4.3.1.

It must be noted that the mathematical formulas derived in Sections 2.4.2 and 2.4.3 are, in basic,

based on the consolidation works of Herzel et al. (1994) [28], Herzel and Große (1995) [27], Roulston

(1999) [53] and Steuer et al. (2002) [64]. The formulas have been provided with additional explanations

than the original works, and in some cases have been reordered, to make them easier to understand. Also,

different mathematical symbols may have been used in some cases.

2.4.1 Discrete Case

Suppose the discrete random variable, X , is defined over the sample space SX as:

X : SX −→ RX = {x1, . . . , xMX
}

Define:

I = {1, . . . ,MX}

For i ∈ I , the event X = xi is defined as:

{s ∈ SX | X(s) = xi}

The amount of information gained after observing the event X = xi is defined as follow [26]:

I(xi) = log(1/pi) = − log(pi) (2.18)

where

pi = p(X = xi) = p({s ∈ SX | X(s) = xi}) (2.19)
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is the probability of the occurrence of the event. This is equivalent to the amount of uncertainty we had

before the occurrence of xi. In other words, the lower the probability pi, the more surprise there is in the

happening of xi [26].

The mean value of I(xi), called the entropy of X and denoted by H(X), is the average of infor-

mation conveyed per message xi. In other words, H(X) is a measurement of the uncertainty about X;

or, equivalently, is “a measure of how evenly” the states of X are distributed [9]. The entropy of X is

mathematically defined as:

H(X) = E(I(X)) = −
∑
i∈I

pi log(pi) (2.20)

It must be noted that in Equation 2.20 the sum is over all states that X can assume [53]. If “the

outcome of a measurement” is completely known (i.e. there exists an i so that pi = 1), the entropy of X

becomes zero, whereas it becomes “maximal” if all probabilities are equal [9].

In the discrete case the elements of RX are exactly known; hence, the probability values pi (i ∈ I),

are easy to evaluate and the calculation of entropy is straightforward. Consider Y as another discrete

random variable defined over the sample space SY :

Y : SY −→ RY = {y1, . . . , yMY
}

Define:

J = {1, . . . ,MY }

The joint entropy of X and Y , H(X,Y ), is the total uncertainty about X and Y ; defined as:

H(X,Y ) = −
∑
i∈I

∑
j∈J

pij log(pij) (2.21)

where pij is the joint probability function of X and Y defined on the following sample space:

SX × SY = {(s, s′) | s ∈ SX , s′ ∈ SY }

and:

pij = p(xi, yj) = p(X = xi, Y = yj) = p({(s, s′) ∈ SX × SY | X(s) = xi, Y (s′) = yj})

The entropy and the joint entropy make define the MI possible. The MI between X and Y , denoted

by I(X,Y ), is defined as:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2.22)

It is seen that Equation 2.22 is symmetric with respect to X and Y :

I(X,Y ) = I(Y,X) (2.23)

It should be noted that in Equation 2.23, H(X) and H(Y ) are also defined on SX × SY - the joint

sample space of X and Y . In fact:

pi = pX(xi) = p({(s, s′) ∈ SX × SY | X(s) = xi})

= p(
⋃
j∈J
{(s, s′) ∈ SX × SY | X(s) = xi, Y (s′) = yj})

=
∑
j∈J

pij
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Hence:

H(X) = −
∑
i∈I

pi log(pi) = −
∑
i∈I

∑
j∈J

pij log(pi) (2.24)

Likewise:

pj = pY (yj) = p({(s, s′) ∈ SX × SY | Y (s′) = yj})

= p(
⋃
i∈I
{(s, s′) ∈ SX × SY | X(s) = xi, Y (s′) = yj})

=
∑
i∈I

pij

and:

H(Y ) = −
∑
j∈J

pj log(pj) = −
∑
i∈I

∑
j∈J

pij log(pj) (2.25)

Therefore, by using Equations 2.21, 2.24 and 2.25, an expansion form of Equation 2.22 is obtained:

I(X,Y ) = −
∑
i∈I

∑
j∈J

pij
(
log(pi) + log(pj)− log(pij)

)
= −

∑
i∈I

∑
j∈J

pij log(
pipj
pij

) (2.26)

The definition of conditional entropy provides a better understanding of MI. For a point j ∈ J , the

conditional entropy of X given Y = yj , denoted by H(X | Y = yj), is the amount of uncertainty about

X given Y = yj :

H(X | Y = yj) = −
∑
i∈I

pi|j log(pi|j) (2.27)

where pi|j is the conditional probability function of X and Y defined as:

pi|j = p(xi | yj) = p(X = xi | Y = yj) =
p(X = xi, Y = yj)

p(Y = yj)
=

p(xi, yj)∑
i∈I p(xi, yj)

=
p(xi, yj)

pY (yj)
=
pij
pj

Given the whole sample space of Y , the conditional entropy of X given Y , H(X | Y ), is defined

as the amount of uncertainty about X given that the whole sample space of Y has occurred:

H(X | Y ) = −
∑
j∈J

pY (yj)H(X | Y = yj) = −
∑
j∈J

pj
∑
i∈I

pi|j log(pi|j)

= −
∑
j∈J

∑
i∈I

pjpi|j log(pi|j)

= −
∑
j∈J

∑
i∈I

pij log(pi|j)

Note that:

log(pj)− log(pij) = log(
pj
pij

) = log(pi|j)

Therefore:

H(X)−H(X | Y ) = −(
∑
i∈I

∑
j∈J

pij log(pi)−
∑
i∈I

∑
j∈J

pi|j log(pij))

= −(
∑
i∈I

∑
j∈J

pij log(pi)−
∑
i∈I

∑
j∈J

pi|j log(
pij
pj

)) (2.28)

= −
∑
i∈I

∑
j∈J

pij log(
pipj
pij

)
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From Equations 2.26 and 2.28 the following new formula is obtained:

I(X,Y ) = H(X)−H(X | Y ) (2.29)

Since I(X,Y ) is symmetric, the following equation also holds true:

I(Y,X) = H(Y )−H(Y | X) (2.30)

Equations 2.29 and 2.30 indicate that I(X,Y ) is the amount of information in X discovered by

knowing that Y has occurred; or vice versa: it is the amount of information in Y discovered by knowing

that X has occurred. In other words, MI measures the interdependence of two variables: X and Y .

The relationships embodied in the formulas related to the entropies and MI over the joint distribution

of X and Y are depicted in Figure 2.3.

2.4.2 Continuous Case

The histogram technique, also called the “naive algorithm” [64], is “the most straightforward and widely

used approach” for the estimation of entropy and MI; although, other techniques using kernel density

functions [41][9] can alternatively used. In the histogram technique the calculation of entropy and MI

is based on the binning of data into discrete intervals. The binning of the data makes estimation of the

entropy and MI possible based on the calculations provided for the discrete case.

Suppose X is a continuous random variable defined over a sample space SX with a bounded range

between the two real numbers a and b, inclusive b:

X : SX −→ RX = (a, b] (2.31)

Note that, (a, b] is an interval in the real numbers and, potentially, X can get any real number in

that. Nonetheless, in most applications, the range of X , RX , usually varies over a finite size range. For

instance, when the size of SX is finite, RX would have a finite size too. As a result, we may assume that

RX has a size equal to N :

RX = {x1, . . . , xN}

It is worth noting that, in contrary to the discrete case, the values of x1, . . . , xN are not known in

advance. This is due to the continuous random variable X which is likely to get any real numbers in the

interval [a, b]. As a result, it is impossible to calculate the entropy of a continuous random variable in

the same manner to the discrete case. However, having known that the range of X is bounded, it can

be divided into deliberate number of bins (intervals), each, having a specific length. Suppose (a, b] is

divided into Mx bins labelled in the following fashion:

1 = (a = r0, r1], . . . ,MX = (rMX−1
, rMX

= b] (2.32)

In general, for each i ∈ I = {1, . . . ,MX} an interval is defined as follow:

Mi = (ri−1, ri]
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Suppose ni is the number of elements inRX mapped byX into the interval i. More mathematically:

ni = |Θi|

where

Θi = |{xk ∈ RX | ri−1 < xk 6 ri}| (2.33)

Hence:

RX =

MX⋃
i=1

Θi

Note that, since the bins have no intersection, for all distinct indices h and l in I:

Θh ∩Θl = ∅

Therefore, each xk ∈ RX can only belong to a single Θi. The probability that X gets the value

xk, pk = p(X = xk), can be estimated by the amount of concentration of the points (outcomes of X)

around xk. The more points are around xk, the more likely is for X to get the value xk in the range. If

xk ∈ Θi, then the interval i = (ri−1, ri] can be chosen as the area around which the concentration of the

points are measured. Subsequently, the number of points, ni, falling in the interval i, gives an estimation

of the concentration of points around xk. In fact, the bigger is ni, the more probable is that the event

X = xk occurs. So, we may define:

qi =
ni
N

(2.34)

It must be considered that, qi is zero if and only if for each r ∈Mi the vent X = r is empty; more

mathematically:

qi = 0 ⇐⇒ ∀r (ri−1 < r 6 ri) : {s ∈ SX | X(s) = r} = ∅

In fact, qi, is the probability that the random variable X maps an event into the interval (ri−1, ri].

Therefore, qi can be used as a reasonable and a practically computational estimator of pk, being usually

an unknown probability. In other words:p(X = xk) = pk ≈ qi

xk ∈ Θi

(2.35)

Therefore, an estimation of entropy in the continuous case [53] is given as:

Hest(X) = −
∑
i∈I

qi ln(qi); I = {1, . . . ,MX} (2.36)

Consider Y to be another continuous random variable with a finite size range:

RY = {y1, . . . , yN}

Then, with a similar argument for the joint probability function of X and Y , it can be shown that:
p(X = xk, Y = yk′) ≈ pij ≈ qijxk ∈ Θi

yk′ ∈ Θj

(2.37)
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where:

qij =
nij
N

=
|Θij |
N

(2.38)

and:

Θij = Θi ∩Θj

Therefore, the estimated joint entropy of X and Y is given as:
Hest(X,Y ) = −

∑
i∈I
∑
j∈J qij ln(qij)I = 1, . . . ,MX

J = 1, . . . ,MY

(2.39)

2.4.3 Histogram Accuracy

Equation 2.34, derived earlier, gives an estimation of the probability p(X = xk) = pk. Note that, to

derive the formula it was assumed that xk ∈ Θi. However, prior to binning the interval (a, b], it is not

obvious which elements of RX falls in Θi. So, suppose pi is the probability that xk falls in the interval

i. Then, ni would be a binomial random variable with size N and the probability pi; i.e. for each

k ∈ {1, . . . , N} the chance of success that xk falls in the interval i is pi, and 1− pi otherwise. As noted

earlier, ni counts the number of elements falling in the interval i for any subset of RX . Therefore:

P (ni = k) = p({Θi | |Θi| = k}) =

(
N

k

)
(pi)

k
(1− pi)n−k (2.40)

Since i ∈ {1, . . . ,MX}, there exist MX of ni binomial distributions. From the properties of the

binomial distributions for expected value and variance we have:

E(ni) = Npi (2.41)

V ar(ni) = Npi(1− pi) (2.42)

Since var(ni) = E(ni
2)− (E(ni))

2, it follows that:

E(ni
2) = Npi(1− pi)−N2pi

2 (2.43)

Suppose εi is the ratio of the error over pi 6= 0, i.e.:

εi =
qi − pi
pi

=
ni
Npi

− 1 (2.44)

Then, ln(qi) can be expanded to the second order by the Taylor series around the true point pi 6= 0:

ln(qi) ≈ ln(pi) +
1

pi
(qi − pi)−

1

2pi2
(qi − pi)2

= ln(pi) + εi −
1

2
εi

2 (2.45)

Hence, by obtaining qi from 2.44 and substituting ln(qi) from 2.45:

Hest(X) =
∑
i∈Ic

qi ln(qi) ≈ −
∑
i∈Ic

(1 + εi)pi(ln(pi) + εi −
1

2
εi

2)

= −
∑
i∈Ic

[pi ln(pi) + piεi(1 + ln(pi)) +
1

2
piεi

2 − 1

2
piεi

3] (2.46)
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where

Ic = {i ∈ I | pi 6= 0}

The true entropy of the system, which is a part of Equation 2.46 is shown as:

H∞(X) = −
∑
i∈Ic

pi ln(pi) (2.47)

It is worth noting that, changing the size or length of the bins results the true entropy to change.

Therefore the value of H∞ depends on how RX is binned. H∞ is called the true entropy since it was

assumed that for the performed bins the probability that xk belongs to Θi (k = 1, . . . , N ) is exactly

known and is equal to pi. Therefore:

Hest(X) ≈ H∞(X)−
∑
i∈Ic

[piεi(1 + ln(pi)) +
1

2
piεi

2 − 1

2
piεi

3] (2.48)

Note that in the above equation pi is a value and not a random variable; only εi is a random variable,

changing based on the binning procedure, which in turn is a transformation of the binomial random

variable ni. Therefore, everything except ni can come out of the expected value:

E(Hest(X)) = E(H∞(X))−
∑
i∈Ic

[pi(1 + ln(pi))E(εi) +
1

2
piE(εi

2)− 1

2
piE(εi

3) (2.49)

Using Equations 2.41, 2.43 and 2.44, the expected value of εi is calculated as:

E(εi) = E(
qi − pi
pi

) = E(
qi
pi
− 1) =

1

pi
E(qi)− 1 =

1

pi
E(

ni
N

)− 1 =
1

Npi
E(ni)− 1

=
1

Npi
Npi − 1 = 0 (2.50)

Likewise, the expected value of εi2 is obtained as:

E(εi
2) = E

(
(
qi
pi
− 1)

2)
=

1

p2
i

E(q2
i )− 2

pi
E(qi) + 1 =

1

p2
iN

2
E(n2

i )−
2

piN
E(ni) + 1

=
1− pi
piN

+ 1− 2 + 1

=
1− pi
piN

(2.51)

If MX is small then for each pi, the probability that points fall in the interval i, is high. If, addi-

tionally, N is large then, based on Equation 2.44, εi is small. Therefore, we may discard the small term

E(ε3
i ) and substitute the values of E(εi) and E(εi

2), respectively, from Equations 2.50 and 2.51 into

Equation 2.49 to obtain:

E(Hest(X)) ≈ H∞(X)−
∑
i∈Ic

1− pi
2N

= H∞(X)−
∑
i∈Ic 1−

∑
i∈Ic pi

2N
(2.52)

= H∞(X)− M c
X − 1

2N

where in that

M c
X = |Ic| = |{i ∈ I | pi 6= 0}|
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It is worth noting that, in the derivation of Equation 2.52, the distribution of the random variable X

has not been used. Therefore, when using the histogram based approach, the error in estimating entropy,

to the second order, is independent of the actual distribution of the observed random variable [28].

Equation 2.52 indicates that when N is sufficiently larger than M c
X , the average of the estimated

entropies is deliberately close to the actual entropy.

Similar to the procedure applied to measure the entropy, the MI of two continuous random variables

can be estimated using the histogram technique. Suppose X and Y are two continues random variables.

According to Equation 2.20 the estimated MI of the two random variables is given as:

Iest(X,Y ) = Hest(X) +Hest(Y )−Hest(X,Y ) (2.53)

Therefore:

E
(
Iest(X,Y )

)
= E

(
Hest(X)

)
+ E

(
Hest(Y )

)
− E

(
Hest(X,Y )

)
(2.54)

While estimating the MI, the average error can be derived from Equation 2.54 using Equation 2.52:

E
(
Iest(X,Y )

)
= H∞(X)− M c

X − 1

2N
+H∞(Y )− M c

Y − 1

2N
−H∞(X,Y ) +

M c
XY − 1

2N

where: 
M c
X = |Ic| =

∣∣{i ∈ I | pi 6= 0}
∣∣

M c
Y = |Jc| =

∣∣{j ∈ J | pj 6= 0}
∣∣

M c
XY =

∣∣{i ∈ I; j ∈ J | pij 6= 0}
∣∣

(2.55)

Hence:

E
(
Iest(X,Y )

)
= I∞(X,Y ) +

M c
XY −M c

X −M c
Y + 1

2N
(2.56)

In the special case that:

M c
X = M c

Y = M

then

M c
XY = M ×M = M2

Hence:

E
(
Iest(X,Y )

)
= I∞(X,Y ) +

(M − 1)
2

2N
(2.57)

Equation 2.57 shows that, assuming M to be fixed, when N → ∞ the estimated MI, on average,

deliberately approximates the true MI.

2.5 Basics of MINES
This section explains the fundamental motivations of MINES and the integrating components imple-

mented in the final system. In Section 2.5.1 some of the most important motivators of MINES are

introduced. Section 2.5.2 deals with the rationales and logics of the incorporation of the sub-systems

combined in MINES.
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2.5.1 MINES Motivators

The MI between a hidden node’s output and the residual error introduced in MINES is in effect a measure

of the error prediction by the network’s components (i.e. the hidden nodes). Since MI is based on the

conditional probability, it becomes clear that why a high MI detected by a hidden node acts as an error

predictor. Prior to MINES, MILSC has adopted a similar technique of aligning rules and respective

errors by adopting MI as a stronger “second order statistic” than correlation [59]. MILCS is, in fact,

the most important motivator of the implementation of MINES. MINES and MILCS have a sensible

analogy. They both share the idea of using information theory between an evolving structure and the

residual error; both techniques are based on specializing a new component (hidden nodes in MINES and

rules in MILCS) to detect the system’s error as much as possible by increasing the respective MIs. They

both use GA to find the fittest member of the population. Supervised learning in both systems makes

training possible.

MILCS, itself, has inspired from XCS and CCNN. XCS proposes a new technique central to fo-

cussing on the prediction of the error rather than the error itself. The use of MI as an error detector in

MILCS makes the system work based on the prediction of the error. CCNN, on the other hand, proposes

the idea of aligning a hidden node’s output with the network’s residual error using the Pearson’s corre-

lation. In a similar concept, MILCS aligns a new rule to the residual error, but with the aid of MI rather

than Pearson’s correlation.

MINES also takes the idea of aligning a new hidden node with the residual error from CCNN. How-

ever, there are key differences between the two system. First, CCNN focuses on a single hidden node at

a time added to a new hidden layer creating a cascaded network; while MINES works on the configura-

tion of several hidden nodes simultaneously. Second, CCNN is based on Pearson correlation, which is

usually feeble in capturing the co-movements of two random variables. In a different manner, MINES

is central to MI, which is a stronger measurement of the interrelationships of two random variables (see

Section 2.3). Third, in CCNN, the calculation of covariance in Equation 2.11 is to some extent biased.

This is because, for each i, the term Ei already exists in Ē; this will influence some self-correlation in

the system4. Adversely, the methodology in MINES does not deal with any self-correlation since only

the MI between the output of a hidden node and the respective residual error is considered.

Regardless of the above mentioned dissimilarities, MINES and CCNN follow different attitudes

to eliminate the existing error of the system. CCNN aggressively reduce the network’s error [74] by

exploiting the addition of hidden-layer-nodes in a greedy fashion. On the contrary, the hidden nodes in

MINES are designed so that they collectively reduce the error in each stage. This is because, MINES is

focused on the creation of one hidden layer at a time, but configuring several hidden nodes.

It is additionally worth noting that, the concentration of the CCNN on a newly incorporated hidden

node is expected to cause system to have a tendency to overfitting [8]. In addition, the several cas-

caded hidden layers, which are usually fully connected, makes CCNN complex in structure, resulting

4It is worth considering that, Equation 2.11 tries to reduce the self correlation by subtracting Ei from the average error.

However, this does not seem to entirely work as still the term Ei would exist in the formula.
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in long propagation delays [48]. In contrast, MINES uses pruning techniques to restrict dealing with a

necessarily fully connected network.

2.5.2 MINES Constituents

As mentioned in Section 1.4, MINES is a combination of a FFNN, GA, BP, MI and clustering. The main

objective of the combined components is to construct an optimal hidden layer. Since the performance of

a hidden node depends on its connectivity pattern and synaptic weights, structural and parameter learning

must be carried out in parallel. For this purpose, GA in MINES designs the structure, while BP trains

the synaptic weights. MI, on the other hand, conducts and links the two practice. As upcoming literature

shows, the idea of adopting the two practice concurrently has been exploited in various systems and in

different fashions. However, the notable difference is that the MI in MINES indirectly associates GA to

BP through the fitness of GA individuals: a high MI indicates that the respective hidden node provides

more information from the error space due to a collectively strong connectivity pattern and synaptic

weights.

Section 2.5.1 addressed some of the reasons of employing MI in MINES over other statistics (like

Pearson’s correlation). However, further explanations against the advantage of using MI is explicitly

provided in Section 2.3.

The subject of using a three layer FFNN in MINES has already justified in Chapter 1 and Section

2.2.2.1 with reference to the “universal approximation theorem”.

With respect to the rationale of exploiting GA for the structural learning in MINES, literature

(see Section 3.2) suggests that GA is a widely used and standard tool coping well with combinatorial

search problems; alongside an admiring ability in working simultaneously on different types of variables.

Hence, it is a powerful candidate to integrate into a NN with the intention of appropriately configuring

hidden nodes and connectivity patterns. It is additionally worth considering that, for continuous random

variables, the calculation of MI may never happen to be exact. Nevertheless, the estimated error is less

volatile when an appropriate histogram approximation is used over long run (see Section 2.4.3). In this

sense, the GA is even more advantageous to be used as it copes usually well with noisy systems [15];

suggesting that, a few plausible miscalculations of MIs do not usually result in a lethal fail of the entire

learning procedure.

Concerning the motives of utilizing BP for the parameter learning in MINES, literature stresses that

the ability of GA in structural learning does not necessarily confirms a robust capability in parameter

learning. Therefore, BP, as a computationally efficient technique for computing the gradients of the cost

function, expressed based on the existing synaptic weights [26], is best to be used alongside GA.

Respecting the clustering of the hidden nodes in MINES, Section 4.5.1 prepares solid mathematical

arguments indicating the rationale of using the existing angle between hidden nodes as a similarity

measurement. Clustering in MINES aims to result a lighter NN by eliminating unnecessary hidden

nodes.
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2.6 Summary
In this background chapter, the most fundamental aspects of NN training were covered. The parameter

and structural learning were addressed as the two main divisions of NN training. It was expressed that

the two practice have a strong interactional effects on each other.

Within the parameter learning, BP algorithm is the most important and widely used technique. The

BP formula was mathematically presented in detail (the derived formula is used in Section 4.2 when

implementing a FFNN).

Structural learning as another important practice of NN training was subsequently covered. Some

of the most important and common techniques (node-redundancy; pruning; weight-sharing and CCNN)

were explained in this relation. Meanwhile, it was intended to explicate the fundamental reasons which

make the structural learning to have a vital role on the performance of a NN.

Evolutionary algorithms and LCSs are addressed as alternative techniques which can be used in

structural learning. The reader needs to refer to Chapter 3 for an overview of the selected applications of

these techniques within NNs.

MI, a competitor of the Pearson’s correlation, has been introduced subsequently. It has been ex-

plained and demonstrated by an example that correlation is only a good measurement of linear depen-

dencies, whereas MI could capture any linear or nonlinear co-movement with the aid of conditional

probability5.

An important feature of MI is reflected in Equation 2.16 introducing the invariant property of MI

with respect to the change of coordinates. This feature has been used in calculation of MI in MINES

(explained in detail in Section 4.3.1), when obtaining the fitness value of GA individuals by linearly

transforming the underlying data to a fixed interval.

The definition of the entropy and MI, and their mathematical relations, were derived for discrete

random variables. Based on the discrete case, the histogram technique was introduced for the approxi-

mation of entropy and MI in continuous case. For finite size data, the approximation is never exact. To

this sense, Equation 2.57 indicates that the smaller the number of bins in comparison to the size of the

data set, the better the approximation over long run of measurements.

Finally, MILCS, XCS and CCNN were introduced as the most direct motivators of MINES. The

rationale of incorporating the systems implementing MINES (i.e. FFNN, GA, BP, MI and the clustering

system) were discussed afterwards.

5A classical example of the application of Pearson’s correlation in NN structural learning is CCNN (see Section 2.2.2.4). In

contrast to CCNN, MINES introduces a novel system of applying MI in structural learning.



Chapter 3

Literature Review

In this chapter literature which is conceptually related to MINES is covered extensively. The following

works are sectioned into four categories and are surveyed in detail in each section. The underlying

classification is just to clarify the primarily reasons that a particular literature has been taken into account;

otherwise, there are a lot of intersections between the categories. The drawbacks and limitations of each

work have been assessed and addressed in the context of each part.

The surveyed literature is categorised into the following groups accordingly:

1. literature applying information based systems in the field of NNs ([77][57][82])

2. literature dealing with the sole application of GA within NNs for both parameter and structural

learning ([42][43][63])

3. literature emphasizing the hybridization of GA and BP ([3][23][1])

4. literature surveying structural learning by emphasizing pruning, weight-sharing and Neurogenesis

([5][56][4])

3.1 Information Based Systems
As stated in Section 1.1, MINES is a FFNN combined with BP, GA and clustering to exploit MI as an

error detector. In this respect, MI has a central role. In this section, related literature ([77][57][82]) has

been provided to partly survey the application of MI and, in general, the information theory within NNs.

The literature mainly aims to demonstrate the nature of applying information theory to NN training.

It also present the capability of MI in measuring the interrelationship of two random variables. As an

alternative tool, the work presented by Fogel [17], representing an information criterion (AIC) to select

the optimal NN, is also explored. The demonstrated mathematical foundation of his work, suffering from

considerable inherent limitations, reveals the capabilities of MINES using information theory.

3.1.1 MILCS

MILCS [62] presents a novel approach to ”design representations and operators for the LCS”. It is

inspired by CCNN while utilizing MI as fitness feedback. Unlike most traditional LCSs, originating

from reinforcement learning, MILCS is specifically designed for supervised learning. In a conventional
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Figure 3.1: Work Cycle of MILCS [62]

LCS, each classifier has a condition and a respective action which is fired once the condition is matched.

In the process of developing a new node in the conventional CCNN, only the magnitude, and not the

sign, of the correlation with the error is used. Hence, in the presence of a positive correlation with the

error, a negative weight is formed to that node; and vice versa. As MI is known to be non-negative, rules,

like nodes, also need to have a positive and a negative output. Therefore, in MILCS two actions are

given to each rule to conform to the CCNN analogy: one for when the rule matches, and one for when

the rule does not match. Both are updated via simple supervised learning. Similarly, there also exist two

predictions for each corresponding action.

In MILCS, features like rule representations, population sets, matching algorithm, conflict resolu-

tion on action selection, subsumption and GA operators, have a similar resemblance of XCS. Each rule
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is formed by a condition string and an action string. The condition string is formed by alphabet 0, 1, #.

The ”#” symbol indicates ”dont know” so it could be either 0 or 1. The action string is the associated

class.

The MILCS learning process (see Figure 3.1) starts by initializing the population [P]. A classifier

will be then removed from [p] to form [Ṕ]. The condition of each rule in [Ṕ] is then compared with the

detector string. If the bit at every non-# position of a rule matches the corresponding bit of the detector

string, it is placed in match set [Ḿ]. Otherwise, it is placed in not match set [˜Ḿ]. For each action in

[Ḿ] and [˜Ḿ] a prediction is formed to calculate the system’s output. Since each MILCS rule has two

actions, two predictions exist for the matched action and also two for the not matched action. In a

different approach from XCS, using a fitness-weighted average of the predictions of classifiers, MILCS

simply selects the highest prediction of the classifiers. The maximum-reward-prediction action is always

selected in MILCS. MILCS adopts a non-panmictic GA to update rules in [A]. Moreover, inspired from

CCNN, each rule is temporarily removed from the system before being updated; the rule will be then

back again in to the system.

3.1.2 Yao and Liu (2004)

The research performed by Yao and Liu [77] utilizes the MI for communicating between NNs forming an

ensemble. The study indicates that MI can be effectively used to eliminate those members of ensemble

having similar functionality. In this concept, the research shares the same outlook as MINES: MI can be

used to measure the similarities of two random variables. In MINES the random variables are the hidden

nodes and the residual errors; whereas, here, the NNs of the ensemble, themselves, considered as the

random variables.

In the system presented by Yao and Liu, a set of NNs is trained (instead of using a single one) to

subdivide a given task and solve it in a more efficient way. However, the system is designed so that the

elements of the ensemble (i.e. NNs) with low pair-wise MIs become dominated in the population. The

MI is measured between the final output of the ensemble and the outputs of each individual NN. A GA is

set to evolve the ensemble based on the negative correlation learning between individual NNs. The GA

fitness is defined as the pair-wise MI of NNs. The fitness needs to be minimized to achieve a negatively

correlated population. Negative correlation learning makes partial learning of training data possible for

each NN. The standard BP algorithm [54] has been used for weight adjustments in sequential mode.

3.1.3 Error Entropy Minimization

An alternative application of information theory, with regard to NN learning, is the error entropy mini-

mization (EEM) algorithm [57]. EEM concentrates on the minimization of the error between the output

of a NN and the desired targets. A BP formula was derived from the Renyi’s Quadratic Entropy for

weight updating. The work, however, does not cover any structural learning technique. In addition, the

presented formula is computationally complex - due to the existence of a term with an order of N2,

where N is the dimension of the input space. The quadratic term imposes limitations on the number of

samples in order to obtain results in a reasonable time.
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3.1.4 Zhang and Hu (2005)

The application of information theory in connecting input and output spaces is a standard technique

explained explicitly by Haykin (2009) [26]. Nevertheless, to further emphasize the importance of using

MI as a strong tool to measure correlation, the work performed by Zhang and Hu (2005) [82] is of

interest. It is worth noting that the work does not deal with structural learning in any sense. The research

examines the application of a NN for feature selection using a GA combined with MI. The MI between

input data and output of the network is used as a criterion for the mutation of the GA. The tolerance

distance between the two standard deviations is divided in three. Each gene in the GA is represented in

a binary chromosome so that its bit value is determined by the location where the MI of its associated

input-output-pair lies in any of those three categories. The motivation behind this is to include patterns

highly correlated to outputs into the input feature subset, and vice versa. After selecting an optimal

input subset, the network having a fixed architecture is trained by BP using pre-set parameters (such

as learning rate and momentum constant). It was claimed that the proposed method could reduce the

dimensionality of inputs accompanied by speeding up NN training and achieving better performance.

3.1.5 Akaike Information Criterion Neural Network

Fogel (1991) [17] adopted Akaike information criterion (AIC) to find a maximum likelihood for the

selection of an optimal NN, named AICNN1. AIC is a statistical measure of the goodness of fit defining

the likelihood of two density functions. The research has been presented to draw a distinction between

the applications of information theory within NNs and those implementing only statistical models.

The following quantity:

I
(
g(x), f(x)

)
=

∫
g(x) ln

( g(x)

f(x)

)
dx (3.1)

is described as “the mean information for discrimination between g(x) and f(x)”. The smaller the value

of I
(
g(x), f(x)

)
, the more resemble is f(x) to g(x). Therefore, minimizing I

(
g(x), f(x)

)
, with respect

to f(x), leads to a good approximation for g(x). To this respect, the following equation is defined:

S
(
g(x), f(x)

)
=

∫
g(x) ln

(
f(x)

)
dx (3.2)

which makes rewrite Equation 3.1 to:

I
(
g(x), f(x)

)
= S

(
g(x), g(x)

)
− S

(
g(x), f(x)

)
(3.3)

Equation 3.3 indicates that in order to find an f(x), which finely approximates g(x) it is sufficient

to maximize S
(
g(x), f(x)

)
. Maximization of S

(
g(x), f(x)

)
leads to minimization of I

(
g(x), f(x)

)
.

The best approximation happens when I
(
g(x), f(x)

)
= 0, or equivalently when g(x) = f(x).

In order to estimate S
(
g(x), f(x)

)
it is required to define the mean-log-likelihood. Suppose g(x) is

the true density function of a random variable x; and f(xi | θ) is the parametric density function of the

random variable xi, which xi is the ith observation of random variable x. Suppose n observation of the

1This name has not been given to the proposed system by the author himself, but the AIC acronym has been used alone.
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random variable x is available; then the mean-log-likelihood is defined as:

1/n

n∑
i=n

ln
(
f(xi | θ)) (3.4)

When n → ∞, the mean-log-likelihood tends to S
(
g(x), f(x)

)
. Hence, the mean-log-likelihood ap-

proximates S
(
g(x), f(x | θ)

)
. Therefore, to best approximate g(x), it is sufficient to maximize the

mean-log-likelihood. The maximum likelihood estimation, MLEθ̂, is the sample statistic that maxi-

mizes the mean-log-likelihood. To also include the number of free parameters, the AIC is defined as:

AICθ̂ = −2 ln(MLEθ̂) + 2p (3.5)

where p is the number of independently adjusted parameters to obtain θ̂. Minimization of AICθ̂ acts as

a criteria to select the best model that approximated g(x).

To apply the AIC to select the best NN, a three layer FFNN equipped with logistic activation func-

tion having one final binary ({0, 1}) output was used. The induced local field of the final output node

of the NN was considered as the value of a random variable from the input patterns to {0, 1}. This

made possible derive a maximum likelihood criterion based on the mean and variance of the associated

random variable of the single final output node. Then, a GA was used to evolve the weights and bias of

each corresponding NN. Each member of the population represents a vector of weights and bias trans-

lating to a three layer FFNN with the sum of squared error of the network being assigned as the fitness

value that should be minimized. In other words, the parameter learning is obtained by GA in a way that

each chromosome represents a NN containing its weights and bias values as the genes. When the final

evolved network is achieved, the AIC is compared to another NN having a different number of hidden

nodes that has gone through the same procedure (for instance, a NN with 10 hidden nodes versus another

one having 8). The decision on the optimal NN is then made based on the NN having the smaller value

of AICθ̂.

Although the Fogel’s presented work is based on a justifiable mathematical background, it is re-

stricted by some considerable limitations. For instance, the structural learning is limited to the number

of hidden nodes. In fact, the structural learning is obtained indirectly by adopting AICθ̂ as the main cri-

terion to choose the NN which best approximates the optimal one. Moreover, the Gaussian assumption

of the induced local fields of the final output node is essential to derive the required statistics. Hence,

as Fogel himself asserts in conclusion, the assumption may not hold for small size networks. It is fur-

ther emphasized by the author that there exist some computational difficulties in calculating the final

statistical formula, and the technique is only limited to binary classification applications.

3.2 Neuro-Evolutionary Systems
The ultimate goal of aligning the output of a new hidden node with the residual error is to define a desired

structure for the NN at hand. As mentioned earlier (see Section 2.5.2), GA is a proper candidate to be

used for NN structuring. Therofre, works focusing on the application of GA in NN learning have been

provided. The first literature ([49]) is only focused on the adaptation of GA in CCNN with the intention

of training the synaptic weights, while the rest ([42][43][63]) use GA for both structural and parameter
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learnings in NNs. The literature aims to justify the utilization of GA in MINES with the purpose of

searching the hypothesis space being mainly the connectivity patterns, while at a same time indicating

the possibility of adopting GA as a system adjusting synaptic weights.

3.2.1 Genetic Cascade Correlation Neural Network

An interesting application of GA to parameter learning problem within the CCNN is the genetic cascade

correlation neural network (GCCNN) presented by Potter [49]. The GA in this program was, effectively,

substituted for the BP algorithm, which was responsible for training the non-frozen synaptic weights.

Therefore, the research does not present a new approach to the structural learning algorithm within

the conventional CCNN. In this aspect, the literature is totally incomparable to MINES, which utilizes

GA primarily for the structural learning. The work, however, is beneficial to explore since, unlike the

conventional CCNN, it additionally focuses on the outgoing weights of the hidden nodes. In this concept,

the system can be exploited in future extension of MINES by adopting an extra GA to select suitable

weights and connections for the outgoing synapses of the hidden nodes (see Section 7.2). Moreover, the

research applies the two-spiral problem as the benchmark of evaluating the performance of the system;

which similarly has been used in MINES.

GCCNN represents the adaptation of two GA at a same time to train the incorporated synaptic

weights: one for the incoming and another for the outgoing weights. It was motivated from the advantage

of using a GA over the Quick BP to lower the possibility of a suboptimal local minimum convergence.

In addition, GA is able to support applications in which gradient information is not available. In other

words, the constraint of differentiability of nodes’ functions in BP is not the case for GAs.

In Potter’s system, two populations were used. Each individual in the first population represents

all incoming weights of a hidden node; i.e. synaptic weights of all input nodes, including bias, and all

previously fitted hidden nodes. Individuals in the second population represent the outgoing weights of

the output nodes. The fitness used for the first population is the correlation of the output of the hidden

nodes with the network’s MSE. Individuals in the second population use the MSE of the network as

their fitness value. Synaptic weights in both populations are initialized randomly between −1 and 1.

However, in each generation the output connections of the hidden nodes are heuristically updated in the

range of (0,−C); where C is the covariance of the hidden node and error. The negative sign is used in

order to quickly reduce the error in case the hidden node is positively or negatively correlated with the

error produced from another hidden node. “Similarly, if the correlation is negative a positive connection

weight will best reduce the error”. When applied to the two-spiral problem algorithm, GCCNN was

claimed to require fewer number of training epochs compared to the original CCNN using BP algorithm;

though CCNN was able to solve the problem with fewer hidden nodes.

3.2.2 Symbiotic Adaptive Neuro-Evolution

A classic system which simultaneously applies GA on structural and parameter learning is “symbiotic,

adaptive neuro-evolution” (SANE), introduced by Moriarty & Miikkulainen [42]. However, SANE only

partly addresses structural learning in a fashion that it is restricted to the connections and combinations

of a fixed number of hidden nodes: the total number of hidden nodes participating in the NN and the
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total number of connections made to the input and output layers are all predetermined and fixed during

the evolution.

SANE is comprised of a three layer FFNN with each hidden node representing a phenotype encoded

in a genome. The goal is to evolve hidden nodes to eventually form a complete NN. This was a different

system from most of the NE systems where each phenotype represents a complete NN evolving indepen-

dently; the population eventually converges towards the fittest network. An advantage of the new system

is to deal with a diverse population; none of the single hidden nodes can perform individually well and

overcome the others. Each genome of a hidden node is a bitwise chromosome consisting of two parts:

the first part allocates the connections; the second part assigns weights to the connections. Connections

are between hidden nodes and the nodes in the input and output layers. When the connection-gene has a

value less than 127, then the connection is made between that hidden node and an input-node. The asso-

ciated input-node is the one having a label equal to the value of the connection-gene mode total number

of input-nodes. In other hand, if the value of the connection-gene is greater than 127, the connection is

made between the hidden node and an output-node having a label equal to the mode of the gene’s value

and total number of output-nodes. It is worth noting that although the state of the hidden-nodes’ connec-

tions change, the total number of connections made to the input and output layers are predetermined and

fixed for all hidden nodes during the evolutionary process. The total number of connections, therefore,

must be determined before running the system. It is additionally worth mentioning that the total number

of hidden nodes participating in the NN is also initially determined and fixed during the evolution.

SANE algorithm starts with a random population of individuals each representing a hidden node.

A set of individuals, forming the hidden layer, is randomly selected from the population. The size

of the selected set is equal to the predetermined number of network’s hidden nodes. The network’s

performance is then evaluated (the network’s fitness) and the evaluation is added to the fitness of all

hidden nodes participating in the network. By repeating the process, each individual will participate in a

network having a different topology and weights. When each hidden node has participated in sufficient

number of networks, the process stops. In that stage, each individual’s fitness is equal to the sum of

all networks’ fitness (evaluation score) that the hidden node has participated in. A new fitness (average

fitness) is then substituted to the former by dividing the former by the total number of networks which

the associated hidden node has contributed to. A high average fitness indicates that the related hidden

node has cooperated well in association with other individuals in the population. A one point cross-over

takes place to create two offspring by selecting two parents for mating based directly on their fitness

(selection by rank).

SANE was applied to the pole-balancing problem which intends to balance a pole centred on a chart

by moving it the left or right. A FFNN consisting of 5 input nodes including bias, 8 hidden nodes and

2 output nodes was evolved by SANE to solve the underlying task. Each hidden node was set to have

a total of 5 connections to the input and output layer. One of the output-nodes is assigned to move the

chart to the right while the other to the left. The unit with the greatest magnitude determines which action

(right or left) must be chosen. This method differs from similar systems where the action of an output
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is interpreted as a probability of performing the action [69]. The reason for using an absolute two-way

decision system is due to the SANE’s strength in sampling lots of points in the problem space discarding

uncertainty in making a decision.

As noted earlier, SANE does not use BP, but weights are directly changed by the GA. The avoid-

ance of using BP, together with the weakness of partial structural learning, makes SANE inappropriate

for problems requiring exact solutions [43]. The rather complicated technique used in SANE (and in

its successor: the Hierarchical SANE) signifies the robustness technique used in MINES centred on

applying information theory for structural learning.

3.2.3 Hierarchical Symbiotic Adaptive Neuro-Evolution

Hierarchical SANE - a successor of SANE - emphasises on the importance of the concurrent evolution

of the hidden nodes within the associated network architecture. In SANE the fitness of each hidden node

is accumulated by participating in different NNs. The technique results in a weak evolution of hidden

nodes, not optimally forming the final NN. To compensate this weakness, Hierarchical SANE deals with

two GA at the same time: one for evolving the hidden nodes and the other for converging to an optimal

NN. The aim was to improve the deficient structural learning of original SANE by aiding hidden nodes

to contribute to each other. Yet, it still suffers from a fixed topology in the number of hidden nodes

during the evolutionary process.

Moriarty and Miikkulainen (1998) [43] introduced the “hierarchical evolution of NNs” by address-

ing the difference between two types of NE, where in one each individual represents a complete NN

while in the other just a single node. They pointed out that evolving individual nodes lead to a more

efficient generic search resulting to a more diverse population and “faster exploration” of the search

space. However, SANE is unable to find a finely tuned NN which makes it inappropriate for applications

requiring precise solutions. Instead, it is mainly suitable for problems that can be addressed by lots of

solutions. In contrast, evolving a population of NNs might happen slowly and also converge prematurely.

Yet, when an area of a good solution is found the final result is usually a desirable NN.

The hierarchical methodology of NE integrates the two types of evolution in a single construction: a

network evolutionary system is incorporated on top of the original SANE algorithm. The new technique

is named Hierarchical SANE because the networks’ evolution comes after the original evolution of the

hidden nodes. Hierarchical SANE, thus, deals with two separate sets of populations: the population of

hidden nodes, and the population of NNs.

In the original SANE algorithm a predefined number of hidden nodes are chosen randomly to incor-

porate into a network. The first drawback of this method is the chance of losing a good hidden node due

to an inefficient combination of nodes selected by GA. The second problem lies in the inconsistency of

the networks’ structure, since, in each generation, a variety of different hidden nodes are selected. Even

though, this inconsistency is advantageous in early stages of evolution, it turns to be problematic when

global optima need to be found at later stages.

Hierarchical SANE improves the problems of random selection of hidden nodes by specifying those

collaborating with each other. For this purpose, each individual in the population of NNs is assigned a
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chromosome of genes addressing the chromosome of a hidden node. Therefore, the number of genes on

the chromosome of a NN is equal to the number of connections of the hidden nodes. More precisely,

in Hierarchical SANE, the random selection of hidden nodes happening in original SANE has been

substituted with a deliberate selection according to the pointers of the networks’ chromosomes. Thus,

each individual in the population of NNs is pointing to a number of hidden nodes being a fixed predefined

number for all networks. During the evolution, the population of the NNs converges to an optimal

individual which specifies which hidden nodes are the best to cooperate. The fitness of each individual

is the evaluated performance of the associated NN. Since instead of bits the chromosomes are made up

of address pointers, crossover only occurs between the pointers by swapping the parents’ pointers.

SANE and Hierarchical SANE are, in a sense, similar to MINES as in them each GA individual

represents a single hidden node. However, in both systems the total number of hidden nodes and the

total number of hidden nodes’ synapses (both incomings and outgoings) are fixed and must be defined

by the user in advance. The evolution of the system is in effect restricted to the state of the hidden nodes’

connections. In MINES, on the other hand, the total number of hidden nodes and incoming synapses

and also the state of the incoming connections are all subject to change being automatically found by the

system. Another noticeable contrast is the fitness of the individuals which in MINES is the MI between

the hidden nodes and the error whilst in SANE and Hierarchical SANE is an average feedback of the

performance of the networks in which the particular hidden node has participated.

3.2.4 Neuro-Evolution of Augmenting Topologies

Neuro-evolution of augmenting topologies (NEAT) introduced by Stanley and Miikkulainen [63], is an-

other system that performs structural and parameter learning concurrently using GA. In a similar fashion

to SANE, in NEAT, a GA controls and dominates both structural and parameter learning.

Stanley and Miikkulainen [63] highlighted that one of the drawbacks of the most traditional sys-

tems using NeuroEvolution (NE) is to usually adopt a fully connected fixed network structure with one

hidden layer; and constraining the evolution to just the weights space. It was discussed that the topology

of the network, on the other hand, has an undeniable effect on the performance of the system based on

following literature: Chen et al. (1993), Zhang and Miikkulainen (1993), and Gruau et al. (1996). The

literature disputes that the effect could be positive or negative subject to the type of the employed learn-

ing procedure of the weights; which mainly is based on the gradient descent or evolution. In contrary to

the literature, Stanley and Miikkulainen argued that “if done right, evolving structure along with connec-

tion weights can significantly enhance the performance of NE”. They claimed that the evolution of the

structure is beneficial in terms of learning speed when the evolved topology minimizes the dimensional-

ity of the weight space. Their presented algorithm is based on a bottom-up evolutionary process so that

a minimized topology grows incrementally rather than a decrementing top-down process. NEAT was

claimed to be unique in the sense that “structures become increasingly more complex as they become

more optimal; strengthening the analogy between GAs and natural evolution”.

In NEAT each genome represents the whole structure of a NN. The network’s connectivity is coded

linearly in each genome. Each node in the NN is represented by a gene called node-gene. The connection
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of two nodes is expressed by a connection-gene. Each connection-gene carries complete information of

the state of the two connected nodes: the in-node, the out-node, the connection weight, connectivity

status (enable bit), and an innovation number making possible find relevant genes. A genome, therefore,

has the list of all node-genes and connection-genes.

Mutation, which expands the size of the genome, happens in two ways: add-connection; add-node.

Add-connection mutation reconnects to previously connected nodes by an extra edge having a random

weight. In add-node mutation, an existing connection is split by the new mutated node. The previous

connection is disabled and the incoming and outgoing weights of the new node are set to 1 and to the

pre-existing weight, respectively. Inducing nonlinearity to the network, the add-node mutation gives GA

a more relaxed time to evolve the network’s topology as it has a balancing effect on the add-connection

mutation by being absorbed quickly into the network.

In order to find suitable genomes for crossover, NEAT presents a way to overcome the competing

conventions problem. Competing conventions arises when whole or parts of genomes refer to an identical

structure but they have different encodings. In such case, the conventional crossover might result a

chromosome missed some of its parents’ vital information as the result of their encodings’ symmetry.

Whenever the size of the genome is increased by a newly created gene, NEAT makes a record of that

gene by assigning a global innovation number to it which never changes. The process, called historical

markings, makes tracking genes with the same historical ancestors possible. In fact, two genes in two

different chromosomes have a same global innovation number if they are inherited from a single ancestor

(genome) in the past. NEAT compares the genes of two genomes and lines up those having similar

innovation number. These are called the matching genes. The new genome is a result of a random

selection of the matching genes and a total inheritance from the remaining genes (excess and disjoint) of

the fitter parent.

Although mutations and crossovers create a diverse population of genomes representing different

structures, problem arises when networks are trained. Simple structured genomes train faster than the

complex ones. Moreover, mutations, themselves, can reduce the fitness by bringing nonlinearity to the

network (in the add-node mutation) or by adding a suitable weight. It results in a quick drop in some

individual’s fitness making them disappear sooner than the time needed for optimization. In order to

overcome this problem, called protecting innovation through speciation, NEAT clusters population so

that members with similar structures are set together. Genomes in a cluster are assumed to be close to-

gether because they carry more common genetic information. Fitness sharing, then, applies by assigning

the same fitness to all specious in a set.

In NEAT, the difficulty of finding tuned, local optima arising from not using a classical parameter

technique, such as BP, is compensated for by adding additional nodes, connections, and structure, thus

adding new dimensions to the weight space. However, a combination of BP and GA together could

probably accelerate the training procedure.
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3.3 Hybridization of Genetic Algorithm and Back-Propagation
Due to the interactional effect of the structural and parameter learning, which is discussed thoroughly

in Section 2.2, an optimal NN is more likely to be found when the two procedures are jointly applied.

MINES adapt this idea by alternately applying the GA and BP in parallel with the other. In this concern,

literature ([3][23][1]) applying a combination of GA and BP for NN learning are reviewed in this section.

The literature mainly focuses on the advantage of using GA and BP in partnership; emphasizing on the

benefit of the hybridization of the two techniques.

3.3.1 Belew et al. (1990)

The research presented by Belew et al. (1990) [3] is one of the thorough works investigated the combi-

nation of GA and BP for parameter learning. The work is entirely valuable as it broadly investigates in

detail the ability of GA in conjunction with BP in training a three layered FFNN. The work highlights

the strength and limitation of both techniques. We, specially, present the work in detail since the GA is

in central importance in the way structural learning is functioned in MINES.

Belew et al. (1990) presented the idea of combining GA with BP in a way that GA was used to

find the initial weights of a NN by proceeding a global search over the weight space while BP was,

subsequently, applied to find the optimum weights locally. In other words, GA was responsible to find

“good initial weights” in order for the BP to “converge on a solution”. It was asserted that gradient

descent procedures are likely to trap in a local minimum therefore, sampling methods, such as GA, helps

the system to search over a broader domain.

The work starts with a brief explanation of weight encoding in GA. Each weight is assumed to get

a real value in the interval [m, M]. By allocating B bits to each weight the interval is divided into 2B

subintervals. This means that each weight can vary over 2B values. In order to select a real value from the

original interval a uniform distributed random variable over the subintervals is used. In order to encode a

three layer FFNN binary-wiring-diagram was suggested. If the network consists of I input-nodes, 1 bias,

H hidden nodes, and O outputn nodes, then H × (I + 1 +O) +O binary strings are needed to cover all

links. Each individual in the GA represents a single NN which goes through evolution by allocating the

respective MSE as its fitness value.

The first experiment followed by setting up weights from the interval [−105,+105] by allocating 8

bits to each weight meaning that the length of each subinterval was about 800; which corresponds to a

poor accuracy. Then, the GA was assigned to create a population of initial weights while the Conjugate

Gradient (CG) algorithm was used afterwards to train the system. The obtained MSEs were assigned

as the individuals’ fitness fed to the GA to create new initial weights and repeat the cycle. The average

performance of CG combined with GA (CG+GA) was compared with: the average performance of CG

when used alone over several runs (CG avg); the performance of CG having the lowest MSE (CG min);

and finally the average performance of GA when used alone for several runs (GA avg). In all cases the

CG+GA showed a better performance after the first 30 generations while it converged to a significantly

better result at the end of 60 generations.

One important result from this experiment was the observation of large weights (usually larger than
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104) in the trained network using CG+GA. An explanation for this effect is the uniform division of

the weights’ intervals. This makes big numbers to be more available for the GA than the small ones.

Moreover, when the magnitude of a weight exceeds a certain threshold, the derivative of the node-

function will lead close to zero making BP incapable of changing the weights. Good initial weights,

consequently, are located in a donut shape as both very small and large weights are undesirable. Small

weights are not suitable since the hidden nodes will produce similar outputs preventing the NN to have

a good diversity. In the other hand, large weights should be avoided as it makes BP considerably less

sensitive to the error space.

In the next experiment, selection of weights was restricted to the interval [− 1
2 ,

1
2 ]. Again the GA

selected initial weights while BP used to train networks. The MSE of each network was assigned as the

individual’s fitness and the cycle repeated for 400 epochs. The results were compared to when GA and

BP were used alone for 5000 random restart experiments. When GA was used alone the average of the

population’s MSE was very close to the average of the MSE over 5000 BP run. Furthermore, the best

performance of the 5000 BP run - in terms of minimum MSE - was close to the compound use of GA

and BP (GA+BP). However, this does not devalue the use of GA+BP as the compound system was able

to find a good solution in a substantial fewer generations.

In the last experiment, a method of exponentially binning the weights was examined. In this case,

each weight was binned over 10 bits while the Euclidian length of initial weight vectors were restricted

between 0.01 and 12. In contrast to the previous experiments, such a division technique made picking

both small weights and large weights possible. The result showed a bigger and faster (in terms of

generations) decline in the MSE for the compound use of BP and GA. Also, the exponential selection

had a dramatic effect on the best performance of the experiments when BP was used alone.

In conclusion, we point out that, although some of the experiments done by Belew et al. (1990)

adopted a joint combination of GA and BP, their systems, in contrary to MINES, does not deal with

structural learning; it only deals with fully-connected networks. GA is only used to find the starting

points which are suitable for BP to initiate the training from. More importantly, in the system, each

individual in the GA’s population represents a complete NN assigning the MSE as its fitness, whereas in

MINES each individual represents only one hidden node with MI as the fitness.

3.3.2 Han and May (1996)

Han and May (1996) [23] proposed a system employing the GA as the central unit which controls all

important BP parameters and also the number of incorporated hidden nodes. The work emphasizes that

structural and parameter learning has a huge effect of NN performance. In the presented system the GA

was integrated into a three layer NN to find an optimal NN by both changing the structure and learning

parameters. The structural learning dealt just with the suitable number of hidden nodes, and not their

connectivity pattern of receptive fields. In the case of parameter learning, they tried to find the optimum

values involved in BP algorithm: learning rate, momentum constant, and training tolerance. The GA,

then, was simultaneously changing these four parameters in order to find the desired performance. The

GA objective function was set to be derived regression from the four involved factors. They concluded
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that since BP algorithm is quite dependent on the four aforementioned parameters, their technique was

able to find better weights, and hence better results, through changing them with the aid of GA.

3.3.3 Azzini and Tettamanzi (2006)

Azzini and Tettamanzi (2006) [1] presented a NE system working alongside BP. The idea was to use GA

to find a solution near the global optimum while BP was, subsequently, used as a tuning device to locate

the closest local minimum. However, the structural learning of the system does not cover the evolution

of the receptive fields. In other words, there is no pruning process and the system only deals with fully-

connected NNs. The work, however, is presented here, since, in an approach similar to MINES, it utilizes

both the GA and BP for structural and parameter learning. In addition, the system is worth considering

as it has been tested on a real financial problem.

In the system presented by Azzini and Tettamanzi (2006), each individual in the population

(genome) represents a multi layer perceptron (MLP) NN. The GA initially finds a solution near the

global optimum in the search space where each point represents the topology of a MLP. BP is, subse-

quently, used as a tuning device to locate the closest local minimum. Each genome has all necessary

information needed to create the associated network: number of layers, number of nodes of each layer,

and the weight matrix of each layer. In each genome there is a bit to activate or deactivate the BP pro-

cess. BP, therefore, is not necessarily used in each generation. The problem data is divided into three

sets: training set used to train the network, test set used to avoid overfitting, and validation set used to

examine network’s generalization performance. During evolution, whenever an individual decides to

use BP, the training set is used for training while subsequently the MSE over the test set is calculated

to evaluate part of the individual’s fitness. When BP is not used, the MSE is calculated over the joint

training and test sets. The fitness of an individual does not totally depend on the network’s MSE. The

cost of the network, which is a measurement of the complexity of the network’s topology, is also used in

the fitness. The overall fitness is formulated as:f = λkc+ (1− λ)MSE

0 ≤ λ ≤ 1

(3.6)

In formula 3.6, λ is the desired trade-off parameter between the cost and error; k is a constant used for

scaling which makes the cost comparable to MSE; c is the cost of the network; and MSE is the network’s

error calculated as explained earlier. The cost of the network is defined as:

c = α(number of hidden nodes) + β(number of synapses)

Since the system works on MLP networks, the formulated cost is likely to reasonably measure the com-

plexity of a MLP’s structure.

Based on the state of the BP being either off or on in a genome, a direct or an indirect encoding is

conveyed to the associated phenotype, respectively. In the underlying research, the selection method of

breeder GA (Muhlenbein and Schlierkamp-Voosen, 1993, cited in [1]) was used. The method is based

on removing half of the worst members of the population while duplicating the remaining individuals to

compensate those eliminated.
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Both weights and topology of the networks undergo mutations. Weight mutations happen in each

layer by adding a noise proportional to the variance of the layer multiply by the standard normal distri-

bution. Immediately after the weight mutation, nodes with little influence on the network’s output are

removed based on the following pseudo-code:

for i = 1 to l − 1 do

if Ni > 1

for j = 1 to Ni do

if ‖Wi
j‖ < (avgk(‖Wi

j‖)− r(stdevk(‖Wi
j‖))

delete the jth neuron

where Ni is the number of nodes in the ith layer, Wi
j is the jth row of the matrix W i, and r decides

how many standard deviation bellow the layer’s average the weight vector’s norm must be in order to

be deleted. The topology mutation is performed in three ways: insertion of one hidden layer, deletion

of a hidden layer, and adding an extra node. The insertion of an extra node is a neutral mutation since

the incoming and outgoing weights of the duplicated node are assigned in such a way that the overall

network’s output does not change.

Being aware of the possible problems that might arise by crossing over the individuals, which

each represents a NN, a vertical crossover merging both the weights and the structure of the parents was

adopted. Since selected parents might have different number of layers, the parent with the less number of

layers undergoes some layer-insertion mutation till both own equal number of layers. The new offspring,

afterwards, is generated in a way that the number of nodes in each layer is the sum of the nodes of the

parents’ respective layers except for the input and output layers being unchanged for all NNs. The weight

matrix of the input layer is obtained by appending its respective parents’ weight matrices. For the rest of

the layers, the weight matrices are the block diagonal matrices of the parents. However, the elements of

the matrices have been halved in order to produce an output closed to the parents.

The evolved NN was used as a factor model (statistical model) to examine the return of a statistical

arbitrage. Factor models represent the return of a financial instrument as a function of other financial

instruments’ returns. In the statistical arbitrage, the arbitrageur builds a portfolio of correlated instru-

ments. “When the price of one of the instruments diverges” lower than “the value predicted by the

model, the arbitrageur” longs “that instrument and short the others”; the opposite is done when “the

price is higher”. “If the model is correct, the price will tend to revert to the value predicted by the model,

and the arbitrageur will profit”.

Azzini and Tettamanzi [1] examined a factor modelling problem of Dow Jones Industrial Average

(DJIA) against some foreign exchange rates, stock of companies as a representative of the relevant market

segment, and commodities. In order to find the best solutions they used experiments by changing the

following settings: probability of inserting a layer, probability of deleting a layer, and probability of

inserting a neuron. For each set of settings 10 experiments was run. A noticeable finding was that for

all simulations the best result was obtained when BP was adopted. The best obtained MLP showed a

satisfactory performance in predicting the values of DJIA compared to the actual values. By comparing
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these predicted (expected) results to the actual values a strategy of making an arbitrage against the pre-

mentioned instruments was proposed. The strategy proved to be fairly successful by making 5.75%

annual return on the capital.

To compare the technique presented by the surveyed literature with the one proposed by MINES

we proceed as follow. In MINES the interaction between the GA and BP is indirect through MI and

clustering of the weights. BP trains the weights which cause the MIs to change. This in turn affects

the individual’s fitness reflecting the interaction between BP and GA. BP also changes the angles of the

weight vectors affecting them to be clustered differently expressing another interaction between GA and

BP. On the contrary, in the method introduced by Azzini and Tettamanzi [1], each phenotype represents

a complete NN being a direct encoding of its genotype. The interaction between the GA and BP also

takes place directly through the network’s MSE which partly affects the individual’s fitness when BP

is chosen for the weight training. Most essentially, in contrast to MINES, the surveyed literature, as

mentioned earlier, only deals with a fully connected network. Furthermore, the system incorporates an

algorithm for eliminating ineffective hidden nodes. In this respect, the system is similar to MINES in

which close hidden nodes are removed. However, in the two systems, the theories of acknowledging the

removing hidden nodes are fundamentally different. In one hidden node are eliminated when the norm

of its incoming weights as a vector is comparably less than a threshold whereas in the other (MINES)

the hidden nodes are removed when the angles of the incoming weight vectors are less than a threshold.

As a downside of the presented technique the use of vertical crossovers can be mentioned. A vertical

crossover usually requires some layer-insertion mutation. As a result, an undesirable deep structure

might arise resulting in a slow propagation computation. A further drawback is related to the algorithm

of eliminating unnecessary weights, which is based on the length of the weight-vectors. This method

does not completely help reduce similar vectors. The lengths of two vectors might lie in the required

boundary indicating that they should not be eliminated while in reality they may have a close angle

producing similar outputs (see Section 4.5 for more details).

3.4 Pruning, Weight-Sharing and Neurogenesis
The three common structural learning techniques (node-redundancy, pruning and weight-sharing), ad-

dressed in Section 2.2, have been used in some of the pre-surveyed literature. In fact, most of the

literature simultaneously applies a combination of node-redundancy and pruning - two practices that

also happens in MINES (SANE [42] and Hierarchical SANE [43] are two classical examples in this

relation—). In addition to these, the research provided by Cantú-Paz [5] is presented here to specifi-

cally assess the pruning technique. To reveal the essence of weight-sharing, as an alternative structural

learning technique, the system proposed by Saito and Nakano (2002) [56] is surveyed in detail. The

literature, additionally, reveals the great deal of complication exists in solving the presented regression

problem which has also implemented by MINES. A further structural learning technique, based on Neu-

rogenesis, presented by Boers and Kuiper [4], are also surveyed to demonstrate an additional system of

structural learning. The research is, in addition, valuable as it applies information theory to examine the

structural characteristics of a NN.
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3.4.1 Cantú-Paz (2003)

The work investigated by Cantú-Paz (2003) [5] contains a full exploration of the advantage of pruning

technique in NNs. In this experiment a network is first trained with BP algorithm to a desired level

of accuracy, then pruning is applied with or without retraining. Hence, the method does not give the

chance of a going through structural learning in conjunction with the employed parameter learning (BP

in this case). In fact, there is no real interaction between the structural learning (pruning in this case)

and parameter learning (BP). However, the work can be used as a benchmark to give explanation for the

adaptation of the automatic pruning technique used in MINES.

Cantú-Paz [5] examined NN pruning by using four evolutionary algorithms on FFNN with on hid-

den layer. The main goal of the research is to improve the generalization capability in classification

problems. The four employed evolutionary algorithms are: simple GA (sGA); compact GA (cGA); ex-

tended compact GA (ecGA); Bayesian Optimization Algorithm (BOA). The last three algorithms are

categorized as distribution estimation algorithms (DEAs).

The general algorithm starts by training a fully-connected network using BP for a number of epochs

varying for each experiment. One of the above mentioned evolutionary algorithms, afterwards, is applied

to prune the network based on the state of a particular bit allocated to each weight. Two different types

of strategy can be applied in this stage: retraining the network for one or two or more epochs after

each generation to “repair the damage caused by pruning”, or allowing the system to go through the

evolutionary process without retraining. The fitness of an individual is the accuracy of the associated

network over the training data.

The sGA works on binary strings. Binary selection, uniform crossover, and bitwise point mutation

are performed by sGA. Since each individual represents a complete network, problem might arise when

two identical genomes have different encodings. A simple solution to this problem is to employ an

exponentially-sized population.

Each individual in the cGA is a vector p = (p1, . . . , pk, . . . , pl) with the length l equal to the number

of weights of the representing network. The compact GA assumes that each gene (bit) on the genome

(vector), which represents a weight in the phenotype (network), is independent from the others. For each

k, Pk is the probability of getting a value 1; or, equivalently, the probability of having the kth weight

connected. The population is, therefore, modelled as a product of Bernoulli distributions. Offspring are

obtained by selecting different positions of p and concatenating the obtained values. When the fittest

offspring has a 1 in its k position, the parent pk is increased by 1/n, where n is the population size. The

iteration terminates when all elements of p are either zero or one.

The ecGA focuses on a set (partition) S with the size m which is a subset of {p1, . . . , pl}. Suppose

the number of subsets of S is m and the distribution of variables of the ith subset is P − i. The problem

is, in fact, to focus on the subsets of a subset (partition) of {p1, . . . , pl}. By assuming that the subsets are

independent, the population can be modelled as P =
∏m
i=0 Pi where each Pi represents an individual.

The distribution of Pi is distributed in a table with 2k − 1 entries where k is the size of the set Pi. The

aim is to find a suitable P which can satisfactory model the population. One method is to merge subsets
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minimizing the complexity of the networks based on information theory. The search ends when there

are no more subsets that can be merged.

The BOA uses a Bayesian network to determine the relations among selected individuals. In BOA

the maximum number of incoming weights to each node must be stated by the operator.

The final pruned networks obtained by the four explained models were tested on several instances of

the UCI machine learning repository data sets. The results suggest that pruning is considerably beneficial

when the performance of the fully connected NN is poor. When the fully connected NN performs well

pruning does not show a noticeable improvement. Even in two cases the pruned networks carried out

by cGA and ecGA resulted significantly worse than the fully connected ones. Among the four tested

systems ecGA is the fastest while sGA and BOA are mainly the slowest. However, ecGA occasionally

results a poorer network while sGA and BOA do not.

Further experiments carried out by retraining the networks for some epochs (in contrary to the

above experiments) after pruning. Retraining does not show to considerably improve the generalization

ability of the pruned network. However, it dramatically reduces (up to 40%) the number of evolutionary

generations with the cost of increasing the total operating time. Retraining for more than one epoch has

no visible effect in improving overfitting or reducing the number of generations. The final conclusion

recommends that the best evolutionary method for pruning a NN is sGA over a small population.

3.4.2 Bidirectional Clustering of Weights

The technique presented by Saito and Nakano is based on a very complicated and sophisticated math-

ematical foundation which presents structural learning solely by adopting weight-sharing. The work is

extremely valuable to present as it can be compared to MINES solving the same application using a far

simpler technique.

Saito and Nakano (2002) presented a way to automatically create a three layer NN by clustering the

weights and weight-sharing. The technique, called Bidirectional Clustering of Weights (BCW), employs

the second order optimal criteria to merge and split clusters. Bidirectional Clustering starts with a fixed

set of weights

w = (w1, . . . , wd, . . . , wD)
T (3.7)

clustered to subsets that have no intersection so that the sum of the subsets is equal to the original set of

the weights. In fact, if S1, . . . , Sg, . . . , SG is a set of indices corresponding to weight clusters, then:
Sg 6= ∅

Sg ∩ Sǵ = ∅ g 6= ǵ

S1 ∪ . . . ∪ SG = {1, . . . , D}

A common weight is associated to each cluster so that all the cluster’s weights have the same value as

the common vector (the concept of weight-sharing). Therefore, a transformational matrix A, having

elements of 0 and 1, mathematically, maps the original weight space w in expression 3.7 to the common

weight space:

u = (u1, . . . , ug, . . . , uG)
T
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so that:

w = Au

Considering edD as a D-dimensional unit vector (D × 1) that its d element is 1 while the rests are 0,

then:

A = [
∑

{d|d∈S1}

ed
D, . . . ,

∑
{d|d∈SG}

ed
D] (3.8)

More intuitively, the jth column of A is related to the cluster Sj and row i of column j is equal to 1 if

wi ∈ Sj and 0 otherwise.

The Bidirectional Clustering problem is to find a suitable set of clusters which minimizes the error

function, denoted by E(Au). A successive number of merges and splits of clusters are repeated based

on the second order optimal criteria to find the optimal set of clusters escaping local optima. Merging of

clusters happens by a one-step bottom-up clustering, being a merger between a pair of clusters reducing

the total number of clusters by one. Suppose a pair of clusters Sg and Sǵ is merged into a single cluster

Sg ∪ Sǵ . Since all the weights in the merged cluster should be equal to its associated common weight

it requires that the previous common weights of Sg and Sǵ become a new single common weight in the

merging process. More precisely we should have:

(u+ ∆u)
T
eg
G = (u+ ∆u)

T
eGǵ (3.9)

In order to find a solution for the merge operation, the Bidirectional Clustering uses the second order

Taylor expansion of error function around u:

E(A(u+ ∆u))− E(Au) ≈ g(w)
T
A∆u+ 1/2∆uTATH(w)A∆u (3.10)

Where in that, g(w) and H(w) are the gradient and Hessian matrix of the error function respectively. If

u is a trained vector then AT g(Au) = 0. By using the Lagrange multiplier method and using Equation

3.9, the minimum value of expression 3.10 around a trained weight w is:(
ug − uǵ

)2
2
(
egG − eǵG

)T
(ATH(w)A)

−1(
egG − eǵG

) (3.11)

Equation 3.11 was called the dissimilarity between Sg and Sǵ showing by DisSim(Sg, Sǵ). In order to

find a suitable pair of clusters to merge, the Bidirectional Clustering calculated the dissimilarity of all

pair of clusters and then selects the one which has the minimum dissimilarity.

The top-down clustering in contrary to the bottom-up clustering is the operation of splitting a cluster

to two new clusters. Considering the total number of clusters to be G, after splitting Sg into two new

clusters Śg and SG+1 (i.e. Sg = Śg ∪ SG+1) the total number of clusters will increase by one. Suppose,

before splitting, the network has been trained and u is the trained common weight vector. Immediate

after splitting of Sg , the new common weight vector, denoted by v, has the form of:

v = (uT , ug)
T

The reason is that, prior to splitting, all the weights in the cluster Sg have the common weight ug .

Therefore, just after splitting, weights of the clusters Śg and SG+1 will again have the common weight
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ug . However, it is worth mentioning that after training, ug , which is associated to SG+1, will have a

different value than those associated to Śg . The matrix A, in the second order Taylor expansion, is

substituted by a new matrix B. B is similar to A except that its column g has been changed according to

Sǵ and also has a new column at the end at column: G+ 1 related to SG+1:

B = [
∑

{d|d∈S1}

ed
D, . . . ,

∑
{d|d∈Sǵ}

ed
D, . . . ,

∑
{d|d∈SG}

ed
D,

∑
{d|d∈SG+1}

ed
D]

It should also be noted that since v is not a trained weight vectorBT g(Bv) 6= 0. Therefore, the following

optimally condition on u holds:

0 = g(Bv)
T
∑

{d|d∈Sg}

ed
D = g(Bv)

T
( ∑
{d|d∈Śg}

ed
D +

∑
{d|d∈SG+1}

ed
D
)

(3.12)

From Equation 3.12 we will have:

BT g(Bv) = kf k = g(Bv)
T ( ∑
{d|d∈SG+1}

ed
D
)

f = eG+1
G+1 − e

G+1
d (3.13)

By substituting formula from 3.13 in the Taylor expansion, which is similar to Equation 3.10 except

having matrix B instead of A, we get:

min
(
g(Bv)

T
B∆v + 1/2∆vTBTH(Bv)B∆v

)
= −1/2k2fT

(
BTH(Bv)B)

−1
f (3.14)

Therefore, the general utility of splitting Sg into Sǵ and SG+1 is defined as:

GenUtil
(
Sg, SG+1

)
= −1/2k2fT

(
BTH(Bv)B)

−1
f

which should be maximized. In order to simplifying different ways of splitting, only the splitting of one

element has been considered; for a single d ∈ Sg , we have:

Util(Sg, {d}) =
(
g(Bv)

T
ed
D
)2
fT
(
BTH(Bv)B)

−1
f

Bidirectional Clustering has the advantage of escaping local minima if both bottom-up and top-

down clustering are used together. A single usage of either of them is likely to stick in a local minimum.

The Bidirectional Clustering starts from an initial set of clusters. The clusters, then, go under a number

of merges or bottom-up clustering. At this stage, in order to reduce the computations the network does

not retrain. The top-down clustering or splitting the clusters happens afterwards while the network is

retrained. Again, a bottom-up clustering is performed, while, in contrast to the initial merging step, the

network is also retrained. If the overall error of the network is increased, the initial network architecture

is chosen as the optimum; otherwise the procedure again starts from the second step.

The final obtained NN resulted from applying BCW was tested on a multivariate polynomial-type

function. The following polynomial was used:

y = 2 + 3x1x2 + 4x3x4x5 (3.15)

In the training data each xi(i = 1, . . . , 5) was randomly created in the (0, 1) interval. For a training

pattern X = (x1, . . . , x5) the corresponding desired value is y, obtained from Equation 3.15. The size
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of epoch was 5000. As explained earlier a three layer NN was used for this experiment; the number

of suitable hidden nodes was set to 2 acquired by the cross-validation technique. It is worth noting that

weight-sharing just applied between the connections of the input-layer and the hidden layer; the common

weights are 0 and 1.

BCW, as stated by the authors, starts with plenty number of weights. This may be regarded as a

drawback as it may result in a wide NN architecture, producing delay in forward and backward propa-

gation. An additional disadvantage is the use of the Hessian matrix making the system computationally

slow.

3.4.3 Boers and Kuiper (1992)

Boers and Kuiper (1992) [4] used Lindenmayer grammar to develop and structure NNs by combining GA

and BP. Their work is interesting to explore as it clearly declares a way GA can be used in determining

the structure of a FFNN while BP is combined to perform parameter learning. The presented work

is also attractive as it illuminates an alternative structural learning technique based on neurogenesis.

Besides, the main objective of the work is to demonstrate that “the initial structure given to a NN greatly

determines its performance”.

Lindenmayer grammar was coded in GA chromosomes forming a population of genotypes which

subsequently translated to create the structure of each associated phenotype. BP was utilized as the learn-

ing procedure and the resulting error was assigned as the fitness of the GA individuals. In Lindenmayer

grammar each node is specified by eight letters from A to H, while the digits 1 to 5 are used to indicate a

skip within the string; comma (,) is placed between two letters when there is no connection between cor-

responding nodes; and finally square brackets ([,]) are employed to specify that two adjoining modules

are connected. For instance [A2[B,C]D]E is a FFNN which in that the node A is connected to the both

nodes B and C which themselves are connected to the node D which itself is connected to the output

node E. Moreover, nodes B and C are not connected (since there is a ’,’ between them) and the digit 2

after A indicates that the node A is also directly connected to the node E. Since the pre-mentioned rule

must be understandable for a GA, Boers and Kuiper employed a table to code each character to a 6-bit

string (for instance code 100100 is accounted as the first A in the table). The genetic information then

specifies the structure of a FFNN with its weights being trained by BP.

Boers and Kuiper justified that a modular NN can be advantageous over a NN having a single

hidden layer. It was claimed that when a network with one hidden layer, containing n hidden nodes,

finds a solution, a permutation of the nodes in the hidden layer together with all their incoming and

outgoing weights, will also result in the same solution. Therefore, the existence of a solution guarantees

the existence of at least n! more solutions. When a network has more hidden layers the number of

permutations of the successive layers must be multiplied. The total number of permutations of a network

with i hidden layers containing ni nodes in each layer (ignoring nodes with exactly similar weights, and

different solutions with respect to every permutation) is given by:

n∏
i=1

ni! (3.16)
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However, the authors failed to notice that the derived formula is only valid when the trained NN is

invariant to the permutation of the incorporated signals of the input pattern vectors. Suppose, the input

pattern vector p contains k signals:

p = (s1, . . . , sk)

Given a permutation:

ϕ : {1, . . . , k} → {1, . . . , k}

the signals can be permuted as follow:

pϕ =
(
sϕ(1), . . . , sϕ(k)

)
The required assumption is that any solution of the NN be indifferent to the presentation of the input

vectors pϕ and original input vectors p. In other words, the order of the presentation of the input signals

should not matter when the network has reached to find a solution. For some theoretical problems

concerning a random creation of input patterns, such as the polynomial regression problem introduced

in Section 5.1, this assumption may hold true. However, the assumption is not valid as a general rule; for

instance, the decomposed signals used as input patterns in the crude oil forecasting problem, introduced

in Chapter 6, are not invariant to permutation.

Assuming that the obtained permutation formula for the hidden nodes indicates the number of po-

tential solutions, the entropy of the weight space can be used to demonstrate that a better generalization

capability can be achieved when the number of potential solutions is high. In reality, a NN performs an

input-output mapping from the input space to the output space. The mapping depends on both architec-

ture and synaptic weights. When the architecture is fixed, the collection of all possible sets of synaptic

weights defines the weight space. Each set of synaptic weights declares a probability that determines the

possibility of a correct mapping with the employed NN consisting of the given synaptic weights within

the fixed architecture. So, a random variable can be defined over the weight space to the set of all pos-

sible input output mappings. Consequently, the weight space determines a probability distribution over

all potential mappings. Boers and Kuiper continue:

“The entropy of this distribution is a quantitative measure of the diversity of the map-

pings realizable by the architecture under consideration. Learning from examples reduces

the intrinsic entropy of the untrained network by excluding configurations which realize

mappings incompatible with the training set. The residual entropy of the trained network

measures its generalization ability.”

Therefore, the residual entropy is the entropy of those sets of synaptic weights resulting a desired map-

ping which is usually different from the mappings defined on the training set.

Zero residual entropy indicates that the employed architecture confines the synaptic weights to some

limited configurations within the desirable mappings. The residual entropy will not be zero when the

network architecture gives several different mappings. Non-zero residual entropy indicates that small

deviations from the training input space leads to large errors in the output space. So the system will



62 3.4. Pruning, Weight-Sharing and Neurogenesis

be poor in generalization, because a strong generalization requires the network to perform well on the

unseen data.

Therefore, an optimal architecture is the one that would result to zero - or close to zero - residual

entropy. A non-zero residual entropy can be imagined as “a weight space with a large number of minima,

each implementing exactly the mapping of the training set”, but only one (or none) representing the

actual sought mapping. “It also shows the importance of the selection of the training set”. Suppose

W = {w1, . . . , wn} is an arbitrary set of synaptic weights corresponding to a network architecture at

hand. Then:

W = {w | w defines the synaptic weights of the network architecture}

is the collection of all possible sets of synaptic weights w incompatible with the given architecture. The

a priori probability of a desired mapping f is defined as (Solla, 1989, cited in [4]):

Pf =
Ωf
ΩW

(3.17)

Where ΩW is the total volume of the weight space W confined with the network architecture at hand,

and:

Ωf =

∫
ΩW

Θf (w) dw (3.18)

where:

Ωf (w) =

1 if w implements the mapping f,

0 otherwise.
(3.19)

In fact, Ωf is the volume in the initial weight space which implements the desired mapping. Likewise,

Pf is the probability of a correct implementation of the desired mapping within the possible choices of

synaptic weights in W . If Pf = 0, the network is unable to learn the desired mapping; hence, Pf 6= 0

is a necessary condition for the network to learn. In NN learning, the mapping defined by the training

set is usually unique as the learning procedure is applied to a fixed training set consisting of the input

and respective desired patterns. In contrast, the generalization ability of the trained NN necessitates

performing correct mapping on new data. Entropy can be used to measure the diversity of all possible

mappings f within a chosen architecture:

S = −
∑
{f}

Pf ln(Pf )

When a suitable initial structure is chosen, Pf is usually large for a given mapping f , resulting

in a low entropy over the space of possible mappings. When the network with the given structure is

not yet trained with a parameter learning technique, the measured entropy over the space of all possible

mappings f is called the intrinsic entropy of the network. “It is the intrinsic entropy of the untrained

network that needs to be eliminated via a learning process”. The purpose of training is to confine the

configuration of weight space to the region {w | Θf (w) = 1} for all desired mappings.

The presented mathematical formula can be used in the future application of MINES. At the moment

synaptic weights are trained unboundedly by just BP algorithm during two successive GA generations.
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To realize better which synaptic weights are suitable for the fixed architecture at hand during two suc-

cessive GA generations, synaptic weights must be confined (digitalized) within some boundaries. This

can be implemented by simply picking up weights manually from a pool of binned weights. For example

every synaptic weights can be chosen from [−1,−0.8], [−0.8,−0.6], . . . , [−0.2, 0] . . .. , or alternatively,

the activation function can be chosen as a stepwise function. Then to find out which weights define a

better performance, some mappings from training or validation sets can be chosen. Also mappings can

be chosen by eliminating some of the training input patterns to find out which training set is more valid

to be chosen. Then Pf is calculated by creating a NN with synaptic weights chosen from the binning

intervals. Subsequently, the entropy over selected mappings is calculated. Those synaptic weights result

to lower entropy are those which provide the best generalization performance.

3.5 Summary and Discussion
The surveyed literature indicates that in spite of a lot of attempts to define an optimal structure for a

NN, there is still no complete, focused work taking into account the relation of hidden layer and the

network’s error with respect to the quantity of the contributed hidden nodes, their receptive fields and

synaptic weights. More importantly, only a few works have paid any attention to the theoretic aspects

of this problem. In fact, there exist no system to automatically find the quantity and the structure of the

hidden layer based on a trustworthy theory.

Most of the literature only partly answers the structural learning and the only one ([63]) which

broadly deals with this matter suffers from discarding a robust parameter learning technique such as

BP. In other words, most of the research ([17][49][42][43][63]) does not adopt any gradient descent

algorithm; they use GA for both weight training and, if necessary, structural learning. In effect, in these

works, the role of NN is demoted to the process of forward-propagations for error calculation while the

GA has almost dominated the entire program. This neglects the natural and powerful parameter learning

capability of the BP.

Additionally, in most of the works the fitness function of GA is directly defined based on the cost

function of the underlying NN - such as MSE. Even though the GA is able to construct a desirable

structure in this regard, it is not theoretically clear how the forming structure makes reduce the cost

function. In other words, the success of the system is heavily rooted in the stochastic search technique

adopted by GA regarded as a black box. Indeed, there is no lucid explanation for the reason a typical

structure can outperform the rest. The systems do not propose any well organised rule to the individuals

forming the structure aiming to reduce the cost function.

In contrast to these systems, MINES provides an indirect interaction between individuals and the

NN’s cost function by introducing an intermediate variable, acting as the fitness function, communicating

between the cost function and the individuals’ chromosomes. In some of the surveyed literature, MI has

been used successfully in disclosing the existing correlations among series. However, MI has not been

utilized to form the structure of a hidden layer with the information gained from the error space. The

only exception in this regard is the research conducted by Smith and Jiang [62], MILCS [62]; which, in

concept, shares the most similar algorithm to what proposed by MINES (the subject of this research).
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The promoted procedure in MILCS, a successor of XCS, is being used similarly in our algorithm, except

that in MINES neurons are the main operator of the network which is in analogy to rules in MILCS. It

is also worth mentioning that both MILCS and MINES take a key point from CCNN in the sense that

the output of the new structures (rules in MILCS and hidden nodes in MINES) should align to the error

of the existing system; in CCNN aligning means a high correlation coefficient whereas in MILCS and

MINES it is a high MI.



Chapter 4

MINES Implementation

This chapter deals with the implementation of the systems incorporated in MINES. Implementation of

MINES required an extensive amount of coding and a wide range of programming to properly connect

the incorporating systems. The GA package was pre-written and equipped with both binary and real

variables (however, only the binary variables are used to encode the connectivity patterns of the hidden

nodes). For the clustering the well-known Weka package [22] is used. The technical details of the

systems collaborating in MINES will be discussed in macro and micro levels. It is expected that, at the

end of the chapter, the reader becomes clear about how the multi-collaboration of the systems results in

an optimal, or close to optimal, FFNN in MINES. The reader would, furthermore, realize how structural

and parameter learnings can be applied concurrently by maximising the MI of the hidden layer and error

space.

Section 4.1 gives a short overview of the incorporating systems of MINES.

Section 4.2 explains the important implementation steps in creating a multi-layer FFNN which was

used in MINES. The implementation of the adaptive learning rate and its capabilities and the primarily

tests to evaluate the performance of the implemented FFNN are explained.

Section 4.3 starts with the macro algorithmic steps of MINES, evolving the underlying FFNN.

Additional details of steps are provided in micro levels in a separate subsection.

Section 4.4 deals with the technical details of important steps of GA. The rationale behind adopting

MI as the fitness function of GA individuals is discussed separately.

Section 4.4.1 explains the connectivity patterns of hidden nodes and the way GA individuals get

associated to the hidden layer.

Section 4.5 provides the pseudo-code of a new clustering algorithm of the weight vectors based

on their angles with the input-vectors in MINES. Section 4.5.1 explicitly formulates the mathematical

foundations which the new clustering algorithm is derived from.

Section 4.6 highlights the effect of the number of GA generations and BP iterations on the perfor-

mance and convergence of MINES.

Section 4.7 explicates how the incorporating systems of MINES would result the system to converge

to a fixed topology by optimizing the associated MIs.

Section 4.8 provides remarks and summary of the chapter.
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4.1 Overview
MINES combines a three layer FFNN with a GA used for structural learning and BP for parameter

learning, connected via the MI between the error space and the hidden layer. The GA intends to select

the right synaptic weights to evolve the structure of the hidden layer; i.e. the number of hidden nodes

and their receptive fields. The MI of the output of each hidden node and the network’s residual error

is the associated fitness of each GA individual. Given each hidden node, the network’s residual error

is the error occurring when the specific hidden node is excluded from the original network. This can

be achieved through disconnecting the hidden nodes’ synaptic weight outgoing from the hidden layer to

the final output-layer. Clustering is applied to the synaptic weights to merge hidden nodes having same

functionality. Finally, weights are adjusted through BP learning algorithm.

As mentioned earlier (see Section 1.1) there is no concerning barrier to extend the employed tech-

nique to a multi-layer FFNN. However, a three layer FFNN makes the evaluation of the implemented

method less complicated. Therefore, the implementation is restricted to a single hidden layer, focussing

on the number of incorporated hidden nodes, the configuration of the receptive fields and the associated

synaptic weights.

4.2 Implementation of Multilayer Feed-Forward Neural Network
The first step in the implementation of MINES was to create a multilayer FFNN. To achieve this, a

FFNN with no hidden layer was first created in Java language, using the Colt library [18]. The number

of nodes in the input layer and the output layer are defined by two integer variables; input nodes include

one extra node as bias. The synaptic weights of the implemented NN is a two dimensional matrix

(DoubleMatrix2D), having double variables, with the number of rows and columns, respectively, equal

to the number of output and input nodes. The multiplication of the matrix and the input pattern results

the induced local field vector. The activation function is applied to the induced local field vector to result

in the output vector of each layer. The output vector is compared to the desired vector to calculate the

error of each node and subsequently the overall MSE of the network. The BP algorithm is applied to the

synaptic weights to recursively train each layer to the desired error level.

4.2.1 Dynamic Learning Rate

We have adopted a dynamic learning rate for the BP procedure. The BP starts with an initial learning

rate. After some iterations, the system observes the error reduced. If the error of the network is not

decreased by a predetermined certain amount, the initial learning rate increases by a fixed percentage.

Whenever the learning rate increases, the next plausible time to increase learning rate decreases by a

fixed number of iterations. The procedure of increasing the learning rate, and accordingly the time

decline of consecutive plausible increases, continues till the network’s error happens to increase instead

of decreasing; i.e. when the BP algorithm falls in a local minimum. By the time of this, to bring the

BP back to the right position in the weight space, the currently set learning rate decreases by a certain

fraction, while the weights are seized to become updated. At this stage, the next time to increase the

learning rate is postponed by a predefined number of iterations, since the learning rate is currently over
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increased.

The applied algorithm is notably beneficial as it often prevents the BP algorithm trap in a local

minimum - where error resonates in an area of the weight space. Moreover, the algorithm makes use

the maximum possible learning rate since it is dynamically adjusted during the training procedure. It is

worth mentioning that, usually after a long training period the learning rate converges to a stable value.

4.2.2 Preliminary Performance Tests

The performance of the implemented FFNN was initially tested on the XOR and Unique Square problem

(2 Input nodes, 2 hidden nodes and 1 output node was required to solve the problems). The trained

network showed a quite acceptable performance on these two tests. In order to further test the ability

of the NN on a harder problem, the standard two-spiral problem was used (see Sections 5.2.1 and 5.2.2

for the formula and definition of the two-spiral problem, respectively). The NN having one hidden layer

with 30 hidden nodes, equipped with tangent hyperbolic as the activation function, was able to classify

correctly the training set with the accuracy of 93% after 130, 000 BP iterations, while the final MSE was

reduce to 0.03. To achieve this result, a dynamic learning rate (see Section 4.2.1) had to be incorporated

in the system . Without the aid of the dynamic learning rate the system was not able to reduce the MSE

to a value less than 0.1, and could not make a classification better than 55%. It must be noted that, the

two-spiral problem has also used as the benchmark classification performance of MINES (see Section

5.2).

4.3 MINES Step by Step
The major steps of MINES algorithm are as follow (see Figure 4.1):

1. Initialize GA with a random population of binary variables. The binary variables define the re-

ceptive fields connectivity patterns of hidden nodes to the corresponding input nodes (1 means

connected, 0 means disconnected). The binary variables are the genotypes, where each gene is

a bit defining the state of connection of an input-layer-node to the associated hidden node (the

phenotype) in the implemented three layer FFNN.

2. Assign to each GA individual a randomly generated weight vector, with one weight for each gene

in the corresponding genotype. Note that, the weight vectors are assigned outside the GA; meaning

that, they are not directly defined in the individuals’ genotypes. However, when a corresponding

gene in the genotype is 0, the value of the associated weight is also set to 0; whereas, when a gene

is set to 1, the associated weight keeps its assigned value.

3. Group GA individuals having identical binary (connectivity) variables. Then, cluster each group

based on the angles of the respective weight vectors. Within each group, weight vectors having

close angles are bundled together.

4. Each cluster represents a hidden node in the implemented three layer FFNN. In fact, each hidden

node is a phenotype which its characteristic - i.e the receptive fields connectivity patterns and the
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respective synaptic weights - is exactly defined according to the individuals of the correspond-

ing cluster. The receptive field connectivity pattern of each hidden node is determined by the

unique binary variable of the individuals in the corresponding cluster; while the respective synap-

tic weights incoming from input nodes to the hidden nodes (i.e the weight vector of the hidden

node) is the average of the weight vectors assigned to the individuals in the cluster.

5. Implement a three layer FFNN by assigning outgoing-weights to each hidden node (i.e. pheno-

type), connecting the hidden node to the final output nodes of the network.

6. Repeat the following steps until a convergence criterion is met:

(a) Train the FFNN for some number of iteration steps of BP over a given set of training data.

(b) Obtain the fitness of each GA individual by directly calculating the MI of the representing

hidden node and the residual error. Note that for each hidden node - and hence for all asso-

ciated individuals in its cluster - the MI is measured between the output of the hidden node

and the corresponding residual error. For each hidden node, there is a corresponding residual

error which is the remaining error of the FFNN when all the synaptic weights, outgoing from

that hidden node to the final output-nodes of the network, are disconnected.

(c) Set the fitness of each GA individual to the MI of the output of its representing hidden node

and the respective residual error calculated in the previous stage.

(d) Create a pre-specified number (λ) of new GA individuals through mutation and crossover of

the selected parents from the population. This stage is called the GA generation-plan (GP)

(see Section 4.4).

(e) Assign weights to the binary variables of newly created offspring. After this stage, each new

offspring can potentially represent a hidden node since its receptive field connectivity pattern

and its weight-vector is completely defined. Depending on the adopted technique, the new

offspring may represent a new hidden node or it may be only assigned to an existing hidden

node in the implementing FFNN.

(f) Step b is applied to the new offspring or, if necessary, also to the old individuals to update

the fitness of GA individuals.

(g) According to the calculated fitness of individuals, a new population is created by replacing

some of the old individuals with the new offspring (see Section 4.4 for details).

(h) Group GA individuals having identical binary (connectivity) variables. Then, cluster each

group based on the angles of the respective weight vectors. Within each group, weight vec-

tors having close angles are bundled together.

(i) Implement a new three layer FFNN by assigning one hidden node to each cluster obtained in

the previous stage.
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Figure 4.1: Steps involved in MINES implementation. The numbers and letters in the arrows correspond to steps listed in Section 4.3.

4.3.1 Details of Steps

The following passage goes through the details of the major steps of MINES methodology in the same

order brought up earlier in Section 4.3:

1. The initial size of the GA population, which remains constant during evolution, usually depends

on the number of input nodes, n, of the implemented NN. As mentioned earlier, for every hidden

node the number of potential synaptic connections increases exponentially with the number of in-

put nodes. Hence, it might be improbable for GA to search through all combinations, especially,

when n is large. In this case, increasing the size of the initial population may assist GA to exam-

ine more connections. With a larger population more offspring are created and assessed during

the evolutionary process. This, in turn, increases the chance of exploring more combinations of

receptive fields, making GA to converge through a more diverse population. However, a dispro-

portionately large population not only prolongs the GA convergence, but also often decelerates the

BP training process. The latter is due to the incorporation of many hidden nodes in the network,

when n is large. Another way to increase the chance of searching through various combinations of

receptive fields is to produce more offspring per GA generation. The more offspring are created in

a generation, the more the chance of creating a new connectivity pattern. However, there is a limit

for λ. For instance, the number of offspring created in each generation depends on the size of the

set R in the replacement plan (see Section 4.4): it is not sensible to have λ ≥ r (r is the size of the

set R).
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2. The receptive weights are randomly generated between −w and +w (usually w = 1). The BP

modifies the weights when parameter learning is applied.

3. Potentially, clustering of weight vectors could also be applied based on their relative distance in

the space; for vectors Xi and Xj the distance would be defined as ‖Xi − Xj ‖. Vectors with

close angles, but large distance, would be clustered separately using the latter technique. This is,

however, unnecessary and could be regarded as a drawback (see Sections 4.5.1 and 4.5).

4. The synaptic weights of each newly clustered hidden node is calculated as the average of the

former synaptic weights of the hidden nodes associated to the individuals of the current cluster.

It is worth pointing out that, if instead of the average, sum of the synaptic weights is used, the

BP algorithm is likely to fail. This is because, the magnitude of the induced local fields may

exceed the activation functions thresholds. When the activation function is tangent hyperbolic or

sigmoid, large synaptic weights produce values close to 1 or −1; preventing BP to update weights

properly. This is because BP deals with derivative of activation functions, and tangent hyperbolic

and sigmoid have derivatives close to 0 when dealing with values close to 1 or −1.

5. The outgoing weights are created randomly for the first time. After that, each newly created hidden

node inherits the average of its parents assigned outgoing weights; other hidden nodes keep their

old outgoing weights.

6. A convergence criterion is met when: 1. The MSE cannot be significantly reduced for some

successive generations by BP; 2. The number of hidden nodes do not change for some successive

generations; 3. No major improvement can be observed on the performance of the trained NN on

the validation set.

(a) The number of BP iterations could be a pre-specified fixed number of iterations or dynamic

changing in each generation. When a fixed number of BP iterations is used, the MSE of cur-

rent generation may happen to be higher than the previous one. Therefore, the MIs between

hidden nodes and residual MSEs becomes less comparable to those measured in the previous

generation. This is because the synaptic weights are not trained enough to produce the same

level of error as before. Hence, the hidden nodes’ outputs and the entropies of residual errors

become less comparable to the former generation. This may cause a hidden node which is

strong in error detection, showing a low MI in current generation, but a high one in previous

generations, be substituted by a tenuous one showing the opposite (i.e. a high MI in current

generation, but a low one in previous generations). In fact, a rather uniform descending MSE

across GA generations may guarantee that the trained NN in each generation is in a point in

the weight space that is at least as good as the one in the former generation.

(b) The MI is calculated by the histogram technique introduced in Section 2.4.2. The technique

requires binning of the range of the random variables which their MI is ought to be calculated.

Given a hidden node, one random variable is the function providing the output values of the
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hidden node, whereas the other is the one producing the corresponding residual error values.

In fact, both random variables are functions of input patterns and associated weight vectors.

For each pattern in the training epoch, each random variable produces values in its range.

When the activation functions are squashing, the produced outputs (i.e. hidden nodes or

residual error values) are bounded in consistent with the range of the squashing function.

Hence, it is easy to assign an upper bound and a lower bound for the random variables under

consideration and apply the binning based on the bounded interval. This, however, is not

the case when the activation function is unbounded - like the identity function. Binning the

range of an unbounded function requires an infinite number of bins which is computationally

impossible. A straightforward way to solve the issue is to assign a sufficiently large upper

bound and lower bound covering most of the produced outputs in the range; all other outputs

falling outside the assigned bounded span would be correspondingly transferred to one of

the endpoints of the interval. However, a more effective way to bin the range of a boundless

activation function is to transform the outputs to a constrained interval. MINES adopts linear

transformation, although both linear or non-linear can be employed. It is particularly worth

noting that the transformation does not change the value of MI due to its exclusive property

of being invariant under invertible transformations (see Equation 2.16). The minimum and

the maximum values of the activation function produced over all patterns in the epoch are

first obtained and transformed to the new minimum and maximum. Other output values will

then be also transformed in the same manner between the new minimum and maximum. The

new minimum and maximum can be assigned to fixed for all hidden nodes and residual errors

through the whole evolutionary process (for instance Min=0 and Max=1).1

(c) The calculated MIs may be rounded to some decimals places before being assigned to the

respective individuals.

(d) The effect of using various number of λ has been previously investigated.

(e) As explained earlier, a new offspring must represent a hidden node in the NN according

to the individual’s connectivity variables. However, the offspring would not automatically

represent any synaptic weight (receptive or outgoing) as the GA evolution is only applied

to the connectivity variables. Since the performance of a hidden node depends on both

the connectivity patterns and the synaptic weights, it is essential to assign weights to the

existing connections. Various techniques can be adopted to determine synaptic weights to

the connectivity variables of a new offspring:

i. Weights can be created randomly and assigned to the existing connectivity variables.

1The hidden nodes in MINES are specialized so that each detects a different part of the error space. Consequently, the outputs

of the hidden nodes usually do not overlap, but each span a different part of the activation function’s range. Moreover, as the

NN is being trained and evolved, the concentration of the outputs of each hidden node may shift from one former area to another

one in the range. The linear transformation of the output values of hidden nodes and residual errors to a fixed interval, such as

[0, 1], resolves this inconsistency which, otherwise, would make the comparison of individuals inefficient. The binning is, then,

performed uniformly over the fixed interval with a predefined number of bins.
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ii. GA can evolutionary create weights at the same time as evolving connectivity variables.

iii. The weight vector associated to a new offspring can simply be the average of the weight

vectors of its generating parents. If a synaptic connection is disconnected in both of

the parents but is enabled in the new offspring, a randomly generated weight will be

assigned to the connection.

After that, the new offspring is assigned to a hidden node in one of the following ways:

i. A new hidden node is created based on the offspring’s incoming and outgoing weight

vectors and is added to the NN. In his case, the new hidden node would only repre-

sent the originated offspring and not any other individuals in the population; though this

might be subject to change in future generations. Consequently, this technique tempo-

rary adds r (the generation overlap size) hidden nodes to the NN as each newly created

offspring represents a unique hidden node. However, the number of hidden nodes may

change in subsequent steps (after the update plan (UP)) when clustering is applied to the

new population.

ii. The incoming weight vectors associated to new offspring are clustered with the existing

hidden nodes prior to incorporating in the NN. Clustering results new hidden nodes be

added to the NN so that each individual in the population is associated to a hidden node.

The advantage of method i over method ii is that the new offspring is evaluated solely as

a single hidden node in the incorporated NN. The fitness of the new offspring is, hence,

a direct measurement of the potency of its connectivity patterns and synaptic weights in

acquiring information from the error space. Additionally, to restrict distortion in the fitness

of the existing hidden nodes and also to prevent change in the present MSE of the network,

the outgoing weight of each new offspring can be assigned to 0 in steps f, g, h, but set to

the parent’s average in the subsequent steps.2 Hence, adding hidden nodes would impose no

distortion in the fitness of the existing individuals; neither no change in the current MSE of

the network. Method i is also less computationally expensive as does not deal with an extra

clustering step required in method ii. Therefore, overall, the method i is preferred over the

method ii and has been used in the upcoming presented experiments.

(f) As mentioned in the previous stage, depending on the adopted technique when introducing a

new hidden node, the fitness of old individuals may change. Hence, fitness calculation may

be applied on both new and old individuals.

(g) Before the replacement plan (RP), individuals may first get sorted based on the magnitude

of the outgoing weights of the associated hidden nodes. The r individuals then are selected

from the sorted individuals so that those with smaller outgoing weights have more chance

to get selected to form the set R. This extra step insures that in the next stage, the update

plan (UP), individuals with associated large outgoing weights are not replaced. Problem,
2This is because a zero weight is little sensitive to the MSE, and hence it would slow down the BP training process. Therefore, it

is better to change the outgoing weight of the new hidden node to the parent’s average before starting the next BP training process.
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sometimes, arises when an individual with a small fitness, but a large outgoing weight, leaves

the population in favour of a new offspring. If the cluster representing the hidden node

associated to the individual only contains the individual itself, the hidden node becomes

omitted from the NN. The omission of a hidden node with large outgoing weight, hugely,

increases the MSE. Despite the huge distortion that this increase of the MSE imposes to the

system, it usually takes a long time for the BP to reduce the MSE to the former value.

4.4 Genetic Algorithm in MINES
The GA algorithm is mainly implemented based on the procedure described by Deb [10]. Initially, the

fitness of all individuals is evaluated to determine the best individual (usually the one with the highest or

lowest fitness). The first step, afterwards, is the selection plan (SP): a subset P of randomly selected indi-

viduals with size µ, the predetermined number of parents per generation, containing the best individual,

is chosen. The second step is called the generation plan (GP): a predetermined number of offspring, λ,

forming the set C, is created in each generation. Each new offspring is the result of the recombination of

two parents, chosen from P , with two-point binary crossover accompanied by a possible point mutation.

The third step is the replacement plan (RP): the set R, containing r individuals selected randomly from

the population, is formed. The last step is the update plan (UP): the r individuals of the last step are re-

placed with the best of created offspring and the selected competitors from the set C andR, respectively;

r is usually called the generation overlap size.

The bigger is the generation overlap size, the higher is the selective pressure. This is because, when

the generation overlap size is large, new offspring are compared with a larger portion of old population

before being replaced. When the generation overlap size is small, the convergence of the system is

usually slower. When the generation overlap size is relatively bigger, the convergence is faster, but the

diversity of the population may not preserve for a long time.

The presence of the best individual in P , in the SP, makes the algorithm to become “somewhat

greedy” [10]. However, the bigger is µ, the less is the chance of the best individual to be selected as

a parent in the generation plan. Therefore, by adjusting µ, the degree in which the algorithm behaves

greedily can be tuned.

4.4.1 Representation

Each GA individual in MINES is associated with a single hidden node in the network. However, the

converse is not necessarily true: a hidden node in the network may represent one or more individuals

in the population. A vector of bits is assigned to each hidden node representing its connectivity to the

input nodes including bias. In fact, the connectivity pattern of synaptic weights is controlled by an array

of bits (i.e. a set of binary variables), in which 1 represents an existing connection and 0 means that

the synaptic weight is disconnected; for instance, if the input layer consists of n nodes (including bias)

there will be 2n unique (distinctive) connections. Hence, the structure of the hidden layer is largely

controlled by GA individuals. The binary variables control the connectivity patterns of hidden nodes’

receptive fields so that the convergence of GA individuals affects the quantity of the hidden nodes and
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the diversity of connectivity patterns. The terms receptive fields connectivity pattern, receptive fields

connectivity, receptive connectivity or connectivity patterns are all referred to the state of the synaptic

connections of a hidden node incoming from the input layer.
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Figure 4.2: Relations of GA individuals and associated hidden nodes in MINES

Diagram 4.2 depicts the relation of GA individuals and hidden nodes in MINES. Each GA indi-

vidual has a connectivity variable of 4 bits in this example, implying that the number of input nodes

(including bias) of the corresponding NN is 4. For instance, the first individual has the connectivity

variable of (1, 0, 0, 1); which means the representing hidden node (hidden node 1) is connected to the

first and last but not to the second and the third input nodes. The diagram also shows that the second and

the third GA individuals represent a single hidden node (hidden node 2); the two individuals are in fact

in the same cluster. Individuals in a single cluster have identical connectivity variables and also close

synaptic weights.

4.4.2 Mutual Information as Fitness Function

The fitness of each GA individual in the population is the MI between the output of the associated hidden

node and the residual error of the NN. The residual error guarantees that the specific hidden node has

not taken part in the error space. Consequently, the MI does not measure the self correlation that would

otherwise exist between the output of the hidden node and the total error of the network.

The primary objective of using MI as the fitness of GA individuals is to directly convey information

from the error space to the hidden layer. A high MI implies that the contributed hidden node correlates

largely with the residual error. Therefore, pruning the receptive fields, and modifying the incoming and

outgoing synaptic weights of the hidden node would largely reduce the residual error and the total error,

respectively. For instance, if the residual error caused by excluding hidden node i is bigger than hidden

node j, we may conclude that the contribution of hidden node i in the implemented NN is more important

than hidden node j.

In fact, assigning MI as the fitness function of GA individuals brings a competition among hidden

nodes to acquire relatively more information from the error space. The competition also makes individ-

uals who are less able to convey information leave their position in favour of the more competent ones.

The capability of the competent individuals comes from both their receptive fields connectivity patterns
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and their weight vectors.

4.5 Clustering to Form Hidden Layer
Individuals with a same GA encoding are clustered, using the weight vectors of their associated hidden

nodes’ incoming synapses. Distance in this clustering operation is the absolute angle between the weight

vectors. Each cluster is translated to a single node in the hidden layer. In fact, one or several individuals

may represent a single hidden node. Note that due to this process, hidden layer size grows or shrinks

during the evolution, until an effective number of hidden nodes is obtained. This is similar to the macro-

classifier concept in MILCS and XCS [71].

Section 4.5.1 mathematically discusses that the angle between weight vectors can be used as a

similarity measurement of their functionality, assuming that the vectors have close length. The following

pseudo-code is introduced - with the same notations used in Section 4.5.1 - as a new clustering algorithm

of hidden nodes producing similar induced local field:

1. Use Simple K-Means or X-Means for clustering.

2. Change the distance function of Simple K-Means [73] or X-Means [46] to the following:

(a) For every hidden node i and j calculate θij , which is the angle of two non-zero weight vectors

Xi and Xj ; where:

θij = arccos
( Xi.Xj

‖Xi‖‖Xj‖
)

(b) If θij ≥ π/2, then convert θij to π − θij

3. Cluster the hidden nodes using the function defined in step 2.

4. For every cluster, calculate the average of the weight vectors of the cluster:

X = 1/n
∑n
i=1Xi

5. Use X , obtained in previous step, as the weight vector of the representing hidden node of the

cluster.

As it is observed in the above pseudo-code, clustering of hidden nodes is only performed based on the

angles of weight vectors and not their norms. This is in contrast with the earlier discussion suggest-

ing that clustering must be performed based on both the angles and the norms of the weight vectors.

However, since in the above algorithm the average of weight vectors of each cluster is used, in the case

when a weight vector has a far distant norm from the others, this will also be reflected in the averaged

weight vector. Therefore, the final representing hidden node is a good approximation of the hidden nodes

forming the cluster.

4.5.1 Angle Indicating Similarity

For a given hidden node, the incoming synaptic weights can be shown in vector from as:

X = (x1, . . . , xn)
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X is called the weight vector of the hidden node; where xk (k = 1, . . . , n) is the incoming synaptic

weight from input node k to the corresponding hidden node and n is the number of nodes in the input

layer. The induced local field vector for a given input pattern vector:

P = (p1, . . . , pn)

is calculated as the inner product of the two vectors X and P :

X.P (4.1)

Equation 4.1 can also be written in matrix multiplication form:

XPT

Suppose ‖ .‖ is the vector norm’s function from the vector space to the real numbers, and

0 ≤ θ ≤ π (4.2)

is the angle between the vectors X and P ; then:

X.P =‖X ‖‖P ‖ cos θ (4.3)

For two hidden nodes i and j, supposeXi andXj are the associated non-zero weight-vectors. Given

an input-pattern vector P , the corresponding induced local fields are:

Xi.P =‖Xi ‖‖P ‖ cos θip 0 ≤ θip ≤ π (4.4)

 

Figure 4.3: The above diagram shows the angle betweenX (the weight-vector of a hidden node) and P (an input-vector) in a two dimensional space.

It is assumed that the number of input nodes, including bias, is 2. The receptive connectivity of the hidden node is (1, 1) with the weight-vector

of (2, 4). The diagram also shows that the coordinates of the input-vector is (1,−6). The angle between the two vectors in Radian is calculated

as: θ = ArcCos
( (2,4)(1,−6)
‖(2,4)‖‖(1,−6)‖

)
≈ 2.51. If the other weight-vector, Y , lies in the same line as X , but with opposite direction, the angle

between P and Y would be: α = π−2.51 ≈ 0.94. When the activation function is odd, α changes the sign, but not the magnitude of the original

induced local field.
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Xj .P =‖Xj ‖‖P ‖ cos θjp 0 ≤ θjp ≤ π (4.5)

where θip and θjp are the angles between vectors Xi and P , and Xj and P , respectively. Suppose for

every P in the epoch, the absolute value of the induced local fields produced by Xi and Xj are equal:

|Xi.P | = |Xj .P | (4.6)

By applying Equations 4.4 and 4.5 in Equation 4.6 we have:

‖Xi ‖ | cos θip| =‖Xj ‖ | cos θjp|

A trivial answer for this equality is: θip = π/2

θjp = π/2

(4.7)

which is an insensible answer: it means the two weight vectors are orthogonal to the input space. Hence,

all the induced local fields are zero. In this case, the output of the respective hidden nodes would also be

zero if the activation function, ϕ, intersects the origin of the Cartesian space; i.e. ϕ(0) = 0. On the other

hand, if ϕ(0) 6= 0, it only shifts the induced local fields of the next layer. This, however, is unnecessary

as the existing bias of the next layer would, itself, apply an affine transformation to the layer. Therefore,

this trivial solution for Equation 4.6 can be ignored, but two other trivial answers still exist:‖Xi ‖=‖Xj ‖

θip = θjp

(4.8)

and: ‖Xi ‖=‖Xj ‖

θip = π − θjp
(4.9)

Since Equations 4.8 and 4.9 must hold for every pattern in the epoch, it is required that:

θiph = θjph

and

θiph = π − θjph

where θiph is the angle between Xi and Ph, while θjph is the angle between Xj and Ph, and Ph is the

pattern in the epoch with size s; h = 1, . . . , s. However, it is very unlikely to have equal angles between

all input patterns and the weight vectors Xi and Xj when dealing with large epochs. The reason is that

the two weight vectors are fixed in the space, while the input pattern vectors are likely to occupy the

space dispersedly. The larger the epoch, the more possible for the input pattern vectors to occupy the

space unevenly. The case is even less possible for nonlinear or complex data, like most of the real world

problems. Since there is a nonlinear relation between vector components of nonlinear input vectors, it

is unlikely to have a linear relation between their angles with two fixed weight vectors. The problem

is exacerbated when the input space is a high dimensional one; i.e. when the number of input nodes is
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high. In this case the input pattern vectors can occupy the high dimensional space freely and hence are

unlikely to have equal angles with the two weight vectors.

Thus, ignoring the special cases in Equations 4.7, 4.8 and 4.9, a general answer to the problem is:

‖Xi ‖
‖Xj ‖

=
| cos θjp|
| cos θip|

(4.10)

Since the left hand side of Equation 4.10 is fixed, with the same argument as before, it can be said that

it is unlikely to have an input space and vectors Xi and Xj that fulfil equality 4.10. As a result, we

may derive the following conclusion: instead of considering the angles between input pattern vectors

and weight vectors, it is better to consider the angle between the weight vectors themselves.

Defining θij as the angle betweenXi andXj , in limits, for every input pattern vector P in the epoch

we have:

|Xi.P | → |Xj .P |

if: ‖Xi ‖→‖Xj ‖

θij → 0

(4.11)

or: ‖Xi ‖→‖Xj ‖

θij → π

(4.12)

Since in practice we do not deal with the limits of the weight vectors and the angles, a parameter taking

into account the distance of the weight vectors’ norms and their angles is used:c = λ| ‖Xi‖ −| ‖Xj‖ |+ (1− λ) θij

0 ≤ λ ≤ 1

(4.13)

Equation 4.13 introduces a distance function measuring how far the induced local fields of two

weight vectors xi and xj are relative to each other; λ is the desired trade-off parameter between the

absolute distance of the vectors’ norms and their angle.

In Equation 4.6, the absolute value of the induced local fields has been used while, in general, NNs

deal with real values and not necessarily with absolutes. However, considering the activation functions

of the hidden nodes, it can be shown that the use of absolute values do not confine the generality of

the aforementioned arguments. If the activation function, ϕ, is even - i.e. for every t in the domain

ϕ(−t) = ϕ(t) - the sign of the induced local fields can be ignored. If ϕ is odd, then for every t in the

domain: ϕ(−t) = −ϕ(t). In this case it is obvious that the signs are vanished if condition 4.11 happens.

For the case of condition 4.12, the signs can be ignored provided that the sign of one of the hidden

nodes’ outgoing weight is changed. Since θij → π, the vectors Xi and Xj are almost in the same line,

but in opposite direction. Therefore, for every vector P in the epoch: θip = π − θjp. So:

Xi.P =‖Xi ‖‖P ‖ cos θip →‖Xj ‖‖P ‖ cos(π − θjp)

=‖Xj ‖‖P ‖ cos θjp

= −Xj .P
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Hence, by changing the sign of the outgoing weight of hidden node i (or j), the new NN would be

identical to the previous one. So, the sign of the induced local fields can be ignored even when the

activation function is odd. Since most of the employed activation functions are often even or odd, the

above two cases are usually considered when evaluating the performance of hidden nodes’ receptive

weight vectors.

4.6 Number of Generations and Back-Propagation Iterations
As stated earlier MINES adopts structural and parameter learning concurrently: every GA generation,

defining the connectivity patterns (structural learning), is followed by some number of BP iterations,

adjusting synaptic weights (parameter learning). Applying structural learning alone would result the

contributed weights untrained; leading to a large error, making supervised learning unsuccessful. On the

other hand, using parameter learning in isolation would leave the NN structure unsuitable for the problem

at hand. Hence, and also according to the extensively surveyed literature, the two techniques must be

carried out simultaneously. However, two natural questions would arise in this regard: 1. how many

GA generations must be applied before starting a parameter learning session; 2. what is the appropriate

number of BP iterations required after a course of structural learning.

Regarding to the first question, we may say that one GA generation is enough to be applied in each

session. If it is needed, increasing the number of new offspring per generation would provide enough

diversity leaving additional number of GA generations unnecessary. Moreover, several number of con-

secutive GA generations, without reducing the MSE, may result in a premature structural convergence.

With respect to the second question, the appropriate number of BP iterations is harder to determine.

Nevertheless, it seems straightforward to presume that few number of BP iterations are inadequate as it

would only cancel out the jump in the MSE, resulted from the previous distortions caused by the GA

or clustering to the synaptic weights. On the other hand, too many BP iterations would over-tune the

synaptic weights. Over-tuning is time consumingly worthless since the finely adjusted synaptic weights

would be changed in the next GA generation, and when re-clustering is applied. In fact, a small change

in the finely tuned synaptic weights would result in a huge jump in the MSE comparing to the previous

generation; a lot of number of iterations are sometimes required to reduce the error to the former levels.

Therefore, the number of BP iterations must be selected so that it would properly reduce the error

below the previous levels of former generations while at the same time preventing over-tuning. In this

respect, an ad hoc rule of thumb is to use a moderate fixed number of BP iterations after each genera-

tion, with the flexibility of applying further BP iterations to reduce the error to former levels whenever

necessary.

4.7 Convergence of MINES
The convergence of MINES is a combination of a direct and an indirect convergence of the GA. As stated

earlier, each individual in the population is associated to a single hidden node in the NN. However, this

does not mean that the total number of hidden nodes is equal to the total number of individuals. In fact,

two or more individuals may point to a single hidden node in the network (see Figure 4.2). In other
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words, the total number of GA individuals remains constant during evolution. What makes change in the

quantity of the contributed hidden nodes is a reduction in the number of distinct connectivity patterns

and the number of clusters. The total number of hidden nodes, in each generation, is equal to the total

number of created clusters.

Direct convergence of GA is the result of the convergence of the population towards individuals

possessing higher MI. Since mutation and crossover is applied to the connectivity pattern of the individ-

uals, connections providing higher fitness values would dominate the rest. The direct convergence of the

GA is translated in MINES by primarily grouping individuals having same connectivity pattern into a

single cluster; although, subsequent clustering may also be applied based on the incoming and outgoing

synaptic weights. The less is the diversity of the connectivity patterns in the population, the more likely

is to have fewer hidden nodes.

Indirect convergence of the GA is affected by both clustering and BP process. It should be noted

that, individuals in the same cluster share the same fitness value since they represent a single hidden

node. Clustering, therefore, influences the GA convergence by grouping those individuals sharing same

fitness value. The less the number of clusters, the fewer the number of distinct fitness values. It is worth

considering that clustering may cause some distortion to the GA evolution. This is because, an individual

may change its former cluster and get re-clustered to represent a new hidden node.

On the other hand, clustering of the weight-vectors is directly affected by the BP process. BP

modifies all synaptic weights during NN training. The change in the synaptic weights of the hidden

nodes alter the angles. Change in the angle of the weight-vectors directly affects clustering and indirectly

influences the convergence of GA. Additionally, the modification of the synaptic weights, in general,

alters the error of the network and the residual errors of the hidden nodes. Hence, the MIs between

hidden nodes and the residual errors, being the fitness of the associated individuals, is directly altered

by BP. Concerning this, BP has again an indirect effect on the convergence of the GA, which may partly

distort the evolution too.

The convergence of MINES eventually happens when no newly created hidden node is able to be

replaced in the evolving NN. This is mainly due to the direct and indirect convergence of the GA men-

tioned earlier. However, the level of the network’s error also plays an important role in the convergence

of MINES. When the MSE is sufficiently low, the current incorporated hidden nodes in the network

would capture most of the network’s error. It equivalently means that these hidden nodes have a con-

siderably high MI with the residual errors. Hence, any newly created hidden node would have a lower

chance to possess higher MI than those already incorporated.

In Section 4.6 the suitable number of BP iterations and GA generations were discussed. The number

of BP iterations also plays an important role in the way the system is converged. This is because, the error

is directly controlled by the BP process. The more is the number of BP iterations after each generation,

the faster the error is reduced. A quick reduction in the error is equivalent to granting more chance to

the current incorporated hidden nodes to not leave their position in favour of new ones. In other words,

the current incorporated hidden nodes would always benefit from a host’s advantage of being already
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a part of the network. Contrariwise, when fewer number of BP iterations are used, more connections

find the chance of being incorporated into the network. This is due to a gradual reduction of the error,

allowing the GA search for new connections around various points in the weight space. When higher

number of BP is used, the NN is likely to get trapped in a local minimum without letting GA to search

for alternative connections.

4.8 Summary and Remarks
In this Chapter, it was explained that MINES is a combination of a FFNN incorporated with GA using MI

as the fitness function while exploiting a clustering system to eliminate similar weight vectors. A general

overview of the implementation of a FFNN using Java language was given. Although the implemented

NN is designed to have a multilayer structure, only a three layer FFNN has been used in MINES. A

dynamic learning rate was added to the implemented FFNN. The conceptual procedure of the added

utility was explained. It was shown that the new system is far more capable than the old one as it could

classify the two-spiral problem with 93% accuracy on the training set using 30 hidden nodes.

It was mathematically proved that, when weight vectors have a close length, their angle can be

used as a decisive factor defining their similarity. Equation 4.13 defines the similarity factor c of two

weight vectors based on their Euclidean length and sharing angle. The equation clarifies why clustering

of weight vectors based on their angle is fundamentally true in MINES (refer to Section 4.5 for details

of the utilized algorithm).

In MINES the genetic evolution is only applied to the connectivity patterns of hidden nodes through

mutation and crossover on the binary variables of GA individuals. Every hidden node is associated to

one or several GA individuals; also, every individual is related to hidden node defining its connectivity

pattern to the input nodes. The weight vectors of hidden nodes is defined outside the GA mainly by BP

algorithm and the clustering system. The clustering is applied by X-means or Simple K-means algorithm

based on the angle of the weight vectors. After every GA generation evolving the connectivity patterns,

some number of BP iterations are applied to adjust and parametrically train the synaptic weights.

It is recommended to only use one GA generation before running BP algorithm. However, the

number of BP iterations is essential to the convergence of MINES. In general, the more is the number of

BP iterations, the faster is the convergence.

The convergence of MINES is a combination of a direct and an indirect convergence of the GA.

The reduction of the number of distinct connectivity patterns defines the direct convergence of the GA;

whereas, BP and clustering would also impose a reduction in the number of clusters, which is attributed

to the indirect convergence of the GA.



Chapter 5

Preliminary Testing of MINES

In this chapter the performance of MINES is tested on two theoretical problems: a regression and a

classification. Section 5.1 deals with preliminary testing of MINES on a regression problem, while

Section 5.2 shows the ability of the system on the two-spiral classification task.

5.1 Preliminary Testing on Regression Problem
This section aims to test the performance of MINES on a regression problem used by Saito and Nakano

in 2002 [56]1. The problem is also used as the main benchmark of testing and tuning the parameters of

MINES. A brief structure of the section is as follow:

• Section 5.1.1 brings an overview of the importance of law discovery and its connection with NNs.

• Section 5.1.2 introduces the underlying polynomial regressed by MINES. The rationales and logics

of choosing the polynomial regression problem as the main theoretical benchmark of MINES will

be addressed.

• Section 5.1.3 explains the most important parameters of MINES that may influence the experi-

mental performance of the system on the polynomial regression problem. It will be argued that

the number of BP iterations and the generation overlap size are two important influential factors

that the system’s stability must be tested against them.

• Section 5.1.4 examines the performance of the system based on the experimental settings. While

changing the influential parameters (i.e. the number of BP iterations and the generation overlap

size), the stability of the system is assessed according to the obtained number of distinct connec-

tivity patterns, the number of evolved hidden nodes, the root mean squared errors (RMSEs) on

the training and test sets, the number of GA generations before convergence and finally the total

run time of the system. The findings make define most of the important settings possible for the

current and future problems.

• Section 5.1.5 deals with the results of one of the best performers of MINES in connection to the

correct discovery of the underlying polynomial.

1The polynomial first introduced by Sutton and Matheus in 1991 [66]
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• Section 5.1.6 compares the performance of MINES to those obtained by Saito and Nakano [56].

5.1.1 Law Discovery with Neural Network

The discovery of numeric laws is regarded as the essence of data mining [55]. The Kepler’s third law

(T = kr3/2) is a famous example in this regard, explaining the relation of the distance to the sun (r) and

the revolution period (T ) of five planets, using a constant (k). Conventional literature extracting such

rules have all a basic strategy in common: they recursively combine two variables into a new one by

using multiplication, division or some predefined prototype functions. However, the strategy may turn

out to be inefficient when the number of variables at hand is large. In this case, the combinatorial process

may become systematically outsized, causing the desired law be missed sometimes. The former is due

to the combination of two variables into one which usually must be done in order. In addition, in these

systems, the law may not be discovered properly when the attending powers in the desired law are not

integers. To overcome this, “some appropriate prototype functions”, like r3/2, must usually be prepared

in advance. Nevertheless, a priori information is rarely available [55].

An alternative approach, contrasting the above mentioned methods, relies on using a NN - as a

regression processor - for data mining rule extraction. Define:

X = (x1, . . . , xK)

and

W = (W0,W1, . . . ,WJ)

as two vectors of independent variables in RK and RJ(K+1), respectively; where:

W0 = (w0, w1, . . . , wJ)

and, for j = 1, . . . , J :

Wj = (wj1, . . . , wjK)

Hence, a polynomial function can be formulated as:

f(X;W) = w0 +

J∑
j=1

wjx
wj1

1 . . . x
wjk

k = w0 +

J∑
j=1

wj

K∏
k=1

x
wjk

k (5.1)

All elements of X can be assumed to be positive, “by adding an adequate value” to each xk whenever

is necessary [55]. The imposed assumption does not reduce the generality of the problem as the added

value can be regarded as shifting the whole data points in the space; the only requirement is to have a

finite number of data points. Hence, we may suppose:

∀k 0 < xk

Then:

f(X;W) = w0 +

J∑
j=1

wj exp(ln(

K∏
k=1

x
wjk

k )) = w0 +

J∑
j=1

wj exp(
∑
k

wjk ln(xk)) (5.2)
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Given that the number of data points are finite, by dividing each xk by a sufficiently large constant, it

can be further assumed that each data point is smaller than one; i.e.:

0 < xk < 1 (5.3)

The assumption is again valid as it only represents a uniform scaling of the data in the space2.

Assuming for each k, ln(xk) be an input signal, the right hand side of Equation 5.2 is equivalent to the

output of a three layer FFNN having K input nodes, J hidden nodes and one output node; w0 is the

bias term to the hidden layer, while there is no bias to the input layer. All hidden nodes functions are

exponential while the output node function is identity.

A common regression problem is about finding a curve in the RK+1 that best fits a number of

independent variables from the set I to their corresponding dependent variables from the set D; where:

I =
{
Xi = (x1i, . . . , xki) ∈ RK | i = 1, . . . , N

}
and

D =
{
yi ∈ R | i = 1, . . . , N

}
In order to exploit a NN to find the required regressive function, the set

E =
{

(Xi, yi) | i = 1, . . . , N
}

is assumed to be the training epoch, where Xi is the input vector and yi is the respective desired value.

The training error is the usual MSE over each yi, the ith desired value, and the output of the network

obtained by presenting Xi.

5.1.2 Polynomial Discovery

The polynomial used by Saito and Nakano [56], in Equation 3.15 of Section 3.4, has been selected to

test the regression capabilities of MINES. For convenience, the polynomial is again recalled here (note

that the polynomial is nonlinear):

y = 2 + 3x1x2 + 4x3x4x5

There are many rationales to choose the above regression problem as a performance benchmark of

MINES. First, as provided literature shows ([56]), the underlying regression problem is quite challeng-

ing to be solved by a FFNN. The complicated techniques, rooted in advanced mathematical foundations,

applied by Saito and Nakano [56] confirms that the problem is important to be explored. In general, the

applications of NNs in regression is of interest. The technique can potentially be used in data mining and

even stock price assessment; discussed Nakano and Saito in 2002 [44]. Second, the selected regression

problem leaves no ambiguity about optimality of the objective FFNN. In other words, it is fairly straight-

forward to determine the optimal NN regressing the above polynomial. The optimal NN can be used as

the benchmark to evaluate the performance of MINES and facilitate comparisons. Any obtained regres-

sion formula from the adopted NN, being different from the optimal one, can be easily compared with
2Equation 5.3, in Section 5.1.3, has been used to produce unambiguous artificial data set as inputs of MINES.
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Figure 5.1: NN structure implementing polynomial regression problem

the original polynomial. This is clearly advantageous as in many NN applications a lot of uncertainty

arises about the type of an optimal NN in relation to the problem. As it will be shown later in this section,

the presented polynomial guarantees and demonstrates the optimal NN regressing it (see Equations 5.5

and 5.6). Third, the desired polynomial can be achieved through a partially connected NN, where zero

values of synaptic weights are, in fact, disconnected synaptic connections. Advantageously, this is in

line with the learning algorithm that MINES pursues: it constructs the hidden layer from hidden nodes

having various connectivity patterns. Fourth, it has been repeatedly stated that [44][56][67] the number

of hidden nodes in the NN solving the regression problem cannot be determined in advance. It is as-

serted that “a criterion” is needed to “choose” hidden nodes “from several candidates” and the task must

be resolved by trial and error. In the literature, the decisive factor to find the optimal number of hidden

nodes was cross-validation. The polynomial regression problem is, therefore, a right choice for MINES

since the ability of the system configuring the required hidden layer can be extensively investigated.

Using Equation 5.2, Equation 3.15 can be transformed to the following new equality:

y = 2 + 3 exp(ln(x1) + ln(x2)) + 4 exp(ln(x3) + ln(x4) + ln(x5)) (5.4)

subject to holding that xi ≥ 0 (i = 1, . . . , 5). Suppose X = (ln(x1), . . . , ln(x5)) is an input vector to

a FFNN, having 5 input nodes. The FFNN, regressing the above polynomial, is an optimal one if it can

exactly replicate Equation 5.4 by obtaining the following bias and weight values through the training

procedure:

neuron 1 :



bias : 0

hidden node 1 :

w11 = w12 = 1

w13 = w14 = w15 = 0

hidden node 2 :

w21 = w22 = 0

w23 = w24 = w25 = 1

(5.5)
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neuron 2 :


bias : w0 = 2

w1 = 3

w2 = 4

(5.6)

where wjk (j = 1, 2; k = 1, . . . , 5) is the synaptic weight of hidden node j incoming from the input

node k; w0 is the bias term of the hidden layer, while w1 and w2 are the outgoing weights of the hidden

nodes to the single output node (see Figure 5.1).

5.1.3 Settings of Involved Parameters

Since MINES is a combination of several systems, many settings are required when starting a training

course. In general, it would be a great challenge (see Section 1.5) to coordinate all the involved systems

and find appropriate settings optimally working in collaboration. Hence, all important settings are exper-

imentally examined in this section and their effect are discussed. The experiments will reveal parameters

the system is mostly sensitive against, aiming to provide a reliable indication to choose appropriate

settings for subsequent problems.

To train the objective NN, the training epoch was consisted of 1000 patterns with each pattern being

a vector of 5 elements:

X = (x1, . . . , x5)

so that:

xi = ln(ri)

where ri is created randomly in the interval [0, 1], according to Equation 5.3. For each pattern, the

desired value is the corresponding value y in Equation 3.15. Similarly, 250 extra data, forming the test

set, was created to evaluate the performance of the trained NN. The proportion of the test set and training

set was chosen at random.

As explained in Chapter 4, MINES is equipped with a dynamic learning rate adjusted accordingly

during the training progress. Hence, the system is mainly insensitive to the initial setting of the learning

rate. This is unlike other NN systems, using a fixed learning rate, making them vulnerable to the allocated

value. Therefore, the concentration in MINES is not usually on the initial value of the learning rate as it

will be adjusted automatically whenever is necessary. However, to avoid the system pause when training

is started, the initial learning rate is usually set to a sufficiently small value. In the training procedure of

polynomial discovery, the initial learning rate was set to 0.001 for all carried out experiments. Also, a

fixed momentum constant of 0.1 was uniformly used to further facilitate training. The hidden and output

layer activation functions are, respectively, exponential and identity; as discussed in Section 5.1.1.

As explained in Section 2.4.2, the histogram technique for calculating MI requires binning of the

range of the involved random variables. For this purpose, the output range of the hidden nodes and the

residual errors must be binned during training procedure in MINES. The required number of bins can

potentially be a disputable factor. However, based on the extensive mathematical literature provided in

Section 2.4.3, leading to Equation 2.57, we may conclude that, over several estimation of MI and for
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a sufficiently large number of data points, a low deviation from the mean is more likely to be obtained

when a relatively small number of bins is used. Nonetheless, the argument holds true providing that the

range assigned to hidden nodes and residual errors are kept fixed when training is in progress3. This is

usually not the case as activation functions may not have a bounded range, like the exponential function

used in polynomial discovery; similarly, there is no guarantee to find a boundary for the residual errors.

To overcome these uncertainties all values are transformed to the interval (0, 1) as explained in details in

Section 4.3.1. Having fixed the boundary ranges of hidden nodes and residual errors to (0, 1), we have

used a fixed number of bins equal to 5 for all variables involved in the calculation of MI. This means

the interval (0, 1) has been divided to 5 equal subintervals with the length of 0.2 each. According to the

provided literature and also based on some preliminary experiments of MINES, the appropriate number

of bins are set to 5, or 10.

The size of the GA population is 32. Since the NN has 5 input nodes, 32 individuals seem to provide

enough diversity to explore various receptive connectivity patterns. A larger population often prolongs

the evolutionary convergence without providing substantial benefits. The number of new offspring per

generation is set to five4.

The generation overlap size, r, introduced in Section 4.4, is another important parameter defining

the selective pressure of the individuals in each generation. Different values of generation overlap size

are expected to affect the nature and speed of convergence. This is because, the generation overlap size

defines the proportion of the population which are compared to the new offspring before being replaced.

For this reason, generation overlap size of 2, 4, 8, 16 and 24 have been used to investigate contrasts in

the obtained results.

The number of BP iterations after each generation is another important factor determining the selec-

tive pressure in the GA (see Section 4.6). Hence, experiments have been conducted, by adopting various

number of BP iterations (5, 10, 20, 30, 40, 50 and 100), to reveal any meaningful difference. For each

experiment, the cycle of applying one GA generation followed by several BP iterations has been repeated

for 200 times; though, the system usually converges in earlier steps. At the end of the 200 repeats (i.e.

generations), the GA stops and the system does not go through further structural learning application.

However, the system continues on parameter learning procedure to finely tune the final synaptic weights

by applying the BP algorithm for 1000 continuous iterations. It is worth mentioning that, a similar ap-

proach of finely tuning weights, after obtaining a steady structure, has also been adopted by Saito and

Nakano (2002) [56], when introducing BCW, and also by Tanahashi et al. (2005) [67], in the newer

version of BCW5.

Each set of experiments were performed on 30 randomly created seeds. We have used 30 exper-

3In derivation of Equation 2.57, it was assumed that the underlying variables - namely X and Y - have a bounded range. For

the random variable X , this can clearly be observed from Equations 2.32 and 2.32. The random variable Y , was also assumed to

be the same.
4Some preliminary tests have been conducted in this regard by experimenting 1, 2, 4 and 5 new offspring per generation.

In general MINES does not show any meaningful sensitivity over changing the number of new offspring per generation, but

sometimes the convergence of the system is prolonged.
5“We pruned the near-zero ... common weights and retrained to get the final common weights ...” [67].
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Figure 5.2: Root mean squared error of training set across various num-

ber of BP iterations, when the generation overlap size is 2. CI repre-

sents a 90% confidence Interval bar.

Figure 5.3: Root mean squared error of training set across various num-

ber of BP iterations, when the generation overlap size is 4. CI repre-

sents a 90% confidence Interval bar.

Figure 5.4: Root mean squared error of training set across various num-

ber of BP iterations, when the generation overlap size is 8. CI repre-

sents a 90% confidence Interval bar.

Figure 5.5: Root mean squared error of training set across various num-

ber of BP iterations, when the generation overlap size is 16. CI repre-

sents a 90% confidence Interval bar.

Figure 5.6: Root mean squared error of training set across various num-

ber of BP iterations, when the generation overlap size is 24. CI repre-

sents a 90% confidence Interval bar.
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Figure 5.7: Root mean squared error of test set across various number

of BP iterations, when the generation overlap size is 2. CI represents a

90% confidence Interval bar.

Figure 5.8: Root mean squared error of test set across various number

of BP iterations, when the generation overlap size is 4. CI represents a

90% confidence Interval bar.

Figure 5.9: Root mean squared error of test set across various number

of BP iterations, when the generation overlap size is 8. CI represents a

90% confidence Interval bar.

Figure 5.10: Root mean squared error of test set across various number

of BP iterations, when the generation overlap size is 16. CI represents

a 90% confidence Interval bar.

Figure 5.11: Root mean squared error of test set across various number

of BP iterations, when the generation overlap size is 24. CI represents

a 90% confidence Interval bar.
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iments since, when applying the t-test, any significant difference can be observed by a higher level of

confidence than what, otherwise, would be provided by fewer number of experiments.

5.1.4 Experimental Results of Settings

This section aims to reveal the optimum number of BP iterations and generation overlap size which

statistically result the best performance on the carried out experiments. The focus is first on the suitable

number of BP iterations and later on the generation overlap size. To this end, the RMSE, the number

of distinct connectivity patterns and the number of final hidden nodes are observed when the number of

BP iteration is changed across different values for generation overlap size. Table 5.1 lists most of the

important settings of MINES used for all of the incoming experiments of this section.

Figures 5.2 to 5.6 show the RMSE of MINES on the training set, when converged on the polynomial

regression problem. The figures represent the performance of the system in reducing the training error

when the BP iteration is the changing parameter under consideration (the number of BP iteration is

changing from 5 to 100 in each figure). To consider the probable influence of the generation overlap

size, experiments are also run for generation overlap size of 2, 4, 8, 16 and 32. The figures reveal

that, except for the BP iteration of 100, there is no significant difference in the ability of the system to

reduce the training error across various generation overlap size. Considering the low values of RMSEs

(about 0.1 on average), it can be claimed that MINES shows a good performance on approximating the

underlying polynomial on the training set.

Similar to above, Figures 5.7 to 5.11 show the RMSE of MINES on the test set, while regressed

on the polynomial regression problem. Again, it is observed that the overall generalization performance

of the system is very good over all generation overlap sizes. It is also observed that, except for the BP

iteration of 100, the RMSEs do not present a significant difference when the system is run for various

number of BP iterations.

Since in all experiments the system is able to reduce the RMSE of the system significantly, the

concentration is now shift to the ability of the system to reduce the number of hidden nodes. This is

because the underlying polynomial can be regressed optimally with a NN with only two hidden nodes

(see Figure 5.1). Hence, we may conclude that the fewer is the number of evolved hidden nodes, the

more optimal is the system’s architecture. The statement is however crude; although, it provides a simple

indication to proceed our investigation. In fact, a NN with 3, 4 or even 5 hidden nodes could be as optimal

as the one shown in Figure 5.1 depending on the way the receptive connections are formed. Nevertheless,

it is very obvious that a NN with considerably more number of hidden nodes is far from an optimum

Population

Size

No. of

Generations

No. of

Parents

No. of

Offspring

Recombination

Type

Mutation

Rate

Clustering

Type

No. of

Clusters

32 200 2 5
2-point

Crossover
1%

X-

Means
Max=3

Table 5.1: Important Settings of Polynomial Regression Problem
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Figure 5.12: Distinct number of connectivity patterns across various

number of BP iterations when the generation overlap size is 2. CI

represents a 99.9% confidence Interval bar.
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Figure 5.13: Distinct number of connectivity patterns across various

number of BP iterations when the generation overlap size is 4. CI

represents a 99.9% confidence Interval bar.
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Figure 5.14: Distinct number of connectivity patterns across various

number of BP iterations when the generation overlap size is 8. CI

represents a 99.9% confidence Interval bar.
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Figure 5.15: Distinct number of connectivity patterns across various

number of BP iterations when the generation overlap size is 16. CI

represents a 99.9% confidence Interval bar.
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Figure 5.16: Distinct number of connectivity patterns across various

number of BP iterations when the generation overlap size is 24. CI

represents a 99.9% confidence Interval bar.
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Figure 5.17: Number of obtained hidden nodes across various number

of BP iterations when the generation overlap size is 2. CI represents a

99.9% confidence Interval bar.
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Figure 5.18: Number of obtained hidden nodes across various number

of BP iterations when the generation overlap size is 4. CI represents a

99.9% confidence Interval bar.
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Figure 5.19: Number of obtained hidden nodes across various number

of BP iterations when the generation overlap size is 8. CI represents a

99.9% confidence Interval bar.
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Figure 5.20: Number of obtained hidden nodes across various number

of BP iterations when the generation overlap size is 16. CI represents

a 99.9% confidence Interval bar.
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Figure 5.21: Number of obtained hidden nodes across various number

of BP iterations when the generation overlap size is 24. CI represents

a 99.9% confidence Interval bar.
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configuration in comparison with the one in Figure 5.1.

Figures 5.12, 5.13, 5.14, 5.15 and 5.16 show the number of distinct connectivity patterns of the

evolved network for various number of BP iterations when the generation overlap size is 2, 4, 8, 16, 24,

respectively. Similarly, Figures 5.17, 5.18, 5.19, 5.20, 5.21 show the number of evolved hidden nodes

for various number of BP iterations when the generation overlap size is 2, 4, 8, 16, 24, respectively. The

figures are provided with the associated standard errors (SE) and the 99.9% confidence interval (CI)

bars.

Wherever SE bars overlap, the two experiments are not significantly different. However, the con-

verse is not necessarily true: when error bars do not overlap, it does not necessarily imply that exper-

iments are significantly different. In this case, confidence intervals might provide more information:

when confidence intervals do not overlap, the experiments are certainly significant. Again, the converse

is not necessarily true: it is not valid to conclude that when CI bars overlap, there is no significant differ-

ence. Hence, when comparing standard error and confidence interval bars, no certain conclusion can be

derived on situations where error bars do not overlap, but CI bars do.

Figures 5.12 to 5.16 and 5.17 to 5.21 indicate that, as the number of BP iteration goes up, there is

almost a constant increasing trend in both the number of distinct connectivity patterns and the number

of obtained hidden nodes, across all values of generation overlap size. In other words, the more is the

number of BP iterations, the higher is the number of distinct connectivity patterns and the number of

obtained hidden nodes; which is in line with our expectation explained earlier in Section 4.6. More

specifically, the figures reveal that, across all values of generation overlap size, when 5 or 10 number

of BP iterations are used, the number of distinct connectivity patterns and obtained hidden nodes are

significantly different (with 99.9% confidence) from results corresponding to 30, 40, 50 and 100 number

of BP iterations.

An important conclusion is that either 5 or 10 number of BP iterations should be used to obtain

best results - in terms of lower number of distinct connectivity patterns and obtained hidden nodes -

with respect to the underlying polynomial regression problem. Note that, it is not possible to statistically

realize (at least with the aforementioned level of confidence) whether there is a significant difference

between the results obtained when the number of BP iteration is 5 or 10; this is because, although the

standard error bars do not overlap, the CI bars do.

So far, our findings indicate that when the number BP iterations is 5 or 10, MINES obtains the

lowest number of distinct connectivity patterns and hidden nodes, over various values of generation

overlap size for the regression problem outlined in Equation 3.15. Since the underlying polynomial

can optimally be regressed with two hidden nodes, we may consider the aforementioned number of BP

iterations the best, provided that the system also performs satisfactory on other aspects. For this reason,

the error on the training and test sets, the convergence speed and the total run time of the system are also

taken into account. Having fixed the number BP iterations on 5 or 10, the performance of the system

will be assessed against the aforementioned factors, across various values for generation overlap size.

Figures 5.22 and 5.28 present the number of distinct connectivity patterns, over various values of
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Figure 5.22: Number of distinct connectivity patterns across various

number of generation overlap size when the BP iteration is 5. CI rep-

resents a 90% confidence Interval bar.
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Figure 5.23: Number of obtained hidden nodes across various number

of generation overlap size when the BP iteration is 5. CI represents a

90% confidence Interval bar.
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Figure 5.24: RMSE on the training set across various number of gen-

eration overlap size when the BP iteration is 5. CI represents a 90%

confidence Interval bar.
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Figure 5.25: RMSE on the test set across various number of generation

overlap size when the BP iteration is 5. CI represents a 90% confidence

Interval bar.
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Figure 5.26: Convergence of MINES, measured based on the number

of GA generations, across various number of generation overlap size

when the BP iteration is 5. CI represents a 90% confidence Interval

bar.
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Figure 5.27: Run time required for the training of MINES for 200

cycles, across various number of generation overlap size when the BP

iteration is 5. CI represents a 90% confidence Interval bar.
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Figure 5.28: Number of distinct connectivity patterns across various

number of generation overlap size when the BP iteration is 10. CI

represents a 90% confidence Interval bar.
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Figure 5.29: Number of obtained hidden nodes across various number

of generation overlap size when the BP iteration is 10. CI represents a

90% confidence Interval bar.
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Figure 5.30: RMSE on the training set across various number of gen-

eration overlap size when the BP iteration is 10. CI represents a 90%

confidence Interval bar.
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Figure 5.31: RMSE on the test set across various number of genera-

tion overlap size when the BP iteration is 10. CI represents a 90%

confidence Interval bar.
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Figure 5.32: Convergence of MINES, measured based on the number

of GA generations, across various number of generation overlap size

when the BP iteration is 10. CI represents a 90% confidence Interval

bar.
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Figure 5.33: Run time required for the training of MINES for 200

cycles, across various number of generation overlap size when the BP

iteration is 10. CI represents a 90% confidence Interval bar.
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generation overlap size, when the number of BP iteration is 5 and 10, respectively. The CI bars represent

a 90% level of cofidence for all the following represented figures. The presented figures indicate that,

for both 5 and 10 number of BP iterations, the number of distinct connectivity patterns is significantly

different when the generation overlap size is 24. On the other hand, Figure 5.29 additionally indicates

that, when the number of BP iterations is 10, the number of hidden nodes is significantly different when

the genreation overlap size is 24. However, this may not be the case when the number of BP iterations

is equal to 5 as the CI bars overlap. Overal, we may conclude that the genreation overlap size of 24 is

the best choice since in both cases (i.e. 5 and 10 number of BP iterations) it provides the least number of

distinct connectivity patterns (though it may not necessarily result a significantly least number of hidden

nodes).

Another important factor to decide the proper number of generation overlap size is the performance

of the system on the unseen data. For this purpose, Figure 5.25 and 5.31 have been represented. The

figures, however, do not present significant differences across different values for generation overlap

size. Similarly, Figures 5.24 and 5.30 provides no indication to confirm that the performance of the

system is better on the training set with respect to the experimented values of generation overlap size.

The convergence of the system may also be of interest when considering various number of gener-

ation overlap sizes. Figures 5.26 and 5.32 provide results in this regard. Figure 5.26 indicates that when

the number of generation overlap size is 24, the system converges in earlier generations. However, the

result is different when the number of BP iterations is 10. Figure 5.32 does not represent any significant

difference among values of generation overlap size.

Figures 5.27 and 5.33 represent the total run time required for 200 training cycles, succeeding by

1000 continuous BP iterations in the final generation, using an Intel(R) Pentium(R) D CPU 2.80GHz

processor equipped with 1024 MB RAM. No difference can be observed in relation to any value for

generation overlap size, when the number of BP iterations is 5. When the number of BP iterations is 10,

the generation overlap size of 4 requires the least run time.

As a final conclusion we may comment that the results obtained over different values for generation

overlap size are mixed. The differences, however, are not extremely crucial since the results are all

sufficiently acceptable. Nevertheless, to obtain the least number of distinct connectivity patterns and

hidden nodes, the generation overlap size of 24 is more advisable to be used.

Figures 5.34 and 5.35 show an example graph of evolutionary learning process of MINES for the

polynomial regression problem when the number of BP iteration after each generation is 5 and the

generation overlap size is 2. Figure 5.34 shows the RMSE on the training and test set while the system

is evolving for 200 GA generations. It can be seen that the RMSE has an overall declining trend, while

sometimes in some generations there are jumps in the RMSEs. The jumps in the RMSEs are usually due

to change in the number of connections or hidden nodes imposed by the evolution. The figure reveals

that RMSEs on the training and test sets monotonically declines after generation 150. The reason for

this monotonic decline can be explained by looking at Figure 5.35, which presents the effect of MINES

evolution on the number of distinct connections and number of hidden nodes of the evolving FFNN.
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The figure indicate that the system is converged after generation 150. Hence, there is no change in

the number of connections and hidden nodes from generation 150 to 200. This stability in the structure

of evolving FFNN makes the system reduce error using BP, while there is little distortion on synaptic

weights after each GA evolution.

Figure 5.34: RMSE on training and test sets when the BP iteration is 5

and the generation overlap size is 2.

Figure 5.35: Convergence of MINES to 5 hidden nodes when the num-

ber of BP iteration is 5 and the generation overlap size is 2.

5.1.5 Optimum Polynomial Results

The aim of this section is to explore the ability of MINES in discovering a close to optimal NN structure

regressing the underlying polynomial. As Figures 5.22 and 5.28 reveal, the number of obtained hidden

nodes varies over the 30 number of carried out experiments. However, to observe the ability of the system

in discovering the polynomial an obtained result with two hidden nodes has been selected to compare

with the optimum NN depicted in Figure 5.1.

The obtained connectivity patterns and synaptic weights are presented here in a similar fashion used
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in Equations 5.5 and 5.6:

neuron 1 :



bias : no connection (an absolute 0 weight)

hidden node 1 :



w11 = 0.9656

w12 = 0.9656

w13 = 0.0132

w14 = 0.0129

w15 = 0.0129

hidden node 2 :



w21 = −0.0075

w22 = −0.0074

w23 = 1.0057

w24 = 1.0056

w25 = 1.0056

(5.7)

neuron 2 :


bias : w0 = 1.7550

w1 = 3.2261

w2 = 3.9447

(5.8)

In compact form, Equations 5.7 and 5.8 result the following polynomial:

y = 1.7550

+ 3.2261x1
0.9656x2

0.9656x3
0.0132x4

0.0129x5
0.0129 (5.9)

+ 3.9447x1
−0.0075x2

−0.0074x3
1.0057x4

1.0056x5
1.0056

When weights in Equations 5.7 and 5.8 are rounded to no decimal place, Equation 5.9 is transformed to

the exact desired polynomial represented in Equation 3.15.

The RMSE on the training set and the test set are 0.0202 and 0.0190, respectively, for the evolved

NN above. Figure 5.36 demonstrates the declining trend of RMSE of the NN over training and test sets.

The figure shows that before generation 130 sometimes there is a jump in the RMSE in some generations.

The jump in the RMSE usually happens due to a change in the number of hidden nodes after some

GA generations when new connectivity patterns are created in the population. The adjustment of the

synaptic weights after the clustering of weight vectors may also raise the RMSE in some generations.

It is observed that, after the generation 130, when the number of hidden nodes remains still (see Figure

5.37), the RMSEs on the training and test sets decline constantly without being raised considerably in

any cycle.

Figure 5.37 demonstrates the converging trend of MINES for the polynomial regression problem.

As it can be seen, the general trend is declining for the quantity of the distinct connectivity patterns and



99 5.1. Preliminary Testing on Regression Problem

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140 160 180 200

Q
u

a
n
ti

ty

Generation

RMSE of the Polynomial Regression Problem

RMSE 

(Training 

Set)

RMSE 

(Test Set)

Figure 5.36: Declining trend of RMSE on the training and test sets on

the polynomial regression problem. There is a steady decline after the

convergence of the system on generation 130.
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and 2 hidden nodes after 130 GA generations on the polynomial re-

gression problem.
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Figure 5.38: RMSE on the training and the test sets for different number of BP iterations when the system is

converged after 200 GA generations.

the incorporated hidden nodes, although some minor jumps is observed before the convergence due to

the clustering and the GA evolution. However, after the generation 130, when the system is converged,

there is absolutely no change either in the number of distinct connectivity patterns or the number of

hidden nodes for over 70 generations. The latter reveals the robust capability of MINES in converging

towards a fixed number of hidden nodes that can be sustained for many number of generations.

Figure 5.38 represents the RMSE of the above NN on the training and test set when the system

has gone through the parameter learning for different number of BP iterations after the convergence

in generation 200. The figure reflects a very interesting feature: the system does not overfit, on the

underlying experiment, regardless of the length of the applied parameter learning after the convergence.

This is an interesting effect since it is often expected that conventional NNs perform worse on the test

set when the error on the training set comes lower than a certain threshold.
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Experiment Hidden Nodes BP Iterations RMSE (Training Set) RMSE (Test Set)

1 3

convergence 0.4135 0.4135

1, 000 0.1251 0.1272

50, 000 0.0288 0.0279

100, 000 0.0172 0.0171

2 3

convergence 0.6160 0.6413

1, 000 0.2693 0.2952

50, 000 0.0613 0.0634

100, 000 0.0346 0.0356

3 4

convergence 0.6155 0.5931

1, 000 0.2079 0.2234

50, 000 0.0315 0.0339

100, 000 0.0254 0.0271

4 5

convergence 0.8118 0.7912

1, 000 0.2675 0.2847

50, 000 0.0155 0.0162

100, 000 0.0112 0.0115

5 5

convergence 0.9035 0.8602

1, 000 0.3500 0.3794

50, 000 0.0330 0.0342

100, 000 0.0263 0.0275

Table 5.2: RMSEs on training and test sets for 5 random experiments.

5.1.6 Comparison of the Obtained Results

The carried out experiments obtained by MINES are compared to those resulted from BCW introduced

by Saito and Nakano[56]. The comparison, however, is highly superficial as the natural objectives of the

two systems are in essence completely different.

In BCW the number of incorporated hidden nodes (denoted by “J”) must be defined in advance.

For example, in the application of polynomial discovery, the number of hidden nodes was manually set

to 2 (i.e. J=2). BCW does not offer any new technique to estimate the number of required hidden nodes;

the authors suggest “employing a model selection technique such as cross-validation” to find the optimal

number of hidden nodes. On top of that, even the optimal number of clusters, denoted by G∗, must be

defined beforehand. G∗ represents the total number of “common weights” used in the weight sharing

process. For instance, for the underlying polynomial (Equation 3.15) the “true G∗” is 2 since only two

common weight values of 0 and 1 can completely result the exact polynomial. Since the “optimal G∗”

is not known “in advance”, BCW suggests that the “predetermined number of clusters”, G∗, be found

by trying different number of clusters, G, that “minimizes the generalisation error”. For this reason,
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various values of G (2, 3, 5 and 10) were experimented to reveal their performance on the training and

test sets. The RMSE on the training data showed a declining trend, in order for 3, 5 and 10 number

of clusters, while, in the same order, increases on the test set. The latter was used as a justification

of adopting two clusters for the underlying experiment since the RMSE on the test was lowest when

G = 2. The justification, however, may be unreliable as the experiments do not provide any test of

significance in spite of dealing with very close numbers: the RMSEs on the test set reported to be

0.0206, 0.0373 and 0.0384, respectively, for 3, 5 and 10 clusters. In other words, it appears that only

one experiment has been carried out for each experimental number of clusters; as if the system is not

sensitive to any type of settings, such as the initial randomly created weights and the parameters involved

in the “retraining”. Further experiments, however, reveal that whenG∗ = 2, the BCW provides the same

level of generalization performance over various experiments; the RMSE on the test set is 0.012 for all

the 5 experimented run, although it is not clear that what kind of variables are initialized in each run.

The training iteration is terminated when each element of the gradient vector is less than 10−6.

MINES, in contrast to BCW, automatically determines the number of hidden nodes. However, since

it partly relies on an evolutionary system to explore the connectivity patterns, the number of obtained

hidden nodes is not always fixed using different settings. Therefore, to compare the performance of

MINES with the BCW, the same NN used in Section 5.1.5 has been used here. The RMSEs on the

test set is 0.0190 when 100, 000 number of BP iterations was used after the convergence of the system.

Not only the performance does not show a significant difference with the one reported by BCW, but

also it can be further improved if additional BP training is applied. However, the latter comes with the

cost of extra run time. MINES could improve the generalization performance to 0.0094, when 200, 000

number of BP iterations are used. The performed experiments do not show any sign of overfitting for the

underlying polynomial regression problem, suggesting that even better performance is likely to achieve

by continuing further BP training.

The total run time for each experiment performed by BCW was about 40 minutes using a 2 GHz

Pentium. In MINES, in contrast, the training procedure takes only about 9 to 10 minutes for 200 cycles

(see Figures 5.27 and 5.33), using a 2.8 GHz Pentium . In terms of convergence, the required time is

even less as the system converges at only about 100 to 110 generations. However, as stated in Section

5.1.3, the final number of BP iterations after the last generation was equal to 1000 for the presented

experiments. Nevertheless, this number can increase to provide a better performance which in return the

run time is extended. For 100, 000 number of BP iterations the total run time would increase to about 45

minutes which is still acceptable for the very good performance that the system provides. This increases

to about 90 minutes when 200, 000 number of BP iterations are used.

It can be argued that the above results are only valid for the obtained NN with 2 hidden nodes and

other networks evolved with different number of hidden nodes may show a considerably worse perfor-

mance. The argument, however, does not seem to be in line with the experiments presented in Section

5.1.5, implying that MINES is a very stable system on the underlying regression problem. Therefore,

we may expect the system to be robust against overfitting, on the experimented polynomial problem,
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regardless of the number of hidden nodes. In other words, it would be expected that, when the system is

converged, reducing the RMSE on the training set provides a better generalization performance on the

test set.

Table 5.2 confirms the above claim by reducing the RMSE on the training set for 5 randomly

evolved NN by MINES - the generation overlap size is 24 while the number of BP after each generation

is set to 5; other variables are exactly the same as those reported in Section 5.1.3. It is observed that the

number of hidden nodes vary from 3 to 5. After the convergence, the error on the training set has been

reduced for 1, 000, 50, 000 and 100, 000 number of iterations. Results on the test set indicate that there is

a constant improvement in the generalization performance when the error on the training set is reduced.

The latter may suggest even better performance is able to achieve subject to lowering the training error

sufficiently.

5.1.6.1 Comparison to CCNN

As mentioned in the literature and in the beginning of this chapter, MINES has a close analogy with

the CCNN: both systems follow a dynamic structural and parameter learning procedures in which the

interrelationship (correlation in CCNN and MI in MINES) of the output of a focused hidden node and

the respective residual error is the main factor making the system converge. Therefore, we have selected

CCNN to compare the performance of MINES with one of the alternative systems described in the

literature.

Statistic
RMSE of

Training Set

RMSE of

Test Set
No. of Layers No. of Nodes

Run Time

(min)

mean 1.4858 1.4835 83 170 5

standard deviation 0.3530 0.3723 3 8 1

Table 5.3: CCNN Results on the Polynomial Regression Problem.

The CCNN software can be found in [68], which is the world’s largest provider of hosting for open

source software development projects. The experiments presented here are the best obtained by changing

all the involved parameters listed in Figure 5.41. There are two sets of settings: default settings and those

which have been used to run the system.

Statistic RMSE of Training Set RMSE of Test Set No. of Nodes
Run Time

(min)

mean 0.6721 0.8602 4 15

standard deviation 0.1912 0.6560 1 3

Table 5.4: MINES Results on the Polynomial Regression Problem for 5 random experiments extracted from Table 5.2

.

Figure 5.40 shows how MSE of training and test sets are lowered when the CCNN is under learning
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Figure 5.39: The trend of MSE of the CCNN for training and test sets when applied on the polynomial regression problem.

Figure 5.40: The architecture of CCNN when applied on the polynomial regression problem. Note that this is a snapshot structure at the middle of

learning process and not the structure at the convergence.

Figure 5.41: The parameters used for the CCNN when applied on the polynomial regression problem.
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process. As can be seen from Table 5.3, the average RMSE on training and test sets are 1.4858 and

1.4835, respectively. The results are significantly worse than what was obtained by MINES, listed in

Table 5.4, representing an average RMSE of 0.6721 on the training set and 0.8602 on the test set. Note

that in in Table 5.4 the system does not even go under fine tuning of weights after convergence.

Figure 5.40 illustrates the architecture of the CCNN when applied on the polynomial regression

problem. The architecture shows the number of layers, nodes (neurons) and synaptic weights of the

CCNN in the middle of learning. The final number of layers and nodes at the convergence have been

reported in Table 5.3. When compared to Table 5.4, it is observed that CCNN on average requires 170

nodes to solve the problem, while MINES only needs 4 hidden nodes incorporated in a single layer.

5.2 Preliminary Testing on Classification Problem
To test the performance of MINES on a classification task, the two-spiral problem has been selected. The

problem is a quite well-known and challenging classification task used by researches for over 20 years

[6] “as a benchmark for NNs” [34]. It requires the network to learn a very complicated nonlinear map-

ping to distinguish points on the two intertwined spirals. There are claims that a standard FFNN with BP

algorithm is unable to solve the problem, unless it is modified with query learning [2] or short-cut con-

nections providing “direct information pathway” [37]. The problem, proposed first by Alexis Wieland

in MITRE Corporation [58], was historically used as a benchmark to extensively test the performance

of the CCNN [13][14] being a novel system at the time. The evaluation of the CCNN on the two-spiral

problem also “inspired a long sequence of follow-up studies by other researchers” [6]. The researches

conducted by Shultz and Elman in 1994, Shultz et al. in 1995, Setiono in 1995, Teng and Wah in 1996,

Hwang et al. in 1996, Treadgold and Gedeon in 1997 and in 1999, Chen et al. in 1997, Potter and De

Jong in 2000, Su and Guan in 2000, Lahnajrvi et al. in 2002 and Thangavel and Kathirvalavakumar in

2003 compared the performance of their designed system to the CCNN applied to the two-spiral prob-

lem [6]. An additional example is the Genetic Cascade-Correlation Learning Algorithm [49] surveyed

in detail in Section 3.2.1.

The conceptual resemblance of the CCNN and MINES in concentrating on the prediction of the

expected payoff by aligning the output of hidden nodes with the corresponding residual errors makes the

two-spiral problem to be a natural choice for evaluating the classification performance of MINES.

In this section, first, the mathematical formula required to create data points of the two-spiral prob-

lem will be derived completely. Subsequently, it will be shown that MINES is able to classify the two

spirals with an astonishing accuracy both on the training and test sets.

5.2.1 Spiral Formula

An Archimedean spiral, as described by Hansen [24], is a curve in the x-y plane being the result of

the motion of a point P , rotating with a constant velocity, about a fixed point O ; while simultaneously

moving constantly away from O. Without loss of generality, O can be considered to be the origin of the

x-y plane, and P can be assumed as a vector in the same plane with the starting point O and the end

point P . Suppose, θ and r are the Euclidean angle and the length of the vector P , respectively; defined,
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naturally, in the x-y plane. Since, by definition, the angular and the linear velocity of P are constant, θ

and r must vary linearly through time. Hence, by considering t to be an arbitrary time unit, the following

equations must hold:

θ = α+ βt (5.10)

r = α′ + β′t (5.11)

where α, α′, β, β′ are some arbitrary constants. By eliminating t from Equations 5.10 and 5.11 a new

formula is obtained directly defining r based on θ:

r = (α′ − αβ
′

β
) + (

β′

β
)θ (5.12)

By defining the following new constants:

a = α′ − αβ
′

β
(5.13)

b =
β′

β
(5.14)

the formula 5.12 becomes more compact:

r = a+ bθ (5.15)

In Equation 5.15, θ is considered as the independent parameter resulting the dependent parameter

r. Suppose that the coordinates of the point P , in the x-y plane, is (x, y). The polar coordinates of x and

y is, then, defined based on r and θ:

x = r cos θ (5.16)

y = r sin θ (5.17)

where θ must be defined in radian. Equations 5.16 and 5.17 make possible plot an spiral in the x-y plane:

different values of θ provides the points of the plotted spiral. The density of the points can increase or

decrease by incrementing or decrementing the angle, θ, respectively. When θ is positive, assuming b is

always positive, the spiral’s rotation is anticlockwise; while when it is negative the direction of rotation

is clockwise. In order to change the starting point of the spiral a phase difference, ω, must be added to

the angle:

r = a+ b(θ + ω) (5.18)

Equation 5.18 is a more general from of Equation 5.15; the sign of ω determines the angular direc-

tion that the starting point is shifted towards: positive and negative ω makes anticlockwise and clockwise

shifts, respectively. Assuming the starting point of the spiral is (-α, 0) and the spiral intersects the x axis

for the second time at the point (β, 0), a phase difference equal to -π shifts the starting point to (β, 0). To

better understand the role of a, in Equations 5.15 and 5.18, it should be noted that a positive a shifts the

whole spiral to the left of the plane, whereas a negative sign makes a shift to the right. Using Equations

5.13 and 5.14, the derivative of r with respect to θ can be obtained from 5.15 or 5.18:

dr

dθ
= b (5.19)
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Figure 5.42: Classical two intertwined spiral problem consisting of 97 points on each spiral. The spirals rotate 3 complete times around the origin

and π Radians relative to each other

Equation 5.19 makes possible explain the role of b in Equations 5.15 and 5.18: b is a constant which

determines how fast a vector-point p on the spiral changes in length with respect to θ. Hence, for a fixed

θ in Equation 5.18, the bigger is b the bigger is the spiral.

5.2.2 Two-Spiral Problem

The original two-spiral problem consisted of 194 input data distributed equally over two intertwined

spirals [37] rotating π Radians relative to each other. Each spiral is made of 97 points and rotates 3

complete times around the origin of the x− y plane. In order to equally distribute the points, each round

must be equally divided into 32 divisions. Hence, the angular distance of two successive points is:

δ = 2π/32 (5.20)

If the starting and the end point of the spiral is known, the constants a and b in Equation 5.15 can

be found. The original two-spiral problem requires that the x− y coordinates of the starting (s) and the

end point (t) of the outer spiral be defined as:s = (0.5, 0)

t = (6.5, 0)

Since s and t are two vector points lying on the X axis, we have:θs = 0

rs = 0.5

(5.21)

and θt = 6π

rt = 6.5

(5.22)

By applying Equation 5.21 in 5.15, the constant a is obtained:

a = 0.5 (5.23)
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Similarly, by applying Equations 5.22 and 5.23 in 5.15, the constant b is obtained:

b = 1/π (5.24)

Given that i = 0, . . . , 96, the angle of a point pi on the outer spiral, is given as:

θ = iδ (5.25)

Similarly, for i = 0, . . . , 96, the length of the vector point pi can be obtained by applying Equations

5.23, 5.24 and 5.25 in Equation 5.15.

r = 0.5 + θ/π (5.26)

Finally, the x and y coordinates of pi can be obtained, respectively, by applying Equations 5.16 and 5.17

for the calculated values of θ and r. For i = 0, . . . , 96, any point qi on the inner spiral is given as:

qi = −pi = (−x,−y)

Points on one spiral are assigned 0 to create the desired values, whereas for the other spiral are

labelled 1.

The previous procedure were repeated to create 140 data points (70 for each spiral) of the test set

by dividing each spiral’s round to 23 division rather than 32. The points on the test set are those not

included in the training set but lying between the original training points on the sketched spiral. Creating

the test data in this regard is in line with what Chalup et al suggests: ”Generalisation ability of the trained

classifier is typically tested by evaluating it on a subset of all the other pixels of the image which were

not included as spiral points in the training set”.

5.2.3 Experimental Results and Comparison

The two-spiral problem was tested using MINES to assess the classification ability of the system. We

first present one of the best results obtained by MINES on the two-spiral problem. The only change in

the settings of the system was the use of Simple K-Means6, set on 15, for the clustering part and the

use of sinus and logistic functions as the activation function of hidden nodes and the final output node,

respectively. Table 5.5 lists the exact settings used to for the aforementioned problem.

Population

Size

No. of

Generations

No. of

Parents

No. of

Offspring

Recombination

Type

Mutation

Rate

Clustering

Type

No. of

Clusters

32 200 2 5
2-point

Crossover
1%

K-

Means
15

Table 5.5: Important Settings of Two Spiral Classification Problem

6Clustering using X-Means results an unstable convergence on the two-spiral problem. The main reason is that the dimension

of input space - i.e. the X-Y plane - is only 2. Hence, GA tends to converge very fast and immaturely when X-means clustering

is applied. Simple K-Means, in contrast, slows down the convergence by applying a deliberate control on the clustering of weight

vectors. This is especially beneficial when the dimension of input space is low.
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Figure 5.43: Correct classification of the two spiral problem on the

training set when number of BP iteration is 10. CI represents a 90%

confidence Interval bar.

Figure 5.44: Correct classification of the two spiral problem on the

training set when number of BP iteration is 20. CI represents a 90%

confidence Interval bar.

Figure 5.45: Correct classification of the two spiral problem on the

training set when number of BP iteration is 30. CI represents a 90%

confidence Interval bar.

Figure 5.46: Correct classification of the two spiral problem on the

training set when number of BP iteration is 40. CI represents a 90%

confidence Interval bar.

Figure 5.47: Correct classification of the two spiral problem on the

training set when number of BP iteration is 50. CI represents a 90%

confidence Interval bar.

Figure 5.48: Correct classification of the two spiral problem on the

training set when number of BP iteration is 100. CI represents a 90%

confidence Interval bar.
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Figure 5.49: Correct classification of the two spiral problem on the test

set when number of BP iteration is 10. CI represents a 90% confidence

Interval bar.

Figure 5.50: Correct classification of the two spiral problem on the test

set when number of BP iteration is 20. CI represents a 90% confidence

Interval bar.

Figure 5.51: Correct classification of the two spiral problem on the test

set when number of BP iteration is 30. CI represents a 90% confidence

Interval bar.

Figure 5.52: Correct classification of the two spiral problem on the test

set when number of BP iteration is 40. CI represents a 90% confidence

Interval bar.

Figure 5.53: Correct classification of the two spiral problem on the test

set when number of BP iteration is 50. CI represents a 90% confidence

Interval bar.

Figure 5.54: Correct classification of the two spiral problem on the

test set when number of BP iteration is 100. CI represents a 90%

confidence Interval bar.
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Figure 5.55: Correct classification of the two spiral problem on the test

set when number of BP iteration is 10. CI represents a 90% confidence

Interval bar.

Figure 5.56: Correct classification of the two spiral problem on the test

set when number of BP iteration is 20. CI represents a 90% confidence

Interval bar.

Figure 5.57: Correct classification of the two spiral problem on the test

set when number of BP iteration is 30. CI represents a 90% confidence

Interval bar.

Figure 5.58: Correct classification of the two spiral problem on the test

set when number of BP iteration is 40. CI represents a 90% confidence

Interval bar.

Figure 5.59: Correct classification of the two spiral problem on the test

set when number of BP iteration is 50. CI represents a 90% confidence

Interval bar.

Figure 5.60: Correct classification of the two spiral problem on the

test set when number of BP iteration is 100. CI represents a 90%

confidence Interval bar.
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The obtained results indicate that, MINES was able to successfully classify the two underlying

spirals with 100% accuracy on the training set and 92% on the test set. It is observed from Figure 5.62

that the convergence of the system happened after 100 generations and on 15 hidden nodes (see Table

5.5 for the applied settings). The perfect performance of MINES on the two-spiral problem proves its

ability as a robust classifier system. The result indicate that, MINES is a competent system even when

the dimension of the input space is very limited - which is 2 in the two-spiral problem. This is clearly in

contrast with our former experiment, the polynomial regression problem in Section 5.1, dealing with a

substantially higher input dimension.

Figure 5.61: MSE on training and test sets for the two spiral problem.
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Figure 5.62: Convergence of MINES on the two-spiral problem.

To asses the effect of parameter settings on MINES performance when applied on the two-spiral

problem, the number of BP iterations and the generation overlap size has been set to different values.

Figures 5.43 to 5.48 show how change in the generation overlap size affects the two spiral classification

performance of MINES on the training set over various BP iterations. Similarly, Figures 5.49 to 5.54

show the same set of experiments on the test set instead of the training set. It is observed from the figures

that when the BP iteration is 10 not only the classification performance of the system is poor (around

40 to 50 percent) on both training and test sets, but also it is not significantly difference across various

values of generation overlap size. A possible explanation is that the BP of 10 is simply not adequate to

tune the synaptic weights over a certain threshold so that the effect of change in the generation overlap

size can be seen. In contrary, it is observed that when the BP is 20, there is a significant difference on

both training and test sets classification for generation overlap size of 8, 16 and 24. In fact, when the

the generation overlap size is higher, new offspring are compared against more individuals in the old

population before being replaced while forming the new population. The latter makes the system able to

select better individuals during evolutionary process and result better performance. However, for higher

values of BP iterations, as it is observed from Figures 5.45 to 5.48 and 5.51 to 5.54, the generation overlap

size has smaller or even no significant effect. The observation may again be attributed to the effect of

BP iteration on tuning the weights. In fact, due to the low number of possible connectivity patterns for

the two spiral-problem, when weights associated to individuals are trained above a certain threshold the

majority have a similar performance; hence, the generation overlap size cannot play a significant role.



112 5.3. Summary and Conclusion

Figures 5.55 to 5.60 show the number of incorporated hidden nodes in MINES after convergence

on the two-spiral problem. As it is observed the number of hidden nodes varies from 15 to 30 with no

significant difference neither for any value of generation overlap size and BP iteration.

5.2.3.1 Comparison to CCNN

As it was mentioned earlier, the two-spiral problem has historically used to assess the classification

performance of CCNN or its variants. Due to the similarity of MINES and CCNN, we compare the

classification results of MINES on the two-spiral problem with the original CCNN. The original classi-

fication performance of CCNN on two-spiral problem has been reported by Su and Guan (2002) [65].

Table 5.6 lists 20 random experiments applied on the two-spiral problem using the original CCNN

configurations. The two-spiral data points are the same as those derived in Section 5.2.2. The activation

function is the ”standard symmetric sigmoid”. The results in the table indicate that the average and the

highest performance of the original CCNN on the two spiral problem is respectively 93.75% and 89.50%

correct classification on the test set.

The best obtained results of MINES on the two spiral problem (see Section 5.2.3) was 100% on the

training set and 92% on the test set. The average performance on the test set for 30 random experiments is

about 85% (see Figure 5.54). It is in observed that the performance of MINES on the two-spiral problem

is very close to those reported by Su and Guan (2002) [65] as the original performance of CCNN on the

same problem.

5.3 Summary and Conclusion
In Section 5.1, it was shown that a general polynomial, having any power, can be modelled with a NN.

A non-linear polynomial (with power one) was brought forward as the regression problem of MINES.

The selection of the problem was justified based on numerous reasons. A great number of experiments

were carried out to assess the sensitivity of the involved parameters of MINES. Based on the carried

out experiments the optimum settings were identified. The experiments showed that MINES is always

able to deliberately approximate the benchmark polynomial with another polynomial evolved from the

convergence of the system. However, the exact optimum polynomial (with two hidden nodes) may

not always be obtained. Nevertheless, the performance of one of the NNs exactly converging to the

true polynomial was compared with the benchmark problem. The comparison suggested that MINES

has an equivalent, or sometimes even better, performance. The big difference between MINES and the

benchmark systems is that MINES does not need to have the number of hidden nodes defined in advance.

Defining the number of hidden nodes in advance often requires an extra knowledge of the problem - at

least in the case of polynomial discovery. MINEs would itself converge smoothly to a fixed number

of hidden nodes. Finally, by performing several random experiments, it was additionally shown that

MINES is robust to overfit on the underlying polynomial regression problem.

Section 5.2 started with an intuitive definition of spiral resulted from the trace of a rotating point on

the plane about a fixed point, while, at the same time, getting away from it. Equation 5.12 defines the

relation of the Euclidean angle and the length of a vector point on the spiral. Subsequently, Equations
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Exp. No.
MSE

(Test Set)

No. of Hidden

Nodes

Correct

Classification (%)

No. of Training

Iterations

Network’s

Depth

1 0.65 14 88.54 2364 14

2 0.19 11 93.75 1947 11

3 0.31 14 93.23 2553 14

4 0.56 18 86.45 3088 18

5 0.24 16 90.62 2947 16

6 0.27 17 89.58 2910 17

7 0.50 15 82.81 2716 15

8 0.54 17 84.37 2987 17

9 0.36 14 88.54 2326 14

10 0.69 15 86.98 2488 15

11 0.34 16 93.75 3067 16

12 0.43 12 91.67 1774 12

13 0.59 14 87.50 2479 14

14 0.61 15 88.54 2326 15

15 0.36 18 89.58 3189 18

16 0.66 16 89.59 2882 16

17 0.25 15 91.67 2718 15

18 0.35 17 89.59 2602 17

19 0.51 13 92.70 2307 13

20 0.40 16 90.62 3110 16

High 0.69 18 93.75 3110 18

Low 0.19 11 82.81 1774 11

Mean 0.44 15 89.50 2639 15

Table 5.6: The original CCNN classification performance on the two spiral problem, reported by Su and Guan (2002) [65].

5.16 and 5.17 provides the polar coordinates of a point on the spiral in the x − y plane. With these

equations a spiral is possible t be sketched on the plane.

Using the derived equations, the two spiral training set consisting of 97 points for each spiral was

obtained. The test set consists of 140 points lying between the training set points.

MINES demonstrated a 100% classification success on the training set accompanied by 92% correct

classification of the test set. Furthermore, the system converged smoothly to 15 number of hidden nodes

after about 100 generations.

The results indicate that MINES is a powerful system performing well on the two-spiral problem,
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regarded as one of the hardest classification tasks for FFNNs. The performance of MINES on the two-

spiral problem is especially interesting due to the low dimension of the input space. The dimension of the

input space in only 2 for the two-spiral problem. The convergence of GA on such a limited connectivity

patterns indicates the well coordination of the incorporated systems in MINES.



Chapter 6

Application of MINES to Business Forecasting

Forecasting crude oil price has been selected as the real world business application of MINES. Daily

West Texas Intermediate (WTI) crude oil spot prices are chosen as the input data for training and test

sets. WTI price is the most famous benchmark widely used as the basis of many crude oil price formulas

[78]. It is the US benchmark of the three major benchmarks (WTI, Brent blend, Dubai) which are used

to price other types of crude oil based on their relative differences [20].

Prior to presenting data into the system, it is decomposed into its corresponding components based

on the Empirical Mode Decomposition (EMD) method [32] (see Section 6.2). The same procedure has

been used by Yu et al. [78][81][80], who decomposed the historical crude oil prices into 9 components

(IMCs/IMFs) representing as the input signals to the underlying NNs. One of the studies ([78]) a single

layer FFNN has then used to predict the crude oil prices, while in the others ([81][80]) each component

was represented to a single FFNN forming an ensemble of network producing the final output price. In

this chapter we follow the first approach ([78]) using MINES.

This chapter aims to demonstrate the following issues:

• Forecasting crude oil prices is possible by using the EMD technique.

• MINES performs well on forecasting crude oil prices, as a real world application, in conjunction

with the EMD technique.

• MINES is able to automatically converge to a fixed number of hidden nodes which is capable to

reasonably forecast the crude oil prices, using the EMD technique.

• MINES is able to automatically detect the most strong input signals from the rest (the input signals

are the IMCs presented to the input nodes of MINES).

Although the first issue has earlier been proved using a fully connected FFNN [78], MINES demon-

strates its successful performance (the second issue) on a partially connected FFNN.

It must be noted that in the aforementioned studies ([78][81][80]), it is repeatedly emphasized

that the number of hidden nodes is assigned based on trial and error. MINES, in contrary, is able to

automatically converge to the required number of hidden nodes with respect to the third issue.

In one of the underlying literature ([78]), a single three layer FFNN was used to reveal the interre-

lationships of the IMCs presented as the input signals. A manual pruning technique was then adopted
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to eliminate weak input signals. The “selection criterion” [78] was based on the synaptic weights of the

trained FFNN. The importance of an input component i (e.g. IMCi) is denoted by si, defined as:

si =

n∑
j=1

|wij |

where n is the number of hidden nodes, while wij is the synaptic weight of the input node i connected to

the hidden node j. Subsequently, the final relative importance of input node i, providing the input signal

IMCi, is defined as:

s̃i =
si∑m
i=1 si

(6.1)

where s̃i is the “normalized input strength” and m is the number of input nodes, which is equal to the

number of IMCs.

Regarding to the fourth issue, it will be shown that MINES automatically evolves the synaptic

connections of the final FFNN in a way that important input nodes possess more connections and stronger

synaptic weights in comparison to the weak ones.

6.1 Empirical Mode Decomposition
EMD subdivides a single series - such as a series of historical data - into several parallel sub-series. The

sub-series can then be represented into a NN. “When the underlying problem is very difficult and com-

plex, single series representation for NN learning may be inadequate” [78]. EMD, which was initially

proposed for the study of ocean waves, decomposes a signal into some oscillatory functions, named in-

trinsic mode functions (IMF) - or intrinsic mode components (IMC). The original data will be then the

sum of the IMFs and a residue which is either the mean trend or a constant.

The focus of EMD is initially on the local oscillations of signals between two consecutive extrema

[51]. Each IMF has the same number of extrema and zero-crossings and will be symmetric with respect

to the local mean. IMFs impose a general separation of the data into locally non-overlapping time

scale components so that signals of the same time scale would never occur at the same locations in two

different IMF components. Furthermore, IMF components, which span from shortest to longest period,

are orthogonal to and independent of each other [84]. In fact, IMFs are decomposed based on a simple

assumption: any data consist of different simple intrinsic modes (linear or nonlinear) of oscillations. At

any given time in the original data, there might be simultaneously many different modes of oscillation

interacting and superimposing on each other. Once separated, each mode reveals its own characteristic

which is independent of the others [31].

Given a signal X(t), the general algorithm of EMD is given as follow [51]:

1. identify all extrema of X(t)

2. interpolate between two successive minima (respectively maxima) an envelope emin(t) (respec-

tively emax(t))

3. compute the mean m(t) = emin(t)+emax(t)
2

4. extract the detail d(t) = x(t)−m(t)
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5. iterate on the residual m(t)

In contrast to the Fourier analysis, the EMD method neither assumes a time series is linear or

stationary prior to analysis [32], nor “eliminates any harmonic of the fundamentals required by the non-

stationary and non-linearity of the data” [33].

6.2 Crude Oil Decomposition
Daily data from January 1, 1998 till December 31, 2004 is used for training set (1751 input vectors),

while daily data from January 3, 2005 to October 30, 2006 is used for testing set (459 input vectors).

Data is freely accessible from the website of Department of Energy (DOE) of United States1.

Figure 6.1 shows the historical data of the training set. It can be seen that the data is highly non-

linear and noisy. The EMD reveals the general trend of the data in order of different time scales. Initially,

data with the highest frequency is extracted to represent the most noisy IMC having the shortest wave-

length. The remaining data is subdivided again into a second series possessing a shorter frequency, but

longer wave-length with respect to the former. The procedure continues until the underlying data is

left with a rather monotonous curve - with no local minimum and maximum, but only the end-points

- representing the most general trend of the initial data set. In other words, the EMD procedure filters

[33] the underlying data into sub series oscillating from fine to coarse. Figures 6.2 to 6.10 depict such

separation of the data, starting from the first component with the highest number of oscillations reduced

gradually to the last component with no frequency.

As mentioned earlier each IMC is perpendicular to the other. Furthermore, as it is observed, each

component has a different oscillatory time period in comparison to the other, but an approximately

constant frequency within itself. As a result, it can be assumed that every IMC, in effect, represents an

independent exogenous factor affecting the original data set at different time scales. A NN would reveal

the nonlinear relation of these factors interacting on each other resulting the desired data point.

1http://www.eia.doe.gov/
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Figure 6.1: Daily WTI crude oil data, from January 1, 1998 to December 31, 2004, going under EMD decomposition to comprise the training set

used for one-step-ahead forecasting.
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Figure 6.2: IMC1
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Figure 6.3: IMC2
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Figure 6.4: IMC3
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Figure 6.5: IMC4
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Figure 6.6: IMC5
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Figure 6.7: IMC6
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Figure 6.8: IMC7
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Figure 6.9: IMC8

17

22

27

32

37

0 200 400 600 800 1000 1200 1400 1600

D
e
c
o

m
p

o
s
e
d

 V
a
lu

e
s

Data Points

Residue

Figure 6.10: IMC9

One may be interested to know how in reality the subdivided data modes are adhered to the original

data points. In other words, are the components of the EMD “physically meaningful” [33] or they are

just mathematically manipulated to sum up the original data set? The answer is: the EMD method is an

“intuitive and direct” derivation of the data which is “posteriori” based and “adaptive” [33]. The matter

will be understood better when the partial sum of the IMCs are compared to the original data, as it will

be discussed in the following context.

The reconstitution of the components to the original data demonstrates the “intrinsic meaning”

[33] of each IMC. In Figure 6.11 the original data and the IMC-9 (the residual component of the EMD

process) are shown in doted and solid lines, respectively. The residue term, representing the global trend

of the data, is obtained after removing all possible oscillations. Figures 6.12 to 6.19 present the original

data and the partial sum of the underlying IMCs in doted and solid line, respectively. For instance,

the doted curve in Figure 6.12 is the result of the partial sum of the IMC-9 (the residue) and the IMC-

8; which is in effect the “smoothest trend of the data” [33]. In each subsequent step, where the next
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component is added, the partial trend becomes more volatile, but resembles more to the original data.

When the procedure of adding new components meets the last one (i.e. IMC-1), the partial sum coincides

with the original data. In fact, ignoring the computational “round-off error”, Figure 6.19 is identical to

Figure 6.1.

6.3 Data Preparation and Performance Measurements
Given a time series X = {xi | i = 1, 2, . . . , N} an l-step ahead prediction requires forecasting xi+l

given that xi is presented to the system. Therefore, l = 1 means one single-step ahead prediction and

l = 30 represents 30-step ahead prediction. More specifically, to make an l-step ahead prediction with a

FFNN, xi+l is assigned as the associated desired value of each input vector xi for i = 1, 2, . . . , N − l.

More precisely the inputs and desired are:Inputs = {x1, . . . , xN−l}

Desireds = {xl, . . . , xN}

Hence, for an l-step-ahead prediction the epoch-size is equal to N − l; where N is the size of the

given time series and l is the number of prediction steps ahead. Suppose the data point xi is decomposed

into k components and one residue using EMD:

xi =

k∑
j=1

cj(t) + rt (6.2)

where cj(t) is the jth component series, r(t) is the residue series and k is the total number of decomposed

series excluding the residue. To represent the decomposed series into a FFNN and make an l-step ahead

prediction, each input pattern xi is substituted by an input vector

xi = (c1(t), . . . , ck(t), r(t))

while each desired value will be xi+l as before. Since each WTI daily spot price is divided into 9

components plus one residue, the total number of input nodes of MINES is 10, excluding bias. The

activation function of the hidden nodes is tangent hyperbolic whereas for the single output node it is

identity. Prior to being presented into the NN, each decomposed data series is scaled in the following

way:

c̃i =
ci − µi
σi

where c̃i is the normalised series of the ith decomposed series ci, while µi and σi are, respectively, the

mean value and the standard deviation of ci.

In order to evaluate the prediction performance, the normalized mean squared error (NMSE)

(Weigned, 1994) has been used over the testing data X:

NMSE =

∑N
i=1 (xi − x̂i)2∑N
i=1 (xi − X̄)

2 =
1

σX2

1

N

N∑
i=1

(xi − x̂i)2
=
MSE

σX2
(6.3)

where xi and x̂i (i = 1, . . . , N ) are the ith desired and predicted value, respectively; while X̄ and σX2

are, respectively, the mean and variance of the test set X . In Equation 6.3, we have:

NMSE = 1 ⇐⇒ ∀i x̂i = X̄ (6.4)
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Figure 6.11: Data & IMC9
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Figure 6.12: Data & Sum of IMC8 to IMC9
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Figure 6.13: Data & Sum of IMC7 to IMC9
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Figure 6.14: Data & Sum IMC6 to IMC9
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Figure 6.15: Data & Sum IMC5 to IMC9
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Figure 6.16: Data & Sum IMC4 to IMC9
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Figure 6.17: Data & Sum of IMC3 to IMC9
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Figure 6.18: Data & Sum of IMC2 to IMC9
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Figure 6.19: Data & Sum of IMC1 to IMC9

Thus, the closer the predicted values x̂i (i = 1, . . . , N) to the mean value X̄ , the closer the NMSE to

1. The NMSE is 0 when the prediction is 100% accurate; i.e. xi = x̂i (i = 1, . . . , N ). For a fixed data

set X , σX2 is constant regardless of the prediction performance. Hence, what changes the NMSE is the

MSE over the test set, resulting from the output errors: ei = xi − x̂i (i = 1, . . . , N). Therefore, when

comparing a sequence of prediction performances over a fixed data set, the smaller is the MSE over the

test set, the better is the performance. This is because on average the prediction errors are smaller.

NMSE is also related to R2 which is defined as follow:

R2 =

∑N
i=1 (x̂i − ¯̂

X)
2∑N

i=1 (xi − X̄)
2 =

∑N
i=1 (x̂i− ¯̂

X)
2

N∑N
i=1 (xi−X̄)2

N

=
σ2
X̂

σ2
X

(6.5)

where σ2
X̂

and σ2
X are the variance of the series X and X̂ , respectively. The relation of NMSE and R2

can be expressed as:

NMSE = R2MSE

σX̂
2

(6.6)
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Another measurement that is used to evaluate the prediction performance is the directional statistic

(Dstat) [75] defined as:

Dstat = 1/N

N∑
i=1

bi (6.7)

where

bi =

1 if(xi+1 − xi)(x̂i+1 − xi) ≥ 0

0 otherwise
(6.8)

Dstat measures the percentage of the times that the forecasting direction was correct. For each

point xi+1 and the associated forecasting point x̂i+1 (i = 1, . . . , N − 1), the forecasting direction is

solely measured based on the two possible states of being greater or smaller than the previous point

xi. Therefore, unlike NMSE, the magnitude of the error prediction is not taken into account by the

Dstat; only the sign of the difference between forecasting and original points are of interest. Thus, Dstat

measures the forecasting trend, which is in fact useful for real world applications such as buying or

selling contracts [36]. However, the joint combination of both measurements - i.e. NMSE and Dstat - is

superior to evaluate the overall performance.

6.4 Forecasting Results and Comparison
MINES was used to forecast daily crude oil prices using the settings listed on Table 6.2. The forecasting

results can be seen from Table 6.1 which shows 1-step ahead forecasting for the daily decomposed

WTI crude oil data. The table shows the average and the standard deviation of the number of distinct

connectivity patterns and the number of hidden nodes for 10 random experiments after convergence

of MINES on the training set, spanning from January 1, 1998 to December 31, 2004. The respective

average and the standard deviation of the NMSEs and Dstats are also provided for the test set, covering

daily data from January 3, 2005 to October 30, 2006.

As it can be observed, the average number of hidden nodes is 15, which is interestingly the same as

what was claimed by Yu et al. (2007) [78] as the optimal number of hidden nodes for their experiments,

using the same data set. It must be noted that, in contrast to MINES, which configures the required

number of hidden nodes self sufficiently, Yu et al. (2007) [78] used a series of “trial and error” exper-

iments to figure out the best number of hidden nodes for the employed three layer FFNN. Moreover,

they adopted a fully connected FFNN which is clearly different from partially connected NNs evolving

by MINES. This inconsistency explains the existing difference between the number of obtained hidden

Statistic
No. of Distinct

Connections

No. of Hidden

Nodes
NMSE

Dstat

(%)

Run Time

(min)

mean 12 15 0.0145 73 67

standard deviation 3 3 0.0015 4 11

Table 6.1: MINES experimental results for 10 random experiments, forecasting daily WTI crud oil prices. The number of distinct connections and

hidden nodes are obtained at the convergence of the system. The NMSEs and Dstats are measured after the convergence of the system on the test set.
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nodes by MINES over several experiments: depending on the diversification of the evolving receptive

connectivity patterns the number of obtained hidden nodes would change. The standard deviation of 3

indicates that the number of hidden nodes on average varies from 12 to 18. The variation, however, does

not significantly affect the performance of the system as it can be seen from the NMSEs on the test set.

The average number of NMSEs on the test set is 0.0145, with the standard deviation of 0.0015. It means,

on average, the NMSE varies from 0.0130 to 0.0160, indicating a fair tolerance of the goodness of fit

when is considered accompanied with the Dstat varying from 69% to 77%.

Figure 6.20: RMSE on training and test sets for the crude oil forecast-

ing problem. For generations 1 to 60 the RMSE on the test set is very

huge and hence are not shown on the graph.
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Figure 6.21: An example of MINES evolutionary convergence on

steady number of hidden nodes and distinct connectivity patterns for

the crude oil forecasting problem.

It is worth mentioning that, the experiments carried out by Yu et al. (2007) [78] does not provide

any Dstat measurement; only NMSE has been reported for the performance evaluation. The reported

NMSE is 0.0143 for a three layer FFNN with 9 input, 15 hidden and 1 output nodes; the architecture was

denoted by (9:15:1). It can be observed that the reported NMSE is very close to the average values of

NMSEs obtained by MINES. This is in spite of the fact that it is not obvious whether the reported value

by Yu et al. (2007) is an average of several experiments or only one of the best obtained values. In a later

work, however, Yu et al (2008) [81][80] report Dstat with their experiments, where the data of each IMC

was fed to a single three layer FFNN before being averaged, or fed to another NN forming an ensemble,

to forecast daily crude oil prices. The reported Dstat in this case is 77.45%, when the outputs of NNs are

simply averaged and 86.99%, when an ensamble of NNs is used. In this sense, we may claim that the

average Dstat of 73% obtained by MINES is an acceptable value, considering that only a single FFNN

Population

Size

No. of

Generations

No. of

Parents

No. of

Offspring

Recombination

Type

Mutation

Rate

Clustering

Type

No. of

Clusters

32 200 2 5
2-point

Crossover
1%

X-

Means
Max=3

Table 6.2: Important Settings of Daily Crude Oil Forecasting Problem
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has been used and taking into account that the underlying data covers differnet time periods making them
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Figure 6.22: Crude oil forecasting graph

As mentioned at the beginning of Chapter 6, Yu et al. (2007) [78] used Equation 6.1 to eliminate

three less important IMCs. The elimination improves the reported NMSE by reducing it from 0.0143

to 0.0084. However, there are serious criticism about Equation 6.1 as a true indicator of relative signal

importance. First, the equation only considers the synaptic weights existing between input and hidden

nodes; whereas the outgoing weights of the hidden nodes are also important to reveal the relative im-

portance of the signals due to plausible negative correlation of the hidden nodes. Second, the use of the

absolute values of the synaptic weights eliminates the internal correlation of the input signals and hidden

nodes. Hence, we may conclude that Equation 6.1 represents a very crude estimation of the relative

importance of the input signals, especially when the underlying data is highly non-linear.

Figure 6.23 indicates the relative signal strength for IMC-1 to IMC-9 reported by Yu et al. (2007)

[78] using Equation 6.1. Similarly, Figure 6.24 shows the relative signal strength, using Equation 6.1, for

10 random experiments obtained by MINES; the zero column is associated to bias. It can be observed

that, in both figures the IMC-9 is the strongest one whereas IMC-1 and IMC-2 are the weakest. However,

for other input signals the results are mixed. One explanation for this can be attributed to the fully

connected structure of the NN used by Yu et al. (2007) [78] in comparison to the partially connected

NNs resulted from the convergence of MINES. Moreover, the number of hidden nodes of the NN used

by Yu et al. is fixed on 15, while this is not the case for MINES as mentioned earlier. Finally, the results

of Figure 6.23 is obtained from the average of 10 random experiments, whereas those reported by Yu et

al. appears to be related to a selected experiment.

Due to the aforementioned problems of using Equation 6.1 for relative signal strength detection, a

direct approach has been adopted in this research to measure the relative importance of the input IMCs.

In this approach, each input signal is eliminated from the trained NN obtained by MINES. After the

elimination of the input signal, the new NMSEs and Dstats are subsequently measured on the test set and

compared to the initial NMSE and Dstat of the trained NN receiving all input signals. When an input
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Figure 6.23: Relative signal strength for crude oil IMCs based on Equa-

tion 6.1 (Reported by Yu et al. (2007) [78]).
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Figure 6.24: MINES Relative signal strength for crude oil IMCs based

on Equation 6.1. The results are for 10 random experiments.

0.13 0.13 0.63 0.63
1.38

5.25
5.88

0.25

34.63

712.75

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 1 2 3 4 5 6 7 8 9

V
a
lu

e

Input Signals: Bias & IMCs

Increasing NMSE of Eliminated Input Nodes 

Error Bars: SE

Error Bars: CI (90%)

Figure 6.25: Columns shows the ratio of the NMSE increase on the test

set when the respective input signal (or bias) is eliminated. The results

are for 10 random experiments.
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Figure 6.26: Columns shows the percentage ratio of the Dstat decrease,

on the test set, after the elimination of the respective input signal (or

bias). The results are for 10 random experiments.
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Figure 6.27: Ratio of connected hidden nodes to input nodes
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signal (IMC) is eliminated, the NMSE and the Dstat increases and decreases, respectively, indicating a

performance worsening.

Figure 6.25 and 6.26 show, respectively, the increase and the decrease of the NMSEs and Dstats

over the elimination of the input signals over 10 random experiments after the convergence of MINES.

According to Figure 6.25, the IMC-9 and IMC-8 have the most influential effect of the performance of

MINES by increasing the ratio of the NMSE. For instance, the elimination of the IMC-9 results in about

700 times increase of the NMSE over the test set2. After the IMC-9 and IMC-8, IMC-6 and IMC-5 lie

in the next stage of importance. Focussing on the Dstat, Figure 6.26 indicates that the IMC-9 and IMC-8

are also the most influential factors in the direction forecasting performance. For instance, the exclusion

of IMC-9 would approximately result in a 30% decrease in the Dstat. Figure 6.26 again indicates that

after the IMC-9 and IMC-8, IMC-6 and IMC-5 lie in the next stage of importance.

Following the above discussion we may expect that MINES assigns a relatively higher number of

synaptic connections to the most important input signals to show a good forecasting performance. To

this end, the number of synaptic connections outgoing from every input node to the all existing hidden

nodes has been counted. The result has been normalized after being divided by the total number of

hidden nodes. Figure 6.27 presents the ratio of the number of connected hidden nodes to the input nodes

including bias (the zero column is related to the bias). It is observed that the IMC-9 and IMC-8 have the

most number of connections with significant difference in comparison to the other input signals. In fact

the input signal associated to the IMC-9 is nearly fully connected to all hidden nodes. In the next stage

is the IMC-8 with more than 80% connection ratio. The results are fully in line with our expectation of

the relative importance of the input signals: the IMC-9 and IMC-8 are the most important input signals

in terms of forecasting performance according to both the goodness of fit (NMSE) and the directional

trend (Dstat).

For other IMCs, Figure 6.27 shows no significant differnece in connection ratios. This seems in

contrast with the relative importance of IMC-6 and IMC-5 on the overal Dstat; bringing the expectation

that a significantly higher connection ratio should be observed for them in comparison to the IMC-0 to

IMC-4 and IMC-7. However, it must be noted that although the IMC-6 and IMC-5 have a significant

effect on the directional forecating performance, they do not considerably worsen the avergae goodness

of fit (NMSE) of the predicted data. In addtion, it must be noted that the average connectivity in general

is a pretty crude indicator; MINES may have found alternative ways to use these inputs that require

limited connectivity. Therefore, we may conclude that the average connectivity is better to be used as

an indicator of the most important input signals - like the IMC-9 and IMC-8 which have a considerable

effect on both the goodness of fit and the direction of prediction.

From the aforesaid discussion, the following conclusion can be made: In the application of the daily

crude oil price prediction, MINES is able to detect the most important and influential input signals (input

nodes) from the rest by assigning more synaptic connections to them. The result is in line with the last

objective brought forwarded in Section 1.3.

2Note that, in Figure 6.25, column 9 has a value of 712.75 which goes far beyond the rest of the columns. Hence, the vertical

axis has been restricted to 40 to provide a better visualization comparability.
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6.5 Comparison to CCNN
IN Section 6.4, the forecasting capability of MINES was compared to the the techniques applied by Yu

et. al [78][81][80]. However, to compare the performance of MINES with another alternative system,

the CCNN was used on the same data set to make one step ahead daily crude oil forecasting. The CCNN

software can be found in [68], which is the world’s largest provider of hosting for open source software

development projects.

Figure 6.28 demonstrates the trend of MSE on the training set to forecast one step ahead daily crude

oil prices. The presented figure is the result of one of the best performances when changing the involved

settings parameters listed in Figure 6.30. It is observed from Figure 6.28 that after about 110 epochs

the MSE starts increasing and begins to resonates. Hence, the system was stopped by the operator at

generation 110 and results were extracted.

Statistic No. of Layers
No. of Hidden

Nodes
NMSE

Dstat

(%)

Run Time

(min)

mean 12 47 0.059 60 19

standard deviation 2 4 0.009 3 4

Table 6.3: CCNN experimental results of forecasting daily WTI crud oil prices. The NMSEs and Dstats are measured after the convergence of the

system on the test set.

To achieve a better performance for the CCNN, both inputs and desired values are normalized

before training. Therefore, the MSEs on the training and test sets achieved by the CCNN have been

transformed in Table 6.3 to reflect the true values. Table 6.3 represents 20 random experiments that have

been carried out by the CCNN when changing the influential parameters listed in Figure 6.30. To make

the comparison of MINES and CCNN easier, a copy of Table 6.1 is again presented in Table 6.4. It can

be seen from Table 6.3 that both the NMSE and Dstat obtained by CCNN is worse than those reported

by MINES: the average NMSE on test set is 0.061 for CCNN, while the respective value for MINES is

0.0145; similarly, the Dstat for CCNN is just 60%, while the crresponding value for MINES is 73%.

Statistic
No. of Distinct

Connections

No. of Hidden

Nodes
NMSE

Dstat

(%)

Run Time

(min)

mean 12 15 0.0145 73 67

standard deviation 3 3 0.0015 4 11

Table 6.4: MINES Experimental results for 10 random experiments, forecasting daily WTI crud oil prices. The number of distinct connections and

hidden nodes are obtained at the convergence of the system. The NMSEs and Dstats are measured after the convergence of the system on the test set.

Figure 6.29 shows part of the CCNN architecture when applied on the daily crude oil forecasting

problem. The architecture shows the number of layers, nodes and synaptic connections. As it is seen

from Table 6.3, CCNN on average converges to 13 layers and 15 nodes. It is worth noting that the first

layer usually consists of several nodes connected directly to the final output node, while other layers
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Figure 6.28: The trend of MSE of the CCNN for training and test sets when forecasting one step ahead daily crude oil prices. Note that, before training

the system, both the inputs and desired values are transformed. Hence, the MSEs on the graph do not represent the true MSE before transformation.

The true MSEs have been calculated sperately in Table 6.3.

Figure 6.29: The architecture of the CCNN at convergence, when applied on the crude oil problem.

Figure 6.30: The parameters used to train the CCNN to forecast one step ahead daily crude oil prices.
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(labeled by odd and even indices) consist of two sets of nodes (in each layer, the synaptic weights of the

second sets of nodes are usually zero). It must be noted that in MINES there is only one hidden layer,

whereas in CCNN there are usually several cascaded hidden layers. Table 6.4 shows that MINES on

average requires 15 hidden nodes to solve the daily crude oil forecasting problem, while CCNN requires

47 nodes to converge.

6.6 Summary and Conclusion
This chapter started by introducing the EMD technique which is a novel procedure for data decomposi-

tion. After addressing the properties of the EMD, the daily WTI crude oil data, spanning from January

1, 1998 to December 31, 2004, was decomposed to 9 IMCs, using the introduced technique. While

the IMC-9 represents the most general trend of the original data, partial sum of respective IMCs filters

data with different levels. The more IMCs are added, the more the partial sum is fitted to the original

data. The sum of all IMCs coincides exactly with the original data, ignoring the computational round-off

errors.

The NMSE and Dstat were introduced as two important performance measurements for business

forecasting applications. The NMSE mainly measures the goodness of fit while the Dstat gives the

percentage of the times that the forecasting direction is correct. The two measurements must be used in

parallel to provide a better overview of the performance assessment.

Using the decomposed IMCs as the input data, MINES showed a successful one-day ahead fore-

casting with an average performance of 0.0145 and 73% for NMSE and Dstat, respectively, on the test set

covering January 3, 2005 to October 30, 2006. More importantly, MINES was able to converge smoothly

to a fixed number of hidden nodes (15, on average) in all eperiments with a stisfactory performance on

the test set (NMSE varies from 0.0130 to 0.0160, while Dstat ranging from 69% to 77%, on average).

The average training time was only 67 minutes. The obtained results indicate a fair performance in

comparison with experiments carried out by Yu et al. (2007) [78], reporting no Dstat, but an NMSE of

0.0143 using a three layer FFNN compersing of 9 input, 15 hidden and 1 output nodes.

Finally, to realise the relative importance of the input signals, NMSEs and Dstats were measured on

the test set when each input signal was disconnected from 10 randomly trained NN evolved by MINES.

The exclusion of the input signals, in general, resulted in a performance worsening, both in terms of

NMSEs and Dstats. It was observed that, every input signal had a different level of contribution to

the final performance of the trained NN. The IMC-9 and IMC-8 were the top most important signals

amongst other, since their elimination reduced the forecasting performance considerably. By counting

the number of synaptic connections between each input node and all existing hidden nodes, it was shown

that MINES assigns significantly more number of connections to the aforementioned input signals. The

observation shows that MINES is automatically capable of determining the most important input signals

from the rest.



Chapter 7

Conclusion and Future Directions

7.1 Summary and Conclusion
The backbone of achieving a desirable NN for a particular problem at hand is to consider the structural

configuration of nodes and synaptic weights in parallel. The performance of a NN, especially its gener-

alization ability, is interdependent on the overall architecture of hidden nodes, their state of connections

and the associated synaptic weights. Therefore, one may not achieve an optimal NN while performing

any of the structural or parameter learning techniques in isolation. However, a concurrent training of

synaptic connections and weights requires a theoretical basis that is able to connect the two practice in

a consolidated way. Literature shows that one way to connect the two techniques is through employing

GA optimizing the fitness function reflecting both the topology and error of the network (NEAT [63] is

a classical example in this regard). Nonetheless, the GA cannot often compete with the BP algorithm

with respect to the precision of weight tuning. In a different manner, the BP is connected to the GA,

performing the structural learning, by introducing a cost function including the MSE of the network and

another parameter indicating the network’s configuration (the system proposed by Azzini and Tettamanzi

[1] pursues a similar approach).

In a quite different approach, MINES exploits MI to indirectly link structural and parameter learn-

ing. MINES, in contrast to many proposed algorithms, does not define GA as the dual optimizer of

both structure and synaptic weights; rather, in MINES, the GA only conducts structural learning, while

weights are updated by the BP algorithm. However, the two practice are followed concurrently based

on a theoretically well founded technique central to information theory. The technique defines a self-

governing system determining the appropriate structure of hidden nodes while, simultaneously, training

the synaptic weights. The use of BP for parameter learning enables MINES to tune synaptic weights

more precisely compared to systems using GA for weight adjustment. Finally, the concurrent evolution

of connectivity patterns and synaptic weights leads the system to acquire an optimal, or close to optimal,

configuration.

The technique proposed by MINES is conceptually similar to some preceding systems such as

MILCS and CCNN. They all concentrate on coordinating the remaining error of the system focused on a

new component - i.e. hidden node in MINES and CCNN; rule in MILCS - so that it captures as much of

the residual error as possible. In MINES and MILCS the components are assessed in parallel, whereas
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in CCNN each component is considered in isolate. The use of MI makes MINES more capable to detect

the existing residual error compared to CCNN using Pearson’s correlation. The reason is, MI captures

all linear and non-linear interrelationships, while correlation only measures linear co-movements. The

greater sensitivity of MI in disclosing the existing interdependencies makes MINES capable of config-

uring several hidden nodes simultaneously without needing to become cascaded like CCNN.

Since a three layer FFNN is a universal approximator, MINES concentration is mainly on the topol-

ogy of the hidden layer. Having exploited the MI, a hidden node is evolved by being aligned with the

respective residual error. The evolution is only imposed on the receptive connectivity patterns of hidden

nodes. In fact, the receptive connectivity patterns play an important role in the flow of information from

the input layer to the hidden node. Hence, MINES starts constructing the hidden layer from a pool of

hidden nodes (i.e. the GA population) with various connectivity patterns. When connectivity patterns

are not taken into account, the training procedure is limited to a NN with a fixed structure. In contrast,

the procedure in MINES usually yields to a partially connected system, possessing extra advantageous

over fully connected NNs.

MINES illuminates a novel approach, in comparison to conventional supervised learning methods

in NNs, to shift the concentration from the expected payoff to the prediction of the expected payoff. As

a second order statistic, MI makes BP reduce the training error by concentrating on the prediction of

MSE rather than the MSE itself. MI, working based on conditional probability, acts as a local predictor

of the expected payoff at any point in the weight space by measuring the interrelationship of hidden

nodes with the respective residual errors. The interrelationships fundamentally determines the exclusion

or inclusion of a hidden node from or into the comprising hidden layer. The network is evolved so that

the incorporated hidden nodes are highly correlated with the network’s error; hence, providing a system

with minimal, or close to minimal, hidden layer size. The correlation is measured by MI which is more

advantageous than the conventional Pearson’s correlation used in other systems, such as CCNN.

MINES starts from a number of hidden nodes with various connectivity patterns evolved through

shrinking - or, if necessary, expanding - the hidden layer, converging finally to a steady configuration.

In this aspect, it is entirely distinguishable from almost all related techniques, starting from no hidden

nodes (like CCNN [13][14]), or too many fully connected ones (like methods proposed by Cantu-Paz

[5].

MINES’s coding scheme of synaptic connections makes hidden nodes to be specialized in detect-

ing the error space by which local learning is maximized. The evolution of synaptic connections also

regularizes the smoothness of the error space. Since BP is a point-to-point search method, the more

uniform is the error space, the faster and better it works. MINES, especially, is able to automatically

distinguish the most important input signals from the less crucial ones by assigning more connections to

them. Additionally, the partially connected networks created by MINES often show to be robust against

overfitting on the experimented polynomial regression problem.

MINES employs a very standard GA without need of any modification for mutation and crossover.

This is in contrast to some other techniques manipulating the GA to overcome some of the typical
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problems arising in the evolutionary process [63] (like the invention of a vertical crossover by Azzini

and Tettamanzi [1]).

In MINES, the clustering of the weight-vectors makes the analysis of the training procedure more

feasible. Since weight vectors are clustered based on their angles, the division of the weight space often

happens with a minimum number of required vectors. Monitoring the clustered weight vectors facilitates

understanding the learning behaviour of the system. Moreover, the clustering algorithm is derived from

a solid mathematical foundation (see Section 4.5.1) based on the Euclidian angles of weight vectors (see

Section 4.5). The technique does not suffer from innate imperfections and is expected to work reasonably

well.

MINES showed successful performance on the chosen polynomial regression problem. The poly-

nomial was non-linear and was regressed earlier using a complicated weight-sharing technique [56]. The

problem was used as the primary criterion for testing the performance of MINES and setting the involved

parameters. The main rationale for selecting the problem as the main system assessment benchmark was

due to the feasibility of defining the optimal NN regressing the underlying polynomial. A clear under-

standing of the optimal NN would make the assessment of MINES possible by comparing the obtained

results with the optimal NN. To this end, the number of obtained hidden nodes was one of the foremost

factors indicating the closeness of the evolved NN with the optimal one, consisting of only 2 hidden

nodes. The experiments suggest that, although MINES does not always find the optimal NN, it shows

a good performance on both training and test sets. Even the system shows robust against overfitting on

the several randomly performed experiments. The performance of one of the best obtained results was

compared with the selected basis of comparison [56]. The result was as good as or even better than the

benchmark.

On a quite different problem, MINES was tested on the two-spiral classification task. The problem

is one of the hardest classification tasks which can be performed by a FFNN. It was initially introduced as

the classic benchmark to test the performance of CCNN. In fact, the CCNN was able to nicely classify the

two intertwined spiral points due to its highly nonlinear structure arising from its cascaded architecture.

Due to the analogy between CCNN and MINES, the same problem was chosen to test the capability

of the system on a tough classification subject. MINES was able to correctly classify the entire set of

training points while smoothly converging to a fixed number of hidden nodes. The performance on the

test set was 92% correct classification.

As a real world application, MINES was used to forecast the daily WTI crude oil prices. The

underlying time series was decomposed into 9 IMCs while applying the EMD technique. The EMD

technique was earlier shown to be effective on crude oil prediction using a fully connected FFNN [78],

or an ensemble of fully connected FFNNs [81][80]. EMD proposes a fundamentally different approach

to other similar techniques; notably, it is posteriori based derived from the nature of data. In effect, it

filters the data according to the different existing oscillatory modes. As a result, each IMC usually has a

different frequency when compared to the other; hence, may be regarded as the reflection of the variation

of an independent exogenous factor affecting the underlying data trend. Supplying the decomposed IMCs
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as the input data to MINES, one step ahead prediction was achieved with an average of 73% success in

forecasting correct directions, when converged smoothly to an average of 15 hidden nodes.

7.2 Future Directions
Although it was shown that MINES is a very capable system utilizing only one hidden layer, some

applications may require additional hidden layers to meet their objectives. For this reason, it would be

of interest to extend the proposed system to multi-layer FFNNs. Conceptually this regard would only

require additional GA individuals to control the incoming synaptic connections of the hidden nodes in

the extra layers. The optimization objective can still be the MI of each hidden node to the residual error.

The residual error would naturally be the networks remaining error when the outgoing synapse of the

underlying hidden node is disconnected from the immediate next hidden layer.

In the current version of MINES the incoming and outgoing synaptic weights of newly added hid-

den nodes are just the average of the respective synaptic weights of the offspring’s parents. As a new

line of research, a separate GA can come into operation acting solely on the synaptic weights of new

offspring. This may enhance the capability of system to introduce new hidden nodes possessing both

good connectivity patterns and synaptic weights at a same time. The fitness of GA individuals could be a

compromised value of the MI between the newly added hidden node and the residual error and the total

MSE of the network.

The evolutionary search on the hidden nodes connectivity patterns reduces the free parameter in

MINES and eventually leads to a lighter NN. For synaptic weights, however, there is no restriction.

Synaptic weights can continuously vary to any number that the BP algorithm implies. The only restric-

tion comes from the activation functions; for instance, the tangent hyperbolic activation function makes

values outside −1 and +1 ineffective. In a different practice, each hidden node could be restricted to

adopt weights only in a specific interval. A GA may be employed for this purpose in a way that binary

codes determine the interval which the associated hidden node is able to select weights from. For in-

stance, the interval (−1,+1) can be divided by 4 and the synaptic weight can only be selected from the

interval (−1, −1/2).

Currently, in MINES, individuals are initially grouped based on their connectivity patterns and then

clustered based on the weight vectors. A drawback of the employed methodology is that individuals with

different connectivity patterns producing similar outputs would be clustered differently. In fact, differ-

ent connectivity patterns does not necessarily guarantee dissimilar functionality. Hence, in a different

approach, individuals can only be clustered based on the angles and the size of weight vectors. The new

technique would cause individuals with different connectivity patterns to be grouped in a single clus-

ter. However then a problem would arise concerning the connectivity pattern of the representing hidden

node.1. An immediate answer to the problem would suggest randomly using one of the connectivity

patterns or the one producing higher MI and lower network’s MSE.

In MINES clustering is applied according to the Euclidian angles of the weight vectors (see Section

1Suppose, two hidden nodes are clustered together so that one has a connectivity pattern of (1, 1, 1) and the other (1, 0, 1);

what will be the connectivity pattern of the representing hidden node?
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4.5). Nevertheless, other techniques could also be used as the basis of clustering. For instance, the

MI between pairs of hidden nodes (the pair-wise MI) could possibly be used as an alternative. In this

approach, hidden nodes possessing high pair-wise MI are clustered together. It must be noted that, in

current version of MINES, the geometric approach was advantageous to monopolize the application of

MI on error recognition2.

In the present system of MINES, the calculation of MI is conducted via the histogram technique

(see Section 2.4.2). However, for continuous random variables, the accuracy of the histogram technique

is highly disputable; it was even called the “naive algorithm” [64]. Although Equation 2.57 indicates that

over repetitive estimations the measured MIs would be more likely to be around the true value, a better

technique to calculate the MI could further boost the performance of MINES. More exact calculation of

MIs is expected to speed up the convergence of the system and result in more optimal NNs. For instance,

the calculation of MI using “kernel density” estimators show a superior performance to the histogram

method [64], which accordingly can be adopted in MINES.

As mentioned in Section 4.7, in MINES, the former incorporated hidden nodes often benefit from

a host’s advantage of detecting most of the error of the network when the MSE of the system is con-

siderably low. The phenomenon makes newly created hidden nodes to have little chance to take in the

network’s architecture, which is when the system is converged. However, a lot of times the convergence

of the system may not lead to the exact optimal structure (in the case of existence). One way to enhance

the chance of obtaining the optimal NN, is to use conditional MI [7] when new offspring are created.

For instance, suppose a new hidden node, denoted by hi, is associated to a new offspring. In the new

system, hi will be added to the hidden layer, if its incorporation brings a higher MI in comparison to

other currently incorporated hidden nodes. Otherwise, its MI will be measured with the residual error

when an arbitrary hidden node, denoted by hj , is deleted from the network. In effect, the following

quantity is of interest:

MIi|j = MI(hi, eij | hj)

where MIi|j is the MI of hi with the residual error subject to the exclusion of hi and eij is the residual

error of the network when hi and hj are excluded. A conceptual approach would conclude that the new

hidden node hi must be substituted instead of the former hidden node hj if MIi|j is bigger than MIj ;

where MIj is the usual MI of hj with the residual error.

In Equation 3.15, representing the polynomial regressed by MINES, the power of all independent

variables (i.e. xi: i = 1, . . . , 5) are one. However, to further examine its regression capability, MINES

should be tested on a polynomial with arbitrary power. In this respect, the following polynomial:

y = 3 + 2x
2/3
1 x2x

2/3
3 x

1/2
4 + x

1/2
3 x

2/3
4 x5

introduced by Tanahashi et al. (2005) [67] to test the newer version of BCW, can similarly be adopted in

2For instance, using pair-wise MIs would complicate the judgement about the performance of MI in error detection: a success

in the system couild be interpreted due to a possible good collaboration between pair-wise MIs and those between HNs and the

residual errors; while a failure in the system could be attributed to inaccurate estimations of the pair-wise MIs measuring the

existing similarities between hidden nodes.
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future application of MINES.

In Chapter 6, daily crude oil data was used to perform one-step ahead prediction. However, the long

term predictability of MINES could particularly be of interest. In this concern, monthly crude oil prices

can be used to assess the long term forecasting performance of MINES in future applications.
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