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Abstract

This thesis concerns models for visual object classes that exhibit a reasonable amount of reg-

ularity, such as faces, pedestrians, cells and human brains. Such models are useful for making

“within-object” inferences such as determining their individual characteristics and establishing

their identity. For example, the model could be used to predict the identity of a face, the pose

of a pedestrian or the phenotype of a cell and segment parts of a human brain.

Existing object modelling techniques have several limitations. First, most current methods

have targeted the above tasks individually using object specific representations; therefore, they

cannot be applied to other problems without major alterations. Second, most methods have been

designed to work with small databases which do not contain the variations in pose, illumination,

occlusion and background clutter seen in ‘real world’ images. Consequently, many existing

algorithms fail when tested on unconstrained databases. Finally, the complexity of the training

procedure in these methods makes it impractical to use large datasets.

In this thesis, we investigate patch-based models for object classes. Our models are ca-

pable of exploiting very large databases of objects captured in uncontrolled environments. We

represent the test image with a regular grid of patches from a library of images of the same

object. All the domain specific information is held in this library: we use one set of images of

the object to help draw inferences about others. In each experimental chapter we investigate

a different within-object inference task. In particular we develop models for classification, re-

gression, semantic segmentation and identity recognition. In each task, we achieve results that

are comparable to or better than the state of the art. We conclude that patch-based representa-

tion can be successfully used for the above tasks and shows promise for other applications such

as generation and localization.
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Chapter 1

Introduction

“Vision is the process of discovering from images what is present in the world, and where it is”

(David Marr). Computer vision practitioners are interested in writing computer algorithms to

discover objects present in images by mimicking human vision. For a computer to be able to

detect, identify and draw inferences about an object, a statistical model that describes the visual

appearance of the object is required. This thesis concerns statistical models of this type.

1.1 A Taxonomy of Object Model Tasks

We aim to develop a single object model that is flexible enough to tackle a wide variety of object

related tasks. Consequently, we first describe these tasks in turn using the example of a face

model.

The problem of object Detection is to determine the presence of an object in an image.

Typically, object detectors consider small image windows at all locations and scales and perform

a binary detection for each. The output of a detector is usually a bounding box around the object

of interest; e.g. for the face class, we might require the system to return a bounding box around

each face region (figure 1.1a).

The goal of Segmentation is to provide the precise location of the object boundaries, by

dividing the image into foreground (the desired object) and background (everything else). For

example, given an image containing a face, find the best division of face pixels from the back-

ground (figure 1.1b). Subsequently, semantic image segmentation is to label different parts of

a single object. For example, given a face image, label the pixels as either eyes, nose, mouth,

skin etc. (figure 1.1c).

The goal of Identity recognition is to recognize the identity of a particular instance of

an object. For example, given an individual’s face image, the model would find the closest

match in a large database (figure 1.1d). Invariant recognition is the ability to identify an object

regardless of possible variations in different images of the same object; e.g. to recognize a face,
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Figure 1.1: Object-related tasks with examples from the face class a) Detection: place a bounding box

around the faces. b) Segmentation: divide the image into face (foreground) and non-face (background)

pixels. c) Semantic segmentation: label different parts of the face e.g. nose, mouth, etc. d) Identity recog-

nition: recognize the identity of the given face. e) Invariant recognition: recognize the person despite

the changes in appearance. f) Regression: predict continuous attributes e.g. age. Classification: assign

the face to one of many classes, e.g. gender classification. g) Generation: generate new photorealistic

faces. h) Restoration: given a noisy face in an old photograph (left), generate a clean face (right). i)

Attribute interchange: given a neutral face, produce a smiling face. Images in (g,i) adapted from [125]

and (h) adapted from [148].
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in different poses (figure 1.1e).

Regression is the process of finding a functional relationship between the appearance of

the object and its continuous attributes. For example, given a face, the model would predict

the age of the person (figure 1.1f). Classification is the task of assigning an object to one of

many discrete classes. For instance, to assign an object as belonging to either of the car, face

or human body categories. Alternatively, one can classify attributes within a category, such as

predicting gender for a face image (figure 1.1f).

Generation is the process of generating new instances of the object from the learned model,

which do not exist in the training database. An example would be to generate random photo-

realistic images of new faces which were not in the training set (figure 1.1g).

Image Restoration algorithms enhance the condition of the object in an image. For ex-

ample, given a noisy or low resolution face in an old photograph, generate a clean and high

resolution face (figure 1.1h). Attribute interchange, is the process of changing an attribute such

as the pose, lighting or material of the object. For example, in face images we might learn the

relationship between neutral and smiling faces and use this to turn a neutral face into a smiling

face (figure 1.1i).

1.2 Challenges Involved in Object Modeling

An ideal object model would support the tasks described in section 1.1. Unfortunately, this is

extremely challenging for a number of reasons which we now explore.

A major complication in object recognition is the intra-class variability. The visual prop-

erties of different objects belonging to the same class can vary considerably. Chairs are good

examples of such class of objects (figure 1.2a).

Another impeding factor is illumination changes. The appearance of most objects varies

significantly with changes in illumination. For example, the same face looks very different

under different lighting conditions (figure 1.2b). Another issue is the scale at which objects

appear in the image. A vision algorithm may struggle to detect or recognize objects if it analyses

them at the wrong scale.

Other major issues include viewpoint or pose variation. When 3D objects are projected

onto a 2D image, they appear quite differently depending on the position of the camera. A car

for instance, may look very different from different viewpoints (see figure 1.2c).

Occlusion is another obstacle for object detection / recognition. Occluded object parts can

cause problems for vision algorithms. For example in a snapshot of a tennis match, the tennis

racket may partially occlude the face of the player. Consequently it may be difficult to detect or
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Figure 1.2: Challenges involved in object modeling: a) Intra-class variability: objects from the same

class can vary considerably. b) Illumination variations: the appearance of objects varies significantly

with changes in illumination. c) Pose variation: objects appear quite differently depending on the posi-

tion of the camera. d) Deformation and self occlusion: some articulated objects can self occlude due to

their geometric properties. e) Background clutter: cluttered background impedes vision tasks.
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a) Constrained Databases

b) Unconstrained Databases

Figure 1.3: Constrained vs unconstrained databases a) In the past, models have mainly been tested

on constrained databases. They contain high quality images, with limited variation in pose, orientation

and illumination, and exclude occlusions or background clutter; e.g. FERET face database [137], KTH

action recognition database [152] and hand databases in [19, 63]. b) Contrastingly, real world images

collected from the internet present large variations in pose, scale, image quality and background clutter.

This makes object modelling challenging. Here are some such databases we have collected for faces,

pedestrians and hands.

identify the player’s face. Some articulated objects such as horses can even self occlude (figure

1.2d). Such non-rigid deformation of the object can also hinder vision algorithms.

Finally, objects usually appear against a cluttered background. For example, a traffic scene

would contain cars, traffic lights and pedestrians as well as buildings. Thus it may not be easy

to detect a face in the scene. Background clutter makes any of the tasks in section 1.1 much

harder, particularly detection of objects. (figure 1.2e).

An ideal object model, would support performance in all of the tasks in section 1.1 despite

the above challenges.

1.3 Constrained vs Unconstrained Databases

Visual algorithms are usually evaluated on standard databases. The database provides a sample

space on which a particular object model is trained and tested. The choice of the database

directly effects the performance and generalization ability of a visual model. For example, the

model may struggle to predict the gender of an Asian person if it has only been trained on

images of Caucasian men and women. Thus, it is crucial that the model can cope with a large

variety of examples.
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Until recently, databases typically presented simplified images to help develop fundamen-

tal models for object detection or identification. These ‘constrained’ databases, usually contain

high quality images, with limited variation in pose, orientation and illumination, and exclude

occlusions or background clutter. Examples of such databases are shown in figure 1.3a, includ-

ing the FERET [137] for faces, the KTH [152] for action recognition and the hand databases

used in [19, 63].

Interest has now shifted towards solving more advanced problems which require dealing

with “realistic” looking images. Such images are taken in unconstrained environments and

represent large variations in background clutter, pose, scale and image quality. This variation

makes object modelling highly challenging (see figure 1.3b).

Most current methods get impressive results on constrained databases in areas of recogni-

tion [174, 50], classification [124, 176] and regression [102]. Unfortunately, the performance

of these algorithms drops sharply [120, 154] when tested on real world images.

Ultimately, an ideal object model should have reliable performance on unconstrained

databases, to facilitate real world applications. Unfortunately, efficient modelling of objects

using real world images still remains a challenge and there has been limited research on this

subject ( [98, 159]). Many tasks such as gender classification, face pose estimation, and object

generation remain largely unexplored.

1.4 Problem Statement

The problem we address is to find a general object representation model such that (i) it is

suitable for multiple object classes, i.e. it is not specific to a single class, (ii) it is robust to the

challenges described in section 1.2 and (iii) is flexible enough to tackle a wide variety of object

related tasks as described in section 1.1.

1.5 Research Objective

In this thesis we investigate patch-based models as a general representation for visual object

classes. We restrict our investigation to object classes that exhibit a reasonable amount of

regularity, because (i) it is easier to model such objects and (ii) we can collect large databases

of training examples. These include faces, pedestrians, cells, and human brains.

In particular we aim to explore the following aspects of patch-based representation models:

• usability across a variety of object related tasks.

• the ability to represent multiple object classes.

• the ability to handle large databases of “real world” images.
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• robustness to the challenges in section 1.2

1.6 Contributions

We demonstrate that patch-based representation can be used in a wide variety of object re-

lated tasks such as: classification, regression, semantic segmentation and identification. More

specifically, the contributions of this thesis are:

• A patch-based method for within-category classification applied to multiple object classes

such as: faces, pedestrians and cells. We demonstrate that patch-based representation is

robust to challenges such as: background clutter, scale, occlusion and variation in pose

and illumination.

• A patch-based method for regression which we apply to face pose estimation. We demon-

strate that patch-based representation can be used to estimate pose in “real world” envi-

ronments.

• A patch-based method for face recognition across large image variations such as changes

in illumination and facial expression.

• A patch-based method for semantic segmentation of objects, which we apply to faces

and human brains. We demonstrate the capabilities of patch-based representation in a

challenging vision task.

• Collection and annotation of a very large database (∼70,000 images) of faces in uncon-

trolled environments. This dataset provides realistic scenarios for testing current and

future methods for a variety of classification tasks.

• Collection of a large database (∼15,000 images) of pedestrians in uncontrolled environ-

ments and annotation of pose for each pedestrian. This database can be used to test the

ability of methods to handle large number of real world examples.

• Collection of a large face pose database (∼12,000 images) and providing human esti-

mates for yaw as ground truth pose. This is to our knowledge the first large annotated

database of poses in uncontrolled environment and has received wide interest from the

vision community.

1.7 Report Structure

Chapter 2 contains background on the main components of object modelling: representation,

learning and inference, and a review of current techniques used for each component. Chapter

3 describes a new method for patch-based within category classification, with experiments and
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results on faces, pedestrians and human brain. In chapter 4 we introduce a patch-based method

for regression applied to estimating face pose. In chapter 5 we describe a new method for

semantic segmentation of objects, with experiments and results on hands, faces and human

brains. Chapter 6 describes a patch-based generative method for identity recognition, with

experiments and results on face recognition across varying illumination and expression. In the

final chapter, we present our conclusions and discuss potential extensions to this work.
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Chapter 2

Background

In this chapter we present the main components of visual object modelling: representation,

learning and inference. A visual object model describes the statistical relationship between

the observed data and the world state. The representation is the form that the visual data takes

within this model. For example, it might simply consist of the concatenated RGB values from

a region of the image. The model will inevitably depend on some parameters. Learning is the

process of fitting these parameters. Inference is the task of predicting the world state given a

new observation of the specific object. Section 2.1 covers several models for representation and

a discussion of their merits and limitations. Different algorithms for inference and learning are

described in section 2.2.

2.1 Representation

The first and arguably the most important step in object class modelling is choosing a repre-

sentation. The representation is the format in which the object measurements are extracted and

stored. The goal is to describe the object in a compact form that retains sufficient information

to perform visual tasks. An ideal representation should (i) capture the object’s unique structure

to allow the model to distinguish it from other instances of the object, (ii) retain common char-

acteristics between difference instances and (iii) be robust to the challenges described in section

1.2.

Object representations can be divided into two groups:

• Global representations: models that use statistics about the whole object.

• Local representations: models that use local statistics about different object parts.

In the following sections, we consider each of these representations in turn.
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Figure 2.1: Global representation - Eigen appearance model (a) In eigen-appearance models the

object x is represented as a vector of weights. Here fx denotes this representation. These weights are

obtained by projecting the observed data onto a lower dimensional space using dimensionality reduction

techniques such as PCA or LDA, etc. (b) An object is described as a weighted sum of basis functions of

the observed data. For example a face is described by the weighted sum of the first three eigen-vectors

of the training data (note we have assumed a zero mean data in this example).

2.1.1 Global Representations

Global representations store statistical information about the whole object in a simple vector,

resulting in a compact representation. Prototypical examples include (i) subspace models and

(ii) active appearance models, which we will now consider in turn.

Subspace models

A dominant subspace model represents the object as a weighted sum of basis functions. Con-

sequently, the object is represented as a vector of weights. These weights are obtained by

projecting the data onto a lower dimensional space called “feature space” using dimensionality

reduction methods such as principal component analysis (PCA) [161] or linear discriminant

analysis (LDA) [14] (figure 2.1a). When PCA is used for projection of the data onto the feature

space, the basis functions become the eigenvectors of the observed data. Thus, the model is

also known as the eigen-appearance model (figure 2.1b). If the data is sufficiently spatially

correlated, only a small number of these basis functions are needed to represent the object, giv-

ing a compact representation. Variations of this model have been applied to face recognition

[161, 14, 69], and object recognition across pose and illumination [131, 105, 20].

The eigen-appearance model is conceptually simple and easy to implement but has several

limitations. First, it uses global statistics, which makes it very susceptible to occlusion and large

non-linear transformations such as changes in illumination. Second, it implicitly describes the

joint statistics of all the pixel values with a Gaussian model. In practice this means that although

large-scale variation is well described, local texture variation is not. Consequently, images

generated from these models are blurry and cannot accurately model the high frequency parts

of the image.

To overcome blurriness, Frey and Jojic [64] proposed a method called transformed com-
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ponent analysis, which incorporates a discrete hidden variable in an EM framework to account

for possible transformations of the observed data. This model results in sharper images, but un-

fortunately increases the computational burden. Moreover, this model maintains the Gaussian

model of the data manifold, which means the model is unimodal. Nevertheless, the object data

manifold is not in general unimodal. For example, faces with and without glasses form two

separate clusters.

The eigen-appearance scheme has been modified to model the joint pixel probability dis-

tribution with non-Gaussian models [85] and mixture models [33]. Unfortunately, these ex-

tensions have their limitations. Non-Gaussian models still suffer from unimodality. Mixture

models require knowing the approximate position, scale and orientation of the object. Other

complexities include obtaining a large training set and reliable estimation of the parameters.

Finally, eigen-appearance models require the images to be registered to a common tem-

plate. For example, they need accurate locations of key facial features such as eyes, nose,

and mouth to normalize the detected face. These models struggle when the appearances of

the features change significantly, for example, closed eyes, eyes with glasses, open mouth, etc.

Consequently, the recognition is very much dependent on the registration process, and is not

robust to shape changes. We will now consider a more powerful object representation based on

Active Appearance Models that are much more robust in terms of handling variations in image

intensity and feature shape.

Active Appearance Models

Active Appearance Models (AAMs) [32], first proposed by Cootes et al. [32], and the closely

related concepts of Active Shape Models [34], Active Blobs [153] and Morphable Models [164,

90, 21], are non-linear, generative, and parametric models of a visual object.

There are two components to an Active Appearance Model: shape and appearance. The

shape of an AAM is a vector of the x and y-coordinates of a set of vertices that make up a mesh.

AAMs allow linear shape variation; i.e. the shape can be expressed as a base shape plus a linear

combination of n shape vectors (figure 2.2b). AAMs are normally computed by applying PCA

to the training meshes [32]. The base shape is the mean shape and the rest of the shape vectors

are the n eigenvectors of the training meshes corresponding to the n largest eigenvalues. The

appearance of an AAM is an image defined over the pixels in the base mesh. AAMs allow

linear appearance variation; i.e. the appearance can be expressed as a base appearance plus a

linear combination of m appearance images (figure 2.2a). The base appearance is set to be the

mean image and the rest of the appearance images are the m eigenimages of the training image

covariance corresponding to the m largest eigenvalues.
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Figure 2.2: Global representation- Active Appearance Models: There are two components to an

Active Appearance Model: shape and appearance. (a) The appearance of an AAM is an image defined

over the pixels in the base mesh. This is expressed as a base appearance plus a linear combination of m

appearance images. (b) The shape of an AAM is a vector of the x and y-coordinates of a set of vertices

that make up a mesh. This is expressed as a base shape plus a linear combination of n shape vectors,

which are normally the eigenvectors and the eigen values of the training data respectively. (adapted

from [123])

In the above representation, shape and appearance were modelled independently [123].

Alternatively, one can parameterize shape and appearance with a single set of linear parameters

[32]. Under these circumstances, the model usually needs less parameters to represent the same

visual object to the same degree of accuracy.

Although linear in both shape and appearance, AAMs are nonlinear parametric models in

terms of the pixel intensities. An AAM is fitted to an image by minimizing the error between

the input image and the closest model instance; i.e. solving a nonlinear optimization problem.

The active appearance model (AAM) is an elegant model which has been widely used to

fit statistical models of shape and appearance to images. AAMs have been successfully used in

segmentation [9], tracking [70], classification [150] and face recognition [43]. Unfortunately,

there are some limitations to this model.

One of the limitations of AAMs is that they are unimodal. They may fail in cases when

there are large non-linear variations. This problem is partly solved by combining the model with

kernel based PCA [147] and mixture of Gaussians [33]. Moreover, these models are based on

eigendecomposition, hence, learning is expensive and difficult to generalize to the case where

both the number of training examples and the data dimension is high.
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Another disadvantage of AAMs is that they require a training set of annotated images

where corresponding points (vertex locations) have been marked on each example. This is very

time consuming when the training dataset is large. Unfortunately, performance of the standard

AAM tends to be poor when these landmarks undergo large position changes or some features

(e.g. an eye in a face image) are missing typically due to occlusion or large viewpoint changes.

Extensions of this work to handle occlusion and missing features, include view-based ac-

tive appearance models [35] and layered models [89]. In [35], multiple distinct active appear-

ance models are built, where occluded landmarks do not appear in some models. The appropri-

ate model is selected based on pose. This approach is practical but unattractive since it involves

building several models of the same object. Jones and Soatto [89] proposed a layered active

appearance model where each layer is associated with one feature or part of an object. For

example, they learn a seven-layered model of a car including a separate layer for the headlights,

windscreen, etc. This model allows for missing features, occlusion and spatial rearrangements.

However, it requires manually defining and labeling of parts or layers which is tedious and time

consuming.

Discussion

To summarize, global representations work very well for registered objects with limited varia-

tion, but start to fail with real-world data, captured in uncontrolled environments. For example,

the PCA based Eigenfaces model [161] achieves around 96% correct recognition when applied

to registered faces with no variation in pose or scale. However, the performance drops to around

60% when applied to the LFW database [84] which contains images with large variation in pose,

illumination and scale.

Moreover, models using global representation cannot deal with occlusions and geometric

transformations. For example, it may be very difficult to model a highly articulated object such

as a horse using a global representation model. Finally, using global statistics could be com-

putationally expensive and slow (since they may involve calculating a full covariance matrix).

Thus, may not be suitable for real time applications.

2.1.2 Local Representations

Local representations store local image statistics, and represent an object as a vector of local

features. To form a feature vector, first, a set of ‘keypoints’ are detected. Keypoints are some

interesting points on the image that are unique in both position and scale such as edges, corners,

etc. The keypoints are commonly extracted from the image using some interest point detectors

[27, 114, 60]. Once these keypoints are detected, a local image descriptor is used to character-
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Figure 2.3: Local representation- bag of words model: (a) Bag of words model is used for classifying

an object as belonging to one of many object categories. (b-c) First a large number of local feature

vectors are extracted and clustered into visual words to build a dictionary. (d) The Bag of words model

is trained by repeating this process for every training image. (e-g) A test image is represented by a

histogram over this dictionary of visual words. (h) Finally a multi-class classifier is used to determine

which category or categories to assign the image to based on the histograms.

ize the region around each point, forming the representation vector. Popular local descriptors

include SIFT descriptors [115] and steerable filters [61].

We will now describe two prototypical examples that use a local representation: (i) bag

of words models which ignore the spatial configuration of features and (ii) part-based models

which accommodate spatial information.

Bag-of-words models

The bag-of-words or bag-of-keypoints is a representation model motivated from text catego-

rization which was first used for object recognition by Csurka et al. [38]. A bag of words

corresponds to a histogram of the number of occurrences of a particular pattern in an image.

First, a set of features such as Harris affine [38, 171, 158] are detected and described using

SIFT descriptors [115]. These features are then clustered into visual words using k-means to

build a dictionary of selected size (figure 2.3 b-c). Given a new image, each descriptor extracted

from this image is labelled with the visual word (cluster centre) to which it lies closest in fea-

ture space. Subsequently, the image is represented by histograms over this dictionary of visual

words (figure 2.3 g).

The bag-of-words representation is an interesting model, which has been successfully used

for visual object categorization. The model has achieved good results on simultaneously clas-

sifying several semantic visual categories [38]. The performance has been shown to be largely

unaffected by position and orientation of object in image. However, there are some limitations
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to the bag-of-words model which we will now discuss.

Unfortunately, clustering methods such as k-means could create generic visual words that

may not be representative of a specific object class. Winn et al. [171], extend this work by

automatically learning the optimal visual words and dictionary, in a supervised manner. This is

done by pair-wise merging of visual words from an initially large dictionary. The final visual

words are described by Gaussian Mixture Models (GMMs), where the histogram is treated as a

continuous multivariate quantity. This is a more systematic way of choosing the visual vocabu-

lary. However, this model is still based on appearance alone and ignores the spatial relationship

between features. Therefore, it is unlikely that high discriminability can be achieved if the

object categories are increased [157].

Sivic et al. [158], extend the bag-of-words representation to allow the learning of a model

for several object categories in an unsupervised manner. This was motivated from the statistical

models from text literature: probabilistic latent semantic analysis (pLSA) and latent Dirichlet

allocation (LDA). The new representation extends the visual vocabulary to include words that

encode spatially local co-occurring regions. Unfortunately, this model confuses objects in dif-

ferent categories with a similar background. Consequently, the performance decreases when

more object categories are added.

The bag-of-words representation is an interesting model, because it is simple, and intrinsi-

cally invariant, due to its affine invariant features. However, this way of representing objects is

not suitable for other vision tasks such as semantic image segmentation.

Another disadvantage of this model is that it relies on detection of informative features,

which highly depends on the proportion of the object to background ratio, and background

clutter. For instance, if the object is too small in an image, or the background is highly textured,

the feature detector might pick points in the background. This model is not usually engineered

to eliminate such features.

Finally a major drawback of the bag-of-words model is that, it offers a rather impoverished

representation of the object, because it ignores any spatial relationships between the features.

Part-based models

Part-based models represent the object as a collection of features or parts. Each part has a

distinctive appearance and spatial position. Well known examples are constellation models

[25, 170, 57], pictorial structures [96, 54, 97] and fragment-based models [162, 156] which we

present in turn.

Constellation Models

The constellation model introduced by Burl et al. [25] consists of a number of parts, each
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Figure 2.4: Local representation- constellation model: Constellation model of a motorcycle model

with 6 parts (adapted from [57]). (a) The shape model. The ellipses represent the variance of each part.

(b) Three patches closest to the mean of the appearance density for each part. (c) Some sample test

images. The pink dots are features found on each image and the colored circles indicate the features of

the best hypothesis in the image. The size of the ellipses indicates the score of the hypothesis (the bigger

the better).

encoding information on both the shape and appearance. The original work of Burl et al. [25]

takes a supervised approach where parts are learned from a labelled training set. Weber et

al. [170] extend this work to allow unsupervised part detection and hypothesis creation in a

maximum-likelihood manner.

While both of these approaches model explicitly shape variability, they do not model

the variability of appearance. Furthermore, their experiments are limited in terms of scale-

invariance. Fergus et al. [57] extended the model to take these aspects into account. In their

model, each part has an appearance, relative scale and can be occluded or not. Shape is rep-

resented by the mutual position of the parts (figure 2.4). The entire model is generative and

probabilistic, so appearance, scale, shape and occlusion are all modelled by probability den-

sity functions. To model an object category first, parts and their scales are detected. Then the

correspondence between the features and the parts are learned in an unsupervised manner. Fi-

nally, the parameters of the above densities are estimated from these parts by maximizing the

likelihood of the training data.

Unfortunately constellation models have several limitations. First, they use a sparse repre-

sentation of the object and therefore cannot be applied to some vision tasks such as generation.

Second, they require objects with distinguishable parts in a relatively fixed spatial configura-

tion. Hence, they are not robust to large viewpoint and scale changes. Finally, they are not

well suited for representing articulated objects, as a joint Gaussian distribution cannot capture

multiple articulation points.

Pictorial Structures

Some part-based models use pictorial structures pioneered by Fischler and Elschlager [59]
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Figure 2.5: Local representation- pictorial structures: A pictorial structure model for an object is

expressed in terms of an undirected graph, where the vertices (purple dots) correspond to the n parts,

and there is an edge for each pair of connected parts. (a) An example of a pictorial structure for

the human body which is represented as a set of joints connecting different body parts. (b-d) Several

configurations of the pictorial structure to represent different poses.

to represent an object. A pictorial structure model for an object is given by a collection of

parts with connections between certain pairs of parts. This model is expressed in terms of an

undirected graph G = (V,E), where the vertices V = {v1, ..., vn} correspond to the n parts,

and there is an edge E(vi, vj) for each pair of connected parts vi and vj . An instance of the

object is given by a configuration L = (l1, ..., ln), where each li specifies the location of part

vi. This representation is particularly interesting for modelling articulated objects such as the

human body (figure 2.5).

In the original work by Fischler and Elschlager [59], the problem of matching a pictorial

structure to an image is defined in terms of an energy function to be minimized. The cost or

energy of a particular configuration depends both on how well each part matches the image data

at its location, and how well the relative locations of the parts agree with the deformable model.

In this work they only consider the problem of finding the best match of a pictorial structure

model to an image. Unfortunately, this energy function has many free parameters. For each

different object, one has to construct a model, which includes picking appearance parameters

for each part, a set of edges connecting pairs of parts and the characteristics of the connections.

Felzenszwalb and Huttenlocher [54] proposed an algorithm for automatically learning

these parameters from examples. They formulate a statistical framework such that energy min-

imization is replaced by finding the maximum a posteriori estimate of the object configuration

given an observed image. To gain computational efficiency, the connections between parts are

restricted to a tree structure. The model is tested on object detection and localization of faces

and human bodies. Kumar et al. [96], extend this work where parts are connected to each other

to form a complete graph instead of a tree structure. This proved to be advantageous over the
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Figure 2.6: Local representation- fragment-based model: objects within a class are represented in

terms of common image fragments that are used as building blocks for representing objects that belong

to a common class. For example, (a)Random rectangular regions are paired with their positions (green

arrows) relative to the object centroid (red circle). (b) These are randomly perturbed. (c) Edges are

calculated to form contour fragments. (adapted from [156])

tree structure for recognition tasks. A variation of this model known as OBJCUT [97], ex-

tends the standard pictorial structures to handle partial self occlusion and uses them as a prior

for object category segmentation. The parts in OBJCUT are learned from video sequences.

Unfortunately, this requires either complex tracking of video sequences or manual labeling of

parts.

A crucial step in pictorial structures representation is the reliable detection of the parts. The

work of Felzenszwalb and Huttenlocher [54] is based on a simple appearance model requiring

background subtraction, which is not always appropriate for real world scenarios. Extensions

of this model [7] to work without background subtraction rely on a discriminative appearance

model, using image features such as Gaussian derivatives. Further improvements include ex-

tracting more powerful templates [144] and integrating features from an automatic foreground

segmentation step [58].

A major drawback of the pictorial structures is that they assume an object specific repre-

sentation. The model is tailor-made to one specific class of objects at a time and, a new set of

pictorial structures are designed for each new object category. For example, a pictorial model

learned for a human body cannot be used for other objects such as cars, horses etc. This may be

highly inconvenient when modelling large number of object classes that do not share a similar

structure.

Fragment-based Models

Fragment-based models, first proposed by Ullman et al. [162], represent objects within a class

in terms of common image fragments. These are used as building blocks for representing ob-

jects that belong to a common class. Note, the fragments mainly exploit the contours of an

object, as opposed to the texture-based parts extracted from the interior of an object in the pic-
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a) Regular non-overlapping b) Regular overlapping c) Patch Labels

d) The Epitome Model e) The Jigsaw Model

Figure 2.7: (a) Regular grid of fixed size (square) non-overlapping patches. (b) Regular grid

of fixed size (square) overlapping patches (c) Each patch is associated with one of a predefined

set of labels. (d) The epitome of an image is a miniature, condensed version containing textual

and shape components of the image. The epitome is built from the (usually square) patches

of various sizes from the input image and a mapping is defined from the epitome to the image

pixels (image adapted from [88]). (e) The jigsaw of an image contains all the necessary image

pieces that can be used to generate the target image set. Irregularly shaped and size patches

are extracted from the jigsaw to reconstruct the target image.

torial structures (there are some exceptions [96, 97]). The fragments are selected in a supervised

manner from a training set based on a criterion of maximizing the mutual information of the

fragments and the class they represent. This representation was tested on detection of faces and

cars. A partially-supervised version was also proposed by Shotton et al. [156] where a boosting

method was used to extract image contours, and applied to detection of horses, cars, faces and

motorbikes (figure 2.6).

Unfortunately, fragment-based models still use a sparse representation and cannot be ap-

plied to tasks like object generation. Moreover, the object-specific fragments make it difficult to

extend the model to multiple object classes, without building separate models for each class. Fi-

nally, they usually require high level of segmentation in training, which could be very laborious.

2.1.3 Patch-based Representation

Bridging the gap between local and global representation is a patch-based representation, where

an object is represented as a collection of patches. These may occur in various configurations

such as grids of overlapping or non-overlapping patches (figure 2.7a,b). Patch-based representa-

tion has several nice properties (i) it provides a dense representation of an object, (ii) covariance
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is only modelled over a certain scale (which varies with the patch size) and (ii) it retains some

spatial resolution.

Patch-based models have recently been very successful in other areas of computer vision.

For instance, Efros and Freeman [46] proposed a powerful model for texture synthesis that

uses a simple representation based on overlapping patches. Another popular application area

is semantic image segmentation [77, 169], where patches are used to encode label information

(figure 2.7c). Patches have also been successfully used for image denoising [148, 41] and

generation of photorealistic face images [126].

Jojic et al. [88], learned a representative pallette of intensity/shape known as the ‘epitome’

from which patches are extracted (figure 2.7d). The epitome is constructed as a generative

model of patches of various sizes from the input image and a mapping is defined from the

epitome to the image pixels. Epitomes have been used for image segmentation [88], denoising

[28] and object detection [29]. This model has been extended to extract irregularly shaped and

size patches known as jigsaws [93] (figure 2.7e), and was used for part detection.

Despite the success of patch-based models in the tasks above, they have rarely been used to

represent object classes. Recently, Lucey and Chen [118] proposed a patch-based representation

to model faces and used it for face verification in the presence of large pose differences. They

divide each of the gallery images into a non-overlapping grid of patches which are assumed to

be independent. They demonstrate that using patches to represent the gallery image, improves

the performance of their algorithm on face verification using FERET face database [137].

2.1.4 Summary and Discussion

Many traditional models in computer vision have used a global representation of an object.

Using global statistics is ideal in that it allows a dense representation of the object which is

suitable for tasks such as generation. However, it cannot deal with occlusions and geometric

transformations. For example, it may be very difficult to model a highly articulated object

such as a horse with a global representation model. Models that use global statistics could

be computationally expensive and slow (since they may involve calculating a full covariance

matrix). Hence, may not be suitable for real time applications. Moreover, global representations

do not model fine local texture variations and may fail in problems such as face recognition

under varying expression or illumination.

Local models on the other hand, treat different parts of the image as independent or con-

ditionally independent and may not be globally coherent. Moreover, these models use a sparse

representation of the object, throwing away a lot of potentially useful information. Conse-

quently, they are not suitable for generating new instances of objects.
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Pictorial structures are more powerful local representation models, as they can cope with

articulated objects and occlusion. The major limitation however, is that they build object spe-

cific models which cannot be easily used for a different class of objects without rebuilding the

model.

Alternatively, the patch-based representation is a simple yet very flexible representation

which allows us to exploit the advantages of both global and local representation models. This

representation has been successful in other areas of computer vision, but unfortunately, there

has been a limited investigation on the use of patch-based representation in object modelling.

Thus, many of the vision tasks mentioned in section 1.1 such as identification, regression and

within-category classification, remain largely unexplored.

The shortcomings described above motivate our work. We present a patch-based represen-

tation model that has the following properties:

• It can capture accurate and selective information about the object class in hand.

• It has a dense representation, and retains global structure of an object making it suitable

for synthesis and generation tasks.

• It does not make any object-specific assumptions, making it a generic representation

which can be used across multiple object classes.

• It is (potentially) multi-modal, allowing a wide range of objects to be modelled under

various imaging conditions.

Subsequently, we explore our patch-based representation model for a variety of vision tasks

such as identity recognition, classification, regression and semantic object segmentation on

several classes including: faces, pedestrians, hands and human brains.

2.2 Learning and Inference

An object class model mathematically relates the visual data x and the world state y. The model

specifies a family of possible relationships between x and y and the particular relationship is

determined by the model parameters θ. Once a suitable representation is decided for the vi-

sual data, the subsequent steps in developing an object class model are: learning and inference.

Learning refers to the process of fitting the parameters θ using paired training examples {xi, yi}

where both the measurements and the world state are known. Inference is the task of predicting

the world state given a new observation of the specific object. Inference can involve an algo-

rithm that takes a new observation x and uses the model to return the posterior Pr(y|x) over
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the world state y. Alternately, it might return the maximum a posteriori (MAP) solution or draw

samples from the posterior. Inference can take many forms such as classification or regression

depending on whether the world state to be predicted in discrete or continuous.

The two main paradigms used for relating the data x to the world y are:

1. Discriminative: which models the contingency of the world on the data Pr(y|x)

2. Generative: which models the joint occurrence of the world and the data Pr(x, y)

We will now consider these types of models in turn and discuss learning and inference in each.

2.2.1 Discriminative Models

Probabilistic discriminative models are built to capture the boundaries between the different

possible output states of a system without taking interest in modelling the distribution of the

inputs. They focus on directly modelling the probability distribution over the world state y con-

ditioned on the input data x. First an appropriate form for the distribution Pr(y) is chosen over

the world state y. Then the distribution is formed as a function of the data denoted as Pr(y|x).

To determine this distribution a parametric model is chosen governed by a set of parameters θ.

The conditional distribution is then defined as Pr(y|x, θ), where θ are the parameters of the

model.

The goal of the learning algorithm is to fit the parameters θ using paired training data

{xi, yi}. This can be done using maximum likelihood (ML), maximum a posteriori (MAP) or

Bayesian approaches.

The goal of inference is to find a distribution over the possible world states y for a particu-

lar observation x. In this case, this is easy since we have directly constructed an expression for

the posterior distribution Pr(y|x, θ). Sometimes instead of a probability distribution, a discrim-

inant function f(x) is designed which returns one of the possible world states y. A graphical

representation of a basic discriminative model is shown in figure 2.8a.

Popular discriminative models include: logistic regression [18], Gaussian processes [145],

support vector machines (SVM)[163] and neural networks (NN) [17]. Among traditional

discriminative methods, neural networks and support vector machines have been particu-

larly popular for modelling object classes. Some examples include use of neural networks

for object detection [149], and classification [67, 37, 86, 175]. Similarly SVMs have been

used in a discriminative approach for object detection [127, 39, 133, 134] and classification

[38, 124, 116, 36, 98, 15, 68, 116, 150, 12].
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Figure 2.8: Graphical representation of (a) a basic discriminative model and (b) a basic gen-

erative model. Where we have N data points x1 ... xN together with corresponding labels y1 ...

yN and θ represents other parameters of the model. The arrows indicate conditional probability

relations.

2.2.2 Generative Models

Probabilistic generative models are designed to model interactions between all of the variables

in the system. They maintain probability models over the data which can be used to generate

new observations. Generative models describe the joint probability distribution Pr(x, y) of the

world y and the data x. The goal of learning is to use paired training examples {xn, yn} to fit the

parameters θ of the distribution. The goal of inference is to compute the posterior distribution

Pr(y|x), this is done using the Bayes’ rule:

Pr(y|x) =
Pr(x, y)∫
Pr(x, y)dy

(2.1)

Alternatively, generative approaches can model the contingency of the data x on the world

y : Pr(x|y). Now the distribution Pr(x) depends on both the world state and the model

parameters, we write this as Pr(x|y, θ) and refer to it as the likelihood. As before in inference,

we aim to compute the posterior distribution Pr(y|x). To this end we specify a prior Pr(y) over

the world state and use Bayes’ rule:

Pr(y|x) =
Pr(x|y)Pr(y)∫
Pr(x|y)Pr(y)dy

(2.2)

The latter formulation of generative models is particularly interesting, as it allows injection

of prior knowledge in the system. Experts also use their experience of the problem to choose

suitable distributions and reasonable conditional independencies. The relevant graphical model

for this definition is shown in figure 2.8b.

Popular generative models include naive Bayes, hidden Markov models (HMM) [143],

Markov random fields (MRF) [108] and Gaussian mixture models (GMM) [18]. The generative
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Figure 2.9: Generative vs. discriminative models for binary classification (a) Generative models,

model the class-conditional densities for two classes Pr(x—y=0) and Pr(x—y=1) for an input variable x

(b) Discriminative models, directly model the probability distribution over the world state y conditioned

on the input data x. Thus, they capture the decision boundary (the green vertical line) between the

different possible output states of a system without taking interest in modelling the distribution of the

inputs. Note that the left-hand mode of the class-conditional density p(x|y), shown in blue on the left

plot, has no effect on the posterior probabilities (shown on the right). (adapted from [18])

Bayesian framework has been used for object detection [51], recognition [53, 57, 170, 52], and

content based image retrieval [79]. Note some generative methods have used a patch based

representation (discussed in section 2.1.3). Some areas of successful application of patch-based

representation with generative inference are listed in Table 2.1.

2.2.3 Generative vs. Discriminative Approaches

So far we have described the principles of generative and discriminative models. We will now

discuss the strength and weaknesses of the two approaches.

Some vision tasks such as object recognition involve learning several object categories.

In such tasks generative models have an advantage over discriminative ones, as the model is

learnt independently for each category. This one to one mapping, between the model and a

category, makes it very easy to add categories. Conversely, because discriminative models are

concerned with boundaries between the categories, all the categories need to be considered

jointly. Therefore adding a new category requires the entire model to be rebuilt.

Vision algorithms often deal with incomplete or unlabelled data. In such scenarios it is

very helpful to have access to the distribution from which the data was drawn i.e. Pr(x). This

can be obtained by marginalizing out the world state y from the joint distribution Pr(x, y) in

the generative approach. This highlights the modelling ability of the generative approach. On

the contrary, discriminative models cannot easily handle incompleteness since the distribution
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Task Inference Method

Segmentation
Generative Latent Variable Model [93]

Generative epitome model [88]

Image Denoising
Generative Probabilistic Model [88], Field of Experts [148]

Directed models [42]

Image Editing / Inpainting Markov random fields [30], Directed models [42]

Table 2.1: Areas of successful application of patch-based representation with generative infer-

ence.

of the data is not explicitly modelled.

A fundamental property of the generative approach is that it allows incorporation of ex-

pert knowledge in the form of a prior, and models the distribution of the system parameters.

Discriminative models on the contrary, lack this flexibility and are often used as a ‘black box’.

Moreover, modelling the likelihood of the data in the generative approach mirrors the actual

way that the data was generated: the world state created the data. This is particularly desir-

able for tasks such as generation and synthesis. Furthermore, the generative approach allows

integration of several models in a single Bayesian framework.

The discriminative approach is appealing in classification problems since it directly models

the boundary between object classes. Hence, it does not waste resources on modelling the class-

conditional density (like the generative approach) which could potentially be a harder problem.

Moreover, if the input data x is high dimensional, modelling the class density may have very

little effect on the posterior probability. This is illustrated in figure 2.9. Another advantage of

the discriminative approach is their speed. They are generally faster since Pr(y|x) is directly

modelled.

Complementary properties of generative and discriminative methods have subsequently

lead to combining these two approaches in a hybrid model, which has been applied to: image

retrieval [112], object recognition [81, 57, 82, 103].

2.2.4 Summary and Discussion

We have reviewed two main approaches to statistical inference. When dealing with a classifi-

cation problem, discriminative classifiers seem more attractive. This is because they directly

model the boundary between object classes and are typically very fast at making predictions

for new data points. When dealing with missing or partially labelled data however, a generative

approach is favorable, since it explicitly models the distribution from which the data was drawn.
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Subsequently, this allows new samples to be generated from this distribution.

In conclusion, there is no general agreement as to which of the generative or discriminative

approaches is superior. However, in the spirit of wanting models that can achieve all of the tasks

in the first chapter we choose a generative framework.

There have only been a few generative methods that use patches (see table 2.1), and have

not addressed problems such as classification, regression, identification and semantic segmen-

tation. In this thesis, we aim to build generative object class models using a patch-based repre-

sentation, which we will apply to all of these problems.
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Chapter 3

Patch-based Within-Category Classification

3.1 Introduction

Recent advances in computer vision have allowed us to reliably detect objects with limited

variation in structure such as faces, pedestrians and cars in real time [165, 55]. A typical ap-

proach is to use sliding window object detectors such as the work of Viola and Jones [165] and

[111, 80, 55]. Sliding window object detectors consider small image windows at all locations

and scales, and perform a binary detection at each position. The output of a sliding window

object detector is a bounding box around the object of interest (see figure 3.1).

The success of these techniques allows us to collect large databases of such objects. Subse-

quently, it would be useful to describe their characteristics (attributes). For example, we might

classify gender in face images or phenotype in cell images. This “within-category” classifi-

cation task has quite different characteristics to other forms of object recognition. All of the

examples have a great deal in common and we aim to classify quite subtle differences (see

figure 3.2).

In this chapter we present a novel patch-based image representation and we investigate its

application to within-category classification.

3.2 Motivation

Within-category classification has widespread applications including targeted advertising, con-

sumer analysis, and medical image analysis. Examples include biological classification, where

we might automatically screen cell cultures for diseases, and gender classification which could

be used as a preprocessing step in face recognition.

A large body of research has investigated different learning algorithm for particular within-

category classification tasks including neural networks [67, 24], support vector machines [150,

124, 72] and AdaBoost [154, 11]. Most methods use tailor-made representations specific to the

object of interest. For example, Brunelli and Poggio [24], extract geometric features from faces
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Figure 3.1: Sliding window object detection: Sliding window object detectors consider a small and

fixed size image window at all locations and scales of the image and perform a binary detection for each.

The output of a sliding window object detector is a bounding box around the object of interest.

such as pupil to eyebrow ratio, eyebrow thickness, and nose width, as input to a neural network

to perform gender detection. Saatci and Town [150] use Active Shape Models to represent faces

for gender classification. Similarly, 2D contours and stick figures have been used to represent

human bodies for motion analysis [106] and action recognition [45] . Domain specific features

are also used in cell screening. These include features such as the size, perimeter and convexity

of cells [91] as well as the size and shape of the nuclei [26].

These techniques have several disadvantages. First, object specific representations cannot

be applied to other problems without major alteration: most techniques have only been applied

to a single class. Second, most methods do not exploit the large amounts of available training

data (there are some exceptions, e.g. [98]). This is partly due to the computational complexity

of these methods. For example, to find an optimal solution with non-linear SVMs generally

involves solving a quadratic problem which has complexity on the order of O(n3) where n is

the size of the training set (this drops toO(n2) for approximate solvers). Instead, these methods

have mostly been investigated using small databases some of which contain images that are not

typical of the real environment. For example, in gender classification, the FERET database

is often used, although it does not contain the variations in pose, illumination, occlusion and

background clutter seen in figure 3.2. As a result, the performance of most methods drops

sharply when tested on images captured in uncontrolled environments [120].



3.2. Motivation 43

a)

b)

c)

Figure 3.2: Within-Category classification: We address the problem of within-category classification

on images captured in uncontrolled environments, where large within-category variations are present.

For example, we classify (a) gender in face images, (b) phenotype in cell images and (c) pose in pedes-

trian images. These examples were all correctly classified.
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In this chapter we propose a Bayesian framework for within-category classification that

exploits very large databases of objects and can be used for disparate object classes. We build

a non-parametric generative model that describes the test image with patches from a library of

images of the same object. All the domain specific information is held in this library: we use

one set of images of the object to help classify others. We test our algorithm on large real-world

databases of faces, pedestrians and human cells.

3.3 Method

Our approach breaks the test image into a non-overlapping regular grid of patches. Each is

treated separately and provides independent information about the class label. At the core

of our algorithm is a predefined library of object instances. The library can be considered as a

palette from which image patches can be taken. We exploit the relationship between the patches

in the test image and the patches in the library to determine the class.

The idea behind our model is conceptually simple. Consider the toy problem of assigning

a test patch as belonging to either class A or class B, where we have a small library containing

only two patches. We also define a mapping between a test patch and a library patch based on

a similarity measure. Let’s assume we have a simple scenario where all of the training patches

in class A map (i.e. closely match) to the first library patch, and all of the training patches in

class B map to the second library patch. Classifying a new data point is now very easy. By just

looking at the frequency of the library patches used for each class we can say that if the test

patch maps to the first library patch then it belongs to class A, otherwise it belongs to class B.

In reality however, the situation is not so simple. The library is usually much larger, with-

out a clear mapping pattern, and we replace simple frequencies with probability distributions

over the library patches (see sections 3.3.1-3.3.2). Nevertheless, the core idea remains the same.

Our algorithm can be understood in terms of either generation or inference and we will describe

each in turn.

First, let us look at generation from this model. For example, consider the generative pro-

cess for the top-left patch of a test image. The true class label induces a probability distribution

over all the patches in the library based on the learned parameters for that class. We choose a

particular patch using this probability distribution and add independent Gaussian noise at each

pixel to create the observed data. In inference we invert this generative process using Bayes’

rule to establish which class label was most likely to be responsible for the observed data.

Alternatively, in inference (see figure 3.3), the test image patch is approximated by a patch

from the library L. The particular library patch chosen can be thought of as having a different



3.3. Method 45

0

1

a) b)

c)

d)
e)

Test Image Approximated 
Image

Library L

Parameters Class 1 Θ1..

Parameters Class 1 Θ2..
Class Posterior

Class 1 Class 2

Figure 3.3: Inference: (a) A test image Y is decomposed into a regular patch grid. (b) A large library

L is used to approximate each test image patch. (c) The choice of library patch provides information

about the class. (d) Parameters θ associated with each class are used to interpret these patch choices

and (e) used in a Bayesian framework to calculate a posterior over classes.

affinity with each class label. These affinities are learned during a training period and are

embodied in a set of parameters θ associated with each class. The relative affinity of the chosen

library patch for each class is used to determine a posterior probability over classes. In other

words, we employ a voting scheme where each patch independently casts a vote for each class.

We will now consider the inference process in more detail.

3.3.1 Inference

Consider the task of assigning a class label C to a test image, where there are K possible classes

i.e. C ∈ {1 . . .K}. The test image Y is represented as a non-overlapping grid of P patches

Y = [y1...yP ]. The model is trained from I training examples Xc from each of the K classes.

Each training image is also represented as a non-overlapping grid of patches of the same size as

the test data. We denote the pth patch from the ith training image of the cth class by xicp (figure

3.5a).

We also have a libraryL of images that are not in the training or test set and would normally

contain examples of all classes. We will consider the library as a collection of patches Ll where

l ∈ {1..N} indexes the N possible sites from which we can take library patches (see figure

3.5b). These patches are the same size as those in the test and training images but may be taken

from anywhere in the library (i.e. they are not constrained to come from a non-overlapping

grid). In other words, the sites l denote every possible pixel position in the library images.

Each library patch has a different affinity with each class label which is embodied in the

model parameters θ. For example, the parameter θcpl represents the probability of the patch

from library site l to be picked when considering patch p of an example image of class c. The
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Figure 3.4: Graphical representation: Generation process of a patch p from the test image: the

true class label c induces a probability distribution over all the patches in the library L based on the

learned parameters for that class θcp. We choose a particular library patch l̂icp using this probability

distribution and add independent Gaussian noise at each pixel to create the observed data xicp. The

terms I , P and K denote the number of training images, the total number of patches and the number of

classes, respectively.

final solution however, does not depend on these parameters, and we will later show how to

marginalize them out.

The output of our algorithm is a posterior probability over class label C. We calculate this

using Bayes’ rule

Pr(C=c|Y,X) =

∏P
p=1 Pr(yp|C=c,x•cp)Pr(C=c)

Pr(Y)
(3.1)

where we have assumed that the test patches yp are independent. The notation • indicates all of

the values that an index can take, so X = {X1...XK} denotes the training images from all of

the K classes and x•cp denotes the pth patch from all I training images from the cth class.

Although the likelihood in Equation 3.1 depends on the library, it is not conditioned on

the parameters of the model θ. We take a Bayesian approach and marginalize over the model

parameters, so the likelihood terms have the form:

Pr(yp|C=c,x•cp) =
∫
Pr(yp|θcp•)Pr(θcp•|x•cp)dθcp• (3.2)

where θcp• are all of the parameters associated with the pth patch for the cth class. To calcu-

late the likelihood, we first find the index l∗ of the library site that most closely matches the

vectorized pixel data from the test patch yp. We are assuming that the test patch is a Gaussian

corruption of the library patch and we can find the most likely site to have been responsible

using maximum a posteriori estimation

l∗ = arg max
l

Gyp [Ll;σ2I] (3.3)
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Figure 3.5: Training: (a) The model is trained from I training examples from each of the K classes.

Each training image is represented as a non-overlapping grid of patches denoted by p. (b) We also have

a library L of images that are not in the training or test set and contain examples of all classes. The

library is considered as a collection of patches Ll where l ∈ {1..N} indexes the N possible sites. (c) The

parameter θcpl represents the probability of the patch from library site l to be picked when considering

patch p of an example image of class c.

where Ll is the vectorized pixel data from site l of the library L. We define the likelihood to be

Pr(yp|θcp•) = Pr(l∗|θcp•) = θcpl∗ (3.4)

From this it can be seen that the parameter θcpl represents the tendency for the patch from

library site l to be picked when considering patch p of an example image of class c. This can

be visualized as in figure 3.5c. A graphical model relating all of the variables is illustrated in

figure 3.4.

3.3.2 Training

In this section, we consider how to use the training data x•cp from the pth patch of all images

belonging to the cth class to learn a posterior distribution Pr(θcp•|x•cp) over the relevant pa-

rameters θcp•. These parameters define a probability distribution over the library sites when

considering patch p of an example image of class c. In section 3.3.3 we show how to use this

distribution to calculate the integral in Equation 3.2.

We calculate the posterior distribution over the parameters θcp• using a second application

of Bayes’ rule:

Pr(θcp•|x•cp) =
Pr(x•cp|θcp•)Pr(θcp•)

Pr(x•cp)
(3.5)
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To simplify notation, we describe this process for just one of the P regular patches and one of

the K classes and drop the indices c and p. Equation 3.5 now becomes:

Pr(θ•|x•) =
Pr(x•|θ•)Pr(θ•)

Pr(x•)
(3.6)

where x• = x1 . . .xI is all of the training data for this patch and this class and θ• = θ1 . . . θN

is the vector of N parameters associated with each position in the library for this patch and this

class.

To calculate the likelihood of the ith training example xi given the relevant parameters θ•

we first find the closest matching library patch l̂i where

l̂i = arg max
l

Gxi [Ll;σ2I] (3.7)

The data likelihood is a categorical distribution (one sample from a multinomial) over the library

sites so that

Pr(xi|θ•) = Pr(l̂i|θ•) = θl̂i (3.8)

Now consider the entire training data x•. The likelihood now takes the form

Pr(x•|θ•) =
I∏
i=1

Pr(xi|θ•) =
I∏
i=1

θl̂i =
N∏
l=1

(θl)fl (3.9)

where fl is defined as

fl =
I∑
i=1

δl̂i=l (3.10)

and δl̂i=l returns one when the subscripted expression l̂i = l is true and zero otherwise. In

other words, fl is the frequency of the library site l being the closest matching patch, during the

training process.

We also need to define the prior over the parameters θ in Equation 3.6. We choose a

Dirichlet prior as it is conjugate to the categorical likelihood so that

Pr(θ•) =
Γ(
∑

l αl)∏
l Γ(αl)

N∏
l=1

(θl)αl−1 (3.11)

where Γ denotes a Gamma distribution and {α1..αN} are the parameters of this Dirichlet dis-

tribution. These are learned from a validation set (see section 3.5.2).

Substituting the likelihood (Equation 3.9) and the conjugate prior term (Equation 3.11)

into Bayes’ rule (Equation 3.6) we get an expression for the posterior distribution over the

parameters which has the form of a Dirichlet distribution:

Pr(θ•|x•) =
Γ(
∑

l(αl + fl))∏
l Γ(αl + fl)

N∏
l=1

(θl)fl+αl−1 (3.12)

We compute one of these distributions for each of the P patches in the regular grid and for each

of the K classes.



3.4. Databases 49

a) b) d)
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Normalization

Figure 3.6: Face preprocessing: (a) We manually place 2 landmarks on the face at the bridge of the

nose and the top of the mouth. (b) We then warp the images to a 60x60 template using a Euclidean

transformation. (c) We then band-pass filter the images using lower and upper cutoff frequencies of 2.5

and 25 cycles per image respectively and weight the pixels using a Gaussian function centered on the

image. Finally, each image is normalized to have zero mean and unit standard deviation.

3.3.3 Calculation of Likelihood Integral

Finally, we substitute the posterior distribution over the parameters Pr(θcp•|x•cp) (now resum-

ing use of the indices c and p) into Equation 3.2 and integrate over θcp• to get an expression for

the likelihood1 of observing test data patch yp given that the object class is c :

Pr(yp|C=c,x•cp)=
fcpl∗ + αl∗∑
l(fcpl + αl)

(3.13)

Note, Equation 3.13 can be thought of as a histogram over the library sites where the bins have

been initialized with the values of αl which are the hyper-parameters of the Dirichlet prior.

3.4 Databases
We test our algorithm on three datasets: faces, cells and pedestrians. We will describe each of

these in the following sections.

3.4.1 Faces

We harvested a large database of images of men and women from the web. These were captured

in uncontrolled environments and exhibit wide variation in illumination, scale, expression and

pose as well as partial occlusion and background clutter (see figure 3.2a). Faces were detected

using two methods: first, we used a commercial frontal face detector. Second, we manually

labelled two landmarks. The former method does not localize the faces accurately and misses

many of the harder non-frontal faces (it detected about 70% of the faces). The latter method

localizes the images very accurately but includes all examples in the database regardless of their

pose or quality.

For both methods, the images were subsequently transformed to a 60x60 template using

a Euclidean warp (figure 3.6a,b). Note, sometimes the warping introduces blank areas in the
1See Appendix A for derivation details.
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Figure 3.7: Cell preprocessing: (a) A plate of cells. (b) Threshold. (c) Perform morphological opera-

tions: erosion and by dilation. (d) Use connected component analysis to extract cell centers. (e) Place a

30x60 bounding box centered at each nucleus. (f) A 30x60 image containing a single cell. (g) Convert

the cell image to polar coordinates by coping the pixel intensity at image x-y position in cartesian system

to the new image in polar system. (h) Preprocess the image by Bandpass filtering.

image (i.e. when the warped position of a pixel falls outside the original image). We fill these

pixels with 127 intensity in all three RGB channels resulting in gray regions in the final image.

For example, see the images 3,6 and 7 in figure 3.11a. We band-pass filtered the images using

lower and upper cutoff frequencies of 2.5 and 25 cycles per image respectively and weighted

the pixels using a Gaussian function centered on the image. Each image was normalized to have

zero mean and unit standard deviation (figure 3.6c). This preprocessing was chosen as it showed

superior results on a validation set compared to the results of images with no preprocessing and

an alternative preprocessing algorithm proposed by Tan and Triggs [160] (see section 3.5.1 for

the details of our preprocessing experiment).

3.4.2 Cells

The MRC cell database [13] contains images of human cancer cells (HeLa-Kyoto) displaying

a large variety of morphological phenotypes after the individual knockdown of approximately

500 genes. Of these many morphological changes, we were interested specifically in two phe-

notypes: (i) when the borders of the cell change significantly in response to the knockdown, and

produces a ‘triangular’ phenotype with sharply-edged borders, and (ii) when knocking down a

gene had no effect on the cell, leaving its phenotypic appearance as non-triangular/amorphous

(‘normal’).

Each image contains 3 color channels: W1,W2,W3, each of which represents a different
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Figure 3.8: Preprocessing method and parameter selection: (a) The performance of the gender clas-

sification algorithm was tested with three different preprocessing methods. The results show that our

preprocessing algorithm described in sections 3.4.1 and 3.4.2 for faces and cells, outperforms other

methods. (b) To find the best patch size, gender classification is carried out on the validation set on

several patch grid sizes. The performance peaks at the 10x10 grid resolution.

fluorescent stain. We use the W1 channel to find the nuclei: we threshold the image (figure 3.7b)

and then use morphological opening to remove noise (figure 3.7c). We find connected regions

and take their centroids to represent the nucleus position (figure 3.7d). We place a 60×60 pixel

bounding box around the center and extract the data from the W2 channel for classification

(figure 3.7e,f). Since cells exhibit radial symmetry we convert the images to a 60 × 30 polar

representation, so that the horizontal coordinate of the new image contains the angle from the

nucleus center and the vertical coordinate represents the distance from the nucleus. This allows

us to easily constrain patches from the library to only match to patches at similar radii without

regard for their polar angle (figure 3.7g). These radial images were band-pass filtered and

normalized to have zero mean and unit standard deviation (figure 3.7h).

3.4.3 Pedestrians

We collected a large database of urban scenes. Pedestrians were automatically detected using

the method of [55]. The images were then manually labelled for pose: pedestrians facing front,

back, left and right. The bounding box around each pedestrian was re-scaled to create a 60x120

image. The pedestrian images were band-pass filtered and normalized as with the face and cell

images.
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Figure 3.9: Parameter selection: (a) The α the hyper-parameter of the Dirichlet prior is chosen

empirically by testing the performance of the algorithm on the validation. The performance peaks at

the value of α = 2. (b) To find the best library size, gender classification is applied on a validation set,

where we vary the size of the library by keeping the patch grid fixed at 10× 10 and the alpha = 2. The

peak performance is reached at a library of size 240.

3.5 Experiments

3.5.1 Experiment 1: Choosing The Best Preprocessing

To choose a suitable preprocessing method, we performed a gender classification experiment,

where we varied the preprocessing method through three different states by keeping all the other

variables constant. We used a training set of 8,000 male and 8,000 female and a validation

dataset of 400 male and 400 female images. First, the algorithm was tested on data with no

preprocessing, i.e. the raw pixel intensities. Second, the preprocessing described in section 3.4

was performed on the data before testing. Third, the preprocessing algorithm proposed by Tan

and Triggs [160] was performed before testing. This method involved a sequence of Gamma

correction, difference of Gaussian (DoG) filtering, masking and contrast equalization steps.

The results are plotted in Figure 3.8. It is clear that performing preprocessing improves the

results significantly when compared to using raw pixel intensities. The other two preprocessing

methods perform almost equally, with our method producing a modest improvement. We expect

these results to generalize on our other data sets. Thus, in the remaining experiments in this

chapter we will apply our preprocessing method as explained in section 3.4.

3.5.2 Experiment 2: Parameter Selection

In this experiment, we use a validation set to investigate the effect of patch grid resolution

and the Dirichlet parameters {α1..αN} for gender classification in the face images. We used a
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training set of 8,000 male and 8,000 female faces, a validation set of 400 male and 400 female

images, and a library of 240 images uniformly sampled from both classes.

Figure 3.8b shows the percentage correct classification as a function of the patch grid

resolution. The results show that performance increases as the patch grid gets finer, peaking

at a 10 × 10 grid (6×6 pixels) and then declining. When the patches are very small, they are

probably not sufficiently informative. For comparison, we also plot results from a maximum

likelihood approach where we form a point estimate of the parameters θcpl. We note that this

approach produces noticeably worse results. This is because our training set is not large enough

to give a fair probability distribution over the library patches. Consequently, most of the library

patches (∼ 70%) end up having a zero probability given each of the classes, which hinders the

predictions for test images. Conversely, in a Bayesian approach the α hyper-parameter solves

this problem by allowing an initial frequency on each of the library patches.

In figure 3.10, we verify that 6 × 6 pixel patches are sufficient to capture information

about gender, by reconstructing real images using the closest patches l∗ from the library. It is

still easy to identify the gender of the images using the approximated versions. We also show

reconstructed images of pedestrians with the same size patches and observe that the poses of

the pedestrians can easily be seen in these images.

Figure 3.9a shows the percentage correct classification using 6 × 6 pixel patches as a

function of the Dirichlet hyper-parameters {α1..αN} which are constrained to all be the same

value, since we do not have a particular preference (or prior knowledge ) as to which library

site should be weighted higher. The results show a significant jump in performance when the

α value changes from 1 to 2 but then decline. This is also a confirmation of the Bayesian

inference being beneficial, since the maximum likelihood solution can be seen as a special

case of Bayesian inference when α = 1. For the rest of this chapter we adopt these optimal

parameters: we use a patch resolution of 6× 6 and set {α1..αN} = 2.

Finally, to find the best library size we repeat the above experiment where we vary the

library size from 50 images to 300 images, while keeping the patch grid fixed at 10 × 10 and

the α value fixed at 2. Figure 3.9b shows that the performance increases with the size of the li-

brary, reaching a peak at 240 and converging afterwards. Due to time limitations the maximum

number of library images tested was 300. Moreover, this experiment was performed by ran-

domly selecting a set of images only once for each library size. Ideally, to get an estimate of the

uncertainty in the library size, one should repeat this experiment several times for each library

size and report the mean percentage correct classification as well as the standard deviation at

each size. A library of size 240 seems to be sufficient for our current experiments. However,
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Figure 3.10: Patch approximation: Comparison of original images and best approximations l∗ from

library patches.
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a)

b)

c)

d)

Correctly Classified Images

Misclassified Images

Figure 3.11: Gender classification Results on manually detected faces: We achieve 89% correct

classification. (a) Correctly classified females. (b) Correctly classified males. (c) Males misclassified as

female. (d) Females misclassified as male. (e) Close up: interesting misclassified case.

if the training data is increased to for example, a million images instead of a few thousand, we

believe that the library size should also increase accordingly.

In Equation 3.7 we defined a hard assignment (MAP) of training patch xi to library index

l̂i . In principle it would be better to marginalize over possible values of l̂i, but this is intractable.

We found experimentally that it was possible to slightly improve performance by using a soft

assignment of library sites, replacing Equation 3.10 with

fl =
∑
i

Gxi [Ll;σ2I]∑N
j=1 Gxi [Lj ;σ2I]

, (3.14)

We have done this for all results in this chapter. In practice, we also restrict the possible in-

dices l to a subset corresponding to a 6× 6 pixel window around the current test patch position

in each library image so patches containing eyes are only approximated by other patches con-

taining eyes etc. This reduces the number of parameters, and the model only allows plausible

deformations.

3.5.3 Experiment 3: Gender Classification

In this experiment we investigate gender classification for both the manually and automatically

detected face datasets. In each case, we use a training set of 16,000 male and 16,000 female

images. The test set contains 500 male and 500 female faces and the library is made up of 120

male and 120 female images.
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We achieve an 89% correct recognition rate on the manually detected dataset. Figures

3.11a and b show correctly classified female and male examples respectively. Note that the

images contain large pose variations ranging from -90o to +90o. Figure 3.11c shows typical

examples of male images misclassified as female. Notice that these images have no facial hair

and some have long hair. The third person is pulling a face which was seen more often in

female training examples. Figure 3.11d shows typical examples of female images misclassified

as male. Many of these images are partially obscured or low quality. The fourth image (blown

up in 3.11e) is particularly interesting. This was tagged as female but we suspect it is a man in

a wig! Gender classification was performed with a similar protocol on automatically detected

images. Here, we achieve 90% correct classification. This dataset shows less variation in

head orientation but the position of the face varies more in each image. Examples of correctly

classified faces were shown in figure 3.2a.

We compared our gender classification results with the performance of 10 human subjects

on the same test set. For this purpose each subject was shown the same test images as used for

our gender classification experiment on manually detected dataset. The images were 60× 60 in

size and grayscale but did not undergo further preprocessing. The average human performance

was 95.6% which is only 7% higher than what our algorithm achieves.

We also tested the classification ability of each patch individually. Figure 3.13b shows

the percentage correct classification for each patch as a gray level image (the higher the perfor-

mance, the lighter the patch). Notice that there are no dominant patches with high discrimina-

tive power. Instead a collective decision based on all of the patches is made for classification of

gender.

3.5.4 Experiment 4: Eyewear Classification

We also investigate the task of determining whether people were wearing glasses. The training

set for this experiment contains 8,000 images with glasses and 8,000 images without. The

library contained 120 images with glasses and 120 without. The algorithm was tested on 400

images with glasses and 400 without. We achieve 84% correct classification. Figure 3.13c

shows the percentage correct achieved based on each patch alone. As expected, there is far

more discriminatory power in the top half of the image. We repeated the experiment using only

the top half of each image and achieved 91.2% classification.

Figure 3.12a shows images correctly classified as ‘without glasses’ despite some images

being dark (images 1,2) or the eyes being covered by hair (images 3-5). Figure 3.12b shows

images correctly classified as wearing glasses, despite the images being very bright (image 4),

blurry (images 5,6), or non-frontal (image 3). Misclassified images are shown in figures 3.12c
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Misclassified Images

Correctly classified Images

Figure 3.12: Eyewear classification results: We achieved 91.2% correct classification of the presence

of eyewear. (a) Correctly classified as without glasses. (b) Correctly classified as wearing glasses. (c)

Without glasses but misclassified as wearing glasses. (d) Faces with glasses but misclassified as not

wearing glasses.

and d. Many of the images misclassified as wearing glasses (figure 3.12c) have obscured eyes

or were wearing a cap. Most of the images misclassified as being without glasses (figure 3.12d)

were wearing frameless reading glasses which are difficult to distinguish.

We compared our results with the performance of 10 human subjects on the same test set.

Their average performance was 96.79% correct classification, which is only around 6% higher

than what our algorithm achieves. We note that most of the images misclassified by humans as

without glasses were also wearing frameless reading glasses.

3.5.5 Experiment 5: Age Classification

In this experiment we study the problem of age classification. Given a test image the goal is to

assign it as belonging to one of four age categories: (i)18-25, (ii)26-32, (iii)33-40, (iv) 40Plus.

The training set contained 5500 images of men and women from each age group. The library

contained 240 images uniformly collected from each category. The algorithm was tested on

a set of 1000 images equally distributed in each category. We also asked 10 human subjects

to predict age in the same 1000 test images. The results were stored in a confusion matrix,

where correct vs estimated categories are shown. Table 3.1(b), summarizes the results for both

our algorithm and human subjects. The table shows that, for most age groups, our algorithm

assigned the highest probability to the correct category, whereas the human subjects consistently
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d) e) f)

Figure 3.13: Per-Patch classification results: Classification performance was tested per patch. The

images (b,c,e,f) show % correct classification as a gray scale image i.e the brighter the image, the

higher the % correct. (a) Sample face image.(b) % correct performance per patch for gender (c) %

correct performance per patch for eyewear. (d) Sample pedestrian image. (e) % correct performance

per patch for classifying pedestrians as facing front vs. back. and (f) % correct performance per patch

for classifying pedestrians as either facing front & back vs. facing left & right.

assigned the highest probability to the second age group. It is interesting to observe that despite

the low performance (on average 42.5%), our algorithm has managed to learn an association

between an image and its age group, each time giving the correct category a higher probability,

as opposed to our human subjects who have mainly gone for the ‘safe option’ of the middle

category and scored an average of 36.5% correct classification.

To examine this issue further, a second evaluation metric was used, where we considered

correct classification if the image was classified as either the correct age group or the adjacent

age groups (table 3.1(a)). Using this second metric, shows that our performance is comparable

to human performance with average performance of ∼ 70% for both our method and human

subjects (table 3.1(b)). Overall, this experiment suggests that age estimation is a very challeng-

ing task and may not be suitable for a classification algorithm. In fact, age is really a continuous

quantity and regression methods should be applied for this task. Unfortunately, we do not have

the ground truth to do this.

3.5.6 Experiment 6: Cell Phenotype Classification

In this section, we apply our algorithm to a second object class with completely different prop-

erties. We classify human cells from a subset (141 plates) of the MRC cell database [13] as

being either ‘triangular’ or ‘normal’. During training, 12500 cells from 125 plates were used
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Our Method Human Performance
H

HHH
HHH

HH
True

Est.
18-25 26-32 33-40 40 Plus 18-25 26-32 33-40 40 Plus

18-25 44% 25.5% 16.5% 16% 23.8% 37.1% 26.7% 12.4%

26-32 23.0% 46.5% 16% 14.5% 22.7% 37.9% 28.2% 11.2%

33-40 16.0% 26.5% 26.5% 31% 23.6% 36.5% 27.2% 12.7%

40 Plus 16.5% 19.5% 16.5% 47.5% 24% 35.1% 29.8% 11.1%

Table 3.1: Age classification confusion matrix: Comparison of results between our algorithm and

human performance. The rows show the correct category and the columns show percentage classification

as belonging to each of the categories.

(a)
HHH

HHH
HHH

True

Est.
18-25 26-32 33-40 40 Plus

18-25 44% 25.5% 16.5% 16%

26-32 23.0% 46.5% 16% 14.5%

33-40 16.0% 26.5% 26.5% 31%

40 Plus 16.5% 19.5% 16.5% 47.5%

(b)

True Class Ours Human

18-25 69.5% 60.9%

26-32 85.5% 88.8%

33-40 84.0% 76.4%

40 Plus 64.4% 40.9%

Table 3.2: (a) A second metric used to evaluate age classification. For each row if the age group

adjacent to the correct age group is picked (highlighted areas), it is considered as correct classification.

(b) Comparison of our method and human performance on age classification using this metric.

for each class. The library contained 120 cells from each class.

The first experiment tests the ability of our algorithm to classify single cells. We used a

test set of 500 normal and 500 triangular cells. The method achieved 70% correct classification.

We note that (i) this is a very difficult task as the cell images contain significant within class

variation (see figure 3.14) (ii) not all cells in a given plate are affected by the experimental

conditions that cause changes in cell shape so we do not expect perfect performance and (iii)

biologists are usually interested in classifying entire plates (images) each of which contains

50-150 cells.

This motivates our second experiment in which we classify the entire plates. Due to lim-

ited amount of data there were only 16 plates (8 from each class) that were not used either in the

training set or the library. We break these plates into 4 sub-images, resulting in 64 sub-plates

which were used in testing. We treat each cell within each subplate as providing independent
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Figure 3.14: Cell classification results: W2 channels of individual cells that were correctly classified

as (a) normal and (b) triangular. (c) A correctly classified normal plate. (d) A correctly classified

triangular plate. Interestingly, biologists usually classify cells based primarily on the W3 channel. Our

algorithm seems to be exploiting information that is not particularly salient to human experts.

information about the plate class. Under these conditions, the algorithm managed to achieve

100% correct classification rate by classifying all 64 sub-plates correctly. Example classifica-

tions for cells are shown in figure 3.14a-b. Subplate classification is shown in figures 3.2b and

3.14c.

3.5.7 Experiment 7: Pedestrian Pose Classification

Finally, we test our algorithm on classifying pose in pedestrian images. In training, we use 3000

images of pedestrians from each of the four classes (i) facing front, (ii) facing back, (iii) facing

left and (iv) facing right. We use a library of 240 images (60 from each class). We devise four

separate experiments.

In the first experiment we do multi-class classification using a test set of 1200 images (300

per class). In this experiment we classify a test image as belonging to one of the four classes.

We achieve 67% correct classification overall. Table 3.3 shows the confusion matrix where

each row shows the true label and each column shows the estimated label. It is notable that

left facing pedestrians are most confused with right facing ones and front facing pedestrians

are most confused with back facing ones. Figure 3.15 shows examples of correct and wrong

classifications. In the second experiment we examine binary classification to distinguish only

front-facing from back-facing examples. We tested on 600 images (300 back, 300 front) and

we achieve 75% correct classification. This is quite a challenging task as these two classes are

largely distinguishable only from the facial area. This is verified when we examine the per patch

classification (see figure 3.13e): patches in the top center of the image are most informative.

In the third experiment we classify test images as either facing left or facing right. We

achieve 81.2% correct classification. Finally we test our algorithm on classifying pedestrians as

either facing left/right, or facing front/back. In this experiment we achieve 85.3% correct clas-
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Figure 3.15: Pedestrian pose classification results: Example results from the pedestrian pose classi-

fication experiment. We show the predicted label for each pedestrian. The two images marked by a red

cross have been misclassified, but the remaining images show correctly classified pedestrians.
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HH
HHH

HHHH
True

Est.
Back Front Left Right

Back 77.7% 10.0% 5.6% 6.7%

Front 35.6% 53.7% 6.7% 4.0%

Left 7.3% 6.7% 71.0% 15.0%

Right 12.0% 8.3% 15.0% 64.7%

Table 3.3: Confusion matrix for pedestrian pose classification.

sification. We plotted the per patch classification as a grayscale image in 3.13f. Unsurprisingly,

this figure shows that the most discriminative patches for this task are ones towards the bottom

of the image: the legs are the most distinctive part of the image to distinguish these classes.

3.5.8 Experiment 8: Comparison to Other Algorithms

We compare the results of our algorithm on gender classification with a recent method proposed

by Prince and Aghajanian [138] based on additive logistic models. This is a discriminative clas-

sifier, which is based on an additive sum of non-linear functions of one-dimensional projections

of the data such as the arc tangent and weighted sums of Gaussians. In this experiment, we used

the face images from the automatically detected face dataset. We used a training set of 16,000

male and 16,000 female images, and the test set contains 500 male and 500 female faces. The

discriminative classifier achieves 87.5% correct classification whereas our algorithm proves to

be superior by scoring 90% correct classification when trained and tested on the same datasets.

For further validation we compare the performance of our gender classification algorithm

with the manually registered dataset to that of support vector machines (SVMs) which a stan-

dard pattern recognition method. Unfortunately, SVMs were not designed to work with large

databases and it is hard to train with the high resolution (60 × 60) images due to the memory

requirements. To get the best out of these methods we have used both (i) the maximum feasible

number of training images at high resolution (4000 images per class) and (ii) a larger training

set (16000 images per class) of low resolution images which were subsampled to 21× 12. This

is similar to images used in other gender classification algorithms such as [124]. However, such

small images are unsuitable for our algorithm as we require the patches to be of a certain size

(6× 6) to be informative.

For the first case (4000 high resolution images per class) a linear SVM and a non-linear

SVM with an RBF kernel achieved 78.8% and 77.8% performance respectively. The SVMs

were trained with libsvm [2] and the parameters selected with 3-fold cross validation. When we
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tested our method with only these 4000 training images we achieved 84.6% which is consider-

ably better than either of the SVM methods.

For the second case (16000 low resolution images per class) the linear SVM achieved

78.7% performance and the non-linear SVM achieved 82.4%. For this dataset we also tried

linear discriminant analysis which achieved a maximum of 78%. None of these results approach

the 89% performance achieved by our algorithm (See Table 3.4).

Finally, we also compared human performance on gender classification. The average hu-

man performance was 95.6%. Although our best performance is 7% lower than this, we con-

clude that some of the test images are genuinely difficult to classify. Moreover, our results

reveal that the human performance is not perfect (i.e. 100%) when looking at the face region

only, this suggest that humans seem to rely on context from other parts of the scene, to predict

gender.

Method % Correct Classification

Lin SVM HighRes 4,000 78.8%

RBF SVM HighRes 4,000 77.8%

Our Method 4000 84.6%

LDA 16,000 78%

Lin SVM LowRes 16,000 78.7%

RBF SVM LowRes 16,000 82.4%

Our Method 16,000 89%

Human Performance 95.6%

Table 3.4: Confusion matrix for pedestrian pose classification.

3.6 Summary and Discussion

In this chapter, we have begun addressing our first research objective of investigating patch-

based representation for a variety of vision tasks. As the first of these tasks we attempted to

classify several attributes of visual objects within a category. In the past, within-category clas-

sification has mostly been tested on constrained databases, which contain simplified images

with limited or no variation in lighting, pose, background clutter etc. To address this issue, we

collected and annotated a large database of ∼ 70,000 faces in uncontrolled conditions. This

is a much more challenging database, with realistic images taken in everyday scenarios. We

subsequently used it to predict demographic characteristics such as gender and age, and appear-
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ance attributes such as eyewear. As such, we have made progress towards our other research

objectives: we have demonstrated the ability of the patch-based representation to handle large

databases and their robustness to visual object modelling challenges such as occlusion, scale,

background clutter, and variation in pose and lighting.

We proposed a general Bayesian framework for classifying within-category attributes. Our

algorithm uses a generic patch-based representation, allowing it to be used on several object

classes without major alterations. We exploit this property by predicting different attributes

in three distinct object classes. Besides predicting gender and eyewear in face images, we

predict phenotype in cells and pose in pedestrian images. We demonstrate good performance

on ‘real world’ images of all three classes. We achieve 90% correct classification of gender,

and 91.2% correct classification of eyewear in face images. The results are quite satisfactory

when compared to human performance on these tasks on the same database, which were 95.6%

and 96.7% respectively. We achieve 67% and 100% in pedestrian pose and cell phenotype

classification respectively. The promising results generated by our patch-based representation

model in all three object classes contributes towards our final research objective of having a

representation that is not object-specific and is applicable to multiple object classes.

Our algorithm has been designed to handle large amounts of data. In terms of scalability,

it is linear with respect to the size of the library and the training data. For a library of size m

and a training set of size n it scales as O(mn) during training and O(m) in testing. Current

implementation of our code in Matlab takes about 2 seconds per image on an Intel Xeon(R) CPU

E5420 @2.50 GHz machine with a 2.5 GB RAM. The most computationally expensive part of

our model is the 2D convolution to map the test/train patch to the library patches which could

be easily speeded up using a Graphics Processing Unit (GPU). Moreover, the same library can

be used to predict more than one attribute, resulting in further savings of computational time.

For example, if the training images are divided into four groups of females with and without

glasses and males with and without glasses, once a test images is mapped to the library, our

algorithm can predict both the gender and the eyewear of the test image.

Other properties of our method include “automatic registration” and avoiding overfitting.

The patches are allowed to map to the library within a 6× 6 window of the original position of

the patch in the test image. This automatically finds the best horizontal and vertical shift of the

original patch, compensating for possible translations. Finally, the Bayesian formulation of our

method where we marginalize over the parameters helps guard against overfitting.

The algorithm has a close relationship with non-parametric synthesis algorithms such as

image quilting [46] where patches from one image are used to model others. Our algorithm
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works on exactly the same principles - all the knowledge about the object class is embedded

in the library images. This accounts for why the algorithm works so well in different cir-

cumstances. If we have enough library images, they naturally provide enough information to

discriminate the classes. To this end our algorithm works in a similar fashion as most of the

data-driven algorithms such as [92, 47] where millions of images are used to derive information

about other unseen images.

The algorithm also has a close relationship with bag-of-words models [38]. The library

can be thought of as a structured set of visual words (textons) which are used to quantize the

image patches. Unlike the standard bag-of-words models, the visual words are arranged on a

regular grid, giving implicit information about the spatial configuration of the words. To the

best of our knowledge the original bag-of-words representation has not been used for within-

category classification. We suspect it may perform poorly, since generic visual dictionaries used

in the model, may not be able to distinguish subtle differences between two instances within

a category. For example, the bag-of-words model may easily distinguish a face from a car,

however, it is not clear whether it can tell the difference between a male and a female face.

Our model also has connections to exemplar-based models such as ‘Visual Memex’ [121]

which encode both local appearance and 2D spatial context between object instances. In the

‘Visual Memex’ model, objects are represented as a set of exemplar nodes, that are connected

together based on their similarity and context. The library patches can be thought of as the

exemplar nodes randomly sampled from all object classes. The mapping of each training patch

to the library patch, is equivalent to the ‘similarity edge’, where the distance function in [121]

is replaced by a Gaussian likelihood function. Finally, the ‘context edge’ is explicitly achieved

by restricting the patches to be mapped only from a similar region in the original training patch.

Some aspects of our model remain unexplored. The model has not been tested with a very

large library. We expect that a larger library will be beneficial since it will contain more variety

for each class. It would be particularly interesting to learn the optimal library. The idea of learn-

ing an optimal library is very similar to learning the visual dictionary in Bag-of words models.

Methods such as ‘Gaussian Mixture Models’ (GMMs) [171], or discriminative methods based

on ensembles of random clustering trees such as ‘Extremely Randomized Clustering Forests’

[129], which can be used to learn a compact library which could provide faster training and test-

ing. Finally the model can be extended to overlapping patches to gain a richer representation,

which would be desirable for generation tasks.

One of the less successful problems investigated with our model was age classification.

This is a genuinely difficult problem given that our results show that human performance on
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this problem is∼ 36%. In our experiments the age estimation was formulated as a classification

problem with four age groups. However, age estimation is really a regression problem where

the exact age can be predicted. Unfortunately, current format of our algorithm does not allow

prediction of continuous parameters since the algorithm is designed to have discrete outputs.

This limits the application of our model to classification problems only.

In the following chapter, we will extend the model to allow continuous outputs, making it

suitable for regression type problems.



67

Chapter 4

Patch-based Regression

4.1 Introduction

In the previous chapter we showed that patch-based representation can be used in a probabilis-

tic framework for within-category classification. Although this framework could successfully

predict discrete attributes (e.g. gender), it was not designed to estimate continuous parameters.

In this chapter we present an extension to our within-category classification model, where

we use a patch-based representation to estimate a continuous parameter. Upon successful com-

pletion of this task, we aim to progress towards our goal of having a representation that can be

used for a variety of vision tasks. The approach considered here is a general model that is suit-

able for all regression type problems where the output is a continuous parameter. We will test

our model on the specific problem of estimating pose. In particular, we will apply the model to

face pose estimation where the pose of the face images varies from −90◦ to 90◦, and the faces

are captured in uncontrolled environments.

4.2 Motivation

Automatic estimation of head pose from a face image is a sub-problem of human face analysis

with widespread applications such as gaze direction detection and human computer interaction.

It can also be integrated into a multi-view face detection and recognition system. Another

interesting application is driver surveillance, where the driver’s head is constantly monitored

for an unusual pose. For example, a warning can be issued if the head is regularly tilted down

due to the driver’s sleepiness. Similarly, a face pose estimation system can be used for video

teleconferencing and designing a smart room that monitors its occupants’ activities. There have

been various approaches to this problem using stereo or multi-view images [122, 130], range

images [23] and tracking using video sequences [78], etc. In this chapter we focus on estimating

head pose from a single 2D face image.

Current methods for face pose estimation from a 2D image can be divided into two groups:



4.2. Motivation 68
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Figure 4.1: Face pose estimation: classification vs regression(a) Most current methods estimate pose

in a limited range or treat pose as a classification problem by assigning the face to one of many discrete

poses. Moreover they have mainly been tested on images taken in controlled environments e.g. with

solid/constant background, with small or no variation in illumination and expression. (b) We address

the problem of estimating pose as a continuous regression problem on “real world” images with large

variations in background, illumination and expression.

(i) geometric shape or template based methods [166, 83, 177, 95] and (ii) manifold learning and

dimensionality reduction based methods [10, 65, 146, 132]. The first group use the geometric

information from a configuration of a set of landmarks to estimate pose. For example, some use

the relative position of the eyes, mouth, nose etc. in piecewise linear or polynomial functions

[83], or in an Expectation Maximization (EM) approach [31] to recover the face pose. Others fit

a template to the face such as an Active Shape Model (ASM) and estimate the pose parameters

using Bayesian inference [177]. Other common approaches include fitting an elastic bunch

graph [95, 48] to a certain pose and using graph matching to decide on the particular pose. A

major limitation of these methods is that they rely on finding the position of facial features, or

fitting a tailor-made template to the face which itself is a difficult problem [117].

Alternatively, manifold learning approaches consider the high dimensional feature space of

face pose as a set of geometrically related points lying on a low dimensional smooth manifold.

They use linear/non-linear embedding methods to learn this lower dimensional space from the

training data. Pose is then estimated in this space. Several general linear embedding methods

such as PCA [132] and ICA [110] have been proposed. One limitation of these methods is

that they can only recover the true structure of linear manifolds, while the geometry of the

view-varying face manifold can be highly folded in the high-dimensional input space.

Alternatively non-linear embedding such as Isomap [10], Local Embedded Analysis (LEA)

[65] and Local Linear Embedding (LLE) [10, 146], have been used to project the data onto

a lower dimensional non-linear manifold. Pose is then estimated using K-nearest neighbor

classification [65], or multivariate linear regression [10]. These methods are limited in that
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the non-linear projection is defined only on the training data space. For each novel input (test

data) the entire embedding procedure has to be repeated or other techniques like Generalized

Regression Neural Networks [10] need to be designed to do this mapping for test data.

One of the limitations of current methods is that most of them estimate pose in a limited

range and treat pose estimation as a classification problem by assigning the face to one of many

discrete poses [95, 109, 110]. However pose estimation is really a regression problem. Consider

a human computer interaction scenario where we are interested in finding the gaze direction of

the user; it is much more desirable to have a continuous estimation of the head pose rather

than specific head angles. Another major drawback of current methods is that they have mainly

been tested on faces taken in controlled environments (there are exceptions e.g. [71]) i.e. with

solid or constant background and small or no variation in illumination and expression such as

the CUbiC FacePix database [113] (figure 4.1a). Ideally we should be able to estimate pose

in uncontrolled environments. Unfortunately current methods are not capable of this, partly

because it is very difficult to obtain the ground truth for such images.

In this chapter we address both problems of obtaining human estimates of pose (as ground

truth) and automatically estimating pose in images taken in uncontrolled environments. First we

collect a large database (tens of thousands) of “real world” images. This database contains faces

with poses varying from −90◦ to 90◦ as well as high variation in illumination, expression and

background clutter (see figure 4.1b). Then, we ask four human subjects to label these images

for pose according to some reference poses. Finally, we compare our automatically estimated

pose with human estimates of pose in these real world scenarios.

Unlike current methods that have tailor-made representations, we use a general represen-

tation that does not rely on locating facial features or fitting a model to the face. Instead we

represent a face with a non-overlapping grid of patches. We use this representation in a genera-

tive model for automatic estimation of head pose.

4.3 Method

Our approach breaks the test image into a non-overlapping regular grid of patches. Each is

treated separately and provides independent information about the true pose. At the core of

our algorithm is a predefined library of object instances. The library can be considered as a

palette from which image patches can be taken. This is similar to the bag-of-words model [38]:

the library can be thought of as a structured set of textons which are used to quantize the image

patches. We exploit the relationship between the patches in the test image and the patches in the

library to estimate the face pose. Our algorithm can be understood in terms of either generation
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Figure 4.2: Inference (a) A test image Y is decomposed into a regular patch grid. (b) Patches from a

large library L are used to approximate each patch from the test image. (c) The choice of library patch

provides information about the true pose. (d) The model parameters W are used to interpret these patch

choices in a Bayesian framework to calculate a posterior over pose (e).

or inference and we will describe each in turn.

First, let us look at generation from this model. For example, consider the generative

process for the top-left patch of a test image. The true pose induces a probability distribution

over all the patches in the library based on the learned parameters W. We choose a particular

patch using this probability distribution and add independent Gaussian noise at each pixel to

create the observed data. In inference we invert this generative process using Bayes’ rule to

establish which pose was most likely to be responsible for the observed data.

Alternatively in inference (see figure 4.2), the test image patch is approximated by a patch

from the library L. The particular library patch chosen can be thought of as having a different

affinity with each pose. These affinities are learned during a training period and are embodied

in a set of parameters W. The relative affinity of the chosen library patch for each pose is used

to determine a posterior probability over pose. We will now consider the inference process in

more detail.

4.3.1 Inference

Consider the task of estimating a continuous value for the pose parameter β for a test image,

where β can have values ranging from −90◦ to 90◦. The test image Y is represented as a non-

overlapping grid of patches Y = [y1...yP ]. The model will be trained from I training examples

X with labeled poses. Each training example is also represented as a non-overlapping grid of

patches of the same size as the test data. We denote the pth patch from the ith training example

by xip (see figure 4.3a).

We also have a libraryL of images that are not in the training or test set and would normally
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Figure 4.3: Training (a) The model is trained from I training images, each of which is represented

as a non-overlapping grid of patches indexed by p. (b) The library L is considered as a collection of

patches Ll where l indexes the N possible sites. (c) We use 1-of-N coding scheme to represent the

closest library patch l̂ and store them in a target matrix Tp for the pth patch of all training images. (d)

The true poses are stored in a I × 1 vector β. (e) Columns of Φ represent φφφi : 9D radial basis functions

of pose parameter β for the ith training image. (f) We learn the parameter vector wpl which represents

the tendency for the library site l to be picked when considering patch p of an image with pose vector φφφi.

contain examples with various poses. We will consider the library as a collection of patches Ll
where l ∈ {1..N} indexes the N possible sites from which we can take library patches (see

figure 4.3b). These patches are the same size as those in the test and training images but may be

taken from anywhere in the library (i.e. they are not constrained to come from a non-overlapping

grid).

The output of our algorithm is a posterior probability over the pose parameter β. We

calculate this using Bayes’ rule

Pr(β|Y,W) =

∏P
p=1 Pr(yp, l

∗|β,wp•)Pr(β)
Pr(Y)

(4.1)

where we have assumed that the test patches yp are independent. The term β represents pose,

wp• are the parameters of the model and the variable l∗ is the site in the library that most closely

matches the test patch yp. The notation • indicates all of the values that an index can take, so

wp• denotes the parameter vector associated with the pth patch in the test image and all of the

sites in the library. To find the site l∗ in the library we assume that the test patch is a Gaussian
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Figure 4.4: Radial Basis Functions: An illus-

tration of the 9D radial basis functions (RBF)

φφφ = {φ1..φJ} used as the input to our algorithm

for pose estimation. The x axis denotes µj which

governs the locations of the basis functions in in-

put space and lie within −90◦ to 90◦. A standard

deviation of σ = 45 was used to plot the RBFs.

corruption of the library patch and use

l∗ = arg max
l

Gyp [Ll;σ2I] (4.2)

where Ll is the patch from site l of the library L.

We now define the likelihood in Equation 4.1 to be a multinomial distribution on the library

sites. The model takes the form of an inverse multi-class logistic regression. We use the standard

logistic regression (a discriminative model) in the reverse order making it a generative model

that predicts a continuous parameter i.e. the continuous pose vector φφφ from a set of discrete

classes which are the library sites. Thus we define the likelihood term Pr(yp, l∗|β,wp•) in

Equation 4.1 as:

Pr(yp, l∗|β,wp•) =
exp(wpl∗

Tφφφ)∑N
l=1 exp(wpl

Tφφφ)
(4.3)

where φφφ = {φ1..φJ} is chosen to be 9D radial basis functions (RBF) defined as

φj = exp

(
−(β − µj)2

2σ2

)
(4.4)

where j ∈ {1..9} and µj govern the locations of the basis functions in input space and lie within

−90◦ to 90◦. The term σ denotes the standard deviation and is set during training (see figure

4.3e). To illustrate, we plot the 9D RBF input Φ to our algorithm in figure 4.4, corresponding

to 181 poses from −90◦ to 90◦ respectively, where we used a standard deviation of σ = 45.

The parameter wpl in equation 4.3, represents the tendency for the patch from library site l

to be picked when considering patch p of an example image with pose vector φφφ. This can be

visualized as in figure 4.3f. We find the maximum-a-posteriori estimate of pose by first doing

a one dimensional line search of pose varying from −90◦ to 90◦ and then maximizing the

posterior probability over pose Pr(β|Y,W) in Equation 4.1.
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4.3.2 Training

In this section, we consider how to use the training data x•p from the pth patch of all of the I

training images to learn the relevant parameters wp• = {wp1..wpN} where N is the size of

the library. Notice we learn a separate weight vector wp• for each patch in the input image.

This is done by maximizing the likelihood of the observed patches in the training images given

their poses with respect to the parameters wp•. This procedure is similar to multi-class logistic

regression (See [18] for more details). The likelihood of a single training patch xip from the ith

training image is defined as:

zipl̂(φφφ) = Pr(xp, l̂i|β,wp•) =
exp(wpl̂

Tφφφi)∑N
l=1 exp(wpl

Tφφφi)
(4.5)

where l̂i is the library site that most closely matches the training patch xip and is defined as

l̂i = arg max
l

Gxip [Ll;σ2I] (4.6)

Now we will use 1-of-N coding scheme to represent the selected library site l̂i for each patch

of each training image and store it in a target vector tip. Thus, tip is the target vector for the

pth patch of the ith training example with a feature vector φφφi, and is a binary vector with all

elements zero except for l̂i which equals one. Consider the entire training data, we can now

rewrite the likelihood term in Equation 4.5 as follows:

Pr(T•p|wp1, ...,wpN ) =
I∏
i=1

N∏
l=1

Pr
(
xip, l̂i|β,wp•

)tipl

(4.7)

=
I∏
i=1

N∏
l=1

z
tipl

ipl

where zipl = zpl(φφφi) and T•p is a I × N matrix of target vectors (closest library sites) for pth

patch and all of the training images with elements tipl (see figure 4.3c). To find the parameters

wpl we need to maximize Equation 4.7 with respect to these parameters. This is equivalent to

minimizing the negative logarithm of Equation 4.7:

E(wp1...wpN ) = − lnPr(T•p|wp1, ...,wpN ) = −
I∑
i=1

N∑
l=1

tipl ln zipl (4.8)

We now minimize the negative log-multinomial likelihood (Equation 4.8) to determine the pa-

rameters wpl. This is done by taking the gradient of Equation 4.8 with respect to one of the

parameter vectors wpl (for details on the derivatives of the softmax function see [18]). After

this procedure we obtain:

∇wpl
E(wp1...wpN ) =

I∑
i=1

(zipl − tipl)φφφi (4.9)
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where we made use of
∑N

l=1 tipl = 1. Because Equation 4.8 depends on all of the parameters

wp1...wpN we concatenate all ∇wpl
to form the derivative and repeat for every patch. We

perform a non-linear optimization to estimate the parameters W using the BFGS Quasi-Newton

method.

4.4 Databases

To verify the performance of our method in both controlled and uncontrolled environments, we

test our algorithms on two databases: (i) the CUbiC FacePix(30) database [113] which contains

images in controlled environments, and (ii) the UCL database, which is a large database of face

images captured in uncontrolled environments, that we collected from internet. We will provide

details of these databases in the following sections.

4.4.1 The CUbiC FacePix(30) Database: Images Captured in Controlled Envi-

ronments

FacePix(30) [113] is a face image database created at the Center for Cognitive Ubiquitous Com-

puting (CUbiC) at Arizona State University, and made available free of charge to the research

community. It contains face images of 30 people. We use the pose subset of this database. This

set contains 181 color face images that collectively represent a spectrum of pose angles (each

image corresponds to a rotational interval of 1 degree). The face images in this set are captured

against a solid background and contain very little shadowing. Pose angles vary across a range

from +90 degrees to -90 degrees, where +90 degrees represents a left profile view, 0 degrees

represents a frontal view, and -90 degrees represents a right profile view. Some examples are

shown in figure 4.1a.

We resized these images to a 60x60 template, band-pass filtered them using lower and up-

per cutoff frequencies of 2.5 and 25 cycles per image respectively. Then we weighted the pixels

using a Gaussian function with σ = 0.5 centered on the image. Each image was normalized to

have zero mean and unit standard deviation.

4.4.2 The UCL Database: Images Captured in Uncontrolled Environments

We harvested a large database of images of men and women from the web. These were captured

in uncontrolled environments and exhibit a wide variation in illumination, scale, expression and

pose as well as partial occlusion and background clutter (see figure 4.1b). Faces were automat-

ically detected using a commercial frontal face detector [94]. The images were subsequently

transformed to a 60x60 template using a Euclidean warp. We band-pass filtered the images

using lower and upper cutoff frequencies of 2.5 and 25 cycles per image respectively. Then

we weighted the pixels using a Gaussian function with σ = 0.5 centered on the image. Each
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Figure 4.5: Human vs. computer pose estimation error: (a)The distribution of poses in training and

test datasets. Note that we do not observe a uniform distribution across pose: we have very few images

with large poses. (b) The cumulative population of the data as a function of the pose error in degrees

for hand labeled poses (red) and our method (blue). We observe that with our method around 87% of

the test data have an error of 20 degrees or less which is equivalent to the error between two subjects in

hand labeled poses.

image was normalized to have zero mean and unit standard deviation. Note that since we used

a commercial frontal face detector to locate the faces, some of the faces with large pose angles

might have been missed hence we do not have an even distribution of poses in our database.

Moreover, there is also some bias towards frontal faces in our dataset as most people are look-

ing at the camera. The pose distribution for training and test sets are shown in figure 4.5a. To

obtain a human estimate of pose for the above database, four subjects were asked to label the

pose in face images ranging from −90◦ to 90◦ in 10◦ steps. The subjects were shown relevant

images from the CUbiC FacePix database [113] as a reference and asked to label the images

according to their similarity to the pose in the reference image. Due to the large number of im-

ages, the database was divided into two subsets. Two different subjects were asked to label each

subset of the data separately. The labeled poses of the two subjects were averaged to obtain a

continuous estimate of pose for that subset. Some example images with their average labeled

pose are shown in figure 4.6. The x-axis represents the average labeled pose which is used as

average human estimate. However, the obtained human estimate is still considered noisy since

the poses labeled by the two subjects only have a correlation coefficient of 0.76 on the training

set and 0.73 on the test set. To measure the noise level in the human pose estimate, we plot

the cumulative population of the test data as a function of the mean absolute error (MAE : the

absolute error averaged across all test images) between the two subjects. This is shown in figure
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Figure 4.6: Human estimate examples-Some example images along with the average human estimate

of pose. The x-axis represents the average labeled pose which is used as the ground-truth.

4.5b, and results in a MAE of 10.89 degrees.

4.5 Experiments on the Constrained Database

We now test our algorithm on automatic pose estimation on the constrained face images of the

FacePix [113] database. We divide the pose subset of this database into three non-overlapping

sets for training, library and testing such that the same individual will not be used for both

training and testing. The training set contains images of 20 individuals which make a total of

3,620 images. The library contains 61 images uniformly sampled from five individuals in 3

degree steps. Finally we test our algorithm on 905 images that come from 5 individuals.

We investigate the effects of two parameters on the performance of our algorithm: (i) the

patch grid resolution and (ii) the standard deviation σ of the radial basis functions. We measure

the performance using the following metrics: (i) Pearson correlation coefficient (PCC) between

the true pose and the estimated pose and (ii) mean absolute error (MAE): which is the absolute

error averaged across all test images.

4.5.1 Experiment 1: Varying the Patch-Grid Resolution

In this experiment we vary the grid resolution from 5 × 5 to 20 × 20 by keeping the standard

deviation fixed at σ = 11.25. The results are summarized in Table 4.7a. For illustration, we

also plot the patch grid on a sample face in figure 4.7(b-e) for 5 × 5, 10 × 10, 15 × 15 and

20 × 20 grid sizes respectively. The results noticeably improve as we change the patch grid

from 5 × 5 to 10 × 10 both in PCC and MAE. Then there is a gradual drop in performance

when the grid resolution is increased. This might be due to the fact that patches become very

small. The performance peaks with a 10×10 grid (6×6 pixel patches). We achieve a correlation

coefficient of 0.99 between the true and estimated pose on the test set with a MAE of 5.24◦.
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Figure 4.7: Parameter selection (a) Comparison of performance on pose estimation in various grid

resolutions with fixed σ = 11.25, measured by Pearson correlation coefficient (PCC) and mean absolute

error in degrees (MAE) between the true pose and the estimated pose. Visualization of (b) 5 × 5 (c)

10 × 10 (d) 15 × 15 and (e) 20 × 20 grid sizes. (f) Comparison of performance on pose estimation on

various values of σ with patch grid resolution fixed at 10× 10.

4.5.2 Experiment 2: Varying the parameters of the Radial Basis Functions

(RBFs)

In this experiment we vary the overlap between the 9D radial basis functions (i.e. the term σ in

Equation 4.4), by keeping the patch grid resolution fixed at 10 × 10. We test our algorithm

with five different values for σ: 5.5, 11.25 , 22.5, 45 and 90 degrees. The results of this

experiment are summarized in figure 4.7f. We observe a change as the overlap between the

radial basis function is varied, reaching a peak with σ = 11.25 where we achieve a correlation

coefficient (PCC) of 0.99 and a MAE of 5.24◦. The scatter plot of the results are shown in

figure 4.8a. We also plot the average MAE for each degree angle in figure 4.8b. It is interesting

to notice the shape of the error histogram in figure 4.8b: two peaks around the large pose

degrees (+/ − 30◦to70◦ )and a more flat region around the center. This suggests that, our

algorithm performed better at semi frontal images and had larger average error on images that

are close to profile. The posterior probability over pose is shown in figure 4.9 for two individual

examples. Some example test images are shown in figure 4.10 along with their true (human)

and estimated (our algorithm) poses. Despite the fact that our algorithm is designed for very

large training data sets, our performance is reasonable compared to the previous results reported

on the FacePix database. These include a MAE of 10.41◦ with Isomap [10], 5.02◦ with biased

Isomap [10], 3.27◦ with Locally Linear Embedding (LLE) [10], 2.11◦ with Biased LLE [10],

3.93◦ with Laplacian Eigenmap (LE) [10] and 1.44◦ with Biased LE [10]. The reported results

use a manifold learning method where the dimension of embedding was 100. Unfortunately the

correlation coefficients are not available for the above methods. Note, the protocol in which the
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Figure 4.8: Pose estimation results (a) Scatter plot of the results on 10 × 10 grid with 9D RBF and

σ = 11.25 for the FacePix database. We achieve a PCC of 0.99 and a MAE of 5.24 degrees. (b)

Displaying the mean absolute error for each degree pose.

experiments were done are different from ours, in that they used images with increments of 2◦,

in contrast to our images which are 1◦ apart.

4.6 Experiments on the Unconstrained Database

We now consider automatic pose estimation of unconstrained face images. We use 10,900 train-

ing and 1000 test images. The library is made up 240 images. The training, testing and library

sets are randomly selected, are non-overlapping and do not contains the same individuals. The

library contains poses varying from −90◦ to 90◦.

As before we investigate the effects of the patch grid resolution and the standard deviation

σ on the performance of our algorithm. Similarly, we report the results in terms of the Pear-

son correlation coefficient (PCC) between the true pose and the estimated pose and the mean

absolute error (MAE): which is the absolute error averaged across all test images.

4.6.1 Experiment 3: Varying the Patch-Grid Resolution

In this experiment we vary the grid resolution from 5 × 5 to 20 × 20 by keeping the standard

deviation fixed at σ = 22.5. The results are summarized in Table 4.11a. The performance peaks

at 10 × 10 grid (6×6 pixel patches). We achieve a correlation coefficient of 0.74 between the

true and estimated pose on the test set with a MAE of 13.75. For visualization purposes we also

plot the patch grid on a sample face in figure 4.11(b-e) for 5× 5, 10× 10, 15× 15 and 20× 20

grid sizes respectively. It can be seen that as the grid resolution becomes higher the patches

themselves become very small and perhaps not very informative for the task.
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Figure 4.9: Example posterior over pose: Individual examples with posterior over pose for the im-

ages given top right. The true pose and the estimated pose are displayed above and below the image

respectively.
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Figure 4.10: Example Results: Some example images with the correct pose (above) and estimated

pose (below).

4.6.2 Are 6× 6 pixel patches sufficient for face pose estimation?

From the previous experiment we conclude that the performance peaks with a 10 × 10 grid

resolution when using 60×60 pixel face images. To further verify that 6×6 pixel patches in the

10× 10 grid are sufficient we reconstruct the original images using the closest patches l∗ from

the library (see figure 4.12). To find the closest library patch l∗ in a computationally efficient

way, in practice we restrict the possible indices l to a subset corresponding to a 6 × 6 pixel

window around the current test patch position in each library image so patches containing eyes

are only approximated by other patches containing eyes etc. Figure 4.12 shows that despite the

loss of resolution when using 6× 6 patches compared to single pixels, the level of difficulty for

a human observer to predict pose from approximated faces is comparable to that of predicting

pose from the original images. Therefore, we conclude that 6×6 patches preserve the structure

of the original face images which are used to predict pose. We also achieve a very compact
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Figure 4.11: Parameter selection (a) Comparison of performance on pose estimation in various grid

resolutions with fixed σ = 22.5, measured by Pearson correlation coefficient (PCC) and mean absolute

error in degrees (MAE) between the true pose and the estimated pose. Visualization of (b) 5 × 5 (c)

10 × 10 (d) 15 × 15 and (e) 20 × 20 grid sizes. (f) Comparison of performance on pose estimation on

various values of σ with a 10× 10 grid resolution.

representation, by representing the test images as a set of indices to this library. To illustrate

this, we compare the amount of memory needed to store the original 60 × 60 test image and

its patch-based representation for a 10 × 10 grid as a set of indices to a library of 240 images.

This experiment shows that we require 10, 800 bytes to store the original test image, whereas

we only need 400 byes to store its patch-based representation, resulting in a 27 times more

compact representation.

4.6.3 Experiment 4: Varying the parameters of the Radial Basis Functions

(RBFs)

In this experiment we vary the overlap between the 9D radial basis function i.e. the term σ in

Equation 4.4, by keeping the patch grid resolution fixed at 10× 10. We test our algorithm with

four different values for σ: 11.25 , 22.5, 45 and 90 degrees. The results of this experiment are

summarized in figure 4.11f. The results demonstrate change as the overlap between the radial

basis function is varied, reaching a peak with σ = 45 where we achieve a correlation coefficient

of 0.76 on the test data with a MAE of 13.21. The scatter plot of the results on 10×10 grid with

σ = 45 is shown for all of the test data in figure 4.13a. For comparison, we show the scatter

plot of the estimated pose for two human subjects on the same test set in figure 4.13b. The PCC

and MAE between two human subjects are 0.73 and 10.89 which is comparable to the results

our algorithm achieves.

We repeat the pose experiment with 10 × 10 grid and σ = 45 for a subset of the test data

where the poses are uniformly sampled (i.e. there is the same number of images for each pose).

For this subset we achieve a higher PCC of 0.88 and a lower MAE of 11.72 (see figure 4.14a).
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Figure 4.12: Patch-based reconstruction We verify that 6 × 6 pixel patches are sufficient by recon-

structing the original images using the closest patches l∗ from the library. It is still easy to identify the

pose of the images using the approximated versions. Note: for illustration purposes the RGB form of the

test and library images were used in this case to produce the reconstructed images above.

We show the posterior over pose for two individual examples in figure 4.14b.

In figure 4.15a we plot the average error for each pose angle. It is interesting to notice

that unlike our results on the constrained database, the shape of the error histogram is mostly

flat, meaning the average error was similar for most poses (with the exception of poses between

−67.5 : −90). We also plotted the proportion of the test data that lies within an error range in

degrees (figure 4.15b). We observe that around 87% of the test data has an error of 20 degrees

or less. Some example results are shown in figure 4.16, where the correct pose is displayed

above the image, and the estimated pose in shown below the image. We also experimented with

choosing the expected pose instead of the MAP pose, however the results were inferior.

For comparison, we developed a Gaussian process regression model with an RBF kernel

for face pose estimation where the parameters of the RBF kernel were fitted in a maximum

likelihood manner. Unfortunately this model cannot handle large number of training images as

it involves matrix inversion. Consequently, the model was trained using a subset of the training

data used in experiments 3 and 4 and contained 500 images with poses varying from -90 to 90

degrees. This model was tested on the uniformly sampled subset of the test images and achieved

a PCC of 0.77 and a MAE of 17.63 degrees. These results are inferior compared to those of our

patch-based model on the same test set which scored a PCC of 0.88 an MAE of 11.72 degrees.

4.7 Summary and Discussions

In this chapter, we proposed a probabilistic model for regression and applied it to automatic

estimation of head pose. We use a generic patch-based representation that does not rely on
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Figure 4.13: Pose estimation results: our algorithm vs human subjects (a) Scatter plot of the results

on 10 × 10 grid with 9D RBF and σ = 45 for all of the test data. We achieve a PCC of 0.76 and a

MAE of 13.21 degrees. (b) Displaying the scatter plot of labeled pose between two human subjects, they

achieve a PCC of 0.73 and a MAE of 10.89 degrees.
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Figure 4.14: Results on unconstrained database by varying σ : (a) Scatter plot of the results on

10 × 10 grid with 9D RBF and σ = 45 for a subset of the test data uniformly sampled at each true

pose. We achieve a PCC of 0.88 and a MAE of 11.72 degrees. The x-axis and y-axis represent the

estimated pose and the true pose respectively. (b) Individual examples with posterior over pose for the

images given top right. The true pose and the estimated pose are displayed above and below the image

respectively.
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object-specific landmarks. This allows our model to be used for regression problems on other

object classes without major alterations.

The contributions of this chapter are threefold:

1. We developed a novel method for regression type problems. We have shown that a patch-

based model can be sufficiently used to represent objects, to allow making inferences

about continuous parameters. As a result, we have marked another successful applica-

tion area for patch-based representation, which helps progress towards our main research

objective.

2. We have used the new patch-based model to represent faces taken outdoors and in un-

controlled environments. Our model achieved promising results on face pose estimation,

despite variations in scale, illumination, expression, occlusion and background clutter.

This suggest that patch-based representation is a robust representation.

3. We have provided a very large database of face images (11,000) in uncontrolled envi-

ronments and provided human estimates of face pose as ground truth. As such, we have

contributed towards testing the ability of patch-based representation in handling large

databases.

We have applied our model on automatic face pose estimation, on both constrained and

unconstrained databases. We achieve a 0.99 correlation (PCC) between the true pose and the

estimated pose on the constrained database with a mean absolute error (MAE) of 5.24 degrees.

This is comparable to current best methods on the same database, which are based on man-

ifold learning, and achieve a mean absolute error (MAE) of around 2 to 12 degrees. Note

that despite the high performance of these methods on such constrained databases, it is not

clear how these methods will generalize on unconstrained databases such as the UCL database.

Conversely, our pose estimation algorithm achieves a PCC of 0.88 and MAE of 11.72 on this

challenging database which contains images taken in uncontrolled environments. Remarkably,

the correlation coefficient of our algorithm to average human performance is about the same as

the correlation coefficient between two human subjects.

The model developed in this chapter is closely related to the multi-class logistic regression

model. In fact our model takes the form of an inverse multi-class logistic regression where we

use the standard logistic regression (a discriminative model) in the reverse order making it a

generative model that predicts a continuous parameter here the continuous pose vector, from a

set of discrete classes which are the library sites.
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Our regression algorithm has a close relationship with nonparametric synthesis algorithms

such as image quilting [46] where patches from one image are used to model others. Our algo-

rithm works on similar principles - all the knowledge about the object class is embedded in the

library images. This accounts for why the algorithm works so well in different circumstances.

If we have enough library images they naturally provide enough information to discriminate the

classes.

Our model also has connections to ‘bag-of-words’ type models. The patches in the library

can be thought of as a structured set of visual words. There is a major difference however:

unlike the visual words in the bag-of-words models, our library patches implicitly encode spatial

information about the position of each patch. The success of our algorithm, suggests that the

bag-of-words models could potentially be used for pose estimation.

Our algorithm is designed to handle large amounts of data. In terms of scalability it is linear

with respect to the size of the library and the dimension of the RBF function. For a library of

size m and a n dimensional RBF function, for each patch the processing time scales as O(mn)

in training and O(n) in testing. This is considerably faster than manifold learning algorithms

such as ISOMAP and LLE which scale as O(m2n) where m is the number of training samples

and n is the dimension of each data point. We also showed that the patch-based representation

used in this chapter, where a test image is represented as a list of indices to a library, results in

a 27 times more compact representation than storing the original 60× 60 test images.

Unfortunately, our current database has limited number of images in large poses (e.g. over

65◦) and contains very few close to profile images. One way to overcome this, would be to

extract face images from movies. Moreover, currently we use average human estimate as the

ground-truth for the unconstrained database. This suggests that our performance is limited by

the fidelity of the original labelling. The accuracy of the ground-truth could be increased by

using landmarks along with other regression mechanisms such as support vector regression

similar to [119] to predict the true pose.

The proposed algorithm is suited to general regression type problems. However, its po-

tential has only been tested on face pose estimation. One interesting application would be

estimation of human age. Unfortunately, this was not possible at the time as we did not have

access to a large database with age ground-truth. In the future, we would also like to investigate

other regression problems such as human body pose estimation using the HumanEva database

[1], and predicting GPS coordinates from images using the IM2GPS database [74].
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Chapter 5

Patch-based Semantic Segmentation

5.1 Introduction

The success of our proposed patch-based representation models in classification and regression

tasks encourages us to investigate this representation for a more challenging vision task: seman-

tic segmentation. Successful completion of this task will contribute towards our main research

objective of finding a general representation model that can be used across a variety of object-

related tasks. In this chapter we will present a framework where the patch-based representation

is used to segment an object into its constituent parts.

Semantic segmentation is the task of labelling each pixel in the image as one of several

predefined classes. For example, given an outdoor scene we would like to label the pixels as

either sky, road or building etc. One can also consider a more detailed semantic segmentation

where we are interested in segmenting parts of an object. For example, given an image of a face

we would like to label each pixel as either nose, mouth or eyes etc (see figure 5.1).

In this chapter we will develop a new prior which we call the “shiftmap prior”, and will

apply it to semantic segmentation of objects. The proposed prior will exploit the structure of

the objects to provide contextual information. We take a generative approach to this problem.

Our method takes an intensity image as input and returns a label image (or labelmap), where

each pixel contains the estimated class label for the corresponding pixel in the input image.

The core idea behind our model is that the final estimated labelmap should be similar to a

library labelmap which is an example labelmap that we have observed before. This is motivated

by the fact that there is only a limited variability in the structure of objects like faces (see figure

5.2a). We encourage the estimated labelmap to look like the library labelmap (figure 5.2b).

However, there may not be a library labelmap that is sufficiently similar. Therefore, we allow

small perturbations to the pixels in the library labelmap to make it agree with the observed

image. These perturbations are learned in the form of a “shiftmap” which are a set of relative
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Figure 5.1: Semantic segmentation Semantic segmentation is the task of labelling each pixel in the

given image (top row) as one of several predefined classes and producing a corresponding labelmap

(bottom row). (a) For example, given a beach scene, (b) label the pixels as sea, sky, sand and tree. (c)

Given an outdoor scene, (d) the goal is to label the pixels as either sky, road, car or building etc. One

can also consider semantic segmentation of parts of an object. (e) For example, given an image of a

face, (f) the goal is to label each pixel as either nose, mouth or eyes etc. (g) Similarly given an image of

a human brain, (h) one would like to label each pixel as white matter, gray matter or CSF.

shifts that warp the existing labelmap (figure 5.2c). The warped labelmap then influences the

final estimated labelmap.

This chapter is structured as follows: we will discuss existing methods in section 5.2. We

will introduce the shiftmap prior for semantic segmentation in section 5.3. In section 5.4, we

will describe how to use the shiftmap prior for semantic segmentation of objects. We will show

how to optimize the class posterior probabilities in section 5.5. Databases, experiments and

results will follow in sections 5.6-5.8. Finally we will summarize in section 5.9.

5.2 Motivation

Semantic segmentation of images remains a difficult problem due to the need to combine local

and contextual information when labelling the image. Semantic segmentation of a scene in

particular is very difficult because of its relatively unstructured nature. Semantic segmentation

of objects on the other hand is more practical since one can exploit the structure of an object

class to learn contextual information. For example, when segmenting face images one can make

use of the fact that eyes always appear above the nose, or when segmenting images of houses one

can assume the roof always appears to be above the walls. Semantic segmentation of objects has

widespread applications: segmenting parts of the face can be used as a preprocessing step for
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Figure 5.2: Shiftmap prior overview (a) We assume that the estimated labelmap should be similar to

an existing library labelmap. Here are two such examples. (b) We encourage the estimated labelmap to

look like the library labelmap by assigning high probabilities at each pixel to those classes that agree

with the library labelmap. (c) We allow small shifts over the class labels in the library labelmap in the

form of a “shiftmap” and show that this improves the segmentation.

face recognition and semantic segmentation of facades and building is beneficial to architects

and real estate agents.

A typical approach to semantic segmentation of images is to classify regions of consistent

labels using a unary classifier. The term region may denote an image pixel, a block of a regular

grid, an irregular patch in the image or an object itself [99]. This is then combined with a prior

over label configurations using Markov random fields (MRFs) [56] or conditional random fields

(CRFs) framework [99, 157]. Unfortunately these models only capture the object interactions

locally and are not capable of representing long range interactions. Hence, they cannot exploit

global context.

These undirected models have been extended to capture label relationships at different

scales (e.g. Hierarchical MRFs [101]). However, they have many parameters to estimate. Other
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extensions include Multiscale Conditional Random fields [77] which incorporate potentials over

several different clique sizes using global and local label features. However, this model requires

sampling both for parameter learning and label inference and is therefore limited in the size of

dataset and number of classes which can be handled efficiently.

Other approaches use directed models such as the Markov structured prior of Domke et al.

[41] or the tree structured prior of Feng et al. [56] which have computational advantages over

the undirected models. Unfortunately to be able to capture non-stationarity (which is desired

for capturing object structure) these models also require a drastic increase in parameters. Note,

these models remain essentially unexplored for semantic segmentation of objects such as faces

and human brains. To capture non-stationarity, Warrell and Prince [168] proposed a set of priors

based on ‘epitomes’ and showed that the performance improves compared to the alternative

non-stationary priors.

Another class of segmentation methods is part based models. They use explicit part models

to assist object segmentation. For example, Berg et al. [16] learn multinomial distributions over

the labels: door, window, roof, etc. in a conditional random field model to segment images of

architectural scenes. Despite exploiting the object structure, one drawback of this method is

that it needs to have seen all possible combination of features (roof, window etc.) at all possible

locations and scales in order to be able to perform detailed semantic segmentation of a building.

Unfortunately, this requires tens of thousands of detectors to be trained (one for each possible

combination). In addition, there is the laborious task of labelling all of these combinations.

Recently graphcut based energy minimization methods have been very successful in many

aspects of computer vision and graphics such as object segmentation [172], image inpainting

[75], retargeting [8] and image synthesis [100] . In particular ‘Shiftmap image editing’ [142]

uses a new representation for image editing as a graph labelling problem. A shiftmap is the

optimal relative shifts for every image pixel required to perform a particular image editing task.

In this chapter we will extend the shiftmap representation for image patches and use it

as a prior to perform semantic segmentation of objects. Similar to [142], where they create a

new image by re-arranging pieces of an existing image, our method encourages the final seg-

mentation to look like a rearrangement of existing ground truth segmentations. The proposed

“shiftmap prior” is locally smooth and globally coherent and can be used for patch-based se-

mantic segmentation of objects in a general probabilistic framework. We formulate the model

as an image labelling problem and take advantage of existing efficient training and inference

algorithms.
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e) f) g) h)

(-149,+20)

(-5,+2)

a) b) c) d)

(-5,-10)

(-100,-15)

(+20,+25)

Figure 5.3: Shiftmaps for image retargeting to reduce width. (a) The output image R is created (b)

by copying parts of the original image L. (c) These parts are carefully chosen to produce a seamless

result. (d) The underlying representation is a shiftmap S which contains a relative shift at each pixel of

the new image that specifies the 2d offset to the position in the original image that will be copied from.

Figures (e-h) illustrate that shiftmap can be used in a similar manner to edit labelmaps. The input and

the output are now labelmaps and the shiftmap defines relative shifts over pixels containing class labels.

5.3 The shiftmap prior: a prior over permutations of class labels
Before presenting our model, we will first describe the shiftmap representation of [142].

The shiftmap proposed by Pritch et al. [142] is a representation used for geometric re-

arrangements of images which has been used for tasks such as image retargeting and inpainting

etc. The shiftmap is defined as the relative shift for every pixel in the output image from its

source in an input image [142] (see Fig. 5.3).

The relationship between an input image L(u, v) and an output image R(u, v) is defined

as a shiftmap S(u, v) = (tu, tv). The output pixel is derived from the input pixel as follows:

R(u, v) = L(u+ tu, v + tv) (5.1)

where the terms tu and tv represent the relative shifts in the vertical and horizontal directions

respectively, for the pixel in the uth row and the vth column of the output image. We will now

present our model, which extends the shiftmap to represent shifts over pixels in a labelmap, and

describe how we use it as a prior for semantic segmentation.

In the context of image labelling, we assume that for any given image there exists a similar

library labelmap that we have observed before. We can then rearrange the pixels in this library
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labelmap to agree with the observed image more closely. These rearrangements are represented

as a set of relative shifts i.e. a shiftmap S(u, v), which warps the library labelmap. The library

and the warped labelmaps are equivalent to the input L(u, v) and the output R(u,v) in Equation

5.20 respectively. The warped labelmap then influences the final estimated labelmap for the

given image.

Different rearrangements of input pixels will results in different output labelmaps. In other

words different shiftmaps will generate different labelmaps. We define a probability for each

set of shifts over the pixels in the input labelmap and call this probability distribution a shiftmap

prior denoted by Pr(S). We define the shiftmap prior as an undirected model which takes the

form of a pairwise Markov Random field (MRF):

Pr(S) =
1
Z

∏
uv

∏
ij∈N (uv)

φ(S(u, v), S(i, j)) (5.2)

where (u, v) denotes the pixel in the uth row and the vth column of the image and the term

S(u, v) represents the value of the shiftmap for this pixel and the term N (uv) denotes the

neighbouring pixels of this pixel. Our model obeys the Markov property that states that S(u, v)

is conditionally independent of all of the other variables given the values of the variables in the

neighbourhood N (uv).

The term φ(S(u, v), S(i, j)) is a potential function and Z is the partition function and

normalizes the product of these positive functions so that the total probability Pr(S) is one:

Z =
∑
tutv

∏
uv

∏
ij∈N (uv)

φ(S(u, v), S(i, j)) (5.3)

where tu and tv represent all possible horizontal and vertical shifts the shiftmap S can take. We

can alternatively write Equation 5.2 as:

Pr(S) =
1
Z

∏
uv

exp

− ∑
ij∈N (uv)

ψ(S(u, v), S(i, j))

 (5.4)

where

ψ(S(u, v), S(i, j)) = − log φ(S(u, v), S(i, j)). (5.5)

The term ψ(S(u, v), S(i, j)) is the smoothness term for the relative shifts defined by S(u, v)

and S(i, j). This is equivalent to a pairwise cost for neighbouring pixels. As this cost increases,

the probability decreases. We define this smoothness term as follows:

ψ(S(u, v), S(i, j)) =

 0 if S(u, v) = S(i, j)

ρ otherwise
(5.6)
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where the term ρ is a fixed cost associated with two neighbouring pixels having different shifts.

Equation 5.6 implies that there is a zero cost if the pixel on the uth row and the vth column

and its neighbouring pixels all have the same relative shift and a fixed cost otherwise. This

encourages the pixels to be copied verbatim from the library labelmap.

5.4 Semantic segmentation using the shiftmap prior

Consider the task of assigning a class label C = {C1...CI} to a test image where Ci is the

class label for the ith pixel in the image and there are K possible classes so Ci ∈ {1...K}. The

output of our algorithm is a posterior distribution over the class labels C. According to Bayes

rule:

Pr(C|X) =
∏I
i=1 Pr(xi|Ci)Pr(C)

Pr(X)
(5.7)

CMAP ∝ arg max
C

I∑
i=1

logPr(xi|Ci) + logPr(C) (5.8)

where we have assumed that the observed pixels xi are independent. The term Pr(xi|Ci) is the

likelihood of the observed image at the ith pixel and the term Pr(C) is the prior over the class

labels C. We perform maximum a posterior (MAP) inference to find the most likely labels for

a given image in Equation 5.8.

We are now going to incorporate the idea of the shiftmap as described in section 5.3 into

the prior over the class labels Pr(C). This idea is built upon the concept that for any given test

image we can re-arrange the pixels in a library labelmap, such that this warped (re-arranged)

labelmap influences the final estimated labelmap. For now, the reader should take it for granted

that we have a ground truth labelmap that is close to the test image. We will return to the issue

of using multiple library labelmaps in section 5.5.3. To find the best possible re-arrangement,

we define the prior over the class labels Pr(C) in Equation 5.7 as follows:

Pr(C) =
∫
S
Pr(C,S) (5.9)

=
∫
S

∏
i

Pr(Ci|Si)Pr(S) (5.10)

As Equation 5.10 shows, our prior over the class labels depends on the shiftmap parameters

Si, and that Pr(S) is achieved by marginalizing the joint probability of the class labels and the

shiftmap Si. The term Si is the “shiftmap” defined in section 5.3 where we have replaced the

2D representation of the pixel with indices (u, v) to a single index i for notation simplicity (we

will describe how to find the optimal shiftmap in section 5.5).

The first term Pr(Ci|Si) is a measure of evidence for label Ci given the value of the
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a) Library Labelmap L b) The Shiftmap S c) Warped Labelmap L
i+S(i)

d) Class Label Prior Condistioned on the Shiftmap Pr (C|S)

Pr (C = eye | S) Pr (C = nose | S) Pr (C = mouth | S) Pr (C = ear | S) Pr (C = hair | S) Pr (C = eyebrow | S) Pr (C = skin | S)

Figure 5.4: Class label priors conditioned on the shiftmap: (a) A library labelmap L which we believe

is similar to the test image. (b,c) A shiftmap S is used to warp the library labelmap L such that the warped

labelmap is Li+S(i), where i indexes the ith pixel. (d) We then use the warped labelmap to determine

prior probabilities Pr(C|S) for all of the classes conditioned on the shiftmap S. For example, the term

Pr(C = eye|S) takes a high probability at the pixels where the warped labelmap has the class label

‘eye’. Similarly Pr(C = nose|S) takes a high probability at the pixels where the warped labelmap has

the class label ‘nose’ etc.

current shiftmap Si at pixel i and is defined as a multinomial distribution:

Pr(Ci|Si) = MultCi [θ[Si,L]] (5.11)

where L is the library labelmap (figure 5.4a) and θ represents the tendency for the class label

Ci to be picked at the ith pixel when considering the shiftmap Si (figure 5.4b). The term

Pr(S) is the shiftmap prior defined in Equation 5.2. In principle, one can learn the multinomial

distribution in Equation 5.11 from training data. In practice, we define Pr(Ci|Si) as follows:

Pr(Ci|Si) =

 θcorrect if Li+S(i) = Ci

1−θcorrect
K−1 otherwise

(5.12)

where L is the chosen library labelmap and K is the number of possible class labels. The

term θcorrect is set to be close to 1 (see sections 5.7.4 and 5.8.4). This implies that probability

Pr(Ci|Si) becomes high when the pixel in the warped labelmap resulting from the shift Si has

the same value as the current class label Ci. This probability is low otherwise (figure 5.4c,d).

Note that the integration in Equation 5.10 is intractable in practice hence we perform a

point estimate of Pr(Ci) by maximizing the joint probability instead. Therefore

Pr(C) ≈ max
S

∏
i

Pr(Ci|Si)Pr(S) (5.13)
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5.5 Optimizing the full posterior probability

In this section we show how to perform semantic segmentation of an object by alternately

maximizing over the class labels C and the shiftmap parameters S. In fact, we consider finding

the best class labels C∗ in terms of energy maximization and take advantage of existing efficient

algorithms [87]. For this purpose we turn the posterior probability in Equation 5.8 to an energy

term E and find the best labels C∗ by maximizing this energy:

E =
∑
i

logPr(xi|Ci) + λ1

∑
i

logPr(Ci|Si) + λ2 logPr(S) (5.14)

C∗ = arg max
C

[
max

S

∑
i

logPr(xi|Ci) + λ1

∑
i

logPr(Ci|Si) + λ2 logPr(S)
]

(5.15)

where the first two terms encourage the estimated labelmap to look like the test data and the

shiftmap prior respectively, and the third term is equivalent to a smoothness term which encour-

ages the neighbouring pixels to have the same shift. The terms λ1 and λ2 are the weighting

parameters for the data term and the shiftmap prior term respectively. These two terms are not

part of our original model. However, they improve the performance in practice. One possible

reason for this improvement is that because we have assumed independence among the ob-

served pixels (which is not true in general), our solution is scaled. These weighting parameters

resolve this issue and therefore improve the final solution. We will empirically set λ1 and λ2 in

the experimental section.

In our iterative maximization algorithm, we maximize the energy term in Equation 5.15

alternately with respect to two sets of parameters. In step 1, we update the shiftmap S, which

effects the last two terms i.e. the prior probabilities of the classes conditioned on the shiftmap

logPr(Ci|Si) and the prior probability of the shiftmap logPr(S). Then in step 2, we update

the class labels C, which effects the first two terms i.e. the data likelihood logPr(xi|Ci) and

the prior probabilities logPr(Ci|Si). We do this in an iterative manner and show that the energy

in Equation 5.14 increases at each iteration. We will now describe this iterative maximization

process.

We start with an initial estimate of the class labels C. This is achieved in a maximum

log likelihood manner using the likelihood of the observed data given the class labels i.e.∑
i logPr(xi|Ci). We call this C[t], where [t] indicates current iteration. We keep the C[t]

fixed and use it to maximize over the shiftmap S:

S∗ = arg max
S

∑
i

logPr(C [t]
i |Si) + logPr(S) (5.16)

Having found the best shiftmap S∗, we then keep it fixed as S[t] and maximize over the class
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Warped Labelmap
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k) 

Figure 5.5: The complete semantic segmentation algorithm: (a) Given a test image, (b) find the

data likelihood for each of the class labels Pr(X|C). (c) Combine this with a set of learned per-pixel

class label prior Pr(Ci) (d) and find the maximum a posteriori segmentation of class labels C[t]. (e)

Given current C[t] (f) find a similar library labelmap L∗. (g) Given C[t] and L∗, find the best shiftmap

S∗ (figure 5.5g) and (h) warp the library labelmap to make it as similar to C[t] as possible. (i) Use

the warped labelmap (j) to update the prior probabilities Pr(C|S∗). (k) Finally, use the data likelihood

Pr(X|C), the prior probabilities Pr(C|S) and the shiftmap prior term Pr(S) in the energy term defined

in Equation 5.14 and maximize it to obtain the final estimate of class labels C∗.
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Figure 5.6: We alternately find globally optimal solutions to the vertical and horizontal shifts: (a)

Iteration 0: where we initialize the shiftmap with zero shifts. We then alternately (b) Find the best

horizontal shifts, keeping the vertical shifts fixed. The labelmap on the left shows the result of this

horizontal warp. (c) We keep the horizontal shifts fixed and we find the optimal vertical shifts. The

labelmap on the left shows the result of this warp. (d) This graphs shows that the shiftmap cost (energy)

decreases at each iteration. We repeat this until the energy no longer decreases.

labels C :

C∗ = arg max
C

∑
i

logPr(xi|Ci) +
∑
i

logPr(Ci|S[t]
i ) + logPr(S[t]) (5.17)

We then go back to Equation 5.16 and use C∗ as C[t] and repeat the process until convergence.

A summary of the complete algorithm is shown in figure 5.5.

5.5.1 Graph Construction

In this section we will describe how to use graphcuts to find the MAP solution for the shiftmap

prior Pr(S) which is formulated as an undirected MRF model. For simplicity we will first

explain how to build the graph using single pixels. We will then show how to construct the

graph for patches in section 5.5.2. We use the graph construction proposed by Moore et al. [128]

which is an efficient implementation of a special case of the more general graph construction

used in [151, 87]. We will now explain this in detail.

Given a library labelmap, our goal is to find the best set of shifts S to transform (warp)

this library labelmap such that it becomes closer to the ground truth for a given test image.

We associate two shifts with each pixel, which represent the horizontal and the vertical shifts

corresponding to that pixel. We define the problem as a Markov random field (MRF) model. We

then use graphcuts to alternately find globally optimal solutions to the vertical and horizontal

shifts (see Figure 5.6). For this purpose we write the model in terms of an energy minimization

problem:

E =
∑
p

Dp(up) +
∑
p,q∈N

Vpq(up, uq) (5.18)

where up is a shift assigned to pixel p from a finite shift set U . The first term Dp represents

the penalty for pixel p having a shift of up. This is equivalent to the prior probability term



5.5. Optimizing the full posterior probability 97

pi
xe
ls

+ + +

a) b) c)

Figure 5.7: Graph construction for shiftmap prior: (a) Example graph construction with two pixels

p and q, each of which can take a shift l ∈ {0, 1, 2}. Unary costs are associated with vertical links.

Dq
p is the unary cost for assigning the kth shift to pixel p. Pairwise costs are represented on horizontal

links. V mn
pq is the pairwise cost for assigning the mth shift to pixel p and the nth shift to pixel q. The

assignment of the shift is determined by which vertical links are cut. (b) Topmost vertical links are cut

and so both pixels are assigned shifts of zero. (c) Cuts where the shifts change sequentially also incur a

pairwise cost. (images adapted from [128])

logPr(Ci|Si) in Equation 5.14. In particular, we use the maximum likelihood segmented im-

age C[t], and for each pixel we penalize the shifts that result in an estimated labelmap C∗ where

C[t]
i 6= C∗i .

The term Vpq in Equation 5.18 is the pairwise term which encourages the neighbouring

pixels to have the same shift. This is equivalent to the shiftmap prior term logPr(S) in Equation

5.14, where there is a cost for the 4-connected neighbours to have different shifts.

We will now describe how to build the graph corresponding to Equation 5.18. For an

image with M × N pixels and |U| possible shifts, we build a graph with |U − 1| layers of

M ×N nodes (figure 5.7). The topmost layer connects to the source and the bottom most layer

connects to the sink. For example, for aM×N image the possible horizontal and vertical shifts

are U = {−(M − 1) : +(M − 1)} and U = {−(N − 1) : +(N − 1)} respectively. In practice

however, we only use a subset of these shifts by limiting the possible shifts to a subset K ⊂ U .

We discuss how to set the parameter K in sections 5.7 and 5.8.

Links between layers in the graph (and the source and sink) have capacities given by the

unary terms Dk
p which represent the cost at pixel p for assigning the shift k. Links between

neighbouring pixels p and q within layer l have capacities given by pairwise terms V l,l−1
pq which

denotes the pairwise cost for assigning pixel p to a shift l and pixel q to a shift l−1. An example
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Figure 5.8: Imposing sequential constraints: We impose sequential constraints on the labels. This

means that the shifts of neighbouring pixels are not allowed to differ by more than one. This constraint

is aimed at avoiding large shifts. (a) Diagonal constraint links with infinite cost prevent non-sequential

labels. (b) For pixel p to have a shift of 2 and pixel q to have a shift of zero, we must now also cut one

of these diagonal links: the cost for this solution becomes infinite and it will never be chosen (images

adapted from [128]).

graph construction with two pixels p and q, is shown in figure 5.7, where each pixel can take a

shift u ∈ {0, 1, 2}.

When constructing the graph we impose sequential constraints on the labels. This means

that the labels of neighbouring pixels are not allowed to differ by more than one. This constraint

is aimed at avoiding large shifts. Thus, it preserves the structure of the object in terms of

warping. Figure 5.6b-c, show two example shiftmaps where this constraint was applied. The

arrows denote the shifts and the length of each arrow represents the length of the shift. Note,

that the length of the neighbouring arrows do not differ by more than one, and so they represent

a smooth transformation. To force this constraint, Moore et al. [128] introduce a set of diagonal

links (see figure 5.8) with infinite capacity between the node at {x, y, l} and {x, y − 1, l −

1},{x, y + 1, l − 1},{x − 1, y, l − 1} and {x + 1, y, l − 1} to prevent non-sequential labels at

neighbouring pixels.

These diagonal constraint links in the current graph construction, effectively allow the

shifts to have a difference of one per pixel. For example, for pixel p to have a shift of 2 and

pixel q to have a shift of zero, we must now also cut one of these diagonal links: the cost for

this solution becomes infinite and it will never be chosen. To find the final solution, we add the
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e) f) g) h)
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(0,0)

(0,+193)

d)

(0,+193)
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(0,+35) (0,+110)
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Figure 5.9: Patch-based shiftmaps for image retargeting to reduce width. (a) The output image R is

created (b) by copying patches of the original image L. Note these patches are of fixed size but can come

from anywhere in the input image (i.e. they can be overlapping). (c) The output image is composed of

a grid of non-overlapping patches. (d) The underlying representation is a shiftmap S which contains a

relative shift at each patch position in the output image that specifies the 2d offset to the position in the

original image that will be copied from. For example S(1,2) = (0, 193) implies that the patch in the

row 1 and column 2 of the grid comes from the patch at position ((1−1)∗ν+1+0, (2−1)∗ν+1+193)

in the input image, where ν denotes the patch size. Figures (e-h) illustrate that shiftmap can be used in a

similar manner to edit labelmaps. The input and the output are now labelmaps and the shiftmap defines

relative shifts over patches containing class labels.

diagonal constraint term to the cost function in Equation 5.18 as follows:

E(x) =
∑
p∈P

Dp(up) +
∑
p,q∈N

Vpq(up, uq) +
∑
p,q∈M

Wpq(up, uq) (5.19)

where W represents the diagonal interaction terms that restricts the set of possible solutions

on the graph over a set of labels U with neighbourhood systemM. This cost function is then

minimized exactly in polynomial time by finding the minimum cut in the constructed graph.

5.5.2 Graph construction for patches

We will now describe the graph construction for patches. The main difference is that, previously

there were as many nodes in the graph as there were pixels in the given image. When using

patches however, we only need as many nodes as there are patches in the image. The diagonal

links are also adapted to account for different patch sizes. We will first recall the shiftmap

concept for patches and then describe how to build the corresponding graph.
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Figure 5.10: Graph construction for the patch-based model (a) To adapt the sequential constraint

for the patch-based model we introduce new diagonal constraint links to all nodes in the layer that is n

nodes above, where n is set to be the size of the patch. (b) An example graph for 2 × 2 patches, where

the diagonal links are added to all nodes in the layer that is two nodes above. Thus we allow a maximum

difference of two in the shifts for neighbouring pixels. (c) As such, when we try to have a shift difference

of greater than 2, e.g. for pixel p to have a shift of 3 and pixel q to have a shift of zero, we must now cut

one of these diagonal links: the cost for this solution becomes infinite and it will never be chosen (this is

similar to the case in figure 5.8b). The graph can be similarly constructed for larger patch sizes.

The shiftmap concept as described in section 5.3 is easily extendable to define relative

shifts over patches of an image/labelmap, instead of pixels. The output labelmap is created by

a grid of non-overlapping patches. Note, a patch could contain more than one class label. A

shiftmap S is then defined such that, the relative shift S(u, v), now represents a shift for the

patch at the uth row and the vth column of a given patch grid. The output patch is derived from

the input image as follows:

R(u, v) = L((u− 1) ∗ ν + 1 + tu, (v − 1) ∗ ν + 1 + tv) (5.20)

where ν denotes the patch size. For example, consider the output labelmap being composed

of a 2 × 2 grid of patches, where patches are 3 × 3 pixels. A shiftmap of S(1,2) = (0, 193)

means that the patch in the first row and the second column would come from a patch at position

((1− 1) ∗ 3 + 1 + 0, (2− 1) ∗ 3 + 1 + 193) i.e. the position (1, 197) in the input image. Figure

5.9 illustrates how we use shiftmap with patches. We will make use of this when dealing with

patches in our experimental section.

We will now describe how to build the graph corresponding to Equation 5.18 for patches.
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Consider an image composed of an P × Q grid of patches and |U| possible labels, we build

a graph with |U − 1| layers of P × Q nodes. As before, the topmost layer connects to the

source and the bottom most layer connects to the sink. Since the labels represent shifts in our

case, all possible labels correspond to all possible shifts. For example for a M ×N image the

possible horizontal and vertical shifts are U = {−(M −ν) : +(M −ν)} and U = {−(N −ν) :

+(N − ν)} respectively, where ν represents the patch size . In practice however, we only use a

subset of these shifts by limiting the possible labels to a subset K ⊂ U . We discuss how to set

the parameter K in sections 5.7 and 5.8. The unary and data terms remain as before, we only

change the diagonal constraints which we will now describe.

The diagonal constraint links described in section 5.5.1 effectively allowed the shifts to

differ by one per pixel. For example, for pixel p to have a shift of 2 and pixel q to have a shift

of zero, we had to cut one of these diagonal links: the cost for the solution would then become

infinite and it would never be chosen. This is no longer sufficient when we use a patch-based

model. This is because the patches are of size ν × ν where ν ≥ 2. This means that the current

model allows one shift difference per every two or more pixels. To resolve this, we introduce

new diagonal constraint links to all nodes in the n layers above, where n is set to be the size of

the patch. Figure 5.10 shows the graph construction corresponding to 2×2 pixel patches, where

we allow a maximum difference of 2 labels for each neighbouring nodes. Therefore, when we

try to have a shift difference of greater than 2, e.g. for pixel p to have a shift of 3 and pixel q

to have a shift of zero, we must now cut one of these diagonal links: the cost for this solution

becomes infinite and will never be chosen. These diagonal links allow a more smooth warping

of a library labelmap using patches. The graph can be similarly constructed for larger patch

sizes.

5.5.3 Using multiple library labelmaps

So far, we have assumed that there is a single library labelmap that is similar to the ground-

truth test labelmap. We will now drop this assumption and describe how to use multiple library

labelmaps.

Previously, we chose a single library labelmap which we used to find the best shiftmap S.

Instead, we are now going to find a shiftmap S for each of the labelmaps in the library L. We

will then choose the library labelmap L∗ that results in a shiftmap with the minimum cost.

If the size of the library is very large, the above process may not be efficient. Therefore,

in practice we first select a subset of the library that are most similar to the current estimate

of the class labels C[t]. To choose this subset, we use the log data likelihood logPr(X|Ci)

summed across all classes to rank the library labelmaps and choose the top k. Once we have
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this subset, we then find the best labelmap L∗ as we described above. We empirically choose k

in the experimental sections 5.7.3 and 5.8.3.

A summary of the shiftmap prior algorithm is presented in Algorithm 1 (on the following

page) in the form of a pseudocode.

Algorithm 1 Semantic segmentation using the Shiftmap prior
Input: X, L

find Pr(X|C) {Find data likelihood for each class}

load Pr(Ci) {Retrieve the per pixel prior for each class}

C[t] ←
∏

i Pr(xi|Ci)Pr(Ci)
Pr(X) {Find the MAP segmentation of class labels}

Lsub ← select k library labelmaps from L most similar to C[t]

for cIter = 1 to maxIter do {Loop over iterations}

if cIter = 1 then {If this is the first iteration}

for cLib to k do

[shiftmapCost(cLib), S(:, :, cLib) ] ← findBestShiftmap[Lsub(:, :, cLib)] {Find the

best shiftmap given current library labelmap}

end for

minIndx← find[shiftmapCost= min(shiftmapCost)]

L∗ ← Lsub(:, :,minIdx) {Choose the library labelmap with the minimum shiftmap

cost}

S[t] ← S(:, :,minIndx) {Store the shiftmap for the chosen labelmap}

else

[shiftmapCost, S[t] ] = findBestShiftmap[L∗, S[t]] {Find the best shiftmap given L∗}

end if

Update Pr(C|S)

Update C[t]

end for

C∗ ← C[t]

S∗ ← S[t]

Output: C∗

5.6 Databases

We test our algorithm on two datasets: faces, and human brains which are described in the

following sections.
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a) Library Images

b) Library Labelmaps

c) A Transformed Library Image

Figure 5.11: Face library images and labelmaps Example library images (a) and their corresponding

labelmaps (b). To increase the size of the library, we randomly perturb the library labelmaps using a set

of transformations including a rotation of [−5 : 5] degrees and a scaling of [0.75, 1.25]. Some of these

transformed labelmaps are shown in (c) for an example library image.

5.6.1 Faces

We test our model using images from “Labeled Faces in the Wild” [84]. These are media images

collected from internet data using a Viola-Jones face detector, thus representing a moderately

unconstrained sample. The original images were registered such that the face appears at the

center of the image. To add some noise to the position of each class label we randomly jitter the

images using horizonal and vertical shifts of between {−26, 26} and {−10, 10} respectively.

We segmented 150 images (250× 250 pixels) by hand into 13 classes to provide ground truth.

The classes used were background, hair, skin, eyes, nose, mouth, ears, eyebrows, moustache,

glasses, hat, earrings, beard. The library consisted of the labelmaps of 100 images, and the

remaining 50 images were used to test the model. To increase computational efficiency, the

images and labelmaps were resized to 72 × 72 pixels. Some example library images and their

corresponding labelmaps are shown in figure 5.11a-b.

5.6.2 Human brains

We also test our model on a subset of the NIH Pediatric Database [49]. This database contains

MR images and correlated clinical/behavioural data on over 500 children, newborn to young

adults. We selected 150 T1 weighted MR volumes and their corresponding labelmaps. The la-

belmaps contained the pixel labels for three classes: white matter, gray matter and cerebrospinal
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a) Library Images

b) Library Labelmaps

Figure 5.12: Brain library images and labelmaps Example library images (a) and their corresponding

labelmaps (b). The labelmaps contain the pixel labels for three classes: white matter (red), gray matter

(yellow) and cerebrospinal fluid (cyan). Note, to add some noise to the position of each class label

we randomly jitter the images using horizonal and vertical shifts of between {−10, 10} and {−5, 5}

respectively.

fluid (CSF). The volumes contained 189 slices, each with a resolution of 197 × 233 pixels. In

an attempt to have images with all three classes present, we chose the slice 120 for all of the

images. The original brain images are registered to a common template. To add some noise to

the position of each class label we randomly jitter the images using horizonal and vertical shifts

of between {−10, 10} and {−5, 5} respectively. We subsequently resized the images to 72×72

pixels. As before, we selected 100 images and their labelmaps for the library and 50 for testing.

Some example library images and their corresponding labelmaps are shown in figure 5.12.

5.7 Experiments on semantic segmentation of faces

In this section we will test our model on segmenting parts of a face. The goal is to label each

pixel as belonging to one of 13 classes: background, eye, nose, mouth, ear, hair, eyebrows,

moustache, glasses, skin, hat, earrings, beard. Given a test image, we create a labelmap the

same size as the test image which contains the estimated class labels for each pixel. The es-

timated labelmap is made up of a set of non-overlapping patches of a fixed size. The library

patches are the same size as the test patches, however they can come from anywhere in the

library labelmap.

The test set contains 50 images, and their corresponding labelmaps which are used as

ground truth segmentation of parts. The library contains 100 images and their corresponding

labelmaps which are not in the test set. The library images are used to learn a Gaussian colour

likelihood model for each of the 13 classes. We also learn a per pixel prior for each of the

classes using the library labelmaps.

To increase the size of the library, we randomly perturb the library labelmaps using a set
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of transformations including a rotation of [−5 : 5] degrees and a scaling of [0.75, 1.25]. This

results in 23 transformations of each library labelmap making the total size of the library 2300

labelmaps. Figure 5.11c shows some of these transformations for one library image.

To evaluate the performance of our algorithm we use the F0.5 measure. This is the har-

monic mean of precision and recall which is commonly used to evaluate segmentation models

and is defined as:

Fβ = (1 + β2)
precision.recall

(β2.precision) + recall
(5.21)

where we set the term β to be 0.5, which means precision is weighted higher that recall. This

implies that we encourage the estimated labelmap to contain more of the correct class label in

the relevant regions as opposed to finding all of the pixels of a given class in the image. For

example, a result where part of the ear is labelled as nose will have a very low score.

We manually fix some of the model parameters such as the maximum shift allowed in the

shiftmap prior and the ρ term in Equation 5.6. This is done as follows. We set the maximum

shift allowed in the shiftmap prior, to the maximum disparity between two corresponding points

across all library images. For example, we measured the distance between the corner of the left

eye in one library image and the corner of the left eye in all the other library images, we repeated

this for a few random examples and set the largest possible shift to be the maximum shift. For

all the face experiments, the maximum shift was set to 15 pixels in each of the horizontal and

vertical directions.

We investigate the effects of the remaining model parameters in the next few sections

5.7.1 Experiment 1: Varying the parameter λ1

In this experiment we investigate the effect of the λ1 parameter in Equation 5.17 on segmenting

parts of a face. We vary this term as λ1 = {0.1, 0.2, ...0.9, 1} while we keep the rest of the

parameters fixed as follows: we set the maximum number of shifts used in MRF to 15, we set

the number of closest library labelmaps to 1 and we set the term λ2 in Equation 5.17 to 1 and

we set the θcorrect term to be 0.88 based on some preliminary experiments.

The term λ1 weights the probability of each class conditioned on the shiftmap i.e.

Pr(C|S). Therefore a low value of λ1 will encourage the estimated labelmap C∗ to look

similar to the segmentation using the data likelihood only i.e. C[t] and a high value of λ1 will

encourage the C∗ to look similar to the warped library labelmap R = Li+S(i).

We plot the results in figure 5.13a for a number of different patch sizes such as 3×3, 6×6,

9 × 9, 12 × 12 pixel patches, as well as 1 × 1 pixel patches i.e. using all of the pixels in the

image. The x-axis represents the value used for λ1 and the y-axis shows the average F0.5 for
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Figure 5.13: The effect of the parameters λ1 and λ2 on semantic segmentation of faces: (a) We vary

the term λ1 while keeping λ2 = 1 and holding all the other model parameters fixed. The y-axis shows

the average F-measure for all 50 test images. We repeat this experiment for a variety of patch-sizes as

well as using pixels. The results show that the term λ1 has a great influence on the performance and it

mostly peaks at λ1 = 0.3 or λ1 = 0.2. The best performance is achieved by 9× 9 patches and λ1 = 0.3,

with an F-measure of 0.519. (b) We now keep λ1 fixed at the best value for each patch-size and vary

the term λ2 while holding the rest of the model parameters fixed. Note, the results improve when λ2 is

tuned, however the effect of this term is less compared to λ1. Performance peaks with 9× 9 patches and

λ2 = 1.4, with an F-measure of 0.524. For comparison, we also plot the result for using a per-pixel

prior. In all of the cases the shiftmap prior improves the per-pixel prior results.

all 50 library images. Since some of the classes are rare such as hat or earrings, we only use

the classes present in each image to calculate the F-measure. The results show that the term λ1

has a great influence on the performance and this mostly peaks at λ1 = 0.3 or 0.2. The best

performance is achieved by 9× 9 patches and λ1 = 0.3, with an F-measure of 0.519. The term

λ1 weights the probability of each class conditioned on the shiftmap i.e. Pr(C|S). Therefore, a

low value of λ1 means that, a set of shifts that create a labelmap similar to the current maximum

likelihood estimate, become more probable.

Figure 5.14 shows the qualitative results of varying λ1. As expected, the results suggest

that as the value of λ1 increases the final segmentation C∗ look more similar to the warped

labelmap.

The likelihood model only performs very weakly for the face dataset with an F-measure

of 0.261, since we only have 100 images to learn a colour model. Therefore for comparison,

we plot the MAP segmentation results using the likelihood and the learned per-pixel class label
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Figure 5.14: Qualitative results of varying the parameters λ1 on semantic segmentation of faces:

The term λ1 weights the probability of each class conditioned on the shiftmap i.e. Pr(C|S). Therefore a

low value of λ1 will encourage the estimated labelmap C∗ to look similar to the segmentation using the

data likelihood only i.e. C[t] and a high value of λ1 will encourage the C∗ to look similar to the warped

labelmap L + L. This figure shows a typical result which demonstrates this effect. Where (a) shows the

data likelihood segmentation C[t], (c) shows the warped library image L + L. (b) As we would expect

as the value of λ1 increases the final segmentation C∗ look more similar to the warped labelmap.

prior instead (the yellow line) which results in a F0.5 = 0.488. It is clear that the shiftmap

algorithm improves the baseline MAP model.

We also plot the qualitative results of changing the patch size in figure 5.15. We observe

that when using single pixels 5.15c, the warped labelmap and therefore the final estimate C∗

has many holes (e.g. on the outline of the hair and the eyes). This is because each pixel is

allowed to change label individually to match the C[t] (we assume no or low pairwise penalty

here). However as we increase the patch-size 5.15(d-f), the warped labelmap has a smoother

outline and less holes or isolated class labels. This is because it is very unlikely that we observe

an isolated patch or a patch with a hole in the library labelmap.

5.7.2 Experiment 2: Varying the parameter λ2

In this experiment we vary the term λ2 in Equation 5.17 which is the weighting for the pairwise

term in the MRF, while holding all the other parameters fixed as in experiment 1, and fixing the

term λ1 to have the optimal value for each patch size. As before we repeat this experiment for

different patch sizes as well as for pixels.

The term λ2 is the weighting for the pairwise cost in the MRF model. If the value of

λ2 is low, it implies that there is a relatively small penalty for the neighbouring pixels to have

different labels. Therefore it allows a large warping of the library labelmap. Alternatively, a

high value of λ2 incurs a large penalty for neighbouring pixels to have different labels. This
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a) C[t]

b) Ground truth

c) 1x1 Pixels d) 3x3 Patches e) 6x6 Patches e) 9x9 Patches f) 12x12 Patches

Warped Labelmap Warped Labelmap Warped Labelmap Warped Labelmap Warped Labelmap

C* C* C* C* C*

Figure 5.15: Qualitative results of varying patch sizes on semantic segmentation of faces: (a) We

show (a) the maximum likelihood segmentation of face, (b) the ground-truth segmentation and (c-f) the

warped library image (top) and final estimated class labels C∗ (bottom) for several patch sizes. The

patch size is illustrated by the pink square at the top left corner of each image. We observe that (c) when

using single pixels, the warped labelmap and therefore the final estimate C∗ has many holes (e.g. on

the outline of the hair and the eyes). This is because each pixel is allowed to change label individually

to match the C[t] (We assume no or low pairwise penalty here). However as we increase the patch-size

(d-f) the warped labelmap has a smoother outline and less holes or isolated class labels. This is because

it very unlikely that we observe an isolated patch or a patch with a hole in the library labelmap.

results in a shiftmap with a more smooth transition between different labels. Thus, it allows a

limited warping of the library labelmap.

We plot the results for λ2 = [0, 2] in figure 5.13b. The x-axis represents the value used

for λ2 and the y-axis shows the average non-zero F0.5 for all 50 library images. Note, the

results improve when λ2 is tuned, however the effect of this term is less, compared to that of

λ1. The best performance is achieved by 9 × 9 patches and λ2 = 1.4, with an F-measure of

0.524. For comparison, we also plot the result for using a per-pixel prior. In all of the cases

the shiftmap prior improves the per-pixel prior results, as well as outperforming the ‘likelihood

only’ results of F = 0.261. The term λ2 represents the ratio between unary and pairwise costs

in the MRF used in shiftmap prior. These are also known as the data term and the prior term

respectively. A high value of λ2 suggests that the algorithm performs best when there is a high

smoothness constraint. In terms of the MRF this means that there is a relatively high penalty for

the neighbouring patches to have different shifts. This results in copying patches as verbatim

from the library labelmap.
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Figure 5.16: Qualitative results of varying the parameters λ2 on semantic segmentation of faces:

The term λ2 is the weighting for the pairwise cost in the MRF model. Show some examples of the library

labelmap (left), the shiftmap (middle), where each color represent a different label, and the warped

labelmap (right). We observe that (a) when λ2 is set to be zero (i.e. no penalty for neighbours having

different labels), the resulting shiftmap is very noisy in that it allows all the possible shifts which largely

warps the library labelmap. (b-d) As we increase the value of λ2 the shiftmap becomes smoother as

large regions are forced to have a similar label. (e,f) When λ2 becomes very high, it incurs a very large

penalty for the labels to change at all. Therefore, the cheapest solution is when there is a zero shift which

results in the library labelmap not being warped at all.

Figure 5.16 shows the qualitative results of varying λ2. The results confirm that as we

increase the value of λ2 the shiftmap becomes smoother which results in a smoother warping

of the library labelmap.

To verify that the warping of the library image using the shiftmap is improving the overall

segmentation we repeat the above experiment for 3×3 patches with the best parameters for this

patch size which are λ1 = 0.3 and λ2 = 1.2, this time using the most likely library labelmap

without warping with a shiftmap. This results in a much worse performance with a F-measure

of 0.373 compared to F = 0.519 with the shiftmap prior.

5.7.3 Experiment 3: Varying the number of top matched library labelmaps

So far we have used a single library labelmap which was the most likely match to the data

likelihood. This implies that we have assumed that there is a single labelmap in the library

which looks very similar to the true test class labels. This is however not always true as we

may have a small and limited library. In this experiment we relax this assumption by choosing

more than one library image and letting the model decide which one to use to predict the class

labels of the test image. In the first iteration of the model we choose the top l most likely library

labelmaps. We perform the shiftmap alignment. We then choose the library labelmap with the
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Figure 5.17: The effect of the number of top matched library images and the term θcorrect on se-

mantic segmentation of faces: (a) We relax the assumption of having only one library image that closely

matched the test image. Instead we select a number of library images that closely match the test data.

We vary this number to [1,2,3,5,10,15,20] and show the effect this has on the results. The performance

peaks with 6 × 6 patches and 5 library labelmaps with an F-measure of 0.525. (b) We vary the term

θcorrect which is the used as a measure of evidence for class labels given the shiftmap. The results peak

with θcorrect = 0.78 and an F-measure of 0.527.

minimum cost (i.e. the maximum Pr(S)).

In this experiment we vary the number of top matched library images as l =

{1, 2, 3, 4, 5, 10, 15, 20} by keeping the optimal parameters λ1, λ2 for each patch size, while

holding the rest of the parameters the same as in experiment 1. The results are shown in figure

5.17a. The performance peaks with 6×6 patches and 5 library labelmaps with an F-measure of

0.525. This suggests that the top most likely match might not necessarily the best in predicting

the class labels.

5.7.4 Experiment 4: Varying the term θcorrect

The term θcorrect is a parameter of the probability of each class label conditioned on the

shiftmap Pr(C|S). If this term is set to be close to 1, it implies that probability Pr(Ci|Si)

becomes high when the pixel in the warped image resulting from the shift Si has the same value

as the current class label Ci. This probability is low otherwise.

In this experiment we vary the value of θcorrect, while keeping the rest of the model pa-

rameters fixed at their optimal value. The results are shown in figure 5.17b. The performance

peaks with θcorrect = 0.78. This suggests that a high value of θcorrect is preferred which means

the probabilities Pr(Ci|Si) become more certain. However, if they become over-confident i.e.
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Figure 5.18: Example results on semantic segmentation of faces using the shiftmap prior:Figure

5.18a-e, show successful examples where the shiftmap prior not only improved the F-measure, but it

also manages to recover some classes that were initially missed by the per-pixel prior. For example,

glasses the nose and the eyebrows are recovered in (a),(b-c), and (e) respectively. In (d) despite a weak

likelihood model the shiftmap prior has improved the segmentation result. (f)Unfortunately in the case

of an extremely poor likelihood estimate the shiftmap has a slim chance of recovering.
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θcorrect ≥ 0.93 the model will only allow very small contributions from the other components

of the model such as the data likelihood, which in this case has resulted in reduced performance.

5.7.5 Sample Results

Some example results are shown in figure 5.18. The first and the last column show the test image

and the ground truth class labels respectively. The second column shows the segmentation result

using just the per-pixel prior and the third column shows the segmentation results when adding

the shiftmap prior. Figure 5.18a-d, show successful examples where the shiftmap prior not

only improves the F-measure, but it also manages to recover some classes that were initially

missed by the per-pixel prior. For example in figure 5.18a, the shiftmap prior recovers glasses.

Similarly in figure 5.18b-c, the nose is recovered. This shows that the prior knows something

about the structure of faces, which is achieved through the library labelmaps. In figure 5.18d

the shiftmap prior has improved the segmentation result despite a weak likelihood model.

Figure 5.18e shows an example where the likelihood model has failed to predict long hair

and has completely missed the eyebrows. The shiftmap prior in this example, has successfully

recovered the eyebrows, but has not managed to recover the long hair. This is because allowing

a large region in the estimated image to have a label which does not agree with the likelihood

model, has a high cost. In spite of this the shiftmap prior has improved the final F-measure.

Finally, 5.18f shows an example of extremely weak likelihood segmentation. Unfortunately

under such circumstances the shiftmap has a very slim chance of improving the results. The

results of the face segmentation experiments are summarized in Table 5.1.

Likelihood Likelihood + pp-Prior Shiftmap Prior-Pixels Shiftmap Prior 6× 6 Patches

0.261 0.488 0.522 0.527

Table 5.1: The average F0.5 measure for the results on semantic segmentation of faces across

50 test images.

5.8 Experiments on semantic segmentation of brains

In this section we will test our algorithm on semantic segmentation of human brains. Given a

slice from an MRI scan of a brain, we will label each pixel as belonging to one the following

three classes: white matter, gray matter and CSF. As before, the predicted labelmap is made

up of a set of non-overlapping patches of a fixed size which are extracted from a library of

labelmaps.

We test our algorithm on 50 MRI brain images randomly selected from the database de-
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Figure 5.19: The effect of the parameters λ1 and λ2 on semantic segmentation of human brains:

(a) We vary the term λ1 while keeping λ2 = 1 and holding all the other model parameters fixed. The

y-axis shows the average F-measure for all 50 test images. We repeat this experiment for a variety of

patch-sizes as well as using pixels. The optimal value for all patch sizes is λ1 = 0.3. The overall best

performance is achieved by 6 × 6 patches with an F-measure of 0.661. (b) We now keep λ1 fixed at the

0.3 and vary the term λ2 while holding the rest of the model parameters fixed. The performance peaks

with 1 × 1 pixel patches, with λ2 = 0.2, with an F-measure of 0.672. For comparison, we also plot

the segmentation result using ‘likelihood only’ (yellow dotted line) and likelihood plus per-pixel prior

(yellow line). In all of the cases the shiftmap prior achieves superior results.

scribed in section 5.6. These images represent the 120th slice from 50 different individuals.

The library consists of brain images extracted from the 120th of 100 different individuals that

were not in the test set. The library images are used to learn a Gaussian colour model for each

class, as a data likelihood model. The corresponding library labelmaps are used to learn a per-

pixel prior for each class label. To evaluate the performance of our algorithm we use the F0.5

measure.

As before we manually set some of the model parameters. To set the maximum allowed

label (shift) in the shiftmap prior, we follow the same procedure as in the face experiment. In

this case we set the maximum allowed shift to be 7 pixels in each of the horizontal and vertical

directions. We set the ρ term to be 1−θcorrect
K where K is the number of class labels. The

pairwise cost then becomes − log[1− θcorrectK].

In the rest of this section, we will present experiments to evaluate the effects of the pa-

rameters λ1, λ2 and the number of the chosen library labelmaps, on the performance of our

algorithm.
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5.8.1 Experiment 5: Varying the parameter λ1

In this experiment we investigate the effect of the λ1 parameter in Equation 5.17 on semantic

segmentation of brains. We vary this term as λ1 = {0.1, 0.2, ...0.9, 1} while we keep the rest

of the parameters fixed as follows: we set the maximum number of shifts used in the MRF to 7,

we set the number of closest library labelmaps to 1 and we set the term λ2 in Equation 5.17 to

1 and we set the θcorrect term to be 0.88.

Figure 5.19a shows the results of varying the term λ1 for a number of different patch

sizes such as 3 × 3, 6 × 6, 9 × 9, 12 × 12 pixel patches, as well as using 1 × 1 pixel patches

i.e. all of the pixels in the image. The x-axis represents the value used for λ1 and the y-axis

shows the average F0.5 for all 50 library images. Once again the results show that the term λ1

has a greatly influence the results. The performance of all patch sizes consistently peaks with

λ1 = 0.3. The best performance is achieved by 6 × 6 patches, with an F-measure of 0.661.

A small λ1 encourages the predicted labelmap to be similar to the current estimate of labels

from the likelihood model. For comparison, we plot the segmentation results using only the

likelihood as well as the likelihood plus the learned per-pixel class label prior (MAP). These

results are a F0.5 = 0.597 and F0.5 = 0.636 respectively. Once again, the shiftmap prior

improves the performance.

5.8.2 Experiment 6: Varying the parameter λ2

In this experiment we vary the term λ2 in Equation 5.17 which is the weighting for the pairwise

term in the MRF, while holding all the other parameters fixed as in experiment 1, and fixing

the term λ1 = 0.3. As before we repeat this experiment for different patch sizes as well as for

pixels.

We plot the results for λ2 = [0, 2] in figure 5.19b. The x-axis represents the value used

for λ2 and the y-axis shows the average non-zero F0.5 for all 50 library images. Note, the

results improve when λ2 is tuned, however the effect of this term is less, compared to that of

λ1. The performance increases with a smaller value of λ2, which was not the case in our face

experiments. A small value of λ2, means that the pairwise cost in the shiftmap is relatively

low compared to the unary or the data cost. Thus, the shiftmap is allowed make more changes

to the library labelmap making it closer to the current maximum likelihood estimate of class

labels. This observation suggests that, compared to the labelmaps in the face library, the MRI

labelmaps in the library are not very similar to those of the test images. This is most probably

due to the fact that the fine details of the brain structure is different for two different individuals.

This also explains why the shiftmap model prefers a finer patch-size or even single pixels to best

predict the test labelmap. Another possible explanation is that the likelihood is weaker in this
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Figure 5.20: The effect of the number of top matched library images and the term θcorrect on seman-

tic segmentation of brains: (a) We relax the assumption of having only one library image that closely

matched the test image. Instead we select a number of library images that closely match the test data. We

vary this number to [1,2,3,5,10,15,20]. Despite the slight increase in performance for some patch-sizes

such as 1 × 1 and 3 × 3, overall the effect of changing the number of matched library labelmaps is not

considerable. This may suggest that the library does not contain labelmaps that are very similar to the

test images. (b) We vary the term θcorrect which is the used as a measure of evidence for class labels

given the shiftmap. The results peak with θcorrect ≥ 0.73 and an F-measure of 0.677

case, hence it is better to make more changes. The best performance is achieved by 1× 1 pixels

and λ2 = 0.2, with an F-measure of 0.672. The second best result is achieved by 3× 3 patches

and λ2 = 0.3 with and F-measure of 0.665.

5.8.3 Experiment 7: Varying the number of top matched library labelmaps

So far we have used a single library labelmap which was the most likely match to the data

likelihood. This implies that we have assumed that there is a single labelmap in the library

which looks very similar to the true test class labels. This is however not always true as we

may have a small and limited library. In this experiment we relax this assumption by choosing

more than one library images and letting the model decide which one to use to predict the class

labels of the test image. In the first iteration we choose the top l most likely library labelmaps,

perform shiftmap alignment and then choose the library labelmap with the minimum cost.

In this experiment we vary the number of top matched library images as l =

{1, 2, 3, 4, 5, 10, 15} by keeping the optimal parameters λ1, λ2 for each patch size, while

holding the rest of the parameters the same as in experiment 4. The results are shown in figure

5.20a. Despite the slight increase in performance for some patch-sizes such as 1× 1 and 3× 3,
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Figure 5.21: Example results on semantic segmentation of brains using the shiftmap prior: The

colors cyan, yellow and red represent CSF, gray matter and the white matter respectively. (a-b) Examples

where the gray matter pixels are largely missed by the likelihood and the per-pixel prior models, but are

partially recovered with the shiftmap prior, resulting in an increased F-measure. (c) An example where

the details of the class structure is improved by having more continuous regions of CSF and gray matter.

(d) The shiftmap model improves the final segmentation, despite the likelihood and per-pixel prior model

having worse segmentation than the ‘likelihood only’ model.

the overall effect of changing the number of matched library labelmaps is not considerable.

This once again suggests that the library does not contain labelmaps that are very similar to the

test images.

5.8.4 Experiment 8: Varying the term θcorrect

The term θcorrect is a parameter of the probability of each class label conditioned on the

shiftmap Pr(C|S). If this term is set to be close to 1. This implies that probability Pr(Ci|Si)

becomes high when the pixel in the warped image resulting from the shift Si has the same value

as the current class label Ci. This probability is low otherwise.

In this experiment we vary the value of θcorrect, while keeping the rest of the model pa-

rameters fixed at their optimal value. The results are shown in figure 5.20b. The performance
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peaks with θcorrect ≥ 0.73. The overall effect of this term however, is not very significant in

comparison to the rest of the model parameters.

5.8.5 Sample Results

Some example results of semantic segmentation of brains are shown in figure 5.21. The first

and the last columns show the test image and the ground truth respectively. The second through

forth columns show the segmentation results using the likelihood model only, likelihood plus

per-pixel label prior and with added shiftmap prior respectively. The colors cyan, yellow and

red represent CSF, gray matter and the white matter respectively. The images in figure 5.21a-b,

show two examples where one of the classes in this case the gray matter was largely missed

in the segmentation results of the likelihood and the per-pixel prior models, but was partially

recovered with the shiftmap prior. This results in an increased F-measure. Figure 5.21c shows

an example where the details of the class structure were improved by having more continuous

regions of CSF and gray matter. Finally, figure 5.21d showcases an example where using the

per-pixel prior results in a worse segmentation than the ‘likelihood only’ model, but the shiftmap

model improves the final segmentation regardless. We would like to note that the shiftmap prior

has improved the segmentation results of each and every one of the 50 test images. The results

of the brain segmentation are summarized in table 5.2.

Likelihood Likelihood + pp-Prior Shiftmap Prior 3× 3 Patches Shiftmap Prior-Pixels

0.597 0.636 0.665 0.677

Table 5.2: The average F0.5 measure for results of semantic segmentation of brains across 50

test images.

5.9 Summary and Discussion

We have presented a patch-based model for semantic segmentation of objects which we have

tested on segmenting faces and human brains. The work carried out in this chapter has made

several contributions towards our research objectives: (i) we have demonstrated yet another

object-related task in which patch-based representation has been used successfully. (ii) We

have used a patch-based model to represent two object classes which are completely different

in structure (e.g. faces and brains) and (iii) have shown that patches have been robust to the

issues of variation in pose, and scale.

Our model was inspired by recent advances in computer graphics. In particular we have

extended the ‘shiftmap’ model proposed by Pritch et al. [142] to work with class labels, and
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used it in the form of a prior to segment parts of an object. Our results show that using a superior

segmentation results are achieved when using a shiftmap prior. The results demonstrate that

large patch sizes such as 9 × 9 pixels are optimal for semantic segmentation of faces, with

an F-measure of 0.524. This compares favorably to that of the likelihood and per-pixel prior

model which achieves an F-measure of 0.488. However, when dealing with segmentation of

human brains, our results demonstrate that smaller patches such as 3× 3 pixels, or using pixels

entirely instead of patches is preferred. We suspect this is the between individual variation that

exist in MRI scans of the brain. Thus, using pixels will help capturing such fine details when

segmenting parts of a brain.

Our model has several interesting properties: (i) we have proposed a patch-based prior

which can be combined with any likelihood model in Bayes rule to produce segmentation re-

sults. (ii) The data driven approach of our model allows us to exploit large databases of a given

object, in the form of a library, to find a suitable segmentation. (ii) Our model is tolerant to the

errors of the likelihood model and the lack of strong similarity between the library labelmaps

and a given test image. Of course, if the likelihood is extremely weak, the final segmentation

will not be excellent. However, the model parameters are set up such that, when the likelihood

is weak, it relies more on the chosen library labelmap to predict the class label. In most cases,

this results in the shiftmap prior recovering some classes that the likelihood had initially missed

such as the nose, or the eyebrows in face images. (iv) The generative nature of our model, al-

lows us to generate novel labelmaps by perturbing the class label of a given library image while

preserving the structure of the object. (v) Finally, the model can be formulated as an energy

maximization problem to exploit efficient learning and inference algorithms.

Our model has connections to the belief propagation algorithm. The iterative nature of

our model to find the MAP estimate of the class labels, where at each iteration one term is

fixed and the other two terms are updated, is similar to the message passing system in the belief

propagation algorithm. In our model, there are three factors that contribute to the conditional

probability of class labels given the test image. First, there is the likelihood of the data given

each class label, then there is the probability of each class label conditioned on the shiftmap

(i.e. the unary term), and the prior the over shiftmap (the pairwise term). To update the current

estimate of the class labels at each iteration, we first keep the likelihood term fixed, and update

the unary and the pairwise terms. Then we keep the unary and the pairwise terms fixed and

update the likelihood term. This is in a way similar to the message update in the belief propa-

gation method, in a sense that each time the contribution of two factors are used to update the

third factor.
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Our method is similar to the “Multiscale Conditional Random Fields for Image Labelling”

by He et. al [77], in that we both use patches to represent class labels: our predicted labelmap

is created as a composition of non-overlapping patches. In [77] features are used at two dif-

ference scales: global and regional. The former includes a set of larger patches which capture

information about context and the relative position of class labels, and the latter captures finer

details such as edges etc. The chosen library labelmap for each test image in our algorithm, can

be thought of as the global feature in [77] which captures the structure of the object, while the

patches extracted from this labelmap are equivalent to the regional features in [77] which are

chosen such that they best represent the given test image. Note, despite using similar represen-

tation, we have a simpler inference model compared to [77], since we do not require sampling

during inference.

Currently our model is used as a prior, guided by a likelihood term to predict a labelmap.

However, the shiftmap prior can potentially be combined with a set of grammar rules such as

those used in [73] to generate new labelmaps. The core of our model is based on permuting

labelmaps in a consistent manner to create an unseen labelmap of any size or to complete a

missing part of an image. For example, we could create a new labelmap by taking parts from

several different library images and combining them using the alpha expansion algorithm [22].

Furthermore, one can enforce a set of rules in terms of a cost function to guide the generated

output. For example, consider the task of generating a new house labelmap. We can start with

an incomplete labelmap, where part of the roof, a window and part of the door are given. We

can then use the shiftmap prior to complete the object according to the given grammar e.g. the

roof is always higher than the door. Possible future directions include application of labelmap

generation using shiftmap for medical image atlas generation and registration.
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Chapter 6

Patch-based Identification

6.1 Introduction

So far we have presented patch-based models for categorization, regression and semantic seg-

mentation tasks. To extend the diversity of tasks that patch-based representation can handle,

in this chapter we will explore a patch-based representation for a completely different type of

problem : identity recognition. In particular we will apply this to face recognition. The model

we develop in this chapter shares the core properties of other models we have developed so far:

(i) an image is represented as a set of non-overlapping regular grid of patches and (ii) there is

a library of patches from which the test image is approximated. However, there is one major

difference and that is the fact that we are now going to learn the library of patches from a set of

training data, unlike our previous models where the library was predefined.

The area of face recognition has grown significantly in importance during the past decade.

Several factors contribute to this growth. First, the availability of powerful computers and

real-time hardware makes the face recognitions task easier to implement. Second, the emer-

gence of large databases such as FERET and XM2VTS, provide sample images for testing the

algorithms. Finally, systematic empirical evaluation techniques (FRT), allow for benchmark

comparison of face recognition algorithms.

Face recognition is often associated with access control and surveillance. However, an

automated non-invasive technique for establishing identity would have pervasive applications:

almost every human-machine interface could be improved if the machine recognized the user

and tailored its features according to their preferences. For example, a personal computer with

a camera attached, could use face recognition to log in an individual instead of using the con-

ventional username and password protocol. Face recognition can also be used for archiving

personal photographs, where it can associate faces with persons. Subsequently, queries can be

run on pictures to return all pictures with a specific group of people together. Other example
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applications include virtual reality and video games.

6.2 Motivation

Most face recognition methods make decisions based on a distance measure. Images are pro-

jected down to a lower-dimensional feature space. Distances between feature space represen-

tations are used as the basis for recognition judgements. For example in an identification task,

distance-based algorithms choose the gallery feature that is nearest to the probe feature.

A large body of research has investigated suitable choices of feature space within which to

calculate distances. The goal is to find a space where position correlates strongly with identity,

but not with extraneous factors such as pose and illumination. Turk and Pentland [161] selected

the linear feature space that best approximated the image data. Subsequent work has variously

investigated different linear feature spaces [14, 12, 44] and distance metrics [136].

One drawback of these distance-based methods is that they almost always entail a uni-

modal model of faces: they model the face manifold with a single cluster. However, in reality

the face manifold has a more complex structure. Moreover, the distance metric (discriminabil-

ity) is usually treated as independent of position in feature space. This implicitly assumes that

the degree of uncertainty about identity (noise) is independent of the position in the feature

space. This is almost certainly not the case.

Despite these problems, a particularly successful subclass of distance-based methods ap-

plies linear discriminant analysis (LDA) to face recognition [14, 167]. These techniques select

the subspace that maximizes the ratio of between-class variation to within-class variation. LDA

methods effectively eliminate or downweight directions in which the signal to noise ratio is bad.

Unfortunately, these algorithms cannot distinguish noise from unmodeled, but essentially

deterministic factors such as pose or expression changes. For example, consider matching

images of smiling and frowning faces: the LDA approach does not exploit the fact that the

smiling face might be entirely predictable from the frowning version. Instead, it treats the

mouth region as uncertain and bases its judgements on other parts of the image. In some cases

this can be disastrous: with large pose changes, almost all of the identity signal is discarded as

it shares the same subspace as the image changes due to pose variation. We propose a novel

representation for faces that can potentially resolve these issues. Our approach is inspired by

recent successes of patch-based methods which have shown to be highly effective for texture

generation [46], super-resolution [62] and image denoising [148]. Our model represents a face

image as a composite picture made up of non-overlapping smaller patches. Hence, we call it a

“Mosaicface”. Each patch is taken from a library of discrete possibilities, which is learnt in the
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Figure 6.1: Patch-based representation for face recognition: (a) The face image is treated as a com-

posite picture made up of non-overlapping smaller patches (a mosaicface). Each patch is taken from a

fixed library. Observed image data consists of the library patches plus additive noise sampled from a

per-pixel Gaussian noise model (top right indicates noise amplitude). (b) The image representation now

consists of a list of indices to the library. Distance-based methods are inadequate here as there is no

easy way to define distance between two such lists.

training stage. The face is now represented by a list of indices to the library (see figure 6.1).

Unfortunately, this representation poses a problem: there is no obvious way to a define

a distance metric between two such lists. To resolve this problem, we adopt the approach of

[140] who applied a probabilistic framework to face recognition. They described each face as

generated from an underlying hidden variable (a Latent Identity Variable or LIV) in the presence

of additive noise. One noticeable aspect of their model is that the decision was not based on

distances, and is hence suitable for our purposes.

In section 6.3 we describe the LIV approach of [140]. In section 6.4 we describe the basic

mosaicface model. Results of face identification experiments on the XM2VTS database [3]

and comparison to current methods are presented in section 6.4.2. In section 6.5 we extend

this method to allow the algorithm to associate patches with multiple different appearances.

For example, it might equate an open and blinking eye if they seem to be the same eye. We

demonstrate the efficacy of this approach using a portion of the XM2VTS database with large

lighting variations in section 6.5.2. We also test our method in the existence of expression

variation and large image variation on FERET database in sections 6.5.3 and 6.5.4 respectively,

before drawing conclusions in section 6.6.
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6.3 Latent Identity Variables (LIVs)

We employ the probabilistic recognition framework used in [140]. In this framework the data

xij are generated from lower dimensional latent variables hi. These variables are considered

to represent identity and are called Latent Identity Variables (LIV). Each observed data point is

generated by:

xij = f(hi, θ) + εij , (6.1)

where xij is the jth image of the ith individual and f(hi, θ) is a function of the identity variables

hi. The term θ contains the parameters of the model and εij is an additive Gaussian noise term

which explains any remaining variance and has a covariance Σ. To complete the model we need

to define the prior probability distribution for latent variables denoted by Pr(hi). The probability

distribution of the data conditioned on the latent identity variables hi is thus:

Pr(xij |hi) = G[f(hi, θ),Σ] (6.2)

where G[a,B] is a Gaussian with mean a and covariance B. There have been various examples

based on this framework such as using tied factor analysis (TFA) [141] and probabilistic linear

discriminant analysis (PLDA)[139].

Learning: We aim to learn the parameters θ and Σ given data xij . It would be easy to estimate

these parameters if we knew hi. Likewise if we knew the parameters θ and Σ, it would be

easy to infer the latent variables hi. This type of problem is well suited to the Expectation-

Maximization (EM) algorithm [40] which iteratively maximizes

Q(Θt,Θt−1) =
I∑
i=1

J∑
j=1

∫
Pr(hi|xi1...iJ ,Θt−1) log[Pr(xij ,hi)]dhi (6.3)

where t is the iteration index and Θ = {θ,Σ}. In particular we alternate between (i) estimating a

full posterior over the latent variables hi (Expectation or E-Step) and (ii) maximizing Equation

6.3 with respect to Θt (Maximization or M-Step). In the E-step, we fix the parameters Θ =

{θ,Σ} and calculate a posterior probability distribution over all the latent variables hi given

data xij . By Bayes’ rule:

Pr(hi|xi1...iJ ,Θ) =

∏J
j=1 Pr(xij |hi,Θ)Pr(hi)

Pr(xi1...iJ |Θ)
(6.4)

where we have assumed that each image of the same person was generated independently.

Notice that we constrain the EM algorithm so that if two training samples belong to the same

individual they are forced to have the same latent variable. In the parlance of the learning

community, we are employing “equivalence constraints” [155]. In the M-Step, we maximize
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Figure 6.2: Face identification by model compar-

ison: Standard LIV model. Observed gallery faces

x1,x2 and observed probe xp are explained by un-

derlying identity variables h. In model M1 the

probe xp matches gallery face x1 and hence they

share identity variable h1. In modelM2 the probe

xp matches gallery face x2 and these share an iden-

tity variable h2.

the criteria in Equation 6.3 with respect to parameters Θ = {θ,Σ} by taking the derivative and

setting it to zero.

Recognition: In recognition, we compare the likelihood of the data under different models.

Each model assigns identity variables to explain the observed faces in a different way. If the

current model hypothesis is that two faces belong to the same person, they share the same iden-

tity variable hi. If not, then they have different identity variables. To calculate the likelihood

of each of these models we need to know the values of the constituent identity variables hi.

Unfortunately, noise in the generation process means we can never know the exact values of

these variables. Therefore we marginalize (integrate out) these variables. The inference process

therefore assesses the probability that two faces had a common identity cause hi, without ever

committing to exactly what that cause was.

Figure 6.2 shows the models for face identification with two gallery images x1,x2 and

a probe image xp. Model M1 associates the probe image with the first image in the gallery

and ModelM2 considers the probe image as matching to the second image in the gallery. The

likelihood of the data under these two models are

Pr(x1,x2,xp|M1) =
∫
Pr(x1,xp|h1)Pr(h1)dh1

∫
Pr(x2|h2)Pr(h2)dh2

(6.5)

Pr(x1,x2,xp|M2) =
∫
Pr(x1|h1)Pr(h1)dh1

∫
Pr(x2,xp|h2)Pr(h2)dh2

Note that both likelihood and prior terms in these expressions were part of the original model

definition. We combine these models, with suitable priors and calculate a posterior probability

for the model (and hence the match) using Bayes’ rule:

Pr(Mk|x1,x2,xp) =
Pr(x1,x2,xp|Mk)Pr(Mk)∑N
l=1 Pr(x1,x2,xp|Ml)Pr(Ml)

(6.6)
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Figure 6.3: Learnt patch library. For each position in the image we learn a library containing several

patches (here 4). At every position there is a covariance representing how much the training images

deviate from the library. In this case the covariance is axis-oriented Gaussian noise, with amplitude as

depicted.

6.4 Mosaicface Model
In this section we present our patch based LIV model. We divide the image into patches, and

learn a separate model for each patch. These patch models are assumed to be independent so we

take the product of patch likelihoods to calculate the overall likelihood in Equation 6.6. With

this in mind, we now describe the model for one patch. Each patch is generated by:

xij = µhi
+ εij (6.7)

where xij denotes the pixel intensities of the patch belonging to the jth sample of the ith

individual. Equation 6.7 states that the observed data xij is generated by taking the hith library

patch µhi
and adding the zero mean Gaussian noise term εij with covariance Σhi

. Notice that

instead of a continuous representation of identity, the variable hi is discrete and can take values

hi ∈ {1..L} where L is the number of the library items.

More formally, we can write the conditional probability of the data sample xij given the

identity variable hi as

Pr(xij |hi) = G[µhi
,Σhi

] (6.8)

Pr(hi = l) = fl (6.9)

where fl is the prior probability of choosing the lth patch.

Learning: We aim to learn the model parameters Θ = {µ1..L,Σ1..L, f1..L} corresponding

to the library patches, associated uncertainties and prior probabilities. In the E-Step we calculate
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the posterior distribution Pr(hi|xi1...iJ ,Θt−1) over the latent identity variables hi given all the

samples of a person xi1...iJ as in Equation 6.4.

In the M-Step we update the parameters of the model by maximizing the criteria in Equa-

tion 6.3 with respect to each of Θ = {µ1..L,Σ1..L, f1..L}. Taking derivatives with respect to the

components of Θ, equating to zero and re-arranging gives the following update equations.

µl=

∑I
i=1

∑J
j=1 Pr(hi= l|xij)xij∑I

i=1

∑J
j=1 Pr(hi= l|xij)

Σl=

∑I
i=1

∑J
j=1 Pr(hi= l|xij)(xij − µl)(xij − µl)T∑I

i=1

∑J
j=1 Pr(hi = l|xij)

fl=

∑I
i=1

∑J
j=1 Pr(hi= l|xij)∑L

l=1

∑I
i=1

∑J
j=1 Pr(hi= l|xij)

(6.10)

where the posterior probabilities Pr(hi= l|xij) were calculated in the E-Step using the previous

parameters Θt−1. In terms of mixture of Gaussians, the parameters in Equation 6.10 represent

the parameters of the L mixture components. In particular, the terms µl and Σl represent the

mean and the covariance of the lth Gaussian component and the term fl denotes the mixture

weight (i.e. the prior probability of the lth Gaussian component).

Examples of the learnt library contents for a small scale model are depicted in figure 6.3.

6.4.1 Experiment 1 - Mosaicface Identification

In Experiment 1 we investigate face identification with the mosaicface model on the XM2VTS

database [3]. Initially, we perform only minimal preprocessing. Faces are segmented from

the background using an iterative graph-cuts procedure. An affine warp is used to register the

images to a standard template using three hand-marked keypoints. The final image size was

70 × 70 × 3 and the raw pixels were used as input. No photometric normalization occurred.

The training and test images are non-overlapping and the gallery and probe images are from

different sessions (the first and last respectively). These characteristics mean that recognition

performance will never be high, but it is easy to compare the relative inferential power of algo-

rithms. We divided the data into a training set of 195 individuals and a test set of 100 individuals.

The training individuals each have 8 sample images. The test set contains 100 gallery images

and 100 matching probe images taken from the first and last recording sessions respectively.

We train models with grid resolutions 4 × 4, 8 × 8, 16 × 16, 20 × 20 and 32 × 32 patches.

For each resolution, we train libraries containing L=2,4,8 and 16 different patch images. We

restrict the full model so that the covariances Σ1...L are axis oriented (diagonal) and the same

for all patches. We use 20 iterations of the EM algorithm to learn each model, initializing all

parameters to random values.
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ML Signal

ML Noise

Noise Amp

ML Noise

Figure 6.4: Maximum likelihood (ML) reconstruction of probe and gallery images: The ML signal

consists of the patches that are most likely to be responsible for the observed images. The ML noise is

the difference between the images and the ML signal. We model this as being drawn from a per-pixel

Gaussian distribution with amplitude as shown on the right.

The mosaicface model is tested on 100 different probe images. In recognition patches are

assumed to be independent. Hence the total likelihood of the image is given by

Pr(X1..K |Mn) =
K∏
k=1

Pr(Xk|Mn) (6.11)

where Pr(Xk|Mn) is the likelihood of the k’th patch under this model. Each of these in-

dividual patch likelihoods were calculated by marginalizing over the identity variable h as in

Equation 6.6. In this case h is a discrete variable, so the integrals become sums. We combine

these likelihoods with uniform priors and calculate a posterior probability for the match using

Equation 6.6. We consider the recognition to be correct when the maximum a posteriori (MAP)

model matches the probe image with the correct gallery image. In recognition we are implic-

itly asking whether probe and gallery images had the same underlying cause (library patch).

We actually considered all possible values of the library patch when we marginalized over the

uncertainty in the identity variable h = {1 . . . L} that represents the index to the library. How-

ever, for the purposes of visualization, we display the most probable cause (library patch) at

each position in the image. Figure 6.4 shows an example of this visualization. The probe and

gallery faces are both approximated by a common cause, but the noise differs in each case - this

explains the difference between the observed images.

In figure 6.5a we plot the percentage of correct matches as a function of the n×n resolution

of the patch grid and the number of items in the library for each patch. Recognition performance

depends on the number of library items with a peak at 16 items. The results also demonstrate
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Figure 6.5: Results on XM2VTS database: (a) % correct closed-set identification performance for

mosaicface model on XM2VTS database as a function of grid resolution (abscissa) and number of library

items L (different curves). (b) % correct closed-set identification performance on XM2VTS database for

PCA[161], LDA [14] and dual space LDA [167] algorithms.

a performance change as the image is divided into a finer resolution grid, reaching a peak with

20 × 20 patches. Peak overall observed performance was 92% correct recognition with a grid

resolution of 16×16 patches and learning L=16 or L=32 library items for each patch. The same

performance was observed with 20× 20 patches and L=8 or L=16 library items per patch.

To establish exactly how powerful our technique is, we plot percentage of correct matches

for the same task for a number of distance-based models in figure 6.5b. In each case, we show

performance as a function of the dimension of the subspace. For LDA models, the dimension

of both the within- and between-individual subspaces were set to this value. None of these

algorithms approaches the performance of mosaicfaces. The best result is for dualspace LDA

[167] with 84% recognition. We conclude that despite only having a discrete representation of

the face, the mosaicfaces algorithm can produce competitive inferential power, when datasets

and the experimental protocol are exactly matched.

6.4.2 Experiment 2 - Mosaicfaces with Gabor Features

Raw luminance values are not ideal inputs for face recognition. In order to improve perfor-

mance, we pre-processed the image by filtering with a bank of 24 Gabor filters (4 orientations

× 3 scales × 2 phases). We retained only responses at the center of each image grid position,

so that the pixel data from each original grid position was replaced by a vector of length 24

regardless of the number of pixels in the original patch. Each vector of Gabor responses was

normalized to have length one. We used orientations of 0, π/2, π, 3π/2. The angular frequen-

cies of the sinusoidal components were 1/4, 1/8 and 1/16 for spherical envelopes of standard

deviation 2,4 and 8 pixels respectively.



6.5. Mosaicface Model with Multiple Patch Appearances 129

Subspace Dimension

%
 C

or
re

ct
 R

ec
og

ni
tio

n

0 32 4 2  8 16 20
0

20

40

60

80

100

32 Lib Items
16 Lib Items
8   Lib Items
4   Lib Items
2   Lib Items

Figure 6.6: Results using Gabor features %

correct first match identification performance for

mosaicface model on Gabor-filtered XM2VTS

database as a function of grid resolution (abcissa)

and number of library items (different curves). Note

slight performance increase compared to figure 6.5.

In figure 6.6 we plot the percentage of correct matches as a function of the n×n resolution

of the patch grid and the number of items in the library for each patch, but now using the

Gabor filtered data. Recognition performance follows the same general pattern as in figure 6.5,

with a peak performance near 16 library items and a 20×20 grid resolution. However, peak

performance was now increased from 92% with pixel data to 96% with Gabor responses. This

was achieved with 16 library items and a grid size of 20×20. It is possible that a denser sampling

of Gabor filter data in terms of position, scale and orientation would increase performance

further.

6.5 Mosaicface Model with Multiple Patch Appearances

The mosaicface representation produces promising results, but like many algorithms, it cannot

cope well with very non-linear changes in the image. For example, if someone smiles, the

relevant image patches may completely change their appearance. Other algorithms such as

LDA [14] deal with this problem by systematically downweighting parts of the image that vary

in this way. However, this discards valuable information: the smile tells us something about the

neutral expression and vice-versa. In this section we present a system that attempts to exploit

this information to improve recognition performance.

In order to do this, we introduce a second set of latent variables into our model, which lie

between the latent identity variables hi and the images xij (see figure 6.7). We term these latent

appearance variables, and denote them by aij . In the learning phase we now learn multiple

patches associated with the same identity hi = l. The appearance variable aij (which is dis-

crete) determines which of these patches we see in a particular image. However, in recognition,

the appearances are all treated as equivalent so we can match a smiling to a neutral face. In

terms of conditional probabilities, we write:
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Figure 6.7: Face identification by model compar-

ison: Appearance Model There is now a second

latent variable a1,2,p associated with each data

point x1,2,p that modulates the appearance of the

observed data.

Pr(xij|hi = l, aij = m) = G[µl,m,Σl,m] (6.12)

Pr(hi = l, aij = m) = flm (6.13)

Notice that the Gaussian that describes the image patch is now indexed by both the identity

and appearance variables. Once more, however, the identity variable remains the same for all

images of the same person (it is only indexed by i). However, the appearance variable can take

different values for every image (it is indexed by i and j).

6.5.1 Learning Multiple Appearances

E-Step: In the E-Step, we use all of the images xi1...iJ of the i’th individual to calculate joint

posterior distribution over all the latent variables pertaining to these images (hi and ai...j). In

order to do this, we decompose this joint posterior into:

Pr(hi, ai1...iJ |xi1...iJ)=
J∏
j=1

Pr(aij |hi,xij)Pr(hi|xi1...iJ) (6.14)

We treat each of these components in turn. By Bayes rule, the terms in the product can be

calculated as:

Pr(aij |hi,xij)=
Pr(xij|aij , hi)Pr(aij |hi)∑
aij
Pr(xij|aij , hi)Pr(aij |hi)

(6.15)

where
∑

aij
indicates summing over all the discrete values aij = m of the appearance variable.

the likelihood term comes from Equation 6.12 and the prior term comes from the discrete dis-

tribution in Equation 6.13. The second term in Equation 6.14 depends on all of the images for

that individual and is also calculated by Bayes rule:

Pr(hi|xij . . .xiJ)=

∏J
j=1 Pr(xij |hi)Pr(hi)∑

hi

∏J
j=1 Pr(xij |hi)Pr(hi)

(6.16)

=

∏
j

∑
aij
Pr(xij, aij |hi)Pr(hi)∑

hi

∏J
j=1

∑
aij
Pr(xij, aij |hi)Pr(hi)
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Figure 6.8: Results of multiple-appearance

model on XM2VTS database % correct identifica-

tion performance for XM2VTS database as a func-

tion of the number of appearances in the model and

number of library items. Patch grid resolution was

held constant at 16 × 16. Extending the standard

model by adding more appearances does not im-

prove results.

where
∑

hi
indicates summing over all possible values hi = l of the discrete identity vari-

able. The likelihood of the data given the identity variable is calculated by marginalizing the

joint likelihood with respect to the identity variable. The components of this can be found in

Equations 6.12 and 6.14.

M-Step: In the M-Step, we update the model parameters Θ = {flm, µlm,Σlm} by maximizing

the equivalent expression to Equation 6.3. Taking derivatives with respect to these parameters,

setting to zero and re-arranging yields the following update rules:

µ
[t+1]
lm =

∑i=I,j=J
i=1,j=1 Pr(hi= l, aij =m|xij,Θ[t])xij∑i=I,j=J
i=1,j=1 Pr(hi= l, aij =m|xij,Θ[t])

(6.17)

Σ[t+1]
lm =

∑i=I,j=J
i=1,j=1 Pr(hi= l, aij =m|xij,Θ[t])(xij − µ

[t]
lm)2∑i=I,j=J

i=1,j=1 Pr(hi = l, aij = m|xij,Θ[t])

f
[t+1]
lm =

∑i=I,j=J
i=1,j=1 Pr(aij =m|hi= l,xij)Pr(hi= l|xij)∑

hi

∑
aij
Pr(hi, aij)

Recognition with Multiple Appearances

As before we pose recognition as model comparison (see figure 6.7). Now there are two latent

variables (identity and appearance) and we must marginalize over both to calculate the data

likelihoods for Equation 6.6. For example, the likelihood that gallery image x1 and probe

image xp were generated from the same identity variable h1 is given by:

Pr(x1,p) =
∑
h1

∑
a1

Pr(x1, h1, a1)
∑
ap

Pr(xp, h1, ap)

 (6.18)

The order of summation has the following interpretation. We are calculating the likelihood that

the data points have the same identity regardless of the appearance of each. Similarly to section

6.3 we combine these likelihoods, with suitable priors and calculate a posterior probability for

the match using Equation 6.6.
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Experiment 3 replicates exactly the protocol of Experiment 2. However, we now train

and test with 1, 2 or 4 appearances for each library item, depending on the condition. The

condition with 1 appearance is identical to the original mosaicface model from Experiment 2.

To simplify matters we restrict our comparison to a single grid size (16× 16). In figure 6.8 we

examine the effect of using multiple appearances for the frontal XM2VTS data as a function of

the number of items in the library. For the range of parameters chosen, peak performance was

94% and was achieved with 2 appearances and 32 library items. The results do not demonstrate

a clear advantage to using multiple appearances. We conjecture that the variation between

probe and gallery images is small and attributable to causes such as weak registration process,

small lighting, pose and illumination effects. With our limited training set, it is not possible

to comprehensively learn about these variations, although our model is theoretically capable of

this.

6.5.2 Experiment 3 - Modeling Illumination Change

A more suitable test for the multiple appearance model is to recognize faces across large

changes in viewing conditions. To this end, we consider matching using the lighting subset

of the XM2VTS database. In particular, we use images of 295 individuals viewed across four

different sessions in two different lighting conditions (frontal and left-side). All data was pre-

processed as in Experiments 2 and 3. Once more the first 195 individuals were used for training

and the last 100 used for testing identification performance. Gallery and probe sets were taken

from the first and last recording session respectively. All gallery data was front-lit whereas all

probe data was side-lit. However, neither training nor identification algorithms were provided

information concerning the particular lighting condition in any image. As in experiment 2 we

learnt models with 1, 2 and 4 appearances, but used only one grid resolution (16×16). In figure

6.9, we show an example gallery / probe pair, with the relevant library patches, learnt with 2

different appearances. Note, in each of the ML signal images, the model chose a patch from the

library with the appearance that correctly matches each of the probe or the gallery images. For

example, a front-lit appearance patch was chosen for the gallery image, whereas a side-lit patch

was chosen for the probe image.

In figure 6.10a we plot % first match identification performance of our algorithm as a

function of the number of appearance components in the model and the number of identity

items in the library (compare to figure 6.8). Using data with large illumination changes there

is a clear change in pattern. With only a single appearance for each item in the library (the

original mosaicface model), performance is very poor. For example, with 16 library items

only 47% performance was achieved (compared to 92% for data without large illumination
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Figure 6.9: Multiple appearance model: illumination variation Each patch can now take multiple

appearances that are treated equivalently in recognition. In this case the library (right) consists of four

different identities, each of which has two possible appearances. This allows us to equate the front-lit

face (top) with the side-lit face (bottom).

differences). However, when we add a second appearance component to the model we get

a peak performance of 92% (compared to a peak of 94% for data without large illumination

differences. With four appearance components there is a slight performance decrease (note there

are genuinely only two difference viewing conditions), but results are still far superior to the

original mosaicface model. We conclude that for this situation the multiple appearances model

copes well with the changes in image illumination. To establish the relative inferential power

of our algorithm we also measured performance for exactly the same dataset with standard

distance-based inference methods. We concatenate all of the Gabor responses from all grid

positions to make one large image vector and use this 16× 16× 24 data vector as the input data

representation. In figure 6.10b we plot results of several comparable distance-based algorithms

for illumination data (compare to figure 6.5b). The large illumination variation is sufficient

to severely limit recognition performance, which is comparable to that for the original (single

appearance) mosaicface model. It is notable that the linear discriminant analysis based method

does not cope well with the large lighting variation despite exploiting knowledge about within-

individual variation: this algorithm downweights information about identity that is in the same

subspace as the lighting change. In contrast, our algorithm exploits this information.
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Figure 6.10: Results on XM2VTS Lighting database (a) multiple-appearance model: % correct clas-

sification as a function of the number of patch appearances and library items, using a 16×16 patch-grid.

The single appearance model performs poorly. Adding a second appearance significantly improves the

performance. (b) distance based methods: % correct classification as a function of subspace dimension.

Performance is significantly retarded relative to when there is no illumination variation (figure 6.5b)
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Figure 6.11: Multiple appearance model: expression variation. Each patch can now take multiple

appearances that are treated equivalently in recognition. In this case the library (right) consists of four

different identities, each of which has two possible appearances. This allows us to equate the neutral

face (top) with the smiling face (bottom).
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Figure 6.12: Results of multiple-appearance model on FERET database (a) The results of mosaicface

appearance model on FERET database fa/fb subset. Once more performance improves with increasing

patch resolution and size of the learnt library. Peak performance is at 91% correct. (b) Performance on

same task for PCA[161], LDA [14], Laplacianfaces [76] and dual space LDA [167] algorithms.

6.5.3 Experiment 4 - Expression Variation

The multiple-appearance model improved performance in the XM2VTS database which only

contains minor variability compared to real-world images. In Experiment 3, we examine per-

formance using the fa/fb subset of the FERET database which contains significant expression

variation. We divide the database into a training set of 400 individuals and a test set of 100 indi-

viduals. The training individuals have two sample images (one smiling and one neutral) which

are used to learn the mosaicface appearance model. The test set contains 100 gallery (neutral

expression) and 100 probe (smiling) images. We learn models with two appearances to account

for the two facial expressions in the dataset. Figure 6.11 shows examples of probe/gallery

images with library patches learnt with 2 appearances.

In figure 6.12a we plot percent correct recognition performance as a function of the (n ×

n) patch grid resolution and the number of items in the library for the FERET data. Peak

performance for this dataset was 91% correct recognition with 16×16 patch grid resolution, L=8

library patches and M=2 latent appearance variables. In figure 6.12b we plot performance for

four contemporary algorithms as a function of the subspace dimension. The peak performance

was for the LDA method with 82% correct. We had conjectured that the mosaicface model

would show a relative improvement in this case as it is designed to cope with the nonlinear

expression variation. While we still achieve better results, there is little evidence that the gap

has widened. One possible reason for this is that all models have just concluded that the mouth

region is unreliable. In the mosaicface model, this would occur if the library variances in this

part of the image were larger so the contribution to the overall likelihood was small. In LDA
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models this would occur if the mouth pixels were downweighted in all of the basis functions.

We may have inadvertently assessed the ability of these algorithms to ignore the mouth region

rather than to exploit it.

6.5.4 Experiment 5 - Large Image Variation

In this experiment we cropped out a 40 × 24 mouth region from the original 70 × 70 image

for all of the training and test data in Experiment 4. Now each algorithm is forced to exploit

the mouth region. We repeated experiment 4 with these smaller regions. For the mosaicface

model, the peak performance was 33% correct with 8 × 8 grid resolution, L = 16 library

patches and M=2 appearances. For the competing approaches peak performance was for the

LDA algorithm [14] which yielded to 25% correct recognition with a subspace dimension of

128. The mosaicfaces algorithm does extract information from highly varying regions more

successfully than competing methods.

6.6 Summary and Discussion

We have introduced a discrete patch-based representation for face recognition and demonstrated

good recognition performance. For exactly matched tasks, the mosaicfaces algorithm achieved

higher performance than several contemporary face recognition algorithms, one of which [167]

has been demonstrated to provide state of the art performance. As such, we have made progress

towards our first research objective of finding a representation that is applicable to many object-

related tasks.

Our algorithm is not the first face recognition method to use patches. However, to the

best of our knowledge, it is the first to use an entirely discrete representation of face images.

Most previous work (e.g. [118]) that extracts patches use conventional distance based methods

on the (still continuous) patch data. In other areas of computer vision, discrete patch-based

representations have been learnt from training data (e.g. [104, 135]). However, the task of

identity recognition has not been addressed.

We extended the mosaicface model to account for multiple possible appearances and

demonstrate that this improves results. This extension provides a truly multi-modal proba-

bilistic representation of a given individual. Interestingly, the elastic bunch graph matching

algorithm of Wiskott et al. [173] used a very similar multi-modal representation to help register

images for face recognition. However, after registration, this representation was abandoned and

a conventional distance measure was used to support recognition.

We demonstrate that the multi-appearance approach supports better recognition perfor-

mance than LDA based methods [14, 167] in the presence of large illumination differences.
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Our method explicitly learns about the equivalence of image data under different illuminations.

However, the LDA based methods down-weight the importance of image differences that lin-

early co-vary with luminance changes and hence throw out useful information.

The mosaicface model describes the face manifold with a mixture of Gaussians, which

is an extremely general model: with large amounts of training data we could potentially learn

a detailed model of the non-linear variations in face images due to both signal (identity) and

noise (illumination, expression and pose). This is a promising approach for recognition but

caution should be applied in interpreting our results: although we produce high performance in

the presence of illumination variation, it should be emphasized that we observed the same illu-

mination variation in both training and test. It is not known how performance would generalize

to previously unseen viewing conditions.

Since we originally carried out this work, Fu and Prince [66] have developed a multi-scale

PLDA model, which investigates the effect of the spatial support of signal and noise basis func-

tion in frontal face recognition. Their model is similar to mosaicfaces in that they represent face

images as a set of non-overlapping patches. However, the latent variables used in their model

are continuous as opposed to the discrete identity variables used in mosaicfaces. They conclude

that performance is improved when signal is modeled locally and noise is modeled globally.

They report state of the art performance on XM2VTS and Yale databases, in the presence of

illumination and expression variation. Note, the multi-scale idea proposed by Fu and Prince

can be combined with our mosaicfaces model with relative ease, to improve performance.

Our algorithm uses a compact representation of faces (we need only store the likelihood

that each patch was generated from each library element), and most of these will be near to zero.

To consider a new face, we must calculate all of these likelihoods. This operation is comparable

in computational demand to projection to feature space in distance-based methods. We have not

yet exploited one advantage of our mosaicface model which is to learn individual covariances

for each patch. This effectively means that estimates of the within-individual noise vary de-

pending on the position in image space, and may yield increased performance. A variational

version in which we allow uncertainty in the library contents may also improve results.

The mosaicface model developed in this chapter, shares the core properties of all previ-

ous models developed in this thesis: (i) it represents images as a set of non-overlapping grid

of patches and (ii) there is a library of patches which is used to approximate a test images.

However, there are some fundamental differences. Most significant difference is that, in the

mosaicface model we learn the library patches from a set of training examples using a Mixture

of Gaussian model. In addition, the library images are not registered to the test image using
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cross-correlation as we did in our segmentation model. Moreover, we have learned the equiva-

lences of different patches in the mosaicface model. This means if two training samples belong

to the same individual they are forced to have the same latent variable. Such “equivalence

constraints” were not used in our previous models.

One of the limitations of our model is that it requires the faces to be registered to a com-

mon template. Hence, it may not work very well on faces with varying poses, as it is difficult to

register such faces. Since this work, Li and Prince [107] have proposed a method based on prob-

abilistic linear discriminant analysis (PLDA) which integrates face registration and recognition,

and demonstrate improved performance in both frontal and cross-pose face recognition.

Unfortunately, our face recognition model was only tested on constrained databases such

as FERET and XM2VTS, due to the lack of unconstrained databases at the time. Since this

work was done, unconstrained databases such as ‘labeled faces in the wild’ (LFW) [84] was

released, which contains face images taken outdoors and in uncontrolled environments. Our

model has not been tested on this database, but we suspect that it would not produce cutting

edge results without modification.
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Chapter 7

Conclusions

We have investigated patch-based object representation for a series of computer vision tasks

including: classification, regression, semantic segmentation and identification. Our models

were motivated by two limitations of most current models: (i) the lack of extensive testing on

large databases of “real world images” and (ii) the lack of a general object representation model

that can be applied to a variety of object classes without major alterations. To overcome the

first limitation we build models that are capable of handling large databases of images taken

in uncontrolled environments, and to resolve the latter we use a patch-based representation and

show that it can be successfully used for a variety of vision tasks. We will first summarize

the key findings of each chapter in section 7.1. We will then present the main contributions

in section 7.2. Finally, we will discuss limitations and future work in sections 7.3 and 7.4

respectively.

7.1 Summary

In chapter 3, we have presented a model for within-category classification. This is the task of

predicting attributes that are unique to an object class. For example, we build a model that

can predict gender and eyewear in faces, pose in pedestrians and phenotype in cells. Note,

the within-category classification task is different from conventional object categorization as it

involves distinguishing subtle differences within an object category. The key contributions of

the presented model are: (i) it exploits very large available datasets (tens of thousands) unlike

some current methods such as SVM which have problems handling large input data. (ii) It

achieves state of the art results on gender (in uncontrolled environments) and cell phenotype

with 90% and 100% correct classification rates respectively. (iii) It has lower complexity than

competing methods such as SVMs. Our model scales linearly with the size of the training and

library data in training and the size of the library in testing. (iv) The model currently runs at

2 seconds per image on a standard PC and can be easily coded in a Graphics Processing Unit
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(GPU) to achieve a much higher speed. The main finding areas follows: (i) 6× 6 pixel patches

preserve enough information about object attributes such as gender, pose and phenotype when

using 60 × 60 pixel images. (ii) A Bayesian formulation of the problem results in significant

increase in performance compared to the maximum likelihood solution.

We have also presented a model for regression type problems in chapter 4 which we have

applied to face pose estimation. The key contributions of this model are as follows: (i) to

the best of our knowledge this is the first time patch-based representation has been used for

solving a regression problem. (ii) we have provided the first large database of face pose in

uncontrolled environments which has received interest in the wider computer vision community.

(iii) We achieve promising results (0.88 correlation between the true and the estimated pose).

(iv) The encoding of the test images in terms of an index to patch library results in a high data

compression. We require 27 times less space to store the image. (v) Our model has much less

complexity compared to manifold learning methods such as LLE and Isomap. (vi) The model

presented here is a general model which extends naturally to all other image-based regression

problems. Future work will include using the model to predict other continuous parameters

such as human pose.

In chapter 5, we have presented a model for semantic segmentation of objects, where we

use patches to represent class labels. The model extends a recent development in computer

graphics known as “shiftmap” editing to be used with patches for semantic object segmenta-

tion. We find optimal relative shifts over a library of labelmaps and use it in the form of a prior

to predict class labels. The model exploits fast energy minimization algorithms. We present

a graph construction for multi-class labeling, that is suitable for various patch sizes. We have

tested our model to parse faces and human brains. We provide an iterative algorithm for finding

the most likely class label given each test image. Our results demonstrate improved segmenta-

tion. The generative aspect of our shiftmap prior model, shows promise for further interesting

applications. For example, it can be combined with a set of grammar rules such as those used

in [73] to generate new labelmaps.

Finally, we have introduced a discrete representation for face recognition in chapter 6 and

demonstrated good recognition performance. For exactly matched tasks, our proposed mo-

saicfaces algorithm achieved higher performance than several contemporary face recognition

algorithms, one of which [167] was demonstrated to provide state of the art performance at the

time. To the best of our knowledge, our model is the first to use an entirely discrete representa-

tion of face images. Our model describes the face manifold with a mixture of Gaussians, which

is an extremely general model: with large amounts of training data we could potentially learn



7.2. Contributions 141

a detailed model of the non-linear variations in face images due to both signal (identity) and

noise (illumination, expression and pose). One of the limitations of our model is that it requires

the faces to be registered to a common template.

7.2 Contributions

In this thesis, we have investigated patch-based representation as part of the global problem of

finding a general representation model for visual objects. All of the work completed makes

progress towards addressing our research objectives.

We have demonstrated that patch-based representation can be successfully used for a va-

riety of vision tasks including: within-category classification [6], regression [5], semantic seg-

mentation and identification [4]. In each of these tasks the patch-based model was used to

represent a number of different object classes including faces, cells, pedestrians and human

brains. We have achieved promising results for all of these tasks. As such, we have contributed

towards our first two research objectives of: finding a representation model such that (i) it can

be used across a wide variety of object-related tasks and (ii) it can represent multiple object

classes.

Furthermore, we have shown that a patch-based representation model can be easily trained

and tested on very large databases with tens of thousands of images, at a reasonable time.

Finally, throughout this work we have used images taken in uncontrolled environments and have

demonstrated that patch-based representation is robust to many of the challenges described in

section 1.2 including: partial occlusion, background clutter, changes in illumination, expression

and pose. As such we have made progress towards our remaining two research objectives of:

finding a representation model that (iii) can handle large databases of “real world” images and

(iv) is robust to challenges in section 1.2.

7.3 Limitations

Fixed Scale Currently, all our models use a fixed size patch to represent objects. We vary

the size of the patch for each object class, and find the best size suited to the given

task. However, our models do not exploit multiple patch sizes simultaneously. A simple

solution to this problem would be to use a pyramid of different patch sizes at any given

task for each object class, and combine their contributions in inference.

Contour Representation Currently, we use rectangular patches to represent objects. Although

we have shown that such patches can be successfully used for a variety of vision tasks

including semantic segmentation. We suspect that rectangular patches would not be suit-



7.4. Future work 142

able for representing contours of objects, particularly for object segmentation tasks. For

example, in our semantic segmentation model, a patch is allowed to contain more than

one class label, however we do not have an explicit way of representing the boundary

between these classes. One possible solution to this problem would be to use irregularly

shaped patches such as the ones used in [93], which would be better suited to representing

object contours.

7.4 Future work
3D Patches So far, we have used 2D patches to represent object in a given image, and have

shown that they can be successfully used for a variety of object related tasks. This moti-

vates us to extend our current models to use 3D patches for object representation. Many

computer vision tasks such as action recognition or tracking use video data as input. Sim-

ilarly, in medical image analysis one deals with data volumes such as a full 3D MRI scan

of the brain. We believe that 3D patches or ‘cubes’ could be potentially used for the

above applications to capture spatio-temporal information and to represent 3D objects.

Articulated Objects In this thesis, we have developed patch-based models for structured

classes of objects that show a certain regularity such as, faces or pedestrians etc. In the

future, we would like to investigate the capabilities of patch-based models to represent

articulated objects such as horses, or cows etc (see figure 1.2d). We would expect patches

to have a reasonable performance on tasks such as detection and classification. But we

suspect that rectangular patches may find some tasks like segmentation more challenging.

Other Object-related Applications One of the properties of patch-based models is that it al-

lows dense representation of an object. This property encourages future applications of

this model for object generation (see figure 1.1g). Furthermore, we would like to use

patch-based representation for bounding-box object localization.

General N-D Signal Processing Several properties of patch-based representation gives it a

great potential to be used in general N-D signal processing problems. First of all, it

is a general representation model that does not assume any specific format. Also the pro-

posed data encoding method, where each patch is represented as an index to a predefined

library, results in an extremely more compact representation of a given signal. This can

be especially valuable for very high dimensional data and could help (i) greatly reduce

the parameter space, (ii) improve the signal to noise ratio and (iii) help avoid the curse of

dimensionality.
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Appendix A

Calculating The Dirichlet Posterior Integral

In a Bayesian framework we integrate over the model parameters to find the likelihood of the

test data given a class as follows:

Pr(yp|C=c,x•cp) =
∫
Pr(yp|θcp•)Pr(θcp•|x•cp)dθcp• (A.1)

The first term in Equation A.1 is the likelihood term i.e. The probability of the test data

conditioned on the model parameters. This likelihood has a multinomial which is defined as

θcpl∗ :

Pr(yp|θcp•) = Pr(l∗|θcp•) = θcpl∗ (A.2)

The second term in Equation A.1 is the posterior distribution over the parameters θcp•was

achieved as a result of multiplying a multinomial likelihood and the conjugate prior which is a

Dirichlet distribution hence it has the form of a Dirichlet distribution defined in Equation A.3

as:

Pr(θcp•|x•cp) ∝
I!

fcp1! . . . fcpN !
Γ(
∑

l αl)∏
l Γ(αl)

∏
l

θ
fcpl+αl−1
cpl (A.3)

Now replacing Equation A.3 and Equation A.2 in Equation A.1 we get:

Pr(yp|C=c,x•cp) = θcpl∗

∫
Γ(
∑

l(αl + fcpl))∏
lΓ(αl + fcpl)

∏
l

θ
fcpl+αl−1
cpl dθcp•

=
∫

Γ(
∑

l(αl + fcpl))∏
lΓ(αl + fcpl)

∏
l

θ
δl∗l+fcpl+αl−1
cpl dθcp•

(A.4)

Where δl∗l = 1 iff l∗ = l and zero otherwise.
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Turning the term inside the integral to a complete Dirichlet distribution which sums to one

we can rewrite Equation A.4 as the following:

Pr(yp|C=c,x•cp) =
Γ(
∑

l(fcpl+αl))∏
lΓ(fcpl+αl)

∏
lΓ(δl∗l+fcpl+al)

Γ(
∑

l(δl∗l+fcpl+al))

=
fcpl∗ + αl∗∑
l(fcpl + αl)

(A.5)
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