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 ABSTRACT 

 

This thesis throws new light on issues debated in the experimental literature on 

neutralisation. They concern the extent of phonetic merger (the completeness 

question) and the empirical validity of the phonetic effect (the genuineness 

question). Regarding the completeness question, I present acoustic and perceptual 

analyses of vowel/zero alternations in Bedouin Hijazi Arabic (BHA) that appear to 

result in neutralisation. The phonology of these alternations exemplifies two 

neutralisation scenarios bearing on the completeness question. Until now, these 

scenarios have been investigated separately within small-scale studies. Here I look 

more closely at both, testing hypotheses involving the acoustics-perception 

relation and the phonetics-phonology relation. 

I then discuss the genuineness question from an experimental and statistical 

perspective. Experimentally, I devise a paradigm that manipulates important 

variables claimed to influence the phonetics of neutralisation. Statistically, I re-

analyse neutralisation data reported in the literature from Turkish and Polish. I 

apply different pre-analysis procedures which, I argue, can partly explain the 

mixed results in the literature. 

My inquiry into these issues leads me to challenge some of the discipline’s 

accepted standards for characterising the phonetics of neutralisation. My 

assessment draws on insights from different research fields including statistics, 

cognition, neurology, and psychophysics. I suggest alternative measures that are 

both cognitively and phonetically more plausible. I implement these within a new 

model of lexical representation and phonetic processing, the Variability Field 

Model (VFM). According to VFM, phonetic data are examined as jnd-based 

intervals rather than as single data points. This allows for a deeper understanding 

of phonetic variability. The model combines prototypical and episodic schemes 

and integrates linguistic, paralinguistic, and extra-linguistic effects. The thesis also 

offers a VFM-based analysis of a set of neutralisation data from BHA.  
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In striving for a better understanding of the phonetics of neutralisation, the thesis 

raises important issues pertaining to the way we approach phonetic questions, 

generate and analyse data, and interpret and evaluate findings. 
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1 Introduction 

 

 

1.1 Prelude 

On January the 28th, 1986, the space shuttle Challenger exploded just moments 

after lift-off, killing its crew of seven astronauts. In his analysis of this fatal event, 

Edward Tufte (1997) made the claim that the shuttle disaster could have been 

avoided had the data that were used for deciding to launch the rocket on that cold 

winter day been analysed differently. This is an extreme case where proper data 

analysis and presentation could have made the difference between life and death. 

More generally, however, Tufte’s claim highlights the crucial contribution of good 

data analysis and presentation to science and life. Different tools and techniques of 

data analysis and presentation can reveal as well as obscure important evidence 

that can guide and improve our understanding of the world. 

In this thesis, I take Tufte’s point to heart and apply it to a (rather less life-and-

death) domain: the phonetics of neutralisation.  

 

1.2 Towards a Better Understanding of the Phonetics of 

Neutralisation 

A central argument of this thesis is that proper data analysis is essential for an 

adequate understanding of the phonetics of neutralisation. I illustrate this point by 

showing how different analyses of the same neutralisation data can yield 

qualitatively quite different results. I use for this purpose (1) an original set of 

neutralisation data from a Bedouin Hijazi dialect of Arabic (henceforth BHA) and 

(2) datasets reported in the literature from Turkish and Polish. 
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With reference to the Turkish and Polish datasets, I demonstrate the effect of pre-

analysis on the statistical outcomes of analyses conducted using the same 

inference tool (statistical significance tests), and subsequently on the inferences 

we draw from such analyses. I show that, by adopting different data-entry 

procedures, we arrive at interpretations of the phonetics of neutralisation for the 

Turkish and Polish data that are distinct from what is reported in the literature.  

Kopkallí (1993) found complete neutralisation for final devoicing in Turkish. That 

is, final voiceless and devoiced stops are not statistically significantly different 

along the durational dimensions that Kopkallí measured for her data. Kopkallí’s 

conclusion is based on separate analyses of data produced by each individual 

speaker in the study. In this thesis, I re-analyse the same data but reach a 

completely different conclusion. On the basis of statistical tests run on by-subject 

aggregated data as well as on pooled data from the participants in the Kopkallí 

study, I conclude that neutralisation in Turkish is phonetically incomplete. That is, 

there are small but statistically significant differences between word-final 

voiceless and devoiced stops in Turkish.   

The reverse scenario obtains for the neutralisation data from Warsaw Polish as 

reported in Tieszen (1997). Tieszen reported incomplete neutralisation on the 

basis of the outcome of statistical tests run on by-item aggregated data. I re-

analyse the same dataset as a by-subject aggregate but find complete 

neutralisation.  

With regard to the neutralisation data from BHA, I take the argument beyond the 

treatment of pre-analysis data and straight to the heart of the inference 

mechanism itself, including its descriptive quantification and inference procedures 

and format. I consider two tools: (1) Null Hypothesis Significance Testing 

(henceforth NHST), which is the standard evidence-finding procedure in phonetic 

research, and (2) the Variability Field Model (henceforth VFM), which is a new 

model of phonetic processing and representation I propose in this thesis. VFM 

makes no reference to statistical significance. It introduces a novel phonetics-

specific quantification of phonetic data and variability. According to VFM, phonetic 

data are examined as intervals rather than as single data points. To divide a dataset 

into intervals, VFM applies a binning algorithm that utilises the familiar psycho-
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physical notion of just noticeable difference (jnd). An immediate advantage of this 

move for phonetic data analysis is that differences that are not even just-noticeable 

can no longer clutter our analysis and presentation of data, thus allowing structure 

and patterns present in a given dataset to emerge more distinctly. A central VFM 

argument is that to find structure in variability, we need only consider hearable 

variability. Moreover, VFM places emphasis on count data rather than 

arithmetically derived data like the mean and the standard deviation (SD), which 

standardly summarise phonetic data within NHST. This manoeuvre on the part of 

VFM brings the model more in line with frequency-based Bayesian reasoning 

(Gigerenzer & Hoffrage 1995).  

To appreciate how these analysis tools can lead us to incompatible conclusions 

regarding the phonetics of neutralisation in BHA, it is instructive to familiarise 

ourselves with the neutralising effects of vowel/zero alternations in BHA, which 

constitute the empirical focus in this thesis.  

In BHA, certain underlying consonant clusters are broken up through the 

epenthesis of a vowel of predictable quality, e.g. /laêm/ > [laêam] ‘meat’, /gidr/ > 

[gidir] ‘pot’. The epenthesised vowels potentially neutralise with lexical vowels. 

For example, [laêam] can be the output of either /laêm/ ‘meat’ (with epenthetic 

[a]) or /laêam/ ‘shut tight’; [gidir] can be the output of either /gidr/ ‘pot’ (with 

epenthetic [i]) or /gadir/ ‘managed/overpowered’ (with independent raising of 

the first vowel). It is important to insert the caveat 'potentially' because BHA 

phonology treats epenthetic vowels differently according to their quality. For 

example, while both epenthetic [a] and lexical /a/ are stressable, epenthetic [i], 

unlike lexical /i/, is not.  

NHST-generated results reveal a curious pattern of dis-correlation between the 

phonetics and phonology of neutralisation in BHA.  The tests find a statistically 

significant acoustic difference where it is least expected phonologically, while they 

fail to find statistically significant acoustic differences between the vowels that are 

phonologically different. Specifically, by the criterion of statistical significance, 

epenthetic [a] and lexical /a/, which behave the same in the phonology, are distinct 

in the phonetics. Conversely, epenthetic [i] and lexical /i/, which are treated 
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differentially in the phonology, are acoustically non-distinguishable by that 

criterion of statistical significance. 

By way of contrast, according to the VFM results, the neutralisation effect through 

[a]-epenthesis, which is phonologically complete, is also phonetically complete. 

Conversely, the underlying distinction between epenthetic [i] and lexical /i/, which 

survives in the phonology, also survives in the phonetics. In other words, the VFM 

analysis yields a good correlation between the phonetics and phonology of 

vowel/zero neutralisation in BHA.  

Which of these analyses is right? Of course the answer to this question is never 

going to be as critical as that given to the questions about the data analysis and 

decisions in the Challenger catastrophe in 1986. Yet, an adequate understanding of 

neutralisation data and analysis tools is necessary for a better understanding of 

the phonetics of neutralisation, which this thesis seeks to attain.  

The purpose of this thesis is to provide a better-informed qualitative and 

quantitative description of the phonetics of neutralisation. To that end, the thesis 

reaches for insights from research fields as diverse as statistics, cognition, 

neurology, and psychophysics, in addition, of course, to phonetics and phonology. 

Much closer to home, though, a deep acquaintance with the empirical literature on 

the phonetics of neutralisation has not only guided the development of the thesis 

but has also revealed many of the issues that I investigate here.  

These issues concern the extent of phonetic merger, the empirical validity of the 

phonetic effect, and the variability inherent in neutralisation data. The first two of 

these have attracted a lot of attention in the literature. I refer to these two issues 

respectively as the completeness question and the genuineness question. One 

contribution of this thesis involves addressing neglected aspects of these 

questions. By doing so, the thesis fills a gap in the literature and raises, at the same 

time, new concerns over how we approach, describe, and reach conclusions on the 

phonetics of neutralisation.  

Firstly, regarding the completeness question, I focus on the relation between the 

phonetics and phonology of neutralisation. I investigate the phonetics of two 

neutralisation scenarios bearing directly on the completeness question, with a 

view to bringing more balance to our approach to the relation between the 
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phonetics and phonology of neutralisation. As a schematic description, scenario A, 

which has attracted most experimentation, involves contrasts that are 

impressionistically described as neutralised, with surface phonology completely 

giving up on them. Conversely, scenario B, which is under-researched from an 

experimental perspective, involves contrasts which are impressionistically 

described as neutralised, but which the surface phonology still refers to under 

certain conditions. One important condition is their role in the creation of what is 

known in the phonological literature as underapplication or overapplication 

opacity (e.g., Kiparsky 1973; McCarthy 1999). Until now, these scenarios have been 

investigated separately. But here I look more closely at both, using data from a 

single phonological process drawn from a single language (see ¶ 1.3.2 for details). 

Secondly, in connection with the genuineness question, I engage in the debate from 

an experimental and statistical perspective. Experimentally, I devise a paradigm 

that manipulates important variables claimed to influence the phonetics of 

neutralisation. These variables include orthography, pragmatic context, and the 

presence of minimal pairs in the stimulus list. The main conclusion I reach is that 

the same experimental make-up can produce both complete and incomplete 

effects, with no definitive correlation between either effect and experimental 

artefactuality.  

My re-analysis of the neutralisation data reported in the literature from Turkish 

and Polish provides the statistical side of my examination of the genuineness 

question. My main conclusion on this issue is that arguments questioning the 

genuineness of the reported findings are self-defeating, irrespective of whether 

they appeal to experimental or statistical considerations. 

Thirdly, the thesis investigates the issue of variability, which, despite its obvious 

relevance to neutralisation data, has only received the slightest attention in the 

relevant literature. I note here that variations due to speakers, items, and 

conditions are systematically reported, but that their implications for the 

phonetics of neutralisation are no less systematically neglected.  

The thesis discusses the issue of variability over the space of three main chapters. 

The approach underlying VFM, as described above, calls for the integration of 
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variability into any adequate model of the phonetics of neutralisation. VFM treats 

variability as the essence of phonetic data rather than some isolatable addition. 

I suggest that we can make far better use of the experimental findings in the 

neutralisation literature by paying more attention to the phonetic variability they 

contain. This, I argue, will place us in a better position to answer basic questions 

about the extent of phonetic merger and the genuineness or otherwise of 

(in)complete neutralisation and to evaluate competing proposals for modelling the 

phonetics of neutralisation. Also, and perhaps more importantly, it will allow us to 

appreciate better what the phonetics of neutralisation can tell us about the relation 

between phonetics and phonology and between speech production and perception 

and about the place of these relations in the mental lexicon. 

In the remainder of this introductory chapter, I present glimpses of the main 

features of the laboratory tradition in studies of neutralisation. I give a background 

introduction in ¶ 1.3.1 and move on to discuss the phonetics-phonology relation as 

depicted in the literature on the phonetics of neutralisation in ¶ 1.3.2. The section 

also previews the phonology of vowel/zero neutralisation in BHA and points out 

its empirical relevance to the phonetics-phonology relation. In ¶ 1.4, I close by 

laying out the structure of the thesis.  

   

1.3 Neutralisation in Laboratory Studies 

1.3.1 Background 

Among the issues that a laboratory study of neutralisation should aspire to 

elucidate are the phonetics-phonology relation, the production-perception 

relation, and the relation between phonetic variability and lexical representation 

and learnability. The past forty years or so have produced more than eighty 

studies1 subjecting neutralisation to experimentation, but the discussion of most of 

the above-mentioned issues remains largely uniformed by the findings of these 

studies. A factor immediately contributing to this unfortunate state of affairs is that 

these questions were simply not on the research agenda for many of those who set 

                                                        
1 The vast majority of published papers are found in the Journal of Phonetics, Phonetica, the Journal 
of the Acoustical Society of America, and Research in Phonetics. 



20 
 
out to study neutralisation from an experimental perspective. Generally, the 

purpose of most laboratory inquiries into neutralisation was to test what was 

treated as the null hypothesis in  (1):  

(1) Neutralisation is phonetically complete in that no phonetic traces 

of the relevant underlying contrast are to be found when 

inspecting the acoustic2 signals of the terms of the neutralised 

contrast (along the acoustic parameters to be investigated).  

This all followed the discovery of incomplete neutralisation, the very instantiation 

of the alternative hypothesis to  (1). Consider the following excerpt from the 

opening paragraph of a paper by Fourakis and Iverson (1984) entitled “On the 

‘incomplete neutralisation’ of German final obstruents”: 

Until very recently, there was no reason for the present 
paper to have been written, the simple purpose of which is 
to establish whether the devoicing of word-final obstruents 
in German constitutes phonological neutralization. This just 
has not been a serious question in modern linguistics (p. 
140). 

However, the genuineness of incomplete neutralisation was soon questioned on 

the grounds that the acoustic residue was found to fluctuate to the point of 

disappearance under different experimental conditions (see e.g., Dmitrieva et al 

2010; Jassem & Richter 1989; Port & Crawford 1989; Snoeren et al 2006; Warner 

et al 2006, 2004). Blame for this mostly fell on the specifics of the experimental 

design which, according to some, encouraged ‘spelling pronunciation’ (e.g., 

Fourakis & Iverson 1984; Warner et al 2006) and/or ‘hypercorrection’ (e.g., Jassem 

& Richter 1989). Both of these were thought to issue from what Barnes (2006: 

225) called the ‘paralinguistic contamination problem’.  

Another, far less celebrated, source of scepticism concerning the genuineness of 

incomplete neutralisation is that the reported phonetic differences are not always 

in the same direction as when the relevant contrast is fully realised (e.g., Barnes 

2006; Dinnsen & Charles-Luce 1984; Wissing & van Rooy 1992, in van Rooy et al 

2003). These inconsistencies added to the controversy that was already engulfing 

incomplete neutralisation, especially owing to the fact that a number of early 

                                                        
2 Articulatory differences have also been reported in the literature (see e.g., Butcher 1995; Nolan 
1992; Smorodinsky 2002). However, for the sake of brevity, I only discuss acoustic studies here. 
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studies yielded mixed results even when they were investigating the same 

neutralisation case (see e.g., Fourakis & Iverson 1984 vs Port & O’Dell 1985 for 

German; Jassem & Richter 1989 vs Slowiaczek & Dinnsen 1985 for Polish; 

Baumann 1995 vs Warner et al 2004 for Dutch; Port 1977 vs Fox & Terbeek 1977 

for American English).  

After decades of experimentation, the basic exploratory questions of the reality 

and mechanism of incomplete neutralisation are far from settled. Commentators 

on the topic continue to call for further research. For example, Barnes’ 2006 book 

on positional neutralisation contains a discussion of incomplete neutralisation as a 

challenge to any model of the phonetics-phonology interface. He describes “studies 

seeking to dispel once and for all persistent scepticism concerning the 

paralinguistic contamination problem for I[ncomplete] N[eutralisation]” as 

“extremely important” (p. 234). Similarly, Ernestus (in press: 10) deems “further 

research into this issue […] indispensable”. 

1.3.2 Neutralisation and the Phonetics-Phonology Relation 

As I pointed out above, the most significant outcome of decades of phonetic inquiry 

into neutralisation is that it may be phonetically incomplete, with traces of the 

underlying contrast surviving in the acoustic signal. To many phoneticians, the 

discovery of incomplete neutralisation has strengthened calls for a greater role for 

phonetics in phonology. For some time it looked as though, upon the recognition of 

the existence of incomplete neutralisation, “[a] theoretical dilemma [for 

phonology…] arises concerning the presumed distinction between neutralization 

rules and allophonic rules”, which only phonetics can resolve (Slowiaczek & 

Dinnsen 1985: 326) (but see Blumstein 1991 and Nolan 1986 for a different view). 

This justified the investment of time and effort in small-scale studies whose main 

mission was to prove or disprove the existence of incomplete neutralisation. 

Discussions of the implications of these findings for the relationship between 

phonetics and phonology have had little impact. Furthermore, the credibility of the 

studies was considerably undermined by the identification of a number of 

methodological shortcomings, with the potential to call into question the 

genuineness of the reported findings (see ¶ 1.3.1 for references). 
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To many phonologists, on the other hand, the discovery of incomplete 

neutralisation is only very recently beginning to assume any theoretical relevance. 

Incomplete neutralisation is now being taken to provide support to a number of 

phonological models including the Dynamics model (Gafos 2006; Gafos & Benus 

2006; Nycz 2005), Candidate Chains in Optimality Theory (Gouskova & Hall 2009), 

Turbidity Theory (van Oostendorp 2008), phonologisation of sound change in 

progress (e.g., Barnes 2006), and the recent application of exemplar-based models 

to neutralisation data (e.g., Ernestus & Baayen 2006; cf. Yu 2007).  

But before that, and apart from a total rejection by phonologists like Manaster 

Ramer (1996a, 1996b), findings of those instrumental studies on neutralisation 

received little attention from the phonological community. Dinnsen (1985) 

attributes this undue disregard on the part of phonologists to their insistence on 

categoricality, which leads them, he claims, to assign priority to perception over 

production. Dinnsen protests that, for contemporary phonologists, “if for some 

reason production differences were discovered without the perception differences, 

those differences would be dismissed as linguistically irrelevant” (p. 273).  

On the other hand, Brockhaus (1995) observes that at the time when 

neutralisation was becoming empirically relevant to many phoneticians in the 80’s 

and 90’s, its theoretical relevance to phonologists was declining.  

Had the purpose of laboratory inquiries into neutralisation been a quest for 

insights from production and perception data into covert and ‘problematic’ 

phonological patterns, the “prospect of having to do phonology or phonetics in a 

world in which ‘incomplete neutralization’ really existed” might have been less 

“horrific” to phonologists like Manaster Ramer (1996b: 514). Unfortunately, 

laboratory studies of neutralisation fail to deliver on this objective. Their approach 

to the production-perception relation is biased (as pointed out by Dinnsen 1985); 

so is their approach to the phonetics-phonology relation. As mentioned above, the 

null hypothesis most of these studies are testing is that phonological neutralisation 

is phonetically complete. What this implies for the phonetics-phonology relation is 

that the phonetics and phonology of neutralisation mirror each other. More 

specifically, phonetics is assumed to reflect the phonological surface 

representation, where neutralisation occurs, and be blind to the underlying 

representation, where contrast holds. Most researchers choose for instrumental 
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investigation contrasts that are reportedly neutralised, where phonology 

completely gives up on the underlying contrast on the surface. To place it within its 

phonological context, this would be an illustration of clause (c) of Kiparsky’s 

(1973: 79) definition of opacity3 given in  (2). Importantly, this clause depicts 

neutralisation as opacity. Opacity here refers to the problem of learning the correct 

underlying representation of a contrast that is neutralised on the surface.  

(2) A process P of the form A= B/ C__D is opaque to the extent that 

there are phonetic forms [i.e., surface representations] in the 

language having 

(a) A in the environment C__D [underapplication opacity], or 

(b) B derived by P in environments other than C__D 

[overapplication opacity], or 

(c) B not derived by P in the environment C__D [neutralisation]4. 

Interestingly, clause (c) was only later added to the original definition that 

appeared in Kiparsky (1971: 621-622). However, this clause has systematically 

been ignored by phonologists who discuss opacity. Those who ever mention it 

hasten to announce its irrelevance to their discussion of the problematic, thus 

more interesting, cases involving the other two clauses (see e.g., BakovicÂ 2007; 

Bermu Âdez-Otero 1999; McCarthy 1999). The task of the investigator of the 

phonetics of a neutralisation effect that conforms to clause (c), then, is to find out if 

the relevant neutralisation, which is complete in the phonology, is also complete in 

the phonetics. 

                                                        
3 For expository convenience, I follow the numbering of clauses that appears in McCarthy (1999: 
358). See also BakovicÂ (2007: 219).  
4  More concretely, a process deriving, for example, [t] from an underlying /d/ in a certain context is 
opaque if there exists within the language and in the same context an underlying /t/ surfacing as [t] 
or a [t] derived by a rule other than the /d/=[t]. In other words, in a language of this type, only 

some surface [t]s are underlyingly /t/s. Note that this view of neutralisation as involving opacity 
makes little sense under a broader conception of neutralisation that does not distinguish between 
‘the obliteration of contrasts that exist at the lexical level’ and ‘the static lack of contrast at the lexical 

level’. An important question to ask here is whether or not such a distinction is warranted. Although 
this question is seldom asked in the phonological literature (but see Gurevich 2004; Hansson 2008), 
it seems to me that these two ‘patterns’ make different predictions regarding the phonetics of 
neutralisation, and thus should be kept as separate in phonetic investigations of neutralisation. 
More specifically, neutralisation in the narrow sense as the obliteration of lexical contrasts on the 

surface predicts that the realisation of a neutralised contrast may be subject to pressures from a 
number of factors including, for example, the different URs of the terms of the contrast, the 
existence of morphologically related words where the underlying contrast is fully maintained on 
the surface, and the different orthographic forms where the underlying contrast is represented (cf. 
Gouskova & Hall 2009; Yu 2009).     
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However, it is not hard to see that the correlation between the phonetics and 

phonology of neutralisation assumed by most researchers could also be tested by 

studying cases where a phonetically incomplete neutralisation should be what we 

expect if the hypothesis of a close correlation is to be retained. Reviewing the 

literature on the phonetics of neutralisation, we find that only a few studies have 

investigated contrasts whose neutralisation plays a role in the creation of 

underapplication or overapplication opacity (clauses (a)/(b) of the definition in  (2) 

above). These studies focus on a few phonological processes such as vowel 

epenthesis (e.g., Gouskova & Hall 2009), flapping (e.g., Colley 2009; Fox & Terbeek 

1977), and final devoicing (e.g., Baroni & Vanelli 2000; Ettlinger 2007). In these 

cases, if the phonetics and phonology of neutralisation mirrored each other, we 

would expect traces of the underlying contrast to survive in the phonetics, as they 

do in the phonology.  

The importance of testing the difference between the two takes on the correlation 

of the phonology and phonetics of neutralisation, by focusing on a single 

phonological process in a single language, should be obvious. On the one hand, 

such an investigation would help shape and sharpen our theoretical perspective on 

the phonetics of neutralisation and more generally the phonetics-phonology 

relation. On the other, it should be empirically beneficial in the context of the 

genuineness question mentioned above. Fortunately, just such a testing-ground 

exists and is the subject of investigation in this thesis.   

In Bedouin Hijazi Arabic (BHA), vowel epenthesis neutralises vowel/zero contrasts 

differently according to the quality of the inserted vowel. The result of 

epenthesising [a] in a word-final bi-consonantal cluster that violates the Sonority 

Sequencing Principle (SSP) (Clements 1990: 285) is apparently a total obliteration 

of the underlying vowel/zero contrast on the surface: an epenthetic [a], 

underlyingly a zero, and a lexical /a/ are both impressionistically described and 

transcribed as being the same, and crucially, they behave the same with respect to 

phonological processes. Or to be more precise, there is no process in the phonology 

of BHA that treats epenthetic [a] and lexical /a/ differently. Take for example 

stress assignment. Epenthesising [a] does not disrupt stress assignment. Both 

epenthetic [a] and lexical /a/ are stressable:  
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(3) /laêam+ha/ [laêaÂmha]  ‘shut it tight’ 

/laêm+ha/  [laêaÂmha]   ‘her meat’ 

This is not what we observe when the epenthetic is [i]. Epenthesising [i] to break 

up a bi-consonantal cluster that violates SSP results in the same vowel/zero 

contrast being neutralised, but not quite: despite sounding the same to the naked 

ear, lexical /i/ and epenthetic [i] behave differently with respect to some 

phonological processes. Sticking with stress assignment for an initial illustration, 

we note that [i]-epenthesis renders stress assignment opaque or non-surface-true 

in McCarthy’s (1999) sense: 

(4) /gadir+ha/  [gidi Ârha]  ‘overpowered her’ 

/gidr+ha/  [gi Âdirha]   ‘her pot’ 

Relating these phonological facts to the phonetics of vowel/zero neutralisation in 

BHA, we come up with the predictions in  (5), which the phonology seems to 

support.  

(5) Assuming that the phonetics and phonology of neutralisation 

correlate closely, epenthetic [a] and lexical /a/, which behave 

phonologically the same, are predicted to be acoustically and 

perceptually non-distinguishable, whereas epenthetic [i] and 

lexical /i/ are predicted to be acoustically and perceptually 

different since BHA phonology treats them differently. 

Put differently, the case we have for empirical investigation involves a single 

phonological process neutralising the same type of contrast differently. The results 

we get by studying this controlled case that BHA phonology offers will bring the 

phonetics and phonology of neutralisation face to face in a manner unreported 

before. This will allow us to add a new twist to the old story of the phonetics of 

neutralisation, as told from the angle of the completeness question, the 

genuineness question, and the variability question.  

 



26 
 

1.4 Structure of the Thesis 

The thesis proceeds as follows. In chapter two, I introduce the notion of qualitative 

variability that arises as we approach the phonetics of neutralisation with a 

predisposition toward interpreting the results in a way that categorically 

distinguishes between complete and incomplete neutralisation. I then discuss and 

evaluate the various predictions made by the few models of the phonetics-

phonology interface that have attempted to describe the phonetics of 

neutralisation. My assessment reveals an intolerance of qualitative variability 

shared by the models I review.  

In chapter three, I document the phonology of the relevant vowel/zero 

alternations in BHA. The chapter opens with a brief description of the dialect, 

noting its place in phonological work to date. An overview of vowel epenthesis in 

BHA follows. The main part of the chapter comprises a detailed look into vowel 

epenthesis, vowel/zero neutralisation, and the phonological interactions that 

illustrate the disparate behaviour of epenthetic and lexical vowels in BHA 

phonology.  

In chapter four, I deal with both the completeness and the genuineness questions 

in light of the phonetics of vowel/zero neutralisation in BHA. In connection with 

the completeness question, I present acoustic and perceptual analyses of the 

neutralisation data in BHA and discuss the implications of these analyses for the 

phonetics-phonology relation. As to the genuineness question, I deal with both its 

experimental and statistical aspects. Experimentally, the chapter analyses acoustic 

data generated within an experimental paradigm that explores the effect of 

orthography, pragmatic context, and stimulus composition. Statistically, I discuss 

the mixed findings that I derive by subjecting datasets from Turkish and Polish to 

different pre-analysis procedures. 

In chapter five, I present a qualitative and quantitative description of the phonetics 

of neutralisation. On the qualitative side, I extend the notion of qualitative 

variability introduced in chapter two. I present a brief scrutiny of the labelling 

criteria in the literature as applied to the phonetics of neutralisation. I then discuss 

in detail statistical significance, the single most important criterion that has been 

standardly used to classify the outcomes of quantitative studies of neutralisation. 
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On the quantitative side, I evaluate the parametric measures of central tendency 

and dispersion which are commonly used to quantify the phonetics of 

neutralisation. I show that the standardly used measures of central tendency (i.e., 

the mean) and variability (i.e., the standard deviation) are unintuitive and closely 

tied to the numerical values of the measurement scale in such a way that a robust 

estimation of the underlying central location and variability can sometimes be 

hard to attain. I also propose an alternative that is both more intuitive and 

cognitively plausible. Specifically, I suggest that the mode, rather than the 

arithmetic mean, be used to measure central tendency. This suggestion rests on the 

claim that the mode reflects better the intuitive notion of average. By the same 

token, the variability measure I propose relates the frequency of the modal interval 

to the range, both of which are more consistent with frequency-based Bayesian 

reasoning (Gigerenzer & Hoffrage 1995). Moreover, I suggest that phonetic data 

are more appropriately examined as intervals rather than as single points.  

In chapter six, I present a sketch of VFM, summarising its main philosophy and 

describing how it treats the variability effects modelled in the chapter. These 

include allophonic and indexical variations. I also detail the field-forming and 

background-forming components of the model and describe the relationships 

among them.  

Chapter seven is basically a preliminary implementation of the ideas outlined in 

chapters five and six. Specifically, the chapter provides technical details of how to 

find the mode for phonetic data and how to calculate the variability field index. It 

also offers a preliminary VFM-based analysis of neutralisation data from BHA. 

Finally, in chapter eight, I summarise the main findings and point out directions for 

future research. 
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2 Variability in the Phonetics of 

Neutralisation 

 

 

2.1  Introduction 

A substantial portion of the experimental literature that has begun to accumulate 

since the 1970s aims to establish the phonetic completeness or incompleteness of 

various neutralisation effects. An extensive list of references is provided in 

Appendix A. Generally, a neutralisation effect is said to be phonetically incomplete 

if phonetic differences between the relevant sounds are found to be statistically 

significant; otherwise, neutralisation is said to be phonetically complete.   

Experimentation has focused on a diverse range of neutralising processes such as 

final devoicing in German, Catalan, Polish, Russian, Dutch, Turkish, Lithuanian, 

Friulian, and Afrikaans (for a recent review on final devoicing, see Ernestus, in 

press), vowel deletion in French and Serbo-Croatian, vowel reduction in Russian, 

Catalan, and Shimakonde, consonant deletion in Turkish, vowel epenthesis in 

Levantine Arabic and Brazilian Portuguese, stop epenthesis in English, assimilation 

in French, Catalan, Russian, English, and Lithuanian, flapping in American English, 

coda neutralisation in Andalusian Spanish, Puerto Rican Spanish, and Korean, and 

tone sandhi in Mandarin and Cantonese. See Appendix A for references.  

With both complete and incomplete neutralisation reported in the literature, a 

phonetics-based classification of neutralisation effects seems to have emerged—a 

classification that is to be added to the list of terminological distinctions that the 

notion of neutralisation has thus far included. However, it should be noted that 

older distinctions mostly serve a descriptive purpose—to capture adequately 

typological patterns of asymmetry in neutralisation phenomena. These distinctions 

are made along dimensions such as the following: global versus positional (e.g., 
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Steriade 1999; Warner et al 2006), productive versus unproductive (e.g., Lombardi 

1994), obligatory versus optional (e.g., Kirchner 1998), contextual versus 

structural, assimilatory versus nonassimilatory (e.g., Trubetzkoy 1969; Harris 

1997; Steriade 1999), virtual versus actual (e.g., Hansson 2008), and exceptionless 

versus exception-sensitive (e.g., Kager 2008). To these dimensions, phonetic 

research has added the extent of phonetic merger along which the complete-

incomplete distinction is defined. This dimension continues to be investigated in 

sociolinguistic work documenting mergers and near-mergers (e.g., Gordon 2002; 

Hay et al 2006; for a recent review, see Hall-Lew 2009)5.  

For scope and time reasons, I focus exclusively on the phonetics of neutralisation 

as reported in phonetic research. However, my view on merger and neutralisation 

is very similar to Yu’s (2007). Basically, phonetic studies of mergers and 

neutralisation share an interest in the question of the presence or absence of 

phonetic differences between sounds thought to have been merged or neutralised. 

Of course, researchers concerned with mergers and neutralisation may employ 

different criteria in establishing whether a difference is present or not, use 

different stimulus materials, different labels, etc. Yet it remains true that most of 

their differences are methodological. 

Undoubtedly, as I pointed out in chapter one, the complete-incomplete distinction 

is significant not only because of its non-impressionistic, case-study methodology, 

but also because it raises fundamental theoretical and empirical questions. These 

questions bear on the reality and mechanism of neutralisation. They also implicate 

the very concept of contrast, which still plays a central role in phonological theory 

(for more on this, see Hall 2007 and Hall 2009). Moreover, this distinction has 

considerable potential to yield insights into the relation between phonetics and 

phonology and between speech production and perception and into the place of 

these relations in the mental lexicon.  

It might seem surprising that a classification with such a substantial claim to both 

theoretical and empirical legitimacy as the complete-incomplete distinction should 

                                                        
5 Sociolinguists have long been interested in the phonetics of mergers and near-mergers (for a 
review, see Labov 1994). Early reports of near-mergers appear in Labov et al (1972), Trudgill 
(1974), Milroy and Harris (1980), and Nunberg (1980) among others.    
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remain a matter of continued dispute (see the next sections for details).6 While it is 

true that the central research question that the bulk of the experimental literature 

on the phonetics of neutralisation tries to answer presupposes such a 

classification, at least as a conceptual possibility that needs to be tested, 

researchers are still divided on what effect to accept as genuine, and what effect to 

dismiss as artificial, and on what grounds. For example, those who contend that 

neutralisation may not be phonetically incomplete in real-life situations generally 

argue that studies claiming otherwise are simply presenting an experimental 

artefact as a fact (e.g., Manaster Ramer 1996a, 1996b); on the other hand, those to 

whom neutralisation may not be complete argue that studies reporting complete 

neutralisation have simply failed to reveal an effect that is present. They explain 

that complete neutralisation is an artefact of the chosen tools of analysis, 

phonological or statistical (e.g., Dinnsen 1985; Port 1996; Port & Leary 2005). I 

discuss the genuineness of complete and incomplete neutralisation from both an 

experimental and statistical perspective in chapter four.  

But, in this chapter, I focus on a different set of ‘curiosities’ which can further chip 

away at the credibility of the complete-incomplete distinction in the literature.  

An impression that deepens the more we read the relevant literature is that the 

distance separating phonetically complete and incomplete effects can indeed be 

very small and variable (cf. Warner et al 2004), irrespective of the phonetic 

dimension along which it is measured. For example, quantitatively, the magnitude 

of phonetic differences between sounds that are subject to neutralisation as 

reported in experimental studies varies a lot. Take for instance durational 

differences in studies investigating the phonetics of final devoicing. Here, reported 

differences that reach statistical significance range from ƒ1ƒms (Charles-Luce & 

Dinnsen 1987) to ƒ70ƒms (Baroni & Vanelli 2000), with ƒ5ƒms being the most 

frequent difference that is statistically significant.7 Qualitatively, variability is seen 

                                                        
6 Interestingly, a number of researchers have tried to find a link between this phonetics-based 
distinction and phonology-based distinctions within the notion of neutralisation. For example, 
Warner et al (2006) hint at the possibility that incomplete neutralisation may be restricted to 
positional neutralisation, whereas global neutralisation may be phonetically complete. Dinnsen 
(1985) asserts that non-assimilatory neutralisations are phonetically incomplete. He speculates 
towards the end of his paper that assimilatory neutralisations (for which he acknowledges he lacks 
data) might turn out to be complete or incomplete. Similarly, Charles-Luce (1986) wonders 
whether complete neutralisation is best defined as an assimilatory process in speech production.  
7 These statistics are given in absolute values. 
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in terms of the very existence and directionality of statistically significant 

differences. Some studies report statistically significant differences that have 

escaped other studies investigating the same neutralisation effect in the same 

language. The consequence of this is that the same neutralisation case is labelled as 

phonetically incomplete on the basis of conclusions drawn from studies revealing 

statistically significant differences, but as phonetically complete on the basis of 

conclusions drawn from studies reporting no statistically significant differences. 

For example, Port and O’Dell (1985) conclude that final devoicing in German is 

phonetically incomplete, whereas Fourakis and Iverson (1984) report that it is 

phonetically complete. Similarly, Slowiaczek and Dinnsen (1985) conclude that 

final devoicing in Polish is phonetically incomplete, whereas Jassem and Richter 

(1989) report that it is phonetically complete. Of course design differences exist 

among these studies. Whether such differences are wholly responsible for the 

mixed findings is a question that I attempt in chapter four. Note, however, that the 

empirical fact of variability remains valid regardless of whether or not we are able 

to explain it.  

As to the directionality of phonetic differences, some studies report differences 

between neutralised sounds going in the same direction as when the relevant 

contrast is fully realised. For example,  Port and O’Dell (1985) report a statistically 

significant durational difference in stop closure between ‘voiceless’ and ‘devoiced’ 

final stops, where voiceless stops are on average 5ms longer. In contrast, Dinnsen 

and Charles-Luce (1984) report a similar statistically significant durational 

difference but in the opposite direction, with ‘voiceless’ obstruents being shorter 

by 7ms than the corresponding devoiced obstruents. 

Faced with such inconsistencies, we may find it necessary to dissect experimental 

design, analysis procedure, and inferential criteria in search of possible 

explanations. In chapters four and five, I present empirical data which guide a 

scrutiny of both methodology and inference as found in the phonetic research on 

neutralisation. Yet, in the face of inconsistencies, we may also find it instructive to 

explore the variability issue itself. For a start, we need to consider how different 

approaches taken towards it inform the modelling of the phonetics of 

neutralisation. This is what I do in this chapter. Specifically, I claim that we can 

make far better use of the experimental findings in the literature by learning more 
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about the variability they contain. This variability, I argue, is to be understood not 

only in a quantitative sense, which is expected and accepted, but also in a 

qualitative sense. In this thesis, the notion of qualitative variability refers to 

discrepancies in the conclusions researchers draw on the basis of different 

statistical analyses. These discrepancies pertain to qualitative aspects of the 

phonetics of neutralisation, which include the presence and directionality of 

statistically significant differences. In other words, the qualitative aspects of the 

phonetics of neutralisation are relevant to the following questions. Is there a 

statistically significant difference? How prevalent is it? How reliable is its 

presence? Is the difference in the expected direction? In this sense, qualitative 

variability is distinct from quantitative variability, which typically concerns 

quantities in the phonetics of neutralisation. These include the size of the 

difference and its variance. Relevant questions here include the following. How 

large is the difference? How variable is it? How much does it vary relative to a 

reference value like the mean? As we can see, qualitative variability is an ‘acquired’ 

property of the phonetics of neutralisation that comes about when we abstract 

away from quantitative variability in our study of the phonetics of neutralisation.  

The rest of the chapter proceeds as follows. In ¶ 2.2, I present a brief discussion of 

how qualitative variability is manifested in the phonetics of neutralisation. In ¶ 2.3, 

I offer a detailed and critical look into how the issue of variability has been 

approached in the literature. I conclude in ¶ 2.4. 

 

2.2 Manifestations of Variability in the Phonetics of 

Neutralisation 

As commonly agreed, the phonetics of neutralisation is variable. Now if ‘variable’ is 

only meant to apply to raw measurement values (e.g., acoustic data), the 

truthfulness of the claim above can hardly be denied. However, its theoretical or 

practical relevance can hardly be justified in a study that is meant to inform the 

debate on the phonetics-phonology relation. Currently, the received wisdom is that 

acoustic data along any phonetic dimension vary for both linguistic and non-

linguistic reasons, both systematically and randomly (see chapter six for details). 
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Most laboratory studies on the subject aim to confirm or disconfirm systematic 

variation that can be shown to be attributable to some phonological contrast 

initially assumed to have neutralised. Determining eventually whether or not the 

phonetics of a certain neutralisation still bears marks of the purportedly 

neutralised contrast marks a shift in the focus of these studies from the 

quantitative domain to the qualitative domain. Now, the output of a long statistical 

procedure, which is numerical in most situations, is often interpreted in a 

categorical fashion to mean phonetically complete or incomplete neutralisation. 

Put differently, a complete-incomplete distinction which is supposed to be 

statistically demonstrable seems to be made in the phonetics of neutralisation.  

However, it should be awkward for this distinction when the phonetics of 

neutralisation fails to yield conclusive evidence as to the phonetic pattern of the 

relevant neutralisation, such as when the phonetics of neutralisation continues to 

propagate mean differences whose numerical values fail to consistently form a 

single nominal value (i.e., complete or incomplete neutralisation). That is, if studies 

continue to yield mixed results regarding the overall phonetic pattern of a certain 

neutralisation, should we blame this inconsistency on methodological and non-

linguistic influences, implying that the qualitative outcome of similar studies on the 

phonetics of neutralisation is essentially replicable? How should we react when 

findings coming from experimental studies applying the same methodology still 

fail to converge?  How justifiable is it to question instead the reproducibility of the 

qualitative aspects of the phonetics of neutralisation? It may be the case that the 

phonetics of neutralisation is essentially variable not only regarding the size of 

effect, but also, and perhaps more crucially, regarding the existence and direction 

of statistically significant differences. Let us focus on final devoicing by way of 

illustration. Table  2-1 and Table  2-2 present durational differences between 

‘voiceless’ and ‘devoiced’ obstruents as reported in a sample of studies listed in the 

tables. The argumentation below makes use of mean difference values, which are 

available from all the references in the tables, and are sometimes the only type of 

descriptive statistics given. Needless to say, statistical significance is not solely 

based on mean differences. However, other things being equal, there is a 

correlation between statistical significance and the size of mean differences—a 

correlation that can be defined mathematically, conceptually, and practically. But 

for the durational differences in the tables below, we do not know if other things 
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are equal. Summary statistics pertaining to, for example, variation, sample size, 

and effect size are often not reported (see chapter five for details).  

Language Study Parameter Difference (ms) 

German Mitleb (1981) V-duration (____stop) 23* 
V-duration (____fricative) 11 
C-duration (stop) 3 
C-duration (fricative) -5 
Pulsing-duration (stop) 5* 

Fourakis & Iverson (1984) 
(group data) 

V-duration -4 
C-duration -3.5 

Port & O’Dell (1985) V-duration 15* 
C-duration 5* 
Pulsing-duration 5* 
Aspiration-duration 15* 

Charles-Luce (1985) V-duration (___C#V non-clause-finally) -8(*) 
V-duration (___C#C non-clause-finally) -13(*) 
V-duration (___C#V clause-finally) -4(*) 
V-duration (___C#C clause-finally) -17(*) 
C-duration (___#V non-clause-finally) -1 
C-duration (___#C non-clause-finally) -1 
C-duration (___#V clause-finally) 2 
C-duration (___#C clause-finally) -5 

Polish Slowiaczek & Dinnsen (1984) V-duration 12* 
C-duration Not given 
Pulsing-duration 13* 

Jassem & Richter (1989) V-duration 4 
C-duration 4 
Pulsing-duration 15 

Tieszen (1997)  
Warsaw Polish 

V-duration (___C#V) 4 
C-duration (___#V) 4.5 
Pulsing-duration (___#V) 21* 
V-duration (___C#C) 9 
C-duration (___#C) 9 
Pulsing-duration (___#C) 20* 

Bydgoszcz Polish V-duration (___C#V) 2 
C-duration (___#V) .6 
Pulsing-duration (___#V) 6* 
V-duration (___C#C) 2 
C-duration (___#C) 8.5* 
Pulsing-duration (___#C) 10* 

Kraków Polish V-duration (___C#V) -3 
C-duration (___#V) 6.5 
Pulsing-duration (___#V) 5.5* 
V-duration (___C#C) 3 
C-duration (___#C) -2 
Pulsing-duration (___#C) 1.5 

Dutch Jongman (2004) V-duration 4* 
C-duration 2 
Burst-duration 6* 

Warner et al (2004) VV-duration 3* 
V-duration 4* 
C-duration (VV___) 1 
C-duration (V____) 2 
Pulsing-duration (VV___) -1 
Pulsing-duration (V___) 1 
Burst-duration (VV___) 9* 
Burst-duration (V___) 3 

Note: *: statistically significant; (*): statistically significant as part of an interaction between variables;               
+: difference in the expected direction; –:  difference in the opposite direction 
 
Table  2-1: Durational differences between ‘voiced’ and ‘devoiced’ obstruents as reported in a 

sample of neutralisation studies in the literature 
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Language Study Parameter Difference (ms) 

Friulian Baroni & Vanelli (2000) C-duration (…a___#) 45* 
C-duration (…o___#) 15 
C-duration (…i___#) 70* 
C-duration (…e___#) 68* 
C-duration (…u___#) 26* 

Catalan Charles-Luce & Dinnsen 
(1987) 

V-duration (___C#V) 0 
C-duration (___#V) 2 
Pulsing-duration (___#V) 1* 
V-duration (___C#C) -1 
C-duration (___#C) -1 
Pulsing-duration (___#C) 1* 

Dinnsen & Charles-Luce 
(1984) (by speaker) 

S1 V-duration (___C#V) -3(*) 
V-duration (___C#C) 5(*) 
C-duration (___#V) -7 
C-duration (___#C) -1 
Pulsing-duration (___#V) 0 
Pulsing-duration (___#C) 0 

S2  V-duration (___C#V) 1 
V-duration (___C#C) 3 
C-duration (___#V) -7(*) 
C-duration (___#C) -21(*) 
Pulsing-duration (___#V) 0 
Pulsing-duration (___#C) 3 

S3 V-duration (___C#V) -2 
V-duration (___C#C) -4 
C-duration (___#V) 7 
C-duration (___#C) 5 
Pulsing-duration (___#V) 0 
Pulsing-duration (___#C) 1 

S4 V-duration (___C#V) 3 
V-duration (___C#C) 6 
C-duration (___#V) -1 
C-duration (___#C) -6 
Pulsing-duration (___#V) 2 
Pulsing-duration (___#C) -2 

S5 V-duration (___C#V) -3 
V-duration (___C#C) 4 
C-duration (___#V) 9 
C-duration (___#C) -12 
Pulsing-duration (___#V) 3 
Pulsing-duration (___#C) -3 

Afrikaans van Rooy et al (2003) Existing 
words 

V-duration 17(*) 
C-duration 9* 
Burst-duration 2 
Aspiration-duration 14* 

Nonsense 
words 

V-duration 12(*) 
C-duration 11* 
Burst-duration 1 
Aspiration-duration 12* 

Note: *: statistically significant; (*): statistically significant as part of an interaction between variables;              
+: difference in the expected direction; – difference in the opposite direction 
 

Table  2-2: Durational differences between ‘voiced’ and ‘devoiced’ obstruents as reported in a 

sample of neutralisation studies in the literature [continued] 

 

To have a feel for quantitative and qualitative variability in the phonetics of 

neutralisation, let us first consider the magnitude of the durational differences that 

are found to be statistically significant. In terms of central tendency, we find the 

following values (see Table  2-3 for summary statistics): the mean durational 
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difference that is statistically significant is 10.5ms with a standard deviation of 

18ms; the mode, which is the most frequent value, is 5ms; and the median is 8.5ms. 

In terms of range absolute values, we can see from Table  2-1 and Table  2-2 that the 

smallest durational difference that has reached statistical significance is ƒ1ƒms 

(Charles-Luce & Dinnsen 1987), while the largest difference is ƒ70ƒms (Baroni & 

Vanelli 2000). In between these are durational differences varying in magnitude 

and in whether or not they are statistically significant. For example, a pulsing 

duration (i.e., the extent of the periodic signal within the stop closure) of 15ms in 

Polish (Jassem & Richter 1989) is not statistically significant—a finding that has 

been taken to support the claim that neutralisation in Polish is phonetically 

complete. Conversely, a pulsing duration of 13ms (Slowiaczek & Dinnsen 1984) 

and 6ms (Tieszen 1997), again both in Polish, are statistically significant. These 

findings support the claim that neutralisation in Polish is phonetically incomplete. 

This situation is not peculiar to studies on Polish. We find it repeated in studies on 

German, Dutch, and Catalan final devoicing, for instance. 

Central tendency Mean 10.5ms (SD=18ms) 

Mode 5ms 

Median 8.5ms 

Range 

ƒabsolute valuesƒ 

Maximum ƒ70ƒms 

Minimum ƒ1ƒms 

Table  2-3: Summary statistics for the durational differences that reached statistical 

significance in studies on final devoicing 

 

As to the directionality of phonetic differences, the mean differences in Table  2-1 

and Table  2-2 clearly demonstrate how the phonetics of neutralisation exhibits all 

the directional possibilities that an effect may assume: positive differences, 

negative differences, and no differences. For example, in Port and O’Dell (1985), 

‘voiceless’ stops are on average 5ms longer than their ‘voiced’ counterparts. This 

difference is statistically significant. In contrast, in Dinnsen and Charles-Luce 

(1984) ‘voiceless’ obstruents are in one experimental condition statistically 

significantly shorter by 7ms than the corresponding ‘devoiced' obstruents. On the 

other hand, in Charles-Luce and Dinnsen (1987), we find a zero durational 

difference between vowels preceding ‘voiced’ obstruents and vowels preceding 
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‘voiceless’ obstruents. Of course, given the accepted standards within the 

discipline, differences that are not near statistical significance are often equated, at 

least as far as their inferential value is concerned, with zero differences (see 

chapter five for more on this).   

Importantly for the current discussion, though, the interpretation of the no-

difference effect is straightforward: neutralisation is phonetically complete. There 

is some complication, however, surrounding the interpretation of the other two 

effects: incomplete neutralisation entails that a phonetic difference goes in a 

specific direction—that which is “of the same quality as when the distinction is 

fully maintained” (Jongman 2004: 9). That being the case, differences that go in the 

opposite direction to what is expected are hard to interpret.  

As is common practice in our field, a pattern of no-difference and a pattern of 

differences-in-the-expected-direction are treated as qualitatively distinct phonetic 

effects. That is, they are labelled as two different effects. The emergence of a 

pattern of differences-in-the-opposite-direction seems to create a dilemma for 

empirical researchers. Should the pattern be deemed qualitatively different from 

the other two ‘established’ patterns?  What should it be called? Do we need to give 

priority to the existence of a difference over the direction of that difference? Or 

should it be the other way round? I take up these questions and the directionality 

issue in general in chapter five. 

Also relevant is the discrepancy between the end-products of statistical tests run 

on group data and those run separately on data from each individual speaker. This 

discrepancy underscores the variability that is inherent in the phonetics of 

neutralisation. For example, in Gouskova and Hall (2009), statistical analyses of 

pooled data from eight speakers support the conclusion that vowel/zero 

neutralisation in Lebanese Arabic is phonetically incomplete. In contrast, analyses 

of individuals’ data show that only three of the eight subjects actually produced a 

statistically significant difference between lexical and epenthetic vowels. 

Conversely, group data in Dinnsen and Charles-Luce (1984) show no statistically 

significant differences between underlyingly ‘voiced’ and ‘voiceless’ obstruents in 

Catalan along the durational parameters investigated. In contrast, only two of the 

five speakers in the study produced statistically significant differences. See chapter 

five for a possible explanation. 
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The discussion above suggests that qualitative variability can be manifested in 

terms of whether or not a phonetic difference exists and what direction it takes. It 

seems to me that the very conception of phonetically complete and incomplete 

effects as antitheses has contributed a great deal to the qualitative variability that 

we now see in the literature. In the next section, I discuss how this variability has 

been approached in the literature.  

 

2.3 Approaches to Variability in the Phonetics of 

Neutralisation 

2.3.1 Overview 

Although the literature abounds with comments acknowledging the variable 

nature of the phonetics of neutralisation (e.g., Warner et al 2004; Gouskova & Hall 

2009), they mainly refer to quantitative variability. As to variability in a qualitative 

sense, there seems to be a common attitude of intolerance lurking beneath verdicts 

such as ‘is phonetically incomplete’, ‘failed to find incomplete neutralisation’, or ‘to 

detect incomplete neutralisation or reliably rule it out’.  

Generally, in assessing incomplete neutralisation, researchers often weigh the 

empirical evidence in its favour against the possible theoretical benefits of formally 

accommodating or dismissing it as a phonetic curiosity. Here we get hard-line as 

well flexible views. For example, Dinnsen (1985) asserts that neutralisation may 

only be phonetically incomplete—a conclusion that Manaster Ramer (1996a, 

1996b) categorically rejects. Other linguists such as Barnes (2006), Jansen (2004), 

and Brockhaus (1995) are more sympathetic toward incomplete neutralisation. 

They think that the available empirical evidence actually tips the balance in its 

favour.   

Perhaps, what all of these researchers and many others agree on is that there is a 

need for further investigations, which they hope might yield the long-awaited 

conclusive evidence on the reality of incomplete neutralisation. However, I would 

like to beg to differ. It seems to me that what we really need to do is to reinterpret 

the empirical data we already have, and of course whatever future studies yield, 

according to a different perspective that places emphasis on variability. As a first 
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step, we need to consider the various ways to deal with the issue of qualitative 

variability in the phonetics of neutralisation.  

As we will see below, there are three major approaches to qualitative variability in 

the literature. These approaches involve at least five different takes on the 

phonetics of neutralisation listed in  (6) below.  

(6)  

(a) Neutralisation is only phonetically complete 

(b) Neutralisation is only phonetically incomplete 

(c) Neutralisation is neither complete nor incomplete 

(d) Neutralisation is either complete or incomplete 

(e) Neutralisation is both complete and incomplete 

As mentioned above, underlying the five contentions in  (6) are three different 

approaches to the notion of qualitative variability. They differ with respect to (1) 

whether they accept the complete-incomplete distinction itself and (2) whether 

they accept that the phonetics of neutralisation can vary in a qualitative sense. 

These approaches are summarised in Table  2-4. 

 Distinction Qualitative 
Variability 

Neutralisation Example model 

Approach 
I 

No No 
a. Only complete Steriade (1999) 

b. Only incomplete Ernestus & Baayen (2006) 
c. Neither complete nor incomplete Gafos (2006) 

     
Approach 

II 
Yes No 

d. Either complete or incomplete Barnes (2006) 

     
Approach 

III 
Yes Yes e. Both complete and incomplete 

 
Gerfen & Hall (2001) 

 
Note: The Gafos and the Gerfen and Hall models can be interpreted in different ways. Therefore, they can be 
taken as examples of different approaches (see text for more). 
 
Table  2-4: Existing approaches to the complete-incomplete distinction and qualitative 

variability as relevant to the phonetics of neutralisation 

 

In this chapter, I am more concerned with describing and illustrating the general 

approaches to qualitative variability—approaches that each can be seen as 

underlying different models of the phonetics of neutralisation in the literature. I do 

not attempt to give a complete review of all these models. In discussing each 

approach, I will present only one representative model.      
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As is clear from the table, approach I denies the complete-incomplete distinction 

altogether. If there is no distinction, there is by necessity no qualitative variability. 

Approach I is the general approach underlying the contentions that (a) 

neutralisation can only be phonetically complete, that (b) neutralisation can only 

be phonetically incomplete, and that (c) neutralisation should neither be 

phonetically complete nor incomplete, as shown in the table. Note that both (a) 

and (b) dismiss qualitative variability by denying the relevance of variability as 

well as the relevance of the distinction. In contrast, (c) dismisses qualitative 

variability by denying the relevance of the distinction; it still acknowledges that 

the phonetics of neutralisation is variable—maybe too variable to sustain a 

qualitative distinction.  

Approach II recognises the complete-incomplete distinction but denies the 

relevance of variability. According to this approach, neutralisation can be 

phonetically either complete or incomplete. This is contention (d) in the table. In 

(d), we find mutual exclusivity: some neutralisations are phonetically complete; 

others are phonetically incomplete. Moreover, for some speakers, the effect is 

complete; for others, it is not. Researchers adopting this approach only need to find 

out which is which and for whom.  

Approach III recognises both the distinction and the qualitative variability in the 

phonetics of neutralisation. According to this approach, neutralisation can be both 

phonetically complete and incomplete for the same process and for the same 

speakers. This is the view expressed by (e). An obvious difference between 

contentions (d) and (e) is that while both acknowledge the genuineness and 

relevance of both phonetically complete and incomplete neutralisation, (e) is less 

restrictive. For example, an effect that is predicted by (d) to be phonetically 

complete, but which is found to be otherwise, will be problematic for (d) but not 

for (e).  

In fact, all the approaches that deny qualitative variability will have to appeal to 

some tool in order to explain away any variability or unexpected finding that their 

experimentation may reveal. So far, a strategy commonly followed is to question 

the genuineness of the ‘disputed’ results. For example, some researchers warn 

against ‘unwanted’ paralinguistic influences; others complain about the 

unreasonably low statistical power of many experimental studies on 
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neutralisation. I discuss these concerns in chapter five and show that arguments 

debating the genuineness of the reported findings are self-defeating, irrespective 

of whether they appeal to paralinguistic or statistical considerations.  

Looking at the various proposals to model the phonetics of neutralisation in the 

literature in terms of their attitude to qualitative variability, we may be surprised 

to find that, despite apparent and real differences, these models are unified in their 

disregard of variability. As will be clear below, according to most of them, the 

phonetics of neutralisation is decided outside of phonetics. For example, in models 

assuming a feed-forward modular view of the phonetics-phonology relation, the 

phonological representation of the neutralised contrast determines whether we 

expect (and thus accept, for some linguists) phonetically complete or incomplete 

neutralisation. The state of the grammar will decide which pattern to expect in 

models as diverse as those assuming a strictly episodic exemplar-based view of the 

lexicon and those endorsing abstract and discrete algorithms like candidate chains 

optimisation.  

Barnes’ (2006) model of phonologisation as the phonetics-phonology interface and 

Gafos’ (2006) non-linear dynamics stand out in this regard as the odd ones out. 

According to Barnes, the phonetics of neutralisation is in fact stranded between the 

relevant interfacing components of the grammar: processes resulting in 

phonetically complete neutralisation belong in the phonology, while those with 

neutralisation effects remaining phonetically incomplete are still in the phonetics.8 

According to the Gafos model, phonetically incomplete neutralisation results from 

the interaction between grammar-dynamics and environmental (i.e., intentions) 

dynamics. A more fundamental difference between the two models is that Barnes’ 

unmistakably represents approach  (6)-(d), where neutralisation is phonetically 

either complete or incomplete. In contrast, there is some ambiguity about Gafos’ 

model regarding how it approaches qualitative variability. Thus, the Gafos model 

can be taken to be a representative of any of the approaches above, even the 

approaches that acknowledge variability— (6)-(c) and  (6)-(e). It seems to me that 

any interpretation the dynamics model gets depends, to a large extent, on the 

relevant reviewer’s views of the grammar. Perhaps it is the dynamicity of the 

                                                        
8 Note that one can still argue that phonology determines the phonetics of complete neutralisation 
directly, whereas it determines the phonetics of incomplete neutralisation only indirectly.  
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model that tempts reviewers to discretise it in a way more congruent with their 

views of the grammar. I will discuss this model last, after I have presented all the 

other unambiguous approaches. But I will start with the other odd one out: Barnes’ 

phonologisation model. 

2.3.2 Either Complete or Incomplete  

Barnes’ phonologisation model approaches the phonetics of neutralisation with an 

either-or logic.9 Here, ‘phonological neutralisation’, as he calls it, is phonetically 

complete. In contrast, a neutralisation effect that is found to be phonetically 

incomplete is taken as evidence that the relevant process is only phonetic. To a 

hard-to-please observer, the logic behind the proposal might still be questionable: 

a neutralisation is phonetically complete if it is phonological, whereas a 

neutralisation is phonological if it is phonetically complete. Conversely, a 

neutralisation is phonetically incomplete if it is not phonological; and a 

neutralisation is not phonological if it is phonetically incomplete. Perhaps using 

this logic to settle research questions outside of the phonetics-phonology interface 

might be seen as an instance of the fallacy of begging the question.10 Another, more 

serious fallacy known as affirming the consequent obtains in this way: 

(7) P →Q  If neutralisation α is phonetic, it is phonetically incomplete. 

Q           Neutralisation α is phonetically incomplete. 

____________________________________________________________________________ 

      ⇒ P     Therefore, neutralisation α is phonetic. 

However, in the context of the special relation between phonetics and phonology, 

where one can claim to see phonetics in phonology and/or phonology in phonetics, 

there is an element of truth and credibility in the logic Barnes uses. However, to 

sustain that credibility, one condition must be met at all costs: there should exist 

no conflict between what the phonology predicts and what the phonetics reveals, 

or within either of them. In situations where a conflict arises, it must be resolved in 

a principled way. However, given what we already know about neutralisation, we 

                                                        
9 The critique in this section only applies to the discussion of incomplete neutralisation that 
appears in the final chapter of Barnes (2006) and in Barnes (submitted). The thesis of 
phonologisation as the interface between phonetics and phonology, which takes up the rest of 
Barnes’ (2006) book, remains one of the best approaches to the phonetics-phonology interface. For 
a review of this book, see Nevins (2007).   
10 Barnes (submitted) acknowledges this fallacy in his account. 
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have no doubt that some conflict has arisen, but we have every right to doubt that 

it has been resolved in a principled way.  

To illustrate, let us continue with Barnes’ proposal, which, he admits, still has 

“several big ‘ifs’” in it (submitted: 35). Let us rehearse once more his views: 

neutralisation is predicted to be phonetically complete in the wake of a process 

that has been phonologised. According to Barnes (2006, submitted), a 

phonologised process involves ‘category relabelling’. In other words, the relevant 

contrast no longer exists in the output of the phonology. In contrast, incomplete 

neutralisation is an instance of phonologisation in progress, with the relevant 

contrast still surviving in the output of the phonology. Its neutralisation is only 

phonetic and thus cannot completely wipe it out. Barnes (submitted), based on 

experimental findings on hyperarticulated speech involving the Russian /a/-/o/ 

neutralisation in pretonic vowel reduction, suggests, again tentatively, that 

hyperarticulation might provide another diagnostic of the ‘phonologicality’ of a 

neutralisation effect. On the assumption that hyperarticulation-induced contrast 

enhancement can only affect the output of the phonology, goes his argument, a 

contrast that is neutralised in the phonology will not re-emerge, no matter how 

much hyperarticulation is involved in its production. Such a contrast is simply not 

present in the output of the phonology. Conversely, a contrast that is only 

incompletely neutralised can be said to be present in the output of the phonology, 

and thus will re-emerge rather more distinctly under conditions of 

hyperarticulation.  

If these diagnostics are taken seriously, then we can hope to resolve the conflict 

issue mentioned above. At least we think we have an answer to the following 

question. If there is a conflict between what we think we know about the 

phonology of the relevant language and what we find in its phonetics, which do we 

trust? The answer that could be inferred from Barnes’ proposal is that we should 

trust the phonetics. But what if the phonetics ‘fails’ us by giving us mixed answers? 

Should we accept some and reject others? What should we take as our criterion? 

Should what we know about the phonology of the relevant language re-qualify as a 

valid criterion? How should the within-phonetics conflict be resolved in a 

principled way? 
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It might be fair to say that Barnes (2006) does not suggest that we should rely 

exclusively on the phonetics. This will become evident in a moment. But let us first 

agree that in connection with resolving any precipitant conflict, Barnes’ (2006, 

submitted) phonologisation account will have to answer this question: will 

investigating the phonetics of a neutralisation effect tell us if the relevant contrast 

is present or not in the output of the phonology? Barnes takes phonetically 

incomplete neutralisation “in fact, simply to be […] evidence that [for instance] for 

the relevant dialects of the relevant languages, word-final devoicing is a gradient 

process operating in the phonetics”11 (p. 227). The relevant languages that Barnes 

alludes to are those for which final voicing has been mostly reported to be 

incompletely neutralised, but for which, let us not forget, there exists a long 

impressionistic tradition supporting the ‘phonologicality’ of the process of final 

devoicing. These include German, Dutch, Catalan, and Polish. In other words, for 

Barnes, the phonetics account overrides the ‘standard’ phonological description of 

final devoicing in those languages. More generally, this means that experimental 

‘findings’ have primacy over phonological ‘facts’ in his model.  

 Surprisingly, however, when it comes to interpreting an ‘unexpected’ statistical 

result of the experiment on vowel reduction in Russian that Barnes himself ran and 

reported in his 2006 book, the empirical phonetic evidence has none of that 

supremacy about it. It can even be discredited on logical grounds (p. 56):  

If /a/ and /o/ in fact remained phonetically distinct in any 
unstressed context, one would expect this to occur in the 
first pretonic syllable, where the durational pressure toward 
reduction is far weaker than it is in the second pretonic. For 
the distinction between /a/ and /o/ to vanish in the first 
pretonic, which it indisputably has, only to reemerge in the 
weaker second pretonic makes little sense. 

This objection on the part of Barnes is in fact in contradiction with the conclusion 

he defends regarding vowel reduction in Russian. Specifically, Barnes argues that 

/a/-/o/ reduction in the first pretonic position is phonological, and that the 

resulting neutralisation should be phonetically complete. In contrast, /a/-/o/ 

reduction in the second pretonic position is only phonetic, and that any 

neutralisation of the contrast should be expected to be phonetically incomplete. If 

                                                        
11 This is similar to Port and O’Dell’s (1985) suggestion that final devoicing in German should be 
‘relegated’ to the phonetics for no reason other than that the phonetic investigation they ran reveals 
that the phonetics of final devoicing displays symptoms of incomplete neutralisation. 
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the phonetic completeness of /a/-/o/ neutralisation in the first pretonic position 

should necessarily entail phonetic completeness of that neutralisation in the 

second pretonic position, as Barnes seems to suggest, then it logically follows, and 

very much so by his characterisation of incomplete neutralisation, that if the 

former is phonological, so is the latter.  

But this is not what Barnes wishes to impart to us; nor is it all that we can find in 

his take on the ‘odd’ result. Barnes finds it reassuring that the difference which he 

believes to be ‘accidental’ goes in the opposite direction to what is expected in the 

case of the fully realised contrast: the schwa in place of /o/ is on average longer 

than the schwa in place of /a/. Perhaps the most noteworthy point he makes 

against ‘rushing’ to accept the effect as an instance of incomplete neutralisation, 

however, is when he questions the validity of the statistical significance of the 

durational difference. This is noteworthy not because the concern Barnes raises is 

necessarily valid, but because it highlights a general problem that scientific 

conclusions based on significance testing usually encounter (see chapter five). 

Barnes’ scepticism is founded on the low ‘significance level’ (p= .049), which he 

thinks “would most likely vanish in a larger study” (p. 56). Of course, this remains 

an empirical question. However, it is worth noting that the data Barnes gives in 

table (2) (reproduced below as Table  2-5) seem to have little variability both in 

terms of the magnitude and directionality of the difference. Accordingly, there is a 

realistic possibility that the difference will remain statistically significant in a 

larger-n study, especially that the F-associated p-value will be assessed at greater 

degrees of freedom.  

 

Speaker RR TM DT M ALL 

2n
d 

pr
et

on
ic

 

/a/ 21.7 (7.2) 24.2 (7.5) 26.3 (10) 28.1(10.4) 25.2 (9.2) 

/o/ 26.2 (7.6) 26.6 (9.4) 32.6 (10.6) 31.6 (9.9) 28.9 (9.7) 

 Difference -4.5 -2.4 -6.3 -3.5 -3.7 

 

1st
  p

re
to

ni
c /a/ 65.9 (9.9) 81.1 (19.3) 58.2 (13.6) 70.9 (14.5) 69 (16.9) 

/o/ 69.1 (11.6) 80.4 (18.5) 60.7 (13.5) 70.9 (13.7) 69.9 (16.2) 

 Difference -3.2 .7 -2.5 0 -.9 

Table  2-5: Mean duration and (SD) values in ms of second pre-tonic and first pre-tonic vowels 

in Russian (figures based on Barnes 2006: 55) 
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More importantly, Barnes’ protest against the genuineness of the effect above, 

though seemingly parenthetical, highlights once again the intolerance of 

qualitative variability. Put simply, Barnes’ approach combines the only-complete 

and only-incomplete approaches into an either-complete-or-incomplete approach. 

This intolerance toward variability that we see in his approach is in fact inherited 

from the other approaches, which I present next.  

2.3.3 Only Complete 

For descriptive convenience, let us stick with the long-serving, descriptively useful 

technique of distinguishing two levels of phonological representation: (i) an 

underlying representation (the input to the phonology) and (ii) a surface 

representation (the output of the phonology). In the derivational feed-forward 

model, an underlying contrast is neutralised on the surface with its terms 

represented identically. Since the relation between the phonetic and phonological 

components is modular in this model, the phonetics will have no access to the 

underlying contrast or to what takes place in the phonology. Phonetics can only 

interpret what is handed over to it, which is the surface non-contrast. That is, 

theoretically, this model predicts that neutralisation can only be phonetically 

complete. For example, recall from chapter one that Kiparsky’s (1973) definition of 

neutralisation implicates a form of realisational identicality on the surface. Also, 

Trubezkoy’s (1969) taxonomy of neutralisation includes a class where ‘members 

of opposition’ are represented identically.  

Much more recently, but not necessarily assuming the feed-forward modular view 

of the phonetics-phonology relation, Steriade’s (1999) Licensing-by-cue12 

approach to positional neutralisation predicts that neutralisation is only 

phonetically complete. Strictly speaking, phonetically incomplete neutralisation is 

incompatible with two basic tenets of Steriade’s thesis. Firstly, a contrast that is 

incompletely neutralised is still present, if very subtly. At the same time, 

incomplete neutralisation is not the same as non-neutralisation. The effect is 

decidedly one of neutralisation, but one that is only phonetically incomplete. This 

does not fit well with the way licensing and neutralisation are construed in 

Steriade’s approach. There, a contrast is either licensed, in which case we don’t 

                                                        
12 The discussion here only applies to Steriade’s Licensing-by-cue thesis. See below for a discussion 
of a model that makes similar predictions as Steriade’s proposal of paradigm uniformity (2000).  
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speak of its being neutralised; or it is neutralised, in which case we do not speak of 

its being licensed. In Steriade’s model, contrast licensing and contrast 

neutralisation seem to be treated as though they are mutually exclusive: when a 

contrast is licensed in position X, there is no neutralisation in that position; 

conversely, when a contrast is not licensed in position Y, there is no contrast, but 

only neutralisation in that position. This follows from adopting a rather broad 

conception of neutralisation which subsumes both neutralisation as ‘the 

obliteration of contrasts that exist at the lexical level’ and neutralisation as ‘the 

static lack of contrast at the lexical level’. Distinguishing between these senses of 

neutralisation does not seem to serve any important purpose in Steriade’s study, 

which obviously aims to account for distributional asymmetries in the attested 

contrast patterns that are documented in typological studies. Steriade’s paper is 

not a study dedicated to the phonetics of neutralisation; otherwise, such a 

distinction might have been warranted since these two definitions of 

neutralisation make different predictions regarding its phonetics. For example, 

incomplete neutralisation would make little sense under the view that defines 

neutralisation as the static lack of contrast at the lexical level. 

Secondly, Steriade’s account is implemented on a rigid either-licensed-or-not-

licensed basis. The decision involves evaluating, among other things, the 

perceptibility of a certain contrast in a certain position. Steriade observes that 

distributional asymmetries in the typologically attested contrast patterns are 

directly related to the asymmetrical distribution of acoustic events that cue 

contrasts. All other things being equal, a contrast with diminished perceptibility is 

not licensed. Perceptibility here can be determined on the basis of the quantity and 

quality of the available cues in the relevant position. Having built her proposal on 

the available linguistic data, most of which are collected impressionistically, 

Steriade implicitly endorses the view that a licensed contrast should be robust 

enough to be detected by trained transcribers. This is definitely not the case with 

incomplete neutralisation, where the phonetic completeness of the effect has been 

taken for granted before instrumental analyses revealed otherwise. Ignoring, if it 

does, the details of the phonetics of neutralisation, Licensing-by-cue will have to 

treat as equally irrelevant systematic articulatory manoeuvres with imperceptible 

acoustic consequences and systematic acoustic perturbations with little 
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perceptibility—the very variations that many other linguists call incomplete 

neutralisation.  

The alternative is not without problems either. Accepting incomplete 

neutralisation as evidence that the relevant contrast is licensed will create a few 

paradoxes for the Licensing-by-cue hypothesis. For example, if a contrast is 

licensed, how can we still speak of its neutralisation? What meaning will 

incomplete neutralisation have? Will it mean incomplete or partial licensing, for 

instance? Do we need to impose on the grammar (maybe the universal grammar) a 

distinction applying only to weak positions between those that license contrasts 

with naked-ear perceptibility (e.g., final /d/-/t/ in Arabic) and those that license 

contrasts whose perceptibility may be just above chance in speech perception tests 

(e.g., final /d/-/t/ in Dutch)? What cues do we need to take into consideration 

when we account for contrast neutralisation? Is an incompletely neutralised 

contrast licensed if it is imperceptible to native speakers but is perceptible to 

nonnative speakers? See also Barnes (2006: 230) for other arguments against 

Steriade’s Licensing-by-cue thesis.  

Returning to the only-complete approach, let us not forget that, on a practical front, 

there appears to be some support for phonetically complete neutralisation. The 

main support comes from decades of phonological tradition that is mainly based 

on impressionistic descriptions of speech sounds. These descriptions seem to have 

gained credibility by virtue of being collected and recollected by field workers with 

some phonetic training and whose intuitions agree most of the time. The practice 

of building phonological analyses and theories on data collected 

impressionistically rarely fail phonologists. More importantly, it has expedited the 

accumulation of linguistic data and knowledge which ultimately are in need of 

cognitive accounting. By necessity, such accounting admits of an element of 

abstraction and discreteness in the description of the sound patterns that 

phonology is mostly concerned with. This discreteness is already at the heart of the 

impressionistic tradition.  

Moreover, the evidence for phonetically incomplete neutralisation has never been 

conclusive and not at all impressive either in magnitude or consistency.  Broadly 

speaking, the phonetic difference is not always statistically significant, not always 

in the expected direction, and its alleged perceptibility is only above chance—a 
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finding that might not withstand close scrutiny. I will elaborate on these points in 

chapters four and five. However, I would like to suggest here that the fact that the 

phonetic difference is not always otherwise is also important. If its being not 

always statistically significant is an argument for the only-complete approach, its 

being not always otherwise is an argument against this very approach. 

Understandably, the shaky evidence for incomplete neutralisation has apparently 

not been enough to shake the beliefs held by the proponents of the only-complete 

approach about the phonetics of neutralisation. Yet, these researchers are 

definitely not adamantly opposed to subjecting the phonetics of neutralisation to 

further experimentation with improved methodology, so as not to repeat the ‘old 

mistakes’ (see e.g., Manaster Ramer 1996a, 1996b).  

2.3.4 Only Incomplete 

When the phonological community was ready to embrace incomplete 

neutralisation, it actually overdid its welcome. Phonologists have come up with a 

number of proposals which differ in technicalities, but all serve a common 

purpose—to formally accommodate and predict incomplete neutralisation as a 

genuine grammatical effect. However, most of their accounts, while successfully 

predicting phonetically incomplete neutralisation, predict that neutralisation 

cannot be otherwise. This is the only-incomplete approach. Proponents of this 

approach typically accuse studies reporting complete neutralisation of having low 

statistical power. They explain that the effect is certainly there, but that the 

researchers have not done enough to find it.   

It seems to me that there may be two distantly related causes behind phonologists’ 

belated enthusiasm for incomplete neutralisation—one relevant to competing 

approaches to the phonetics-phonology relation, the other to phonologists’ general 

approach to their field of study. Firstly, the recent revelation that systematic fine 

phonetic detail has a role to play in speech perception (e.g., Smith 2004; Stager & 

Werker 1997), word-recognition (e.g., Hawkins 2003; Hawkins & Nguyen 2003), 

and infant language processing (e.g., Johnson & Jusczyk 2001) warrants a re-

evaluation of the way the grammar has been conceived of in the past. Researchers 

have called for fine-grained phonetic effects to be integrated into a new approach 

to the lexicon. It has been claimed that lexical properties (syntactic, etymological, 

statistical, etc) are instantly transferable not only into phonology, an idea which 
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has been around for a while, but also into phonetics. In addition to recognising a 

phonology of lexical strata (e.g., Giegerich 1999; Ito Î & Mester 1999), loanword 

phonology and native phonology (e.g., Calabrese & Wetzels 2009; Kang, to appear) 

verb phonology and noun phonology (e.g., Smith 2001; Lee 2001), researchers 

have also argued that language-specific, speaker-specific, style-specific, word-

specific, and phone-specific phonetics (see references below) must all be 

integrated into the high-level components of the grammar.  

Naturally, this move has serious consequences for the phonetics-phonology 

relation. For example, it may involve serious blurring of the long-standing 

boundary between phonetics and phonology by making the phonological grammar 

more phonetics-conscious. This can be achieved by constructing a hybrid 

component of the grammar whose primitives can have both discrete, or more 

traditionally ‘phonological’, values and continuous, or ‘phonetic’, values.  The 

celebrated lack of acoustic invariance in speech production might force the 

concession that there still exists a separate non-phonological phonetics. The 

continuous values the hybrid component contains will have to remain idealisations 

that non-phonological phonetics may or may not realise (cf. Nguyen et al 2009). 

That being the case, we can see that at least the non-phonological phonetics is still 

dependent for its input on the hybrid phonology.  Note that a strong version of the 

commitment to fine phonetic detail can totally abolish the distinction between 

phonetics and phonology by banishing this low-level, real-time, and non-idealised 

‘phonetics’ from grammar proper. On this extreme view, then, non-idealised 

phonetics will be treated as a peripheral neuro-physiological system interfaced not 

with the hybrid component of phonetics-phonology but with the grammar as a 

whole.   

Another radical move is to keep the distinction between phonetics and phonology 

but reverse the direction of the dependency relation. This is best exemplified by 

the exemplar-based view of the phonetics-phonology interface (e.g., Goldinger 

1997, 1996; Pierrehumbert 2001; Lachs et al 2003; Johnson 1997, 2007). 

Production, according to this model, consists in accessing a sub-space of a cloud of 

tokens of speech memorised with their full phonetic profiles. The selection of a 

specific sub-region to access is actually biased by various effects including co-

activation of morphologically related forms, recency, frequency, etc. The selection 
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of a target for production can follow a statistical averaging of many exemplars 

within the activated space or some randomisation process. When a new phonetic 

rendition of a unit of speech that clearly belongs to a certain cloud is encountered, 

it is added to the exemplars populating that cloud. Almost concurrent with this 

addition is an updating process whose outcome is not predicted to be huge after 

the addition of one exemplar, unless the new addition is an extreme rendition. 

Normally, the difference due to an addition will almost always be averaged out, 

and so there will be neither a change in the phonetic distribution nor category re-

labelling. In this way, speakers belonging to the same linguistic community will 

converge on very similar values. This allows for generalisations to be made and 

supported.  

However, the phonetic distribution of a cloud of exemplars can change in shape 

and size. For example, Yu (2007) illustrates how the phonetic distribution of a 

single category label may overlap another cloud defining another category label to 

such an extent that there are not enough phonetic differences between the two to 

support a category distinction. Conversely, a phonetic distribution of exemplars 

representing a single category can develop bi-modality where averaging occurs in 

two different sub-regions at a consistent rate. The result would be that two 

different labels may be defined over these sub-regions. The first scenario, 

according to Yu, underlies complete mergers; the second represents what is known 

as split. Incomplete neutralisation or near mergers are similar to the first scenario, 

except that the overlap is not total. Yu’s account of mergers and near-mergers 

shares with Barnes’ (2006) phonologisation model the underlying either-or logic. 

For example, once phonologisation or merger is complete, a phonetics of 

incomplete neutralisation or near-merger is highly suspicious within the 

synchronies of the relevant languages. However, in Yu’s account a quick reversal of 

a complete neutralisation is not unlikely. Here, phonology seems to be more 

parasitic on the phonetic addition and removal of exemplars, which in turn trigger 

statistical updating.  As far as the theory goes, there is nothing that prevents the 

phonetic distribution associated with a merged label from eventually developing 

bimodality. Such bimodal distribution may in time split and become associated 

with two different category labels, reversing the merger or giving rise to some 

altogether new categories.  But again this takes time, and so, within a short span of 



52 
 
the synchronic grammar of a speaker, the phonetics of neutralisation will have to 

display either a complete or an incomplete effect.  

Although Yu’s exemplar-based account is a model with an implicit either-or 

approach to qualitative variability, its direct application to incomplete 

neutralisation (e.g., Ernestus & Baayen 2006) can only derive an only-incomplete 

effect. This directly follows from the morpho-phonological structure of the speech 

material that is subject to neutralising processes. In almost all of those 

neutralisation cases whose phonetics has been scrutinised, the test items are 

words with relatives fully displaying the relevant contrast. The main idea of 

Ernestus and Baayen’s proposal is that these morphological relatives can actually 

bias the production of the items where a contrast is supposed to have neutralised, 

thus resulting in incomplete neutralisation. This is due to the co-activation of these 

words. For example, the co-activation of a word ending in [t] in Dutch and its 

relative whose corresponding sound is [d] will bias the production of the [t] 

towards being more [d]-like.  This is an elegant way of capturing Steriade’s (2000) 

notion of paradigm uniformity. Producing a [t] in a more [d]-like fashion as a result 

of what Barnes (2006: 233) aptly calls “morphophonetic gravitation” would be the 

normal phonetics of the voicing neutralisation in Dutch. As long as there are 

morphological relatives displaying a certain sound contrast, neutralisation of that 

contrast can only be phonetically incomplete.  Since the lexical biasing influence 

responsible for incomplete neutralisation is an automatic reflex of the grammar,13 

declaring its absence, as would be understood by reporting a complete 

neutralisation, would just go against the essence of the exemplar-based view of the 

lexicon and the phonetics-phonology relation.  

However, it seems to me that the model makes no provision for why morpho-

phonetic gravitation should go in a specific direction, or more generally, for why 

we should not expect the biasing effect to be bi-directional between the base and 

derivative. Bi-directionality can have very serious consequences for the phonetics 

of neutralisation, at least conceptually speaking. For example, according to 

Ernestus and Baayen (2006), the production of the uninflected Dutch word 

[vDrODit] ‘widen’ is biased towards having a ‘slightly voiced’ final sound, as a result 

of the lexical co-activation of its inflected relative [vDrODid?n] ‘to widen’. They 

                                                        
13 A similar idea can be found in Snoeren et al (2006).  
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argue for a complete correspondence between lexical representations and 

pronunciation. For example, “[t]he form verwijd needs not be stored as /vDrODid/, 

but can be stored as /vDrODit/, directly reflecting its pronunciation” (p. 46). Note 

that there is nothing in the model that should a priori invalidate the reverse 

situation. In fact, the logic of their argumentation could equally plausibly apply in 

the opposite direction, where the production of [vDrODid?n] is biased towards 

slight voicelessness by its simplex base [vDrODit].14 At least, it seems reasonable to 

accord more privilege to the base than to its morphological derivatives. The 

phonetic and phonological literature provides more empirical and typological 

evidence in favour of the primacy of the base (e.g., Kenstowicz 1996; McCarthy & 

Prince 1995; Steriade 2000).   

Now if we argue that there is nothing that should restrict the directionality of the 

biasing effect, we shall need to explain why, when biasing effects can go either way, 

our model does not predict that, at some point, opposing effects will cancel each 

other out. More concretely, suppose that the production of the [t] in [vDrODit] is 

biased towards sounding more [d]-like by the existence of its [d]-relative 

[vDrODid?n]. At the same time, the production of the [d] in the latter is biased 

towards sounding more [t]-like, by the existence of the former. If this mode of 

phonetic rendition, which would eventually join the respective exemplar-clouds of 

the respective categories, persists for some time, what would be left of the more 

[t]-like [d] to make its more [d]-like [t]-relative more [d]-like?  Of course, we could 

stipulate that biasing only occurs on-line and that its effects are short-lived and 

momentary. But that should undermine the episodic spirit of exemplar models. 

Now as far as this situation is concerned, an appeal to the notion of phonetic 

naturalness may salvage Ernestus and Baayen’s account, as voicing is expected in 

intervocalic context (see e.g., Westbury & Keating 1986). Yet, phonetic naturalness 

may not always be available to complement their model.  

More relevant to the issue of variability is the fact that the model will have to 

provide answers to the following questions. Does the inter-speaker variability that 

we see in experimental data represent the rendition of a phonetic target within a 

                                                        
14 This is reminiscent of Steriade’s (2000) analysis of ‘cyclic’ effects involving correspondence 
between a base and its allomorphs.  The driving force behind that correspondence, according to 
Steriade, is morpheme invariance or paradigm uniformity.  
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single category cloud averaged differently by the different participants in an 

experiment, or does it represent the rendition of targets belonging to different 

category clouds? Is it not plausible to imagine a situation where most speakers 

target a realisation of, say, [t] within the t-category cloud, while a few target the 

realisation of [d] within a d-cloud? In other words, how can we rule out the 

possibility that the subjects in an experiment actually have different category 

labels (cf. Yip 1996)? Similarly, does the intra-speaker variation we see in 

experimental data result from different pools for averaging within the bounds of 

the same cloud for the relevant speaker?  

Practically, there is ample evidence for the relevance of low-level sub-phonemic 

effects to speech processing and production (see above for references). However, 

these effects certainly add to the naturalness and nativeness of the spoken 

message and therefore speed up word-recognition. Yet for communicative 

purposes, sub-phonemic effects might only be of secondary importance. Consider 

how badly an orally transmitted message is affected when stripped of all sub-

phonemic information but which is presented in good listening conditions. Most 

probably, it might be judged as unnatural, machine-like, or foreign-accented 

speech. However, it would be comprehended fully. At least, this would be the 

performance by those who speak the relevant language natively, or near-natively. 

With beginning non-native learners, however, the situation is different. Here, long 

exposure to the target speech with full-scale variability is what leads eventually to 

an adequate comprehension of non-native speech (see chapter six for details). The 

Variability Field model sketched in this thesis hypothesises that language 

acquisition involves learning about the nature and bounds of phonetic variability 

in speech. Only after sufficient exposure to variability do we, as speakers-hearers, 

reach a stage where we have made many generalisations and associated with each 

a certain margin of freedom that each one of us can exploit while orally 

communicating that generalisation to others and to ourselves. If the communicated 

generalisation falls outside of that margin, we either reject it as being foreign, 

unnatural, or weird, or accept it but modify the margin we have previously 

associated with it. The latter is the general strategy of non-native learners. In 

contrast, native speakers follow different strategies depending sometimes on how 

distant the stimulus is from the margins. I present a detailed sketch of this model 

in chapter six.   
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As I pointed out above, another reason for phonologists’ belated interest in 

incomplete neutralisation concerns their own approach to their discipline’s 

expressed mission. It might not be an exaggeration to say that the enthusiasm for 

fine phonetic detail on the part of many empiricists and functionalists has made 

phonologists only too aware of a retreat in the appeal of formal phonology. These 

phonologists plead that phonological machinery may still be capable of handling 

sound variations exhibiting systematicity that is not readily exclusively of a 

phonetic flavour. Of these, variation whose systematicity is non-automatic, goes 

the argument, deserves to be treated as a higher-order effect whose rightful place 

is in the phonology. One such challenging phenomenon for formal phonology to 

model is incomplete neutralisation. van Oostendorp (2008: 1372) maintains that  

Formal phonologists thus need to take these facts 
[incomplete neutralisation] seriously, and try to incorporate 
them into their model of phonology. The more conservative 
approach is to not give up the whole enterprise of formal 
analysis in the face of a few problematic data [italics his].  

van Oostendorp (2008) offers a formal phonological account of incomplete 

neutralisation in German final devoicing. His proposal rests on theoretical 

assumptions and tools from Turbidity Theory cast within an OT framework. To van 

Oostendorp, incomplete neutralisation is phonetics reflecting phonologically 

distinct representations of the supposedly neutralised contrast. Phonetics does 

this by obeying purely phonological laws in not realising certain phonological 

material in positions of neutralisation. This unrealised material is a pronunciation 

relation that the feature [voice] cannot have with final obstruents. The proposal 

makes the following prediction: a devoiced obstruent, say final /d/, should be 

phonetically more similar to its corresponding voiced counterpart, i.e., /d/ 

elsewhere, than to the corresponding voiceless sound, i.e., /t/. This follows from 

the fact that a devoiced obstruent is representationally more similar to its voiced 

counterpart in van Oostendorp’s account. This is schematised in (i) in  (8) below. 

Contrast this with the following surface representations from the other more 

traditional models in (ii) and (iii) below. 
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(8) (i) Final devoicing in van Oostendorp’s account  

/t/ final /d/ /d/ elsewhere 

t D d 

 � � 
 [voice] [voice] 

 

(ii) Final devoicing re-write rule 

[+vce]                        [-vce]/ ____# 

/t/ final /d/ /d/ elsewhere 

[t] [t] [d] 

 

 (iii) Final devoicing as delinking 

 

 

 

  

The three models above make different predictions regarding the phonetics of 

neutralisation. For example, (ii) predicts that neutralisation may only be 

phonetically complete. Conversely, both (i) and (iii) predict that neutralisation may 

only be phonetically incomplete. Importantly, (i) and (iii) also predict that the 

devoiced obstruent (e.g., final /d/) is more similar to the voiced obstruent 

elsewhere (e.g., /d/ elsewhere) than it is to its voiceless counterpart (e.g., /t/). But 

this prediction is simply false. Even in situations where acoustic differences 

between final ‘voiceless’ and final ‘devoiced’ stops in a language like Dutch reach 

statistical significance and are in the ‘expected’ direction, they can never be 

comparable to the acoustic differences between final ‘devoiced’ stops and the 

corresponding ‘voiced’ stops elsewhere. These latter differences will not only be 

always of the expected quality but will also consistently have an impressive 

magnitude. These models code a symbolic near-identicality between devoiced 

/t/ final /d/ /d/ elsewhere 

 [voice] [voice] 

 � � 

[t] [dfi] [d] 
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obstruents and their voiced counterparts—a position that phonetics does not 

support.  

2.3.5 Flexible Models 

I discuss here two models: Gafos’ (2006) non-linear dynamics and Gerfen and 

Hall’s (2001) proposal of relaxing the strict modularity assumption in the 

phonetics-phonology relation. Let me point out, however, at this early stage of the 

discussion, that the flexibility of these models in dealing with the phonetics of 

neutralisation is only apparent. More specifically, it is their amenability to 

disparate interpretations that makes them look flexible. Note that this is not the 

case with the strictly modular feed-forward view, which is truly compatible with 

all the three approaches described above: approach  (6)-(a), where neutralisation 

can only be phonetically complete; approach  (6)-(b), where neutralisation can only 

be phonetically incomplete; and approach  (6)-(d), where neutralisation can be 

phonetically either complete or incomplete. Within the strictly modular feed-

forward scheme, what differentiates these approaches is whether or not the 

relevant contrast is allowed to make it to the output of the phonology, which, and 

nothing else besides it, is inputted to the phonetics. Approach  (6)-(a) will allow no 

contrast to be represented in the output of the phonology; in approach  (6)-(b), 

there will always be a contrast to be handed over to the phonetics; and approach 

 (6)-(d) will foster some selectivity in resolving the question of which is which. But, 

that would not be more than an exercise of choosing between  (6)-(a) and  (6)-(b). 

Models assuming a feed-forward modular view do not lend themselves to 

disparate interpretations as to their approaches to variability in the phonetics of 

neutralisation. These models are not flexible in the sense adopted here. Of the two 

flexible models I discuss here, however, Gerfen and Hall’s (2001) comes in a formal 

language that is more familiar to all phonologists. I consider this model first.  

According to Gerfen and Hall (2001), incomplete neutralisation obtains when the 

phonetics accesses the underlying distinction between the relevant sounds.15 In 

other words, there are two ‘sources of information’ for the phonetics: the input to 

the phonology as well as the output of the phonology (see Figure  2-1 below). Thus, 
                                                        
15 This is very similar to Gouskova and Hall’s (2009) account of incomplete neutralisation in 
Lebanese Arabic. However, the modularity is upheld in the Gouskova and Hall account, which 
employs Candidate Chains in OT (e.g., McCarthy 2007a). According to their model, the underlying 
distinction (the input) is already handed over to the phonetics as part of a winning output 
candidate chain.   
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the relation between phonetics and phonology cannot be assumed to be strictly 

modular. This, they observe, is a middle-ground position between two extremes: 

rejecting the distinction between phonetics and phonology or rejecting incomplete 

neutralisation.   

 

Figure  2-1: Phonetics accessing the input to the phonology (reproduced from Gerfen & Hall 

2001: 31) 

 

How can Gerfen and Hall’s proposal be interpreted differently to represent more 

than one approach to qualitative variability? If the sensitivity of the phonetics to 

underlying distinctions is made mandatory by some universal mechanism, for 

instance, then we can only expect the phonetics of neutralisation to display signs of 

incompleteness. This is approach  (6)-(b) where neutralisation can only be 

phonetically incomplete. Conversely, the either-or scenario (i.e., approach  (6)-(d)) 

is also possible: when the phonetics is granted access to the underlying distinction, 

we get incomplete neutralisation; when that access is denied, however, we get 

complete neutralisation. But an obvious weakness of this latter interpretation 

stems from its potential for circular argumentation. For example, one can assume 

that incomplete neutralisation results from this non-modular relation between 

phonetics and phonology, and provide as evidence for the existence of such an 

open-door relation incomplete neutralisation itself. One way around this 

circularity, not necessarily effective, though, is to have the antecedent-consequent 

order inversed: incomplete neutralisation is phonetics accessing the underlying 

distinction, whereas complete neutralisation is what we get when the phonetics 

does not see the input. Note that the different phrasing of what is essentially the 

same idea affects how strongly we may react to the circularity of this logic. This 

may partly explain why the recurrent conjecture that incomplete neutralisation is 
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phonetics delving deeply into the phonology has never been pre-emptively 

questioned on logical grounds.  

If, while working within the general framework of Gerfen and Hall’s (2001) model, 

we adopt approach  (6)-(d) (i.e., neutralisation is either complete or incomplete), 

we will have a few moot questions to resolve. These questions arise when we get 

results that go against our expectations. We ask then why the phonetics does not 

access the phonology when it should, and why it does when it should not. Adopting 

approach  (6)-(e), where neutralisation can be both complete and incomplete, 

instead, we will have an altogether different set of questions to answer.  Here, both 

effects of complete and incomplete neutralisation are tolerated. A possible set of 

questions that we might have to answer is why the phonetics does not access the 

phonology when it does not, and why it does when it does.   

The next flexible model I discuss in this section is Gafos (2006). This model appeals 

to concepts of the mathematics of non-linear dynamics to explain incomplete 

neutralisation. The essence of the account is to formalise the online derivability of 

incomplete neutralisation from the interaction of grammar and intentions. As far 

as incomplete neutralisation is concerned and simplifying matters a bit, the 

intention to convey a contrast conflicts with a grammar requirement to suppress 

that contrast. However, in this model, these opposing pressures are not modelled 

as static phonological constraints as in main-stream OT, for example. The 

dynamicity accorded to these constraints is a natural consequence of their being 

conceived of as competing attractors in “a numerically-defined multidimensional 

state space” (Nycz 2005: 277) as illustrated in Figure  2-2.  

 

 

 Figure  2-2: The dynamical models of two grammars; (x) is a continuous articulatory 

variable (Gafos 2003a: 8) 

Grammar (a) Grammar (b) 
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Gafos has modelled final devoicing in German. The phonetic data he is concerned 

with come from a series of experiments reported in Port and Crawford (1989). The 

experimental design of their study includes various speech tasks (experimental 

conditions) presumably placing different demands on the participants to pay 

attention to the test materials. These conditions include reading and repeating 

minimal pairs embedded in semantically composed sentences providing 

disambiguating clues, dictating minimal pairs in frame sentences to a waiting 

assistant, and reading a list of minimal pairs in isolation. The degree of incomplete 

neutralisation was found to be different among the different conditions. Gafos 

(2006) uses this finding to argue for the “subtle dependency [of incomplete 

neutralisation] on the communicative context” (p. 54). The more contrast-

promoting the experimental condition, the greater the incompleteness of 

neutralisation we observe. For example, the condition where participants dictated 

a list of sentences to a waiting research assistant induced a greater degree of 

incomplete neutralisation than was found in the condition where participants 

were merely reading out a list of randomised words. Gafos took this context-

dependent increase/decrease in the degree of incomplete neutralisation to be 

directly related to the strength of the communicative intention on the part of the 

speaker to ‘convey the contrast’. More formally, when the intention dynamics 

throw up an attractor towards the voiceless end of the state space, and the 

grammar dynamics throw an attractor at the same part, the grammar-intention 

interaction is said to be an instance of cooperation. This is the case when a German 

speaker wants to convey a [t] word-finally. In contrast, when the intention of that 

speaker is to convey [d], there is a competition between this intention and the 

grammar, which requires final stops to be devoiced. It is due to this competition, 

according to Gafos, that we get incomplete neutralisation. The stronger the 

intention for [d], the more [d]-like the relevant sound will sound, and the greater 

the incompleteness of the neutralisation between final /t/ and /d/ we will observe 

(see Figure  2-3).  

 



 

 

Figure  2-3: Cooperation and competition between grammar dynamics and intention 

dynamics in the production of final ‘voiced’ and ‘voiceless’ obstru

(reproduced from Gafos 2003a
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To Gafos, the variability in the magnitude of incomplete neutralisation is “lawful 

continuous variation” (p. 57). This notion can also extend to complete 

. In this way, Gafos’ model could be said to represent approach 

(c), where the phonetics of neutralisation is just too variable for the complete

incomplete distinction to have meaning. This conclusion is confirmed 

able of over-prediction: increasing the intention for [voiced] 

“beyond some relatively high value […] [t]he model then predicts a bifurcation, a 

e in the system’s dynamics” (p. 72), where the voicing contrast 

emerges.  How lawful is this qualitative change? Gafos does not see this as 

a problem but observes, instead, that a native speaker of German is able to produce 

lly voiced [d] word-finally if he/she is willing enough. However, the argument 

also holds for predicting the realisation of final /t/ as fully voiced [d] by a German 

speaker who has the intention to do so. And how this is done is simply a matter of 

the grammar. The important question then is

such weird pronunciations should be considered ‘grammatical’. If they are not 

grammatical precisely because their production involves suppressing the grammar 

in favour of conveying anti-grammar intentions on the part of the speaker, then 

incomplete neutralisation must also be seen as belonging to this group. Gafos 

that intentions are constrained by “how forms ‘should be 

produced’ in specific context” (p. 67). But this is part of introducing the notions of 

cooperation and competition between grammar dynamics and intention dyna
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In this context, the grammar does not really constrain what communicative 

intentions a speaker may have. But the level of gratification of intentions is 

dependent on whether there are full blessings from the grammar, or if there is a bit 

of a conflict.  In the latter case, the conflict will eventually have to be resolved in 

favour of one the conflicting parties. That is, there will occur intentionally weird 

pronunciations like a non-native [S] in place of a native /t/ unless we define the 

range of values along which the acoustic/articulatory variable (x) can vary. A less 

attractive alternative is to introduce a mechanism into the model that can filter 

what intentions can legally interact with the grammar.  

Gafos’ model can also be interpreted in either-or terms. The model predicts 

incomplete neutralisation in speech produced and recorded as part of a laboratory 

study, where participants are presumably more conscious of what they say and 

how they say it. In settings where intentions do not need to be communicated to be 

known, as when one speaks to himself/herself, the model predicts that 

neutralisation can only be complete since verbally communicating the intention to 

convey a contrast to oneself by producing more of it is redundant at best and 

counter-intuitive at worst.   

On the other hand, Gafos’ characterisation of incomplete neutralisation as an 

instance of intentions modifying the grammar can translate into para-linguistics 

influencing linguistics, particularly for linguists whose research vocabulary 

includes such items. To these researchers, any such interactions are 

epiphenomenal to the study of the grammar. On this view, an adequate study of the 

grammar should only be concerned with predicting and modelling complete 

neutralisation. In other words, Gafos’ non-linear dynamics can also be used, 

appropriately or not, to reinforce an only-complete approach to qualitative 

variability in the phonetics of neutralisation. 

2.3.6 Summary 

As we have seen, different models of the phonetics of neutralisation make different 

predictions regarding the complete-incomplete distinction. Some predict that 

neutralisation is complete; others predict that it is incomplete; yet others predict 

that it can be both complete and incomplete. With reference to the last category, a 

distinction can be drawn between models that predict complete and incomplete 
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neutralisation for the same phonological process, and those that predict complete 

neutralisation for some processes and incomplete neutralisation for others. 

Finally, there are models assuming that the phonetics of neutralisation is so 

variable that a distinction between complete and incomplete neutralisation cannot 

be drawn reliably.   

 

2.4 Conclusion 

The chapter has reviewed the literature on the phonetics of neutralisation. The 

focus has been on the issue of variability. The chapter has examined various 

quantitative and qualitative aspects of the phonetics of neutralisation and 

suggested that the phonetics of neutralisation is variable. Quantitatively, there is a 

lot of variation in the magnitude of the phonetic differences between sounds that 

are subject to neutralisation as reported in the literature. Qualitatively, variability 

is seen in terms of the presence and directionality of statistically significant 

differences. Some studies found a statistically significant difference that has 

escaped other studies investigating the same neutralisation effect in the same 

language. The consequence of this is that the same neutralisation case has been 

classified as incomplete on the basis of conclusions drawn from studies revealing 

statistically significant differences, but as complete on the basis of conclusions 

drawn from studies reporting no statistically significant differences.  

The chapter also offered a critical evaluation of the existing approaches to 

qualitative variability and the complete-incomplete distinction. These approaches 

fall into five groups with respect to their underlying conception of the phonetics of 

neutralisation. One group only recognises phonetically complete neutralisation as 

both genuine and relevant; another group only predicts phonetically incomplete 

neutralisation; a third group is a combination of the first two, with complete 

neutralisation accepted in certain cases, and incomplete neutralisation in others; a 

fourth group predicts that neutralisation can be both phonetically complete and 

incomplete for the same phonological process and the same group of speakers; 

and, lastly, a fifth group assumes that the phonetics of neutralisation is so variable 

that a distinction between complete and incomplete neutralisation cannot be 

drawn reliably.  
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3 The Phonology of Vowel/Zero 

Neutralisation in BHA 

 

 

3.1  Introduction 

In Bedouin Hijazi Arabic (BHA), the underlying contrast between the presence and 

the absence of a vowel is putatively neutralised. This chapter describes the 

phonology of this putative neutralisation, which I have previously referred to as 

vowel/zero neutralisation. I will continue to use this term throughout the rest of 

the thesis. The phonological process that is responsible for this neutralisation 

effect is vowel epenthesis, and it is in focus here.  

The peculiarities of epenthetic vowels as contrasted with lexical vowels are well-

documented in the phonological literature (see e.g., Archangeli 1988, 1984; 

Archangeli & Pulleyblank 1994; Broselow 1982; de Lacy 2002a; Kitto & de Lacy 

1999; Lombardi 2002). For example, in some languages, epenthetic vowels behave 

differently from their corresponding lexical vowels with respect to stress 

assignment (see e.g., Alderete 1996; Alderete & Tesar 2002; Łubowicz 2003; 

Piggott 1995), assimilation (e.g., Herzallah 1990), vowel raising (McCarthy 2007b, 

2003), and vowel harmony (Finley 2009, 2008; van Oostendorp & Revithiadou, in 

progress). The sensitivity of these (and other) phonological processes to whether 

the relevant vowel is epenthetic or lexical provides a rich source of opacity in the 

world’s languages (see chapter one for more on this).   

To account for the opacity problem, phonologists have come up with formal 

devices such as rule-ordering (SPE and generative tradition), Sympathy Theory 

(McCarthy 2003, 1999), Candidate Chains (McCarthy 2007a, 2006), Local 

Conjunction (Smolensky 2006; Łubowicz 2002; Ito Î & Mester 2003), and Turbidity 

Theory (Goldrick 2001; Goldrick & Smolensky 1999). However, even though 
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phoneticians and laboratory phonologists have been engaged in scrutinizing 

phonological phenomena involving neutralisation for decades, contrasts that are 

putatively neutralised through epenthesis rarely figure in their studies. When 

phonetic studies started to yield results that were at odds with impressionistic 

descriptions (see chapter two), one would have thought that neutralising vowel 

epenthesis would have made an obvious choice, given the opacity problem 

mentioned above. 

Consider for instance the following scenario: a lexical vowel and an epenthetic 

vowel which are impressionistically described and transcribed as the same in 

terms of both quality and quantity and which occur in the same environment are in 

fact pronounced differently by native speakers. That is, the underlying vowel/zero 

contrast is not completely neutralised, and the problem of epenthesis-related 

opacity is only the phonologist's.  

Despite its relevance to the incomplete neutralisation issue, vowel epenthesis has 

attracted little attention. In fact, only a few16 phonetic studies of this process exist 

(e.g., Gouskova & Hall 2009, 2007 for Levantine Arabic; Cristófaro-Silva & Almeida 

2008 for Brazilian Portuguese;  Smorodinsky 2002 for English).  

Gouskova and Hall’s (2009, 2007) study is the most relevant to this thesis. In more 

detail, it is an acoustic study of vowel epenthesis in two Levantine dialects of 

Arabic that differ with respect to the capacity of their epenthetic vowels to bear 

word stress. Epenthetic vowels receive word stress more often in Palestinian 

Arabic than in Lebanese Arabic, where an epenthetic vowel is only stressed when it 

breaks up a cluster of four consonants. See  (9) and  (10) for illustrations.17  

 

                                                        
16 Of course, including studies of the phonetic properties of intrusive and excrescent vowels (see 
below for references) would significantly add to the size of our collection. However, it must be 
noted that these vocalic events differ in fundamental respects from epenthetic vowels. For example, 
whereas vowel epenthesis repairs marked structures (e.g., final clusters with a rising sonority 
profile, clusters violating the Obligatory Contour Principle (OCP), etc.), vowel intrusion occurs in 
well-formed structures. Moreover, the presence or absence of an intrusive vowel within a 
consonant cluster does not trigger, block, satisfy, or violate any phonological processes or 
constraints including template constraints (for more on intrusive vs epenthetic vowels, see Hall 
2003, 2006; Buchwald 2005; on excrescent vs epenthetic vowels, see Levin 1987; Hall 2003; 
Campbell 1974). In Almihmadi (2006), I present empirical data supporting the claim that BHA has 
both vowel epenthesis and vowel intrusion, and that these are unambiguously distinct. In this 
thesis, I am only concerned with vowel epenthesis in BHA.     
17 Data are from Farwaneh (1995: 46) and Gouskova and Hall (2009: 204-206, 209). I have verified 
the Palestinian items with a native speaker.    
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(9)  UR  Palestinian   Lebanese   Gloss 

/>alf/ [>a Âlif]~ [>aÂlf]   [>a Âlif]~ [>aÂlf]   ‘thousand’ 

/>alif/ [>a Âlif]    [>a Âlif]    ‘alif’ (letter) 

/>alf-na/ [>a Âlifna]~[>aliÂfna] [>a Âlifna]   ‘our thousand’ 

/>alif-na/ [>ali Âfna]   [>ali Âfna]   ‘our alif’ 

 

(10) UR    Palestinian  Lebanese        Gloss 

/katab-t-l-ha/ [katabti Âlha]  [katabti Âlha]  ‘I wrote for her’ 

/Ruf-t-l-ha/  [Rufti Âlha]  [Rufti Âlha]  ‘I saw for her’ 

/µamal-t-l-ha/ [µamalti Âlha]  [µamalti Âlha]  ‘I did for her’ 

 The data in the Gouskova and Hall study were collected from eight native speakers 

of each dialect reading out a list of /CVCVC/ and /CVCC/ minimal and near-

minimal pairs. The test materials in the study mixed obligatory and optional 

epenthesis,18 with the consequence that some speakers failed to produce 

epenthesis in some test words.19 The results of the acoustic study Gouskova and 

Hall have conducted suggest that neutralisation is phonetically complete in 

Palestinian Arabic, but that epenthetic vowels are shorter and backer in the 

production of some of the speakers of Lebanese Arabic. Tests of statistical 

significance run on the pooled data from the eight Lebanese speakers suggest that 

neutralisation in Lebanese Arabic is acoustically incomplete.  

With the Gouskova and Hall study, we need to keep in mind that there are 

occasions where epenthetic vowels in Palestinian reject stress just as there are 

occasions where epenthetic vowels in Lebanese accept stress. Put differently, 

epenthetic vowels in Palestinian are not always stressable; nor are epenthetic 

vowels in Lebanese always non-stressable. It is probably true to say that the 

underlying vowel/zero contrast in Palestinian Arabic is completely neutralised in 

the phonology except in those few cases where it still refers to the underlying 

contrast on the surface, as when epenthetic vowels, unlike lexical vowels, reject 

                                                        
18 In Levantine Arabic, epenthesis obligatorily breaks up final Obstruent-Sonorant clusters (e.g., 
/Yisr/= [Yisir] ‘bridge’. But in some final Obstruent-Obstruent clusters or Sonorant-Obstruent 
clusters, epenthesis is optional (e.g., /libs/= [libis]~[libs] ‘clothes’; />ird/= [>irid]~[>ird] 
‘monkey’). See Gouskova and Hall (2009, 2007).  
19 Gouskova and Hall (2009) seem to have anticipated this. They included a backup list of rhyming 
words to use for statistical analysis if speakers failed to produce the correct form of the target 
words in the original list. However, it seems to me that a better strategy would have been to limit 
analysis (or data collection) to words where epenthesis is required.  
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stress. By the same token, it is probably true to say that the underlying vowel/zero 

contrast in Lebanese Arabic is incompletely neutralised in the phonology except in 

those few cases where epenthetic vowels receive stress, just like lexical vowels. As 

a result, the phonological completeness–incompleteness of the neutralisation 

pattern in both Levantine dialects is complicated by the existence of these 

‘exceptions’ in the stressability of epenthetic vowels as opposed to lexical vowels.  

The case-study I report in this thesis has at least two advantages over the 

Gouskova and Hall study. Firstly, vowel/zero neutralisation in BHA delivers no 

such ‘exceptions’ (for illustration see ¶ 3.2.2). For example, when epenthetic [a] 

occurs in a stress site, it invariably receives stress, just like lexical /a/. Conversely, 

when epenthetic [i] occurs in a stress site, it invariably rejects stress, unlike lexical 

/i/. The consequence for the phonological completeness or incompleteness of the 

vowel/zero neutralisation pattern in BHA is this. [a]-epenthesis results in 

phonologically complete neutralisation, whereas [i]-epenthesis leads to a 

neutralisation effect that is not phonologically complete.   

A second advantage of this study is that it offers to explore the phonetics of these 

neutralisation effects using data that are generated within a single experimental 

paradigm, produced by the same speakers, and analysed following the same 

procedures. Test materials are minimal pairs of words with epenthesis breaking 

up word-final Obstruent-Sonorant clusters only (see ¶ 3.2.2 and chapter four for 

more details). 

The exploration of neutralisation in this study raises interesting questions for the 

phonetics-phonology relation. For example, it allows us to ask if the surface 

phonology can insist on an underlying contrast for which the phonetics has no 

expression, and conversely if the phonetics can still support an underlying contrast 

that the surface phonology has given up on. These are some of the questions I 

address in this thesis.  

The rest of this chapter proceeds as follows. In ¶ 3.2, I provide background 

information about the dialect (BHA) and vowel epenthesis in BHA. In ¶ 3.3.1, I 

briefly describe a tentative conceptualisation of vowel/zero neutralisation and 

how vowel epenthesis neutralises underlying vowel/zero contrasts. In ¶ 3.3.2 and 

¶ 3.3.3, I illustrate the opacity that characterises the interactions of vowel 
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epenthesis with stress and vowel-reduction processes in BHA phonology. In ¶ 3.4, I 

conclude the discussion by briefly touching on a prediction made by the phonology 

of vowel/zero neutralisation in BHA for its phonetics.  

 

3.2 Vowel Epenthesis in BHA: Background 

3.2.1 The Dialect: BHA 

BHA is a Bedouin dialect of Arabic spoken by the Harb tribe20 in the Hijaz Province 

in the west of Saudi Arabia. The phonology of this dialect is described in  Al-

Mozainy's 1981 PhD thesis. Table  3-1 and Table  3-2 give the phonemic inventory 

of BHA (based on Al-Mozainy 1981): 

  t/t: tµ/tµ:    k/k:   >/>:  

b/b:  d/d:     g/g:     

 f/f: S/S:   R/R:   x/x: ê/ê: h/h:  

  C/C: Cµ
/Cµ

:  Y/Y:   F/F: µ/µ:   

  s/s: s
µ
/s

µ
:         

  z/z:          

m/m:  n/n:          

  l/l:  r/r:        

      j/j:     w/w: 

Table  3-1: Consonant inventory of BHA 

 

i/i:  u/u: 

 a/a:  

Table  3-2: Vowel inventory of BHA 

 

With such an impoverished vowel inventory, it seems paradoxical21 that it is the 

vowel system that has kept the dialect's name in the phonological limelight, 

especially in the work of John McCarthy. The dialect has provided illustrations of a 

number of phonological opacity-related phenomena such as chain-shifting and 

counterfeeding (Bakovic Â 2007; Kirchner 1996; McCarthy 1999; Orgun 1996), 

Gahawa-Syndrome (McCarthy 1992, 1991), Duke-of-York gambit (McCarthy 2003), 

and epenthesis-related and metrical opacity (Al-Mozainy 1981; Al-Mozainy et al 
                                                        
20  See Al-Hazmy (1975, 1972) for a general description of the dialect and the Harb tribe.  
21  Given the place of consonantalism in Arabic, the fact that vowels, rather than consonants, should 
display extensive alternations might not be paradoxical after all, especially in a conservative dialect 
such as BHA.  
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1985; Gordon 2001; McCarthy 2007a, 2007b, 2006, 2003, 1999; Oh 1998). These 

researchers have used data from BHA to argue for different analyses and tools 

including the markedness constraints REDUCE (Kirchner) and NO-V-PLACE 

(McCarthy), the faithfulness constraint MATCH(V) (Orgun), the place feature 

[pharyngeal] on a par with [labial], [coronal], and [dorsal] (McCarthy), a violation 

of the otherwise undominated constraint FOOT-FORM (McCarthy), foot-bound stress 

shift (Al-Mozainy and Al-Mozainy et al), dually-constrained representations (Oh), 

and Weight-to-Stress analysis (Gordon). McCarthy has also offered an analysis of 

opacity in BHA within the framework of Sympathy Theory (1999, 2003) and 

Candidate Chains in OT (2007a, 2007b).   

3.2.2 Vowel Epenthesis in BHA 

In BHA, vowel epenthesis occurs to break up word-final bi-consonantal clusters 

with a rising sonority slope.22 In BHA, well-formed word-final clusters are those 

with a falling sonority slope (see the examples in  (11)). In  (11), word-final clusters 

that are not well-formed are marked with *. These are all repaired through vowel 

epenthesis except those that end in a glide, which are repaired through glide 

vocalisation. Rising-sonority clusters where vowel epenthesis is required are 

enclosed in the triple-lined frame in  (11). Note also that obstruents (fricatives and 

stops) are not differentiated for sonority in this dialect. 

 

 

 

 

 

 

                                                        
22 Vowel epenthesis also fixes bi-consonantal clusters violating OCP and breaks up tri-/quadri-
consonantal clusters, which arise from morphological concatenation. For the sake of brevity, I will 
not discuss these here, especially as they will have no bearing on the question of neutralisation that 
I attempt in this thesis. 
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(11)  

  

 

 

 

 

 

 

Vowel epenthesis is sensitive to the type of prosodo-syntactic boundary24 standing 

between the word that contains the offending cluster and what follows. For 

example, for vowel epenthesis to occur, the host word must be either followed by a 

phrase boundary, as in  (12) below, or a consonant-initial tauto-phrasal word, as in 

 (13). Vowel epenthesis does not apply if the following word is vowel-initial, as in 

 (14), unless there is a phrasal boundary separating the two, as in  (15).  

(12) *[..CRΦ..]       [..CVRΦ..] 

*[gidr]    'pot'     [gidir] 

*[naêr]   'neck'     [naêar] 

*[µadl]    'justice'     [µadil] 

*[gidr êaragna]    'a pot burned us'   [gidir êaragna] 

*[gidr fa:duhum]   'a pot was of use to them’ [gidir fa:duhum] 

 

(13) *[..CR#C..]       [..CVR#C..] 

*[gidr nu:ra]   'Nora's pot'   [gidir nu:ra] 

*[naêr samar]   'Samar's neck'   [naêar samar] 

*[µadl malik]   'the justice of a king'  [µadil malik] 

 

                                                        
23 In Arabic, sonorant consonants belonging to the same place-of-articulation class are subject to a 
special restriction such that they may not co-occur within the same consonantal root (except for 
nasals). See Greenberg (1950), Gafos (2003b), and McCarthy (1986). 
24 See for example Nespor and Vogel (1986), Kainada (2006), and Kaisse (1985) on the role of 
prosodic boundaries in phonology. On the interaction of phonological processes and morphological 
levels in a neighbouring Arabic dialect (Makkan), see Abu-Mansour (1992). On the effect of 
prosodic boundaries on the articulation and acoustics of speech sounds, see for example, Cho 
(2004, 2002), Fougeron (2001), Tabain and Perrier (2007, 2005) and references therein.   

                 C___# 
___C# Glide  

 
 Glide -----------23 Liquid 

Liquid *[marw]  
‘type of rocks’ ---------- Nasal 

Nasal *[θanj]  
‘folding’ 

*[êaml] 
‘carrying’ 

---------- Fricative Stop 

Fricative *[baFj] 
‘aggression’ 

*[baêr]  
‘sea’ 

*[wahn] 
‘weakness’ 

[µafR] 
‘baggage’ 

[baft] 
‘whitish’ 

Stop *[badw] 
‘Bedouins’ 

*[µadl]  
‘justice’ 

*[radm] 
‘heaps’ 

[natf] 
‘plucking’ 

[µabd] 
‘servant’ 
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(14) [..CR#V..]       *[..CVR#V..] 

[gidr um:i]   'my mother's pot'   *[gidir um:i] 

[naêr ami:nah]   'Ameena's neck'   *[naêar ami:nah] 

[µadl ima:m]   'the justice of a ruler'  *[µadil ima:m] 

 

(15) *[..CRΦ…]      [..CVRΦ…] 

*[gidr aθaruh]   'a pot it turned out to be’ [gidir aθaruh] 

*[gidr agu:l]   'a pot I'm saying'   [gidir agu:l] 

The quality of the vowels inserted within these clusters depends to a large extent 

on the quality of the preceding lexical vowel within the hosting word. This is 

particularly true for epenthetic [i] and [u]. When the lexical vowel is /i/, the 

epenthetic is invariably [i]. Likewise, if the lexical vowel is /u/, the epenthetic is 

always [u]. This is illustrated in  (16) below. When the lexical vowel is /a/, we see 

consonantal effects on the quality of the epenthesised vowel. Here, the epenthetic 

is [a] if the preceding consonant is a guttural, as in  (17); it is [u] if the following 

consonant is [r] and the preceding consonant is not a guttural, or if the following 

consonant is [m] and the preceding consonant is an emphatic, [g], or [k], as in  (18). 

In other words, a [grave] (Jakobson et al 1963) or what Al-Mozainy (1981: 72) 

calls “backing inducing” component is evident in the environment for [u] (but see 

 (20) below). Elsewhere25, the epenthetic is [i], as in  (19). Free variability between 

[i] and [u] is evident when the consonant preceding the epenthetic is an emphatic 

and the consonant following is [l], as in  (20). Variants like those in  (20) are subject 

to no obvious linguistic or stylistic conditioning factors. In this thesis, I restrict my 

phonetic analysis to ‘a’ and ‘i’ in words hosting no emphatics (see chapter four). 

For this reason, the [u]~[i] variation following an emphatic is irrelevant to the 

present study. See Table  3-3 for a summary of these environments. 

   
(16) Riµ[i]r 'poetry' 

sit[i]r     'protection' 

riY[i]l     'a leg' 

kib[i]r  ‘conceit’ 

                                                        
25  There is general agreement that [i] is the default epenthetic vowel in Arabic (e.g., Kenstowicz 
1994: 272; Lombardi 2002).  
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kub[u]r  ‘size’ 

bux[u]l   'misery' 

µug[u]m   'impotency' 

Ruµ[u]rµ   'a fracture' 

 

(17) sµaê[a]n    'plate' 

Raµ[a]r     'hair' 

nax[a]l     'palm tress' 

bah[a]m  ‘young sheep’ 

baF[a]l  ‘mule’ 

 

(18) sµab[u]r    'patience' 

gab[u]r    'grave' 

bad[u]r  ‘full moon’ 

baz[u]r  ‘kid’ 

µasµ[u]r ‘afternoon’ 

haCµ[u]m  ‘digestion’ 

µaCµ[u]m ‘bones’ 

xasµ[u]m  ‘opponent’ 

rag[u]m    'numeral’ 

µag[u]m  ‘stumbling block’ 

lak[u]m  ‘fisting’ 

 

(19) êab[i]l    'ropes' 

mat[i]n    'shoulder' 

batµ[i]n   ‘stomach’ 

êaCµ[i]n  ‘hugging’ 

xat[i]m    'stamp' 

ras[i]m  ‘drawing’ 

naY[i]m ‘star’ 

µaY[i]n    'kneading' 

waz[i]n ‘weight’ 

>ak[i]l     'food' 
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ram[i]l     'sand' 

 

(20) satµ[u]l~satµ[i]l 'a bucket' 

ratµ[u]l~ratµ[i]l 'pound: weight unit' 

µaCµ[u]l~µaCµ[i]l 'causing harm' 

masµ[u]l~masµ[i]l ‘serum’ 

 

/V1/ [V2] C∈{h,µ,ê,F,x}__R# C∉{h,µ,ê,F,x}__[r]# C∈{t
µ
,s
µ
,C

µ
,g,k}__[m]# C∈{t

µ
,s
µ
,C

µ
}__[l]# elsewhere 

/i/ [i] 

Consonantal Environment Irrelevant /u/ [u] 

/a/ [a] Yes  

[u] No Yes  

No No Yes  

[u]~[i] No No No Yes  

[i] No No No No Yes  

Note: R= sonorant {l, r, m, n} 
 

Table  3-3: Summary of conditions determining the quality of the vowel ([V2]) inserted to 

break up word-final consonant clusters in words of the shape /…VCR#/. Conditions 

include (1) a vocalic environment (i.e., the quality of the lexical vowel /V1/) and (2) 

a consonantal environment involving different types of word-final sonorants and 

pre-final obstruents. Consonantal environment is only relevant when the lexical 

vowel is /a/.    

 

3.3 Vowel Epenthesis and the Phonology of Vowel/Zero 

Neutralisation 

3.3.1 Neutralisation through Vowel Epenthesis 

For the purposes of this thesis, I assume the following definition of neutralisation: 

(21) Neutralisation obtains when the terms of a contrast at UR are 

identical at SR. 

Applied to vowel epenthesis, this definition refers to a situation where an 

underlying vowel and an inserted vowel are identical on the surface. Given  (21), 

consider how vowel epenthesis does and does not neutralise an underlying 

vowel/zero contrast. Suppose that there is a language where the following surface 
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generalisation holds: every word is C-initial except those beginning underlyingly 

with /r/, which surface with an initial vowel. If all word-initial Vr sequences arise 

through epenthesis, there is no vowel/zero contrast, irrespective of whether or not 

the epenthetic vowel is drawn from the phonemic inventory of the language. This 

is shown in  (22)-(a) below. If there is no underlying contrast, we simply cannot 

speak of neutralisation, given  (21).  

Now suppose that there is a language where every ‘0’ is epenthetic. If lexical vowels 

of any quality and epenthetic [0] can occur in the same environment (segmental or 

prosodic), according to  (21), there is a contrast but no neutralisation. The same 

can be said of a language where ‘0’ is always epenthetic when word-initial but not 

elsewhere and where other initial vowels are not epenthetic. Here, there is a 

contrast but no neutralisation.  (22)-(b) illustrates both cases. It is only when ‘0’ can 

be epenthetic as well as non-epenthetic and can occur in the same environment 

that we may speak of an underlying vowel/zero contrast being neutralised through 

vowel epenthesis, given  (21). This is shown in  (22)-(c). 

To bring the examples closer to what we have in BHA, I give  (22)-(d) and  (22)-(e). 

Here, there is an underlying vowel/zero contrast. Lexical and epenthetic vowels 

have the same quality, at least as far as the impressionistic description is 

concerned. Hence, under the definition in  (21), these examples qualify as instances 

of neutralisation.   

(22)   

 

 

 

 

 

 

 

a. /CVCVC/ /CVCVC/ No Contrast 
[0rabal] [labal] 

 
 

b. /CVCVC/ /VCVCVC/ Contrast 
[0rabal] [arabal] 

 
No neutralisation 

 

c. /CVCVC/ /VCVCVC/ Contrast 
[0rabal] [0rabal] 

 
Neutralisation 

d. /CVCC/ /CVCVC/ Contrast 
[dibil] [dibil] 

 
Neutralisation 

e. 
/CVCC/ /CVCVC/ Contrast 
[daêal] [daêal] Neutralisation 
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Now consider the further complication in  (23) below: 

(23)       /dibl/  /dabil/ 

a.  [dibil]   [dibil] 

 

      /daêl/  /daêal/ 

b.  [daêal]  [daêal] 

In  (23)-(a), it looks as though we have two contrasts and two neutralisations: a 

vowel/zero contrast neutralised through [i]-epenthesis (/..bil/ and /..bl/ both 

realised as [..bil]) and a high-low vowel contrast neutralised through a process of 

low-vowel raising (/di../ and /da../ both realised as [di..]).  

There is, however, another way of looking at the surface forms in  (23)-(a) which 

involves placing them in the wider context of the phonology of BHA. In general, 

open-syllable vowels in BHA are subject to reduction whereby /a/ reduces to 

[i]/[u] while /i/ and /u/ reduce to zero. This is a chain shift effect (see e.g., 

McCarthy 2003; Kirchner 1996). There are further complications that I describe in 

¶ 3.3.3 below. As far as  (23)-(a) is concerned, though, we can see that /a/ in /dabil/ 

is reduced to [i] but that the first [i] in [dibil] from /dibl/ is not underlyingly an 

/a/, nor is it reduced to zero. Put differently, the vowel-reduction process, which 

applies transparently to /dabil/, interacts opaquely with vowel epenthesis. As long 

as the distinction in question concerns the presence versus absence of a vowel in a 

particular phonological context, the situation in  (23)-(a) can still qualify as a 

minimal contrast involving a vowel and a zero. On this view, vowel epenthesis does 

not preserve the vowel/zero contrast fully in  (23)-(a), nor does it neutralise it 

completely.  

The difference between  (23)-(a) and  (23)-(b) can be summarised as follows. Like 

many well-studied neutralisations,  (23)-(b) involves only one type of opacity, 

namely clause (c) of Kiparsky’s definition—the clause that is mostly about UR-

learning. By contrast,  (23)-(a) involves two types of opacity: in addition to 

neutralisation as opacity (clause c), there is underapplication opacity (clause (a)). 

[i]-epenthesis renders the vowel-reduction generalisation non-surface-true (see 

chapter one for more on this).  
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 (23)-(a) and  (23)-(b) exemplify the two phonological possibilities for vowel 

epenthesis to  neutralise the underlying vowel/zero contrast considered in this 

thesis. I discuss the opaque interactions between vowel epenthesis and stress in 

¶ 3.3.2, and between vowel epenthesis and high-vowel-deletion/low-vowel-raising 

in ¶ 3.3.3. These interactions serve to illustrate how vowel/zero contrasts are 

neutralised differently according to the quality of the epenthetic vowel. Vowel 

epenthesis phonologically inserts (1) an [a] that sounds and behaves like lexical 

/a/ and (2) an [i] that sounds like lexical /i/ but whose presence is not recognised 

by the phonology, beyond repairing an SSP violation. 

3.3.2 Stress and Vowel Epenthesis 

Like most Arabic dialects, BHA is a quantity sensitive language with final 

consonant extrametricality (Al-Mozainy 1981; Al-Mozainy et al 1985; Oh 1998). As 

such, and for the purposes of this brief sketch, I shall treat word-final [..CVCC] and 

[..CV:C], which have been traditionally described as superheavy syllables, as heavy 

and mark the extrametrical final C as <C>. I give in  (24) a summary of the stress 

algorithm.  

(24) (Stress is depicted as   Â  over the relevant vowel) 

(a) Considering only the last three syllables, stress the rightmost 

heavy syllable: 

[kita:ti Â:<b>] ‘schools’; [mikaÂ:ti<b>] ‘offices’; [>almaktibaÂ:<t>] ‘the 

libraries’ ; [ma Âktiba<h>] ‘a library’;   [ma Âkta<b>] ‘a desk/an 

office’; [kitaÂb<t>] ‘(I/you) wrote’; [ki Âtba<t>] ‘was written (FM.)’ 

(b) Otherwise, stress the antepenultimate light syllable: 

[µaÂrafa<h>] ‘Arafat’; [gaÂla<m>] ‘a pen’; [>alêaÂlaga<h>] ‘the street 

market’. 

Stress assignment is regular and insensitive to the quality of the lexical vowels. As 

to epenthetic vowels, there is a difference. More specifically, epenthetic [a] behaves 

just like lexical vowels, whereas [i]-epenthesis renders stress assignment opaque. 

Unlike the corresponding lexical vowel, epenthetic [i] is metrically invisible. When 

it occurs in a stress site as per the algorithm in  (24), it fails to bear the stress. 

Furthermore, epenthetic [i] fails to participate in the syllable-counting function for 
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stress. In contrast, epenthetic [a] is both stressable and metrifiable, hence, 

metrically indistinguishable from the corresponding lexical vowel.   

The stress pattern of >al-prefixed words that contain epenthetic vowels illustrates 

the disparate metrifiabiliy of epenthetic [i] and [a]. For example, in  (25), stress 

uniformly falls on the first syllable of the unprefixed words, irrespective of the 

underlying status and quality of V2 (lexical /a/ in  (25)-(a); lexical /i/ in  (25)-(b); 

epenthetic [a] in  (25)-(c); and epenthetic [i]/[u] in  (25)-(d).  

(25) (a).   /êakam/ [êa Âkam]   'a judge' 

V2: /a/ /µalam/ [µa Âlam]   'a flag' 

/malak/ [ma Âlak]   'an angel' 

 

(b).   /maêil/ [mi Âêil]   ‘place’ 

V2: /i/ /malik/ [ma Âlik]~[miÂlik]  ‘king’ 

 

(c).   /baêr/  [ba Âêar]   ‘sea’  

V2: [a]  /ðµahr/ [ðµaÂhar]   ‘back’ 

/Raµr/  [Ra Âµar]   ‘hair’ 

 

(d).   /êabl/  [êa Âbil]   ‘rope’  

V2: [i]/[u] /gidr/  [gi Âdir]    ‘pot’ 

/RiÂµr/  [RiÂÂµir]    ‘poetry’ 

/tamr/ [ta Âmur]   ‘dates’ 

/ðµuhr/ [ðµu Âhur]   ‘afternoon’ 

/Ruµr/  [Ru Âµur]   ‘fracture’ 

However, when these words are >al-prefixed, epenthetic [a] is treated just like 

lexical vowels: it is parsed as projecting a light syllable within the three-syllable 

window where [>al], being the rightmost heavy syllable, receives the stress. This is 

also the scenario for all lexical vowels in  (26). I repeat the unprefixed forms for 

ease of comparison.  
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(26)       >al- 'the…' 

(a).   [êa Âkam]   [>a Âlêakam]  

V2: /a/ [µa Âlam]   [>a Âlµalam] 

[ma Âlak]   [>a Âlmalak]  

 

(b).   [mi Âêil]   [>a Âlmiêil]  

V2: /i/ [ma Âlik]~[miÂlik] [>a Âlmalik]~[>a Âlmilik]  

 

(c).   [ba Âêar]   [>a Âlbaêar]  

V2: [a]  [ðµaÂhar]  [>a Âðµðµahar]  

[Ra Âµar]   [>a ÂRRaµar] 

In contrast, >al-prefixed words which contain epenthetic [i] or [u] are stressed 

differently: the prefix [>al] does not receive the stress; it is parsed as the second 

rightmost heavy syllable; the underlying /CVCC/ containing the epenthetic vowel 

is parsed as the rightmost heavy syllable, with the epenthetic vowel disregarded. 

See  (27) below. 

(27)      >al- 'the…' 

(d).   [êa Âbil]  [>alêa Âbil]  

V2: [i]/[u]  [gi Âdir]   [>algiÂdir] 

[RiÂÂµir]   [>aRRiÂÂµir]  

[ta Âmur]  [>atta Âmur]  

[ðµu Âhur]  [>aðµðµuÂhur] 

[Ru Âµur]  [>aRRu Âµur] 

Further evidence for the non-stressability of epenthetic [i] comes from the single 

environment where epenthetic vowels “are systematically stressed in all [Arabic] 

dialects" according to Farwaneh (1995: 151). This is when an epenthetic vowel 

breaks up a quadri-consonantal cluster. However, in BHA, epenthetic [i] appears in 

this environment unstressed even though it seemingly occupies what should be a 

stress site by  (24). See  (28) below. 
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(28) (CCCC in boldface; relevant epenthetic vowels underlined) 

Dialect  Epenthetic in CCCC   Example (Gloss: ‘I wrote to her’)  

Makkan   Stressed  [katabta Âllaha] 

Egyptian   Stressed  [katabti Âlha] 

Palestinian  Stressed  [katabti Âlha] 

Lebanese  Stressed  [katabti Âlha]    

Syrian   Stressed  [katabti Âlla] 

Iraqi   Stressed  [kitabiÂtlaha] 

BHA   Not Stressed  [kita Âbtilha] 26 

Epenthetic [a]s, on the other hand, are readily stressable just like lexical vowels 

when they occur in a stress site as in  (29) below. Here epenthetic [a] occurs in the 

rightmost heavy syllable, and it bears the stress. Note that epenthetic [i] does not. 

(29) Raµ[aÂ]rku<m>   Cf.*gid[i Â]rku<m> 

‘your-MSC.-PL.-hair’  ‘your-MSC.-PL.-pot’ 

baê[aÂ]rna    Cf. *êab[i Â]lna 

‘your-MSC.-PL.-sea’  ‘our ropes’ 

laê[aÂ]mhi<n>   Cf. *siê[i Â]rhi<n> 

  ‘their-FM.PL.-meat’  ‘their-FM.PL.-magic’ 

A less compelling piece of evidence for the stressability of epenthetic [a]s comes 

from what Blanc (1970) calls Gahawa-Syndrome, whereby an [a] is inserted post-

gutturally in words of the form /CaGCVC/ (G=guttural) according to one analysis. 

In some Bedouin dialects including BHA, vowel epenthesis feeds a rule of low-

vowel deletion whose application after epenthesis creates forms of the shape 

[CGaCVC] (e.g., [ghawah] ‘coffee’; [nxalah] ‘a palm tree’). Interestingly, the post-

guttural vowel, which is epenthetic [a], bears the word-stress. There is, however, a 

fair amount of controversy regarding the synchronic status of the process, which 

will take us too far afield to discuss (for more, see Blevins & Garrett 1998; Hall 

2003; McCarthy 1991). 

Where stress is quality-sensitive in other languages, it is lexical vowels, in most 

cases, that are reported to display such an effect (see Kenstowicz 1997). Reports of 

                                                        
26 There is a variant, [kitaÂbtlaha], heard in the speech of educated speakers. In this word, 
epenthesis occurs at the suffix boundary, which is not a stress site by  (24).  
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epenthetic vowels of different qualities behaving differently with respect to 

phonological processes including stress are not common. An example is found in 

de Lacy (2002a): in Shipibo, epenthetic [a] appears in foot heads while epenthetic 

[i] appears in foot-nonheads. Similarly, Lloret and Jiménez (2006) report that in 

Alguerese Catalan epenthetic [a] behaves like lexical vowels in sustaining the 

voicing of a preceding sibilant ([dazidY  amistos] 'friendly desire’; [dazidY aspesjal] 

'special desire'), whereas epenthetic [i] does not ([dazitR  i  feu] 'bad desire'). They 

argue that epenthetic [a] occurs at the lexical level and is in the prosodic word, 

which is a prominent position. In contrast, epenthetic [i] is postlexical and occurs 

outside of the prosodic word, which is a weak position. The pattern in BHA is 

different. Consonantal effects apart, it is the case that epenthetic [a] and [i] serve 

the same purpose and occur in the same environment.  In Shipibo and Alguerese 

Catalan, it is the prosodic position that seems to 'license' the quality of the 

epenthetic vowel; in BHA, it is rather the quality of the epenthetic vowel which 

seems to determine its phonological visibility. 

3.3.3  High Vowel Deletion (HVD)/Low Vowel Raising (LVR) and 

Epenthesis 

As mentioned above, in BHA open-syllable /a/s reduce to [i]/[u], whereas open-

syllable /i/s and /u/s reduce to zero. In rule-based derivational models, the 

pattern is decomposed into two different rules: Low Vowel Raising (LVR) and High 

Vowel Deletion (HVD).27 In  (30), I give an illustration using the rule formulation 

and data reported in Al-Mozainy (1981: 47, 53-54) and Kirchner (1996: 342).  

 

 

 

 
                                                        
27 In models where HVD and LVR are treated as different rules, a counterfeeding relation must be 
stipulated so that an [i], underlyingly /a/, is not wrongly deleted by HVD. This is how it works. 

 /samiµ/ /samiµat/ 
HVD                ----- samµat 
LVR           simiµ ----- 

 [simiµ] [samµat] 
See Kirchner (1996) for an OT account that appeals to the durational scale /a/>/i/,/u/> zero.  
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(30) ($ marks a syllable boundary in these examples) 

  /Yi$ba:l/ /du$ju:n/ /µu$mar/ /riê$la:t/ /lug$mah/ 

a. (HVD): i/u→ Ø/ ___$                Yba:l dju:n µmar --------- --------- 

               [Yba:l] [dju:n] [µmar] [riêla:t] [lugmah] 
  ‘mountains’ ‘debts’ ‘Omar’ ‘journeys’ ‘morsel’ 
       
  /Ra$rib/ /da$li:l/ /ga$mar/ /nak$ba:t/ /nab$tah/ 

b. (LVR): a→[+hi]/___$ Ririb dili:l gumar -------- -------- 
  [Ririb] [dili:l] [gumar] [nakba:t] [nabtah] 
  ‘drank’ ‘evidence’ ‘moon’ ‘setbacks’ ‘plant’ 

 

However, an underlying open-syllable /a/ does not raise when the following vowel 

is /a/ and the intervening consonant28 is a coronal sonorant /l, r, n/ or a guttural29 

/h, µ, ê, F, x/.30 This is illustrated below in  (31). 

(31) /Ya$lam/  [Yalam]  ‘scissors’ 

/Fa$nam/  [Fanam]  ‘sheep’ 

/µa$rab/  [µarab]  ‘Arab’ 

/na$ham/  [naham]  ‘greed’ 

/wa$µad/  [waµad]  ‘promised’ 

/sa$êab/  [saêab]  ‘dragged’ 

/na$Fam/  [naFam]  ‘music’ 

/sµa$xal/  [sµaxal]  ‘lamb’ 

/fa$taê/  [fitaê]  ‘wrote’ 

/µa$lim/  [µilim]  ‘knew’ 

Here, I treat HVD and LVR as a single vowel-reduction process (see Kirchner 

1996). The interaction of HVD/LVR with vowel epenthesis gives rise to an 

underapplication opacity effect: [i]-epenthesis creates the environment for 

HVD/LVR, but it does not apply. In traditional derivational models, this is captured 

by rule-ordering, as illustrated in  (32) below.  
                                                        
28 There is also another restriction similar to the above but involving, instead, post-guttural open-
syllable /a/s. These do not raise if the following vowel is low. I don’t discuss this here.  
29 Gutturals are sometimes classified as sonorants and sometimes as fricatives. This dual 
characterisation reflects their special phonetics and phonology (see e.g., Halle 1995; Hall 2003). On 
the phonetics of Arabic gutturals, see Zawaydeh (1999) and Butcher and Ahmad (1987).  
30 The restriction above seems to implicate vowel-to-vowel coarticulation and coronal transparency 
(e.g., Paradis & Prunet 1991). It might also be explained by appealing to the hypothesised 
propensity of sonorants including gutturals to allow an adjacent vowel to overlap and extend over 
their gestures (Hall 2003). The sketch above is only meant to give a brief description of LVR. A full 
explanation of the pattern is beyond the scope of this thesis. 
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(32)  

 

Without rule-ordering, these forms seem to be exceptions to the otherwise regular 

pattern of HVD/LVR. Here we have surface open-syllable high vowels that do not 

delete and surface open-syllable low vowels that do not raise. It is as though these 

lexical vowels did not occur in open syllables.   

As to epenthetic [a], the phonology of the dialect does not make it clear whether it 

would pattern with epenthetic [i] or with lexical vowels regarding HVD/LVR. This 

state of affairs obtains because within-word epenthetic [a] only occurs following 

/a/ plus guttural (e.g., /wahm/ > [waham] ‘fantasy’). It is not clear whether the 

words with epenthetic [a]s do not undergo HVD/LVR because they are treated as 

having no low vowel in an open syllable, in which case epenthetic [a] is just like 

epenthetic [i] and [u], or if they are treated like a lexical /a/, in which case the 

process does not apply anyway. As described above (see  (31)), HVD/LVR does not 

affect low vowels in open syllables if the following vowel is /a/ and the intervening 

consonant is a guttural. And of course the process does not affect low vowels in 

closed syllables. There is no ordering argument to make simply by looking at [a]-

epenthesis and HVD/LVR. This is illustrated in  (33) below, where either ordering 

of HVD/LVR and epenthesis gives the correct forms. The specific ordering of 

HVD/LVR preceding vowel epenthesis is posited by phonologists working within 

the rule-based tradition to account for the opacity that [i]-epenthesis creates. 

Importantly, [a]-epenthesis does not give evidence to the contrary. 

(33)  

 
/ba$gar/ 

‘cows’ 
/ka$tab/ 
‘wrote’ 

/ra$han/ 
‘pledged’ 

/rahn/ 
‘mortgage’ 

HVD/LVR bugar kitab ------- ------- 
Epenthesis ------ ------- -------- rahan 

 [bugar] [kitab] [rahan] [rahan] 
 

Epenthesis ------ ------- -------- rahan 
HVD/LVR bugar kitab ------- ------- 

 [bugar] [kitab] [rahan] [rahan] 

√ /µumr/ /tamr/ /êabl/   × /µumr/ /tamr/ /êabl/ 
HVD/LVR ---- ---- ----  Epenthesis µumur tamur êabil 

Epenthesis µumur tamur êabil  HVD/LVR µmur tumur êibil 

 [µumur] [tamur] [êabil]   *[µmur] *[tumur] *[êibil] 
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3.3.4 Summary 

As we can see, the underlying vowel/zero contrast is apparently neutralised 

through vowel epenthesis in BHA. However, to answer the question of whether the 

contrast is completely obliterated on the surface or not, a closer look into the 

phonological visibility of the epenthesised sound is necessary. Phonological 

visibility is limited here to vowel stressability and metrifiability. 

Impressionistically, both epenthetic [a] and lexical /a/ occurring in comparable 

phonological environments sound the same and behave the same with respect to 

phonological processes. In contrast, epenthetic [i] and lexical /i/ too sound the 

same but are sometimes treated differentially by the phonology. For example, 

epenthetic [i] but not lexical /i/ creates opacity when it interacts with certain 

phonological processes. I have looked here at two such processes—stress 

assignment and vowel reduction.  

 

3.4 Conclusion 

This chapter documented the phonology of vowel/zero neutralisation in BHA. It 

presented a detailed picture of vowel epenthesis, vowel/zero neutralisation, and 

the phonological interactions that illustrate the disparate activities of epenthetic 

and lexical vowels in the phonology of BHA. The chapter demonstrates how the 

underlying vowel/zero contrast in BHA is neutralised differently according to the 

quality of the inserted vowel.  There is no surface distinction between epenthetic 

[a] and lexical /a/. In contrast, under certain conditions, epenthetic [i] and lexical 

/i/ remain different on the surface. It is an empirical question whether or not the 

phonetics of vowel/zero neutralisation correlates with its phonology. I set out to 

investigate this in the next chapter.  
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4  The Phonetics of Vowel/Zero 

Neutralisation in BHA 

 

 

4.1  Introduction 

In this chapter, I explore the phonetics of vowel/zero neutralisation in BHA in 

terms of the following main questions: 

(34) Question  1:    Is vowel/zero neutralisation phonetically complete? 

Question 2: Is the phonetic effect (complete or incomplete 

neutralisation) genuine? 

I have previously referred to these questions as ‘the completeness question’ and 

‘the genuineness question’, respectively. I shall continue to use these short forms 

to refer to the questions above throughout the rest of this thesis.  

With regard to the completeness question, I present acoustic and perceptual data 

from native speakers of BHA. The acoustic data come from a simple experimental 

design with one independent variable—the vowel/zero underlying contrast that 

vowel epenthesis supposedly neutralises. Given the phonology of vowel/zero 

neutralisation in BHA, which I described in chapter three, we can see the merit of a 

phonetic study that is dedicated to this topic. In terms of the completeness 

question, the phonology of vowel/zero neutralisation in BHA presents a unique 

case where both phonologically complete and incomplete effects exist. More 

specifically, the vowel/zero contrast is completely neutralised through [a]-

epenthesis but incompletely neutralised through [i]-epenthesis. A phonetic 

investigation of this neutralisation provides a valuable opportunity to test 

hypotheses involving the phonetics-phonology relation. The findings of such a 
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study will also add a new twist to the ongoing debate about the genuineness of 

phonetically complete and incomplete neutralisation.  

The results of the production experiment reveal a curious pattern of dis-

correlation between the phonetics and phonology of neutralisation. Epenthetic [a] 

and lexical /a/, which behave the same in the phonology, are distinct in the 

phonetics: epenthetic [a] is statistically significantly more intense than lexical /a/. 

Conversely, epenthetic [i] and lexical /i/, which behave differently in the 

phonology, are phonetically identical. No less curious, though, is the apparent 

utilisation of a contrastively inactive acoustic cue for the purposes of preserving a 

contrast that seems to be completely neutralised in the phonology. Perception-

wise, epenthetic [a] and lexical /a/ are discriminated less accurately than are 

epenthetic [i] and lexical /i/. I speculate on the relevance of these unexpected 

results to the laboratory tradition in the study of the phonetics of neutralisation.   

As I pointed out while reviewing the literature in chapter two, the genuineness of 

the reported experimental outcomes has been an issue for many researchers. More 

specifically, incomplete neutralisation has been regarded as an experimental 

artefact brought about by certain paralinguistic factors such as orthography and 

lexical and contextual effects. I manipulate these variables in the experimental 

paradigm employed here. My exploration of these effects allows for a theoretically 

possible orthography-induced effect of complete neutralisation.  

I also attempt a variety of statistical pre-testing procedures to evaluate the claim 

that complete neutralisation is a statistical artefact. Failing to reject the null 

hypothesis that neutralisation is phonetically complete can be due to the 

experiment having low statistical power. However, I claim that rejecting the null 

hypothesis that neutralisation is complete can be due to an experiment that is 

statistically too powerful or an analysis that violates certain statistical 

assumptions. To anticipate my discussion of the issue, I claim that the statistical 

artefactuality applies more convincingly to incomplete neutralisation than to 

complete neutralisation, contrary to what is commonly assumed.  

I show that the genuineness argument can be self-defeating. Incomplete 

neutralisation can be seen as an experimental artefact, but so can complete 

neutralisation. The experimental artefactuality argument can equally deny the 
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genuineness of incomplete and complete effects. By the same token, the statistical 

artefactuality argument can deny the genuineness of both effects. There seems to 

be no principled way to use the genuineness argument to deny one effect and 

legitimise the other. 

More importantly, I document the variability of the vowel/zero neutralisation data 

in both qualitative and quantitative terms. Qualitatively, I show that the acoustic 

difference between epenthetic and lexical vowels is phonetically variable both in 

directionality and in state of existence. Quantitatively, I present a variety of 

summary statistics and graphs displaying inter-speaker, inter-item, and inter-

condition variations that define the magnitude and direction of the observed 

acoustic differences.  

The chapter is organised as follows. In ¶ 4.2, I present and analyse experimental 

data bearing on the completeness question. In particular, I deal with the acoustic 

side of the question in ¶ 4.2.1 and with the perceptual side in ¶ 4.2.2. Then in ¶ 4.2.3, 

I evaluate the completeness question in light of the emerging patterns of the 

relation between the acoustics and perception of vowel/zero neutralisation in 

BHA. I then take up the genuineness question in ¶ 4.3; I deal with the experimental 

side of the question in ¶ 4.3.1 and with the statistical side in ¶ 4.3.2. Finally, I sum 

up the artefactuality argument in ¶ 4.3.2 and conclude the discussion on the 

phonetics of vowel/zero neutralisation in ¶ 4.4.   

 

4.2  The Completeness Question 

4.2.1  A Production Experiment 

4.2.1.1  Purpose  

I carried out this experiment to investigate the acoustics of vowel/zero 

neutralisation with this specific question in mind: 

(35) Production Question: Is vowel/zero neutralisation in BHA 

acoustically complete? 
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Answering this question will hopefully reveal the acoustic part of the wider picture 

of the phonetic completeness of vowel/zero neutralisation in BHA.  

As in all previous laboratory studies on neutralisation, this thesis tests complete 

neutralisation as a null hypothesis. Here, neutralisation will be deemed 

acoustically complete if there are no statistically significant differences between 

epenthetic and lexical vowels in minimal pairs along the acoustic parameters 

investigated. I describe the acoustic parameters of this study further below. 

In addition, the experiment addresses a subsidiary question relating to literacy as a 

between-group variable. The experimental data, having been acquired from a 

sample of literate and illiterate speakers, make testing the effect of literacy 

possible. Of course, testing the effect of literacy as a between-group variable is one 

way of investigating the influence of speakers’ awareness of orthography on the 

phonetics of neutralisation. Literate speakers presumably come with a knowledge 

of how the contrast in question is orthographically represented; illiterate speakers 

obviously lack that knowledge. Whether or not this difference in literacy correlates 

with a difference in the acoustics of vowel/zero neutralisation in BHA is a question 

this production experiment attempts. I revisit the issue of orthography when I deal 

with the genuineness question in ¶ 4.3. 

4.2.1.2  Method 

4.2.1.2.1  Speakers 

Seven31 native speakers of BHA participated in this experiment. They all belong to 

one clan known by the name of Mahaamiid, which is part of the Harb tribe. They 

are all monolingual32 female relatives of mine. There were five literates aged 

between 22 and 33 with a median age of 27, and two illiterates aged 55 and 60. 

The median age of the whole sample is 31. None of the literate speakers had lived 

outside of their birthplace, Makkah, where all recordings took place; the two 

illiterates had been living in Makkah for at least the previous 45 years.  These 

seven speakers did not participate in the frequency-estimation task reported 

below. Nor did they take part in the perception test reported in ¶ 4.2.2. 

                                                        
31 Ten native speakers of BHA were recruited. Three of them, however, dropped out at the 
orientation stage.    
32 Although educated speakers are formally taught English at school, the subjects in this experiment 
know very little English.  
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4.2.1.2.2  Materials 

 V2lexical V2epenthetic 

1 
 

[laêam] ‘shut tight’ 
 

[laêam] ‘meat’ 
 

2 [naêal] ‘teased’ [naêal] ‘bees’ 
 

3 [nahar] ‘yelled at’ [nahar] ‘river’ 
 

4 [gahar] ‘oppressed’ [gahar] ‘oppression’ 
 

5 [daxal] ‘entered’ [daxal] ‘income’ 
 

6 [faêam] ‘was out of breath’ [faêam] ‘char coals’ 
 

7 [rahan] ‘pledged’ [rahan] ‘mortgage’ 
 

8 [naêar]  ‘slaughtered’ [naêar] ‘the act of slaughtering’ 
 

9 [Rahar] ‘scalded’ [Rahar] ‘month’ 
 

10 [gidir] ‘managed/overpowered’ [gidir] ‘pot’ 
 

11 [kibir] ‘grew’ [kibir] ‘conceit’ 
 

12 [gabil] ‘Gabil (name)’ [gabil] ‘before’ 
 

13 [ðikir] ‘remembered’ [ðikir] ‘prayers’ 
 

14 [fikir] ‘came to realise’ [fikir] ‘thinking’ 
 

Table  4-1: The minimal-pair stimulus set in the production experiment 

 

The stimulus set in this experiment is composed of fourteen [C1V1C2V2C3] minimal 

pairs contrasting with respect to the underlying status of their V2, which is either 

epenthetic or lexical. These pairs appear in Table  4-1. As can be seen in the table, 

there are nine pairs illustrating category ‘a’, and five pairs illustrating category ‘i’.  

The stimulus set is balanced both phonologically and lexically. Phonologically, only 

words of the form [CV1CV2C] stressed on V1 and containing clusters violating SSP 

when V2 is underlyingly a zero were selected; words violating OCP were excluded 

on the grounds that epenthesis triggered by different constraints might not 

necessarily be realised the same. So in order not to introduce a possible 

confounding factor, only one epenthesis trigger was chosen. As to the epenthetic 

vowel quality, [u] was excluded: an epenthetic [u] is highly marked cross-

linguistically compared to [a] and [i] (Lombardi 2002). Moreover, very few 

minimal pairs contrasting /u/ with zero exist in BHA; settling for near-minimal 
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pairs was considered unwise as it might increase segment-based variability within 

the data.  

Lexically, members of each pair in the stimulus set are matched for frequency. 

Recent research on word production suggests that certain low-level acoustic 

effects are attributable to frequency. For example, Munson and Solomon (2004) 

report that vowels in low-frequency words have extreme formant values and are 

longer in duration than vowels in high-frequency words. Similarly, Whalen (1992, 

1991) reports that low-frequency words are produced with greater duration than 

high-frequency words. Likewise, Pluymaekers et al (2005) show that an affix is 

shorter in duration when the hosting word is a high-frequency word. Furthermore, 

Yun (2007) suggests that the degree of vowel-to-vowel coarticulation is 

'conditioned' by frequency.   

In the current study, frequency matching was based on subjective judgments by 

forty-six native speakers, none of whom participated in the production task. An 

objective frequency estimate is not possible for a number of reasons. Firstly, there 

is no electronic database of BHA, which is only a spoken vernacular. The situation 

in most Arabic-speaking communities is that dialects serve the best part of every-

day oral interaction, while Standard Arabic is used for written transactions. 

Secondly, the Arabic writing system, where short vowels are normally not 

indicated, results in enormous ambiguity if words are to be electronically extracted 

from a Standard Arabic database. For example, the orthographic formذآ� could 

stand for /Cikr/ ‘prayers’, /Cakar/ ‘male’, /Cakar/ ‘mentioned’, /Cukir/ ‘was 

mentioned’, /Cakkar/ ‘reminded’, /Cukkir/ ‘was reminded’, /Cakkar/ ‘used the 

masculine form’, and /Cukkir/ ‘was used in the masculine form’.    

Given this situation in BHA, only a subjective estimate of lexical frequency can be 

obtained. Importantly, a number of researchers suggest that subjective judgments 

can be as informative and reliable as objective estimates of frequency (e.g., Carroll 

1971; Gernsbacher 1984; Shapiro 1969; Snoeren et al 2006). Interestingly, in work 

where both are obtained, subjective judgments are found to be more strongly 

correlated with results of lexical decision tasks (Gordon 1985).  

To obtain the ratings used for frequency matching, I first tried Balota et al's (2001) 

seven-point frequency-of-exposure scale [1= never, 2= once a year, 3= once a 
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month, 4= once a week, 5= once every two days, 6= once a day, 7= several times a 

day]. However, it became clear to me that the scale was unnecessarily complicated 

for a group of participants who belonged to different age groups and had different 

education levels, and who undertook the task in their homes. It must also be 

remembered that I had to consult older people who were illiterate. Compare this 

situation with most frequency-estimation exercises, which use literate subjects 

and are conducted in classrooms.  

Furthermore, the seventeen participants who had to estimate the frequency of the 

test words on the seven-point scale above consistently ignored 1, 5, and 7 on the 

scale. That is, for high and low frequency items, participants opted for the less 

extreme values of 6 and 2, respectively; for medium frequency, they chose the 

middle values of 3 and 4. Given this initial pattern and the fact that the purpose of 

the whole exercise was merely to control for frequency, the task was simplified for 

the rest of my subjects. Now, participants had to rate items on a three-point scale, 

where the nominal values of 1-2 in Balota et al's scale were collapsed together as 

[once a year], 5-7 as [once a day], and 3-4 as [once a week to once a month]. The 

obtained data were then converted to a six-point scale, to accommodate the 

fractions and middle values that resulted from the calculation of the mean values.  

The conversion table with the cut-off values is given as Appendix B.  

The criterion for selecting the production stimuli was as follows: both members of 

a pair had to score the same frequency index. In situations where they scored 

different values, a maximal difference of 1 was accepted. Most selected pairs score 

6 on the scale. Figure  4-1 shows the different scores of the pairs in the stimuli.  

 

Note: Each circle represents a pair 
Figure  4-1: Stimulus pairs defined by the frequency of their members 

Frequency Index of piar members

both 2both 3one 6; one 5both 5both 6

Frequency Index of pair members 
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A total of fourteen pairs (given in Table  4-1 above) met the inclusion criteria 

adopted here. The test words were quasi-randomised in such a way that the two 

members of a minimal pair were not to be found near each other. For example, the 

list contains /gidir/ and /gidr/ but with many items separating the two. Twenty 

fillers were appended to the beginning and end of the stimulus list, while at least 

thirty33 fillers were inserted between the items. 

One obvious concern that remains is the morpho-syntactic status of the stimulus 

items. Specifically, words with V2epenthetic are predominantly nouns and those with 

V2lexical are almost all verbs. This follows from a general restriction in Arabic 

morphology where the canonical verb template is CVCVC, while nouns34 can be 

CVCC.  

The phonetics and phonology of individual words are known to be potentially 

sensitive to lexical category differences. For example, Smith (2001: 61) argues that 

"nouns show privileged phonological behaviour compared to words of other 

categories". Similarly, Conwell and Morgan (2007) report that English noun-

vowels are significantly longer than the corresponding verb-vowels. Accordingly, 

the question that suggests itself for the current study is this: if epenthetic vowels 

turn out to be acoustically different in a systematic way from the corresponding 

lexical vowels, how can we rule out the possibility that this difference is only a 

morpho-syntactic effect?  

It appears that there are least two reasons that morpho-syntactic status in Arabic 

cannot be that influential. Firstly, word-order in Arabic is relatively free. Compare 

this with English, where nouns occur far more often clause-finally when they serve 

as an object of a verb phrase and clause-initially when they serve as a subject of a 

verb phrase. Therefore, English nouns, unlike Arabic nouns or verbs, are naturally 

expected to be subject to edge lengthening (cf. Klatt 1975). Secondly, the syntactic 

structure of Arabic, particularly where nouns and verbs are involved, is such that 

many nouns and many verbs can stand on their own and form one-word sentences. 

This is in contrast to English, where most ambi-categorial words like 'run' have 

different structures according to whether they are nouns or verbs. For example, 

                                                        
33 These within-list fillers were used for other experiments not reported here. 
34 There are a few verbs with a C1VC2C3 template, but there is no consensus as to whether or not C3 
is a root radical or simply results from C2 gemination (see McCarthy 1986; Gafos 2003b). There are 
also CVCVC non-verbs.  
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the noun version has to occur following a determiner, an article, or a possessive 

pronoun. A one-word utterance 'run' is not grammatical on a noun-reading (Neil 

Smith, p.c. 2007). Also, if the verb occurs on its own, it will normally have to be in 

the imperative. I return to this issue in the discussion section.  

4.2.1.2.3  Procedures 

4.2.1.2.3.1  Recording 

Recordings were made during a trip to Saudi Arabia in the summer of 2007. All 

subjects were recorded in a quiet room in my family's house. Care was taken to 

ensure that inside noise was kept to a minimum. The floor, where the room was 

located, was reserved for the purposes of the experiment. One difficulty was that 

the air-conditioning systems, a possible source of noise, could not be turned off all 

the time during the summer. However, the following measures were taken: 

recording took place in the evening or early morning, when it was less hot; before 

recording, the room was air-conditioned for some time. A few minutes before the 

start of a recording session, all air-conditioning systems were turned off.  

Although an effort was made to obtain recordings with minimal background noise, 

outside noise was inevitable in a residential area where all houses are kept air-

conditioned round the clock. Another source of outside noise was children playing 

outside of their homes and cars passing by occasionally. However, it was felt at the 

time of recording that background noise was not loud enough to undermine the 

suitability of the obtained recordings for speech analysis.  

All recordings were made using a Nagra ARES-M solid-state recorder and a Nagra 

NM-MICS-II premium quality clip-on mono microphone for ARES-M placed a few 

inches away from the speaker's mouth. Recordings were digitised at a sampling 

rate of 22.05KHz. Using Praat (Boersma & Weenink 2008), 588 tokens (14 pairs x 

3 repetitions x 7 speakers) were acoustically analysed as per the protocol in 

¶ 4.2.1.2.3.2.  

Target items were orally elicited from each of the seven participants, using orally-

presented questions that were designed for this purpose. Participants were 

instructed to say the response word followed by the word [tara] 'I think', as a two-

word clause, with no intervening pause. The inclusion of [tara], which is both 

syntactically and semantically neutral, was to simplify segmentation before 
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acoustic analysis. In a pilot, it was noticed that final sonorants and the preceding 

target vowel were so completely devoiced that any consistent, let alone, reliable 

segmentation would have been very difficult to maintain. For this reason and since 

all target words end in a vowel-sonorant sequence, I decided to include the non-

target word [tara] pre-pausally.  

4.2.1.2.3.2 Acoustic Analysis 

4.2.1.2.3.2.1 Acoustic parameters 

The obvious target of the acoustic analysis of vowel/zero neutralisation in BHA is 

V2 in the C1V1C2V2C3 words that make up the stimulus set of the experiment. 

Undoubtedly, looking beyond the relevant obvious target for acoustic cues can add 

to our understanding of the phonetics of neutralisation. Long-domain distribution 

of acoustic cues to contrast has repeatedly been described as relevant to speech 

production and perception (see Alfonso & Baer 1982; Campos-Astorkiza 2007; 

Hawkins & Nguyen 2003, 2004; Nguyen el al 2009; Wood 1996, among many 

others). See also Fougeron (2007), Dinnsen (1985), and Fourakis (1984) for a case 

involving the phonetics of neutralisation. However, given the limitations on this 

study, l leave this topic for the future.  

The study investigates a few well-established acoustic correlates of phonological 

stress, such as F0, intensity, and duration. Focusing on these parameters will 

increase our potential of finding out more about the acoustics of the phonological 

visibility of the relevant vowels in BHA. As shown in chapter three, phonological 

visibility to stress and weight-sensitive processes (i.e., stressability and 

metrifiability, respectively) illustrates the quality-based distinction in vowel/zero 

neutralisation in BHA. More specifically, epenthetic [a], like lexical vowels 

including lexical /a/, is both stressable and metrifiable. In contrast, epenthetic [i], 

unlike all lexical vowels including /i/, is neither stressable nor metrifiable.     

No previous phonetic study of BHA exists. Therefore, my assessment of the 

relevance of any acoustic parameter has to rely on the available evidence coming 

from the acoustic studies run on other dialects of Arabic. There is agreement 

among the studies I reviewed that F0, intensity, and duration are correlates of 

stress in Arabic (de Jong & Zawaydeh 1999; Zuraiq & Sereno 2007). However, a 

recent study by Bouchhioua (2009) claims that, among the three acoustic 
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parameters above, only F0 actually cues word-level stress, whereas intensity and 

duration are associated with phrasal stress. This prosody-based distinction will 

later guide our interpretation of the results concerning these acoustic parameters.  

I have also explored the spectral dimension of the neutralisation data in terms of 

the first two formant frequencies. To a large extent, the difference between 

epenthetic [a] and epenthetic [i] is one of quality. There are documentary reports 

of languages with a quality-sensitive stress pattern (e.g., Kenstowicz 1997; de Lacy 

2002a).   

4.2.1.2.3.2.2  Segmentation, Labelling, and Acoustic Measurements 

As mentioned above, the acoustic analysis in this study targets V2 in CV1CV2C test 

words. For the purposes of segmentation, V2 is defined as the temporal interval 

between two boundary marks, B1 and B2. B1 was hand-inserted at the nearest 

zero crossing between the designated V2 and a preceding [x], [ê], [h], [b], [d], or [k]. 

B2 was hand-inserted at the nearest zero crossing between V2 and a following [l], 

[r], [m], or [n]. Following Turk et al’s (2006: 6) insightful recommendation, I used 

“more zoomed out spectrogram displays” for locating a boundary region, and 

“more zoomed in waveform displays” for a more precise placement of the 

boundary mark within that region.  

Generally, as in many acoustic studies (e.g., Alghamdi 2004, 1998; Ham 2001; 

Lavoie 2001; Piroth & Janker 2004; Ridouane 2007; Warner et al 2004), the main 

segmentation criterion in determining B1 and B2 was, respectively, the onset and 

offset of the vowel F2. The onset/offset of the acoustic energy in the F2 region that 

is characteristic for ‘a’ and for ‘i’ on a spectrogram often coincides with an 

increase/decrease in the amplitude and complexity of the glottal pulsing on a 

waveform display. Occasionally, I had to consult F3 and its relative intensity 

(Skarnitzl 2009), in addition to F2 offset, to determine precisely where to insert B2 

in V2-liquid sequences (see Appendix C for illustrative spectrograms).      

The decision to use this set of segmentation criteria, in particular, followed an 

initial visual inspection of a synchronised wideband spectrogram and waveform 

display generated by Praat (Boersma & Weenink 2008) for each of the 588 speech 

files. This form of data pre-viewing shows that in most cases V2 stands out as a 

definable spectrographic stretch with characteristic acoustic features even when 
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following or preceding, respectively, consonants like [h] and [l], which can be 

notoriously difficult to segment in vocalic contexts (e.g., Olive et al 1993; Skarnitzl 

2009; Turk et al 2006).  This being the case, the use of the commonly adopted F2-

based criterion looks both reasonable and economic. Each labelled interval whose 

boundaries (B1 and B2) were inserted only once yielded acoustic data for five 

different parameters. These are mean F0, mean intensity, duration, and F1 and F2 

at midpoint. 

A custom-written Praat script35 was used to extract the acoustic data along these 

parameters. For each of the 588 speech files, the script opens a waveform and 

spectrogram window with label fields at the bottom and another window for 

checking and manually correcting, where appropriate, glottal pulse markings that 

appear imposed on a waveform display. These pulse markings were used to 

calculate mean F0 for each labelled interval. The script also calculates duration, 

mean intensity, and formants at midpoint using Praat’s default Burg algorithm.  

Finally, the script saves the numerical data as ensemble files, which can then be 

imported into MS Excel for pre-statistical processing.  

4.2.1.2.3.3  Statistical Analysis 

I used SPSS (2006) and MS Excel (2003) for pre-test data-processing, including 

graphing data and calculating an average for each speaker across repetitions and 

across stimulus items. For more appropriate use of the relevant formal statistical 

tests, speaker averages, rather than raw data, were submitted to the testing 

procedures (see Max & Onghena 1999; Raaijmakers 2003; Raaijmakers et al 1999).  

To conduct the various significance tests, I used SPSS and PSY (Bird et al 2000). I 

also used the latter to calculate Cohen’s d values36 (Cohen 1988) and their 95% 

Confidence Intervals. Finally, I used MLwiN (Rasbash et al 2009a, 2009b) to 

produce graphs showing the contribution of the underlying status of V2, subjects, 

and items to the mismatch between what is predicted on the basis of different 

combinations of these parameters and what is actually observed. See below for 

more. 
                                                        
35 The script was written by Yi Xu. 
36 Cohen’s d is a common standardised measure of effect size. Its purpose is to index the degree to 
which an effect is present (Cohen 1988). It relates the mean difference to some measure of 
variability of the data in question. In other words, the effect size as measured by Cohen’s d is not 
only about the magnitude of a difference but also about how reliably present it is in a dataset (see 
the discussion in ¶ 4.2.1.2.4.1 below).  
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Among the formal statistical tests I used were 2x2 Mixed Anovas and paired-data t-

tests. I used the Mixed Anova procedure to test the following sets of null 

hypotheses (given below in notation format):  

(36) a-H0.1: Mean[a] – /a/ = 0 

i-H0.1: Mean[i] – /i/ = 0 

  

(37) a-H0.2: MeanLiterates = MeanIlliterates 

i-H0.2: MeanLiterates = MeanIlliterates 

Here we have a within-subject factor—the underlying status of V2—and a 

between-group variable—literacy. For each vowel category,37 the Mixed Anova 

tests the relevant null hypothesis from both sets in  (36) and  (37) simultaneously. I 

report F-ratios calculated using Type III Sum of Squares, which is recommended by 

Milliken and Johnson (2009) and Shaw and Mitchell-Olds (1993) for unbalanced 

designs.  

Another issue that is worth mentioning here concerns multiple testing. Although 

there is only one within-subject variable (V2 underlying status), there are five 

response variables (the five acoustic parameters of the study) for each vowel 

category. Now testing a single null hypothesis subsuming all five parameters like 

the ones in  (36) and  (37) above constitutes multiple testing (see Rietveld & van 

Hout 2005 for a similar scenario involving linguistic data). In other words, the 

conventional alpha level of .05, which is set before testing, will exceed the actual 

alpha level that the global null hypothesis should be evaluated against. Repeatedly 

testing a single hypothesis can result in spurious significance (Rietveld & van Hout 

2005; Godfrey 1985).38 To avoid this, I evaluate the generated test statistics 

against a Bonferroni-adjusted statistical significance level.39    

                                                        
37 Note that vowel category is not a variable in this study. We are not interested in whether or not 
‘a’ is different from ‘i’. Testing a single global null hypothesis that abstracts away from the quality of 
the vowel could make the interpretation of the statistical outcome shaky (see the discussion 
section). At the same time, it does not reflect the phonological motivation for testing separate null 
hypotheses for ‘a’ and ‘i’ data.   
38 Interestingly, Rothman (1990) and Rex Galbreith (p.c. 2009) warn against exaggerating the 
importance of correcting for multiple testing.  
39 This is calculated by dividing .05 by the number of parameters for each vowel category. For 
example, in this 5-parameter study, the Bonferroni-adjusted alpha level at 5% is .01.    
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4.2.1.2.4 Results 

4.2.1.2.4.1  Summary Statistics 

As part of initial data analysis,40 I begin the results section by summarising central 

tendency, dispersion, and effect size statistics. As is standard practice, the mean (X � 

in the equations below) summarises central tendency; the standard deviation 

(henceforth SD) summarises dispersion. The effect size index I give is Cohen’s d. 

Table  4-2 gives the mean and SD values of epenthetic and lexical vowels along each 

acoustic parameter investigated here. These values are calculated over all the 

seven speakers and are also broken down by literacy group. 

 [a] /a/  [i] /i/ 

 
   

   
   

F0
 (

in
 H

z)
 All speakers 210 

(15.7) 
212 
(15.3) 

213.3 
(14) 

215.3 
(13.9) 

Only literates 208.8 
(15.5) 

211.3 
(15.6) 

210 
(11.7) 

211.5 
(9.8) 

Only illiterates 
 

213.9 
(22) 

213.7 
(20.2) 

221.6 
(21.2) 

224.9 
(23) 
 

 
In

te
ns

it
y 

(i
n 

dB
) All speakers 64 

(1.42) 
62.7 
(1.9) 

64.9 
(1.3) 

64 
(2.3) 

Only literates 63.8 
(1.6) 

62.4 
(2.2) 

64.6 
(1.4) 

62.9 
(1.7) 

Only illiterates 
 

64.8 
(0.63) 

63.5 
(0.84) 

65.9 
(0.1) 

66.8 
(0.1) 
 

 
D

ur
at

io
n 

(i
n 

m
s)

 All speakers 79.8 
(7.6) 

77.7 
(5) 

71.2 
(6) 

69 
(7.5) 

Only literates 80.9 
(8.4) 

77.2 
(5) 

72.4 
(5.4) 

70 
(5.7) 

Only illiterates 
 

77 
(6.9) 

78.9 
(6.9) 

68.4 
(9) 

66.9 
(13.8) 
 

 
   

   
  F

1 
(i

n 
H

z)
 All speakers 859.9 

(48.2) 
862 
(38.4) 

533.2 
(45.7) 

531.6 
(40.2) 

Only literates 854.9 
(52.2) 

852.3 
(42) 

546.7 
(37.4) 

543.6 
(28.8) 

Only illiterates 
 

872.6 
(50.9) 

886.2 
(12.4) 

499.6 
(61.8) 

501.8 
(62.7) 
 

 
   

   
  F

2 
(i

n 
H

z)
 All speakers 1638.5 

(160.4) 
1636.3 
(152.2) 

2268 
(266.4) 

2265 
(212.3) 

Only literates 1706.5 
(131) 

1702.3 
(116.9) 

2390.6 
(182) 

2354.6 
(169) 

Only illiterates 
 

1468.6 
(70.4) 

1471.4 
(90.4) 

1962 
(176) 

2041.4 
(127.6) 
 

Table  4-2: Mean and (SD) values of the five acoustic parameters of the study for both ‘a’ and 

‘i’  across literates and illiterates (i.e., all speakers), only literates, and only 

illiterates 

                                                        
40 I owe this phrase to Chatfield (1995). 
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As we can see from the figures in Table  4-2, the mean and SD values of epenthetic 

and lexical vowels along each of the five acoustic parameters are very close, with 

exceedingly small differences overall. I will say more about the magnitude and 

directionality of the mean differences below. But let us focus, for now, on the 

literacy effect. To get a clearer idea, let us compare the performance of literates 

and illiterates as individuals. Figure  4-2 and Figure  4-3 graph mean values for each 

individual speaker as well as for the group as a whole. 
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Figure  4-2: Mean values of epenthetic [a] vs lexical /a/ along the five acoustic parameters of 

the study by individual speakers on the left, and over all speakers on the right 

±1SD. For more clarity, the charts on the left do not display SD values. 
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Figure  4-3: Mean values of epenthetic [i] vs lexical /i/ along the five acoustic parameters of 

the study by individual speakers on the left, and over all speakers on the right 

±1SD. For more clarity, the charts on the left do not display SD values. 
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The individual-data graphs do not seem to support the proposed grouping of the 

participants into literates and illiterates.41 More specifically, the two illiterate 

speakers do not seem to form a clearly definable and exclusive set whose members 

share common characteristics that readily distinguish them from the members of 

the other group. For the purposes of initial analysis, I assume that these 

characteristics are the mean values and directionality of the acoustic differences 

between epenthetic and lexical vowels along the parameters of the study. 

Looking at the graphs on the left of both Figure  4-2 and Figure  4-3, we observe that 

the mean-value criterion does not justify a literacy-based grouping: the mean 

values of the two illiterates are most often further apart from each other than from 

the values of the literates. This is quite obvious for F0, duration, and F1. For a-F2 

and i-F2, it is the case that one illiterate speaker scores a mean value that is far 

closer to a score by a literate speaker than by the other illiterate speaker.  

As to the directionality criterion, it seems that only ‘i’-intensity can be taken to 

suggest a grouping effect along the lines proposed here—literacy-based42. Apart 

from ‘i’-intensity, there seems to be no support for treating the speakers as coming 

from two independent groups. Tukey’s nonadditivity procedure which tests for 

interactions between subjects and conditions (i.e., V2-UR-Status) failed to find any 

statistically significant interactions. Furthermore, the significance tests reported in 

the next section found no statistically significant differences between literates and 

illiterates along any of the parameters for either vowel category. 

In what follows, I make no reference to literacy as a grouping factor in the dataset. 

Instead, I treat the dataset as paired data from seven participants who, more or 

less, belong to one group, as far as the data at hand are concerned.  

Perhaps among the best summary statistics for paired data are the mean paired 

difference (X �PD) and its SDPD. As a preview of the inferential procedures that I 

                                                        
41 Age-based grouping is as plausible as literacy-based grouping of the sample we have. Recall that 
age correlates with literacy here: older speakers are illiterate while speakers who are young are 
literate.  
42 Again, the effect is also consistent with an age-based grouping.   
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carried out, I report X�PD, SDPD and relative SDPD (henceforth RSDPD) values. I also 

report relative mean paired differences (RX �PD).43  

Thus, we have two measures of difference size: one absolute (X�PD), the other 

relative (RX�PD). We also have absolute and relative measures of variability: SDPD 

and RSDPD, respectively.  A measure relating mean differences to a standardised 

measure of variability is Cohen’s d.44 All these descriptive statistics appear in Table 

 4-3. Figure  4-4 charts d values and their 95% confidence intervals for all the 

acoustic parameters of the study. 

 

 

 

 

 

                                                        
43 These are calculated using the following formulas.  

Mean (X �)= 
∑X
�       where x= an individual data point; n= number of data points 

Mean Paired Difference (X �PD)= 
∑�������	�
�

�   

SDPD =�∑ ��������	�
��X��������
���   

RSDPD = 
����
X����  

Relative Mean Paired Difference (RX �PD)= 
X����

�X�����X�	�
�/� 

 
44 Cohen’s d can be calculated using this general formula which utilises mean and SD values: 

Cohen’s d= 
X�����X�	�


�������� ���	�
� �/�
 

Dunlap et al (1996), on the other hand, propose the following formula to calculate d for paired data: 
 
     d= tc�2�1 � ��/ !�/�    where tc is the t-statistic for correlated data; r is the correlation statistic  

However, the simulation study these authors report actually shows that for paired-data designs, 
using the general mean-SD formula above or the tc-based equation to derive d gives very similar 
figures.  The package, PSY (2000), which I have used to obtain the d figures I report here, uses the tc 
equation above (Bird et al 2000). But I was also able to get the same figures using the general 
mean-SD formula.  
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‘a’: [a] – /a/ 

 

‘i’: [i] – /i/ 

X�PD SDPD RSDPD RX �PD d X�PD SDPD RSDPD RX �PD d 

F0 -1.73 6.7 3.9 .008 -.11 

 

-2.02 3.8 1.9 .009 -.14 

Intensity 1.36 .61 .45 .02 .811 .87 1.7 2 .01 .46 

Duration 2.13 5 2.4 .03 .33 2.08 4.9 2.35 .03 .31 

F1 -2.08 21.7 10.4 .002 -.05 1.56 18.6 11.9 .003 .04 

F2 2.16 31.6 14.6 .001 .01 3 82 27.32 .001 .01 

Table  4-3: Summary statistics of the paired data of the study including central tendency 

measures (X�PD: mean paired difference; RX�PD: relative mean paired difference), 

variability (SDPD: standard deviation of mean paired difference; SDPD: relative 

standard deviation of mean paired difference), and effect size (Cohen’s d)  

 

 

Figure  4-4: Cohen’s d and 95% CI values for ‘a’ and ‘i’ along the acoustic parameters of the 

study 

 

The X�PD figures in the table above show the absolute magnitude and directionality 

of the acoustic differences between epenthetic and lexical vowels. For both ‘a’ and 

‘i’, the epenthetic vowel is longer in duration by ≈2ms, lower in pitch by ≈2Hz, and 

more intense with a larger mean paired difference for ‘a’ than for ‘i’. Mean paired 

differences along F1 and F2 range from ≈1.5 to 3Hz with F2 being higher for 

epenthetic than for lexical vowels. Also, [i]-F1 is higher than /i/-F1, while [a]-F1 is 

lower that /a/-F1. But the differences, which are very minute in absolute (X �PD) and 
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relative (RX�PD) terms, actually occur against a background of excessive variation. 

This is what we read from the large SDPD values and the high ration of SDPD to X�PD, 

expressed as RSDPD. These trends are captured by the small d values for most of 

the parameters.  

To get a broader picture, I use these summary measures, ignoring the +/- signs, to 

construct preliminary ordinal scales of the arithmetic mean, statistical variability, 

and effect size for each of the two vowel categories ‘a’ and ‘i’.  These scales will 

form the basis of a brief, informal appraisal of the outcome of the inferential tests 

that I present in the next section.  

(38) Ordinal scales of the acoustic parameters of the study established 

for the summary statistics above 

 ‘a’ 

 

‘i’ 

X �PD F2>Duration>F1>F0>Intensity F2>Duration>F0>F1>Intensity 
 

SDPD F2>F1>F0>Duration>Intensity F2>F1>Duration>F0>Intensity 
 

RSDPD F2>F1>F0>Duration>Intensity F2>F1>Duration>Intensity>F0 
 

RX �PD Duration>Intensity>F0>F1>F2 Duration>Intensity>F0>F1>F2 
 

Cohen’s d Intensity>Duration>F0>F1>F2 Intensity>Duration>F0>F1>F2 
 

 

An important issue that we need to explore during initial data analysis is the 

directionality issue. As described above, the raw mean paired differences display 

the same directionality for both ‘a’ and ‘i’ along all the parameters except F1. 

However, we can learn a lot more than this by looking into Tukey’s mean-

difference plots (Tukey 1977; Cleveland 1985). Tukey’s mean-difference plots for 

each of the acoustic parameters for ‘a’ and ‘i’ appear in Figure  4-5 and Figure  4-6. 

In these figures, I have plotted RX�PD nominator (X �PD) on the y-axis against its 

denominator ((X �epe + X�lex)/2) on the x-axis for each individual speaker. For more 

clarity, I have reproduced these graphs and added to them group values and 

centroid spikes. Tukey’s plots offer a number of advantages for summarising 

paired datasets, the standard data type in phonetic research. For example, these 

plots show both the range of mean values and the range of mean paired differences 

for both individuals and groups. Moreover, the zero-difference reference line 
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indicates how much and in what direction a paired difference departs from the no-

difference zone. 

 

 

Figure  4-5: Tukey’s mean-difference plots for F0, intensity, and duration of ‘a’ and ‘i’ data 

(stars represent group values): Difference= X �epe – X�lex  ; Mean= (X�epe + X�lex)/2  
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Figure  4-6: Tukey’s mean-difference plots for F1 and F2 of ‘a’ and ‘i’ data (stars represent 

group values): Difference=X �epe – X�lex  ; Mean=(X�epe + X�lex)/2 

 

Looking at the graphs on the right-hand side of Figure  4-5 and Figure  4-6, we 

observe that the mean paired difference of the group data is closer to the zero-

difference reference line than most individual paired differences. This seems to be 

the case for almost all the parameters for both ‘a’ and ‘i’.  

The graphs also show that individual X�PDs go in opposite directions along all the 

parameters for both ‘a’ and ‘i’ except for a-intensity, where all speakers produce 

more intense epenthetic [a]s than lexical /a/s. The pattern for i-intensity is very 

similar, with five speakers out of seven producing more intense [i]s than /i/s. A 

similar pattern obtains for i-duration, where five speakers produce longer [i]s than 

/i/s. However, we have the opposite pattern for i-F0, where six speakers have 

lower-pitched [i]s than /i/s.    

Comparing these patterns and others to their corresponding group data, we can 

see how the distribution and magnitude of positive and negative individual paired 
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differences define the group mean on the difference axis.  That said, we should 

allow for the possibility that mean differences of similar magnitude but going in 

opposite directions can cancel each other out, thus levelling the group mean 

difference towards the zero-difference line and, at the same time, increasing the 

variance of the data. This is exactly what we observe in the case of i-F2 and, to a 

lesser extent, a-F2. The group F2 mean difference of [i]–/i/ is 3Hz, while the 

individual absolute mean differences are far larger than 3Hz. These figures are 

given in Table  4-4: 

Speaker {X�PD{ (in Hz) 

L-A {76.4{ 

L-B {85.3{ 

L-C {68.5{ 

L-D {74{ 

L-E {46.2{ 

I-F {113.6{ 

I-G {45.2{ 

Group {3{ 

Table  4-4: i-F2 mean paired differences (in Hz) for each speaker and as a group average in 

absolute values 

 

This cancelling effect can be demonstrated by a Wilcoxon signed ranks test, which 

is the non-parametric equivalent of the paired t-test. Roughly speaking, the 

calculation procedure involves transforming mean differences into ranks, with the 

smallest difference assigned Rank 1, the next smallest assigned Rank 2, and so on. 

These ranks inherit the sign (+ or –) of their untransformed values. Next, the ranks 

are summed and a Z-test statistic is computed, which can be used for null 

hypothesis testing that involves the median paired difference. Table  4-5 below 

gives the summary rank statistics of ‘a’ and ‘i’ data along the parameters of the 

study. As can be seen from the table, adding up the positive and negative ranks for 

i-F2 amounts to zero.  
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 ‘a’  ‘i’ 

"� �$ %& 

/a/ < [a] 

"' �$ %& 

/a/ > [a] 

 "� �$ %& 

/i/ < [i] 

"' �$ %& 

/i/ > [i] 

F0 12 16  6 22 

Intensity 28 0 20 8 

Duration 20 8 20 8 

F1 16 12 16 12 

F2 16 12 14 14 

 Table  4-5: Results of a Wilcoxon signed ranks test for the acoustic parameters of the study 

for both ‘a’ and ‘i’  

 

Just as the magnitude and direction of the paired differences can vary by speaker, 

they can also vary across items. Figure  4-7 plots item departures from the group 

mean. Much of item variation can be attributed to segmental effects. This explains 

why items ending in the same […(C)V2C] sequence are generally closer in their 

residuals to each other than they are to the other items with a different […(C)V2C] 

sequence. Consider, for example, the three items ending in […har] and the two 

items ending in […êam]. The similarity among the items within these cluster 

groups is particularly evident in duration, F0, and F1. Intensity residuals of […êam] 

items are very similar.   

By the same token, the only two i-items sharing a […CV2C] sequence—[…kir]—

have very similar duration, F0, and F2 residuals in terms of both magnitude and 

direction. Likewise, [kibir] and [gidir], which share an […ir] sequence that is 

preceded by a voiced stop, have similar F0, intensity, F1, and F2 residuals. Of 

course, there is still a lot of variation. But item variability can be greatly reduced if 

target sounds are examined within the same or nearly the same immediate 

phonetic environment. I elaborate on this proposition in chapters six and seven.   
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Figure  4-7: Item departures from the group mean values of the acoustic parameters of the 

study for both ‘a’ and ‘i’ 
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One method to explore and evaluate the contribution of item variation and speaker 

variation simultaneously is by fitting mixed-effect models, also known as 

multilevel modelling (see Hox 2002; van der Leeden 1998; for an application of the 

model to linguistic data, see e.g., Baayen et al 2008; Quené & van den Bergh 2008, 

2004). With such models, variation can be partitioned into sources such as 

speakers, items, and observations comprising every item-speaker combination. I 

have fitted mixed-effect models to the data following the methodology of Quené 

and van den Bergh (2008). For technical details, I refer the interested reader to 

their paper. Here, I only present prediction plots derived from these fitted models. 

The plots serve to illustrate the sources of variability within the data, including 

how much variability is due to the underlying status of V2 in the test items. 

The prediction function in the MLwiN package calculates predicted values based 

on the coefficients and error terms that are fed into the regression equation. The 

full fitted model has as fixed factors (1) an intercept and (2) a V2-UR-Status. The 

random effects include items, speakers, and observations (i.e., each rendition of an 

item by each speaker). A prediction plot is generated first using all the components 

of the fitted model. The prediction calculation then proceeds by excluding one or 

more of fixed and/or random effect and plotting the resulting values against the 

observed values. Prediction plots of the incomplete model depict how much it 

deviates from the full fitted model, to which all fixed and random effects 

contribute.  

The generated plots for the vowel/zero neutralisation data in this study show that 

the contribution of V2-UR-Status is very negligible (see Appendix D for the relevant 

graphs). The intercept-only model, which is basically the fitted model excluding V2-

UR-Status, provides as good a fit to the data as the full fitted model that includes 

V2-UR-Status. Of all omissions, omitting the contribution of V2-UR-Status causes the 

least disruption to the model fit. Conversely, the fit seems to lose a lot when 

prediction is calculated using a regression model that excludes observations.  

 On the other hand, variation due to subjects is larger than item variation with 

respect to all acoustic parameters for both ‘a’ and ‘i’ except for a-duration, where 

item variation is larger than subject variation.    
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4.2.1.2.4.2  Inferential Statistics 

Mixed Anovas with V2-UR-Status (epenthetic vs lexical) as the within-subject factor 

and literacy (literate vs illiterate) as the between-group variable reveal that for ‘a’, 

there is a statistically significant main effect of V2-UR-Status on intensity 

[F(1,5)=23.45; p< .006]. V2-UR-Status has no statistically significant main effect on 

any of the remaining four acoustic parameters. Nor is there a statistically 

significant mean difference between literates and illiterates along any of the five 

parameters investigated here. Moreover, V2-UR-Satus does not interact statistically 

significantly with literacy for any parameter. 

These results provide no support for rejecting the null a-H0.2 literacy hypothesis. 

This agrees with the intuition I outlined in ¶ 4.2.1.2.4.1 on the basis of initial data 

analysis. There seems to be no solid foundation for a literacy-based grouping of the 

subjects in this study (but see the discussion on NHST in ¶ 5.2.2). 

The picture for a-H0.1 (the neutralisation hypothesis) is less straightforward: 

evaluating the global hypothesis, we may take a single statistically significant 

outcome as sufficient evidence to reject this null hypothesis.   

As to ‘i’, Mixed Anovas fail to find any statistically significant results along the five 

parameters of the study for the neutralisation or literacy hypotheses. Moreover, 

V2-UR-Satus does not interact statistically significantly with literacy for any 

parameter. Accordingly, we cannot reject i-H0.1 (the neutralisation hypothesis) or i-

H0.2 (the literacy hypothesis). All Mixed Anovas outcomes appear in Table  4-6. 

 ‘a’ 

 

‘i’ 

V2-UR-Stauts Literacy 
V2-UR-Stauts 

by 
Literacy 

V2-UR-Stauts Literacy 
V2-UR-Stauts 

by 
Literacy 

F(1,5) p F(1,5) p F(1,5) p F(1,5) p F(1,5) p F(1,5) p 
F0 .14 .73 .07 .79 .22 .66 2.0 .22 1.2 .33 .30 .61 
             
Intensity 23.5 .005* .53 .50 <.1 .99 .36 .57 6.0 .06 5.4 .07 
             
Duration .227 .65 .04 .85 2.2 .202 .71 .44 .40 .56 .04 .85 
             
F1 .36 .58 .49 .52 .77 .42 .002 .96 1.8 .24 .10 .76 
             
F2 .002 .96 5.9 .06 .06 .82 .63 .46 6.9 .05 4.5 .08 
             
*statistically significant at the Bonferroni-adjusted alpha at 5%  

Table  4-6: Mixed Anovas main effects of V2 Underlying Status and Literacy and the 

interactions between these variables for both ‘a’ and ‘i’ along the five acoustic 

parameters of the study 
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On the basis of these results, I decided to disregard the literacy status of the 

participants and re-test the V2-UR-Status effect under separate null hypotheses for 

‘a’ and ‘i’, using the same relevant procedures as above. But this time, I submitted 

the data from all the seven speakers to paired t-tests. The results these tests yield 

are the same as above for both ‘a’ and ‘i’. In other words, the only statistically 

significant mean paired difference is an intensity difference separating epenthetic 

[a] from lexical /a/: [mean difference=1.36dB; SD=.61dB; t(6)=5.87; p< .002]. All 

other mean paired differences are below statistical significance.  All t-tests 

outcomes appear in Table  4-7. 

 ‘a’  ‘i’ 
 t(6) p  t(6) p 
 

F0 
 

-.68 
 

.52 
  

-1.4 
 

.21 
      

Intensity 5.87 .001*  1.3 .23 
      

Duration 1.12 .31  1.12 .31 
      

F1 -.25 .81  .22 .83 
      

F2 .18 .86  .10 .93 
      

                                                     *statistically significant at the Bonferroni-adjusted alpha at 5%  

Table  4-7: Results of two-tailed paired t-tests for ’a’ and ‘i’ data along the acoustic 

parameters of the study 

 

Recall from the summary statistics above that a-intensity has a d value of (.811), 

which is the highest in the dataset. The next highest is i-intensity (d= .46). 

Moreover, variability within a-intensity is the smallest, both in absolute (SDPM= 

.61) and relative (RSDPM= .45) terms. But a-intensity mean difference is not the 

largest, either in absolute (X �PD= 1.36) or in relative (RX �PD= .02) terms. This result is 

unexpected for the phonetics-phonology relation. It is not clear why a phonetic 

dimension such as intensity, which plays no contrastive role in vowel systems 

across the world’s languages, should cue the phonological distinction between 

epenthetic [a] and lexical /a/. I discuss these results next.    

4.2.1.2.5 Discussion 

In this section, I use the experimental data described above to (1) construct an 

account of the acoustics of vowel/zero neutralisation in BHA and (2) discuss the 
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various implications the results have for the phonetics-phonology relation. I close 

by highlighting the need for an elaborate experimental paradigm to assess the 

genuineness of the outcome of our experimentation with the completeness 

question.  

For the purposes of this chapter, neutralisation can be deemed phonetically 

complete if the five acoustic parameters studied here (F0, intensity, duration, F1, 

and F2) do not differ statistically significantly according to the underlying status of 

V2. With this in mind, we may conclude on the basis of the results above that the 

vowel/zero contrast is completely neutralised through [i]-epenthesis, but not 

through [a]-epenthesis. That is, epenthetic [i] and lexical /i/ are acoustically 

indistinguishable, whereas there is a statistically significant difference in intensity 

between epenthetic [a] and lexical /a/.  

Abstracting away, for the moment, from the identity of the epenthesised vowel, we 

may conclude that vowel/zero neutralisation in BHA is acoustically both complete 

and incomplete. This conclusion brings to mind the notion of qualitative variability 

proposed in chapter two. The phonetics of neutralisation is variable between 

completeness and incompleteness.  

This finding is inconsistent with the various theoretical approaches that have 

guided researchers’ understanding of the phonetics of neutralisation. I reviewed 

these approaches in chapter two. As a summary, they fall into three main groups 

with respect to their underlying conception of the phonetics of neutralisation. One 

group only recognises phonetically complete neutralisation as both genuine and 

relevant (e.g., Steriade 1999); another group only predicts phonetically incomplete 

neutralisation (e.g., Ernestus & Baayen 2006); the third group is a combination of 

the first two, with incomplete neutralisation accepted in certain cases as 

phonologisation in progress, and complete neutralisation in others as 

phonologisation accomplished (Barnes 2006). 

Now with the kind of results we have, the first two approaches will necessarily 

reach clashing conclusions: what is acceptable for one is not acceptable for the 

other. In other words, what the only-complete approach tries to argue for is exactly 

what the only-incomplete approach tries to argue against. More specifically, the 

only-complete approach will accept the outcome for ‘i’, but not the outcome for ‘a’. 
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The exact opposite is true of the only-incomplete approach. This contradiction is 

actually combined in the either-complete-or-incomplete approach. According to 

this third approach, vowel/zero contrasts in BHA are only incompletely 

neutralised through [a]-epenthesis but only completely neutralised through [i]-

epenthesis.45  It might appear, at a cursory look, that this approach accommodates 

the experimental data reported so far. However, we should not lose sight of the fact 

that the model will find itself appealing repeatedly to the genuineness issue to 

argue away results that are inconsistent with this pattern.  The approach needs a 

more principled explanation of this specific pattern. Unfortunately, the phonology 

of vowel/zero neutralisation does not rush to its rescue.  

The results for both [a]-epenthesis and [i]-epenthesis are not consistent with the 

predictions in  (39) that the phonology of vowel/zero neutralisation seems to 

support.  

(39) Assuming that the phonetics and phonology of neutralisation 

correlate closely, epenthetic [a] and lexical /a/, which behave 

phonologically the same, are predicted to be acoustically and 

perceptually non-distinguishable, whereas epenthetic [i] and 

lexical /i/ are predicted to be acoustically and perceptually 

different, since BHA phonology treats them differently.  

What these results suggest is that neutralisation involving [a]-epenthesis, which is 

phonologically complete, is acoustically incomplete. Conversely, the distinction 

between epenthetic [i] and lexical /i/, which survives in the phonology, is lost in 

the acoustic signal (at least along the parameters investigated here)46. More 

generally, the phonetics and phonology of vowel/zero neutralisation in BHA do not 

mirror each other for either vowel category.  

                                                        
45 Another scenario where the approach makes the opposite predictions is also possible. According 
to this scenario, [a]-epenthesis may only neutralise the vowel/zero contrast completely, whereas 
[i]-epenthesis may only result in incomplete neutralisation. Note that even in this case, the 
approach would still have to explain its rejection of the experimental data in a principled way. An 
appeal to the genuineness issue is not particularly convincing. The experimental design is as 
naturalistic as possible, and it has already yielded a statistically significant result, if opposite to the 
approach’s predictions.  
46 It should be noted here that there can only be a limited set of acoustic parameters that can 
possibly be explored given the usual limitations on time and resources (cf. Jongman 2004; Kopkallí 
1993). However, the fact that the very set of parameters investigated in this study has already 
displayed an epenthetic-lexical difference for ‘a’ but not for ‘i’ is interesting in and of itself. This 
result is worthy of further deliberation. The rest of this chapter explores this finding from a 
perceptual and statistical perspective. 
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Instead, they seem to dis-correlate, not just for one vowel type, but for both ‘a’ and 

‘i’. The phonetics of neutralisation, as revealed by the statistical analysis of the 

experimental data, and the phonology of neutralisation, as documented by the 

pattern of interactions among the phonological processes in BHA that is based on 

impressionistic data,  do not agree on the completeness question. There is a 

statistically significant acoustic difference between epenthetic [a] and lexical /a/ 

that the phonology overlooks. At the same time, the phonology treats epenthetic [i] 

and lexical /i/ differently despite their acoustic non-distinguishability.  

This pattern of anti-correlation between the phonetics and phonology of 

neutralisation compounds the problem for the either-or approach. The pattern 

seems to defy a principled explanation that does not appeal to the genuineness 

argument.  As I pointed out in chapter two, the genuineness question has 

frequently been evoked when no theory-based explanation seems plausible. I take 

up this question in detail in ¶ 4.3. 

Placing the acoustic completeness of neutralisation, as a null hypothesis, within the 

context of the phonetics-phonology relation highlights a potential conceptual 

problem with NHST procedures as currently applied in neutralisation laboratory 

studies. Rejecting or failing to reject the completeness null hypothesis for both ‘a’ 

and ‘i’, or rejecting it for ‘a’ while failing to reject it for ‘i’ will have this paradoxical 

implication for the phonetics-phonology relation: the phonetics and phonology of 

neutralisation both correlate and dis-correlate depending on the quality of the 

epenthetic vowel. That is, out of four logically possible scenarios for the phonetics-

phonology relation, the NHST-analysed data present us with the weirdest. These 

scenarios appear in Table  4-8 below. 

 ‘a’  ‘i’  Phonetics-Phonology Relation 

Phonology complete  incomplete   

Phonetics 

complete  incomplete  perfect correlation 

complete complete partial correlation/non-correlation 

incomplete incomplete partial non-correlation/correlation 

incomplete complete complete non-correlation (anti-correlation) 

Table  4-8: The four logically possible scenarios for the phonetics-phonology relation 

according to neutralisation effects involving [a]-epenthesis and [i]-epenthesis  
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Another interesting finding of the experiment involves the directionality issue, 

which has unduly been neglected in the phonetic research on neutralisation. A 

laboratory study of the phonetics of neutralisation can miss a lot by failing to take 

into consideration the directionality of the observed differences. Relying on a 

group averaged value, which is arithmetically calculated by dividing the sum of all 

individual data points by the number of data points used in the calculation, can 

result in an incomplete and potentially misleading generalisation. We have seen in 

the case of i-F2 that individual mean paired differences of similar magnitudes but 

in opposite directions can cancel each other out in the calculation of the group 

mean. This is reminiscent of the discrepancy found in the literature between 

analyses based on group data and those based on data from each individual 

participant (see e.g., Dinnsen & Charles-Luce 1984; Gouskova & Hall 2009). What 

data should we use to draw inferences on the phonetics of neutralisation? Is this 

variability relevant? Is it lawful? Should we not doubt the tools of inference that we 

have borrowed from psychology and the social sciences? I take up these questions 

in the next chapters.  

Of relevance, though, is a puzzle that descriptive statistics presents regarding the 

direction of the acoustic differences between epenthetic and lexical vowels in 

terms of what is phonologically expected and what is phonetically observed. 

Phonologically, the “ideal epenthetic vowel is one that is least noticeable, i.e., one 

that is shortest and least sonorous”, to quote Gouskova and Hall (2009: 219). Now 

the data we have of the phonetics of epenthetic and lexical vowels in BHA seem at 

odds with this common view in the phonological literature. Here, both epenthetic 

[a] and [i] are longer in mean duration and greater in mean intensity than the 

corresponding lexical vowels. Note that the argument still holds even if we choose 

to drop differences that have failed to reach statistical significance. 

Does this take us back to the theme of dis-correlation between the phonetics and 

phonology of neutralisation? Not necessarily. Recall that the underlying status of 

V2 in the stimulus items coincides with a morpho-syntactic distinction. As I have 

pointed out above, this follows from the morphology of BHA. A possible 

interpretation of the data in light of morpho-syntactic status is that noun-vowels in 

BHA are longer and more intense than verb-vowels. Note that this pattern of 

results seems to be consistent with Conwell and Morgan’s (2007) finding that 
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noun-vowels in English are longer than the corresponding verb-vowels. However, I 

observe here that this conclusion is only true for descriptive statistics in my study, 

which display very negligible mean paired differences. The argument collapses as 

soon as descriptive statistics gives way to inferential statistics, which has only 

accorded statistical significance to the intensity difference between epenthetic [a] 

and lexical /a/. Why should only ‘a’ be longer in nouns than in verbs? Why 

shouldn’t ‘i’ be as ‘a’ in this regard? Why should vowel quality matter for the 

morpho-syntax of any language? To salvage this morpho-syntactic account, we 

obviously need to find a morpho-syntactic argument for a quality-based distinction 

made in the phonetics of nouns and verbs. Returning to the realm of phonology 

and phonetics, we know that a quality-based distinction in vowel activity in 

phonetics and phonology is both demonstrable and real, as this thesis has 

illustrated.   

4.2.2  A Perception Experiment 

4.2.2.1  Purpose 

The purpose of this experiment is to investigate the discriminability and 

identifiability of the vowel/zero contrasts that vowel epenthesis in BHA putatively 

neutralises. The experiment has two perceptual tasks: discrimination and 

identification. The perceptual data the experiment yields, together with the 

production data we already have, will form our answer to the main question posed 

here—the completeness question.  

4.2.2.2  Method 

4.2.2.2.1 Participants 

Twenty-two native speakers of BHA participated in the perception experiment. 

They were all literate women. None of them participated in the production 

experiment while all of them took part in the frequency estimation task reported at 

the beginning of the chapter. None had any known speech or hearing problems. 

Participants undertook the task in their homes or in my house. They were not paid 

for their participation. 

4.2.2.2.2 Materials 

The listening materials in both the identification and discrimination tests were 

made up of 112 trials of eighteen minimal pairs. Twelve pairs exemplify the 
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vowel/zero contrast investigated in this thesis; the remaining pairs, which 

exemplify another vowel-based neutralisation effect, were fillers. The target items 

were the same as used for the production experiment (see Table  4-1) except that 

two pairs were excluded. These are [gabil] ‘Gabil’ – [gabil] ‘before’ and [fikir] ‘came 

to realise’ –[fikir] ‘thinking’. The former pair was excluded because one member is 

a proper name and the other is an adverb. A proper-name reading might have 

different accessibility than regular nouns and verbs. In the identification test, 

responses were limited to ‘noun’ and ‘verb’. There was no way to include an 

adverb in the test material. The other excluded pair scored the lowest frequency 

index (2) in the stimulus list. It was excluded for that reason.  

The filler items were all real words intended for a different experiment but with 

basically the same purpose. Each filler pair consists of a noun-member and a verb-

member, just like the test pairs in Table  4-1.  

All eighteen pairs were extracted from the first repetition of the production-stimuli 

belonging to one speaker—L-E. By a subjective criterion, this speaker spoke more 

naturally than the other speakers. By a more objective criterion, however, L-E 

produced epenthetic-lexical differences whose magnitude in terms of  Cohen’s d 

exceeds {.3{ along each of the five acoustic parameters of the study for both ‘a’ and 

‘i’.47 No other speaker produced differences of equal magnitude along all the five 

parameters for both vowels. Figure  4-8 graphs speakers’ d-values that are above 

{.3{ for ‘a’ and ‘i’. Table  4-9 summaries mean and SD values of the production data 

from speaker L-E. Statistical tests run on these data fail to yield statistically 

significant results for any of the five acoustic parameters (but see ¶ 4.3.2 on the 

validity of statistical tests run on data from a single subject). Raw data along each 

of the five parameters for each test word in the perception task are given in 

Appendix E. 

 

 

 

                                                        
47 {.3{ was the minimum data-emergent cut-off point that would leave only one speaker when used 
as a selection criterion.   
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[a] /a/  [i] /i/ 

F0 (in Hz) 188 
(9) 

201.5 
(21) 

 197.8 
(17) 

204.8 
(19) 

 
Intensity (in dB) 65 

(1.7) 
64 

(2.3) 
65.9 
(1.3) 

63.8 
(1.5) 

 
Duration (in ms) 83.5 

(9.7) 
79.8 
(6.7) 

72.8 
(8.8) 

67.8 
(5) 

 
F1 (in Hz) 818.5 

(42.7) 
837 

(54.8) 
567 
(29) 

554 
(26) 

 
F2 (in Hz) 1700 

(53) 
1746 
(45.6) 

2180.8 
(122) 

2048 
(87.6) 

 
Table  4-9: Speaker L-E’s mean and (SD) values of the acoustic parameters of the study for ‘a’ 

and ‘i’ by V2 Underlying Status; total number of tokens for each parameter= 84 (14 

words X 2 V2 Underlying Status X 3 repetitions) 

 

 

Figure  4-8: Number of acoustic parameters with Cohen’s d> {.3{ for both ‘a’ and ‘i’ by speaker    

 

In preparing the perception stimuli, seventy-six trials of the selected test items and 

thirty-six trials of the fillers were randomised. Each item has an occurrence rate of 

≈2.8%.  The stimuli were arranged into two blocks with an 8-second interval. For 

two reasons, the amplitude across the words was not equalised. Firstly, intensity is 

one of the acoustic parameters investigated in the study. Secondly, the NHST-

generated results have revealed a statistically significant intensity difference 

between epenthetic [a] and lexical /a/. In other words, normalising the amplitude, 

or in fact any other acoustic parameter, might potentially remove a cue to the 

distinction between lexical and epenthetic vowels.  

Speaker

I-GI-FL-EL-DL-CL-BL-A

'i' (d>.3)'a' (d>.3)
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4.2.2.2.3 Procedures48 

Participants listened individually to the stimuli over a pair of Audio-Technica ATH-

PRO700 professional studio reference headphones connected to a laptop. They had 

to do a brief mock exercise before taking each test. They received no feedback on 

their performance. They were allowed to adjust the volume if they wished. In the 

exercise, participants practised on a different set of words produced by the same 

speaker as in the perception test. Then they were asked to have a look at the test 

items, which were printed in Arabic regular orthography, where short vowels were 

not indicated. The test sheet had the instructions printed in Arabic. Participants 

also received oral instructions in Arabic at the beginning of the test. Each block of 

the stimuli appeared on one side of the sheet. Participants were encouraged to 

take a break after each block. They first did the identification test, which took 

about 10 minutes, then the discrimination test, which took about 20 minutes. Most 

participants completed the two tests on the same day, while five did them on two 

separate days. 

In the identification test, participants had to decide for every word they heard 

whether they thought it was a verb (���), in which case V2 is lexical, or a noun (ا��), 

in which case V2 is epenthetic.49 They did that by ticking the relevant box on an 

answer sheet. Inter-stimulus interval (ISI) was 3.5 seconds.50  

In the same-different discrimination test, participants had to decide whether they 

thought the two words they heard were the same ( �	
� ) or different ( ��� ). They did 

                                                        
48 The procedures followed here benefited from post-test feedback from two subjects in a pilot. 
These subjects did not participate in the experiments reported here.   
49 Instructing participants to decide directly on V2-UR-Status is not possible given that BHA is an 
unwritten dialect. In Standard Arabic (SA), vowel/zero contrasts can be orthographically 
represented as follows. The diacritic ‘fatha’ [  ََ ] represents /a/; ‘kasra’ [ ِ] represents /i/; and ‘skuun’ 

[  ْ ] represents both epenthetic [a] and [i]. However, I have decided against importing this 
orthographic technique from SA, mainly on the grounds that it might bring along with it unwanted 
register-transfer effects. See ¶ 4.2.1.2.2 for details. More importantly, speakers of BHA are expected 
to ignore the underlying status of V2 in an explicit vowel-perception exercise since they would hear 
the epenthetic V2 as a vowel with an identifiable timbre. This will increase the number of fatha and 
kasra responses, thus biasing the results. After all, the skuun is commonly associated with the 
absence of a vowel within consonant clusters. For this reason, I have made use of the syntactic 
grouping of the stimulus items, which correlates with the V2-UR-Status grouping that is the focus of 
the experiment (cf. Gouskova & Hall 2009).  
50 As part of this exercise and the discrimination test, participants had to provide confidence ratings 
for the responses they gave. I don’t report these here. 
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that by ticking the relevant box on an answer sheet. Within-pair ISI was .8 

seconds,51 while inter-pair ISI was 3.5 seconds.   

4.2.2.3  Results 

Data from one participant who failed to respond to a number of test items in the 

identification task were excluded. Excluded, too, were data from two participants 

who used a single response—‘same’—in the discrimination task.  

The overall percent-correct identification is 59% for ‘a’ and 57% for ‘i’. Both 

results are statistically significantly above chance (50%) by a non-parametric 

binomial test: [‘a’: p< .001; ‘i’: p< .005]. Similarly, the overall percent-correct 

discrimination is 66% (p< .001) for ‘a’ and 72% (p< .001) for ‘i’. 

  ‘a’ ‘i’    ‘a’ ‘i’ 

%
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  I
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n 
 

Overall 59% 57% 
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Overall 66% 72% 

Noun 66% 60% Same 87% 89% 

Verb 53% 54% Different 43% 54% 

Table  4-10: Percent correct identification and discrimination of ‘a’ and ‘i’ test words 

 

Do these overall accuracy rates hold equally well for nouns (V2epenthetic) and verbs 

(V2lexical)? Clearly, we need a break-down of the percent-correct figures above. This 

is what I give in Table  4-10. According to Table  4-10, participants correctly 

identified 66% of a-nouns (V2epenthetic) but only 53% of a-verbs (V2-lexical). 

Similarly, they correctly identified 60% of i-nouns (V2epenthetic) but only 54% of i-

verbs (V2lexical). The percent-correct identification of a-nouns and i-nouns is 

statistically significantly above chance by a non-parametric binomial test: [a-

nouns: p< .001; i-nouns: p< .001]. The percent-correct identification of a-verbs and 

i-verbs, however, is at chance by the same statistical test: [a-verbs: p= .232; i-

verbs: p= .301]. This suggests that the overall accuracy rates in the identification 
                                                        
51 Admittedly, this ISI is long. However, the purpose of this test is not to tap into listeners’ auditory 
sensory memory. But rather, it was to give them enough time to process the stimuli using a 
“labelling strategy” (van Hessen & Schouten 1992). See also Kopkallí (1993). Importantly, Tanner 
(1961) reports that an ISI less than .8 seconds leads to a decrease in discrimination (in Macmillan & 
Creelman 2005: 177).  
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task for both ‘a’ (59%) and ‘i’ (57%), which are both statistically significantly 

above chance, do not hold equally well for both nouns (V2epenthetic) and verbs 

(V2lexical). Only nouns were identified at an accuracy rate that is above chance; the 

accuracy rate of verb identification is at chance. See Figure  4-9. 

 

Figure  4-9: Identification of ‘a’ and ‘i’ test words according to V2 Underlying Status (top) and 

according to response type (bottom); error bars show 1SD 
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Figure  4-10: Discrimination of ‘a’ and ‘i’ test words according to V2 Underlying Status (top) 

and according to response type (bottom); error bars show 1SD  

 

The break-down of the discrimination data tells a slightly different story. Table 

 4-10 above summarises the relevant data. As we can see, 87% of a-same-member 

pairs and 89% of i-same-member pairs correctly elicited same-responses from the 

participants. These accuracy rates are statistically significantly above chance for 

both ‘a’ (p< .001) and ‘i’ (p< .001). Discriminability of i-different-member pairs is 

at chance (p= .289) with a 54% correct different-responses. In contrast, a-

different-member pairs only elicited 43% correct different-responses, whereas the 

wrong same-response rate reached 57%, which is statistically significantly above 

chance (p< .002).  These results are graphed in Figure  4-10. 

Next, I conducted Repeated Measures Anovas to test null hypotheses involving 

mean paired differences due to V2-UR-Status and to perception tasks. To address 
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the possibility of a bias (see the discussion section) suggested by the fine-grained 

analysis above, I adopt Warner et al’s (2004) method of looking at the collected 

responses in terms of one of the two test-alternatives, rather than percent or 

proportion correct. Accordingly, noun-responses act as the response variable in 

the identification task, while same-responses act as the response variable in the 

discrimination task. The choice of these response variables is arbitrary and will not 

affect the interpretation of the results in any way. Unlike the Warner et al method, 

however, I have chosen to transform these proportions into Rationalised Arcsine 

Units (henceforth RAU) (Studebaker 1985; for a recent application to perception 

data, see Boomershine 2005). Compared with traditional Arcsine-transformations, 

which are popular in perception research (see e.g., Davidson 2007), RAU-

transformations offer the advantage of increased interpretability of the 

transformed dataset. Specifically, RAUs are very close to the original proportions 

or percentages. This difference between these types of transformation does not 

affect their statistical suitability for Anova tests. The RAU figures that I used in the 

analysis are given in Table  4-11. 

Figure  4-11 and Figure  4-12, respectively, display identification RAUs and 

discrimination RAUs for ‘a’ and ‘i’. For ease of comparison, I have also included the 

overall correct responses. As suspected, there are far more same-responses than 

different-responses. Listeners were obviously biased towards same-responses for 

both ‘a’ and ‘i’. However, a Repeated-Measures Anova with vowel category (‘a’ vs 

‘i’) and perception task (discrimination vs identification) as fixed factors reveals a 

statistically main effect of vowel category [F(1,19)= 5.37; p< .04] and of task 

[F(1,19)= 47; p< .001]; the interaction between vowel category and task is not 

statistically significant [F(1,19)= .027; p= .872]. Figure  4-13 graphs these effects. 

As the graphs show, a-stimuli elicited more noun-responses and more same-

responses than did i-stimuli in the identification and discrimination tasks 

respectively. This suggests that listeners were more willing to respond ‘noun’ in 

the identification task and ‘same’ in the discrimination task for a-stimuli than they 

were for i-stimuli. In other words, participants showed greater bias with a-stimuli 

than with i-stimuli. I report bias figures further below.     

Interestingly, however, a similar Anova run on the RAUs of all-and-only correct 

responses failed to find a statistically significant main effect of vowel category 
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[F(1,19)= .003; p= .95]. But, there is a statistically significant main effect of task 

[F(1,19)= 17.72; p< .001]. The interaction between vowel category and task is 

statistically significant [F(1,19)= 5.9; p< .03]. Figure  4-14 graphs these effects. This 

indicates that [i]-/i/ are discriminated more accurately than are [a]-/a/.  

As can be seen from Figure  4-14, [a]-/a/ are identified at a higher accuracy rate 

than [i]-/i/, whereas [a]-/a/ are discriminated at a lower accuracy rate than [i]-/i/. 

That is, [i]-/i/ discrimination is better than [a]-/a/ discrimination, while [a]-/a/ 

identification is better than [i]-/i/ identification. However, paired t-tests reveal 

that the vowel-based difference in the identification accuracy rate is not 

statistically significant [X�PD= 2.02; SDPD= 16.8; t(20)=.55; p= .59], while the vowel-

based difference in discrimination is [X �PD= –5; SDPD= 9.4; t(19)= –2.33; p< .04].    

 
Identification RAUs 

 

Discrimination RAUs 

Noun Verb Correct Same Different Correct 

‘a’ 55.6 44.4 58.6 70.5 29.5 65 

‘i’ 53.6 46.4 56.4 66.3 33.7 70 

Table  4-11: Mean Rationalised Arcsine Units (RAUs) of the identification and discrimination 

data for both ‘a’ and ‘i’ according to test alternatives and correct responses 

 

Figure  4-11:  Mean Rationalised Arcsine Units (RAUs) of the identification data for both ‘a’ 

and ‘i’ according to test alternatives and correct responses; error bars show 1SD 
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Figure  4-12: Mean Rationalised Arcsine Units (RAUs) of the discrimination data for both ‘a’ 

and ‘i’ according to test alternatives and correct responses; error bars show 1SD 

 

 

Figure  4-13: Mean Rationalised Arcsine Units (RAUs) of the identification (calculated over 

noun responses) and discrimination (calculated over same responses) data for both 

‘a’ and ‘i’; error bars show ±1SD 

 

Figure  4-14: Mean Rationalised Arcsine Units (RAUs) of the identification and discrimination 

data (calculated over correct responses) for both ‘a’ and ‘i’; error bars show ±1SD  
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Using techniques from Signal Detection Theory (Green & Swets 1974; Macmillan & 

Creelman 2005), we can measure respondents’ bias and sensitivity. D-prime 

(henceforth d’), which is a popular index of sensitivity, is roughly defined as the 

difference between the z-transformed hit proportions and the z-transformed false 

alarm proportions.52 According to the theory, there are four stimulus-response 

combinations. These are given in Table  4-12 with specific reference to the 

identification and discrimination tasks in this study. In the identification test, 

noun-responses to noun-stimuli constitute hits, while noun-responses to verb-

stimuli are counted as false alarms. Conversely, verb-responses to verb-stimuli are 

correct rejections, while verb-responses to noun-stimuli are counted as misses. By 

the same token, in the discrimination test, different-responses to different-member 

pairs constitute hits, while different-responses to same-member pairs are false 

alarms. Conversely, same-responses to same-member pairs are correct rejections, 

while same-responses to different-member pairs are counted as misses. The 

direction of the bias and sensitivity measures depends on our initial decision of 

what constitutes hits and what constitutes correct rejections. As with RAUs, the 

choice here is arbitrary.  

I report here A-prime53 (henceforth A’), a non-parametric analogue of d’ (Grier 

1971; Johnson 1976; Snodgrass et al 1985; Macmillan & Creelman 2005). See Rallo 

Fabra (2006) and Wayland and Guion (2003) for a recent application of A’ to 

perception data. A’ is said to be more appropriate for proportions nearing 1 and 0, 

which some participants in the study have. For bias, I used B’’D, the bias measure 

associated with A’ (Donaldson 1992).54 A negative B’’D figure represents a liberal 

bias, whereas a positive B’’D figure indicates a conservative bias. For an unbiased 

participant, B’’D will be zero. See below for more. A’ and B’’D values appear in 

Figure  4-15 and Figure  4-16, respectively. 

 

                                                        
52 The exact formula for calculating d’ differs according to a number of considerations including the 
type of test paradigm and response strategy (for more see the references in the text above). 
53 A’ is calculated according to the following formulas, where H= hit rate; FA= false alarm rate 
(Snodgrass et al 1985: 451):  

If H > FA, A’= .5+ 
�(�)*����(�)*�

+(���)*�  

If H = FA, A’= .5 

If H < FA, A’= .5– �,-�.��1',-�.�
4,-�1�.�   

54 B’’D = ��1 � .��1 � ,-� � .,-! ��1 � .��1 � ,-� ' .,-!⁄  
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 Identification   Discrimination 

Response Response 

Noun Verb Different Same  

  S
ti

m
u

li
 Noun hit miss 

  S
ti

m
u

li
 Different hit miss 

Verb False alarm Correct rejection Same False alarm Correct rejection 

 

Table  4-12: Stimulus-response combinations according to Signal Detection Theory as defined 

for the identification and discrimination tests in this study 

 

 

Figure  4-15: Mean A’ for ‘a’ and ‘i’ by perception task; error bars show 1SD 

 

 

Figure  4-16: Bias for ‘a’ and ‘i’ by perception task; error bars show 1SD 
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Ordering these values from largest to smallest gives these scales: 

(40) A’ scale: i-discrimination > a-discrimination > i-identification,           

a-identification 

(41) B’’D scale: a-discrimination > i-discrimination > a-identification >       

i-identification 

Taken together, these scales appear to create a paradox: in the discrimination task, 

participants were both more sensitive and more biased than they were in the 

identification task. I speculate on this issue in the discussion section below.  

4.2.2.4  Discussion 

The perception experiment addresses the perceptibility of the vowel/zero contrast 

in BHA in terms of the discriminability and identifiability of epenthetic and lexical 

vowels. What we may conclude on the basis of the overall accuracy rates, including 

all and only correct responses (separately for ‘a’ and ‘i’) for each perceptual task, is 

that the vowel/zero contrast in BHA is perceptible by both the discriminability and 

identifiability criteria. This perceptibility is statistically significantly above chance 

with a percent-correct range of 57% – 72%.  

However, as Macmillan and Creelman (2005) warn, performance of participants in 

a perception task can be biased. The observed pattern of responses can sometimes 

be entirely due to task-dependent or participant-internal criteria or even item- or 

response-related effects that the analysis overlooks. For example, participants may 

be inclined to respond in a certain way for a variety of reasons; some items may 

elicit a particular form of response only too frequently. Obviously, tracing these 

effects is beyond the scope of this thesis. However, a recommendation that the 

thesis makes is to include a measure of bias when we report sensitivity indexes 

such as d’ or A’. See below for more on this.  

Presenting perceptual data in terms of overall proportion-correct or percent-

correct figures can conceal bias and potentially lead to misleading generalisations. 

Unfortunately, this kind of summary statistics has been the rule rather than the 

exception in perception studies of neutralisation. The popular claim of an above-

chance perceptibility of neutralised contrasts, which has been largely founded on 

overall percent-correct figures, should not be accepted at face-value (cf. Kopkallí 

1993; Jassem & Richter 1989). 
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As far as the current study is concerned, the break-down of percent correct figures 

into the test’s response-alternatives illustrates how conclusions based solely on 

collective all-and-only correct responses can be far off the mark.  

Our conclusions on the perceptibility of the vowel/zero contrast need to be 

updated, taking into account the bias we have observed in the responses. Now, 

what we may conclude from the percent-correct identification of ‘a’ and ‘i’ is 

different for nouns (V2-epenthetic) and verbs (V2-lexical). The accuracy rate of noun-

identification for both ‘a’ and ‘i’ is higher than that of verb-identification. It is also 

significantly statistically above chance. Does this mean that participants were more 

biased toward noun-responses? Well, according to the bias B’’D figures reported in 

the Results section, participants were more willing to respond ‘noun’ than ‘verb’. 

This pattern is true of both ‘a’ and ‘i’ although the bias is greater with the former 

than with the latter. The next logical question is how to explain this bias? It seems 

to me that the answer lies in the pragmatics of BHA nouns and verbs. A recent 

experimental study by Sabbagh (2008) shows that, for native speakers of BHA, the 

noun-reading of ambi-categorial words in pragmatically and syntactically neutral 

structures is more readily accessible than an equally plausible adjective-reading. 

Nouns are also more readily accessible than verbs in BHA (Hala Sabbagh, p.c. 

2009). A difference in cognitive accessibility of nouns and verbs, if it turns out to 

be real, will have serious implications for the above-chance identifiability of the 

neutralised vowel/zero contrast in BHA. It will mean that the 59% and 57% 

correct identification figures for [a]-/a/ and [i]-/i/, respectively, which are both 

above chance, are really due to a bias that has nothing to do with the phonetic 

perceptibility of the contrast. This would effectively imply that the vowel/zero 

contrast that epenthesis neutralises is not perceptible. 

The break-down figures for the discrimination task further confirm the biased 

pattern of responses. More specifically, the results show that participants were less 

willing to respond ‘different’ than ‘same’. For ‘a’, same-member pairs and different-

member pairs received a high proportion of same-responses. The percent correct 

is statistically significantly both above chance for same-member pairs and below 

chance for different-member pairs. But, the bias, this time, may be attributable to 

phonetic perceptibility. Recall that data from two participants were excluded. 

Those two participants gave a single response to all trials—‘same’. Compare this 
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with the data from the one participant who was excluded in the identification task 

for failing to respond to all test items. The two participants in the discrimination 

task might have only been reporting what they thought they had heard—no 

perceptible acoustic differences.  Importantly, as Macmillan and Creelman (2005: 

218) assert, this response pattern is common for “hard-to-discriminate stimuli”.       

 More importantly, however, the specific figures we get by breaking down the 

overall percent correct into the test alternatives actually bring to light a curious 

effect. Consider for instance i-identification. On average, noun-stimuli elicited 

fewer verb-responses than did verb-stimuli. By the same token, verb-stimuli 

elicited fewer noun-responses than did noun-stimuli. That is, despite an 

undeniable noun-bias, participants’ performance seems to be somewhat consistent 

with a perceptible vowel/zero contrast that epenthesis has putatively neutralised. 

This pattern is observable in both tasks for both ‘a’ and ‘i’. 

Relatedly, Warner et al (2004) suggest that the perceptibility of a neutralised 

contrast can be revealed by considering the magnitude of a proportion or percept 

correct not across but within response categories using both correct and incorrect 

target responses. See also Jongman (2004) and Jassem and Richter (1989). 

However, we can learn a lot more by measuring participants’ sensitivity and bias. 

For example, on the basis of the sensitivity (in terms of A’) and bias (in terms of 

B’’D) figures presented above, I have suggested that participants are both more 

sensitive and more biased in the discrimination task than in the identification task. 

This mode of performance, which seems intuitively paradoxical, has a natural 

explanation, nonetheless. 

Sensitivity and bias measure two different properties of participants’ performance. 

Roughly speaking, sensitivity is about accuracy; bias is about willingness to 

respond in a certain way (Macmillan & Creelman 2005; Neath & Surprenant 2003). 

A number of researchers acknowledge that sensitivity and bias are independent of 

each other (e.g., Donaldson 1992; Macmillan & Creelman 2005, 1990; Snodgrass & 

Corwin 1988). Certain manipulations of experimental conditions can sometimes 

effect a change in sensitivity but not in bias. The reverse is also true (see Kamas et 

al 1996).    
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The specific pattern of increased sensitivity and bias in the discrimination test as 

compared to listeners’ performance in the identification test is attributable, at least 

in part, to the nature of the test protocol. Generally, an identification test requires 

participants to “make comparisons across trials” (Macmillan & Creelman 2005: 

184) in order to come up with a labelling criterion. This will naturally delay the 

formation of the criterion, keeping performance at or just above chance as found in 

many neutralisation studies. The consequence is decreased sensitivity and 

decreased bias, as well.  

By contrast, in the same-different task, the creation of a response criterion is much 

easier and quicker. Comparisons occur within rather than across trials (ibid). In 

neutralisation studies, where discrimination is harder than in many other studies, 

participants are naturally biased towards ‘same’ responses. The discrimination 

task reported here creates the most favourable conditions for successfully and 

easily establishing a criterion of sameness. Recall that the stimuli all come from the 

first repetitions of the production data from one speaker. Sameness then would 

simply be identicality. Given participants’ conservative bias against ‘different’ and 

obvious preference for ‘same’, the following responding strategy seems 

reasonable: do not respond ‘different’ unless pair members are not identical. 

However, it seems that participants were successful at establishing what would be 

‘identical’ but not at what would not be. With different-member pairs, participants 

were merely guessing. 

Another equally plausible interpretation which makes more use of the bias account 

is to say that participants were actually able to detect differences, but they were 

reluctant to respond ‘different’. Recall that identical stimuli elicited a high rate of 

correct same-responses, while non-identical stimuli elicited what seemed to be a 

guessing performance despite being heard as non-identical in many more cases 

than participants were willing to concede. Let us not forget that the group 

performance on identical trials does not show a ceiling effect. Identical stimuli still 

elicited between 11% and 13% wrong different-responses. Moreover, the 

discriminability of the vowel/zero contrast differed according to the quality of the 

epenthetic vowel: [i]-/i/ were discriminated better than were [a]-/a/. However, 

the observed pattern of suppressed same-responses for different-member pairs 

still holds for both vowel categories. All these considerations suggest that 
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establishing ‘sameness’ is hard, yet possible in many cases. By extension, 

differences are very small, yet detectable in some cases.   

Acknowledging this pattern in my data, I revise the conclusion that the neutralised 

vowel/zero contrast in BHA is not perceptible. Given what we know so far, we may 

conclude that this neutralised contrast is still perceptible, irrespective of the 

quality of the epenthetic vowel. Note that this conclusion does not necessarily 

imply that [a]–/a/ and [i]–/i/ distinctions are perceived the same. The vowel/zero 

contrast may still be recoverable for both ‘a’ and ‘i’. Yet the extent of recoverability 

can be different for these vowel categories.   

In summary, the vowel/zero contrast in BHA seems to be only weakly perceptible 

by both identifiability and discriminability criteria for both ‘a’ and ‘i’ (but see 

below for a possible counter-argument). At the same time, [i] and /i/ are perceived 

as more different than are [a] and /a/. These findings are not consistent with the 

production data described in ¶ 4.2.1 above.    

4.2.3  General Discussion 

The production and perception experiments address this question: 

(42) Is vowel/zero neutralisation in BHA phonetically complete? 

The production55 and perception data in this study suggest that [a]-epenthesis 

neutralises the vowel/zero contrast in BHA phonetically incompletely: there is an 

acoustic difference between epenthetic [a] and lexical /a/, which is perceptually 

detectable. A curious scenario obtains for ‘i’: epenthetic [i] and lexical /i/ are 

perceptually distinguishable in the absence of a measured acoustic difference. Put 

differently, ‘i’-data seem to provide a contradictory answer to the completeness 

question. Specifically, the perceptibility of the contrast is in contradiction with the 

lack of acoustic differences between the terms of the contrast, epenthetic [i] and 

lexical /i/. This contradiction would be logically impossible only if we could prove 

beyond doubt that epenthetic [i] and lexical /i/ are truly acoustically 

indistinguishable (cf. Dinnsen 1985). But how can we do that? Our 

                                                        
55 Considering the perception data in relation to speaker L-E’s production data that have been used 
in constructing the perception stimuli, we find that the pattern that characterises the ‘i’-data is also 
true of ‘a’-data. Recall that there are no statistically significant differences for speaker L-E along any 
of the acoustic parameters of the study for either ‘a’ or ‘i’. But see chapter five for a critique of 
statistical significance derived from data produced by one speaker.  
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experimentation can be flawed from data collection to data analysis and 

interpretation.  

That being the case, it may be reasonable to assume that perceptibility necessarily 

implies an acoustic difference, which can sometimes elude us. This position has 

actually been adopted by a number of researchers who are concerned with the 

completeness question. Their argument, however, rests on the premise that there 

can only be a limited set of acoustic parameters that can possibly be explored given 

the usual limitations on time and resources (Jongman 2004; Kopkallí 1993). My 

argument deploys an additional premise: even with the right set of acoustic 

parameters, using the wrong set of statistical parameters (e.g., measures of 

variability and central tendency) can lead us astray. In the next chapters, I argue 

against the use of the arithmetic mean for locating central tendency and the use of 

SD and RSD for measuring variability. I suggest alternatives that can be utilised 

within a pro-variability model to address some of the unresolved issues here.   

 Another reasonable position, if unorthodox, is to assume that it is possible to 

perceive an acoustic difference that does not really exist. On this view, the 

contradiction above is merely due to a perceptual illusion. Recall that in the 

discrimination task, participants labelled 11%–13% of truly identical pair 

members as ‘different’. This means that, in the identification task, verb-stimuli 

elicited more verb-responses than did noun-stimuli, not necessarily because there 

was a V2-UR-Status acoustic difference (recall that verbs have V2lexical, while nouns 

have V2epenthetic), but possibly because some verb stimuli sounded like less than 

good noun stimuli. Note that this account acknowledges the existence of an 

acoustic difference, but it denies its relevance to the underlying status of V2. That 

is, all these test items can be accepted as instances of nouns (or of verbs), yet some 

of them are better instances than others. To many naïve subjects, the two-choice 

design creates a presumption of relevance of both choices. Just as it happens that 

BHA speakers are biased towards picking the noun-reading more often, they will 

treat all better instances as nouns. At the same time, they will treat many less good 

instances as verbs. A similar argument applies to the discrimination data. 

Importantly, this account seems to suggest that both [a]-epenthesis and [i]-

epenthesis neutralise the vowel/zero contrast completely in the phonetics by the 

perceptibility criterion. What remains to be explained is the quality-based 
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distinction in the discrimination data. Recall that [i]-/i/ were discriminated better 

than were [a]-/a/. We need to explore the perception data against a better-

informed account of the acoustics of neutralisation in BHA. I offer to do that in 

chapters six and seven. Meanwhile, I summarise in Table  4-13 the picture that has 

emerged so far. 

 Phonologically distinct Acoustically distinct Perceptually discriminable 

/a/ vs [a] No Yes (in intensity) Possibly not 

/i/ vs [i] Yes No Possibly yes 

Table  4-13: Summary of results for the phonology, acoustics, and perceptibility of the BHA 

neutralisation data analysed in the study 

 

Clearly, we shall need to undertake further exploration to decide upon the 

phonetics of neutralisation. However, what we can conclude from the arguments 

above is that establishing conclusively the phonetic completeness or 

incompleteness of neutralisation can be very difficult. There is gradience, and 

there is variability. The question that suggests itself is how relevant and lawful that 

gradience and variability are? This should naturally bring to mind the genuineness 

question, which the thesis has posed. I explore this question next.   

 

4.3 The Genuineness Question 

I approach the genuineness question from two perspectives: experimental design 

and statistical treatment. These are the two areas that have inspired and sustained 

much of the concern and scepticism surrounding the genuineness of the reported 

findings in the literature. In ¶ 4.3.1, I describe an experimental paradigm that 

addresses the methodological shortcomings that have been identified in the 

literature.  In ¶ 4.3.2, I subject neutralisation data from Turkish and Polish to a 

variety of statistical treatments replicating what has been reported in the 

literature.   
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4.3.1 Experimental Artefactuality 

4.3.1.1  Rationale for the Experimental Paradigm 

The experimental set-up employed by previous studies investigating neutralisation 

has always been an object of criticism (Baumann 1995; Manaster Ramer 1996a, 

1996b; MascaroÂ 1987) and a subject of further experimentation (Charles-Luce 

1993; Jassem & Richter 1989; Piroth & Janker 2004; Port & Crawford 1989; 

Warner et al 2006, 2004). Whenever the experimental design is blamed, the 

argument is essentially the following: certain confounds can induce incomplete 

neutralisation; others can push for complete neutralisation. The possibility of an 

experimental artefactuality of the reported effect seems particularly strengthened 

when different studies yield different results even when they are investigating the 

same neutralisation pattern (see e.g., Fourakis & Iverson (1984) and Port & O’Dell 

(1985) for German; Jassem & Richter (1989) and Slowiaczek & Dinnsen (1985) for 

Polish; Baumann (1995) and Warner et al (2004) for Dutch). Given this situation, a 

number of researchers and reviewers seem more inclined to accept one effect but 

dismiss the opposite as being simply an artefact brought about by the details of the 

experiment, including subjects, test materials, and experimental procedures.  

Most studies have the following design: subjects are first familiarised with the test 

materials, which contain minimal or (where not possible) near-minimal pairs and 

fillers. The subjects, who usually come from different dialectal backgrounds and 

speak other languages in addition to their native language, read out the test words 

in a frame sentence. Most of these studies report incomplete neutralisation. 

Unfortunately, within such an experimental design, there can be a number of 

factors responsible for whatever effect reported. At least, some of these factors 

have not been shown to be neutral with respect to contrast realisation and/or 

neutralisation to date. On the contrary, some have actually been shown to have the 

potential of inducing incomplete neutralisation.  

One such factor concerns the subjects themselves. Lack of homogeneity of the 

subjects can, if ignored, be a source of variability (cf. Jassem & Richter 1989). This 

is particularly evident in neutralisation studies that have repeatedly reported a lot 

of inter-speaker variation and a mismatch between group performance and 

individual performance. For example, Dmitrieva et al (2010) found that subjects 
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with some knowledge of a foreign language can produce an incomplete-

neutralisation effect greater than or unseen in monolinguals' pronunciation.   

In the majority of the previous studies, test materials were presented to subjects in 

writing. In those cases where the relevant contrast is represented 

orthographically, most studies report incomplete neutralisation. Conversely, in 

studies where contrasts are not represented orthographically, neutralisation is 

mostly found to be complete. Interestingly, Warner et al (2006, 2004) show that an 

orthographic difference reflecting no underlying contrast can on its own induce 

speakers to produce a ‘sub-phonemic effect’. That incomplete neutralisation is only 

a spelling pronunciation, though repeatedly claimed, seems imprecise; a spelling 

pronunciation can more plausibly result in complete neutralisation if the relevant 

contrast is not represented orthographically (see below for a discussion). Where 

contrasts are represented orthographically, incomplete neutralisation can be 

attributed to orthography, underlying representations, surface alternations, etc. 

Contrasts not represented orthographically but whose neutralisation is found to be 

complete share with the former all but one factor—an orthographic encoding.   

Another factor whose influence has not been fully appreciated concerns the stimuli 

in terms of presentation and composition. If we review the experimental literature 

on neutralisation with this in mind, a striking pattern emerges: the majority of the 

studies whose test material is composed of minimal pairs report incomplete 

neutralisation. However, when the stimuli contain minimal pairs embedded in 

sentences with disambiguating clues (e.g., Charles-Luce 1993), or only nonsense 

minimal pairs (e.g., Herrick 2004), or no minimal pairs at all (e.g., Kopkallí 1993), 

little or no incomplete neutralisation is reported. This happens despite 

orthographic representations of the relevant contrasts. Table  4-14 summarises a 

survey of 25 studies56 highlighting the correlation between the absence of minimal 

pairs in the stimuli and complete neutralisation (see Appendix F for references).57 

 

                                                        
56 The inclusion criteria I adopted are as follows. Studies mixing minimal pairs with non-minimal 
pairs or with nonsense minimal pairs in the test stimuli were excluded. Excluded too were studies 
exclusively using nonsense minimal pairs. With regard to orthography, only studies providing the 
orthographic form of the test words as part of the experiment procedures were included. This has 
added to the reliability and simplicity of the classification decision.  
57 In the next section, I discuss the statistical validity of the neutralisation findings in the literature. 
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 Orthography: 

Contrast represented 
orthographically 

Stimuli: 

Minimal pairs 
present 

 

Number of studies reporting 
neutralisation to be 

(a): complete (b): incomplete 

1 Yes Yes 1 16 

2 Yes No 3 1 

3 No Yes 1 1 

4 No No 2  

Table  4-14: Survey of production experiments classified by parameters of stimuli and 

orthography 

 

Although many methodological problems identified in past research have been 

avoided in recent studies, it seems to me that the presence of minimal pairs, whose 

inclusion in the test material is standardly thought to be essential for a more 

controlled, thus comparable, phonetic environment, can exert a confounding 

influence on the outcome of the experiments. Lisker and Abramson (1967) suggest 

that an 'enhancement effect' occurs when minimal pairs are involved in the test 

material. Similarly, Baese and Goldrick (2006) and Baese et al (2007) show that 

the laryngeal distinction in English obstruents is enhanced in words forming 

minimal-pair relations involving that contrast. In other words, the existence of 

minimal-pair neighbours in the lexicon can influence the realisation of the contrast 

in question.  

In most of these experiments, subjects were allowed to go over the list and 

familiarise themselves with the materials before the beginning of the test. 

Although such a warm-up might be necessary, why practice lists should be the 

actual test lists is not at all clear58 to me. Interestingly, Snoeren et al (2006) report 

that incomplete neutralisation is even greater when subjects practise on the test 

materials at the beginning of the experiment. During practice time, subjects might 

notice the presence of minimal pairs and might also know that if they do not 

pronounce the relevant pairs carefully, a lexical ambiguity can arise (unless there 

are contextual disambiguation clues). 

Sentential context has also been found to influence the production of words. More 

specifically, words that are predictable form context are articulated less carefully. 

                                                        
58 Even in situations where stimuli contain rare or unfamiliar items, the experimenter can discuss 
the meaning of these items with the subjects but should still give them a different list for practice. 
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For example, the production of these words involves a fair amount of reduction 

that can undermine their recognisability when excised out of context (Fowler & 

Housum 1987; Hunnicutt 1985; Lieberman 1963; Meunier et al 2006). 

Importantly, in studies of neutralisation, the same trend (here, negligible 

incompleteness) has been reported for pairs produced in contexts providing 

disambiguating semantics (e.g., Charles-Luce 1993; Port & Crawford 1989).  

4.3.1.2  Experimental Variables 

The discussion above indicates that certain factors have nuisance potential if left 

untreated. An adequate experimental design must make provision for these factors 

by experimentally manipulating them as explanatory variables, for instance, or (at 

least) by controlling for them. In Table  4-15 below, I give a preview of the 

experimental variables in the current study. These variables are relevant to stimuli 

and tasks, which will be discussed in turn.  

Variable Type How is it treated? 
Orthography Independent 

(to be manipulated) 
Two tasks presumably demanding different 
amounts of attention to orthography 
 

Presence of minimal 
pairs 

Independent 
(to be manipulated) 

Two stimulus lists containing minimal pairs 
whose members are (1) kept apart and (2) in 
succession 
 

Sentential context Independent 
(to be manipulated) 

As part of the task: presence or absence of 
contextual clues 
 

Prior practice To be controlled Not allowed; filler tasks recorded in intervals 
 

Token frequency To be controlled Members of each pair are matched for token 
frequency based on subjective judgments 
 

Table  4-15: Experimental variables in the paradigm 

 

4.3.1.2.1  Stimuli 

In terms of composition, the stimulus set is the same as described in ¶ 4.2.1.2.2. In 

terms of presentation order59, however, there are two stimulus lists, described in 

 (43) and schematised in  (44).  

                                                        
59 All the five literate speakers in this experiment are given the same presentation order. In other 
words, the order used in the experiment is not counter-balanced. This is done to minimise inter-
speaker variation, which might obscure intra-speaker effects that are due to the experimental 
factors manipulated in the study. A pilot has shown that these effects are very small. Also, in a 
small-n study as mine, keeping the sample of speakers as homogenous as possible is of paramount 
importance. The same is true of the order of presentation of pair members, where words with 
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(43) i. Pair members apart: minimal pairs are quasi-randomised in 

such a way that the two members of each pair are not to be found 

near each other. For example, the list will contain laê/a/m and 

laê[a]m but with as many items separating them as possible. 

ii. Pair members close: minimal pairs are arranged in such a way 

that the word with V2epenthetic is to follow its V2lexical competitor. 

For example, the list will contain laê/a/m followed immediately 

by laê[a]m. 

 

(44)  

 

 

   

 

 

 

 

 

 

 

 

4.3.1.2.2  Tasks 

In this section, I discuss two more variables from Table  4-15 above. These are 

orthography and sentential context. The experimental paradigm consists of an 

elicitation and two reading tasks. In the elicitation task, speakers answer orally 

                                                                                                                                                                   
V2lexical invariably precede those with V2epenthetic (see the schematic in the text above). In a larger-n 
study, it is, of course, preferable to have presentation orders counter-balanced. Importantly, as far 
as the current study is concerned, the fact that the analyses of ‘a’ and ‘i’ do not yield the same 
results indicates that the non-counter-balanced presentations have not confounded the results in 
any way. 
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presented questions. These questions are designed to elicit the target words. In the 

reading tasks, speakers read out stimulus items presented on a computer screen. 

The two reading tasks differ with respect to the semantics of the carrier sentence. 

In the reading-in-context task, each target word appears in a semantically 

composed sentence, providing disambiguating contextual clues to the meaning of 

the pair members. In the reading-in-a-frame task, each target word is inserted into 

the semantically neutral sentence [ga:lat ____ tara] ‘she said _____ I think].  

The orthographic status of the vowel/zero contrast in BHA needs to be discussed 

in more detail. BHA is essentially a spoken dialect. The written language for BHA 

speakers is Standard Arabic (SA). Importing the orthographic tradition of SA to 

give a written form to the words from BHA does not wholly resolve the vagueness 

surrounding the contribution of orthography to the phonetics of what is essentially 

an unwritten dialect like BHA. See the discussion section for more on this.  

The Arabic writing system is such that only consonants and long vowels are 

represented. Short vowels rarely make it into written texts. Only verses of the 

Qur’an are fully vowelised. Apart from that, written texts appear with short vowels 

unmarked except sometimes in the case of lexical ambiguities that are not 

structurally resolved. And even there, short vowels are kept to a minimum in that 

only the short vowels that are essential to disambiguation are represented as 

diacritic marks underneath or above the relevant consonants. Other occasions 

where short vowels are represented include poetry volumes and textbooks taught 

during early years of school, where pupils are introduced to the writing system in 

its entirety. 

It is only on these occasions that the vowel/zero contrast is represented 

orthographically. For example, a diacritic symbol beneath the consonant 

immediately preceding /i/ in the pronunciation, known as ‘kasra’ in Arabic 

tradition, represents the lexical short vowel /i/. So, [êil] is usually given the Arabic 

form �� ‘state of staying’ with no diacritic marking /i/. Very seldom do speakers of 

Arabic come across the vowelised version  ��ِ  with the kasra appearing beneath ـ� 

[ê]. The symbol for lexical short /a/ is [ َ ], ‘fatha’, as in ��َ [êal] ‘solution’. Lexical 

/u/ is represented by ‘dhamma’ [  ُ ], as in   ��ُ [êul] ‘find a solution’. Importantly, 
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there is a symbol for no-vowel (i.e., zero) known as ‘skuun’ [ � ], as in  ْ��و  [waêl] 

‘mud’. 

However, it seems very unlikely that speakers of an unwritten dialect actually 

resort to an orthographic representation as complicated as this when they access a 

vernacular word. There is psycholinguistic evidence that, in Arabic reading, adding 

short-vowel symbols to written words both disturbs reading processes and delays 

lexical access (Roman & Pavard 1987). Even the standard only-consonants-and-

long-vowels writing system is visually complex. For example, Eviatar et al (2004) 

suggest that, where Hebrew characters are recognised equally well by both 

hemispheres, many Arabic characters are indistinguishable by the right 

hemisphere. Ibrahim et al (2002) conclude that Arabic orthography with multiple 

symbols for any single consonant60 and with many confusable symbols used for 

different consonants, not to forget the famous disregard for short vowels, actually 

slows the processing of the characters and hence the recognition of written words. 

This also finds support in findings by Roman and Pavard (1987: 439), who report 

that Arabs need to look at Arabic words printed in Arabic characters 1.5 times 

longer than French need to look at French words printed in Roman characters. The 

researchers conclude that Arab readers need to extract more information from the 

printed text.  

The cognitive difficulty involved in the processing of Arabic orthography points 

towards what must be a very marginal place for orthography in neutralisation. It is 

hoped that elicitation and reading tasks should place different demands on 

speakers to pay attention to orthography. It is by no means obvious how the 

putative effect of orthography can be eliminated in an elicitation task with literate 

subjects, who know how the target words are spelled in Standard Arabic, and 

might access an orthographic representation when retrieving the word in response 

to interview questions. Nonetheless, as BHA is not written, an elicitation task 

should draw less attention to orthography than would a reading task where the 

stimuli are presented in writing.  

                                                        
60 Eviatar et al (2004: 175) observe that out of the twenty-eight characters used to represent 
consonants in Arabic writing, twenty-two “have four shapes each” according to where they occur in 
the word and/or phrase.  
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4.3.1.3  The Paradigm 

The experimental paradigm in this study is a two (V2-UR-Status) by two (stimulus 

lists) by three (tasks) factorial design. Epenthetic and lexical data alike are 

collected in six experimental conditions manipulating stimulus materials and tasks, 

as illustrated in Table  4-16.  

 Condition Stimulus list Sentential context Task 

Block I 

1 Members apart Composed sentence Elicitation 
2 Members apart Composed sentence Reading 
3 Members apart Frame sentence Reading 

     

Block II 

4 Members in succession Composed sentence Elicitation 
5 Members in succession Composed sentence Reading 
6 Members in succession Frame sentence Reading 

Table  4-16: Experimental conditions in blocks based on stimulus list 

 

One of the variables in the paradigm is the presentation order of pair members in 

the stimuli. If the stimuli are going to be recorded six times by each literate 

speaker, there is a genuine need to control for any learning effects. But with only 

five literate speakers available for recording, traditional methods of having 

different speakers do different conditions in different orders can foster a carry-

over effect for those speakers who do condition 6 in Table  4-16 before they do 

condition 1, which is the least contrastive. Condition 6 is highly contrast-

promoting in terms of stimulus presentation. In terms of orthography, however, it 

is highly neutralisation-promoting. 

The strategy I adopted in the production experiment reported here was not to 

provide an orthography at the outset of the experiment. Rather, I decided to start 

with the least ostentatious condition, which involves eliciting an unwritten list of 

words that contains minimal pairs whose members appeared as far apart as 

possible. As to what conditions to follow, there appear to be two options—one 

being to move to the next stimulus list after all combinations of the previous list 

and tasks have been recorded (i.e., to have stimulus-oriented blocks of conditions), 

the other being to continue with the same task while varying stimulus lists until all 

the relevant combinations have been recorded, then move to the next task and try 

both stimulus lists, etc. (i.e., to have task-oriented blocks). A third possibility was 

to give up on having a within-speaker design and recruit five groups of speakers 

where each group completes only one block of conditions—two groups do the two 
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stimulus blocks (i.e., members-apart conditions and members-close conditions); 

three groups do the three task blocks (i.e., elicitation conditions, reading-in-context 

conditions, and reading-in-a-frame conditions). Here, elicitation can be the opening 

condition for the first two groups of speakers; so can members-apart-list for the 

other three groups. What we would sacrifice instead is the one advantage that a 

within-speaker design guarantees—having each speaker as her own control.  

Practical limitations on this thesis dictated having blocks done by the same 

speakers. But here the decision I made was to have stimulus-oriented blocks. 

Accordingly, across all conditions, members-apart stimulus lists were recorded 

first, while within each block, the elicitation task was always the first. The decision 

to give priority to stimulus lists over tasks was mainly based on the insight 

emerging from the survey in Table  4-14 that the presence of minimal pairs has 

reasonable potential to influence the phonetics of neutralisation. In contrast, based 

on findings of psycholinguistic studies, I suggested in ¶ 4.3.1.2.2 above that 

orthography stands a slight chance of confounding production data from an 

unwritten dialect like BHA.   

Furthermore, the following methodological strategy was applied during the 

execution phase of the production experiment. Recording sessions were scheduled 

to take place on different days, with a few days’ interval separating any 

consecutive conditions. During those intervals, speakers participated in what can 

be described as filler recordings, such as reading out wordlists, telling stories, and 

answering questions in an interview. All of these activities have different materials 

from what is used for the current experiment. 

4.3.1.3.1 Method 

4.3.1.3.1.1  Speakers 

The data come from the five literate speakers whose details are given in ¶ 4.2.1.2.1 

above.  

4.3.1.3.1.2  Materials 

The test materials are the same as described in ¶ 4.2.1.2.2 above. See also 

¶ 4.3.1.2.1.  A total of 2520 tokens (14 pairs (14 x 2) x 3 repetitions x 2 stimulus 



145 
 
lists x 3 tasks x 5 speakers) were acoustically analysed using Praat (Boersma & 

Weenink 2008). 

4.3.1.3.1.3  Procedures 

The data in this experimental paradigm were acquired following the procedures 

detailed in ¶ 4.2.1.2.3. As explained before, the elicitation tasks proceed as an oral 

interview conducted for each speaker individually. During those interviews, 

speakers responded to the orally presented questions, saying the target word in 

the frame [____tara]. In the reading-in-context tasks, speakers read out each 

sentence, as it appeared on a computer screen. The sentential context provides 

disambiguating clues to the meaning of pair members and is generally of the form 

[phrase____tara]. This semantically disambiguating phrase is necessarily different 

for different words. Finally, in reading-in-a-frame conditions, speakers read out the 

target words in the frame [ga:lat___tara] 'she said____ I think'. This frame sentence 

appeared only once at the beginning of the exercise. Each target word appeared on 

the computer screen accompanied by a word in parentheses indicating the 

morpho-syntactic class of the target item. Speakers were instructed to look at both 

the target item and its accompanying descriptor (noun or verb), which appeared in 

red, before they say the target item in the frame. Speakers were not allowed to 

practise on the test words. They had a different practice list to familiarise 

themselves with the procedures.  

As to statistical procedures, it serves the goal of this chapter to maximise the 

comparability of the statistical treatment of the data analysed here with those 

reported in the literature. This is because the chapter attempts to shed light on the 

genuineness argument as it has evolved and been defended in the literature.   

4.3.1.4  Results 

The general picture emerging for the analysed data is that differences between 

epenthetic and lexical vowels, when found, are exceedingly small. The magnitude 

of differences and variability within the data are not the same across the different 

conditions. Appendix G gives the mean and SD values of epenthetic and lexical 

vowels along the five acoustic measures investigated here. These values are 

summarised by conditions, stimulus lists, and tasks.   
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Overall, participants produced larger differences between epenthetic and lexical 

vowels in stimulus conditions with pair-members apart than in those with pair-

members close. This is the case for most measures for ‘a’ and ‘i’. Exceptions include 

i-duration and i-F2. In contrast, the contrast-promoting conditions where speakers 

produce members of minimal pairs in succession generally show the smallest 

differences.  

The smallest variation appears in the elicitation tasks. Specifically, condition 1 is 

by far the least variable. The largest variation is found in the conditions where the 

target words are read out in disambiguating sentences—conditions 2 and 5. Of 

these, condition 5 is by far the most variable. All of these observations apply to 

most parameters for both ‘a’ and ‘i’. Interestingly, condition 6, where pair members 

which appear in succession are read out in a semantically neutral frame, shows 

constrained variation in F0 and duration for both ‘a’ and ‘i’. Mean and SD data are 

graphed in Figure  4-17 through Figure  4-26. 
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Figure  4-17: Mean F0 by experimental condition for ‘a’ and ‘i’ 

 

 

Figure  4-18: F0 SD by experimental condition for ‘a’ and ‘i’ 
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Figure  4-19: Mean intensity by experimental condition for ‘a’ and ‘i’ 

 

 

Figure  4-20: Intensity SD by experimental condition for ‘a’ and ‘i’ 
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Figure  4-21: Mean duration by experimental conditions for ‘a’ and ‘i’ 

 

 

Figure  4-22: Duration SD by experimental condition for ‘a’ and ‘i’ 
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Figure  4-23: Mean F1 by experimental condition for ‘a’ and ‘i’ 

 

 

Figure  4-24: F1 SD by experimental condition for ‘a’ and ‘i’ 
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Figure  4-25: Mean F2 by experimental condition for ‘a’ and ‘i’ 

 

 

 

Figure  4-26: F2 SD by experimental condition for ‘a’ and ‘i’ 
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Mean differences as described above are more clearly captured in Figure  4-27 

through Figure  4-31, which graph mean paired differences (X �PD) and SDPD. These 

summary-statistics values appear in Appendix H.  

In terms of variation, however, these figures present a slightly different picture of 

the data than the absolute SD values above. For example, while most acoustic 

measures for both ‘a’ and ‘i’ data display the largest variation in the reading-in-

context tasks, the magnitude and direction of the paired differences along most of 

these parameters show very little variation in these tasks. In other words, 

production varies a lot from the group mean value, but not from the group mean 

paired difference. Variation in the first case is segmentally based. Being placed in 

necessarily different segmental contexts, vowels in the target words are 

predictably produced with a lot of variation. But speakers apparently produced 

more or the less the same difference (rather, non-difference) between epenthetic 

and lexical vowels in these conditions. 

 

Figure  4-27: F0 mean paired differences X�PD and SDPD values (epenthetic – lexical) according 

to experimental conditions for ‘a’ and ‘i’ 
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Figure  4-28: Intensity mean paired differences X�PD and SDPD values (epenthetic – lexical) 

according to experimental conditions for ‘a’ and ‘i’ 

 

 

Figure  4-29: Duration mean paired differences X �PD and SDPD values (epenthetic – lexical) 

according to experimental conditions for ‘a’ and ‘i’ 
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Figure  4-30: F1 mean paired differences X�PD and SDPD values (epenthetic – lexical) according 

to experimental conditions for ‘a’ and ‘i’ 

 

 

Figure  4-31: F2 mean paired differences X�PD and SDPD values (epenthetic – lexical) according 

to experimental conditions for ‘a’ and ‘i’ 
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Looking at the box-plots of the data in Figure  4-32 through Figure  4-36, we may 

notice different effects of stimulus and task manipulations on the acoustic 

measures. These effects are summarised in Table  4-17 below. 

Acoustic 

Measure 
Stimuli Task 

F0 Smaller range in 
members-close list 

data 
 

Elicitation the least variable; reading in context 
the most variable 

Intensity Less variability in 
members-apart list 

Elicitation the least variable; Condition 5 the most 
variable 

 
Duration Less variability in 

members-apart list 
Reading in context the most variable; reading in a 
frame the least variable for ‘a’; elicitation the least 

variable for ‘i’ 
 

F1 No obvious pattern Lower i-F1 in reading in context 
 

F2 No obvious pattern Elicitation the least variable for ‘a’; no obvious 
pattern for ‘i’ 

 
Table  4-17: Stimulus and task effects on acoustic measures for ‘a’ and ‘i’ based on the data 

summarised in the box-plot graphs below  
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Figure  4-32: Box-plots for a-F0 and i-F0 according to V2 Underlying Status by experimental 

condition; the graphs show the median, upper and lower quartiles, and range of ‘a’ 

and ‘i’ data.   
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Figure  4-33: Box-plots for a-intensity and i-intensity according to V2 Underlying Status by 

experimental condition; the graphs show the median, upper and lower quartiles, 

and range of ‘a’ and ‘i’ data. 
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Figure  4-34: Box-plots for a-duration and i-duration according to V2 Underlying Status by 

experimental condition; the graphs show the median, upper and lower quartiles, 

and range of ‘a’ and ‘i’ data. 
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Figure  4-35: Box-plots for a-F1 and i-F1 according to V2 Underlying Status by experimental 

condition; the graphs show the median, upper and lower quartiles, and range of ‘a’ 

and ‘i’ data. 
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Figure  4-36: Box-plots for a-F2 and i-F2 according to V2 Underlying Status by experimental 

condition; the graphs show the median, upper and lower quartiles, and range of ‘a’ 

and ‘i’ data. 
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reading-in-a-frame) as factors found no statistically significant main effects nor 

interactions along any parameters for ‘a’. 

Similar Anovas, however, reveal that for ‘i’ there is a statistically significant main 

effect of task on i-F1 (F(2,8)= 8.86, p= .009) with estimated marginal means as 

follows: elicitation= 549Hz (SE= 14.6); reading-in-context= 529.7Hz (SE= 16.2); 

reading-in-a-frame= 544.7Hz (SE= 14.7). Post hoc comparison tests with 

Bonferroni adjustment reveal that the i-F1 in elicitation tasks is statistically 

significantly different from i-F1 in the reading-in-context tasks. 

The interaction between V2-UR-Satus and task is statistically significant for i-

duration (F(2,8)= 13.58ms, p= .003) with estimated marginal means as follows: 

elicitation= [i]: 76ms (SE= 3.36), /i/: 75ms (SE= 2.45); reading-in-context= [i]: 

77ms (SE= 3.95), /i/: 75ms (SE= 3.6); reading-in-a-frame= [i]: 74ms (SE= 2.2), /i/: 

78.5ms (SE= 2). A non-parametric Wilcoxon signed ranks test reveals that the 

durational difference between epenthetic [i] and lexical /i/ is statistically 

significant in condition 6 (Z= -2.02; p= .04). 

Finally, i-intensity data display a statistically significant interaction involving V2-

UR-Status and stimulus list (F(1,4)= 8.2, p= .04) with estimated marginal means as 

follows: members-apart list= [i]: 63.2dB (SE= .3), /i/: 62 (SE= .35); members-close 

list= [i]: 63.2dB (SE= 1.2), /i/: 63.6 (SE= 1.2). A non-parametric Wilcoxon signed 

ranks test reveals that the intensity difference between epenthetic [i] and lexical 

/i/ is statistically significant in condition 1 (Z= -2.02; p= .04). See Appendix I and 

Appendix J for graphs displaying main effects and interactions among the factors 

for both ‘a’ and ‘i’.  

4.3.1.5  Discussion 

I discuss the effect of experimental manipulations on the phonetics of 

neutralisation from the perspective of task and stimulus main effects and their 

interactions with V2-UR-Status.   

I discuss the effect of task manipulations with reference to sentential context, 

orthography and delivery.  The experimental paradigm in this study includes an 

elicitation and two reading tasks. In the elicitation task, each orally-presented 

question, which provides the disambiguating context, is answered by a two-word 

clause. The carrier in reading tasks, a composed sentence or a frame, is a three-
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word clause. That is, the elicitation task is different from the two reading tasks not 

only in terms of clause length but also in the fact that the stimulus materials are 

not presented in an orthographic medium. Given that no data-transformation has 

been carried out to make up for clause length, any differences observed between 

elicitation and reading cannot be conclusively attributed to orthography; these can 

be just as well time-related (but see below). 

As shown above, the only statistically significant main effect involves an i-F1 

difference between elicitation and reading-in-context. Note that both of these 

conditions provide disambiguating contextual clues as part of the elicitation 

question and the carrier sentence, respectively. i-F1 in reading-in-context tasks is 

the lowest among all three tasks. Since it is only in this task that the carrier 

sentence varies in segmental, syntactic, and semantic properties, the difference is 

most probably segmentally conditioned. This finds support in the fact that i-F1 

mean values are very close in the other two tasks and considerably higher than i-

F1 mean value in the reading-in-context task. Thus, this F1 difference cannot be 

due to durational differences.  

Failure of the other acoustic measures to display statistically significant differences 

in response to task manipulation indicates that manipulating task in this way has 

an extremely limited impact on the production of the target vowels in the test 

words. For example, the three levels of the independent variable of task might be 

too close together for the subjects to produce a discernible effect (see e.g., 

Snodgrass et al 1985 for illustrations). More specifically, there might be no, or very 

negligible, durational differences between a two-word clause and a three-word 

clause in BHA phonetics. If true, this would effectively remove the confounding 

potential of the different clause-lengths that have been used. The orthography-

based distinction holding between the elicitation task and the two reading tasks 

co-varies with a clause-length difference. Since task manipulations have largely 

failed to produce an effect, the obvious conclusion for both orthographic and 

clause-length differences, as employed in this study, is that neither matters too 

much for the acoustics of BHA vowels. It is possible that a different manipulation 

using a different range or set of task levels may produce an effect. I leave this for 

future research.  
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It is also important to remember that my dismissal of task manipulation in this 

experiment as unsuccessful largely rests on the outcome of statistical significance 

procedures, which I take up further in the next section. Interestingly, the 

descriptive statistics point to a delivery-based difference. Specifically, in the 

elicitation task, vowels tended to be produced with a lower F0 and more intensity 

than in the reading tasks. At the same time, ‘a’ has a higher F2, while ‘i’ has a lower 

F2 in the elicitation task than in the reading tasks. This spectral difference suggests 

that ‘a’ is less back while ‘i’ is less front in the elicitation task than in the reading 

tasks. A lower F0 and greater intensity often correlate with more openness (e.g., 

Fischer-Jørgensen 1990; Lehiste & Peterson 1959; Whalen & Levitt 1995; Yi Xu, 

p.c. 2010). Taken together, these trends characterise a centralised vowel 

production, at least as far as ‘i’ is concerned. However, there are at least two 

reasons to doubt the validity of claiming that the vowels are more centralised in a 

two-word elicitation task than in three-word reading tasks.  

Firstly, as is well-known, a form of formant centralisation, sometimes described as 

undershoot, correlates with durational reduction (e.g., Lindblom 1963; Lindblom 

1990; Moon & Lindblom 1994). In the data at hand, there is no durational 

reduction, but there appears to be a kind of formant centralisation. Finding 

centralisation can sometimes simply be a side-effect of calculating group mean 

values, where inter-speaker variations pull and push the grand mean towards the 

centre of the data (cf. van Bergem 1995). Although I do not look into individual 

data for reasons of space and time, I have, nonetheless, investigated this possibility 

for the F2 data and found that the pattern of centralisation in the group mean 

generally occurs for individuals’ mean values. This implies that the centralisation 

here is not an artefact of average calculation over speakers. Note, however, that the 

within-speaker centralisation effect can still be an artefact of average calculation 

over items. I leave this for a future follow-up study. In chapter six, I propose a 

model of lexical representation and phonetic processing that offers a more 

principled way of treating speaker- and item-related variations. 

 An important question that suggests itself here concerns the prevalence of 

durational fluctuations in a dialect where vowel length is contrastive (cf. Flemming 

1997; Keating 1985). Acoustic studies on Arabic dialects conclude that the 

duration of short vowels usually resists environmental effects. For example, Mitleb 
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(1984), and Haj Yusef (1992) report that vowel duration in Arabic does not show 

an effect of the voicing of the preceding consonants, but see Alghamdi (2004) for a 

different outcome. Haj Yusef (1992) shows that vowel duration in Arabic does not 

fluctuate in response to changes involving the surrounding consonantal 

environment, such  as pharyngealisation, gemination, and other place- and 

manner-of-articulation effects. If this is true of BHA, then the lack of durational 

reduction does not necessarily invalidate the centralisation claim. 

Secondly, the lack of any F1 differences seems to call into question any appeal to 

the correlation between articulatory openness and lowered pitch and increased 

intensity that previous research on vowel acoustics has documented. There are at 

least two explanations for this lack of F1 variation. Firstly, this immunity of F1 may 

be related to suggestions in the phonological literature that Arabic only has a 

height contrast in short vowels. That is, /i/ and /a/ are phonemes, while [u] is not 

(Herzallah 1990; McCarthy 1994; but see Al-Mozainy 1981). Lindbolm (1986: 39) 

notes the “primacy of height (sonority or F1) over front-back (chromaticity or F2) 

distinctions” in vowel systems. In other words, in Arabic the backness dimension is 

less constrained than the contrastive height dimension. Interestingly, Tsukada 

(2009) found no effect of vowel length (i.e., long vs short vowels) on the realisation 

of F1 in Arabic. This is in contrast to Japanese and Thai, both of which employ a 

length contrast just like Arabic. Furthermore, this agrees with findings reported in 

de Jong and Zawaydeh (1999) that F1 differences between stressed and unstressed 

vowels are very small ranging from 10Hz to 40Hz. Secondly, it is argued in the 

literature that the production of /i/ and /a/ is subject to a saturation effect causing 

muscular tensions beyond a certain point to have no articulatory or acoustic 

consequences (e.g., Perkell 1996). The small variability in i-F1 and a-F1 is probably 

a manifestation of this effect.  

In any case, the magnitude of the raw mean differences is very small, anyway. The 

ratio holding between the mean values of any two tasks along all the acoustic 

measures for both ‘a’ and ‘i’ broken down by V2-UR-Status approximates ≈1 (see 

Appendix G and Appendix H). Clearly, more research is needed to give a complete 

account of this. 

Next I discuss the interaction of task with V2-UR-Status, which provides a more 

direct window into the phonetics of vowel/zero neutralisation in BHA. Here, i-



165 
 
duration provides the only instance where task interacts statistically significantly 

with V2-UR-Status. As shown in the Results section, the statistically significant 

task-based difference between epenthetic [i] and lexical /i/ is found in the reading-

in-a-frame, where [i] is statistically significantly shorter than /i/. In the other two 

tasks, however, [i] is marginally and non-significantly longer than /i/. In the 

absence of any disambiguating semantic clues to the vowel/zero contrast, [i] and 

/i/ are produced differently in the very task that encourages spelling-

pronunciation.  

Given that the vowel/zero contrast is not standardly represented in the 

orthography of BHA, do we conclude from this that the contrast is incompletely 

neutralised through [i]-epenthesis despite identical orthographic representation, 

but completely neutralised through [a]-epenthesis? Note that if orthography really 

has a very limited part to play in the phonetics of BHA, we should expect to find no 

quality-based differences that can be traced back to orthography.  

An alternative interpretation is to conclude that the orthographic non-

representation of the vowel/zero contrast induced a complete neutralisation effect 

in the case of ‘a’ but failed to do so in the case of ‘i’. Again the quality-based 

difference is suspect. A recent psycholinguistic study by Bentin and Ibrahim (1996: 

319) shows that when presenting words from an Arabic dialect in writing to 

speakers of that dialect, "[b]oth lexical decision and naming performance were 

inhibited". This is in contrast to the reaction by the same speakers to written 

words drawn from Standard Arabic. In other words, if lexical decision is inhibited 

for our subjects, we should expect the vowel/zero contrast to be completely 

neutralised for both ‘a’ and ‘i’. 

However, what is directly relevant to the genuineness question is that incomplete 

neutralisation seems to be cleared from being an orthographic artefact on either 

account. It is here complete neutralisation which seems suspect on orthography-

related grounds. This is in contrast to what is commonly reported in the literature 

about the confounding potential of orthography. More specifically, orthography 

has only been available to blame when incomplete neutralisation is reported for a 

contrast that is represented orthographically (see e.g., Warner et al 2006, 2004). 
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At the same time, the durational difference between [i] and /i/ in the reading-in-a-

frame task (but not in the other two tasks) where the semantics of the context is 

not neutral, seems to suggest that the distinction is to compensate for a degraded 

semantic context. Again, the disparate outcomes for ‘a’ and ‘i’ data raise doubt 

about claims that incomplete neutralisation is an artefact of the pragmatic context. 

Now we can see how the same compromised and artificial pragmatic context 

produces both complete and incomplete neutralisation. Interestingly, the 

naturalistic context in the other two tasks only produces complete neutralisation. 

Will this render incomplete neutralisation redundant, implying that complete 

neutralisation is actually an artefact of an unambiguous semantic and pragmatic 

context? This may agree to some extent with a suggestion made by Port and 

Crawford (1989) and defended later by Gafos (2006) that speakers can control 

how much contrast they ‘want’ to convey in neutralisation contexts. Nevertheless, 

it does not provide evidence for the genuineness argument. On the contrary, the 

results are more consistent with an alternative interpretation that does not appeal 

to the genuineness argument. This new interpretation states that the phonetics of 

neutralisation is variable, and lawfully so. In other words, both complete and 

incomplete effects are possible for the same context by the same speaker. This is 

the essence of the variability model I present in chapters six and seven.  

As to the effect of stimulus manipulation in the paradigm, it seems that, by a 

statistical significance criterion, manipulation of stimuli has failed to have any 

effect on the acoustics of epenthetic and lexical vowels. V2s of words presented in a 

list where members of each minimal pair are kept as far apart as possible and 

those coming from words presented in a list where members of each minimal pair 

appear one immediately after the other are not produced differently along any of 

the acoustic measures of the study. The size of the raw mean differences also 

supports the above conclusion.  

Just as in the case of task manipulation, that vowel production in this study 

emerges unaffected by manipulating speakers’ awareness of the presence of 

minimal pairs is suspect. The literature on the phonetics of neutralisation provides 

us with a case where a similar manipulation has yielded a statistically significant 

effect. In Snoeren et al (2006), member-close lists of minimal pairs produced more 

differences between underlying and derived voiced obstruents in French than 
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members-apart lists. Again, just as in the case of task manipulation, the pattern 

might be related to the acoustics of vowels in BHA.  

The box-plot data, however, suggest the possibility of stimulus-based F0 and 

intensity differences. The nature of these differences deserves further 

consideration. Ostentatiously drawing speakers’ attention to minimal pairs, as in 

conditions 4-6, results in an increased variability within the intensity data for both 

vowel categories. But it has actually constrained variability within the F0 data for 

both vowel categories. The idea that minimal contrasts can constrain variation is 

not new. Although not always made explicit, it can be found under the rubric of a 

constrained phonetics because of the phonemic system of contrast in a language 

(see e.g., Campos-Astorkiza 2007; Lavoie 2002; Lindblom 1986; Manuel 1990; 

Tabain & Perrier 2007, 2005; Vaux & Samuels 2005). However, the increase in 

intensity variation is actually due to inter-speaker variation. For space reasons, I 

do not report nor discuss data from individuals in this thesis. Suffice it to observe 

here that the pattern seems to reflect speakers’ different reactions to the highly 

contrast-promoting order of the stimulus set.  

With regard to factor interactions, the i-intensity data show the only statistically 

significant interaction between stimuli and V2-UR-Status. Specifically, [i] is 

statistically significantly more intense than /i/ in the members-apart list. The 

vowel/zero contrast is not enhanced in the members-close list. This finding seems 

to be at odds with Snoeren et al’s (2006: 263) suggestion that incomplete 

neutralisation, especially where lexical confusability is involved, is “automatic in 

nature and reveal[s] the tight interdependency of productive and perceptual 

processes of lexical access in speakers/listeners’ minds”. The acoustic difference 

that BHA speakers produce in the naturalistic conditions does not show up in the 

conditions where lexical confusability is very likely—conditions where speakers 

produce members of minimal pairs in close succession. This result casts doubt on 

the claim that incomplete neutralisation is an automatic or intended strategy to 

counteract lexical ambiguity (cf. Gafos 2006; Port & Crawford 1989). 

4.3.1.6 Interim Conclusion     

This section has assessed the genuineness question from an experimental 

viewpoint by manipulating the naturalness of the experimental conditions. In the 

most naturalistic condition, subjects produce minimal pairs whose members are 
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orally elicited far apart. In the least naturalistic condition, subjects read out 

minimal pairs whose members appear one after the other. In this condition, the 

carrier sentence is a semantically neutral frame produced for all item words. The 

only clue to the meaning of the target member of each pair is a meta-linguistic 

descriptor specifying the morpho-syntactic category of the item in question. In 

between these two extremes, there are four conditions each with a different 

combination of the levels of stimuli, orthography, and pragmatic context. 

Interestingly, the largest experimental differences holding between conditions 1 

and 6 have mostly failed to show up in the phonetics of vowel/zero neutralisation 

in BHA. At least, this is wholly true of the neutralisation effect involving [a]-

epenthesis. More specifically, [a]-epenthesis neutralises the vowel/zero contrast 

phonetically completely, even in the condition calling ostentatiously for a 

distinction to be produced. 

In contrast, V2-UR-Status interacts statistically significantly with stimuli and with 

task for ‘i’. These interactions suggest that [i]-epenthesis results in a phonetically 

incomplete neutralisation in conditions 1 and 6, respectively.61 What is noteworthy 

about these results is that vowel/zero neutralisation remains incomplete through 

[i]-epenthesis only in the two extreme conditions, the most naturalistic and the 

most unnaturalistic. This also means that [i]-epenthesis results in complete 

neutralisation in the remaining four conditions. 

Of particular interest to the genuineness question is the results of ‘a’ and ‘i’ in 

condition 6. This is a condition that both promotes and demotes the realisation of 

contrast. This contradictory nature of the condition is due to the presentation of 

orthographically identical pair members in succession. In other words, the 

condition can potentially induce incomplete neutralisation when speakers are too 

                                                        
61 Compare the results of Condition 1 in this five-speaker experiment with those of the seven-
speaker experiment reported in ¶ 4.2.1, where the only difference that reached statistical 
significance is a difference in intensity between epenthetic [a] and lexical /a/. On the basis of those 
results, I concluded that [a]-epenthesis resulted in incomplete neutralisation while [i]-epenthesis 
resulted in complete neutralisation. In contrast, the five-speaker data in this section display more 
differences between epenthetic [i] and lexical /i/ than between epenthetic [a] and lexical /a/. This 
inconsistency further supports the claim made in chapter two that if we choose to base our 
conclusions regarding the phonetics of neutralisation on NHST results, we will inevitably encounter 
cases where we find ourselves drawing mixed conclusions about the phonetics of neutralisation. 
The other interpretation of this is that the phonetics of neutralisation is variable between complete 
and incomplete effects. To choose between these competing views, we need a deep scrutiny of 
NHST procedures and outcomes. The next chapter offers just such a scrutiny.         
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aware of the presence of minimal pairs. Conversely, it can induce complete 

neutralisation when speakers pay more attention to the identical form of the 

words, or if they ignore or miss the lexical cue that the accompanying descriptors 

provide. Of course, individual speakers do not have to realise one and the same 

scenario. But in principle, they can. 

The dilemma that the results of both vowel categories create so far is this: the 

same experimental make-up produces both complete and incomplete 

neutralisation; which do we choose to call an experimental artefact, and on what 

grounds? How naturalistic or otherwise an experimental condition is does not 

seem to qualify as a valid criterion. This will effectively render void the question of 

the genuineness of the experimental findings, at least as far as the experimental 

artefactuality argument is concerned. Next, I examine the genuineness question 

from a statistical angle.  

4.3.2 Statistical Artefactuality 

Compared to experimental artefactuality, statistical artefactuality has attracted 

relatively little attention within those circles disputing the genuineness of the 

neutralisation findings in the experimental literature. On those few occasions 

where statistical artefactuality is evoked, the statistical power of the experiment 

under scrutiny seems to be the main point of concern. Interestingly, it is complete 

neutralisation which mostly causes concern. Specifically, complete neutralisation 

has been disregarded as a side-effect of an experiment that is too low in power to 

detect the small differences that are common in neutralisation studies. To 

circumvent this problem, Warner et al (2006, 2004) call for carrying out 

production experiments using a large sample size. I take up the issue of statistical 

significance and sample size in the next chapter. But here I will focus on a much 

neglected aspect of the statistical artefactuality debate—one where both complete 

and incomplete neutralisation can equally be suspect, statistically speaking. 

In particular, I will discuss the impact of pre-analysis on the statistical outcomes of 

different data analyses and subsequently on the inferences we draw based on such 

analyses. Limiting the discussion below to what is directly relevant to the 

phonetics of neutralisation, I will focus on two pre-analysis procedures that are 

commonly applied to data before statistical analysis. These are data aggregation 

and data pooling. For the purposes of this thesis, I shall make the following 
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distinction between these two procedures. Here, aggregation involves entering a 

single mean score for each individual or experimental unit in a given experimental 

condition. In contrast, pooling consists in entering multiple observations from an 

individual or a group of individuals as though they were independent observations 

in an experimental condition (see Leger & Didrichsons 1994). Put simply, pooling 

here does not involve any arithmetic calculation, whereas aggregation does.  

Surveying the literature on the phonetics of neutralisation, one comes across 

various methods of data entry. Some rely exclusively on data aggregation; some on 

pooling; and some others combine the two procedures in the same analysis. Now it 

must be noted that not all methods of data entry are appropriate for the kind of 

statistical tests we run on the data we collect within a repeated-measures design. 

In  (45), I have listed some of the common methods of data entry found in the 

relevant experimental literature.  

(45) Common methods of data entry in the phonetics of neutralisation 

literature: 

i. Data averaged across repetitions and across items 

for each subject in an experimental condition 

ii. Data averaged across repetitions and across 

subjects for each item in an experimental condition 

iii. Data averaged for each item by each subject across 

repetitions only, then pooled for a given 

experimental condition   

iv. Data from each subject analysed separately  

v. Data pooled from all subjects, all items, and all 

repetitions, if applicable, for a given experimental 

condition     

Obviously, methods (i) and (ii) above follow an aggregation procedure, whereas 

methods (v) represents a complete pooling procedure. Method (iii), however, 

combines the two procedures by pooling aggregated data. Method (iv) is a special 

case of method (iii) if an individual’s data are entered as an aggregate item pool; it 

is a special case of method (v), if raw data from the individual are entered.  
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Importantly, each one of these five methods assumes a different definition and 

leads to a different interpretation of what constitutes experimental units for 

statistical analyses. Specifically, experimental units are subjects according to (i), 

items according to (ii), each item by each subject according to (iii), all and only 

items of a single subject according to (iv), and the whole dataset according to (v). 

Defining experimental units is relevant to the validity of the outcome of Anovas 

and t-tests, which are, by far, the most common tests in the phonetics of 

neutralisation literature. For example, a basic assumption of these tests, commonly 

known as the independence assumption is very sensitive to the definition of 

experimental units—i.e., to the method of data entry. The independence 

assumption requires that observations in a given experimental condition within a 

repeated-measures design be independent of each other—i.e., come from different 

subjects (see below for more).62 Although Anovas and t-tests are often said to be 

robust against violations of a number of their basic assumptions (e.g., Howell 

2002; Rietveld & van Hout 2005), many agree that a violation of the independence 

assumption is very serious for the validity of the outcome of these tests (e.g., 

Kenny & Judd 1986; Machlis et al 1985).  

Importantly, Max and Onghena (1999) have shown how a violation of this 

assumption via a pooling procedure results in spurious statistical significance in 

the outcomes of Repeated-Measures Anova with a Huynh-Feldt correction, 

Manova, and a Mixed model analysis run on a hypothetical dataset.63 However, 

when the same dataset are entered correctly, aggregated rather than pooled, none 

of these statistical tests display statistical significance. Likewise, on the basis of 

simulations, Jenkins (2002) concludes that the likelihood of finding spurious 

statistical significance, and thus committing a Type I error64, is very high for 

pooled data as compared to aggregated data. 

By definition, the pooling procedure leads to a violation of the independence 

assumption. This is commonly described as the ‘pooling fallacy’ (Machlis et al 

1985). It follows then that the outcome of statistical tests on data entered using 

methods (iii), (iv), or (v) should be treated with caution. According to these 

                                                        
62 The technical definition of the independence assumption refers to the independence of the error 
components of the statistical model, but the simplified definition above is sufficient for our 
purposes (for more see Thoresen & Elashoff 1974). 
63 These results apply to t-tests, as well. 
64 In NHST, Type I error is said to occur when a true null hypothesis is rejected. 
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methods, the sample size (henceforth n), which enters the various equations 

necessary for the computation of the components of Anovas or t-tests, is 

erroneously over-estimated. What would be inappropriately treated as n 

according to these pooling methods does not reflect the true sample size. 

Specifically, n is equated with the product of the number of subjects and the 

number of items in (iii), with the number of multiple observations from an 

individual subject in (iv), and with the whole dataset in (v). This will grossly inflate 

the degrees of freedom (df) for the error in ANOVAs and t-tests, resulting in 

statistical significance being too easily reached. Experimental studies by Campos-

Astorkiza (2008), Dmitrieva et al (2010), Gouskova and Hall (2009), Jassem and 

Richter (1989), Myers and Hansen (2005), Piroth and Janker (2004), Tabain and 

Perrier (2007), and Yu (2007), for example, report statistical analyses run on 

pooled data at high degrees of freedom. Charles-Luce (1985: 318) voices a similar 

complaint about inflated degrees of freedom in other studies to “near infinity”, 

which make it hard to compare statistical results that are pertinent to the same 

phenomenon but which are obtained from different studies.  

Likewise, but perhaps less obviously, method (ii) incurs a violation of the 

independence assumption, even though it is essentially an aggregation procedure. 

To appreciate how that might be true, we first need to learn how and why method 

(i) is the only method listed in  (45) that satisfies the independence assumption.      

Method (i) takes each individual subject to represent one experimental unit. Put 

differently, for any given experimental condition in a repeated-measures design, 

each subject only contributes a single data point, averaged across repetitions, if 

any, and across items, if any. According to Max and Onghena (1999: 265), 

individual subjects are independent of each other in “the vast majority of research 

studies in the fields of speech, language, and hearing”. In contrast, items are usually 

nested within subjects, with each subject contributing a number of items. 

Accordingly, items coming from a single subject are not independent of each other.  

Method (i) is commonly known as by-subject analysis. Here n equals the number of 

subjects. According to Raaijmakers (2003) and Raaijmakers et al (1999) (see also 

Locker et al 2007), this mode of analysis is the correct one for many repeated-

measures datasets as found in language research, especially when item variation is 

experimentally controlled for (but see Rietveld & van Hout 2005 for a different 
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view). Among the experimental studies that offer by-subject analyses of 

neutralisation data are Barnes (2006), Charles-Luce (1985), Lahiri and Hankamer 

(1988), Slowiaczek and Dinnsen (1985), Snoeren et al (2006), and Warner et al 

(2006, 2004).  

In contrast, method (ii), known as by-item analysis, averages across subjects and 

across repetitions. Since items are the experimental units in this analysis, n is 

equated with the number of items analysed. Originally, this method has been 

proposed to resolve what is now known as the ‘language-as-fixed-effect fallacy’ 

(see Clark 1973 for details). The outcome of a by-item analysis together with the 

outcome of a by-subject analysis are meant to provide the necessary components 

for the calculation of minF’, which can be used for hypothesis testing.65 In other 

words, a by-item analysis is not meant for direct hypothesis testing, contra what 

many studies these days seem to suggest. Raaijmakers (2003: 146) evaluating such 

a development, finds no “statistical rationale for such a procedure”. Moreover, 

according to Rietveld and van Hout (2005: 169), since by-item analyses do not take 

into account correlations within subjects, they “tend to give incorrect inferences”.  

This follows from their violating the independence assumption. Experimental 

studies by Mitleb (1981), Port and O’Dell (1985), Snoeren et al (2006), Tieszen 

(1997), Warner et al (2006, 2004), for example, contain by-item analyses of 

neutralisation data. 

What is directly relevant to the genuineness question from the discussion above is 

that using different methods of data entry, which each entails a different definition 

and interpretation of experimental units in the statistical analysis, can give quite 

different statistical outcomes. However, it will be inadequate to explore statistical 

artefactuality solely by comparing the statistical outcomes of the different studies 

mentioned above which follow different methods of data entry. There is a 

multitude of design-related differences among those studies, which may greatly 

reduce comparability among them. For example, mean differences vary widely in 

those studies. Moreover, the magnitude of neutralisation effects and data variation 

                                                        
65 minF’ is actually the lower bound of F’, which is originally proposed for evaluating hypotheses 
involving both subjects and materials. But due to its ease of calculation, minF’ is often used instead. 
It is calculated as follows: 
)�1)�
)��)� , where F1 is the by-subject-analysis F-ratio, and F2 is the by-item-analysis F-ratio.  

On how to calculate the degrees of freedom associated with minF’, see Clark (1973). 
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does not show up to a similar degree. Realistically, these differences will confound 

any effect that might be attributed to the methodology of data entry.  

To isolate the contribution of pre-analysis procedures, we need to control for the 

various confounding design-related variables. One way of doing this is through 

simulation—but simulated studies have already been reported and referred to 

above to illustrate the point being made. For more on this option, see Jenkins 

(2002) and Max and Onghena (1999). Another way, which I present below, is to 

submit real neutralisation data to different pre-analysis procedures, thus testing 

the effect of data-entry methodology on statistical outcomes and subsequently on 

our conclusions regarding statistical artefactuality and regarding the phonetics of 

neutralisation in general.   

Specifically, I re-analyse Turkish and Polish devoicing data from Kopkallí (1993) 

and from Tieszen (1997), respectively.  Unlike many studies in the literature, these 

two studies provide detailed descriptive statistics including an adequate break-

down of mean scores by subjects, items, and conditions. The choice of the specific 

methods of data entry I try here is not arbitrary; it is rather constrained by the 

form of the available data. For example, Kopkallí (1993) does not give raw data. 

Thus, a re-analysis using method (v) is not possible for Turkish. Similarly, Tieszen 

(1997) does not include multiple repetitions of each item by each speaker. Thus, a 

re-analysis using method (iii) is not possible for Polish. 

Kopkallí (1993) (henceforth Kopkallí) fitted multi-factor mixed models to data 

from each of the five subjects in her experiment. These factors include the 

underlying voicing of the target word-final consonant, four temporal parameters 

(i.e., preceding vowel, consonant, pulsing, and aspiration), two contexts (sentential, 

and in isolation), three places of articulation (bilabial, dental, and velar), and 

familiarity of test words. In addition to these fixed factors, the model includes 

several inter-factor interaction terms, and a random effect of words. A χ2 test is 

used to evaluate the contribution of these factors. Kopkallí explains that she 

resorted to individual data analyses to simplify the models, which otherwise would 

have required larger computer memory than was available to her.  In none of the 

models fitted is underlying voicing statistically significant. However, underlying 

voicing statistically significantly interacts with temporal parameter for two out of 



175 
 
the five subjects, implying that for some parameters, underlying voiced and 

voiceless consonants are realised differently by these speakers. Nevertheless, 

Kopkallí decided not to investigate this any further and concluded that final 

devoicing in Turkish is completely neutralising.  

To re-analyse these Turkish data, I submitted them to an aggregation procedure 

(method i) and to a pooling procedure (method iii). Table  4-18 summaries mean 

paired differences (X �PD) and their SDPD values, according to methods (i) and (iii).  

Duration 
(in ms) 

 

X�PD 

/voiced/ – /voiceless/ 

SDPD 

(method i) 
 

SDPD 

(method iii) 
 

Vowel 3 1.2 4.6 

Consonant -3 2.5 4.7 

Pulsing 1.4 .53 2.3 

Aspiration 2 2.4 5 

Table  4-18: Descriptive statistics for Turkish final devoicing including mean paired 

differences and their standard deviations as calculated using a by-subject 

aggregation method (i) and a pooling method (iii); data come from Kopkallí 

(1993). 

 

As is clear from the table above, aggregation and pooling yield different variation 

estimates in the form of SDPD. In particular, aggregation tends to under-estimate 

variability within the data (see Leger & Didrichsons 1994), while pooling over-

estimates the degrees of freedom for statistical inferential testing. Importantly, 

however, mean differences are unaffected by these pre-analysis procedures.  

A series of paired t-tests run on the by-subject aggregated data (method i) with a 

Bonferroni correction reveal statistically significant differences along two of the 

four parameters of the study: vowel duration [t(4)= 5.5; p=.005] and closure 

pulsing duration [t(4)= 5.85; p.= .004). 

The outcome of the paired t-tests run on the pooled data (method iii) with a 

Bonferroni correction is not the same as above. Here three out of the four 

parameters of the study show statistically significant differences. These are vowel 

duration [t(29)= 3.5; p=.001], consonant duration [t(29)= -3.5; p= .002], and 

closure pulsing duration [t(29)= 3.3; p= .002).  Table  4-19 gives the results of the 

paired t-tests on the aggregated and pooled data. Note that without adjusting for 
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multiple testing66, the outcome of the pooling procedure would have been even 

more dramatically different from the outcome of the aggregation procedure and 

indeed from Kopkallí’s own individuals’ data analyses. Without adjusting for 

multiple testing, the pooling procedure finds statistical significance along all the 

temporal parameters in the study.   

 
 

Aggregation (method i)  Pooling (method iii) 
t 

df=4 
P 

 t 

df=29 
p 

V-Duration 5.5 .005*  3.5 .001* 

C-Duration -2.66 .057  -3.48 .002* 

Pulsing-Duration 5.85 .004*  3.34 .002* 

Asp-Duration 1.78 .150  2.11 .044 

*statistically significant at the Bonferroni-adjusted alpha at 5% 

Table  4-19: Results of two-tailed paired t-tests for Turkish final devoicing 

 

Now the important question that is pressing us for an answer is this. Which effect 

is genuine? Is Kopkallí’s conclusion of complete neutralisation, which is based on 

individual data analyses, a statistical artefact? Is our new conclusion of incomplete 

neutralisation based on a by-subject analysis genuine? Or is a conclusion of 

incomplete neutralisation that a pooled aggregate analysis supports a statistical 

artefact? Of course an obvious way to pursue these questions further is to 

scrutinise the statistical validity and soundness of the outcome of the NHST 

procedures as specifically applied to the Turkish data. In the next chapter, I take up 

the criterion of statistical significance more generally. However, for now, we need 

to reflect on the implications of these results for the genuineness argument—the 

topic of this section.  

Consider what would have happened had Kopkallí chosen to analyse her data 

according to method (i) or (iii), as above, in the first place. Most probably, Turkish 

final devoicing would have been cited as an example of incomplete neutralisation 

that is not supported by an orthographic distinction. The Turkish data, or more 

precisely, Kopkallí’s conclusion of complete neutralisation based on individual-

data analyses has been used to argue against the genuineness of incomplete 

                                                        
66 See the discussion in ¶ 4.2.1.2.3.3 on multiple testing. 
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neutralisation. Roughly speaking, the argument took this form: incomplete 

neutralisation is reported for languages with contrast-preserving orthographies, 

such as Dutch, but not for languages whose orthographies do not preserve the 

neutralised contrast such as Turkish. Therefore, incomplete neutralisation must be 

a spelling pronunciation—an artefact of orthography. Paradoxically, one can easily 

construct an argument to the contrary by relating complete neutralisation in 

Turkish to the fact that the Turkish orthography does not represent the contrast, 

but rather its neutralisation. In light of this absurdly obvious revelation, complete 

neutralisation can now be seen as nothing more than a spelling pronunciation—an 

artefact of orthography, not at all different in experimental artefactuality from 

incomplete neutralisation, which has long been singled out, named, and shamed 

for being non-genuine.   

Now concluding that voicing neutralisation in Turkish is phonetically incomplete 

will mean that incomplete neutralisation can occur despite an inauspicious 

orthographic representation of neutralisation. Such an outcome indicates that 

incomplete neutralisation is not necessarily a spelling pronunciation or an 

experimental artefact, at least as far as the Turkish data at hand are concerned. 

However, the verdict for the question of experimental artefactuality seems to lie 

with statistics.   

Importantly, the statistical re-analysis of the Turkish data above suggests that 

statistical artefactuality can be affixed not only to complete neutralisation, as has 

been usually the case, but also to incomplete neutralisation. It is fortuitous that a 

single case, the Turkish data, which illustrates the duality of the experimental 

artefactuality above, should furnish us with an opportunity to dissect the statistical 

artifactuality issue, thus vitiating the genuineness argument from both 

experimental and statistical perspectives.   

Now consider Tieszen’s (1997) (henceforth Tieszen) neutralisation data and 

conclusions regarding final devoicing in Polish. Tieszen explores the phonetics of 

final devoicing in three dialects of Polish: Warsaw, Bydgoszez, and Kraków. On the 

basis of statistical analyses run on data from five native speakers from each dialect 

producing nine minimal pairs, Tieszen concludes that neutralisation is phonetically 

incomplete in Warsaw, but complete in Kraków, with Bydgoszez falling in between, 

as a transitional dialect. Tieszen’s analysis applies a by-item aggregation 
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procedure. Tieszen has investigated three acoustic parameters. These are vowel 

duration, closure duration, and closure pulsing duration. Tests items are 

embedded into two carrier contexts: ____#C (-voice) and  ____#vowel.  I limit my re-

analysis here to the consonant-initial environment, following a hint from Tieszen 

that the phonological environment for final devoicing in Kraków does not include a 

vowel-initial following context. Also, for the sake of simplicity, I do not re-analyse 

the data from the transitional dialect of Bydgoszez.  

Tieszen reports that, in Warsaw Polish, a mean durational difference in closure 

pulsing between underlyingly voiced and voiceless stops of ≈20ms is statistically 

significant: [t(8)= 4.13; p< .05]. No statistically significant differences are found in 

Kraków Polish. 

Here, I present statistical analyses of these Polish data, having submitted them to 

an aggregation procedure (method i) and a pooling procedure (method v). Table 

 4-20 and Table  4-21 give mean paired differences (X �PD) and their SDPD values for the 

data from Warsaw Polish and Kraków Polish, respectively.67  

Duration 
(in ms) 

 

X�PD 

/voiced/ – /voiceless/ 

SDPD 

(method i) 
 

SDPD 

(method v) 
 

Vowel 8.8 9.4 27 

Consonant -9 6.8 35 

Pulsing 19.76 11.7 25.3 

Table  4-20: Descriptive statistics for Warsaw-Polish final devoicing including mean paired 

differences and their standard deviations as calculated using a by-subject 

aggregation method (i) and a pooling method (v); data come from Tieszen (1997). 

 

Duration 
(in ms) 

 

X�PD 
/voiced/ – /voiceless/ 

SDPD 

(method i) 
 

SDPD 

(method v) 
 

Vowel 3.3 3.85 23 

Consonant 1.59 5.3 19.9 

Pulsing 2.7 4.8 7.2 

Table  4-21: Descriptive statistics for Kraków-Polish final devoicing including mean paired 

differences and their standard deviations as calculated using a by-subject 

aggregation method (i) and a pooling method (v); data come from Tieszen (1997). 

                                                        
67 There is a very slight difference between some of the mean figures reported in Tieszen (1997) 
and the calculated values I summarise in Table  4-20 and Table  4-21. This difference should be seen 
as a rounding error.    
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Just as we observe for the Turkish data, aggregation and pooling procedures result 

in different values of SDPD, but have no effect on mean paired differences. While 

aggregation seems to under-estimate variability within the data, pooling actually 

over-estimates the degrees of freedom for the statistical inferential testing that I 

report below. 

A series of paired t-tests run on the by-subject aggregated data (method i) with a 

Bonferroni correction found no statistically significant differences along any of the 

three temporal parameters for either dialect. In contrast, the pooling procedure 

reveals a statistically significant difference in closure pulsing duration for both 

dialects: Warsaw [t(44)= 5.2; p<.001], Kraków [t(44)= 2.56; p= .014]. Table  4-22 

and Table  4-23 present the results of the paired t-tests run on the aggregated and 

pooled data for Warsaw and Kraków, respectively. 

 
 

Aggregation (method i)  Pooling (method v) 
t 

df=4 
P 

 t 

df=44 
p 

V-Duration 2.1 .104  2.2 .035 

C-Duration -3.04 .039  -1.77 .083 

Pulsing-Duration 3.78 .020  5.23 .000* 

*statistically significant at the Bonferroni-adjusted alpha at 5% 

Table  4-22: Results of two-tailed paired t-tests for Warsaw-Polish final devoicing  

 

 

 
 

Aggregation (method i)  Pooling (method v) 
t 

df=4 
P 

 t 

df=44 
p 

V-Duration 1.95 .124  .97 .336 

C-Duration .67 .542  .53 .598 

Pulsing-Duration 1.29 .268  2.56 .014* 

*statistically significant at the Bonferroni-adjusted alpha at 5% 

Table  4-23: Results of two-tailed paired t-tests for Kraków-Polish final devoicing 

 

Consider next the conclusion we get on the basis of a minF’ analysis of these data. 

As I have pointed out earlier, the by-item F-ratio that Tieszen reports should not be 

used for significance testing. Instead, a by-subject analysis or a minF’ ratio should 
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be more appropriate for that purpose (see Raaijmakers 2003; Raaijmakers et al 

1999). Interestingly, the minF’ analysis fails to find statistical significance along 

any of the parameters investigated for either dialect. See Table  4-24 and Table 

 4-25 below. As we can see from the tables, statistical significance derived on the 

basis of minF’ analyses is similar to that derived on the basis of by-subject analyses 

(method i) after correcting for multiple testing.  

 
 

By Subject 
(method i) 

 By Item 
(method ii) 

 

 minF’ 
(F1F2)/F1+F2 

F1 

df=1,4 
p 

 F2 

df=1,8 
p 

 
minF’ df p 

V-Duration 
 

4.39 .104  3.76 .088  2 1,11 .19 

C-Duration 
 

9.2 .039  2.59 .146 2 1,11 .18 

Pulsing-Duration 
 

14.26 .02  24 .001* 8.9 1,8 .017 

*statistically significant at the Bonferroni-adjusted alpha at 5% 

Table  4-24: Results of Repeated-Measures Anovas for Warsaw-Polish final devoicing 

 

 
 

By Subject 
(method i) 

 By Item 
(method ii)  

 

 minF’ 
(F1F2)/F1+F2 

F1 

df=1,4 
p 

 F2 

df=1,8 
p 

 
minF’ df p 

V-Duration 
 

3.79 .12  .57 .47  .49 1,10 .50 

C-Duration 
 

.44 .54  .39 .55 .21 1,11 .66 

Pulsing-Duration 
 

1.66 .27  7.68 .02 1.36 1,6 .29 

 

Table  4-25: Results of Repeated-Measures Anovas for Kraków-Polish final devoicing 

 

Just as what we experience with the Turkish case above, we seem to arrive at 

different interpretations of the Polish data by adopting different pre-analysis 

procedures. Specifically, Tieszen’s (1997) conclusion based on a by-item 

aggregation procedure is different from a conclusion one might draw on the basis 

of a by-subject aggregation procedure and from a conclusion resting on a pooled-

data analysis. According to Tieszen, voicing neutralisation is phonetically 

incomplete in Warsaw Polish, but complete in Kraków Polish. By both a by-subject 
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analysis and a minF’ analysis, however, neutralisation is complete in both dialects. 

Finally, neutralisation is incomplete for the pooled data in both dialects. Tieszen’s 

conclusion has been cited as providing support for a continuum-based conception 

of the phonetics of neutralisation, with both complete and incomplete effects co-

existing in the same language but serving a dialectal-variation effect. There, the 

incomplete neutralisation in Warsaw has been seen as a case of phonologisation in 

progress, while the complete neutralisation in Kraków as phonologisation 

accomplished. For more, see Barnes (2006). 

The outcome of this re-analysis of the Polish data in Tieszen (1997) lends further 

support to the conclusions I presented above on the basis of my re-analysis of the 

Turkish data. An effect that has been reported, cited, and re-cited in the literature 

as a case of complete neutralisation could have just as easily been reported, cited, 

and re-cited as a case representing incomplete neutralisation. Conversely, an effect 

classified as incomplete neutralisation on the basis of some statistical testing could 

have been classified otherwise on the basis of some slightly different statistical 

testing. Note that statistical artefactuality is not necessarily tied to statistical 

power here. Put differently, claims that complete neutralisation is a statistical 

artefact are only telling part of the story. Incomplete neutralisation can just as 

equally possibly be nothing more that an inflated statistic. In the next chapter, I 

argue that incomplete neutralisation is more prevalent on purely statistical 

grounds. This prevalence is actually something we observe in the literature on the 

phonetics of neutralisation (see chapter two and Table  4-14 above).  

 

4.4 Conclusion 

In this chapter, I explored the phonetic completeness of vowel/zero neutralisation 

in BHA. I presented acoustic and perceptual data from native speakers of BHA. The 

acoustic data come from a simple experimental design with one independent 

variable—the vowel/zero underlying contrast that vowel epenthesis supposedly 

neutralises. Results of the production experiment reveal a curious pattern of dis-

correlation between the phonetics and phonology of neutralisation. Epenthetic [a] 

and lexical /a/, which behave the same in the phonology, are distinct in the 

phonetics in that epenthetic [a] is statistically significantly more intense than 
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lexical /a/. Conversely, epenthetic [i] and lexical /i/, which behave differently in 

the phonology, are phonetically identical. No less curious, though, is the apparent 

utilisation of a contrastively inactive acoustic cue for the purposes of preserving a 

contrast that seems to be completely neutralised in the phonology. Perception-

wise, [a] and /a/ are discriminated less accurately than are [i] and /i/. I discussed 

the implications of these unexpected results for the laboratory tradition in the 

study of the phonetics of neutralisation.   

I then discussed the genuineness question from an experimental and statistical 

point of view. Experimentally, my arguments benefit from insights emerging from 

an experimental paradigm that has manipulated important variables claimed to 

exert an influence on the phonetics of neutralisation. These variables include 

orthography, pragmatic context, and the presence of minimal pairs in the stimulus 

list. Statistically, I re-analysed real neutralisation data from Turkish and Polish, 

applying different pre-analysis procedures to these data and deriving mixed 

conclusions regarding the phonetics of neutralisation.  

My main conclusion concerning the genuineness argument is that it is equivocal 

and uninformative. It is equivocal because doubting the genuineness of a set of 

data on the grounds that the observed effect is an experimental artefact brought 

about by the specifics of the experiment design can equally well apply to both 

complete and incomplete neutralisation. Put differently, as much as this logic casts 

doubt on either effect, it legitimises both. Conversely, dismissing the observed 

effect as a statistical artefact can be defended for both complete and incomplete 

neutralisation.  

The genuineness argument is uninformative because it is essentially a filtering 

criterion.  It encourages censorship among researchers and commentators. Instead 

of thinking constructively about the theoretical and practical implications of a set 

of findings, researchers will become more concerned with the reliability and 

reproducibility of the findings. The genuineness argument has, until very recently, 

discouraged the integration of the phonetic findings of neutralisation studies into 

theories of phonetics and phonology.  There is a real need for an informed 

reassessment of the set of criteria we use to draw conclusions regarding the 

phonetics of neutralisation in terms of both the completeness question and the 

genuineness question. The next chapter attempts to offer just that. 
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5 Characterising and Quantifying the 

Phonetics of Neutralisation  

 

 

5.1 Introduction 

A central goal of this thesis is to increase our understanding of the phonetics of 

neutralisation and the variability therein. The discussion of the phonetics of 

vowel/zero neutralisation in BHA presented in chapter four highlights the need to 

re-consider (1) our use of statistical significance as a labelling criterion to 

qualitatively describe the phonetics of neutralisation and (2) the parametric 

measures we use to quantify the phonetics of neutralisation. I touched on these 

issues when I looked into both descriptive and inferential statistics in the previous 

chapter. I elaborate on them here.   

Of special importance to the current chapter is the issue of variability. As I have 

suggested earlier, there are two types of variability that we need to consider in our 

study of the phonetics of neutralisation: an inherent quantitative variability and an 

acquired qualitative variability. The latter follows from our drawing a qualitative 

distinction between phonetically complete and incomplete neutralisation. 

Obviously, this qualitative distinction is based on a set of criteria that have been 

commonly used to classify a phonetic effect as ‘complete neutralisation’ or as 

‘incomplete neutralisation’. I described and illustrated qualitative variability in 

chapter two. Here I will focus on the labelling criteria in the phonetics of 

neutralisation.  

To decide on a label to describe the phonetics of a certain neutralisation, 

researchers have traditionally resorted to a statistical assessment procedure of the 

significance of the phonetic difference found, its directionality, and its 

perceptibility.   
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Considering the current practices within our field, we find that statistical 

significance has become a requirement for establishing the existence or otherwise 

of a difference, its directionality, and perceptual relevance. The definition of each 

of these criteria involves an appeal to statistical significance. Therefore, I focus on 

statistical significance in my discussion of the labelling criteria in ¶ 5.2. 

To keep the discussion in perspective, I consider how statistical significance relates 

to practical (or equivalently in our situation linguistic) significance. Practical 

significance can potentially become a sensitive issue for the phonetics of 

neutralisation, especially for the notion of incomplete neutralisation.68 In 

particular, I make the claim that statistical significance does not necessarily imply 

linguistic significance. I show how this claim reflects a distinction made and 

debated some time ago in a few fields of research that rely for their scientific 

conclusions on NHST.  Although the distinction is hardly recognised in our field, 

researchers occasionally appeal to it as a last-resort option, especially when they 

are confronted with an unexpected result that defies linguistic explanation. I 

conclude the discussion by observing that conclusive evidence for or against the 

complete-incomplete distinction is not likely to emerge from the set of labelling 

criteria, at least as currently (mis)used. 

With regard to the summary measures we use to quantify the phonetics of 

neutralisation, I show that the standardly used measures of central tendency (the 

mean) and variability (SD or RSD) are unintuitive and so closely tied to the 

numerical values of the measurement scale as to potentially undermine any robust 

estimation of the underlying central location and variability. For example, our 

calculation of the mean can be very easily contaminated by outliers or extreme 

values in a dataset. Outliers can also affect the SD, but to a lesser extent. RSD, 

however, can be entirely dependent on the numerical value of the mean.  

I evaluate these measures and propose an alternative that is both more intuitive 

and cognitively plausible. Specifically, I suggest that the mode, rather than the 

arithmetic mean, be used to measure central tendency. The mode reflects better 

the intuitive notion of average. Likewise, the variability measure I propose (VFI) 

                                                        
68 The vanishingly small differences found in reports of incomplete neutralisation underline the 
need for establishing that the differences are not only statistically significant but also practically 
significant.  
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relates the frequency of the modal interval to the range. The frequency of the 

modal interval is independent of the numerical value of the measurement scale, 

and more in line with frequency-based Bayesian reasoning (Gigerenzer & Hoffrage 

1995). Similarly, the range captures the intuitive notion of variation. One particular 

issue I dwell on is how to find the mode for continuous data, the most common 

type of phonetic data. I suggest that phonetic data are more appropriately 

examined as intervals rather than as single points. In the next two chapters I 

elaborate on this suggestion and propose a binning algorithm utilising the familiar 

psycho-physical notion of just noticeable difference (jnd).  

The rest of the chapter proceeds as follows. In ¶ 5.2, I scrutinise the labelling 

criteria in the literature as applied to the phonetics of neutralisation. I first present 

a brief overview of these criteria in ¶ 5.2.1. I then discuss in ¶ 5.2.2 statistical 

significance, the single most important criterion in the analysis of neutralisation 

data.  In ¶ 5.3.1, I evaluate the parametric measures of central tendency and 

dispersion that are commonly used to quantify the phonetics of neutralisation. I 

then introduce an alternative and highlight its intuitiveness in ¶ 5.3.2. I conclude 

the chapter in ¶ 5.4.  

 

5.2 Characterising the Phonetics of Neutralisation: 

Labelling Criteria 

5.2.1 Overview 

Reviewing the literature on the phonetics of neutralisation, we observe that the 

most defining feature of incomplete neutralisation is not only that there is an 

acoustic difference between two sounds that are said to have neutralised, but also 

(and more importantly) that the difference is (1) statistically significant, (2) in the 

expected direction, and (3) usually perceptually relevant69.  From these, we can 

infer the criteria that have been standardly used to label a phonetic effect as 

                                                        
69 There is widespread agreement that a difference in perceptibility necessarily implies a difference 
in production (see e.g., Dinnsen 1985; Jongman 2004). By contrast, there is no consensus on 
whether or not a difference in production should be at all hearable (see e.g., Brockhaus 1995; Labov 
1994; Manaster Ramer 1996a, 1996b). For reasons of space I do not elaborate on the production-
perception relation here. But see my discussion on this issue in ¶ 4.2.3 and ¶ 5.2.2.   
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‘complete’ or as ‘incomplete’. Apparently, these are (1) statistical significance, (2) 

directionality, and (3) perceptibility.  

However, this characterisation of incomplete neutralisation is not precise. For 

example, it overlooks the important point that both directionality and 

perceptibility are conventionally defined in terms of statistical significance. The 

standard practice we follow in drawing any conclusions regarding directionality 

and perceptibility, or indeed any other issue we submit to statistical inference, is 

this. To conclude that a difference is ‘going in the expected direction’ or is 

‘perceptible’, researchers find themselves compelled by the force of tradition and 

accepted practices to demonstrate that the difference is statistically significantly 

going in that direction and that it is statistically significantly perceptible. 

Differences, be it in directionality or perceptibility, that do not reach statistical 

significance, or just fall short of it, are usually ignored, dismissed as random errors, 

or described as mere ‘trends’ that are incapable of supporting any conclusive 

findings. In short, statistical significance seems to be a necessary component of the 

definition of both directionality and perceptibility.  

Perhaps a better characterisation of the situation is to explicitly include statistical 

significance as a necessary component (perhaps the only necessary component) of 

the definition of all the labelling criteria. Granted, this would involve assessing the 

statistical significance of a phonetic difference in terms of (1) existence, (2) 

directionality, and (3) perceptibility.  Underlying these criteria are the questions in 

 (46). 

(46) Questions underlying the labelling criteria 

Q1: Is there a statistically significant difference? 

Q2: Is it statistically significantly in the expected direction? 

Q3: Is it statistically significantly perceptible?  

Now looking at these questions, we may note that directionality (Q2) and 

perceptibility (Q3) are appended to what is essentially Q1, as shown in  (47).  

(47) Questions underlying the labelling criteria modified  

Q1:    Is there a statistically significant difference? 

Q2: Is there a statistically significant difference in 

directionality? 
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Q3: Is there a statistically significant difference in 

perceptibility?  

So have we objected to the imprecision of the characterisation at the beginning of 

the section, only to come up with a characterisation that suffers from redundancy? 

Well, it is instructive to note that the imprecision in the characterisation at the 

beginning of the section is potentially misleading. For example, it seems to be 

erroneously suggesting that directionality and perceptibility can be established 

independently of statistical significance, which is not the case as yet.  

On the other hand, the overt redundancy in  (47) is useful because it allows us to 

see that statistical significance is actually the most relevant component of the 

definition of each of these criteria. Thus, a scrutiny of what statistical significance 

means in general seems adequate for an overall qualitative description of the 

phonetics of neutralisation.  

5.2.2 Statistical Significance versus Practical Significance 

Statistical significance is a basic ingredient of the definition of each of the criteria 

that we standardly use to distinguish between neutralisation effects that are 

phonetically complete and those that are phonetically incomplete. The distinction 

rests on whether or not a phonetic difference reaches statistical significance. By 

convention, the pre-specified significance level used for the decision to reject or 

not to reject the relevant null hypothesis (H0) is set at .05.  

When it comes to qualitatively describing and interpreting findings in light of how 

closely the achieved p value approximates the .05 level, researchers employ a 

limited set of phrases such as ‘is not significant’, ‘is just significant’, ‘has 

approached significance’, ‘has just missed significance’, and, obviously, ‘is 

significant’, and ‘is highly significant’. Here, the smaller the p value, the higher the 

statistical significance is attributed to it.   

I have no doubt that researchers in our field take the p value as at least some kind 

of measure of statistical significance. Yet I am not as certain that all of them 

conduct their interpretation of the results of statistical tests within the confines of 
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what statistical significance really means.70 A similar concern has been voiced by 

researchers from a wide variety of research backgrounds such as psychology and 

education (e.g., Bakan 1966; Carver 1978; Cohen 1994; Daniel 1998; Gigerenzer et 

al 2004; Gliner et al 2002; Haller & Krauss 2002; Hunter 1997; Scarr 1997; 

Schmidt & Hunter 1997; Thompson 1998a, 1998b), economics and marketing (e.g., 

Hubbard & Armstrong 2006; McCloskey & Ziliak 1996; Sawyer & Peter 1983), 

forecasting (e.g., Armstrong 2007a, 2007b), and medical research (e.g., Altman et al 

2000). In his “The earth is round (p< .05)” article, Cohen (1994: 997) complains 

about a “near-universal misinterpretation” of statistical significance. A survey 

study by Haller and Krauss (2002) shows that 80% of the sampled professors and 

lecturers teaching statistics to psychology students in six German universities gave 

wrong answers about the meaning of  statistical significance in terms of (p= .01). 

These wrong answers come from a list of some of the most common 

misconceptions of statistical significance, given in  (48).  

(48) Common misconceptions of p= .01 (adapted from Haller & Krauss 

2002: 5) 

a.  You have disproved the null hypothesis. 

b. There is a probability of .01 that the null hypothesis is 

true and that the observed difference or correlation is 

due to chance. 

c. You have proved the alternative hypothesis. 

d. There is a probability of .99 that the alternative 

hypothesis is true. 

e. There is a probability of .01 that you have made the 

wrong decision by rejecting the null hypothesis. 

f. The statistically significant finding will replicate 99% of 

the time. 

                                                        
70 Note, for example, that Hubbard and Lindsay (2008: 71) take the fact “that p values continue to 
saturate empirical work […] as prima facie testimony that most psychology (and other) scholars […] 
remain unaware of many of the reasons why this index is a defective measure of evidence”. More 
generally, Tryon (1998: 796), lamenting the contemporary widespread confusion over statistical 
significance, writes that “the fact that statistical experts and investigators publishing in the best 
journals cannot consistently interpret the results of these analyses is extremely disturbing. 
Seventy-two years of education have resulted in minuscule, if any, progress toward correcting this 
situation”. 
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To appreciate the falsehood of the different interpretations in  (48), let us start with 

the correct interpretation of p= .01. Statistically speaking, a p value that a null-

hypothesis significance test yields is not the probability that the null hypothesis is 

true. Rather, it only indicates “the probability of getting a test statistic which is as 

extreme, or more extreme, than the one observed, assuming that H0 is true” 

(Chatfield 1995: 249). In other words, probability here pertains to the observed 

and some more extreme unobserved data but not to the null or alternative 

hypotheses. As such, it says nothing about the truth or otherwise of these 

hypotheses. The misinterpretations in  (48) commonly originate from confusing the 

answers to these questions: (1) what is the probability (p) of getting the observed 

data (D) given that H0 is true (i.e., p(D�H0)) and (2) what is the probability of H0 

being true given the observed data (i.e., p(H0�D))? The p-value only provides an 

answer to question (1). However, many researchers wrongly take it as an answer 

to the question they need an answer to—question (2) (see e.g., Tryon 2001; Carver 

1978; Cohen 1994). A researcher not steeped in NHST will probably tend to 

underplay the practical and theoretical consequences of this confusion (cf. Berger 

& Sellke 1987). However, Carver (1978: 384), along with others, tells us that taking 

p(D�H0) and p(H0�D), knowingly or not, to be interchangeable can be an egregious 

mistake. He writes: 

What is the probability of obtaining a dead person (label this part 
D) given that the person was hanged (label this part H); this is, in 
symbol form, what is p(D�H)? Obviously, it will be very high, 
perhaps 0.97 or higher. Now, let us reverse the question. What is 
the probability that a person has been hanged (H), given that the 
person is dead (D); that is, what is p(H�D)? This time the 
probability will undoubtedly be very low, perhaps 0.01 or lower. 
No one would be likely to make the mistake of substituting the 
first estimate (0.97) for the second (0.01); that is, to accept 0.97 
as the probability that a person has been hanged given that the 
person is dead. Even though this seems to be an unlikely mistake, 
it is exactly the kind of mistake that is made with interpretations 
of statistical significance testing --- by analogy, calculated 
estimates of p(H�D) are interpreted as if they were estimates of 
p(D�H), when they are clearly not the same.  

In 2006, Hubbard and Armstrong published a paper entitled “Why we don’t really 

know what statistical significance means”. They reiterated a conclusion that many 

before them had reached:  
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[T]he principal reason that researchers cannot accurately 
define what is meant by statistical significance is that many 
statistics and methodology textbooks are similarly confused 
over the exact meaning of this concept (p. 115).71  

Actually, the elusive nature of the concept of statistical significance has been but 

one of the mildest forms of the on-going attack on the whole procedure of NHST 

(see e.g., Armstrong 2007a, 2007b; Bakan 1966; Berger & Selke 1987; Carver 1978; 

Cohen 1994; Jones &Tukey 2000; Tyron 1998). A more serious criticism of NHST is 

that statistical significance can simply be a question of sample size.72 Consider the 

following excerpts from a few disillusioned NHST practitioners: 

Virtually any study can be made to show significant results if 
one uses enough subjects regardless of how nonsensical the 
content may be (Hays 1963: 326). 

Indeed, given enough subjects and middling hypotheses, 
some significant but trivial findings are a certainty (Robey 
2004: 311). 

Hence, because type I errors cannot occur, statistically 
significant results are assured if large enough samples are 
used (Kirk 2007: 1636). 

Statistical testing becomes a tautological search for enough 
participants to achieve statistical significance. If we fail to 
reject, it is only because we’ve been too lazy to drag in 
enough participants (Thompson 1998b: 799). 

[S]mall differences of no real interest can be statistically 
significant with large sample sizes, whereas clinically 
important effects may be statistically non-significant only 
because the number of subjects studied was small (Altman 
et al 2000: 17). 

                                                        
71 The real roots of the problem, as argued by Hubbard and Armstrong (2006) and Gigerenzer et al 
(2004), among others, can be traced back to an unfortunate and illegitimate merging of Fisher’s 
‘evidential’ p value and the Neyman–Pearson α (Type I error rate). These two measures of 
‘statistical significance’ have different functions. Their integration into one model has not been 
endorsed by their originators (see e.g., Hubbard & Bayarri 2003; Kirk 2007; Sterne & Davey Smith 
2001). Very crudely, Fisher’s p is meant to evaluate evidence against the hypothesis that is put forth 
to be nullified within a single study, whereas the Neyman–Pearson α is the probability of rejecting a 
true hypothesis in repeated studies. The Neyman–Pearson α has to be pre-specified together with β, 
the probability of accepting a false hypothesis (also known as Type-II error rate). In other words, 
the NHST paradigm that we currently apply is actually a hybrid that is, in Gigerenzer et al’s (2004: 
400) words, “a mishmash that does not exist in statistics proper”. Tracing the history of this 
confusion along with its subsequent repercussions lies beyond the scope of this thesis (for more, 
see Gigerenzer et al 2004; Harlow et al 1997; Huberty 1993; Menon 1993; McClure & Suen 1994).  
72 There are researchers who might occasionally acknowledge that statistical significance is 
sensitive to sample size but maintain, nonetheless, that the correlation is much less pronounced for 
‘true’ null hypotheses. They take comfort in the fact that at least the probability of obtaining 
statistical significance under a true null hypothesis never goes to 1.00 (e.g., Nickerson 2000). But 
see the discussion below on the ‘truth’ of null hypotheses.   
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The close correlation between statistical significance and sample size can be 

demonstrated using simulated experiments. For example, Marsh et al (2008) 

report three virtual studies involving two independent groups with a mean 

difference of 5 between the two groups and an SD of 15 in each group. The p-value 

that is associated with the independent-samples t-test becomes increasingly 

smaller as the sample size gets larger. This is illustrated in Table  5-1. Our 

interpretation of a mean difference of 5 swings from being statistically non-

significant when n=10 to being statistically highly significant when n=100.  

Study 1  Study 2  Study 3 
 G1  G2  G1  G2  G1  G2 

N 10  10  50  50  100  100 
Mean 105  100  105  100  105  100 

SD 15  15  15  15  15  15 
         

t  .75    1.66    2.36  
p  .46    .09    .01  

Table  5-1: Statistical significance and sample size: independent-samples t-test                  

(based on Marsh et al 2008) 

 

In Repeated-Measures experiments, the experimental design in neutralisation 

studies, statistical significance can be reached even with a far smaller number of 

subjects than in the Marsh et al study for the same mean difference. This can be 

demonstrated by simulated73 experiments involving a random sampling of 

subjects to be tested in two conditions. The parameters of the population from 

which the sample is taken are as follows74: μ in condition one =105; μ in condition 

two =100; σ = 15; and rho = .5. Results of paired t-tests appear in Table  5-2.  

 Study 1 Study 2 Study 3 Study 4 Study 5 
N 10 15 20 25 30 
   
t 1.37 2.31 2.66 2.81 2.97 
p .20 .036 .015 .009 .005 

   Note: μ in condition one =105;    μ in condition two =100;    σ = 15;     rho = .5  

Table  5-2: Statistical significance and sample size: two-tailed paired-sample t-tests 

 

                                                        
73 I used the Rice Virtual Lab in Statistics (http://onlinestatbook.com/rvls.html) to run the 
simulations.  
74 To avoid confusion with the p-value, I use the full form rho rather than the more appropriate ρ 
symbol. 
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We can also form an initial impression of the close correlation between statistical 

significance and sample size by comparing the percentages of experiments yielding 

statistical significance in different size-conditions. Consider the percent figures in 

Table  5-3. These are generated from 30000 simulations of experiments with a 

repeated-measures design where the samples are randomly drawn from a 

population with the following parameters75: μ in condition one =60; μ in condition 

two =70; σ =8; and rho =.5. The percentage of the experiments that yield statistical 

significance increases from 55% when n=5 to almost 100% when n=20. The exact 

figures are given in Table  5-3. 

  
Number of studies 

yielding p< .05 
Number of studies 

yielding p> .05 
% Studies showing 

statistical significance   

N
um

be
r 

of
 s

ub
je

ct
s 

N=5 2797 2203 55% 

N=10 4667 333 93% 

N=15 4966 34 99% 

N=20 4998 2 100% 

N=25 5000 0 100% 

N=30 5000 0 100% 

                 Note: μ in condition 1 =60;      μ in condition 2 =70;     σ =8;    rho =.5 

Table  5-3: Sample size and percentage of studies yielding statistical significance out of 5000 

simulated experiments in each size-condition: Repeated-Measures Design 

 

The consequences for the current statistical treatment of the phonetics of 

neutralisation are unsettling indeed. Interpreting the outcome of NHST relative to 

the phonetics of neutralisation, researchers seem to unanimously endorse but one 

strategy: statistical significance is interpreted as incomplete neutralisation, 

statistical non-significance as complete neutralisation.76 In light of the preceding 

shortcomings of the NHST procedure, one can see where this strategy would lead 

us: incomplete neutralisation would be a certainty while complete neutralisation, 

being counter to a certainty, would be a logical impossibility.  
                                                        
75 The same pattern is observed even with smaller effects and within different statistical models as 
well. For example, Baayen (2008), using simulated data, demonstrates how a regression model that 
explains only 1% of variation can be, nonetheless, statistically significant when n=1000.  
76 Note that under those rare circumstances where deep misgivings are expressed about a 
particular NHST result, it is the validity of the result that is usually questioned, not the viability of 
the strategy of equating statistical significance with incomplete neutralisation. A researcher who is 
unprepared to accept incomplete neutralisation may protest that statistical significance is spurious 
in the context where it has been found.        
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But the impossibility of logically deriving complete neutralisation also stems from 

its being construed of in the neutralisation literature as a null hypothesis of no 

difference. The dominant view of H0 in our field is that it is a hypothesis of no 

difference between two acoustic events along some measured acoustic 

parameters. There are at least two interpretations of a no-difference hypothesis: 

(1) there is no difference between A and B, and (2) there is no statistically 

significant difference between A and B.77 In symbol notations, the first 

interpretation reads as (A – B = 0) while the second as (A – B = a test statistic with 

p≥ .05).  Now to say that there are no differences between two events (i.e., A – B = 

0) is never going to be true given the very large number of decimal places where 

the difference can show up (Tukey 1991; Jones & Tukey 2000). This is why, 

logically, any no-difference hypothesis is always going to be false. Similarly, to say 

that there are differences that are statistically non-significant (i.e., A – B = a test 

statistic with p≥ .05) can seldom be true in a study that uses a large number of 

participants. Actually, many78 statisticians and empirical researchers hold the view 

that “null hypotheses are never true except those we construct for Monte Carlo 

tests of statistical procedures” (Kirk 2007: 1636). See also Berkson (1938), Cohen 

(1994), and Vicente and Torenvliet (2000), among others.  

Accordingly, the NHST verdict on the reality of complete neutralisation as H0 and 

of incomplete neutralisation as H1 is simple: all neutralisation cases eligible for a 

phonetic investigation are a priori incomplete. Is it this capacity of NHST that led 

Dinnsen (1985) to suggest some twenty-five years ago that all putative 

neutralisation effects are in fact phonetically incomplete? I believe that it is rather 

the excitement that accompanied the relatively new ‘discovery’ of incomplete 

neutralisation, and the fact that there were (and still are) more studies reporting 
                                                        
77 The expression ‘no systematic differences between A and B’ is just a variation on the theme and 
clever wording. It is statistical significance that is made to wholly and single-mindedly define what 
constitutes a systematic difference in our field. A difference that is statistically significant is 
considered systematic, whereas a difference that fails to achieve statistical significance is 
considered non-systematic.  
78 There are some researchers who protest that the claim that null hypotheses are always false only 
applies to point-null hypotheses of no-difference or no-correlation (Bakan 1966; Hodges & 
Lehmann 1954; Nickerson 2000; cf. Hagen 1997). For example, interval null hypotheses expressing 
a directional difference of an exact interval of non-zero values, while normally difficult to postulate, 
as defining such an interval requires a prior criterion of practical significance and many replicated 
data, can be true. Note that H0 in neutralisation studies is a point-null zero-difference (or a 
difference that can assume any numerical value including zero) hypothesis whose statistical 
processing yields a test statistic with p≥ .05. Carver (1978: 381) assertively declares that “there is 
no way in practice that we can be absolutely sure the null hypothesis is true. If we could be sure, we 
would never test for statistical significance at all”. 
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incomplete neutralisation than studies reporting complete neutralisation. At the 

same time, I believe that a ‘publication bias’ cannot be possibly blamed for the 

prevalence of incomplete-neutralisation reports: as far as the phonetics of 

neutralisation is concerned, failing to reject H0 has not been taken to mean that a 

study has failed and is thus unworthy of publication.  

On the other side, many of the contributors to the empirical literature on 

neutralisation do not seem to be fully aware of the shortcomings of NHST. For 

example, the above description of the correlation between statistical significance 

and sample size naturally calls back to us a suggestion made by Warner et al 

(2004) and repeated in Warner et al (2006) that “such small effects as incomplete 

neutralisation require a large number of speakers and items in order to detect 

them (or rule them out) reliably” (Warner et all 2006: 290).  

Let us now consider in detail how the Warner et al suggestion fares against a more 

realistic view of the limitations of NHST. Warner et al report that the statistical 

tests they ran on data from fifteen subjects in their 2004 study79 yielded statistical 

significance for the voicing contrast, whereas those tests they ran on data from the 

same number of subjects in their 2006 study failed to yield statistical significance 

for the morphological distinction between verbs ending in /t/s and verbs ending in 

/t-t/s. How comparable are the findings of these studies? I will only consider this 

question from a statistical angle. We know from the discussion above that, with the 

kind of null hypotheses we postulate, any effect, however negligible, can be shown 

to be statistically significant if we recruit more subjects. The question to be asked 

is how many more subjects are enough.  

To decide correctly, we need to calculate an index of effect size (I will say more 

about effect size further below). For the Warner et al studies, the first thing to note 

is that the mean differences in both of them are extremely minute. Specifically, a 

vocalic durational difference of 3.5ms in the 2004 study is found to be statistically 

significant, whereas a durational difference of 1.1ms between phonemically long 

vowels in verbs ending in /t/s and verbs ending in /t-t/s in the 2006 study is not. 

                                                        
79 The Warner et al (2004) study also reports another statistically significant vocalic durational 
difference between hetero-graphic items with no phonemic distinctions. The difference is of a 
similar magnitude as in the voicing contrast (i.e., 3.4ms). For the sake of simplicity, the discussion 
above only refers to the voicing contrast in that study. However, the arguments given above apply 
to both distinctions.      
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However, it must be stressed that a small mean difference does not necessarily 

stand for a small effect size. A minute mean difference between two groups or two 

conditions with very little variability can make a large effect size. Mean differences 

and variability are both involved in the calculation of an effect size (see chapter 

four).  

Now, since the two studies above do not give any measure of dispersion like SD, we 

are left to wonder if the lack of statistical significance in the 2006 study is due to 

the smaller mean difference, or if it is due to a more highly variable dataset in the 

2006 study, or indeed to both. The post hoc power figures Warner et al give are not 

helpful at all. For example, the authors reported that the 2004 study “had power of 

.81 to detect the vowel duration difference (3.5ms) in that experiment […while the 

2006 study] should have a similar power to detect effects of comparable size” 

(2006: 291-292). But we do not know if 3.5ms and 1.1ms differences would make 

comparable effect-sizes. If these differences had comparable SDs, then we would 

need a larger-n study to ‘detect’ the 1.1ms difference at similar statistical power 

(see Nakagawa & Foster 2004 for arguments against using statistical-power 

analyses to interpret null results).  

A conclusion one could more appropriately draw from the Warner et al studies 

would be to say that a sample of fifteen speakers was enough to secure statistical 

significance for the 3.5ms duration difference but not enough for the 1.1ms 

difference. The important point here is that having equal samples, by itself, is 

neither a sufficient nor necessary criterion of valid comparison when the relevant 

studies report different effect sizes. Having equal sample sizes in the Warner et al 

studies has neither established incomplete neutralisation for the 2004 study 

beyond doubt, nor has it reliably ruled it out in the 2006 study, contra the authors’ 

claim.  

More importantly, it seems to me that accepting Warner et al’s logic creates a 

dilemma in defining just what a large-enough study is. For example, there are very 

small-n studies, sometimes even single-case studies, reporting incomplete 

neutralisation (e.g., Baroni & Vanelli 2000). These studies stand in sharp contrast 

to relatively larger-n studies that report complete neutralisation (e.g., Warner et al 

2006). Perhaps a better claim might be that achieving statistical significance in a 

small-n study could be taken to imply statistical significance in a larger-n study, 
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whereas failing to achieve statistical significance in a large-n study would spell 

statistical non-significance in a smaller-n study (cf. Bakan 1966). Although this 

proposal merits further investigation, there may be cases where a small-n study 

finds statistical significance that disappears in a larger-n study. For example, an 

attenuated estimate of variability is more likely in a small-n study. Less variability 

makes statistical significance more likely.     

The dilemma facing the Warner et al suggestion is actually resident in the whole 

NHST-dominated paradigm of the phonetics of neutralisation. We, as researchers 

subscribing to this paradigm, need to be specific about what should be a 

reasonable sample size. Should we follow a rule of thumb or calculate a priori 

power for the kind of tests we intend to run? Do we yet have the necessary 

statistics to perform a priori power, such as a measure of effect size from previous 

studies, for instance? Do we need to conduct pilot studies to get effect size figures 

if we cannot yet get them from the literature? Is there any point in going through 

all of this, just so that we have the right sample size for the effect to be detected at 

the level of power and the level of significance we have pre-selected? If, after all of 

this, no effect is detected, can we be confident that we have not missed it because it 

is not there?  

Unfortunately, the question-begging in the preceding plea, though overlooked by 

many researchers dealing with the phonetics of neutralisation, does not help our 

case. Let us not ask how an effect is missed, but how it is detected. Here let me 

repeat Hubbard and Lindsay’s (2008) conclusion that a test statistic with p< .05 

provides no guarantee at all that there is a real effect. All that p< .05  says, as made 

clear above, is that there is a less than .05 probability of getting the sample statistic 

our study has yielded, or some more extreme ones, assuming that there really is no 

effect in the population.   

Since, very crudely, mean differences, SD values, and sample size all contribute to 

the calculation of the commonly-reported t-value and F-ratio, a correlation 

between these attributes on the one hand, and the p value associated with these 

test statistics, on the other, is naturally expected. However, as pointed out above, 

the close correlation between statistical significance and sample size can also 

mean that a statistically significant difference might only be a size effect rather 

than an effect size.  Effect sizes, in contrast, are not directly affected by sample size; 
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some effect size indexes can, in fact, be calculated independently of the sample size 

(e.g., Cohen 1988).  

So far, I have discussed and illustrated three related problems with NHST. Firstly, 

statistical significance is easily misinterpreted. Secondly, the null hypothesis of no 

difference is almost always false on both logical and empirical grounds. Thirdly, 

statistical significance is highly sensitive to sample size.  

These shortcomings of NHST should make us heed better long-standing warnings 

that statistical significance and practical significance can be different things (see 

e.g., Berkson 1938; Gold 1969; Kirk 1996; Tryon 2001). In fact, confusing statistical 

significance with practical significance has been yet another source of criticism 

levelled against NHST. Although some researchers lament the unfortunate choice 

of the word ‘significance’ whose non-technical use connotes importance (e.g., 

Meehl 1997; Schafer 1993), others insist that such a confusion is deliberate and 

has nothing to do with the inherent misinterpretability of statistical significance 

discussed at the beginning of the section. For example, commenting on significance 

testing, Bakan (1966: 423) protests that “a great deal of mischief has been 

associated with its use”. Cohen (1994: 1001) spells that out: 

All psychologists know that statistically significant does not 
mean plain-English significant, but if one reads the 
literature, one often discovers that a finding reported in the 
Results section studded with asterisks implicitly becomes in 
the Discussion section highly significant or very highly 
significant, important, big! [italics his]  

It would be unfair, though, to think that Cohen’s observation should be limited to 

psychologists. Pedhazur and Schmelkin (1991: 202) express irritation at what has 

become “common practice to drop the word ‘statistical’ and speak instead of 

‘significant differences,’ ‘significant correlations,’ and the like”. I myself have 

carried out a simple observational survey of most of the published studies on the 

phonetics of neutralisation and found that qualifying significance as statistical 

significance is the exception rather than the rule.  

Some of the readily obvious signs of this unwanted confusion in the experimental 

literature on neutralisation and phonetic research in general is when the p value is 

the only statistic a study reports. This is what we find in some of the early studies 

of the phonetics of neutralisation (see e.g., Rudin 1980). Reporting the t-value or 
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the F-ratio is to be seen as an improvement (see e.g., Jassem & Richter 1989). But 

this is not enough. Disclosing more information about statistical significance by 

providing, for example, the degrees of freedom that the t-value and/or the F-ratio 

are assessed against is again a welcome gesture, but we should demand more (see 

e.g., Dinnsen & Charles-Luce 1984; Port & Crawford 1989; Slowiaczek & Dinnsen 

1985).  

Currently, the common practice is to give all the essential components of 

inferential statistics but little descriptive statistics. Inferential statistics mostly tells 

us about statistical significance, but very often, nothing else. In contrast, we can 

use descriptive statistics to form an impression of how big an effect is, how stable 

it is, and what direction it takes. This might inform our decision about the practical 

significance of the observed effect. Now it must be remembered that to calculate 

some standardised measure of this, such as Cohen’s d, we can always use 

descriptive statistics.80  

The differential treatment of inferential statistics and descriptive statistics that we 

find in our discipline reflects what seems to be an institutionalised attitude 

whereby researchers attach priority to statistical significance and take it to be an 

objective and rigorous calibration of the more subjective practical significance. 

This attitude seems to be so deeply-rooted that even the critics of NHST can 

occasionally display. For example, Gold (1969: 46) contends that “statistical 

significance is only a necessary but not sufficient criterion of importance”. 

Unpacking his statement, we must object to Gold’s definition of importance: an 

important (practically significant) finding is, according to Gold, necessarily 

statistically significant, whereas a statistically significant finding is not necessarily 

practically significant. This is not always the case. Statistical significance is neither 

a necessary nor sufficient criterion of importance. It is rather practical significance 

that is both a necessary and sufficient criterion of importance.  

It is ironic that in assessing what seems to be essentially subjective, equivocal, and 

vague practical significance, researchers have been and still are relying heavily on 

statistical significance in the mistaken belief that it is unequivocal, scientific, and 

                                                        
80 To use the t-value or the F-ratio to calculate d, we need to make sure that these have been 
generated correctly. Sometimes, this is not an easy task, especially in Repeated-Measures designs 
(see Thalheimer & Cook 2002).  
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objective. The discussion throughout this section has shown that statistical 

significance can be subjective, equivocal, and vague. Moreover, among the reasons 

that Carver (1978: 393) lists to explain “the popularity” of NHST despite repeated 

criticism is that the “complicated mathematical procedures [underlying NHST] 

lend an air of scientific objectivity to conclusions”. Bakan (1966: 436) warns 

against this kind of unconditional esteem for mathematics and stresses that “[w]e 

must overcome the myth that if our treatment of our subject matter is 

mathematical it is therefore precise and valid. Mathematics can serve to obscure as 

well as reveal”. 

With specific reference to phonetic research, one can hardly mistake the sustained 

fascination with mathematical modelling of phonetic data. Perhaps the undue 

obsession with statistical significance and the subordination of practical 

significance that we find in the experimental literature on neutralisation are but an 

expression of that fascination with mathematics.  

The literature presents us with instances where researchers seem wary of trusting 

their intuitions when not backed by an NHST-generated piece of ‘evidence’. Here, 

practical significance comes second and potentially worthless until it is shown to 

be statistically significant by an NHST procedure. For example, Barnes (2006: 34-

35) suggests that any conclusions to be drawn from Wood and Pettersson (1988) 

or from Tilkov (1982) about reduction-driven vowel neutralisation in Bulgarian 

remain provisional, pending the carrying out of statistical analysis, which “would 

say for certain” (p. 35). In chapter two of this thesis, I related an example of Barnes 

objecting to a statistical ruling that ran counter to his intuition (recall that his 

protest was mostly founded on the simple premise that the statistically significant 

result made little sense). Yet, he would presumably subscribe to the view that the 

dispute can only be resolved by seeking a better informed statistical ruling by 

collecting more data.  

Similarly, Maniwa’s (2002) study of Japanese vowels found a mean maximum-F0 of 

222Hz for both first-mora and second-mora vowels. Yet, Maniwa still appealed to 

NHST to decide whether or not there was a statistically significant difference 

between the two F0 means.   
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 It seems to me that many researchers in our field have never had to take the 

distinction between statistical significance and practical significance very 

seriously, probably because they always seemed to have some explanation of their 

data. But let us not forget that the phonetic literature in general does record a few 

cases where an appeal has been made to this distinction. For example, Coleman 

(2003), confronted with statistically significant acoustic differences between ‘lap’ 

and ‘Lapp’ as produced by one subject, wondered whether statistical significance 

should necessarily imply linguistic (i.e., practical) significance.  

Phonologically and phonetically speaking, what would be practically significant? 

Not trying to understate the enormity of this question, one can always give the 

following as a spontaneous answer. Phonologically and phonetically practical 

significance can be determined by theoretical considerations and by the 

knowledge we possess of the synchrony and diachrony of a language before we 

embark on experimentation. However, we should not forget that the theories we 

develop might be lacking in various respects, that our knowledge of the synchronic 

phonology of a language might be out of date, and that many parts of the 

diachronic picture of a language can sometimes be out of our reach.  

Apparently, the question above should be approached from different angles. Yet, it 

seems to me that there will be times when a clash arises among the different 

answers we suggest. To illustrate, let us focus once again on the phonetics of 

neutralisation. Here, one might come across suggestions that production 

differences should be practically significant in their own right, irrespective of 

whether or not they are at all perceptible. At the same time, there are researchers 

who will insist on the perceptibility criterion for the definition of linguistically 

practical significance. A third category of researchers may be willing to disregard 

any production-perception correlation or lack of it as long as speakers’ 

performance reflects what can be defined as lexical biases.  

Perhaps what all of these three views share is that it is statistical significance that 

determines what effects are practically significant production differences, 

practically significant perception differences, and practically significant lexical 

biases. In other words, once our tests yield statistical significance, we rarely 

hesitate to announce practical significance, irrespective of whether we do 
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production data only, perception data only, both production and perception data, 

or lexical-decision data.  

The question which urges us for an answer after this discussion of statistical 

significance and practical significance is this: how do we proceed with our 

empirical research questions? Actually, Morrison and Henkel (1970: 311) have 

volunteered an answer that assumes that statistical significance tests have no say 

in our research paradigm: 

What we do without the tests, then, has always in some 
measure been done in behavioral science and needs only to 
be done more and better: the application of imagination, 
common sense, informed judgment, and the appropriate 
remaining research methods to achieve the scope, form, 
process, and purpose of scientific inference.  

However, it seems to me that adopting the Morrison and Henkel approach can be 

just as radical as submitting wholly to NHST. Both approaches appear to me to be 

equally disastrous to the development and transmission of what needs to be 

cohesive science and knowledge.  Perhaps, it is more desirable to allow our 

scientific inference to take its cue from both statistical reasoning that is based on 

properly interpreted statistics and the intuitive understanding of the relevant 

phenomena in the world.  

For example, concerning the phonetics of neutralisation, one sensible way to do 

that is to think of our data as a variability composite; our task, then, is to 

decompose that seemingly amorphous whole into its component variability-

sources, revealing at the same time their grouping structure, if applicable. We, 

thus, need to identify how much variation is due to our sample subjects; how much 

is attributable to the test items we employ; how much is explainable by the 

contrast variables that we specifically manipulate; and how much variation 

remains unexplained by the armoury of fixed and random factors we consider in 

the analysis.  

The brief description of this statistical treatment is nothing more than adding 

efficiency to ordinary regression models. Unlike NHST procedures, model-fitting 

using regression equations seems to have evoked little criticism and is considered 

‘serious’ statistics (Ableson 1997; see also Granaas 1998). Mixed or multi-level 

data modelling can paint a more detailed picture of the variability in the data and 
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its structure than can single-level models. In fact, multi-level modelling of linguistic 

data has been recently attempted (e.g., Baayen et al 2008; Quené & van den Bergh 

2008, 2004). However, to do that appropriately, we will need to understand the 

underlying model, its requirements, and its limitations. Also, and perhaps more 

importantly, we need to know our data.  

In this respect, it might be more rewarding to refine our understanding of phonetic 

variability than to fit mixed regression models to a set of phonetic data that has 

undergone experimental manipulation. Such manipulation can add to (or possibly 

obscure) the variability of these data.  

I do not fit regression models to my data for inference here. Instead, I devote the 

rest of the thesis to sketching a new approach to variability. My contention is that 

an adequate understanding of variability and of our data should be attempted 

before seeking to get a ruling on how successful our model fitting has been.  

Under this new approach, the empirical questions we will have in our study of the 

phonetics of neutralisation can find formal as well as intuitive answers in terms of 

variability decomposition. For example, we can learn more about how the various 

linguistic and non-linguistic influences impact on variability. I give more details in 

the next chapter.  

To close, however, I note that, generally, nothing can settle the diverse empirical 

questions across the spectrum of scientific inquiry (including the phonetics of 

neutralisation) more satisfactorily than drawing conclusions based on replicated 

rather than individual studies. The key requirement here is for these replications 

to report some standardised measure of effect size and robust summary statistics 

(see the next section). These will facilitate meta-analyses. Only then are we 

justified in generalising beyond the sample subjects we have, without there being a 

need for us to take the potentially misleading path of NHST, where a randomly 

sampled set of data is formally processed to derive indirect evidence for or against 

a null hypothesis about the population from which the sample is supposed to have 

been drawn.  

Now, for the majority of us language researchers, who sample at convenience 

rather than at random, and are comparatively tolerant toward the violation of a 

number of NHST formal assumptions, NHST-style generalisations from sample to 
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population may understandably inspire uneasiness. Well, this should make it all 

the more desirable for us to open up to other analytical techniques, including those 

assuming subjective and fuzzy approaches which allow intuitions to guide our 

scientific inferences. As a first step, we need to re-consider the type of summary 

statistics we use to quantify linguistic data. I turn to this next.   

 

5.3 Quantifying the Phonetics of Neutralisation: Absolute 

and Relative Measures 

5.3.1 Measuring Central Tendency and Dispersion 

In many fields of research including ours, the most common measure of central 

tendency is the mean (X�), while the most common measure of variability is the 

standard deviation (SD), which can also be scaled to the mean in what is known as 

the Coefficient of Variance81 (CV).82 CV is said to be a useful measure of variability 

(Howell 2002), and one that is more consistent with people’s tendency to think of 

variability relative to a measure of location (e.g., Lathrop 1967; Lovie & Lovie 

1976). Most researchers assume that this measure of location is the mean (but see 

below for a different view).  

There are, of course, other well-known measures like the median and the mode for 

locating central tendency, and the range, interquartile range (IQR), mean absolute 

deviation, and variance for estimating variability. For reasons of space, I limit the 

discussion to the most common measures listed in the paragraph above. But I will 

                                                        
81 I referred to this as the Relative Standard Deviation (RSD) in the preceding chapter. From now 
on, I will use the term Coefficient of Variance (CV). 
82 I gave the formulas for calculating the paired version of these variability measures in chapter 
four. Below I give their uncorrelated version, and for the convenience of the reader, I reproduce the 
equation for calculating the mean: 

Mean (X �)= 
∑X
�       where X= an individual data point;  = number of data points 

SD =�∑ ����������
���   

CV = 
��
��  

Note that the SD equation above is the one used for estimating the population parameter based on 
sample statistics. If SD is used solely to describe variability within a sampled dataset, the divisor in 
the equation should more appropriately be ( ) rather than ( –1). However, statistical packages 
standardly use the equation with the correcting factor (i.e.,  –1), regardless of what the 
experimenter’s purposes are. The difference is usually very small, anyway (see Howitt & Cramer 
2000). 
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discuss the mode and the range towards the end of this section. For more, see 

standard statistics books including Tukey (1977) and Howell (2002).  

As its calculation makes use of all the data points in a set, the sample mean is said 

to be a sufficient estimator of the population mean (see e.g. Howell 2002). 

However, this also makes the mean very sensitive to outliers and extreme values, 

which can have a drastic effect on its robustness and resistance as a measure of 

location. Deriving the mean algebraically through summation and division ensures 

its admission into many equations that are necessary for estimation, which partly 

explains the wide use of the mean in inferential statistics (ibid). However, this 

property of the mean also reduces the chances of finding it as an actually occurring 

datum in a given dataset. In the overwhelming majority of cases, the mean remains 

an arithmetically derived value.     

As with the arithmetic mean, the calculation of the SD uses all the data points 

within a set. This increases its sufficiency as an estimator of the variability of the 

underlying population, but, at the same time, it renders it vulnerable to the 

distorting effect of outliers and extreme values. Moreover, and just as with the 

mean above, the mathematical derivation of the SD is a point in its favour, 

statistically speaking. But being derived through subtraction, squaring, summation, 

division, and square-rooting makes the SD very non-transparent and unintuitive as 

a measure of variability. In fact, a number of researchers have mentioned the 

enormous difficulty that beginning students of statistics experience in trying to 

learn the concept of the SD as a measure of variability (see e.g., delMas & Liu 

2004). I will return to the intuitiveness issue below. 

As far as human cognition is concerned, there are suggestions in the literature 

undermining the cognitive plausibility of the arithmetic mean as a measure of 

average and the SD as a measure of variability. For example, Peterson and Beach 

(1967) observe that people tend not to take into account all the data they receive 

while drawing inferences. Peterson and Beach describe this behaviour, which is 

statistically sub-optimal, as conservatism. Kareev et al (2002) found conservatism 

in their subjects’ estimation of variability. This indicates that the statistical 

advantage of using all the data points in the calculation of the mean and the SD 

does not find an obvious parallel in cognition. 
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Another example of the lack of correspondence between formal statistics and 

human cognition, involving again the mean and SD, concerns the fact that these 

measures, being arithmetically derived, are not naturally occurring values. This is 

highly relevant in the context of a conceptualisation of the human cognition as 

being sensitive to the rate at which events occur naturally in the world. Gigerenzer 

and colleagues (e.g., Gigerenzer 1993; Gigerenzer & Hoffrage 1995; Gigerenzer & 

Murray 1987) provide compelling arguments, based on both theoretical and 

experimental evidence, that the human cognition is designed to pick out frequency 

information, and that natural occurrences or underived frequencies (rather than 

derived probabilities, as currently thought) are all we need to make Bayesian 

inferences. 

Gigerenzer and Hoffrage (1995) and Zacks and Hasher (2002) review numerous 

studies demonstrating the difficulty that physicians and statistics students 

experience when asked to estimate Bayesian posterior probability using data 

provided in a standard probability format. For example, a study by Eddy (1982, 

cited in Gigerenzer & Hoffrage 1995: 686) reveals that, of a sample of 100 

physicians, 95 grossly over-estimated the 7.8% posterior probability 

p(cancerƒpositive) to be 70%–80%. Conversely, when test data are presented as 

frequencies, subjects have no difficulties arriving at the appropriate estimates. 

Gigerenzer and Hoffrage (1995: 686) argue that physicians’ failure is not because 

“the human mind does not reason with Bayesian algorithms” but because 

probability format is the wrong format for cognitive tasks. The human mind is 

“tuned to frequency formats, which is the information format humans encountered 

long before the advent of probability theory” (ibid: 697). As Zacks and Hasher 

(2002: 21) put it, “people of all ages and under a very broad range of 

circumstances reliably and unintentionally encode information about the relative 

frequencies of events”.  

Importantly, for our case, the central tendency measure that is inherently 

associated with frequency is not the mean but rather the mode, which is the most 

frequently occurring value within a dataset. By definition, then, the mode actually 

exists as a naturally occurring datum. It is not arithmetically derived, as opposed to 

the mean (see e.g., Howell 2002; Tukey 1977). In other words, both comparatively 

high frequency and actual occurrence are essential components of the definition of 
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the mode. This should, in principle, make the mode more cognitively plausible than 

the mean as a measure of central tendency. 

 Furthermore, the mode, again as opposed to the mean, reflects another cognitive 

property. Human cognition is known to be geared to salient data (e.g., Carroll 

2006). Saliency implies actual occurrence, and it can be envisaged as 

encompassing frequent occurrence as well. In other words, the two defining 

characteristics of the mode listed above further favour the mode over the mean as 

a measure of central tendency on grounds of cognitive plausibility.  

Importantly, since the mode, again by definition, ignores infrequent values within a 

dataset, it is consistent with the conservative cognitive performance that Peterson 

and Beach (1967) describe (see above). This property, which once again adds to 

the cognitive plausibility of the mode, renders it lacking in statistical sufficiency 

and almost unusable in formal statistical inferencing. However, we have seen in 

¶ 5.2.2 that formal statistical inferencing, at least as based on NHST, can be 

unreliable. At the same time, statistical inferences are built on probabilities. If we 

convert to a Gigerenzerian view of cognition, we will find those arguments for 

clinging to the mean while dismissing outright the mode very unconvincing.  

Another related point to consider is the fact that the concept of average as utilised 

in statistical thinking under the name of central tendency can differ markedly from 

its non-technical denotation. Specifically, the notion of the average, to the 

statistically uninitiated, is closer to the mode rather than the mean. For example, 

Mokros and Russell (1995) have explored children’s understanding of what the 

average is. Comparing the performance of fourth, sixth, and eighth graders, they 

found that fourth graders equated the average with the mode far more often than 

either sixth or eighth graders, who were, instead, more keen on applying the 

formal algorithm for computing the arithmetic mean or the median, which they 

learned in school. Interestingly, Mokros and Russell (1995) noted that those 

learners who were trying to derive the arithmetic mean were mostly unsuccessful 

in finding the mean, either because they fed the wrong information into the 

formula or used the correct information within the wrong algorithm. The authors 

sum it up for that type of pupil: “giving up what […they know] about the world in 

order to apply a procedure that resulted in unreasonable (and unrepresentative) 

results” (p. 29).   
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In a histogram of a perfectly symmetrical unimodal dataset, the arithmetic mean 

coincides with the midpoint of the modal interval (i.e., the highest bar). But in 

practice, these measures almost always represent different values. When 

researchers subject their data, especially continuous data, to statistical treatment, 

they almost always pick the mean (but never the mode) to measure central 

tendency. With continuous data, it is almost always the case that there will actually 

be no true mode: every data point may occur only once. That is, no two data points 

may be exactly equal, given the large number of decimal places we can consider for 

comparison. Thus, there will most probably be no single value that will have 

occurred more frequently than others.  

However, there are ways around this problem. For example, Bickel (2002) 

proposes an iterative formula for finding the mode in continuous data. Roughly, his 

algorithm, called the half-range mode,83 consists in dividing the whole dataset into 

two intervals, then picking only the data within the highest bin (the modal 

interval). Next, the data within the modal interval are plotted into two intervals 

and a new modal interval is picked. This procedure is repeated for the remaining 

data until there remain exactly two data points. The mode will be the arithmetic 

average of these two points.  

According to Bickel, this algorithm is more robust than other mode estimators in 

the literature.  It is important to note that Bickel (2003, 2002) found the mode to 

be far more reliable than the mean or the median for asymmetric distributions, 

and, in fact, no less reliable than the mean and the median for symmetric 

distributions. Importantly, Hudson et al (2007: 1810), exploring F0 mean, median, 

and mode values for forensic purposes, conclude that the mode “gives a truer 

indication of central tendency”. Wittels et al (2002) draw a similar conclusion 

regarding F0 mode for the purposes of monitoring emotional stress (see also 

Loakes 2006; Rose 2002). 

It is also important to realise that the algorithms proposed by Bickel return a 

single data point rather than an interval. Working with acoustic data, as I am in this 

thesis, I should prefer to pick an interval rather than a single point. This preference 

                                                        
83 Actually, Bickel (2003, 2002) and Bickel and Fru ‚hwirth (2006) propose a few other algorithms 
for finding the mode. For reasons of space, I only sketch his algorithm for finding the half-range 
mode, which bears the greatest relevance to my arguments in this section. 
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is not only for practical reasons (although I admit reducing a dataset to a few 

intervals will increase its manageability). There are cognition-related reasons on 

offer. For example, Tversky and her colleagues conclude, on the basis of a number 

of empirical studies, that people tend to discretise continuous data (see e.g., 

Tversky 2005; Tversky et al 2008; Zacks & Tversky 2001; Zacks et al 2001). 

Tversky  et al (2008: 437), summing up the case, write:  

Why the mind discretizes is a question that has answers on 
many levels. On the neurological level, neurons fire or don’t. 
On the cognitive level, the continuous input is so rich and 
complex that much of it must be, and is, ignored. 

Continuous data are possibly processed in terms of a series of discrete points, each 

representing a stack of the points within its proximity. This stacking of data points 

can be pictorially depicted by plotting a set of continuous data as a frequency 

histogram.  

Moreover, infants’ processing of quantities suggests the presence of some binning 

activity. For example, Xu and Spelke (2000) show that 6-month-olds are able to 

discriminate a two-fold increase in quantity but not less than that. Their finding 

has been replicated in Brannon et al (2004), Xu (2003), and Xu et al (2003). In 

other words, quantities falling short of that ratio are indiscriminable, treated as 

being the same quantity—belonging to the same bin. It seems reasonable to 

assume that infants’ processing of quantities is subject to a binning procedure that 

follows Weber’s Law and has a certain threshold of discrimination. I present and 

discuss evidence for this kind of binning for phonetic data in the next chapter.   

Note also that even Bickel’s (2002) half-range algorithm sketched above, employs 

a procedure where intervals of progressively smaller widths are defined. It is 

interval width that needs to be treated with care here. It is important to realise 

that in dividing a set of data into intervals, the criterion of how wide an interval 

should be cannot be always meaningful for all types of datasets. Determining how 

wide intervals should be has actually been a much debated, yet still largely 

unresolved question (Scott 2009).  

Since its publication in 1926, Sturges’ rule84 for class width, which forms the basis 

of the default setting of bin width in many statistical packages (Scott 1992: 48), has 

                                                        
84 Sturges’ rule is calculated as follows (in Scott 2009: 303): K= 1+ log2(n)                  
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undergone a lot of modifications and optimisations to meet the new challenges 

that have been identified. Alternative formulas have also been put forth in 

statistics literature. Some of these rules employ some mathematical processing of 

the sample size (Sturges 1926), SD (Scott 1979), IQR (Freedman & Diaconis 1982) 

(all cited in Scott 1992). See Hirai (1989) and Scott (1992), (2009) for a review.  

Defining interval width is certainly not a trivial exercise when the purpose of 

drawing a frequency histogram with a specific class width is not just for a better 

graphical illustration of the distributional properties of the data at hand. Finding 

the modal interval and defining the range of intervals within a dataset can be 

affected by how wide the data intervals are. Therefore, we need to find a criterion 

that we can apply consistently, but preferably, not on an ad hoc basis. Beyond 

certain statistical considerations (e.g., the underlying distribution of the data), 

choosing among the proposed formulas still has an element of arbitrariness.  Of 

course, the consistent application of even an arbitrarily chosen criterion can 

reduce a great deal of the objectionability of its arbitrariness. However, a criterion 

that better suits our enterprise of understanding phonetic phenomena is one that 

we can aspire to justify in the particular context of phonetics. I describe and justify 

a phonetics-based criterion in the next chapter. 

But before I conclude this section, I would like to return to the measure of 

variability that relates SD to the mean, i.e., the Coefficient of Variance (CV). Derived 

as it is, CV will automatically inherit any imprecision of the components that are fed 

into its equation.  Furthermore, being a relative measure, CV is actually tied to the 

numerical value of its components, irrespective of the range of possible values 

which those components may assume.  

More concretely, the proportion of a hypothetical SD of, say, 10 to a mean of 50 

within a dataset with a range of 30 is far larger than the proportion of the same SD 

to a larger mean of, say, 500 within a dataset with an exactly equal range—30. In 

the first case, CV is .2, with SD forming 20% of the mean. In the second case, CV is 

.02, with SD representing only 2% of the mean.  That is, according to CV, the first 

dataset is much more variable than the second dataset. By contrast, SD and range 

figures alike indicate that the two datasets are equally variable. One point of 

difference in this comparison is that CV is not independent of the numerical value 

of the mean.  For this reason, CV can sometimes give a wrong estimate of 
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variability. I illustrate this point using fictitious datasets with the same 

distributional shape as in Figure  5-1.   
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Figure  5-1: Histograms of four fictitious datasets with the same distributional shape 

 

 Dataset A Dataset B Dataset C Dataset D 

Mean 4 70 6 100 

SD 1.74 17.4 2.28 22.8 

CV .43 .25 .38 .23 

Range 6 60 8 80 

Table  5-4: Mean, SD, CV, and range values of the four fictitious datasets in Figure  5-1 

 

As we can see from Table  5-4, all the values (mean, SD, CV, and range) are different 

among the four datasets.  How variable these datasets are seems to depend 
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partially on the measure we use. The above measures seem to paint a different 

picture of variability for these datasets, as shown in Figure  5-2 below. For example, 

using the SD or the range85 as our measure of variability, we conclude that no two 

sets have equal variability, with dataset (D) being the most variable while dataset 

(A) being the least variable, and with dataset (B) being more variable than dataset 

(C). According to CV, (D) is the least variable, while (A) shows the most variation. Of 

the middle histograms, (C) is more variable than (B). See Figure  5-2. 

       SD     CV  Range 
Most variable  D  A  D 
    B  C  B 
    C  B  C 
Least variable  A  D  A 

 

Figure  5-2: Variability in the four datasets in Table  5-4 as measured using SD, CV, and range 

values 

 

The problem with these measures is their reliance on the numerical values of the 

components of their formulaic definitions. For example, the range is sensitive to 

the numerical values of the smallest and largest data points within a set. A dataset 

ranging in units is very likely to have a smaller range than a dataset ranging in 

tens, which in turn is expected to have a smaller range than a dataset ranging in 

hundreds, and so on.86  Similarly, the SD is sensitive to the numerical value of the 

distance between the mean and each of the data points, especially extreme ones in 

a set. The larger the numerical value of this distance, the larger the SD gets (Howell 

2002). Finally, the datasets illustrate very vividly how CV is sensitive to the 

numerical value of the mean. It is clear that a relative measure of variability that is 

less dependent on the numerical values of the absolute measures of central 

tendency and variability should be more desirable for quantifying variability. 

Below I suggest a measure that has the potential of being just that.          

                                                        
85 Note that if we express the range, not in terms of real data values, but in terms of bar numbers, 
we will reach the conclusion that datasets (A) and (B) have equal variability, that datasets (C) and 
(D) are equally variable, and that the first two sets vary less than the second two sets. Interestingly, 
if we choose to relate the range values to their corresponding means, we will come to exactly the 
same conclusion as drawn on the basis of CV.  
86 Exceptions to these are also likely, but very much less so. Of course, mathematical normalisation 
is one way to circumvent that problem. But normalisation or transformation does not seem to be a 
pre-requisite for the majority of the statistical models we run. On the contrary, many statisticians 
recommend that transformation be kept to a minimum, as it tends to complicate the subsequent 
interpretation of the data (see e.g., Osborne 2002). 
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5.3.2 Towards an Intuitive Notion of Variability Fields 

5.3.2.1 Preliminaries 

According to Pingel (1993: 71), “the concept of variability is not defined precisely 

enough to lead to a single measure of variability”. The variability measures 

discussed so far are but a few of the proposed variability measures. As we have 

seen above, different measures of variability suggest different answers to the 

question of how variable a dataset is. Occasionally, a discrepancy arises between 

what statistics says and what intuitions say regarding the size and definition of 

variability. For example, all the datasets in Figure  5-1 above intuitively seem to be 

of equal variability—a conclusion that is supported by none of the measures 

considered above (i.e., SD, CV, and the range). Consider now a situation where the 

reverse scenario obtains. This is when a number of datasets intuitively appear to 

be different in variability, yet statistical measures of variability insist on seeing no 

differences among them. In Figure  5-3, I illustrate this curious case, using 

histograms “cleverly constructed” by Nitko (1983) and reported in Pingel (1993: 

70-71).  
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Figure  5-3: Four datasets with the same mean and SD values (adapted from Pingel 1993: 71) 

 

 Dataset A Dataset B Dataset C Dataset D 

Mean 4 4 4 4 

SD 1 1 1 1 

CV .25 .25 .25 .25 

Range 3 3 4 2 

Table  5-5: Mean, SD, Cv, and range values of the four datasets Figure  5-3 

 

All four sets in Figure  5-3, which have different distributional shapes, have, 

nonetheless, the same mean, the same SD, and of course, the same CV (see Table 

 5-5).87 By these measures, the four sets have exactly the same variability. However, 

this does not seem to agree with the intuitions of many people—certainly not with 

my intuitions nor with those of the sample I consulted. Intuitively, dataset (D) 

                                                        
87 I discuss the range further below. 
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seems to be the least variable, as all of its data points except one stack into only 

two bins. Dataset (C) is the next least variable, as half of its data points fall into one 

bin while the remaining half scatter into four different bins. Datasets (A) and (B), 

which have the same amount of variation, are the most variable. In each of them, 

data points forming 67% spread out into three bins while the remaining 33% fall 

into a fourth bin.  

Note that the conclusions based on SD and CV do not agree with these intuitions. 

According to these measures, all four datasets are equally variable. These 

measures express, respectively, how widely data points spread out from the mean 

value, and what proportion that deviation forms relative to the mean. That is, they 

measure the degree of density around the arithmetic mean. This does not reflect 

the intuitive understanding of the notion of variability that people with little or no 

statistical training may have.  I have indicated in ¶ 5.3.1 above that neither the 

arithmetic mean nor the SD is intuitively available to statistics-naïve subjects. This 

will, by extension, disqualify CV as an intuitive measure of variability. 

The intuition-based description of the different datasets in Figure  5-1 and Figure 

 5-3 above suggests that there are basically two elements whose variation appears 

to contribute to our intuitive definition of variability. These are the frequency of 

the modal interval and the range of bins in those histograms. The higher the 

frequency, the smaller the variability will be, whereas the larger the range, the 

larger the variability will be. This agrees with an observation made by Lann and 

Falk (2003) regarding students’ approach to variability. These researchers report 

that the range scored the highest in all the conditions of their questionnaire. The 

other measures of variability they studied were SD, mean Absolute Deviation, and 

IQR. These measures were used very inconsistently by the subjects and scored 

only about half of the score of the range. Moreover, the verbal explanations that 

subjects had to provide at the end of the questionnaire about what exactly they 

considered while assessing the variability of the datasets actually contained an 

explicit reference to the intuitive correlation between the presence of repeating 

values and decreased variability.   

It is clear from the findings emerging from Lann and Falk’s (2003) study that 

students’ intuitive conception of variability has an element of density and/or a 

component of spread, but that neither density nor spread is around the arithmetic 
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mean in particular. Density here is the frequency of the average in the intuitive 

sense—i.e., the modal interval; spread here can be the range of the intervals 

comprising the dataset. The variability index I propose next makes use of these 

measures. 

5.3.2.2 The Variability Field Index (VFI) 

VFI relates the frequency of the modal interval to the number (i.e., range) of 

intervals that a dataset falls into. Note that scaling the range of intervals to modal 

frequency frees this index from the numerical values of the modal interval as a 

measure of central tendency and from the numerical values of the range as a 

measure of variability. This is one point of difference between this index and other 

common measures discussed above.  

Importantly, being expressed as a ratio, VFI captures the cognitive relativity that 

characterises our intuitive judgements of variability. As pointed out above, 

researchers have long noted people’s tendency to assess variability relative to 

some measure of location (Lathrop 1967). Interestingly, Lovie and Lovie (1976) 

report that statistics-naïve subjects have some success in repressing this relativity 

following explicit instructions but only when variation is low. With a larger amount 

of variation, however, subjects just cannot override this tendency.    

To the extent that VFI is just an approximation of the intuitive (not the statistical) 

notion of variability, we need to understand the nature of the contribution of its 

components to our intuitive conception of variability. On the one hand, the 

frequency of the modal interval seems to be in inverse proportion to the perceived 

amount of variability. As pointed out above, the frequency of the mode acts as a 

density effect. The higher the frequency of the modal interval, the more densely 

populated it is, and the less variability a dataset will appear to show. To model this, 

I take the frequency of the modal interval to represent the force of gravitation in a 

variability field. The higher the frequency, the greater the gravitation a variability 

field will display. Importantly, a greater amount of gravitation creates an illusion of 

a smaller variability field. This agrees with the claim that people think of the world 

as far less variable than it really is (Kareev et al 2002; Peterson & Beach 1967). 

That VFI is capable of formally capturing this illusion is yet another point in its 

favour. 
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On the other hand, the range of intervals defines the notion of spread. It is 

positively correlated with the perceived amount of variability within a given 

dataset. The greater the range, the greater the variability a dataset will appear to 

have. That is, the range of intervals and the frequency of the modal interval pull 

our perception of variability in opposite directions. Consider the two line graphs in 

Figure  5-4. They both have the same spread but differ with respect to gravitation, 

with (a) having far greater gravitation than (b).  At a quick look, the dotted line in 

(b), which represents spread, appears as though it is longer than the dotted line in 

(a).  This is a visual illusion partly caused by our assessing of spread relative to 

gravitation.   

 

 

 

 

 

 

   

 

Figure  5-4: Line graphs with the same spread but different gravitation bars. 

 

To appreciate how an increase in gravitation creates an illusion of a small field, we 

need to think of the gravitation bar in the chart above not as an area, but as an 

amount of force: the more data there are within the modal interval, the stronger 

the gravitation is, and hence the smaller the field will appear. To visualise this, 

consider the pyramid chart in Figure  5-5, where shading indicates the force of 

gravitation. The thick vertical line in the middle of the pyramid stands for the 

modal interval while the numbered arrows represent occasions, arbitrarily 

selected, for assessing variability at different modal frequencies. These schematic 

occasions are only meant for illustration and ease of reference. For example, on 

occasion (0), where the modal interval has not yet formed, no intuitive assessment 

gravitation 

spread 

(a) (b) 
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of variability may be possible. This is indicated by a solid arrow superimposed on 

the thick line representing spread. For the rest of occasions, an intuitive 

assessment of variability is possible. This is indicated by dashed arrows. The graph 

illustrates the inverse relationship between the frequency of the modal interval 

and perceived variability: as spread is kept constant in this graph, we can see that 

the greater the frequency of the modal interval, the smaller the perceived 

variability is. So perceived variability at occasion (1) is far greater than that at 

occasion (5), where the frequency of the modal interval is very high. 

 

 

 

Figure  5-5: A pyramid graph illustrating the inverse relationship between frequency of the 

modal interval (shown as a vertical line in the middle of the pyramid) and 

perceived variability (indicated by shaded bands of different sizes); shading 

indicates the force of gravitation. 

 

Thus far, I have described and illustrated the relationship between gravitation and 

spread, and their contribution to perceived variability. It is clear from the 

discussion that a formal measure of variability that is both intuitive and cognitively 

plausible must somehow relate gravitation to spread. Expressing that measure as 

the ratio of spread to gravitation will capture the shrinking effect that an increase 

in gravitation causes our perception of variability to have. The greater the 
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gravitation, the smaller the ratio will be. At a very crude level of conceptualisation, 

VFI might be reminiscent of the Coefficient of Variance (CV) discussed earlier. 

Recall that CV relates SD (spread) to the mean (central tendency). VFI relates the 

range of intervals (spread), not to the modal interval (central tendency), but rather 

to the frequency of the modal interval.   That is, unlike CV, VFI is not tied to the 

numerical value of the location measure or to that of dispersion. Frequency and bin 

counts can be independent of the numerical value of the measures of central 

tendency and variability, respectively. More formally,88 the function to derive VFI 

is given in  (49). 

(49) VFI= 
�34���

�)5��35��� = 
�
67 

8 stands for spread89, 9: stands for gravitation force. Spread is defined as the 

number of intervals �;<� minus 1, while gravitation force is the difference between 

the frequency of the modal interval (,=) and the number of modal intervals (;=) 

squared (i.e., multiplied by itself). The latter is a correcting factor. Since real data 

are not always unimodal, we need to correct for modality. This correction 

penalises the number of modal intervals such that the cost of modality increases 

rapidly as the number of modal intervals increases. Consider the hypothetical 

datasets in Figure  5-6.  

 

 

 

                                                        
88 Thanks to Dr Jasmina Panovska-Griffiths for useful advice on the mathematics in the thesis. 
89 Defining the range of intervals as the difference between the number of intervals and 1 is not 
really different from the statistical definition of the range as the difference between the maximum 
and the minimum data points. In calculating VFI, we are not dealing with points but with the 
number of existing intervals. Consequently, the minimum of the number of existing intervals is 
invariably 1, whereas the maximum depends on the dataset under analysis.   
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Figure  5-6: Histograms of three hypothetical datasets having the same number of intervals 

but differing with respect to their modal intervals  

 

 

  Dataset A Dataset B Dataset C 

 Frequency of Modal Interval 12 6+6 12+12 

 Number of Intervals 5 5 5 

V
FI

 Uncorrected .3 .3 .16 

Corrected .36 .5 .2 

Table  5-6: VFI values of the three hypothetical datasets in Figure  5-6 with and without 

correcting for bimodality 
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It is clear from the table above that correcting for modality helps bring the values 

of VFI more in harmony with our intuitions.90 Datasets A and B can’t be equal in 

variability. In dataset A, twelve data points all stack up in one modal interval. By 

contrast, in dataset B, the same number of data points spread over two modal 

intervals. Adjusted for modality, VFI now declares that dataset B is more variable 

that dataset A and that dataset C is the least variable.     

Next, let us compare VFI with the widely used measures of SD and CV, using the 

histograms in Figure  5-1 and Figure  5-3. For ease of comparison, I have 

reproduced the relevant tables and added a row for VFI (see Table  5-7 and Table 

 5-8)  

 Dataset A Dataset B Dataset C Dataset D 

Mean 4 70 6 100 

SD 1.74 17.4 2.28 22.8 

CV .43 .25 .38 .23 

Range 6 60 8 80 

VFI .5 .5 .5 .5 

Table  5-7: Variability measures applied to the four fictitious datasets histogrammed in 

Figure  5-1 

 

 Dataset A Dataset B Dataset C Dataset D 

Mean 4 4 4 4 

SD 1 1 1 1 

CV .25 .25 .25 .25 

Range 3 3 4 2 

VFI .75 .75 .67 .25 

Table  5-8: Variability measures applied to the four fictitious datasets histogrammed in 

Figure  5-3 

  

As we can see from Table  5-7, all measures of variability except VFI support a 

conclusion that all four datasets in Figure  5-1 have different variability. I expressed 

                                                        
90 Note that ignoring bimodality and considering the frequency of only one modal interval in the 
histograms in Figure  5-6 still results in an estimate that is at odds with our intuitions. Specifically, 
datasets A and C will then have the same variability, and will be equally less variable than B. 
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the intuition earlier that these datasets are equally variable. VFI formally captures 

that intuition. 

Next consider the datasets in Figure  5-3. As suggested earlier, treating these four 

datasets as being equal in variability is counter-intuitive. By criteria of SD and CV, 

these four datasets have the same variation. This is not the conclusion we get by 

consulting the range or VFI. However, the picture VFI paints is more congruent 

with our intuitions than that of the range. The difference lies in whether or not 

datasets A and B are more variable than dataset C. According to the range, C is 

more variable, because the range only takes into consideration the most extreme 

values, and nothing else besides them. However, VFI, which takes into 

consideration both the range of intervals and, importantly, the frequency of the 

modal interval, declares that datasets A and B are more variable than C. This 

agrees with the intuitions of the people I interviewed, and indeed with my own.  

 

5.4 Conclusion 

In this chapter, I presented a qualitative and quantitative description of the 

phonetics of neutralisation. On the qualitative side, I examined statistical 

significance, the single most important criterion in characterising the phonetics of 

neutralisation. I have shown how a statistically significant difference can be a size 

effect rather than an effect size. I have also shown that statistical significance can 

easily be misinterpreted, and that the null hypothesis of no difference is almost 

always false on both logical and empirical grounds.  

On the quantitative side, I evaluated the parametric measures of central tendency 

and dispersion. I have shown that these measures are unintuitive and so closely 

tied to the numerical values of the measurement scale that a robust estimation of 

the underlying central location and variability can sometimes be undermined. I 

have also proposed an alternative that is both more intuitive and cognitively 

plausible. Moreover, I have suggested that phonetic data are more appropriately 

examined as intervals rather than as single points. In the next chapter, I sketch a 

general model that builds on these insights. 
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6  A Sketch of the Variability-Field Approach 

 

 

6.1  Introduction 

One of the notoriously difficult challenges facing researchers who are concerned 

with modelling speech perception, production, and processing is how to deal with 

variability in the sound wave (see Connine & Pinnow 2006; Elman 1992; Klatt 

1992; Labov 1986; Luce & McLennan 2005; McMurray et al 2002; Nguyen et al 

2009; Ohala & Feder 1994; Pisoni 1997; Sommers et al 1994, among many others). 

Approaches to the question of phonetic variability vary widely. At one end of the 

spectrum, the traditional theory of the phoneme looks for structurally-governed 

macro-events in the variable speech stream, disregarding as cognitively irrelevant 

any fine phonetic detail. Commenting on this approach, Tatham (1976: 48) writes: 

That the phoneme covered a range of variations was never 
very difficult to agree upon. Precisely defining the range to 
be covered, however, was always guaranteed to precipitate 
considerable argument. 

Bearing witness to Tatham’s claim is the assortment of labels we have accumulated 

over the years to classify sounds into phonemes, quasi-phonemes (e.g., Scobbie et 

al 1999; Scobbie & Stuart-Smith 2008), intrinsic and extrinsic allophones (e.g., 

Ladefoged 1967; Wang & Fillmore 1961), quasi-allophones (e.g., Rose & King 

2007), and deep allophones (Moulton 2003). This classification relies on the notion 

of contrastiveness, which has traditionally been established categorically but is 

now being attempted probabilistically (see Hall 2009 for more on this).  

At the other end lie exemplar-based approaches (e.g., Goldinger 1997; Johnson 

1997; Lachs et al 2003; Nosofsky 1986; Palmeri et al 1993; Pierrehumbert 2001, 

2002; Pisoni 1997), which look for micro-events in the variable speech signal. Fine 

phonetic detail has never been more important both theoretically and practically, 
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whereas phonemic labelling has become secondary and at best an emergent, data-

driven activity.  

In between these two extremes are approaches focusing on the organicity (e.g., 

Elman & McClelland 1986; Klatt 1992), functionality (e.g., Johnson 2001), and 

dynamicity of variability (e.g., Nguyen et al 2009; Nolan et al 2006; Tuller et al 

2008, 1994). Importantly, these approaches have the capability of addressing both 

the macro and micro dimensions of the issue.  

Interestingly, however, the view shared by all of these approaches, and by many 

researchers in our field, is that even though a great deal of phonetic variability is 

not random, it remains unmanageably large and overwhelmingly pervasive. Klatt 

(1992: 218), for one, attributes the disappointing performance of contemporary 

models of perception and recognition to the fact that “[w]e simply do not know 

how to deal with the seemingly unreasonable variability” in speech (see also Luce 

& McLennan 2005). Although Klatt is mostly concerned with engineering 

implementation, his confession actually incriminates the inadequacy of our 

procedural, empirical, and conceptual perspectives on phonetic variability. In this 

thesis, I shall be mostly concerned with sharpening the conceptual side of our 

perspective on variability. However, for scope and time limitations, the approach I 

adopt is mostly illustrative. 

It seems to me that a first necessary step toward addressing adequately the 

question of phonetic variability is to recognise that variability is the essence of 

phonetic data rather than some isolatable addition (cf. Johnson 2001). At the same 

time, variability can be composite as well as primary. The difference here is one of 

analysability, with composite variations being analysable into portions attributable 

to traceable causes. I detail this view in the next sections.  

But I observe here that there seem to be a lot of confusion and misperception 

surrounding phonetic variability. For example, in dealing with variability, most 

researchers start with the premise that phonetic variability is considerable and 

ubiquitous, equating, at the same time, lawful variability with non-random 

variability. In this thesis, I suggest a very different view.  

Specifically, I start by re-charting the territories of lawfulness and randomness as 

applied to variability in light of the claim that phonetic variability is structured, 
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constrained, and not at all large, contra current beliefs. According to this new 

approach, lawfulness and non-randomness are no longer interchangeable. The 

main difference between what is lawful and what is non-random is one of 

acceptability versus explicability. The former refers to what is acceptable to a 

language community, whereas the latter is decided by language experts. Obviously, 

what is acceptable and what is explicable may intersect but may not always 

completely overlap. Thus, variations falling within the bounds of acceptability, 

regardless of their explicability, are lawful. In contrast, variations caused by known 

sources are explainable, thus, non-random. As is clear, to get explainability 

judgments, we may need expert advice from linguistically non-naïve subjects. In 

contrast, we can get acceptability judgments even from naïve native users of the 

language under investigation. It is important not to confuse explicability with 

acceptability when we deal with phonetic variability.  All forms of acceptable 

variability are eligible for inclusion in our domain of investigation of phonetic 

variability. That being the case, we should be prepared to welcome variations that 

we cannot explain, just as we welcome variations that we can explain. Explainable 

variability is, simply put, a research finding, if positive. We should not let it 

prejudice us against negative findings like unexplainable variability.  

Next, I present a skeletal description of the Variability-Field approach, highlighting 

its underlying conceptual philosophy. I first explain how phonetic variation is both 

constrained and structured, supporting my claims with real and hypothetical data. 

I then show how the Variability Field Model (henceforth VFM) introduces a new 

perspective on the processing and representation of variability. I focus specifically 

on what is commonly known in the literature as allophonic and indexical 

variations (e.g., Abercrombie 1967; Ladefoged 1993; Luce & McLennan 2005; 

Nielsen 2008; Nolan 1983; Ogasawara 2007; Pisoni 1997). It is these sources of 

variability that, according to a very recent appraisal of the current models of 

speech perception and recognition, pose a real challenge to current and future 

endeavours to understanding and modelling speech activity. They are obviously in 

need of addressing (Luce & McLennan 2005). I discuss a VFM schema whereby 

allophonic variations form context-bound phone-fields, whereas indexical 

variations provide some form of background against which a phone-field is 

accessed.   



225 
 
The chapter proceeds as follows. In ¶ 6.2, I briefly describe the confusion that 

characterises our approach to phonetic variability. In ¶ 6.3, I present a sketch of 

VFM, summarising in ¶ 6.3.1 its main philosophy and describing the variability 

effects that are modelled in the chapter. In ¶ 6.3.2, I show how phonetic variability 

is both constrained and structured. In ¶ 6.3.3 and ¶ 6.3.4, I detail the components of 

VFM and describe the inter-relations among them. Finally, I sum up the main 

claims and conclude in ¶ 6.4.  

 

6.2 Dealing with Phonetic Variability: The Confusion 

Despite the rapidly growing recognition of the theoretical and practical importance 

of variability in phonetic research (see e.g., Lachs et al 2003; Luce & McLennan 

2005; McMurray et al 2002; Nygaard 2005; Perkell & Klatt 1986; Singh 2008), it is 

still unclear as to what constitutes phonetic variability. Blache and Meunier (2004: 

2) sum it up: 

For a long time, variability was regarded as noise making 
obstacle to the identification of the sounds of language. This 
is a complex question because there is confusion about the 
different phenomena which one calls variability. Indeed, it is 
common to call “variation” phenomena as distinct as 
coarticulation, speech style or random variation. Confusion 
is due to the fact that one is unaware of what should be a 
realization with no variation. Thus, is coarticulation a special 
type of variation compared to prototypes of isolated 
phonemes? Or does it form an integral part of the prototypes 
of speech production?  

There may be several causes for phonetic variability and for this confusion. Yet it 

seems to me that we will go a long way towards resolving this confusion if we 

come to realise that phonetic variability is the essence of phonetic data rather than 

some isolatable addition. In this sense, we should no longer ask if an effect is to be 

treated as variation or as an integral part of the speech stretch in question, 

implying that there is an inherent incompatibility between being an instance of 

alienable variation and being an inalienable component of speech. There should be 

no incompatibility or distinction: phonetic data are essentially a blend of 

variability sets, most exhibiting multiple sources of variation at play. Such multi-

source variation is responsible for the composite, non-uniform character of 
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phonetic variability, which we should seek to make provision for when we attempt 

to estimate how variable phonetic data are. Our task should be to decompose these 

multi-source variability sets until we reach a stage where variability sets are not 

further reducible to smaller component sets traceable to known sources. Such will 

be primary variability. Here, there will be no disparity, no diversity. This is 

variability in its unadulterated form.  

On this view, depending on the kind of questions we ask, we may want to look at 

variability in its totality or in its composite or primary forms. If our purpose is to 

form an overall, gross picture of variability, many might think that we probably 

need not decompose variability. But the picture will certainly be far less blurry 

with the inclusion of the details we get by studying variability in its primary form. 

Part of the confusion that marks our treatment of variability stems from our being 

unspecific about what variability form we are studying.  

Another factor contributing to this confusion is the prior assumption, shared by 

many researchers, that exaggerates the magnitude and ubiquity of phonetic 

variability (see e.g., Connine & Pinnow 2006; Lavoie 2001; Nygaard 2005; Peterson 

& Barney 1952). Indeed, Sheila Blumstein (1986: 199) spoke for many when she 

wrote that “there is no question that there is a tremendous amount of 

acoustic/articulatory/phonetic variability in speech. This is not at issue”. But here I 

would like to take issue with that. Specifically, I claim that the perception that 

phonetic variability is rampant and unrestrained is an illusion created by confusing 

the different forms of variability described above and by certain conceptual 

assumptions and methodological practices that usually define our approach to 

variability.  

One such inappropriate practice concerns the way we measure variability, which I 

have detailed in the previous chapter. Briefly, my main reservations are these. 

Phonetic variability is statistically measured relative to the arithmetic mean, which 

is usually an imaginary point constructed through arithmetic summation and 

division using all the data points within a given set of data. Arithmetically derived 

measures of variability such as the standard deviation (SD) and the coefficient of 

variance (CV) are not cognitively plausible for at least two reasons. Firstly, using all 

data points within a set to calculate variability does not reflect cognitive 

conservatism, where only a subset of a given dataset is considered. This latter 
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mode of cognitive calculation, unlike SD and CV, underestimates objective 

variability (e.g., Kareev et al 2002; Peterson & Beach 1967). Secondly, being 

arithmetically derived, these variability measures are almost never naturally-

occurring values. As such, they may not be readily available to human cognition, 

which is said to be geared to events that occur naturally in the world (e.g., 

Gigerenzer & Hoffrage 1995; Zacks & Hasher 2002).   

Another inappropriate practice involves the type of pre-analysis treatment that 

phonetic data undergo. Specifically, datasets are commonly treated as being 

composed of individual data points, instead of intervals. This practice seems to 

unduly and massively magnify the ubiquity and size of phonetic variability. Many 

researchers would agree that a great deal of phonetic variation falls below the 

threshold of perceptibility. Yet many would still include in their calculation of 

variability perceptible and imperceptible differences alike. More concretely, 

suppose we have for analysis a dataset of a hundred physically different data 

points, making up only ten perceptibly different tokens.  There will be a size 

difference between the range of possible values measuring physical reality and the 

range of possible values measuring perceptibility bounds. See the next section for 

more on this. 

A third factor leading to the creation of this confusion, but which has received little 

attention in the literature, is equating implicitly or explicitly lawfulness with non-

randomness in our characterisation of phonetic variability.91 For reasons of space, 

I mention here only two views. The first view bestows lawfulness on variability 

that is predictable (see e.g., Elman & McClelland 1986). This is variability due to 

physiological or phonetic reasons—variability that is mechanical, to borrow a term 

from Johnson (2001). The second view sees as lawful any variations that are 

meaningful in the sense that they are linguistically relevant, be it syntactically, 

pragmatically, lexically, or socio-linguistically, etc.  (see e.g., Johnson 2001; cf. 

Gafos 2006; McMurray et al 2005). 

 The mechanical-variability view legalises phonetic variation on organicity 

grounds, whereas the meaningful-variability view legalises phonetic variation on 

                                                        
91 It is important to note that approaches focusing on the dynamic nature of phonetic variability 
(e.g., Nguyen et al 2009; Nolan et al 2006; Tuller et al 2008, 1994) do not suffer from this 
shortcoming. It is for this reason that I do not discuss them here.    
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functional grounds.92 Note that the two views share an obvious appeal to 

explicability in defining what to consider and what not to consider as lawful 

variability. According to both views, variations that defy explanation remain 

outlawed. These variations include inter-trial variations and a portion of intra- and 

inter-speaker variations.  The commonalities between the two views are 

summarised in Figure  6-1. 

Phonetic Variability 
 

ENORMOUS 

 
 

Non-Random 
 

 
Random 

 
 

LAWFUL 
 

 

 

Explainable by physical, mathematical, or discourse-related 

laws 

Lawful phonetic variability is predictable, mechanical, 

and/or meaningful  
 

LAWFUL = NON-RANDOM 

E.g., a great deal of inter-

trial variability, a portion of 

speaker variability, and 

performance-related and 

measurement errors 

Figure  6-1: Variability as viewed in the literature: Lawful = Non-random 

 

It appears to me that equating lawfulness with non-randomness can encourage 

disinterest in random variation, thus prejudicing our attempts to understand 

phonetic variability. If random variations are to be excluded from our domain of 

inquiry, they should be excluded on the basis of an adequate investigation rather 

than on a preconception. Until that happens, exploring random variations should 

remain a legitimate research topic. Meanwhile, it may be instructive to familiarise 

ourselves with the stance that other fields of inquiry take on random variability.  

Let us focus specifically on brain research and complex systems. There, we come 

across demonstrations strongly supporting the claim that some amount of random 

                                                        
92 Note here that organicity and functionality are not necessarily mutually antagonistic. The exact 
relation between the two should be interesting but is actually beyond the scope of this thesis. 
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variability is not only beneficial but actually necessary for the optimisation of 

neural systems. Random variability has been shown to improve the responsiveness 

of those systems. For example, Levin and Miller (1996) demonstrate that sensory 

neurons perform better in the presence of noise. Specifically, they report that noise 

enhances the sensitivity of these neurons, enabling them to respond optimally 

even to weak signals. Similarly, Basalyga and Salinas (2006) document the 

constructive role of random variation in neural-network performance in a simple 

classification task as well as in complex tasks requiring coordinate 

transformations. Moreover, Stein et al (2005) claim that random variation is even 

more important for the auditory system, which deals with high-frequency stimuli. 

They argue that random variation improves transmission fidelity for high-

frequency signals.  

Interestingly, McIntosh et al (2008) conducted a correlational study comparing the 

variability of the brain signal and behavioural variability. These were obtained 

respectively from neural (EEG) and behavioural data (response latency and 

accuracy scores) from 55 children (aged between 8 and 15) and 24 adults (aged 

between 20 and 33) performing face-recognition tasks. Results show that brain 

variability is negatively correlated with response-latency variability, while it is 

positively correlated with accuracy scores. That is, the greater the brain variability, 

the less the response variability and the higher the accuracy scores are. Brain 

variability is also found to increase with age. The researchers conclude that brain 

‘noise’ seems to enlarge brain’s “capacity for information processing” (p. 2). This 

conclusion agrees with speculations on the role of random variability in enhancing 

brain adaptability to uncertainties in the world (see e.g., Boly et al 2007). More 

generally, their results illustrate how random variability increases the efficiency of 

nonlinear systems including neural systems. 

The implication for phonetic research is obvious. If random variability is essential 

for the functioning of complex systems and the human brain, as the above-

mentioned studies suggest, then it might also be relevant to language activity. Let 

us not forget that within our field, researchers usually add random noise to 

synthetic speech to improve its acceptability by increasing its perceived 

naturalness (e.g., Portillo 2002; Wouters & Macon 2002). In all likelihood, an 

investigation of phonetic variability that does not exclude random variations will 
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add to our understanding of the subject. Such an investigation might also improve 

our chances of resolving one of the infamous paradoxes in phonetic research. Here 

is how Jeffrey Elman (1992) portrays the paradox:  

It is a curious paradox that some of the tasks that humans 
carry out with the least conscious awareness and with the 
greatest facility are precisely those tasks that seem to be the 
most complex and have been most resistant to analysis. The 
acoustic/phonetic processing of speech is one such domain. 
Introspection yields little insight into how this processing is 
done, and most listeners fail even to recognize that the task 
might be difficult. Yet attempts to duplicate this processing 
in machines have not been very successful (p. 227). 

Needless to say, addressing adequately the question of phonetic variability holds 

one of the keys to understanding phonetic processing and subsequently resolving 

the above paradox. For these reasons, I wish to extend the applicability of the term 

‘lawful variability’ to cover variation that is currently described as random for the 

simple reason that it defies explanation. To me, lawfulness does not presuppose 

predictability or explicability. Any variation that is not due to some identifiable 

performance-related errors on the part of speakers or on the part of researchers, 

but for which we still have no explanation, is just as lawful as variation whose 

sources we have already identified.  

Figure  6-2 below depicts the territories of lawful and non-random variations 

according to the Variability Field approach, which I sketch next. 
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Figure  6-2: Phonetic Variability according to VFM: Lawful > Non-random  

 

6.3 Phonetic Variability as Fields: The Variability Field 

Model 

6.3.1 Overview 

A central presumption of VFM is that phonetic variability is limited and structured 

in such a way that it can be ‘fielded’. Hence the name variability fields. There are 

bounds to how widely the phonetic rendition of a unit of speech can vary and still 

be recognised as an acceptable and native-sounding rendition of that unit. There 

exists by now ample evidence supporting the conclusion that physiological, 

phonological, prosodic, morphological, lexical, and discourse-related factors have a 

constraining impact on phonetic variability (see e.g., Baese & Goldrick 2006; Baese 

et al 2007; Campos-Astorkiza 2007; Johnson 2001; Lavoie 2002; Lindblom 1986; 

Manuel 1990; Meunier et al 2006; Tabain and Perrier 2007, 2005; Vaux & Samuels 
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2005). To take but one example, the system of contrast in a given language limits 

how much variation contrasting sounds can exhibit. Figure  6-3 reproduces a 

schematic from Vaux and Samuels (2005: 411) graphing the constraining effect of 

a three-way laryngeal contrast on the amount of VOT variation in the realisation of 

the contrasting sounds. As is shown in the figure, plain voiceless series (T) exhibits 

the least variation while the other two series (D) and (Th) have larger latitudes of 

variation in the lead and lag directions, respectively. The schematic actually rests 

on real VOT data from Nepali, which has a four-way laryngeal contrast (for more 

on this, see Poon & Mateer 1985; Vaux & Samuels 2005). See also Johnson (2001) 

for a similar argument using comparative data from English and Korean.   

  

significant variation possible 

 

  limited variation 

possible 

  

D T Th 

VOT                0ms  35ms                   VOT 

Figure  6-3: A schematic graphing the constraining effect of a three-way laryngeal contrast 

on the amount of VOT variation in the realisation of the contrasting sounds 

(reproduced from Vaux & Samuels 2005: 411)   

 

Underlying VFM is a hybrid, integrative approach to phonetic representation and 

processing, placing variability where it belongs—at the heart of phonetic data. The 

hybridity of the model comes from its combining abstractionist and episodic 

schemes. Specifically, VFM recognises as component fields both a quasi-episodic 

phone-field and an abstract phoneme-field.93  

However, these fields are not a complete innovation of VFM. They actually share 

certain features with prototype theory (e.g., Kuhl 1991; Kuhl & Iverson 1995; 

Samuel 1982) and exemplar-based approaches to the lexicon (e.g., Goldinger 1998, 

                                                        
93 I do not attempt to define these representational units rigorously. Rather, I use the terms for 
descriptive convenience to code a representational distinction. Roughly, as a field label, the phone 
describes a context-specific realisation of a given sound (cf. Ladd 2006). Beyond that, it refers to 
each perceptibly different instance of that sound (cf. Laver 1994) which can join the potential 
population of a phone-field. In contrast, a phoneme here is a grouping label attached to a collection 
of phone-fields that share certain characteristics.   
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1996; Johnson & Mullennix 1997; Palmeri et al 1993; Pierrehumbert 2002, 2001). 

For example, the phone-field can be likened to a very tiny sub-space of an 

exemplar cloud emptied of all inhabitant exemplars except those occupying the 

modal interval. As such, a phone-field has an internal structure within a bounded 

spread area (see ¶ 6.3.3.1 for more details). To some extent, this construction is 

reminiscent of prototypical configurations of phonetic categories which 

distinguish between central and boundary tokens (e.g., Allen & Miller 2001; Kuhl 

1991; Kuhl & Iverson 1995; Samuel 1982). Moreover, the definition of prototype 

found in neural research which appeals to a sound’s frequency of occurrence (e.g., 

Guenther & Gjaja 1996; Näätänen et al 1997) is compatible with VFM’s notion of 

the modal interval. See chapter five for details. 

By the same token, the phoneme-field, being a constellation of phone-fields, is like 

a cloud of dispersed exemplars all carrying a single phoneme label94 (see 

Pierrehumbert 2001).  Needless to say, exemplars populating a given phoneme 

cloud considerably outnumber the phone-fields within a phoneme-field. 

Accordingly, the phoneme-field is a lot more coarse-grained than a phoneme cloud 

of exemplars. See ¶ 6.3.3.2 for more details.  

On the other hand, the phoneme-field borrows from prototype theory the common 

definition of prototypicality, which emphasises well-articulatedness and 

peripherality over typicality (Lotto et al 2000). A prototype, thus defined, is 

actually not bound to a context and, as Lotto et al (1998) observe, might remain a 

meta-linguistic judgement. In other words, a prototype in this sense might not 

exist in real speech situations. As we will see later, VFM allows the construction of 

a meta-phone—an idealised, context-free pseudo-phone-field within a phoneme-

field which serves certain metalinguistic purposes. Thus, the meta-phone is 

prototypical in the sense described above. See ¶ 6.3.3.2 for details.   

                                                        
94 There is no agreement among those who actively subscribe to the exemplar-based approach 
regarding what unit of speech a cloud of exemplars represents. There are at least three candidates 
in the literature: the word (e.g., Johnson 2007), the phoneme (e.g., Pierrehumbert 2001), and non-
automatic allomorphs (Va‚limaa-Blum 2009). See also Hall (2008) for one possible exemplar-based 
conceptualisation that explicitly integrates allophonic contributions. 
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variability.  To illustrate, I have plotted in Figure  6-6 a hypothetical97 set of 

normally distributed duration data. The symmetrical shape and values of the data 

are for illustrative purposes. As we can see, there are 50 physically different data 

points. That is, duration here varies along a range covering arbitrarily-distanced 

50 different values. To explore the same dataset within VFM, we need to examine 

the data in terms of intervals rather than as individual data points. To visualise 

data in intervals, we first need to fix interval width. For the purposes of 

illustration, I have set bin width to 20ms, which, as we will see in the next chapter, 

is a plausible bin width reflecting a jnd of 20% of a reference vowel whose mean 

duration is 100ms. This gives us only five perceptually different data intervals, 

indicating that duration varies along a range of five possible values. Importantly, 

the VFM-based exploration enables us to see for ourselves that phonetic variability 

is even constrained by our own perception. At the same time, and perhaps more 

importantly, this way of exploration reveals a kind of structure in the dataset. 

Looking at the data display in Figure  6-6, we can locate, at a quick glance, the 

modal interval, tell the number of intervals, and form an idea about the proportion 

of the data within the modal interval relative to the number of the intervals in the 

histogram.  

 

 

 

 

 

 

 

 

 

 
                                                        
97 The use of hypothetical data is for simplified exemplification. In the next chapter, I will examine 
real data illustrating the points argued for here.  
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Figure  6-6: A hypothetical set of normally distributed duration data (n=50) arranged 

horizontally from smallest to largest (top) and plotted as a histogram with a bin 

size of 20ms (bottom) 

 

Another step we can take towards finding structure in variability is to recognise 

that a great deal of the phonetic variability that we subject to analysis is actually 

composite variability (i.e., attributable to a variety of causes). This variability can 

be further analysed so that variations due to disparate sources are separated.  

Theoretically, the analysis can continue up to a point where a certain portion of 

variability is no longer analysable given our current knowledge and resources, 

which are, admittedly, not unlimited. I will refer to this non-analysable portion of 

variation as primary variability. Now it must be noted that both primary and 

composite variations are lawful as long as they remain native-like. That is, only 

variations that native users of the language in question find inappropriate, be it 

relative to a given context or in absolute terms, for known or unknown reasons, 

should be outlawed. Granted, composite variability will be less random by virtue of 

the traceability of its causes, which are responsible for its composite character. 
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What remains after the extraction of the relevant sources of variation is primary 

variability, which as such can be seen as random. Note that, strictly speaking, many 

instances of what our limited means compel us to treat as primary can still be 

instances of incompletely analysed composite variability. A great deal has been 

written on sources of variability (e.g., Benzeghiba et al 2007; Klatt 1986, 1976; 

Labov 1986) but very little, if any, on the primary-composite distinction suggested 

in this thesis. That said, this chapter contributes towards filling this gap in the 

literature, with a more specific goal—to reframe our discussion of phonetic 

variability.   

Regarding composite variability, VFM is initially concerned with identifying the 

various sources of variation, with a view to extracting the variations they cause in 

order to arrive at primary variability. These sources, of course, include linguistic 

and non-linguistic factors. Once we arrive at primary variability, the focus will be 

on its distributional properties such as modality, spread, and shape. These can be 

defined in relation to the notion of the modal interval and the range. As I explained 

in the previous chapter, the modal interval is the highest bar in a frequency 

histogram; it is where data dense up. The number of modal intervals in a dataset 

determines whether the dataset is unimodal, bimodal, or multi-modal. The size of 

the range defines the spread of the dataset. Hence, we can have widely-dispersed 

versus narrowly-dispersed datasets. The location of the modal interval relative to 

the spread area defines the shape of the dataset. For example, depending on where 

the modal interval falls relative to the spread area, we can have central-gravitation, 

left-gravitation, and right-gravitation fields. Of course, as shown in the previous 

chapter, the gravitation area and spread of the field provide respectively the 

central tendency and dispersion statistics within VFM.  

Figure  6-7 below summarises the relationships between composite and primary 

variability. The smoothed lines in the figure are only for simpler visualisation.98 

Later, I will use histograms exclusively. As is clear from the figure, adding a source 

                                                        
98 Of course, given the central limit theorem, unless there is very little or no overlap among the 
relevant subsets of the data, a large set of sampled data like what we have in the figure will tend to 
approximate the normal, bell-shaped distribution when plotted as a frequency histogram. This 
happens irrespective of the underlying distribution in the population from which the data have 
been sampled. The distribution of the underlying population may still not be normal, though (Mark 
Huckvale, p.c. 2010). Therefore, it is very important that gravitation and spread are calculated for 
primary rather than composite variability. It must be noted in this respect that, unfortunately, the 
vast majority of published phonetic data are examples of composite variability.  
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analysis; in (B), only vowels following labial consonants are considered, totalling 

540 data points. Of these only two vowels are considered in (C): [a] and [i] with a 

total of 216 data points; in (D), only [a] data are considered making up 108 data 

points; in (E), the labials preceding [a] are restricted to only [b] and [m] giving 54 

data points in total; and finally in (F), [a] following only [m] data, making up 27 

data points, are plotted. Examining the variability in all six data plots in terms of 

VFM, we conclude that only variability in (F) is primary, while that in (A) through 

(E) is composite.  
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As I explained previously, for primary variability we need to locate the modal 

interval and the range. These make up the essential components of the phone-

fields within the model. To do that, we need to make sure that the inter-midpoint 

distance represents a perceptible difference, e.g., by applying jnd-based binning. As 

it stands, bin width in histogram (F) is arbitrary. Therefore, I have re-plotted 

dataset (F) as (F-ii) below setting bin width to an appropriate jnd-based width in 

Hz (see chapter seven for more on this). As we can see, jnd-binning as in (F-ii) 

effects some pruning down of the data set in (F), which I have reproduced as (F-i) 

for the convenience of the reader. Finally, in (F-iii), I have isolated the modal 

interval and kept the spread line, which, as far as single-talker datasets are 

concerned, are all we need for a primary phone-field. See Figure  6-9. 

 

Histogram illustrating primary variability using an arbitrary bin width; perceptible and 
imperceptible differences are shown.  

 

 

Histogram illustrating primary variability using a jnd-based bin width; only perceptible differences 
are shown.  

 

 

Histogram illustrating the components of a phone-field: the modal interval and spread line 
 

Figure  6-9: Histograms illustrating three possible analyses of [ma] data (n=27) plotted in 

Figure  6-8  

[F-i] 

[F-ii] 
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However, in phonetic research, there are many researchers who are interested in 

explaining group behaviour rather than documenting the minutiae of an 

individual’s phonetic behaviour. To these researchers, VFM offers a specific 

strategy for dealing with multi-talker datasets. However, before discussing that 

strategy, it is useful to familiarise ourselves with the basic architecture of the 

model, which I attempt next.   

6.3.3 Field-Forming Variability 

6.3.3.1 The Phone-Field 

A phone in its immediate phonetic context forms a variability subfield, called here 

a phone-field. For reasons of space, I will only discuss and illustrate segmental 

context here. The exact number of sounds making up the context window will not 

have a direct bearing on the concept or functionality of the phone-field. For the 

purposes of this thesis, however, segmental context will not extend beyond two 

neighbouring sounds on both sides of the field’s phone. This decision is certainly 

open to question. However, it is not entirely arbitrary but is actually inspired by 

experimental evidence suggesting that segmental effects diminish with distance. 

For example, coarticulatory effects are generally strongest in adjacent sounds (e.g., 

West 2000, 1999).99 Examining the temporal extent of vowel-to-vowel 

coarticulation, Grosvald (2009) found that, as distance increased, the effect became 

inconsistent and only appeared in the production of some speakers of his sample, 

thus confirming the findings of Gay (1977). Importantly, the strongest 

coarticulation effect in the Grosvald study is between vowels across one consonant 

sound. Perception-wise, Grosvald reports that this coarticulatory effect was 

useable to all the listeners in his experiment. Beyond this distance, however, the 

coarticulation effect was barely perceptible.  

On the other hand, numerous studies show that coarticulatory effects extend over 

a larger distance than that covered by the two-segment window in this thesis (see 

e.g., Hawkins & Slater 1994; West 2000, 1999). However, the formulation above 

serves the illustrative purposes of the thesis sufficiently for the present. Let me 

quote Ku ‚hnert and Nolan (1999: 28), who rightly point out that “truly quantitative 

                                                        
99 In terms of directionality and domain, coarticulatory effects are not necessarily symmetrical (see 
Gay 1974 for articulatory data and Recasens 1987, 1989 for acoustic data). See also Bladon and 
Nolan (1977) and Magen (1997) for a different result.  



244 
 
statements about coarticulatory effects are yet difficult to derive”. This is an area 

where we still need more research employing case-study as well as cross-language 

methodologies.  

Undoubtedly, a superior definition of neighbouring environment is one that allows 

for more specificity with respect to segments, languages, and speakers. For 

example, a segment-sensitive criterion for defining the length of the coarticulatory 

window may be better than a criterion that applies indiscriminately as I have done 

in this thesis. There are reports in the literature supporting the conclusion that 

different sounds have different coarticulatory properties (see e.g., Bladon & Al-

Bamerni 1976; Bladon & Nolan 1977; Recasens 1987, 1985). There are also 

reports in the literature that coarticulatory effects are language-specific (see e.g., 

Gobl & Ni Â Chasaide 1999; Boyce 1990; Manuel & Krakow 1984; for a review see 

Manuel 1999). Also important is the suggestion that speaker idiosyncrasies have a 

role to play in coarticulation effects (e.g., Nolan 1985, 1983). For the illustrative 

purposes of this thesis, however, I shall stick to the arbitrary criterion of limiting 

the segmental environment to only two segments on both sides of a field’s phone. 

As I explained above, the exact length of the coarticulation window will not affect 

the concept or functionality of the phone-field as construed in this thesis. 

To illustrate what a phone-field is, suppose we have a lexicon comprising only 

these words: ‘ket’, ‘ketem’ and ‘meket’. There will be eleven different phone-fields 

amongst these three words, with ‘ket’ and ‘ketem’ sharing the [k]-field, and with 

‘ket’ and ‘meket’ sharing the [t]-field. These are given in Figure  6-10. In each field, 

the sound in boldface is the field’s phone. 
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[ket] has three different phone-fields:   

 

 

 

[ketem] has five different phone-fields:     

 

 

 

[meket] has five different phone-fields:   

 

 

 

Figure  6-10: Phone-fields in a hypothetical three-word lexicon 

 

As pointed out above, every phone-field has a measure of location and a measure 

of dispersion. These are, respectively, the modal interval, which stands for the 

field’s gravitation, and the range of intervals, which represents the field’s spread. 

By identifying the modal interval, we can determine (1) its frequency and (2) its 

numerical value, which can be the mid-point or the boundary values of the interval. 

So, (1) and (2) define, respectively, the force and the location of the gravitational 

area of the phone-field. Likewise, determining the spread of the field consists in 

identifying (3) the number of intervals and (4) the numerical value of the overall 

range of the dataset.  

Accordingly, there are two count statistics here. These are a frequency count 

representing gravitation, and an interval count representing the size of spread. 

Together these counts define the variability magnitude of the field as expressed in 

terms of the Variability Field Index (VFI) introduced in the previous chapter. 

Roughly speaking, VFI is the ratio of spread to gravitation. As such, VFI is VFM’s 

equivalent of the commonly used Coefficient of Variance (CV). But unlike CV, VFI 

only uses count data, and is thus independent of the numerical values of its 

components. See chapter five for details. Figure  6-11 is a flow chart showing the 

components of a phone-field and the relations holding among them. 
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ket kete ketem etem tem 
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Figure  6-11: A flow chart showing
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distance from the minimum while F is at a minus distance from that reference 

point.  

 

            ________{_____{{________{___________{_______{{_____{__________________{______{{______{_______        

 

Figure  6-12: A simple co-ordinate system with three reference points and six different points 

lying at various distances from the reference points 

 

Within VFM, the frequency of the modal interval can exert an inward attraction 

force, causing a shrinking effect on the spread area. This shrinking effect can be 

temporary or lingering, depending on the amount and type of the influence. An 

example of a temporary shrinking effect is what is known in the perception 

literature as feature saturation101 (see Eimas & Corbit 1973; Diehl & Kluender 

1987). The effect is usually brought about in a three-phase perception experiment. 

Roughly, the experiment proceeds as follows: during the first phase, a category 

boundary in a stimulus continuum along a phonetic parameter, e.g., VOT for a /b/-

/p/ contrast, is located using responses from a group of participants. Next comes 

the saturation phase, where participants are exposed to a stream of repetitions of 

an endpoint stimulus, e.g., [ba]. In the third phase, participants re-take the same 

perception test as in phase one, and the category boundary is re-located. An 

important finding of this paradigm is that the boundary shifts between the test and 

the re-test phases towards the category to which the saturating stimulus belongs.  

According to VFM, boundary shifting in response to a saturating stimulus as 

brought about in the laboratory is a manifestation of a temporary shift in the 

bounds of the phone-field. It is an inward shrinking effect caused by an increase in 

the gravitational force of the field. In real-life situations, on the other hand, the 

phenomenon is also possible and may be instantiated as sound change or 

adaptation. At the same time, VFM allows the possibility for the outer limits of the 

field to get stretched to take on new members. Again this can be short- or long-

                                                        
101 Feature saturation is more commonly referred to as selective adaptation (e.g., Repp & Liberman 
1987; Miller et al 1983). I use the less common term ‘feature saturation’ because it fits the theme of 
the chapter better.  

Mode Minimum Maximum 
F B A D C E 
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lived. Indeed, part of the dynamicity of a phone-field lies in the updateability of its 

gravitation and spread components. However, to appreciate how this is possible, it 

is instructive to learn first how a phone-field is constructed.  

The construction of a phone-field involves the formation of a gravitational area 

within a spread area, which defines the field’s outer bounds. The requirements for 

setting up the gravitational area are different from those needed for establishing 

the spread area. Specifically, gravitation, being a property of the modal interval, 

requires, by definition, frequent repetitions of perceptually non-distinguishable 

tokens of the relevant phone in its relevant context. In contrast, spread, which 

represents dispersion, requires an element of non-uniformity, or even diversity. By 

definition, then, there is a need for perceptually distinguishable tokens of the 

relevant phone in its relevant context. Of course one way to ensure diversity is to 

vary production conditions. Since we are dealing here with phone-fields, which 

should ideally exhibit primary variability, diversification must not affect segmental 

context, but be, instead, confined to paralinguistic and extralinguistic effects.  

As I explained before, the path from composite variability to primary variability 

mostly consists in reducing the analysability of the relevant dataset. Within the 

current version of VFM, only variability related to phonetic context (i.e., allophonic 

variation) is decomposed before the formation of a phone-field. Within a given 

phone-field, then, there is always only one segmental context. Variations due to 

background sources such as speaking rate or speaker attributes like gender (i.e., 

indexical variation) will be decomposed before the accessing of the phone-field 

within that background. So, in principle, these can contribute to the initial set-up of 

a phone-field, especially that they will be factored out later on. I give more details 

in ¶ 6.3.4, where I discuss background effects.  

By extension, it seems reasonable to conclude that the construction of a phone-

field involves attending to repetitions of the phone in its phonetic context in 

different backgrounds. On this view, then, repetitions of a newly encountered 

[aba], for example, produced by the same speaker under more or less the same 

conditions will be enough to form a gravitation area and modal frequency, but 

these repetitions will not be enough for establishing a spread area.  
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Similarly, being exposed for the first time to stimuli such as [aba], [apa], and [ada] 

all produced by the same speaker under more or less the same conditions and with 

no repetitions will not lead to the creation of gravitation nor spread for three 

different sounds. In other words, no phone-field will be constructed on the basis of 

such data. It is only when a learner hears repetitions of [aba], for example, by 

different speakers in different settings that a phone-field is constructed with both 

gravitation and spread. 

More generally, learning a language, according to VFM, involves, in part, the 

construction and maintenance of the appropriate phone-fields.102 Maintaining a 

phone-field includes assessing the relevance of the incoming stimuli and updating 

accordingly the gravitation and spread areas of the field, where appropriate. This 

layout not only allows for the developmental errors which are in abundance during 

the early stages of L1 and L2 acquisition. It also benefits from these developmental 

errors. The phone-field in VFM is not a static, idle construction but is actually 

dynamic, developmental, and data-driven.  

6.3.3.2 The Phoneme-Field 

The construction of a phoneme-field involves grouping the relevant phone-fields 

into a super-field. For the hypothetical three-word lexicon presented in ¶ 6.3.3.1, 

there are four phoneme-fields, schematised in Figure  6-13. In addition, each of 

these phoneme-fields can contain an idealised pseudo-phone-field, called here a 

meta-phone103. The meta-phone is context-free and can act as a source of 

attraction affecting different phone-fields within a phoneme-field. The 

construction of the meta-phone can be sensitive to orthography (cf. Taft 2006; Taft 

& Hambly 1985). The meta-phone also plays an important role in dealing with 

unfamiliar sequences including non-words (cf. Morais & Kolinsky 1995).  There are 

numerous studies suggesting that listeners treat non-words and sounds within 

non-words differently from real words and sounds within real words (e.g., Ganong 

1980; Whalen et al 1997). For example, Utman et al (2000) report a reduction in 

priming caused by manipulations in the acoustics of real-word primes. By contrast, 

with equivalently manipulated non-word primes, the researchers found no 
                                                        
102 I do not attempt to delve into learning here but observe that VFM-based inquiries into language 
acquisition introduce a new perspective on the subject.  
103 The nature of this idealisation is not central to the claims I make here. Representationally, a 
meta-phone can be made up of features (e.g., Halle 2002; Stevens 2002), elements (e.g., Harris & 
Lindsey 1995, 2000), or gestures (e.g., Browman & Goldstein 1989).  
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reduction. Similarly, Marslen-Wilson and Warren (1994) found that mismatching-

coarticulatory cues had a disruptive effect on the processing of real words but not 

on the processing of non-words. A plausible conclusion of these and similar studies 

is that the processing of real words involves accessing context-bound phone-fields, 

which are determined on the basis of allophonic variations. In contrast, the 

processing of non-words involves accessing meta-phones, which are a-contextual 

idealisations where allophonic variations have no status. 

Being context-free, a meta-phone can be called upon for processing, independently 

of indexical variations. The meta-phone here is VFM’s version of what Luce and 

McLennan (2005: 601) call the “abstract codes [that are] untainted by surface 

variation”. These codes, the authors claim, are utilised in speeded recognition tasks 

where the advantage of processing speech repeated in the same voice as in the 

training task disappears.  
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Figure  6-13: Phoneme-fields of a hypothetical three-word lexicon; phone-fields appear as 

small ovals inside a phoneme-field; meta-phones appear as triangles. 

 

The construction of a phoneme-field is essentially a labelling activity that requires 

some form of abstraction. Elucidating the nature and mechanism of such an 

activity is beyond the scope of this thesis and will have to await future research. 
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involved in one of the cognitive skills that people innately have, and which many 

researchers marvel at—categorisation (see e.g., Duch 1996; Sedlmeier et al 2002). 

Interestingly, Lacerda (1997) observes that labelling occurs for supervised as well 

as unsupervised forms of learning. Moreover, there is by now a sizable body of 

empirical data providing evidence for the representation of the phoneme (see e.g., 

Cho & McQueen 2006; Gaskell et al 2008; Kazanina et al 2006; Ohala 1983; Ohala & 

Feder 1994). For example, McQueen et al (2006) provide behavioural data 

supporting the view that lexical processing requires phonological abstraction 

before lexical access. Furthermore, Näätänen (2001) reviews a large body of neural 

data pointing in the direction of the existence of an abstract phoneme trace in the 

human brain (see also Doufour et al 2010, 2007; Eultiz & Lahiri 2004; Lahiri & 

Marslen-Wilson 1991; Lahiri & Reetz 2002).  

The skeletal description of the phoneme-field above is useful for visualising how 

language users come to possess and access an impressive knowledge of statistical 

and distributional properties of the sounds and sound patterns of their language. 

For example, the schematic in Figure  6-13 offers a simple way to estimate the 

comparative as well as absolute rate of prevalence of a given phoneme in the 

lexicon. Specifically, the larger the number of phone-fields within a given 

phoneme-field, the larger the number of the hosting environments, and the fewer 

the co-occurrence restrictions are.   

More interestingly, the quasi-episodic nature of the phone-field, with frequency 

already inherent in the definition of the modal interval, makes it possible for 

speakers/hearers to estimate token frequency. However, given that not all tokens 

have traces in the phone-field, this subjective token-frequency estimate is expected 

to be attenuated downwards. In chapter five, I surveyed studies claiming that 

people only use a subset of the available data points (Kareev et al 2002; Peterson & 

Beach 1967). My call for emphasising data falling within the most frequent interval 

and de-emphasising data falling in the other intervals is in complete harmony with 

this observation. Accordingly, VFM makes the following prediction: subjective 

estimation of type-frequency should reflect closely objective estimations. The 

rationale behind this is that, unlike in the case of token frequency, language users 

have a detailed record of the segmental sequences that are permitted and actuated 
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in their language, which are called upon for estimating type-frequency. This 

prediction awaits examination.   

These statistical and distributional effects are commonly accounted for by 

appealing to some form of probabilistic retrieval mechanism that the 

speaker/hearer is assumed to somehow possess and implement. By way of 

contrast, VFM attributes frequency estimation to a more primitive form of 

statistical thinking—the processing of untransformed count data. As I pointed out 

in chapter five, frequency-based Bayesian reasoning is cognitively superior to 

probability reasoning. See chapter five for details and references.   

What the schematic above does not show yet is that two or more phoneme-fields 

can share one phone-field. Put differently, a phone-field may belong to different 

phoneme-fields, and as a consequence, a phoneme-field may contain disparate 

phone-fields. This is, in a nutshell, the essence of how VFM conceptualises and 

models contrast neutralisation. To illustrate, let us take a /t/-/d/ contrast that is 

neutralised word-finally. As shown in Figure  6-14, VFM captures both the contrast 

and its neutralisation by allowing the phoneme-fields for /t/ and /d/ to share the 

same phone-field, here xxt. Note that it is also possible that the phonetic context 

(xx) in the phone-field occurs in only one phoneme-field, say, the /d/-field.104 This 

latter case is particularly true when no minimal or near-minimal pairs contrasting 

final /d/ and /t/ exist.  Nonetheless, in both cases, neutralisation can be 

phonetically incomplete when the gravitation area within the relevant phone-field 

is pulled towards the meta-phone of the phoneme-field, resulting in a difference 

between the [t]-field gravitation when the /t/-field is accessed and its gravitation 

when the /d/-field is accessed. This difference can persist and give rise to 

bimodality. Meta-phone attraction can be intensified by orthography. In this sense, 

incomplete neutralisation is more likely for contrasts that are orthographically 

represented. Conversely, complete neutralisation is more likely for contrasts that 

are not orthographically represented.  

                                                        
104 Recall that if word-final [t] consistently belongs to only one phoneme-field, we no longer have a 
case of neutralisation, but rather a static lack of contrast at the lexical level. 
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Figure  6-15: A schematic of vowel-reduction patterns in four hypothetical languages (LA–

LD) according to VFM 
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that “the analysis of phonetic information contained in word-initial consonants is 

more dependent on the prior or concurrent analysis of voice information than vice 

versa”. The researchers also observe that voice information and segmental 

information are processed qualitatively differently. For example, they report that  

[s]ubjects apparently can attend to dimensions of voice and 
selectively ignore irrelevant variation in the words. 
However, they have much more difficulty attending to words 
when there is simultaneously irrelevant variation in the 
voice of the talker (ibid: 389). 

VFM treats these sources of information differentially, granting one the capacity to 

form fields, and the other the capacity to provide background to these fields. This 

arrangement can actually resolve one of the long-standing paradoxes involving the 

seemingly contradictory role of speaker variability in word-learning and in word-

recognition. It is well-known that speaker variability can have a facilitatory effect 

on word-learning, but it can have an inhibitory effect on word-recognition. A 

number of researchers including Barcroft and Sommers (2005), Houston and 

Jusczyk (2000), Lively et al (1993), and Rost and McMurray (2009) have come to 

the conclusion that speaker variability is essential in learning. Specifically, they 

show that participants who are exposed to a stimulus set produced by multiple 

speakers learn and retain the target contrast much better than participants who 

are exposed to the same training set spoken by a single talker. In contrast, word-

recognition is better in single-speaker conditions than in multi-speaker conditions 

(e.g., Bradlow & Pisoni 1999; Goldinger 1996; Mullennix et al 1989; Nygaard et al 

1994; Sommers et al 1994). More intriguingly, McMichael (1999) found that, in the 

test phase of a sentence recognition paradigm, subjects responded ‘old’ to entirely 

new sentences when they were produced by a voice they had heard in the study 

phase. Sentences were more correctly recognised as ‘old’ when they were 

presented in the same voice as in the study phase than in a new voice. Similarly, 

Cole et al (1974) report that participants took a longer time to give same-different 

responses to stimulus pairs whose members were spoken in different voices than 

those spoken in the same voice. See also Palmeri et al (1993) for similar findings.    

According to VFM, learning involves setting up and updating the necessary fields.  

Speech recognition involves accessing an already formed field. The processing of 

single-talker data requires very little background shifting.  Interestingly, Allen and 
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Miller (2004: 3182) observe that “exposure to only a few different words [… may 

be] sufficient for a listener to learn a talker’s implementation of a given 

phonetically relevant acoustic property” (cf. Johnson 1997). This indicates that 

very little is required in the case of single-talker data for fields’ co-ordinates to be 

calculated and/or predicted.  

As to data from different speakers, there will always be a renewed need for more 

input for the calculation of the fields’ co-ordinates with every new speaker heard. 

This may involve a lot of background shifting, which will in turn slow processing 

and may even hinder speech recognition (cf. Goldinger 1997). Interestingly, lexical 

competition among items produced by different speakers is found to be less than 

that among items by the same speaker (see Creel et al 2008). In this respect, VFM 

hypothesises that alternating speakers belonging to one gender group is less 

disruptive than alternating both voices and gender membership.  Interestingly, 

Palmeri et al (1993: 324) asked participants to make explicit voice-recognition 

judgments and found “a strong tendency to classify different-voice/same-gender 

repetitions [of test items] as ‘same,’ especially at short lags”. 

By the same token, variability in speaking rate seems to undermine speech 

recognition, especially in the presence of noise. Numerous experiments 

demonstrate that speech recognition and recall accuracy are worse in mixed-rate 

conditions than in single-rate conditions (e.g., Bradlow et al 1999; Nygaard et al 

1995; Sommers et al 1994). Conversely, variability in speaking rate is found to 

facilitate learning (e.g., Sommers & Barcroft 2007). Importantly, Miller and Volaitis 

(1989) and Wayland et al (1994) show that the processing of phonetic categories 

does not occur independently of rate information, and that changes in speaking 

rate effect a shift in the location of the boundary between phonetic categories and 

of the perceived best exemplar. As I have explained above, according to VFM, 

changes in speaking rate cause a phone-field to be shifted across different 

background positions. This could be responsible for the reduced recognition 

accuracy in mixed-rate conditions.  
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6.4 Conclusion   

In this chapter, I proposed a novel approach to phonetic variability, the Variability 

Field Model (VFM). According to VFM, phonetic data are essentially a blend of 

variability sets, most exhibiting multiple sources of variation at play. To estimate 

variability, we need to decompose these multi-source variability sets until we 

reach a stage where variability sets are not further reducible to smaller component 

sets traceable to known sources.  

I have shown how VFM gives us a new perspective on the processing and 

representation of variability. I focused specifically on two types of variation: 

allophonic and indexical variations. I discussed a VFM scheme whereby allophonic 

variations form context-bound phone-fields, while indexical variations provide 

some form of background against which a phone-field is accessed. According to 

VFM, phonetic data are examined as intervals rather than as single data points. In 

the next chapter, I propose an algorithm that allows us to examine phonetic data as 

intervals.  
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7  Variability Fields and Vowel/Zero 

Neutralisation in BHA 

 

 

7.1 Introduction 

In chapter five, I introduced and justified alternative measures of central tendency 

and dispersion. I argued that these measures are intuitive, cognitively more 

plausible, and statistically more robust than the common parametric measures 

that are currently used to quantify phonetic phenomena. Specifically, I suggested 

that the mode, rather than the arithmetic mean, be used to measure central 

tendency, and that the Variability Field Index (VFI), which relates the frequency of 

the modal interval to the range, be used to measure variability. I also argued that 

since the frequency of the modal interval and the number of intervals within the 

range are both count data, they are more in line with frequency-based Bayesian 

reasoning (Gigerenzer & Hoffrage 1995). They also reflect better the intuitive 

notions of average and variation. See chapter five for more details. 

In chapter six, I provided a kind of theoretical framework for these quantitative 

measures. The general approach of the Variability Field Model (VFM) introduces a 

novel phonetics-specific quantification of phonetic data and variability. Of 

relevance here is the claim that a phone in its immediate phonetic context forms a 

variability phone-field, which has a measure of location and a measure of 

dispersion. These are, respectively, the modal interval, which stands for the field’s 

gravitation, and the range of intervals, which represents the field’s spread.  

The current chapter is basically a preliminary implementation of the ideas outlined 

in chapters five and six. Specifically, the chapter (1) provides technical details of 

how to find the mode for phonetic data and how to calculate VFI and (2) offers a 
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preliminary VFM-based analysis of a portion of the neutralisation data which I 

analysed in terms of NHST in chapter four. 

One of the main arguments emerging from this thesis is that an adequate 

quantification of phonetic data is one where they are examined as intervals rather 

than single points. In keeping with this view, I propose a binning algorithm that 

appeals to the familiar psychophysical notion of just noticeable difference (jnd). In 

order to decide on jnd ratios for the acoustic parameters investigated in this thesis, 

I make use of the jnd figures that are reported in various behavioural and neural 

studies in the literature.  

Applying the binning algorithm to a carefully selected set of the neutralisation data 

from BHA, I run a VFM analysis and use the results to (1) re-construct a picture of 

the phonetics of vowel/zero neutralisation in BHA and (2) draw a comparison 

between VFM- and NHST-based analyses of the data. I revisit some of the issues 

discussed in light of the NHST results in chapter four, focusing on the apparent 

pattern of dis-correlation between the phonetics and phonology of neutralisation 

that the NHST results suggest. Recall that the NHST analysis reported in chapter 

four found phonologically complete neutralisation to be phonetically incomplete 

but phonologically incomplete neutralisation to be phonetically complete.  

In contrast, the VFM-based analysis I report in this chapter finds no basis for the 

above-mentioned pattern of dis-correlation.  According to the VFM results, the 

vowel/zero neutralisation through [a]-epenthesis, which is phonologically 

complete, is also phonetically complete. Conversely, the distinction between 

epenthetic [i] and lexical /i/, which survives in the phonology, also survives in the 

phonetics. That is, there is a close correlation between the phonetics and 

phonology of vowel/zero neutralisation in BHA. Moreover, the acoustic difference 

that the VFM-based analysis finds between [i] and /i/ is along F0, with [i]-F0 being 

lower that /i/-F0. The difference in this direction makes sense phonologically. I 

discuss this in the second half of this chapter. 

The rest of the chapter proceeds as follows. In ¶ 7.2.1, I present a brief overview of 

the jnd, evaluating, in particular, its status in phonetic research. In ¶ 7.2.2, I justify 

the particular jnd figures that I use for the analysis in the study. In ¶ 7.2.3, I propose 
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and illustrate a jnd-based algorithm for binning phonetic data. In ¶ 7.3, I attempt a 

VFM-based analysis of a set of neutralisation data and conclude the chapter in ¶ 7.4. 

 

7.2 Fixing Interval Width 

7.2.1 The jnd as a Criterion: Overview 

In psychophysics, two stimuli are said to be discriminable if their difference 

exceeds a differential threshold defined along some psychometric function. 

Loosely speaking, the smallest difference detectable at a standard probability of 

75% is called a just noticeable difference (jnd). Since its introduction in 

psychophysical research, the notion of the jnd has evoked considerable scepticism. 

For example, the jnd has been found to be variable and sensitive to experimental 

procedures and subject-internal criteria (see e.g., Gigerenzer & Murray 1987; 

Kewley-Port 2001; Kewley-Port & Zheng 1999; Lehiste 1970; Rosenblith & Stevens 

1953; Thurstone 1927).  

Interestingly, this unreliability has also been long attributed to brain variability. 

For example, Solomons (1900: 234), appealing to what he describes as “the well 

known fact of variability of brain activity under identical stimuli”, hypothesises 

that a stimulus difference must exceed a threshold of brain variability to be just-

noticeable. Much more recently, brain research has demonstrated that there is 

indeed internal brain variability and that this variability is actually beneficial (e.g., 

Basalyga & Salinas 2006; Boly et al 2007; McIntosh et al 2008; Stein et al 2005). 

See chapter six for more on this. 

However, whether it is a brain variability range or a sensory range, the basic 

principle that a certain amount of variation goes undetected, which the jnd 

embodies, remains valid. Perhaps this partly explains why, in psychophysics, jnd-

estimation is still a lively topic attracting a lot of dedicated research. For example, a 

special issue of Perception and Psychophysics (2001) is devoted to documenting the 

latest advances related to the jnd. Indeed, the jnd has not completely fallen out of 

favour (cf. Port 1996), nor have probability distributions or signal-detection theory 

completely replaced it (cf. Gigerenzer & Murray 1987).  
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More to the point, there is actually cognitive and neural support for the notion of 

jnd. For example, numerous neural studies document the existence of a negative 

component of the auditory event-related potential (ERP) of brain response known 

as mismatch negativity (MMN) (Näätänen et al 1978). MMN is elicited by any 

discriminable changes in auditory stimulation even in the absence of attention on 

the part of the subject (see Näätänen 2001, Näätänen et al 2007; Picton et al 2001 

for reviews). It is these features of MMN that have led some researchers to 

promote MMN as an index of change detection (e.g., Näätänen & Alho 1995; 

Näätänen & Winkler 1999; Ylinen 2006). In this respect, the notion of 

representational width that is proposed by Näätänen and Alho (1995) to quantify 

the range of detectable auditory changes comes as a neural equivalent of the 

psychophysical notion of jnd. In fact, Näätänen and Alho (1995: 322) suggest that a 

jnd “might well correspond to a just noticeable MMN” (see also Kraus et 1995). 

Representational width is still under-developed, but the principles it stands for are 

exactly those the jnd represents. Empirically, there is a close correlation between 

neural and behavioural results involving auditory discrimination (see Amenedo & 

Escera 2000; Näätänen et al 1993; Sams et al 1985). I review some of these results 

in the next section. Importantly, within phonetics and laboratory-phonology 

circles, the notion of jnd does not seem to have invited as much hostility as it has 

during its early years in psychophysics work.  

In fact, in phonetic research, there is a sizeable body of literature on the subject. 

For example, a very recent study appearing in Phonetica (2007) is wholly 

dedicated to investigating and establishing the jnd in speech tempo (Quené 2007). 

A number of recent papers and textbooks still appeal to the notion of jnd when 

trying to assess the practical importance of an acoustic difference (e.g., Davidson & 

Roon 2008; Gouskova & Hall 2009; Morrison 2008; Pycha 2006; Recasens & 

Espinosa 2009; Remijsen & Gilley 2008).  

On the use of jnd in assessing phonetic data, consider these quotes from the 

phonetics and phonology literature. 

Nearly-identical exemplars (differing by one jnd) will be 
treated as identical (Pierrehumbert 2001: 141). 
 
[E]ven if the constraint system does not take into account 
the issue of noticeable differences and generates candidates 
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that the perceptual system cannot differentiate, the 
differential limens [i.e., jnd] will still play a role in 
perception, causing the indiscriminable candidates to be 
learned as one (Zhang 2007: 449).  

 
Admittedly, there are genuine methodological concerns still hanging over the 

reliability of the jnd. For example, the jnd is sensitive to subject training and to 

phonetic context (e.g., Kewley-Port 1995; Kewley-Port & Neel 2006; Lehiste 1970; 

Mermelstein 1978; Sommers & Kewely-Port 1996). Moreover, results obtained for 

steady-state portions of a very small set of vowels in a limited set of languages do 

not necessarily generalise to other vowels in other languages (e.g., Harris & Umeda 

1987; ’t Hart 1981; Klatt 1973). 

However, the strategy I adopt in this thesis is this. Rather than come up with a 

better measure, which is beyond the scope of this thesis, I will be selective in 

making use of the available jnd figures from the phonetic and neural literature. I 

detail this strategy next.  

7.2.2 The jnd as a Criterion: Figures for Parameters 

The five acoustic parameters this thesis investigates are F0, intensity, duration, 

and F1 and F2. As I mentioned above, there are numerous behavioural and neural 

studies offering jnd figures for each of these acoustic parameters. However, more 

often than not, the reported jnd figures do not agree even when they are expressed 

as ratios (see below for illustrations). Many investigators have attributed this 

unfortunate state of affairs to the disparate experimental conditions under which 

the jnd figures are obtained (e.g., Kewley-Port 2001; Kewley-Port & Neel 2006; 

Lapid et al 2008; Lehiste 1970). This remains a major avenue for further research. 

For the present, however, selecting jnd figures from the literature on the basis of 

an informed and explicit set of inclusion criteria seems a realistic choice. To that 

end, I have surveyed the behavioural and neural literature on jnd with a view to 

compiling a realistic set of inclusion criteria. What I have obtained can best be 

described as a list of preferences, given in  (51) below. Of course, the list is not 

exhaustive but should be sufficient for the illustrative purposes of this chapter. 

(51) Jnd figures for vowel parameters are preferably  

(a) Replicated/corroborated in other studies; 

(b) Established for speech stimuli rather than pure tones; 
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(c) Established for stimuli in consonantal context rather than in 

isolation; 

(d) Given as a ratio/percentage, or for which a ratio/percentage 

can be calculated.105 

I have used the list in  (51) to choose among the available candidate jnd figures in 

the literature. More specifically, the jnd figures used for the binning algorithm in 

the next section are those which best satisfy the preferences in  (51). These figures 

are summarised in Table  7-1.  

Parameter jnd Sources 
Behavioural Neural 

F0 4% Isab;enko & Schädlich (1970); 
 Rossi & Chafcouloff (1972); 
 Harris & Umeda (1987) 
 

Tiitinen et al (1994) 

Intensity 2% Nishinuma et al (1983); 
Flanagan (1955a);  
Pols (1999) 
 

Näätänen (1992) 

Duration 20% Klatt (1976); 
Henry (1948) 
 

Amenedo & Escera 
(2000); 

Kaukoranta et al 
(1989) 

F1 13% Mermelstein (1978);  
Kewley-Port & Watson (1994) 
 

Lang et al (1990) 

F2 9% Mermelstein (1978);  
Kewley-Port & Watson (1994) 

Lang et al (1990) 

Table  7-1: Selected jnd figures for each of the acoustic parameters of the study 

 

Under optimal listening conditions, the jnd values for pure tones fall greatly below 

the figures quoted in  Table  7-1 (see e.g., Harris & Umeda 1987; Kochanski 2006; 

Lehiste 1970). For example, F0 is reported to have a jnd of .23%—.45% (Flanagan 

& Saslow 1958), .25% (Klatt 1973), and .6%—1.2% (Flanagan 1957). However, in 

                                                        
105 Expressed as a ratio, the jnd relates the smallest discriminable difference found along the 
acoustic parameter in question (e.g., ΔF for frequency) to a reference value (base) for which 
responses have already been calculated in the test (e.g., F for frequency). The jnd is said to 
approximate Weber’s Law, with the quotient (or rate) being nearly constant and the amount of 
detectable difference being thus proportional to the base magnitude. That is, the larger the base 
value, the larger the difference needs to be to get detected. So, for frequency, ΔF/F gives a jnd rate 
expressible as a Weber fraction or percentage. Many researchers acknowledge this property of jnd 
for phonetic data (e.g., Klatt & Cooper 1975; Kewley-Port & Neel 2006). Yet the constancy of the 
reported Weber ratios for different reference values has not been reliably established (see e.g., 
Carlyon & Moore 1984). However, it should be remembered that different studies in the jnd 
literature have employed different methodologies and different definitions of what a jnd is. In other 
words, the mixed jnd results in the literature might be partly due to design differences among these 
studies (see e.g., Lehiste 1970).     
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a neural study on tones by Tiitinen et al (1994), a pitch difference of .5% failed to 

elicit an MMN. The smallest pitch difference that evoked an MMN in their study 

was 1%. The MMN it elicited, however, was very faint and short. A more distinct 

MMN was evoked for a pitch difference of 4% upwards. Moreover, Harris and 

Umeda (1987) report that the jnd of F0 in naturally produced sentences is in the 

region of 4%—9%. The lower-bound jnd of 4% in Harris and Umeda’s (1987) 

study agrees with the figure that Rossi and Chafcouloff (1972) have calculated 

using inter-quartile deviation equations for F0. Using sentential stimuli,  Isab;enko 

and Schädlich (1970) have also obtained a jnd figure of 4% for F0. Thus, I have 

decided to use 4% as a jnd figure for the VFM-based analysis of F0 data in this 

chapter.  

As to intensity, the figure of 2% is an approximation of what is reported in the 

literature. For example, a 70dB reference vowel whose duration is 75ms is shown 

in Nishinuma et al (1983) to have a jnd of 2%. The same ratio is also calculable 

from the data given in Pols (1999) and Flanagan (1955a). A neural study by 

Näätänen (1992) tested brain response for intensity changes as small as 3.7%, 

which elicited a small MMN. Note that this does not necessarily mean that a 

smaller intensity difference will not elicit an MMN; it only happens that 3.7% was 

the smallest difference used in the test paradigm by Näätänen (1992). It would 

have been a different matter had this difference failed to generate an MMN. 

Conversely, a larger difference will naturally evoke an MMN component, as 

evidenced in a neural study by Schröger and Winkler (1995) generating an MMN 

for an intensity difference of 5.7% and 14%.    

Regarding duration, the figure of 20% appears in Klatt (1976) as a lower bound, 

and as a mean and median of the ratios reported in Henry (1948) for reference 

vowels of different durations. Other studies report much smaller ratios including 

2% (Huggins 1972), 2.6% (Ruhm et al 1966), and 5% (Fujisaki et al 1975). 

However, as Lehiste (1970: 13) observes, these small figures “represent the limit 

of perceptibility under optimal conditions, whereas it appears likely that in a 

speech condition, the just-noticeable differences established by Henry […] may 

apply”. Importantly, the figure is corroborated by neural evidence from a study by 

Amenedo and Escera (2000) and a study by Kaukoranta et al (1989).  
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As to formant frequencies (F1 and F2), I use the figures reported in Mermelstein 

(1978), which have been calculated for reference vowels in consonantal context 

using data from untrained subjects. For F1, the figure I use (13%) is the mean of 

the figures reported for F1=300Hz and F1=600Hz. For F2, the figure I use (9%) is 

the mean of the figures reported for F2=2100Hz and F2=1780Hz. Kewley-Port and 

Watson (1994) report similar figures for untrained subjects.  

Needless to say, these jnd figures are higher than those reported for synthetic 

vowels in isolation as in Flanagan (1955b), for instance. However, many 

researchers note that the jnd is larger in continuous speech than in steady-state 

vowels (e.g., Ghitza & Goldstein 1983; Sommers & Kewely-Port 1996). Also, 

Kewely-Port (1995), citing Moore (1973), observes that jnds for vowel frequencies 

are greater by a magnitude of 10 than those for pure tones. In neural research, a 

frequency change as small as 16Hz in a 1000Hz tone has been shown to elicit MMN 

(Sams at al 1985). Similarly, in a study by Lang et al (1990), a frequency change of 

2.7% elicited MMN for good discriminators, whereas poor discriminators needed a 

larger magnitude of change (7.5%) to detect the difference. For some subjects, 

MMN was elicited for a frequency change of no less than 14% (see also Huotilainen 

et al 1993).  

7.2.3 A jnd-Based Binning Algorithm 

To divide a phonetic dataset into jnd-based intervals, we need to determine (1) a 

bin width �>?� in the same units of measurement as the acoustic parameter under 

analysis and (2) a maximum �@@A� and a minimum �@@ � value whose paired 

difference (range) is divisible by >? with a positive integer quotient and no 

remainder. That quotient will be the number of bins �> �, which is a count 

number, for the dataset in question.  

Accordingly, the >? of a dataset along an acoustic parameter �$B� is basically the 

just-noticeable difference that is represented by the relevant jnd percentage (Table 

 7-1) of the actual base value as found for the relevant acoustic parameter. For the 

purposes of this thesis, the base value for each of the five acoustic parameters 

investigated is a Tukey’s tri-mean (i.e., a median-weighted average; see below for 

the relevant equation) calculated over a set of 360 data points. I have chosen this 

parametric measure in particular because it is said to be a statistically robust 

measure of location. It is also more representative than the median and less 
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sensitive to extreme values than the mean (Tukey 1977; Rosenberger & Gasko 

1983; Weisberg 1992). Furthermore, Tukey’s tri-mean is easy to calculate (Hoaglin 

1983).  

The VFM binning algorithm in  (52) applies to phone-fields as defined in the 

previous chapter. The algorithm should preferably be run on as large a dataset 

representing a phone-field as possible. In this thesis, for each phone-field 

examined along each of the five acoustic parameters of the study, I use a set of 360 

data points to derive the relevant VFM-based statistics (see below for more).  

(52) VFM’s jnd-based binning algorithm 

1. Determine bin width �>?� as follows: 

>?CD E FG HCD 100⁄ J 1 K@CD  where 

>?CD is the calculated bin width for a set of data along 

acoustic parameter $B. 

G HCD is the jnd percentage for $B  as given in Table  7-1. 

K@CD is Tukey’s tri-mean for a set of data along $B 

calculated according to this equation: 

K@CD= 
�
+ �L� ' 2L� ' LM� 

Q1 is the lower quartile; Q2 is the median; Q3 is the upper 

quartile. 

2. Determine bin number �> � as follows: 

> CD E NCD >?CD⁄  ,  > O P1, 2, 3, 4, … ,  T 
NCD E @$A<=U=CD �@< <=U=CD 

3. Determine �@@A� and �@@ � as follows: 

@@ACD E @$A<=U=CD ' 1
2 �F> CD 1 >?CDJ � NCD� 

@@ CD E @< <=U=CD � 1
2 �F> CD 1 >?CDJ � NCD� 

4. Plot the relevant dataset as a frequency histogram using the 

calculated figures of �>?�, �@@A� and �@@ � as settings. The 

modal interval is the highest bar in the histogram. 

5. Find for the modal interval its midpoint (m }) and frequency 

(,=).       
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As an illustration of the algorithm in  (52), consider the real-data summary 

statistics in Table  7-2 for a set of the BHA neutralisation data along i-duration (see 

the next section for details). 

Acoustic parameter: i-duration 
Q1 63 
Q2 72.8 
Q3 80.5 

Maximum 122 
Minimum 35 

Table  7-2: Summary statistics of i-duration data (n=360) including median (Q2), upper and 

lower quartiles, and maximum and minimum values 

 

For better visualisation, I have plotted the i-duration data in Figure  7-1 into two 

histograms. In histogram (i), I use SPSS default settings for bin width and 

maximum and minimum values. In histogram (ii), I use the settings derived from 

the algorithm in  (52) which appear in Table  7-3 below.  

i-Duration in ms

120
115

110
105

100
95908580757065605550454035

160

140

120

100

80

60

40

20

0
13

18
15

18

2724

3633

18
2223

191817
1288

i-Duration in ms

114.5100.185.771.356.942.5

160

140

120

100

80

60

40

20

0
15

93

148

86

15

 

Figure  7-1: Histograms of i-duration data (n=360) generated using SPSS default settings 

(histogram i) and VFM settings (histogram ii); frequency scale is the same in both 

histograms. 

 

 

 

 

 

(i) (ii) 
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 Compare the figures that SPSS generates by default to the ones we get by applying 

the algorithm in  (52) to the summary statistics in Table  7-2. 

                Acoustic parameter: i-duration 
 SPSS: default settings VFM jnd-based algorithm 

>?i-duration 2.5 14.4 
> i-duration 36 6 
@@Ai-duration 123.75 121.7 
@@ i-duration 33.75 35.3 

Table  7-3: Bin width, bin number, and maximum and minimum of i-duration data read off 

histograms generated using SPSS settings and VFM’s jnd-based algorithm 

 

From jnd-binned histograms, we obtain for the modal interval its midpoint (m}) and 

frequency (,=). The latter will be used to derive the Variability Field Index (VFI), 

VFM’s measure of variability. Next, I present a preliminary VFM analysis of a set of 

neutralisation data from BHA.  

 

7.3 VFM-Based Analysis of Vowel/Zero Neutralisation in 

BHA 

7.3.1 Purpose 

The main question for this VFM-based analysis is whether or not vowel/zero 

neutralisation in BHA is phonetically complete. In fact, this is one of the major 

research questions the thesis addresses. It has been termed the completeness 

question throughout. The analysis will also look into the nature and extent of the 

effect of stimulus and task manipulations on the phonetics of vowel/zero 

neutralisation. Results of this part of the analysis will have implications for the 

genuineness question, the other major research question the thesis attempts. 
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7.3.2 Materials 

 
Word             Gloss Phone-field 

Data points per condition 
x 2 (V2-UR-Status) 

1 
laê/a/m         ‘shut tight’ 
laê[a]m          ‘meat’ 

aêam 30x2 

2 faê/a/m        ‘was out of breath’ 
faê[a]m          ‘char coals’ 

3 nah/a/r          ‘yelled at’ 
nah[a]r           ‘river’ 

ahar 45x2 

4 gah/a/r          ‘oppressed’ 
gah[a]r           ‘oppression’ 

5 Rah/a/r           ‘scalded’ 
Rah[a]r            ‘month’ 

6 naê/a/l           ‘teased’ 
naê[a]l             ‘bees’ 

aêal 15x2 

7 dax/a/l            ‘entered’ 
dax[a]l             ‘income’ 

axal 15x2 

8 rah/a/n           ‘pledged’ 
rah[a]n            ‘mortgage’ 

ahan 15x2 

9 naê/a/r           ‘slaughtered’ 
naê[a]r            ‘the act of slaughtering’ 

aêar 15x2 

 
10 ðik/i/r             ‘remembered’ 

ðik[i]r              ‘prayers’ 
ikir 30x2 

11 fik/i/r              ‘came to realise’ 
fik[i]r               ‘thinking’ 

12 gid/i/r             ‘managed’/’overpowered’ 
gid[i]r              ‘pot’ 

idir 15x2 

13 kib/i/r             ‘grew’ 
kib[i]r              ‘conceit’ 

ibir 15x2 

14 gab/i/l             ‘Gabil’ 
gab[i]l              ‘before’ 

abil 15x2 

Table  7-4: Stimulus set in terms of phone-fields. 

 

For maximum comparability with the NHST analysis presented in chapter four, I 

consider here the same materials used there. Recall that the NHST analysis in 

chapter four examined the acoustics of fourteen pairs of contrasting lexical and 

epenthetic vowels. Nine of these pairs illustrate neutralisation through [a]-

epenthesis; the remaining five pairs illustrate neutralisation through [i]-

epenthesis. Recall also that stress falls on V1 in all the test words, which are 

reproduced in Table  7-4 above.  

To run a VFM analysis of the acoustics of V2 (lexical vs epenthetic) of these words, 

we need to consider the target vowels in terms of phone-fields rather than words. 

As we can see from Table  7-4, the fourteen pairs of the study comprise ten 

different phone-fields. To determine the modal interval of a set of data that 

exemplifies a phone-field, it is always preferable to consider as many data points 
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as possible for histogram construction (see chapter six for more). As is clear from 

Table  7-4, the phone-fields ahar and ikir have the largest number of data points for 

‘a’ and ‘i’, respectively. Including the data collected within the six-condition 

paradigm in chapter four (see below for more) will bring the number of data to 

540 for ahar and to 360 for ikir along each of the acoustic parameters investigated 

here. For comparability, the size of ahar data was brought down to 360 by 

excluding the data that come from pair number 3 in Table  7-4.  

7.3.3 The Paradigm 

As explained above, the dataset that I analyse in this chapter is a subset of the 

neutralisation data described and analysed in chapter four. Recall from chapter 

four that the data come from a six-condition paradigm. For the convenience of the 

reader, I summarise the main points here. Basically, the paradigm is a two (V2-UR-

Status) by two (stimulus lists) by three (tasks) factorial design. Epenthetic and 

lexical data alike are collected in six experimental conditions manipulating 

stimulus materials and tasks, as illustrated in Table  7-5. There are two stimulus 

lists differing with respect to the order of presentation of the members of each 

minimal pair. These are delivered in elicitation, reading-in-context, and reading-in-

a-frame tasks.   

 Condition Stimulus List Sentential context Task 

Block I 
1 Members apart Composed sentence Elicitation 
2 Members apart Composed sentence Reading 
3 Members apart Frame sentence Reading 

     

Block II 
4 Members in succession Composed sentence Elicitation 
5 Members in succession Composed sentence Reading 
6 Members in succession Frame sentence Reading 

Table  7-5: Experimental conditions in blocks based on stimulus list (reproduced from chapter 

four) 

7.3.4 Results 

As we can see from the figures in Table  7-6 below, datasets along all the acoustic 

parameters of the study except i-F0 display uni-modality. That is, only i-F0 data 

have two modal intervals with an 8.6Hz difference (one jnd) separating their 

midpoints. This is shown in Figure  7-2. A subsequent examination of i-F0 by the 

underlying status of V2 (where epenthetic [i] and lexical /i/ datasets have 180 data 

points each) confirms this bimodality: [i]-F0: m }=205.8Hz; /i/-F0: m }=214.4Hz. Note 

that F0 of lexical /i/, which is stressable in BHA, is higher than F0 of epenthetic [i], 
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which is not stressable in this dialect. I will comment on the directionality of this 

difference in the discussion section. It is important to remember that neither vowel 

is actually stressed in the minimal-pair stimulus set used for analysis.  

 ‘a’  ‘i’ 
 m } VFI m} VFI 

F0 (in Hz) 212.5 .18 214.4 
205.8 

.07 

Intensity (in dB) 66.3 .3 61.9 .14 
 

Duration (in ms) 82.1 .03 71.3 .03 
 

F1 (in Hz) 833.5 .026 546 .019 
 

F2 (in Hz) 1693 .045 2454 .026 
 

m }=midpoint of modal interval 

Table  7-6: VFM summary statistics of the BHA neutralisation data along the acoustic 

parameters of the study 

 

In addition to this central-tendency difference, epenthetic [i] and lexical /i/ have 

different variability magnitudes. This variability difference, too, is along F0. 

Specifically, the VFM analysis found [i]-F0 to be less variable than /i/-F0. This is 

shown in Figure  7-3. For better visualisation, I have also graphed the variability 

differences proportionally in Figure  7-4. As we can see, the VFI values for 

epenthetic and lexical vowels along most parameters are of the same (or very 

similar) magnitude. Most meet at the 50% line in the figure. Notable exceptions are 

i-F0 and a-intensity, with [i]-F0 being less variable than /i/-F0. The opposite 

pattern holds for a-intensity. 

  



 

Figure  7-2: Line charts displaying modality (grey horizontal bar

horizontal bars) of the BHA neutralisation data along the five acoustic parameters 

of the study   

Line charts displaying modality (grey horizontal bars) and ra

horizontal bars) of the BHA neutralisation data along the five acoustic parameters 
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) and range (black 

horizontal bars) of the BHA neutralisation data along the five acoustic parameters 
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Figure  7-3: Bar chart displaying VFI values of the five acoustic parameters of the study for 

both ‘a’ and ‘i’ data by V2 Underlying Status 

 

 

Figure  7-4: Bar chart displaying VFI values as percentages  for both ‘a’ and ‘i’ data by V2 

Underlying Status. 

 

In fact, a-intensity comes out as the most variable parameter in the study. Next 

comes a-F0. The least variable parameters are F1, F2, and duration for both vowels 

almost alike, with i-F1 showing the smallest amount of variation among all the 

parameters investigated. All of these effects are graphed in Figure  7-5, while 

proportional values are shown in Figure  7-6. 
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Figure  7-5: Bar chart displaying VFI values of the five acoustic parameters of the study for 

both ‘a’ and ‘i’ data across V

 

Figure  7-6: Pie chart displaying proportions of VFI values of the five acoustic parameters of 

the study for both ‘a’ and ‘i’ data across V

 

Looking at the data across experimental conditions, we again see that the only 

epenthetic-lexical difference that persists across all six conditions is an F0 

difference for ‘i’. This is shown in 

interval midpoints of [i]

or even 3 jnds) in all six conditions. We do not observe this pattern for any of the 

other parameters for either ‘a’ or ‘i’. These results are more clearly shown in 

 7-12. As we can see from the graphs, i
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a-/i-Duration
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a-/i-Duration

Bar chart displaying VFI values of the five acoustic parameters of the study for 

both ‘a’ and ‘i’ data across V2 Underlying Status 

Pie chart displaying proportions of VFI values of the five acoustic parameters of 

the study for both ‘a’ and ‘i’ data across V2 Underlying Status 

Looking at the data across experimental conditions, we again see that the only 

lexical difference that persists across all six conditions is an F0 

difference for ‘i’. This is shown in Figure  7-7 through Figure  7-11

interval midpoints of [i]-F0 and /i/-F0 differ by at least 1 jnd (sometimes by 2 jnds 

or even 3 jnds) in all six conditions. We do not observe this pattern for any of the 

other parameters for either ‘a’ or ‘i’. These results are more clearly shown in 

. As we can see from the graphs, i-intensity seems to be the second most 
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Bar chart displaying VFI values of the five acoustic parameters of the study for 

 

Pie chart displaying proportions of VFI values of the five acoustic parameters of 

Looking at the data across experimental conditions, we again see that the only 

lexical difference that persists across all six conditions is an F0 

11. The modal-

nd (sometimes by 2 jnds 

or even 3 jnds) in all six conditions. We do not observe this pattern for any of the 

other parameters for either ‘a’ or ‘i’. These results are more clearly shown in Figure 

intensity seems to be the second most 

.5



 
epenthetic-lexical differentiating parameter. [i]

least 1 jnd apart in all conditions except condi

delivers a zero difference for some speakers and an 8.6Hz (1 jnd) difference for 

others.     

Figure  7-7: Midpoint of modal intervals of a

Status in the six experimental conditions of the study

 

Figure  7-8: Midpoint of modal intervals of a

Underlying Status in the six experimental conditions of the study

lexical differentiating parameter. [i]-intensity and /i/-intensity are at 

least 1 jnd apart in all conditions except conditions 1 and 2, where bi

delivers a zero difference for some speakers and an 8.6Hz (1 jnd) difference for 

Midpoint of modal intervals of a-F0 and i-F0 data according to V

Status in the six experimental conditions of the study 

Midpoint of modal intervals of a-intensity and i-intensity data according to V

Underlying Status in the six experimental conditions of the study 
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intensity are at 

tions 1 and 2, where bi-modality 

delivers a zero difference for some speakers and an 8.6Hz (1 jnd) difference for 

 

F0 data according to V2 Underlying 

 

intensity data according to V2 

 



 

Figure  7-9: Midpoint of modal intervals of a

Underlying Status in the six experimental cond

 

Figure  7-10: Midpoint of modal intervals of a

Status in the six experimental conditions of the study

Midpoint of modal intervals of a-duration and i-duration data according to V

Underlying Status in the six experimental conditions of the study 

Midpoint of modal intervals of a-F1 and i-F1 data according to V

Status in the six experimental conditions of the study 
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duration data according to V2 

 

 

F1 data according to V2 Underlying 



 

Figure  7-11: Midpoint of modal intervals of a

Status in the six experimental conditions of the study

 

To examine the effect of 

much the modal interval of each experimental condition departs from the modal 

interval of the relevant phone

in Table  7-6 and Figure 

through Figure  7-16. 

represents the extent and direction of the effect of 

on the acoustics of the relevant parameter. A zero difference, on the other hand, 

represents resistance to experimental manipulation

Midpoint of modal intervals of a-F2 and i-F2 data according to V

Status in the six experimental conditions of the study 

To examine the effect of stimulus and task manipulations, we need to look 

much the modal interval of each experimental condition departs from the modal 

interval of the relevant phone-field across all the experimental condition

Figure  7-2. These modal departures are graphed in 

 A departure from the modal interval of the phone

nt and direction of the effect of the experimental manipulation 

on the acoustics of the relevant parameter. A zero difference, on the other hand, 

represents resistance to experimental manipulations. 
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F2 data according to V2 Underlying 

manipulations, we need to look at how 

much the modal interval of each experimental condition departs from the modal 

field across all the experimental conditions as given 

. These modal departures are graphed in Figure  7-13 

A departure from the modal interval of the phone-field 

experimental manipulation 

on the acoustics of the relevant parameter. A zero difference, on the other hand, 

 



 

Figure  7-12: Modal differences in jnd units between epenthetic and lexical vowels in the BHA 

neutralisation data in the six experimental conditions of the study

Modal differences in jnd units between epenthetic and lexical vowels in the BHA 

neutralisation data in the six experimental conditions of the study
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Modal differences in jnd units between epenthetic and lexical vowels in the BHA 

neutralisation data in the six experimental conditions of the study 
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Figure  7-13: F0 and intensity modal-departures from the modal interval of the phone-field by 

epenthetic and lexical vowels in the six experimental conditions of the study; zero-

difference lines are shown as horizontal continuous lines. 
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Figure  7-14: Duration modal-departures from the modal interval of the phone-field by 

epenthetic and lexical vowels in the six experimental conditions of the study; zero-

difference lines are shown as horizontal continuous lines. 

 

 

 

Figure  7-15: F1 modal departures from the modal interval of the phone-field by epenthetic 

and lexical vowels in the six experimental conditions of the study; zero-difference 

lines are shown as horizontal continuous lines. 
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Figure  7-16: F2 modal-departures from the modal interval of the phone-field by epenthetic 

and lexical vowels in the six experimental conditions of the study; zero-difference 

lines are shown as horizontal continuous lines. 

 

Contrasting conditions 1, 2, and 3, where members of each minimal pair in the 

stimulus list appear as far apart as possible, with conditions 4, 5, and 6, where 

members of each minimal pair appear in succession, we observe no obvious effect 

that can uniquely be attributed to stimulus manipulation on the modal intervals of 

any of the five acoustic parameters investigated here for either ‘a’ or ‘i’. 

Examining task effects, we observe that /i/-F0 is lower by 2 jnds in the reading-in-

context tasks (conditions 2 and 5). This difference seems to be uniquely due to the 

disparate sentential frames that contain the target words.  

Orthography manipulation, which can be investigated by contrasting elicitation 

tasks with reading tasks, does not seem to have induced any influence on the 

phonetics of the  vowel/zero neutralisation data analysed here.  

With respect to variability, intensity and F0 are the most responsive to 

experimental manipulations, whereas F1 emerges as the least affected. I discuss 

these results next.   
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7.3.5 Discussion 

In this section, I use the VFM-generated data to (1) re-construct a picture of the 

phonetics of vowel/zero neutralisation in BHA, (2) discuss the various implications 

of the results for the relation between the phonetics and phonology of 

neutralisation, (3) draw an empirically-informed comparison between the NHST-

based and the VFM-based accounts of vowel/zero neutralisation in BHA, and (4) 

highlight the potential role that phonetic variability plays in phonology. 

For the purposes of this chapter, neutralisation can be deemed phonetically 

complete if the analysed data along each of the five acoustic parameters studied 

here (F0, intensity, duration, F1, and F2) display uni-modality when plotted in a 

jnd-binned frequency histogram. With this in mind, we may conclude that the 

vowel/zero contrast is completely neutralised through [a]-epenthesis but not 

through [i]-epenthesis. That is, [a] and /a/ are acoustically indistinguishable along 

the parameters of the study, while there is a difference in F0 between [i] and /i/.  

The conclusion we get when we abstract away from the identity of the 

epenthesised vowel is that vowel/zero neutralisation in BHA is acoustically both 

complete and incomplete. We have already reached this conclusion on the basis of 

the NHST analysis reported in chapter four. However, there is an important 

difference to be noted here.  

The observed F0 difference between [i] and /i/ as revealed by the VFM analysis 

has a phonological reflex in BHA. As documented in chapter three, [i] and /i/ differ 

phonologically with respect to their capacity to bear word-stress. Specifically, 

unlike /i/, [i] repels stress to the extent that it is neither stressable nor metrifiable. 

I argued in chapter three that [i] is phonologically invisible to stress assignment in 

BHA. We know from the literature (see chapter four) that F0 is a major correlate of 

stress in Arabic (e.g., de Jong & Zawaydeh 1999; Zuraiq & Sereno 2007). F0 is also 

said to be the only cue of word-level stress in Arabic (Bouchhioua 2009). Here as 

revealed by the VFM analysis, it is F0 that seems to keep [i] and /i/ phonetically 

apart. The F0 difference involves both central tendency (modal values) and 

variability (VFI). [i]-F0 is lower than /i/-F0 by 8.6Hz, which represents 1 jnd here. 

This result actually agrees with the outcome of the perception test reported in 

chapter four. Recall that [i] and /i/ were discriminated more accurately than were 

[a] and /a/. That is, the F0 difference between [i] and /i/ is acoustically and 
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perceptually real. It is, nonetheless, just-perceptible. So, calling the effect 

incomplete neutralisation seems appropriate. Importantly, epenthetic [i] comes 

out as having the lowest pitch, while lexical /i/ the highest, with epenthetic [a] and 

lexical /a/ equally in between.106 As documented in chapter three, of these vowels, 

only [i] is neither stressable nor metrifiable.  

There is empirical evidence that a high F0 correlates with stressedness. For 

example, Topintzi (2006) presents experimental data where vowels following a 

voiceless C are perceived as stressed far more often than vowels following a voiced 

C, with both in exactly the same prosodic environment. She concludes that “the 

pitch raising caused to the vowel after a voiceless onset can be interpreted as 

stress” (p. 314). Also, Fry (1958) reports a similar effect for synthesised stimuli: 

increasing F0 results in the vowel being likely perceived as stressed (see also 

Morton & Jassem 1965).   

Of particular significance in this regard is the association between high F0 and 

stress in Arabic that de Jong and Zawaydeh (1999) found. Specifically, they report 

that stressed vowels in Arabic have a higher F0 than the corresponding unstressed 

vowels. The interaction of stress and tone in the phonology of languages as diverse 

as Ayutle, Golin, Lithuanian, Serbo-Croatian, Vedic Sanskrit, and Hixkaryana  (de 

Lacy 2002a, 2002b; see also Yip 2002) further supports the pattern of correlation 

between high F0 and stressability as documented above. Generally, in these 

languages, a vowel bearing a high tone (H) attracts stress. 

Note that relying on the NHST-generated results of the neutralisation data in BHA, 

as we did in chapter four, would not allow us to locate any kind of phonetic 

expression for the phonological invisibility of epenthetic [i] as opposed to lexical 

/i/, epenthetic [a], and lexical /a/. Instead, the NHST outcome would have left us 

puzzling over what appeared to be a counter-intuitive pattern of anti-correlation 

between the phonetics and phonology of neutralisation. Recall that the outcome of 

NHST suggests that the vowel/zero neutralisation through [a]-epenthesis, which is 
                                                        
106 Of relevance here is what is known in the literature as intrinsic fundamental frequency (e.g., 
Fischer-Jørgensen 1990; Whalen & Levitt 1995). All other things being equal, high vowels are said 
to have a higher intrinsic F0 than low vowels. Although the results we have for lexical /i/ and both 
epenthetic [a] and lexical /a/ are consistent with this observation, we know that, in this study, not 
all other things are equal for high and low vowels. For example, ‘i’ and ‘a’ data have not been 
extracted from exactly the same segmental environments. Note that this does not invalidate the 
results for epenthetic [i] as opposed to lexical /i/, both of which occur in exactly the same 
segmental environment. See also my refutation of the morpho-syntactic argument in chapter four.  
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phonologically complete, is acoustically incomplete. Conversely, the distinction 

between epenthetic [i] and lexical /i/, which survives in the phonology, is lost in 

the acoustic signal. That is, the phonetics and phonology of vowel/zero 

neutralisation in BHA dis-correlate for both ‘a’ and ‘i’.  

More puzzlingly, the acoustic parameter that NHST has pronounced as the seat of 

the distinction that remains of the phonological contrast between epenthetic [a] 

and lexical /a/ is contrastively inert. With particular reference to stress correlates, 

intensity is secondary to F0 in many languages (e.g., Lehiste 1970 for a review; but 

see Kochansky et al 2005 for a different view).   

Note also that even Cohen’s d figures (given in chapter four) appear to point 

towards the same conclusion as inferential statistics. Recall that a-intensity has by 

far the largest d value (d=.811). The next largest was i-intensity (d=.46). This is 

partly due to the small variation in intensity as measured in terms of the standard 

deviation (SD) and coefficient of variance (CV). 

But as we have seen in the current chapter, intensity is by far the most variable 

parameter. Not only does intensity score the largest VFI value, it is also the most 

susceptible to the various experimental manipulations in the six-condition 

paradigm of the study. Vowel intensity varies from condition to condition. The next 

most variable parameter in terms of both VFI figures and experimental 

fluctuations is F0. In contrast, duration and F1 and F2 come out as the least 

variable, again in terms of VFI figures and resistance to experimental 

manipulations. Actually, the VFM-generated results seem to suggest that the 

acoustic parameters along which many languages define their systems of contrast 

are precisely those which show very little variability.107 Quantity and quality 

distinctions in vowel systems in many languages reside in these parameters (cf. 

tone languages)108. 

There are also finer distinctions to be drawn on the basis of phonetic variability as 

measured in terms of VFI. Specifically, i-F1 and i-F2 are less variable than 

respectively a-F1 and a-F2, with i-F1 being by far the least variable. That ‘i’ should 

                                                        
107 The inspiration for this idea came from a discussion I had with Moira Yip. 
108 Note that between the two most variable parameters, it is F0 that is less variable. This is 
significant even in the context of tone languages, where F0 perturbations serve a contrastive 
function.  
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display less variation than ‘a’ is expected given the accumulating evidence from 

acoustic, articulatory, and perceptual studies, all highlighting the relative ‘stability’ 

of ‘i’ as opposed to ‘a’. For example, in a very recent cross-linguistic study by 

Gendrot and Adda-Decker (2007), ‘a’ is found to be acoustically “very variable”, 

while ‘i’ is highly stable. Similar results are obtained by Al-Tamimi and Ferragne 

(2005) for French and two dialects of Arabic. ‘i’ is also described as intrinsically 

“resistant to variability and coarticulation […and] to effects of prosodic structure” 

(Tabain & Perrier 2005: 96). Moreover, Pearce (2007: 39), studying the effect of 

variation in duration on F1 and F2 values of vowels in Kera, observes that “high 

vowels [including /i/] are relatively unaffected by [variation in] duration”.  

Likewise, articulatory (EMA) studies show that ‘i’ displays less variation than ‘a’ 

when they appear in different prosodic positions (Cho 2004; Tabain & Perrier 

2005). There are claims in the literature that a ‘saturation effect’ in the production 

of /i/ (e.g., Perkell 1996; Tabain & Perrier 2005) is responsible for the little 

variability in F1. 

Similarly, in a number of perception studies, /i/ is reported to be the most easily 

identifiable vowel from the burst of a preceding stop (Cullinan & Tekieli 1979)109 

or from the whispered transients of the burst of a preceding stop (Repp & Lin 

1989). Winitz et al (1972) report a high rate of correct identification of ‘i’ 

compared to ‘a’ from the burst of voiceless stops /p, t, k/. In these studies, it could 

be argued that the burst spectra in, say, /ti/ and /ki/ sequences might carry 

important cues to the front high vowel, whereas no comparable cues are found for 

[a] in /ta/ and /ka/ sequences. However, Bonneau (1996: 2507), studying the 

identification of /i, u, a/ from the bursts of initial stops /p, t, k/ by French-speaking 

listeners, reports the following: 

The subjects spontaneously told us that they could not 
actually recognize the timbre of the vowel /a/ while they 
sometimes clearly identified the timbre of the vowels /i/ and 
/u/. Paradoxically, the vowel /a/ obtained a high 
identification rate. In fact, it seems that listeners have 
chosen the /a/-response in the absence of a clear vocalic 

                                                        
109 Abstracting away from the lax-tense distinction, which is one of the vowel variables in the 
Cullinan and Tekieli study, we observe that the high front vowel ‘i’ is identified most accurately. 
Among the lax vowels, /	/ achieved the highest percentage of correct responses. Among the tense 
group, however, /@/ is identified far better than /i/, which is repeatedly misidentified as its lax 
counterpart.  
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timbre. […] It thus appears that the /a/-response has been 
given for the vowel /a/ and for the vowels /i/ and /u/ which 
were not clearly identifiable. 
 

The acoustic variability of /a/ as described above seems to be reflected in its 

flexible perception. Listeners seem to be more willing to categorise as /a/ than to 

give an /i/-category in situations where they are merely guessing. This is 

significant given the results of the VFM analysis in the present study where ‘a’ 

phone-fields have larger spread areas than do ‘i’ phone-fields along most of the 

acoustic parameters of the study. A phone-field with a large spread area allows a 

larger amount of acoustic variation than does a phone-field with a small spread 

area. In the Bonneau’s study, it could be argued that those instances of /i/ data that 

were not ‘clearly identifiable’ fell outside of the bounds of the small-area /i/-fields. 

They were misidentified as /a/ presumably because /a/-fields cover a lot of 

variation within comparatively large spread areas. We have already seen the 

consequences of spread differences for the perceptual discrimination of vocalic 

differences in the current study. Recall that epenthetic [i] and lexical /i/ were 

discriminated more consistently than were epenthetic [a] and lexical /a/. This 

interpretation does not conflict with the fact that epenthetic [i] and lexical /i/ are 

acoustically more different than are epenthetic [a] and lexical /a/. In this thesis, 

differences in central tendency and in variability both contribute to our 

assessment of the phonetics of neutralisation.  

   

7.4 Conclusion 

In this chapter, I presented a preliminary implementation of the VFM-based 

quantification of phonetic data. I provided technical details of how to find the mode 

for phonetic data and how to calculate VFI. I also offered a VFM analysis of a set of 

vowel/zero neutralisation data from BHA. 

According to the VFM results, vowel/zero neutralisation through [a]-epenthesis, 

which is phonologically complete, is also phonetically complete. Conversely, the 

distinction between epenthetic [i] and lexical /i/, which survives in the phonology, 

also survives in the phonetics. Accordingly, we may conclude that there is a close 

correlation between the phonetics and phonology of vowel/zero neutralisation in 

BHA.  
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8  Summary and Conclusions 

 

 

This thesis has sought a new, better-informed understanding of the phonetics of 

neutralisation. It has reached for insights from research fields as diverse as 

statistics, cognition, neurology, and psychophysics, in addition, of course, to 

phonetics and phonology—insights that have helped sharpen our theoretical and 

empirical perspectives on the phonetics of neutralisation. The conception of the 

ideas and arguments presented throughout the thesis owes a lot to a detailed 

survey of the empirical literature on the phonetics of neutralisation. These 

conceptualisations have actually shaped the landscape of the thesis.  

One of the issues that figures prominently in the literature and which is in need of 

addressing is the issue of variability. Variability in the phonetics of neutralisation 

comes in two senses: an inherent quantitative variability and an acquired 

qualitative variability. The latter follows from our drawing a qualitative distinction 

between phonetically complete and incomplete neutralisation. To elucidate 

qualitative variability, the thesis presented a scrutiny of the labelling criteria upon 

which the complete-incomplete distinction is based. 

Among the questions that the issue of variability has raised are the following. What 

are the reasons behind variability? How profitable is it to pursue the causes of 

variability? How do the various models of the phonetics of neutralisation approach 

the issue of variability? And how else should they approach variability? The thesis 

has devoted two chapters to discussing the last two of these questions.  

Specifically, chapter two offered a critical evaluation of the existing approaches to 

qualitative variability in the literature. These approaches fall into three main 

groups with respect to their underlying conception of the phonetics of 

neutralisation. One group only recognises phonetically complete neutralisation as 

both genuine and relevant (e.g., Steriade 1999); another group only predicts 
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phonetically incomplete neutralisation (e.g., Ernestus & Baayen 2006); and a third 

group is a combination of the first two, with complete neutralisation accepted in 

certain cases, and incomplete neutralisation in others (Barnes 2006). All of these 

approaches display a great deal of intolerance of qualitative variability, which 

some suggest might be due to some ‘paralinguistic contamination problem’ (e.g., 

Barnes 2006: 225), ‘spelling pronunciation’ (e.g., Fourakis & Iverson 1984; Warner 

et al 2006), and/or ‘hypercorrection’ (e.g., Jassem & Richter 1989).   

To complement the discussion of variability in chapter two, I focused in chapter six 

on variability in a quantitative sense. I sketched a new approach to phonetic 

variability where data have the capacity to form variability fields. Under this 

approach, variability is seen as the essence of phonetic data rather than some 

isolatable addition. On this conceptualisation, even random variations merit 

phonetic investigation. I also discussed allophonic and indexical variations, which 

are said to pose a real challenge to our understanding and modelling of phonetic 

data. The VFM schema I proposed allows only allophonic variations to form 

context-bound phone-fields; indexical variations, however, may only provide some 

form of background against which phone-fields are accessed. I presented both 

behavioural and neural data to support my claims. 

In chapter five, I offered a qualitative and quantitative description of the phonetics 

of neutralisation. I first presented a brief scrutiny of the labelling criteria in the 

literature as applied to the phonetics of neutralisation. Then I discussed statistical 

significance, the single most important criterion that has been standardly used in 

the qualitative description of the phonetics of neutralisation. My main findings in 

this regard are that a statistically significant difference can be a size effect rather 

than an effect size, that statistical significance can easily be misinterpreted, and 

that the null hypothesis of no difference is almost always false on both logical and 

empirical grounds.  

On the quantitative side, I evaluated the parametric measures of central tendency 

and dispersion that have been commonly used to quantify the phonetics of 

neutralisation. I showed that the these measures are unintuitive and so closely tied 

to the numerical values of the measurement scale as to potentially undermine any 

robust estimation of the underlying central location and variability. I also proposed 

an alternative that is both more intuitive and cognitively plausible. Specifically, I 
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suggested that the mode, rather than the mean, be used to measure central 

tendency. This suggestion has rested on the claim that the mode reflects better the 

intuitive notion of average. By the same token, the variability measure I proposed 

relates the frequency of the modal interval to the range, both of which are more in 

line with frequency-based Bayesian reasoning (Gigerenzer & Hoffrage 1995). 

Moreover, I suggested that phonetic data are more appropriately examined as 

intervals rather than as single points. In chapter seven, I proposed a binning 

algorithm utilising the familiar psycho-physical notion of just noticeable difference 

(jnd).  

The variability issue has actually guided the theoretical focus of the thesis and 

provided at the same time a context for the experimental part of the thesis. This 

has been designed to address the two main issues that have occupied the bulk of 

the phonetic literature on neutralisation. These issues concern the extent of 

phonetic merger (the completeness question) and the empirical validity of the 

phonetic effect (the genuineness question). Regarding the completeness question, I 

presented in chapter four acoustic and perceptual analyses of vowel/zero 

alternations in Bedouin Hijazi Arabic (BHA). As documented in chapter three, the 

phonology of these alternations exemplifies two neutralisation scenarios bearing 

on the completeness question. To the best of my knowledge, this thesis is the first 

to have looked closely at both scenarios together, testing hypotheses involving the 

acoustics-perception relation and the phonetics-phonology relation. 

The NHST analysis of the production experiment reported in chapter four reveals a 

curious pattern of dis-correlation between the phonetics and phonology of 

neutralisation.  There is a statistically significant acoustic difference between 

epenthetic [a] and lexical /a/ that the phonology seems to overlook. At the same 

time, the phonology treats epenthetic [i] and lexical /i/ differently despite their 

acoustic non-distinguishability by the criterion of statistical significance. 

Moreover, the acoustic difference that reaches statistical significance is an 

intensity difference between epenthetic [a] and lexical /a/.  In other words, the 

only statistically significant difference is along a phonetic parameter that is 

contrastively inert in many languages, most certainly in BHA. 

The results of the perceptual analysis suggest that listeners discriminate 

epenthetic [i] and lexical /i/ more accurately than they discriminate epenthetic [a] 
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and lexical /a/, a finding that sits uncomfortably with the picture painted by the 

NHST-generated inferences regarding the acoustics of epenthetic and lexical 

vowels in BHA. The results are not consistent with the phonological account in 

chapter three either.  

Next, I discussed the genuineness question from an experimental and statistical 

perspective. Experimentally, I devised a paradigm that manipulates important 

variables claimed to influence the phonetics of neutralisation. These variables 

include stimulus composition, orthography, and pragmatic context. The main 

finding in this regard is that the same experimental make-up can produce both 

complete and incomplete effects, with no definitive correlation between either 

effect and experimental artefactuality. 

Statistically, I re-analysed neutralisation data reported in the literature from 

Turkish and Polish, applying different pre-analysis procedures. My main finding 

here is that different statistical analyses of the same neutralisation data can yield 

qualitatively different results. This led me to conclude that arguments questioning 

the genuineness of the reported findings are self-defeating, irrespective of whether 

they appeal to experimental or statistical considerations.  

In chapter seven, I offered a VFM analysis of a portion of the acoustic data which 

were NHST-analysed in chapter four. According to the VFM results, the 

neutralisation effect through [a]-epenthesis, which is phonologically complete, is 

also phonetically complete. Conversely, the distinction between epenthetic [i] and 

lexical /i/, which survives in the phonology, also survives in the phonetics. In other 

words, the VFM analysis yields a close correlation between the phonetics and 

phonology of vowel/zero neutralisation in BHA. Moreover, the acoustic difference 

that the VFM analysis found is an F0 difference between [i] and /i/, with [i]-F0 

being lower than /i/-F0. This result in terms of both the dimension itself and its 

directionality is phonologically expected.  

A key conclusion to draw from the thesis is that there is good reason to reconsider 

many of the questions asked in the phonetic literature on neutralisation in terms of 

a different perspective—one that places emphasis on variability. 
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A recommendation emerging from the thesis is that we need to encourage less 

reliance on NHST and open up to other analytical techniques, including apparently 

subjective and fuzzy approaches that rely on intuitions for scientific inference. 

The VFM alternative sketched in this thesis is specifically tailored to phonetic data. 

There are at least two features that set VFM apart from competing models of 

lexical representation and phonetic processing. Firstly, VFM takes a middle-ground 

approach to phonetic variability. While VFM celebrates phonetic variability and 

advertises it as the essence of phonetic data, it prunes down phonetic data so that 

we do not end up drowning in pools of phonetic variation that includes differences 

that are not even just-noticeable. A central VFM argument is that to find structure 

in variability, we need only consider hearable variability. Secondly, for 

summarising a set of phonetic data in a parametric fashion, VFM places emphasis 

on count data rather than arithmetically derived data like the mean and SD. This 

manoeuvre on the part of VFM brings the model more in line with frequency-based 

Bayesian reasoning (Gigerenzer & Hoffrage 1995) and with intuitive conceptions 

of the notions of average and variability.   

Some of the notions that VFM appeals to are still in need of refinement and 

validation. Nonetheless, the model has clear potential of opening up new avenues 

for further research.  

An obvious direction for future research is to develop VFM components and 

implementation tools. An important starting point is the jnd, which plays a central 

role in defining an interval width according to which datasets are divided into bins, 

which in turn determine the data mode and spread. We still need to work further 

on refining jnd measures for the various acoustic dimensions of speech sounds that 

we study. Real improvement needs to find its way into design, methodology, and 

analysis. The jnd-estimation studies in our field should apply the latest 

methodological advances made by psychophysics and other relevant research 

fields (for an overview see e.g., Klein 2001; Leek 2001). As to evaluation, 

researchers concerned should look for replications. An important contribution to 

this research programme is the utilisation of behavioural and neural data collected 

within the same experimental paradigm for cross-validation. Here, the neural 

component known as MMN, which is currently advertised by many as an automatic 

change-detection index, comes to mind. Neural paradigms need not test arbitrary 
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and fixed differences between baseline and deviant stimuli (e.g., Gomes et al 1995: 

[100ms vs 170ms]; Huotilainen et al 1993: [a difference of 150Hz]; Inouchi et al 

2003: [a difference of 152ms]; Kaukoranta et al 1989: [100ms vs 50ms]; Todd & 

Michie 2000: [50ms vs 125ms]; but see Na‚a ‚ta ‚nen 1992; Tiitinen et al 1994). 

Instead, differences should preferably vary across a range of values in small-step 

increments/decrements. Collaboration between neurologists and 

phoneticians/phonologists is a promising enterprise for the advancement of 

scientific inquiry into this issue.  

Another avenue for further research, suggested by the findings of this thesis, 

concerns the dimensionality issue of phonetic data. This carries special importance 

for the question of representation and processing of phonetic data in terms of VFM. 

There is a sizeable body of behavioural and neural literature dealing with the 

dimensionality issue (e.g., Garner 1974, 1970; Garner & Felfoldy 1970; Giard et al 

1995; Gomes et al 1995; Katseff & Houde 2008; Wood 1974; Turk & Sawusch 

1996). A particularly important question here is how to represent data belonging 

to a given phone-field which have been derived from a number of parameters, such 

as duration, F0, and intensity. More generally, are stimulus data along different 

phonetic parameters processed (and thus presumably represented) integrally or 

separably in the sense of Garner (1974)? Is there symmetry in such processing and 

representation (e.g., Garner 1983; Turk & Sawusch 1996)? How does this impact 

on VFM?  

Another issue into which more research needs to be channelled is the dynamicity 

of phonetic data. Many phoneticians agree that phonetic data should be examined 

along both dynamic and static parameters (e.g., Lindblom 1990; Meunier et al 

2006). Progress has already been made in harnessing the dynamicity of phonetic 

variability, for example, in the study of speaker characteristics (e.g., McDougall 

2006, 2004; Nolan et al 2006) and the application of nonlinear dynamical systems 

for the analysis of phonetic data (e.g., Gafos 2006; Gafos & Benus 2006; Nguyen et 

al 2009; Nycz 2005; Tuller et al 2008, 1994).  

It is clearly desirable to integrate the dynamicity and dimensionality issues in our 

future attempts to learn more about phonetic phenomena, including the phonetics 

of neutralisation. The approach I advocate here examines phonetic data as 

intervals rather than single points, and uses the mode as a measure of central 
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tendency in place of the mean. This thesis has already demonstrated the 

profitability of this approach.   
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 APPENDIX A 

A non-exhaustive list of the phonological processes that have been investigated in the 

literature on the acoustics of neutralisation. The list does not include articulatory or 

perception studies.  

 

Note: 
Incomplete neutralisation= there are statistically significant differences between the sounds that are subject 

to neutralisation. 
 
Complete neutralisation= there are no statistically significant differences between the sounds that are 

subject to neutralisation. 
 
Variable= neutralisation is incomplete in certain conditions and complete in other conditions (e.g., certain 

segment types, experimental tasks, pragmatic contexts, etc.). 
 
NoST= No statistical significance testing reported. 
 
  

Phonological Process Language Study 
Finding:  

Neutralisation is 

Final Devoicing German Piroth & Janker 2004 Complete 
Piroth et al 1991 Variable  
Port & Crawford 1989  Incomplete 
Port & O’Dell 1985  Incomplete 
Charles-Luce 1985 Variable  
Fourakis & Iverson 1984  Variable  
Mitleb 1981  Incomplete 
Taylor 1975  NoST 

Catalan Dinnsen & Charles-Luce 1984 Variable  
Charles-Luce & Dinnsen 1987  Incomplete 
Charles-Luce 1993  Variable 

Polish Slowiaczek & Dinnesn 1985 Incomplete 
Tieszen 1997  Incomplete (two out 

of three dialects) 
Jassem & Richter 1989  Variable  
Giannini & Cinque 1978 NoST 

Russian Pye 1986 (in Kopkallí 1993) NoST 
Chen 1970  NoST 
Dmitrieva et al 2010  Incomplete 

Dutch Ernestus & Baayen 2006 Variable  
Warner et al 2004 Incomplete 
Jongman 2004  Incomplete 
Baumann 1995 Complete 

 Turkish Kopkallí 1993 Complete 
Lithuanian Campos-Astorkiza 2008 Incomplete 
Kuala Lumpur Malay Abu Bakar et al 2007 NoST 
Friulian Baroni & Vanelli 2000 Incomplete 
Afrikaans van Rooy et al 2003 Incomplete  

van Rooy & Wissing 1996  
(in van Rooy et al 2003) 

Variable 

vowel-deletion and 
vowel-reduction 

Russian Padgett & Tabain 2005 Variable 
Barnes 2006 Variable 

French Fougeron & Steriade 1997 Incomplete 
Catalan Herrick 2004 Complete 
Shimakonde Liphola 2001 Complete 
Serbo-Croatian Ridjanovic 1986 NoST 
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Phonological Process Language Study 
Finding:  

Neutralisation is 

flapping  American English Herd et al 2010 Incomplete 
Braver 2010 Incomplete 
Sharf 1962 NoST 
Huff 1980 Variable 
Zue & Laferriere 1979 Incomplete 
Fox & Terbeek 1977 Incomplete 
Fisher & Hirsh 1976  Variable  
Port 1977  Complete 
Sheldon 1973 Variable  

stop-epenthesis English 
 

Lee 1991 NoST 
Arvaniti 2006 Incomplete 
Arvaniti & Kilpatrick 2007 Complete  
Fourakis 1980 Incomplete  
Yoo & Blankenship 2003 Complete 
Fourakis & Port 1986 Incomplete 

assimilation English Torres 2001 Variable  
French Snoeren et al 2006 Incomplete 
Catalan Charles-Luce 1993 Variable  

Torres 2001 Variable 
Russian Burton & Robblee 1997 Incomplete 
Lithuanian Campos-Astorkiza 2008 Incomplete 
Bengali Lahiri & Hankamer 1988 Complete  

coda-neutralisation Eastern Andalusian Spanish Gerfen & Hall 2001 Incomplete 
Western Andalusian Spanish Rueda-López 2007 NoST 
Puerto Rican Spanish Simonel et al 2008 Incomplete 
Korean Kim & Jongman 1996 Complete 

vowel epenthesis  
  

Lebanese  Arabic Gouskova & Hall  2009 Incomplete 
Palestinian Arabic Gouskova & Hall  2007 Complete 
Brazilian Portuguese Gristófaro-Silva & Almeida 2008 Incomplete 

consonant deletion  Turkish Rudin 1980 Incomplete 
enchai Înement French Fougeron 2007 Incomplete  
vowel length Dutch Lahiri et al 1987 Complete  
singletons vs geminates  Warner et al 2004 Incomplete  
verb allomorphy Warner et al 2006 Complete  
tone sandhi & contrasts Mandarin Peng 2000 Incomplete 

Cantonese Yu 2007 Incomplete 
Taiwanese Myers & Tsay 2008 Variable  
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 APPENDIX B 

Subjective frequency estimation using judgements of 46 native speakers of BHA. 

B-1: Frequency scale used by participants: 
 
3         highest  
 
2 
 
1         lowest 
 
 
 
B-2: Frequency scale augmented for finer distinctions: 
 
6         highest 
 
5 
 
4 
 
3            
 
2 
 
1            lowest 
 
 
B-3: Conversion table (B-1= B-2) 
1 –1.33 1 
1.34 – 1.66 2 
1.67 – 2 3 
2.01 – 2.33 4 
2.34 –2.66 5 
2.67–3 6 
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 APPENDIX C 

Examples of boundary locations in representative words produced by different speakers. 

Examples show waveforms and spectrograms with boundary marks (B1) and (B2) 

separating target vowels ‘a’ and ‘i’ from different consonants.  
 

                           

The word [daxal] by speaker L-A                                The word [laêam] by Speaker L-B 

 

 

  

ê 
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The word [gabil] by speaker L-C                                The word [gidir] by Speaker L-D 

 

                       

The word [rahan] by speaker L-E                                The word [fikir] by Speaker I-F 
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 APPENDIX D 

Prediction plots derived from multi-level models fitted to the BHA neutralisation data 

produced by seven native speakers. Fixed factors include an intercept and V2 Underlying 

Status (epenthetic vs lexical); random effects include items, speakers, and observations (i.e., 

renditions of each item by each speaker). 

D-1: a-F0 and i-F0 data 
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D-2: a-intensity and i-intensity data 
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D-3: a-duration and i-duration data 
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D-4: a-F1 and i-F1 data 
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D-5: a-F2 and i-F2 data 
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 APPENDIX E 

Data used in the perception test (Speaker L-E): 

Pair F0 (Hz) Intensity (dB) Duration (ms) F1 (Hz) F2 (Hz) 

 
epenthetic lexical epenthetic lexical epenthetic lexical epenthetic lexical epenthetic lexical 

[laêam] 187.5 193.1 65.0 62.5 78.9 74.0 884.0 859.0 1746.8 1805.3 

[naêal] 182.1 248.9 63.6 61.3 65.4 87.5 830.3 855.9 1884.4 1748.3 

[nahar] 193.9 226.3 63.1 67.6 67.4 79.8 813.3 895.0 1546.2 1769.7 

[gahar] 189.8 191.4 69.4 63.0 88.1 70.4 828.4 797.3 1733.0 1716.4 

[daxal] 191.2 188.1 66.6 65.1 79.1 79.0 778.9 726.1 1642.5 1599.0 

[faêam] 182.2 188.7 66.4 65.0 79.5 75.7 886.9 892.9 1650.1 1664.4 

[rahan] 218.8 194.3 65.9 60.3 62.9 70.4 724.2 770.9 1634.6 1602.9 

[naêar] 188.4 248.6 65.8 68.5 87.9 77.7 857.2 923.3 1771.1 1827.6 

[Rahar] 177.4 191.3 65.9 65.7 92.6 96.9 827.4 819.0 1702.8 1733.9 

[gidir] 203.2 213.6 70.0 64.7 92.1 65.9 591.6 573.2 1883.2 1799.1 

[kibir] 251.7 190.3 66.9 66.0 88.3 73.9 571.6 546.3 2037.4 1918.4 

[ðikir] 201.5 249.4 66.0 67.7 74.2 77.3 593.8 546.3 2087.2 2285.6 
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 APPENDIX F 

Survey of 25 studies highlighting the correlation between the absence of minimal pairs in the 

stimuli and complete neutralisation. The inclusion criteria adopted are as follows. Studies 

mixing minimal pairs with non-minimal pairs or with nonsense minimal pairs in the test 

stimuli are excluded. Excluded too are studies exclusively using nonsense minimal pairs. With 

regard to orthography, only studies providing the orthographic form of the test words as 

part of the experiment procedures are included. 

 

 

 Orthography: 

Contrast represented 
orthographically 

Stimuli: 

Minimal 
pairs present 

 

Number of studies reporting neutralisation to be 

(a): complete (b): incomplete 

1 Yes Yes Kim & Jongman (1996) Fougeron (2007) 
Fourakis & Port (1986) 
Fougeron & Steriade (1997) 
Fox & Terbeek (1977) 
Gerfen & Hall (2001) 
Jongman (2004) 
Dmitrieva et al  
(2010) 
Port & Crawford (1989) 
Port & O’Dell (1985) 
van Rooy et al (2003) 
Rudin (1980) 
Slowiczek & Dinnsen (1985) 
Snoeren et al (2006) 
Tieszen (1997) for Warsaw 
& for Bydgoszez Polish 
Warner et al (2004) 
 

2 Yes No Arvaniti & Kilpatrick 
(2007) 
Lahiri & Hankamer 
(1988) 
Piroth & Janker 
(2004) 
 

CristoÂfaro-Silva & Almeida 
(2008) 

3 No Yes Warner et al (2006) 
 

Charles-Luce & Dinnsen 
(1987) 
 

4 No No Kopkallí (1993) 
Lahiri et al (1987) 
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 APPENDIX G 

Mean and (SD) values of epenthetic and lexical vowels according to experimental conditions, 

stimuli, and tasks  

 

G-1: a-F0 and i-F0 data (in Hz) 

TASK  
Elicitation Reading in context Reading in a frame  

[a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

208.8 
(15.5) 

211 
(15.6) 

210 
(11.7) 

211.5 
(9.8) 

220.6 
(24) 

214.7 
(17.8) 

220 
(26) 

209.5 
(15) 

227.6 
(18.8) 

222.6 
(12.4) 

221 
(13.6) 

220 
(14) 

217 
(19) 

216 
(15) 

217 
(17) 

213.8 
(13) 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

210.7 
(11.4) 

210 
(5.2) 

207 
(8) 

207.6 
(8) 

211 
(24.6) 

212 
(24.8) 

211.6 
(27) 

212 
(27) 

215.9 
(15.9) 

215.9 
(15.9) 

215.9 
(18.8) 

215.5 
(19) 

212.7 
(17) 

212.7 
(16) 

211.6 
(18.6) 

211.7 
(18.6) 

Elicitation Reading in context Reading in a frame     
209.7 
(12.9) 

210.7 
(11) 

208.6 
(9.6) 

209.6 
(8.7) 

215.9 
(23.6) 

213 
(20) 

215.8 
(25.5) 

210.8 
(20.8) 

218.7 
(16.7) 

219 
(13.9) 

218.5 
(15.7) 

217.9 
(16) 

   

 

 

G-2: a-intensity and i-intensity data (in dB) 

TASK  
Elicitation Reading in context Reading in a frame  

[a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

63.8 
(1.6) 

62.4 
(2.2) 

64.6 
(1.4) 

62.9 
(1.7) 

61.2 
(1.2) 

60.7 
(1) 

62.07 
(1.2) 

60.9 
(1.5) 

63.2 
(3) 

62.4 
(2.4) 

62.9 
(1.2) 

62.3 
(.54) 

62.7 
(2.2) 

61.8 
(2) 

63.2 
(1.6) 

62.07 
(1.5) 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

63.6 
(2.3) 

63.5 
(2.4) 

63.8 
(2) 

64.2 
(1.8) 

62.7 
(4.8) 

62.7 
(5) 

63.7 
(4.2) 

63.8 
(4.1) 

61.7 
(2.8) 

61.7 
(2.7) 

62.3 
(2.4) 

62.9 
(2.7) 

62.7 
(3.3) 

62.7 
(3.4) 

63.2 
(2.9) 

63.6 
(2.8) 

Elicitation Reading in context Reading in a frame     
63.7 
(1.9) 

62.9 
(2.2) 

64.18 
(1.6) 

63.5 
(1.8) 

62 
(3.4) 

61.7 
(3.6) 

62.9 
(3.1) 

62.3 
(3.3) 

62.5 
(2.8) 

62.1 
(2.4) 

62.6 
(1.8) 

62.6 
(1.8) 
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G-3: a-duration and i-duration data (in ms) 

TASK  
Elicitation Reading in context Reading in a frame  

[a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ 
ST

IM
U

LI
 

M
em

be
rs

 
ap

ar
t 

 

Condition 1 Condition 2 Condition 3 Members apart 

80.9 
(8.4) 

77.2 
(5) 

72.4 
(5.4) 

70 
(5.7) 

78.2 
(9.4) 

76.2 
(7.5) 

76.3 
(7) 

70.8 
(6) 

79.3 
(6.8) 

77.7 
(7.6) 

74 
(5.3) 

78 
(6) 

79.5 
(7.7) 

77 
(6.3) 

74 
(5.8) 

73 
(6.7) 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

82.8 
(8.4) 

82.9 
(8.2) 

79.6 
(10.5) 

80 
(6) 

80.2 
(13.6) 

80.3 
(12.7) 

77.5 
(12) 

79 
(11.9) 

76.4 
(6.4) 

76.7 
(6.7) 

74 
(5.7) 

78.8 
(5.5) 

79.8 
(9.6) 

80 
(9) 

77 
(9) 

79 
(7.7) 

Elicitation Reading in context Reading in a frame     
81.9 
(8) 

80 
(7) 

75.9 
(8.7) 

75 
(7.7) 

79 
(11) 

78 
(10) 

76.9 
(9) 

74.9 
(9.9) 

77.9 
(6.4) 

77 
(6.8) 

74 
(5) 

78.5 
(5.5) 

   

 

G-4: a-F1 and i-F2 data (in Hz) 

TASK  
Elicitation Reading in context Reading in a frame  

[a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

855 
(52) 

852 
(42) 

547 
(37) 

544 
(29) 

842 
(62) 

849 
(64) 

538 
(39) 

539 
(34) 

867 
(71) 

846 
(81) 

547 
(39) 

552 
(32) 

855 
(58) 

849 
(60) 

544 
(36) 

545 
(30) 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

860 
(71) 

853 
(75) 

552 
(36) 

554 
(34) 

855 
(100) 

854 
(90) 

524 
(43) 

518 
(43) 

862 
(92) 

864 
(100) 

539 
(40) 

541 
(48) 

859 
(82) 

857 
(82) 

538 
(39) 

538 
(42) 

Elicitation Reading in context Reading in a frame     
857 
(59) 

853 
(88) 

549 
(35) 

549 
(30) 

849 
(78) 

851 
(73) 

531 
(39) 

529 
(38) 

864 
(78) 

855 
(85) 

543 
(37) 

546 
(39) 

   

 

G-5: a-F2 and i-F2 data (in Hz) 

TASK  
Elicitation Reading in context Reading in a frame  

[a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ [a] /a/ [i] /i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

1707 
(131) 

1702 
(117) 

2391 
(182) 

2355 
(169) 

1616 
(157) 

1624 
(144) 

2415 
(198) 

2442 
(161) 

1554 
(271) 

1580 
(202) 

2432 
(151) 

2434 
(197) 

1625 
(193) 

1635 
(156) 

2413 
(166) 

2410 
(168) 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

1663 
(113) 

1679 
(91) 

2417 
(138) 

2384 
(126) 

1558 
(172) 

1557 
(159) 

2462 
(143) 

2457 
(175) 

1585 
(190) 

1588 
(173) 

2398 
(125) 

2409 
(95) 

1602 
(157) 

1608 
(145) 

2426 
(128) 

2417 
(130) 

Elicitation Reading in context Reading in a frame     
1685 
(118) 

1691 
(99) 

2404 
(153) 

2369 
(141) 

1587 
(158) 

1590 
(147) 

2439 
(164) 

2450 
(159) 

1569 
(221) 

1584 
(177) 

2415 
(132) 

2422 
(146) 
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 APPENDIX H 

Mean paired differences and (SD) values of epenthetic and lexical vowels according to 

experimental conditions, stimuli, and tasks  

 

H-1: a-F0 and i-F0 data (in Hz) 

TASK  

Elicitation Reading in context Reading in a frame  
[a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

-2.5 
(8) 

 

 
-1.5 
(4.5) 

 

 
6 

(8.4) 
 

 
10.4 
(13) 

 

 
-1 

(11.9) 
 

 
.6 

(8.8) 
 

 
.8 

(9.7) 
 

 
3.2 

(10.3) 
 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

.57 
(7) 

 

 
-.35 
(.76) 

 

 
-.78 
(1.5) 

 

 
-.37 
(3) 

 

 
.03 
(.8) 

 

 
.5 

(8) 
 

 
-.06 

(3.9) 
 

 
-.08 

(4.6) 
 

Elicitation Reading in context Reading in a frame   

-.98 
(7.3) 

-.92 
(3) 

2.6 
(6.7) 

5 
(10.6) 

-.48 
(8) 

.54 
(7.9) 

   

 

H-2: a-intensity and i-intensity data (in dB) 

TASK  

Elicitation Reading in context Reading in a frame  
[a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

1.4 
(.7) 

 

 
1.6 

(1.4) 
 

 
.56 

(1.5) 
 

 
1.2 

(1.9) 
 

 
.83 

(1.7) 
 

 
.64 

(1.1) 
 

 
.91 

(1.3) 
 

 
1.1 

(1.5) 
 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

.09 
(.63) 

 

 
-.4 

(.38) 
 

 
-.04 
(.62) 

 

 
.04 

(.35) 
 

 
.03 

(.33) 
 

 
-.66 

(.86) 
 

 
.03 
(.5) 

 

 
-.37 
(.6) 

 

Elicitation Reading in context Reading in a frame   
.72 

(.93) 
.6 

(1.5) 
.26 

(1.1) 
.55 

(1.4) 
.43 

(1.3) 
-.01 

(1.2) 
   

 

 

 

 



311 
 
H-3: a-duration and i-duration data (in ms) 

TASK  

Elicitation Reading in context Reading in a frame  
[a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

3.7 
(5) 

 

 
2.3 

(5.5) 
 

 
2 

(2.6) 
 

 
5.5 

(3.5) 
 

 
1.6 

(5.5) 
 

 
-4.2 

(4.5) 
 

 
2.4 

(4.4) 
 

 
1.2 
(6) 

 
M

em
be

rs
 

cl
os

e 
 

Condition 4 Condition 5 Condition 6 Members close 

-.11 
(2) 

 

 
-.54 
(5.7) 

 

 
.05 
(2) 

 

 
-1.6 

(4.3) 
 

 
-.3 

(3.9) 
 

 
-4.8 

(4.6) 
 

 
-.15 

(2.6) 
 

 
-2.3 
(5) 

 

Elicitation Reading in context Reading in a frame   
1.82 
(4.2) 

1 
(5.5) 

.95 
(2.5) 

1.9 
(5.2) 

.67 
(4.6) 

-4.5 
(4.3) 

   

 

H-4: a-F1 and i-F1 data (in Hz) 

TASK  

Elicitation Reading in context Reading in a frame  
[a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

2.5 
(15.5) 

 

 
3 

(22.5) 
 

 
-6.6 
(11) 

 

 
-.84 

(24.9) 
 

 
20.5 
(28) 

 

 
-4.7 
(13) 

 

 
5.5 

(21.5) 
 

 
-.8 

(19.5) 
 

M
em

be
rs

 
cl

os
e 

 

Condition 4 Condition 5 Condition 6 Members close 

7 
(23.8) 

 

 
-1.4 
(9.6) 

 

 
1 

(11.7) 
 

 
5.6 

(3.4) 
 

 
-2.3 

(11.6) 
 

 
-2 

(18.6) 
 

 
1.9 

(16) 
 

 
.7 

(11.9) 
 

Elicitation Reading in context Reading in a frame   
4.7 

(19) 
.85 

(16.5) 
-2.8 

(11.4) 
2.4 

(17) 
9.1 

(23.5) 
-3.4 
(15) 

   

 

H-5: a-F2 and i-F2 data (in Hz) 

TASK  

Elicitation Reading in context Reading in a frame  
[a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ [a]–/a/ [i]–/i/ 

ST
IM

U
LI

 
M

em
be

rs
 

ap
ar

t 
 

Condition 1 Condition 2 Condition 3 Members apart 

4 
(37) 

 

 
36 

(68.8) 
 

 
-8 

(76) 
 

 
-27 

(84.8) 
 

 
-26.5 
(118) 

 

 
-2 

(85) 
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 APPENDIX I 

Main effects of stimulus list by V2 Underlying Status; error bars show mean ±1SD  

 

 

180

195

210

225

240

F
0

 (
in

 H
z)

[a] /a/

57

60

63

66

69

In
te

n
si

ty
 (

in
 d

B
)

63

73

83

93

D
u

ra
ti

o
n

 (
in

 m
s)

750

800

850

900

950

F
1
 (

in
 H

z)

1300

1400

1500

1600

1700

1800

1900

pair members apart pair members close

F
2
 (

in
 H

z)

Stimuli



313 
 

 

 

 

 

 

180

195

210

225

240

F
0
 (

in
 H

z)

[i] /i/

55

60

65

70
In

te
n

si
ty

 (
in

 d
B

)

63

73

83

93

D
u

ra
ti

o
n

 (
in

 m
s)

450

500

550

600

650

F
1
 (

in
 H

z)

2100

2200

2300

2400

2500

2600

2700

pair members apart pair members close

F
2

 (
in

 H
z)

Stimuli



314 
 
 

 APPENDIX J 

Main effects of task by V2 Underlying Status. Error bars show mean ±1SD 
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