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Stability analysis in the inverse Robin
transmission problem

Houcine Meftahi*†

Communicated by B. Harrach

In this paper, we consider the conductivity problem with piecewise-constant conductivity and Robin-type boundary con-
dition on the interface of discontinuity. When the quantity of interest is the jump of the conductivity, we perform a local
stability estimate for a parameterized non-monotone family of domains. We give also a quantitative stability result of local
optimal solution with respect to a perturbation of the Robin parameter. In order to find an optimal solution, we propose
a Kohn–Vogelius-type cost functional over a class of admissible domains subject to two boundary values problems. The
analysis of the stability involves the computation of first-order and second-order shape derivative of the proposed cost
functional, which is performed rigorously by means of shape-Lagrangian formulation without using the shape sensitivity
of the states variables. © 2016 The Author. Mathematical Methods in the Applied Sciences Published by John Wiley & Sons
Ltd.
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1. Introduction

The problem of reconstructing the jump of conductivity is a classical inverse problem. Such problem arises in many physical situations
such as electrical impedance tomography (for instance, [1–5]). In [6], a partial differential equation with Robin-type transmission con-
ditions, which models the situation where the corrosion takes place between two layers of a non-homogenous medium, is considered.
The authors provide an algorithm for the recovery of the Robin parameter and the jump set of the conductivity, either independently
or simultaneously. A uniqueness result was proved for the same problem in [7].

In this paper, we consider the same model problem as in [7]. We give a local stability estimate for a non-monotone parameterized
family of domains. Let us recall that a similar result was proved in [8] for the classical conductivity problem. We give also a quantitative
stability result of the interface of the conductivity when the Robin parameter is uncertainly known.

For the computation of local optimal solution of the shape problem, we propose a Kohn–Vogelius-type functional. The stability
analysis require the computation of the first-order and second-order shape derivative of the proposed shape functional. For shape
analysis, we use the velocity method [9, 10].

The material/shape derivative method is known to be very hard for the computation of the first-order and second-order shape deriva-
tives, and it require more regularity for the states variables. In this work, we follow the Lagrange method in the spirit of [9] to compute
the first-order and second-order shape derivatives of the proposed shape functional. For the computation of the shape gradient, we
use Lagrangian method combined with the use of theorem on the derivative of a MinMax with respect to a parameter. Such method is
well known and extensively used in mechanical sciences, mathematical programming, and optimal control theory. Their application to
shape sensitivity analysis is not completely straightforward because it leads to the time dependence of the underlying function spaces
appearing in the MinMax formulation. There are two techniques to overcome this difficulty: the function space parameterization and
the function space embedding methods. The first one will be used here.

For the computation of the shape Hessian, we follow the method given in [11] to differentiable semiconvex cost functionals.
This methods have the advantage of providing the first-order and second-order shape derivative without the need to compute the

material derivative of the partial differential equations.
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The rest of the paper is outlined as follows: In Section 2, we present the model problem. In Section 3, we give a local stability estimate.
In Section 4, we formulate the shape optimization problem, and we show the existence of a solution. The stability analysis of the
optimization problem is performed in Section 5.

2. Problem statement

Let� � R2 be a bounded domain with C1 boundary @� and ! 2 O, where

O :D f! open with Lipschitz boundary @!,! � �, dist.@!, @�/ > ıg

for some positive constant ı, see Figure 1. For a given current density g 2 H�1=2.@�/, a Robin coefficient p 2 R�
C

and a piecewise
constant conductivity � :D �1 C .�2 � �1/�! , �1, �2 2 R�

C
, where �! is the characteristic function of !, the potential u satisfies the

following Neumann problem with Robin-type transmission conditions:

8̂̂<
ˆ̂:
�div.�ru/ D 0 in� n @!,

ŒŒu�� D 0 on @!,
ŒŒ�@�u�� D pu on @!,

@�u D g on @�,

(1)

where � is the unit normal vector to the interface @! or @� pointing outward of! or�, respectively, and ŒŒ.��means the jump across the
interface @!. From the physical point of view, problem (1) can be viewed as a model for corrosion detection [12–14]. The weak solution
to problem (1) is defined by �

Find u 2 H1.�/ such thatR
�
�ru � rv dx C

R
@!

puv ds D
R
@�

gv ds for all v 2 H1.�/.
(2)

The existence and uniqueness of the weak solution follows from the Riesz representation theorem.
The inverse problem under consideration is the following:

Find! 2 O knowing the pair .uj@� :D f , g/. (3)

Recently, a uniqueness result for the simultaneous identification of the conductivity � , the Robin parameter p, and the interface @! is
established in [7]. Other references studying various inverse corrosion problems can be found in [12, 14–16].

3. Local Lipschitz stability

In this section, we shall establish a local Lipschitz stability for the inverse Robin transmission problem formulated in (3), where the
potential u is measured only on some part � of the boundary @� with positive measure. The stability analysis is performed in
the framework of shape optimization techniques (e.g., shape derivatives with respect to a parameterized non-monotone family of
domains !t).

Before giving the statement of our main result, we introduce some notations and definitions in the following subsection.

3.1. Elements of shape calculus

In this subsection, we recall some basic facts about the velocity method from shape optimization used to calculate the shape derivative
of the functional J (for instance, [9, 10]). In the velocity (or speed) method, a domain � is deformed by the action of a velocity field V .
The evolution of the domain is described by the following dynamical system:

Figure 1. Representation of the domain�. [Colour figure can be viewed at wileyonlinelibrary.com]
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8<
:

d

dt
x.t/ D V.x.t//, t 2 Œ0, "/, " 2 R�C.

x.0/ D X 2 R2
(4)

Suppose that V is continuously differentiable and has compact support in�, that is, V 2 D1.�,R2/. Then, the ordinary differential Eq. 4
has a unique solution on Œ0, "/. This allows us to define the diffeomorphism

Tt : R2 ! R2 : X 7! Tt.X/ :D x.t/. (5)

For V 2 D1.�,R2/, the domain� is globally invariant by the transformation Tt , that is, Tt.�/ D � and Tt.@�/ D @�. For t 2 Œ0, "/, Tt

is invertible. Furthermore, for sufficiently " > 0, the Jacobian determinant �V.t/ is strictly positive

8 t 2 Œ0, "/, �V.t/ D detDTt.X/ > 0, (6)

where DTt.X/ is the Jacobian matrix of the transformation Tt associated with the velocity field V . In the sequel, we use the following
notation: M�1 for the inverse of M and M�� for its transpose. We also denote by

wV.t/ :D �V.t/j.DTt/
���j, (7)

the tangential Jacobian of Tt on @! and

AV.t/ :D �V.t/DT�1
t DT��t . (8)

We will also need the following assumption:
Assumption .H0/: Given .˛,ˇ/ and .˛0,ˇ0/ satisfying 0 < ˛ < ˇ and 0 < ˛0 < ˇ0, we can find " > 0 such that

8	 2 R2, ˛j	j2 � �AV.t/	 � 	 � ˇj	j
2, and ˛0 � pjwV.t/j � ˇ

0 for t 2 Œ0, "/. (9)

We denote ut the solution of (1) with !t :D Tt.!/ in place of !, and ut D ut ı Tt . The function ut is defined on the fixed domain�, and
its material derivative (or Lagrangian derivative) is defined by

Pu.x/ :D lim
t!0

ut.x/ � u.x/

t
, 8 x 2 �.

The shape derivative (or Eulerian derivative) is defined by

u0 D Pu � ru � V .

Now, we are ready to state our main result.

Theorem 1
Let � be a subset of @�with positive measure . We assume that

(i) g is not identically equal to zero;
(ii) there exists a vector field V 2 D1.�,R2/ such that the following sets:

†C :D fx 2 @!; V � � > 0g , †� :D fx 2 @!; V � � < 0g ,

are both non-empty;
(iii) there exists an open subset 
 � †C such that

dist. N
 ,†C n 
 [†�/ D inf
x2 N� ,y2†Cn�[†�

jx � yj > 0,

(iv) p > 0 and �1, �2 are chosen such that pC � ŒŒ��� < 0, where � is the mean curvature of @!.

Then, we have the stability result:

lim
t!0

���ut
j�
� uj�

���
L2.�/

jtj
> 0. (10)

Remark 1
We can construct a vector field V satisfying condition .ii/ and .iii/ as follows. Let z1, z2, z3 be distinct points on the boundary @!. Let
r > 0 sufficiently small such that

B.zi , 2r/ \ B.zj , 2r/ D ; i ¤ j.
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Here, B.zi , r/ denotes the ball of center zi and radius r. For i D 1 : : : 3, let �i 2 C1c .R2/ be such that

�i > 0, � D 1 in B.zi , r/ and supp �i � B.zi , 2r/.

We set V D .�1 C �2 � �3/ Q�, where Q� is a C1-extension of the normal vector �,  2 C1c .R2/,  D 1 in a neighborhood of ! and
supp  � �. Because V � � D �1 C �2 � �3 on @!, we obtain †C D 
 [ 
 0 where N
 � B.z1, 2r/ and 
 0 � B.z2, 2r/. We have also
†� � B.z3, 2r/. Therefore, �

†C n 
 [†�

�
\ N
 � .B.z2, 2r/ [ B.z3, 2r// \ B.z1, 2r/ D ;.

This imply that

dist
��
†C n 
 [†�

�
, N

�
> 0.

Let us recall that this example was considered in [8] to prove local Lipshitz stability for the conductivity problem by measurements
of the Neumann data.

The proof of Theorem 1 will follow from the fact that the map t ! ut is differentiable at t D 0, and its derivative is not identically
equal to zero on � . Before giving the proof, we need the following result.

Theorem 2
The state u has a material derivative Pu 2 H1.�/ that solves

Z
�

�r Pu � rv dx C

Z
@!

pPuv ds D �

Z
�

�A0V.0/ru � rv dx �

Z
@!

pw0V.0/uv ds 8v 2 H1.�/, (11)

where

A0V.0/ D div.V/ � DV � DV� and w0V.0/ D div� .V/.

The state u is shape differentiable, and its shape derivative u0 solves the following system:

8̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

u0 D 0 in� n N! and!,��
u0
��
D

�
ŒŒ���

�1
@�u� �

p

�1
u

	
V � � on @!,��

�@�u0
��
� pu0 D ŒŒ���div� .r�uV � �/

C p .@�u� C �u/ V � � on @!,

@�u0 D 0 on @�.

(12)

Before proving Theorem 2, we make some comments. The derivative u0 is not continuous across the interface @!. As a consequence
u0 cannot be in H1.�/, it belongs only to H1.� n N!/ [ H1.!/. We will explain how both the derivative and (12) can be obtained by the
classical methods of shape optimization.

Proof
We compose the proof in four parts: first, transport the problem on a fixed domain, then prove weak convergence of the material
derivative, then strong convergence, and return to the shape derivative.

First step: The transported solution ut solves the variational equation:

8v 2 H1.�/,

Z
�

�AV.t/rut � rv dx C

Z
@!

pwV.t/u
tv ds D

Z
@�

WV.t/g ı Ttv ds.

Second step: Subtracting the variational equation solved by u, and using the fact that Tt.x/ D x on @�, we obtain

Z
�

�AV.t/

�
rut � ru

t

	
� rv dx C

Z
@!

pwV.t/

�
ut � u

t

	
v ds D

Z
�

�

�
I � AV.t/

t

	
ru � rv dx C

Z
@!

p

�
I � wV.t/

t

	
uv ds

C

Z
@�

.wV.t/g ı Tt � g/ v ds

D

Z
�

�

�
I � AV.t/

t

	
ru � rv dx C

Z
@!

p

�
I � wV.t/

t

	
uv ds.

(13)

Plugging .ut � u/=t as a test function, we obtain from assumption H0 (9).
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˛

����r.ut � u/

t

����
2

L2.�/

C ˛0
����ut � u

t

����
2

L2.@!/

�

����� I � AV.t/

t

����
1

krukL2.�/

����r.ut � u/

t

����
L2.�/

C

����p
1 � wV.t/

t

����
1

kukL2.@!/

����ut � u

t

����
L2.@!/

.

From Young’s inequality and the fact that kuk2 :D kruk2
L2.�/

C kuk2
L2.@!/

is a norm on H1.�/ equivalent to the natural norm
(Proposition 2), we deduce that

����ut � u

t

����
2

H1.�/

� C

������ I � AV.t/

t

����
1

kruk2
L2.�/ C

����p
1 � wV.t/

t

����
1

kuk2
L2.@!/

	
,

where C is a positive constant. Therefore, .ut � u/=t is bounded in H1.�/. Hence, the sequence is weakly convergent in H1.�/, and its
weak limit is the material derivative Pu of u.

Third step: We show the strong convergence of .ut � u/=t in H1.�/. Passing to the limit t! 0 in (13) yields

Z
�

�r Pu � rv dx C

Z
@!

pPuv ds D �

Z
�

�A0V.0/ru � rv dx �

Z
@!

pw0V.0/uv ds.

Therefore, Pu satisfy (11) in Theorem 2. This enable us to show the strong convergence in H1.�/; indeed, setting v D .ut �u/=t in (13),
we obtain Z

�

�AV.t/rv � rv dx C

Z
@!

pwV.t/v
2 ds D

Z
�

�
I � AV.t/

t
ru � rv dx C

Z
@!

p
I � wV.t/

t
uv ds

D

Z
�

�.AV.t/ � I/rv � rv dx C

Z
@!

p.wV.t/ � 1/v2 ds

C

Z
�

�
I � AV.t/

t
rut � rv dx C

Z
@!

p
1 � wV.t/

t
utv ds

D E1.t/C E2.t/,

(14)

where

E1.t/ D

Z
�

�.AV.t/ � I/rv � rv dx C

Z
@!

p.wV.t/ � 1/v2 ds,

and

E2.t/ D

Z
�

�
I � AV.t/

t
rut � rv dx C

Z
@!

p
1 � wV.t/

t
utv ds.

We have

lim
t!0

AV.t/ D I, lim
t!0

wV.t/ D 1, lim
t!0

I � AV.t/

t
D �A0V.0/, lim

t!0

1 � wV.t/

t
D �w0V.0/.

Therefore,

E1.t/ �! 0 and E2.t/ �! �

Z
�

�A0V.0/ru � r Pu dx �

Z
@!

pw0V.0/uPu ds as t! 0.

Using (11), we conclude that

E2.t/ �!

Z
�

� jr Puj2 dx C

Z
@!

pPu2 ds.

From the weak convergence of v to Pu, and the fact that
�
kruk2

L2.�/
C kuk2

L2.@!/

�1=2
is a norm equivalent to the norm of H1.�/

(Proposition 2), we deduce the strong convergence of v to Pu in H1.�/.
Forth step: We deduce that the equation satisfied the shape derivative u0 D Pu�ru �V . We have the classical identity (for instance, [17]).

�ru � A0.0/rv D div.b/ � .ru � V/v � .rv � V/u,

where

b D .ru � V/rv C .rv � V/ru � .ru � rv/V .
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From Eq. 11, we have Z
�

�r Pu � rv dx C

Z
@!

pPuv ds D

Z
�

� div.b/ dx �

Z
�

�.ru � V/v dx

�

Z
�

�.rv � V/u dx �

Z
@!

puw0V.0/v ds.

From the divergence theorem, and integration by parts, yieldsZ
�

�r Pu � rv dx C

Z
@!

pPuv ds D�

Z
@!

ŒŒ�.rv � V/@�u�� dsC

Z
@!

ŒŒ�.ru � rv/V � ��� ds

�

Z
@!

puw0V.0/v dsC

Z
�

�r.ru � V/rv dx.

Finally, we obtain Z
�

�r.Pu � ru � V/ � rv dx C

Z
@!

p.Pu � ru � V/v ds

D �

Z
@!

ŒŒ�.rv � V/@�u�� dsC

Z
@!

ŒŒ�.ru � rv/V � ��� ds

�

Z
@!

p.ru � V/v ds �

Z
@!

puw0V.0/v ds

D ŒŒ���

Z
@!

r�u � r�vV � � ds �

Z
@!

p.ru � V/v ds �

Z
@!

div� .V/puv ds

D � ŒŒ���

Z
@!

div� .r�uV � �/v ds �

Z
@!

p.@�u� C �u/vV � � ds.

Therefore, the shape derivative u0 D Pu � ru � V solves the following equation:Z
�

�ru0 � rv dx C

Z
@!

pu0v ds D� ŒŒ���

Z
@!

div� .r�uV � �/v ds �

Z
@!

p.@�u� C �u/vV � � ds.

Because u0 2 H1.� n N!/ [ H1.!/, we obtain

�

Z
�n N!

�1u0v dx �

Z
!

�2u0v dx C

Z
@!



pu0 �

��
�@�u0

���
v ds D� ŒŒ���

Z
@!

div� .r�uV � �/v ds

�

Z
@!

p.@�u� C �u/vV � � ds.

This imply thatu0 D 0 in� n N! and ! with the transmission condition��
�@�u0

��
� pu0 D ŒŒ���div� .r�uV � �/C p.@�u� C �u/V � �. (15)

It remains to compute the jump ŒŒu0��. Because Pu 2 H1.�/, we have��
u0
��
D � ŒŒ@�u�� V � �, (16)

and from the transmission condition ŒŒ�@�u�� D pu, we obtain

��
u0
��
D

�
ŒŒ���

�1
@�u� �

p

�1
u

	
V � �, (17)

which concludes the proof.

Proof of Theorem 1
By definition of the material derivative, the limits in (10) is given by

lim
t!0

���ut
j�
� uj�

���
L2.�/

jtj
D
��Puj� ��L2.�/

D
��.u0 � ru � V/j�

��
L2.�/

.

Because V 2 D1.�,R2/, we have Vj� D 0. Therefore, it is enough to prove that
���u0
j�

���
L2.�/

> 0. Assume that
���u0
j�

���
L2.�/

D 0. Then, from

(12), we have
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8<
:
u0 D 0 in� n N!,

u0 D 0 on � ,
@�u0 D 0 on � .

By the unique continuation property for the Laplace operator, we deduce that u0 D 0 in� n N!. From assumption .iii/, we deduce that
the subset

†0 :D fx 2 @!; V � � D 0g

is non-empty. Using again (12), u0 solves the overdetermined problem:

8<
:
u0 D 0 in !,

u0 D 0 on†0,
@�u0 D 0 on†0.

Therefore, we obtain u0 D 0 in ! by the unique continuation property. Consequently, we conclude from (15) and (17) that

ŒŒ��� @�u� D pu on @! n†0, (18)

and

ŒŒ���2
Z
@!n†0

r�u � r�vV � � ds D

Z
@!n†0



p2 C �p ŒŒ���

�
uvV � � ds. (19)

Using again assumption .iii/, we can find an open subset‚ � R2 such that

N
 � ‚ and ‚ \ .†C n 
 [†�/ D ;.

Let  2 C1.R2/ such that supp. / � ‚ and  D 1 in a neighborhood of N
 . Let z 2 C2 be the solution of the following problem:

�
z D 0 in !,

z D  u on @!.

From Equation 19 and using the fact that z D 0 in .†C [†�/ n 
 , we obtain

ŒŒ���2
Z
�

jr�uj2V � � ds D

Z
�



p2 C �p ŒŒ���

�
u2V � � ds.

From assumption .iv/, we obtain r�u D 0 and u D 0 in 
 . From (16) and (18), we have @�uC D 0 on 
 . According to the unique
continuation property, u D 0 in � n !, which contradicts the assumption that g is not identically equal to zero, and the proof
is completed.

Remark 2
Theorem 1 prove the ‘local continuity’ of the map

	 : L2.�/ �! O
ut 7�! !t

for t sufficiently small t, and O is the set of admissible domains equipped with an appropriate topology.
Let us consider the topology induced by the Hausdorff metric (see [9] for more details). Then, we have

dH.!t ,!/ � kVkL1.�/jtj. (20)

Thus, from Theorem 1 and inequality (20), we deduce a ‘local directional continuity’ of 	, because for V 2 D1.�,R2/, there exists a
constant C.V/ > 0 such that

dH.!t ,!/ �
kVkL1.�/

C.V/
kut � ukL2.�/,

for sufficiently small t.

In the following section, we introduce the minimization problem to solve numerically the inverse problem (3), and we prove the
existence of optimal solution.
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4. The minimization problem

A typical approach to solve the inverse problem (3) numerically is to consider the so-called Kohn–Vogelius functional

J.!, uN, uD/ D ˛1

Z
�

jr.uN � uD/j
2 dx C ˛2

Z
�

juN � uDj
2 dx. (21)

Here, ˛1,˛2 2 R�
C

are parameters, uN is the solution of the Neumann problem

8̂̂
<
ˆ̂:
�div.�ruN/ D 0 in� n @!,

ŒŒuN�� D 0 on @!,
ŒŒ�@�uN�� D puN on @!,

@�uN D g on @�,

(22)

and uD is the solution of the Dirichlet problem

8̂̂
<̂
ˆ̂̂:

�div.�ruD/ D 0 in� n @!,

ŒŒuD�� D 0 on @!,

ŒŒ�@�uD�� D puD on @!,

uD D f on @�,

(23)

where f 2 H1=2.@�/ is a measurement of the potential corresponding to the input flux g.
The variational formulation corresponding to (22) is given by

8<
:

Find u 2 H1.�/ such thatZ
�

�ru � rv dx C

Z
@!

puv ds D

Z
@�

gv ds for all v 2 H1.�/.
(24)

For the Dirichlet problem (23), the constraint uD D f makes the Sobolev space dependent on f . To get around this difficulty, we
introduce a Lagrange multiplier, and we obtain the variational formulation [9, Sec 6.2, p 433]:

Z
�

�ruD � rv dx C

Z
@!

puDv dsC

Z
@�

.f � uD/� ds D 0 8v 2 H1
0,� .�/,� 2 H�1=2.@�/,

where

H1
0,� .�/ :D

˚
v 2 H1

0.�/ : div.�rv/ 2 L2.�/
�

.

Writing the saddle point equation for the Lagrangian, one obtains � D �1@�v, and the weak solution of the Dirichlet problem is then
defined by 8<

:
Find u 2 H1.�/ such thatZ
�

�ru � rv dx C

Z
@!

puv dsC

Z
@�

.f � u/�1@�v ds for all v 2 H1
0,� .�/.

(25)

In this paper, we consider the situation when the Robin parameter p is known, and we aim to reconstruct the domain !. The
corresponding minimization problem is the following:

�
minimize J.!, uN, uD/

subject to ! � O, uN and uD solutions of (22) and (23)
(26)

An optimal solution !� D !�.p/ of (26) if exists depend on p trough the state equations.
Let us define the reduced functional

J .!, p/ :D J.!, uN.!, p/, uD.!/, p/.

We have the following theorem.

Theorem 3
The minimization problem (26) has at least one solution.

Before proving Theorem 3, we need some auxiliary results.
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Definition 1 ([18])
Let A, B be two subsets of Rd , d � 2, and define

d.x, B/ D inf
y2B
jx � yj, �.A, B/ D sup

x2A
d.x, B/, dH.A, B/ D max f�.A, B/, �.B, A/g .

dH is the Hausdorff distance between A and B; it defines a topology on the closed bounded sets of Rd .
Let .�n/ be a sequence of open subsets of a fixed closed domain D and � be an open subset of D. We say that the sequence .�n/

converges on� in the Hausdorff sense, and we denote�n
H
�! � if limn!1 dH.D n�n, D n�/ D 0.

Definition 2 ([18])
Let � be a unitary vector of Rd , d � 2, " be a real number strictly positive, and y 2 Rd . We call a cone with vertex y, direction � , and
dimension ", the set defined by

C.y, � , "/ :D
˚

x 2 Rd :< x � y, � >Rd� cos."/kx � ykRd and 0 < kx � ykRd < "
�

,

where< ., . >Rd is the euclidean scalar product of Rd and k.kRd is the associated euclidean norm.
An open set� of Rd verifies the "-cone property, if for x 2 @�, there exists a unitary vector �x of Rd such that

for all y 2 N� \ B.x, "/, C.y, �x , "/ � �,

where B.x, "/ denotes the open ball with center x and radius ".

Proposition 1 ([18])
An open bounded set� of Rd has the "-cone property if and only if� has a Lipschitz continuous boundary with constant k."/ > 0.

Proof
(of Theorem 3) It is clear that infJ .!/ is finite. Therefore, there exists a minimizing sequence !n 2 O such that

lim
n!1

J .!n/ D inf
!2O

J .!/.

The sequence !n 2 O is bounded. According to [19, Theorem 2.4.10], there exists !� 2 O, and a subsequence still denoted !n such
that !n converges to !� in the sense of Hausdorff and in the sense of characteristic functions.

By definition, uN.!n/ and uD.!n/ solve

Z
�

��n!n�1ruN.!n/ � rv dx C

Z
�

�!n�2ruN.!n/ � rv dx C

Z
�

�!n div.puN.!n/v�/ dx D

Z
@�

gv ds 8 v 2 H1.�/. (27)

Z
�

��n!n�1ruD.!n/ � rv dx C

Z
�

�!n�2ruD.!n/ � rv dx C

Z
�

�!n div.puD.!n/v�/ dx C

Z
@�

.f � uD.!n//�1@�v ds, (28)

for all v 2 H1
0,� .�/. Taking v D uN.!n/ in (27), we obtain the estimate

kuN.!n/kH1.�/ � ckgkL2.�/, (29)

where c depends only on�. Thus, we may extract a subsequence still denoted uN.!n/ such that

uN.!n/! u�N strongly in L2.�/ and ruN.!n/ * ru�N weakly in L2.�/. (30)

By the same way, we can prove that

uD.!n/! u�D strongly in L2.�/ and ruD.!n/ * ru�D weakly in L2.�/. (31)

The pointwise a.e. convergence of the characteristic functions �!n to �!� and ��n!n to ��n!� with (30) and (31) yields at the limit, in
(27) and (28) Z

�

�ru�N � rv dx C

Z
@!�

pu�N v ds D

Z
@�

gv ds 8 v 2 H1.�/,

Z
�

�ru�D � rv dx C

Z
@!�

pu�D v dsC

Z
@�

.f � u�D /�1@�v ds D 0 8 v 2 H1
0,� .�/.
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Because of the uniqueness of the limit, we conclude that u�N D uN.!
�/ and u�D D uD.!

�/. The lower semi-continuity of the
L2-norm imply

J .!�/ � lim
n!1

infJ .!n/ � J .!/,

which concludes the proof.

5. Shape stability wit respect to the Robin parameter

In this section, we study the situation where the Robin parameter p is known with some uncertainty, and we are looking for the
geometry !, that is, this corresponds to problem (26). The optimality conditions for problem (26) reads

D!J .!, p/.�/ D 0 for all � 2 D1.�,R2/.

It can be rewritten as

Find !�.p/ such that D!J .!�.p/, p/ D 0 (32)

where D!J .!�.p/, p/ : D1.�,R2/! R.
In this paper, we are interested in the stability of the optimal solution!�.p/ of the minimization problem (26) with respect to p. More

precisely, we study the variation !�.Qp/ of the optimal solution !�.p/when the exact Robin parameter p takes an uncertain value Qp.
Because the parameter-to-solution map p 7! !�.p/ is not properly speaking a function of p, instead we consider a parameterization

!�.Qp/ D .IC ��.Qp//.!�.p//,

and we differentiate the map p 7! ��.p/. This is performed in the following by applying the implicit function theorem to the optimality
conditions D!J .!�.p/, p/.�/ D 0. Essentially, the idea is to linearize D!J .!�.p/, p/ D 0 to obtain

D2
!J .!�.p/, p/.@p�

�.p//C @pD!J .!�.p/, p/ D 0.

This yields the following result.

Theorem 4
If D2

!J .!�.p/, p/ is invertible, then the first-order approximation of ��.Qp/ is given by

��.Qp/ � @p�
�.p/ D �.D2

!J .!�.p///�1@pD!J .!�.p//. (33)

In (33), the computation of second-order shape derivatives of J is required. Therefore, in what follows, we compute first-order and
second-order shape derivatives and the second-order mixed derivative of J .!, p/. To obtain the expression of the shape derivative, it
is convenient to simply compute the directional derivative given by Definition 3.

5.1. Shape derivative of the functional J

In this subsection, we perform the analysis of the shape derivative of the functional J.

5.1.1. Lagrange formulation and adjoints states. Denote by u D .uN,uD/, ua D .ua
N,ua

D/, u D .uN, uD/, ua D .ua
N, ua

D/ and introducing
the Lagrangian functional

L.!,u,ua/ :D

Z
�

˛1jr.uN � uD/j
2 C ˛2juN � uDj

2 dx

C

Z
�

�ru � rua dx C

Z
@!

pu � ua ds �

Z
@�

gua
N ds

C

Z
@�

.f � ua
D/�1@�u

a
D ds.

Then, it is easy to check that

J.!, u.!// D min
u2H1.�/2

sup
ua2H1.�/�H1

0,� .�/

L.!,u,ua/,
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because

sup
ua2H1.�/�H1

0,� .�/

L.!,u,ua/ D

(
J.!, u.!// if u D u

C1 otherwise.

We can easily shown that the functionalL is convex continuous with respect tou and concave continuous with respect toua. Therefore,

according to Ekeland and Temam [20], the functional L has a saddle point .u, ua/ if and only if .u, ua/ solve the following system:

@uL.!, u, ua/. Ou/ D 0 8 Ou 2 H1.�/2,

@uaL.!, u, ua/. Oua/ D 0 8 Oua 2 H1.�/ � H1
0,� .�/.

This yields that L has a saddle point .u, ua/, where the states uN and uD are the unique solutions of (22) and (23), respectively, and
the adjoint states ua

N and ua
D solve the following problems:

Z
�

�rua
N � r O'N dx C

Z
@!

pua
N O'N ds D� 2

Z
�

˛1r.uN � uD/ � r O'N C ˛2.uN � uD/ O'N dx

8 O'N 2 H1.�/,
(34)

Z
�

�rua
D � r O'D dx C

Z
@!

pua
D O'D ds D 2

Z
�

˛1r.uN � uD/ � r O'D C ˛2.uN � uD/ O'D dx

8 O'D 2 H1
0,� .�/.

(35)

The previous analysis holds also for the functional depending on the transformed domain !t D Tt.!/. Thus, we obtain

J.!t , u.!t// D min
u2H1.�/2

sup
ua2H1.�/�H1

0,� .�/

L.!t ,u,ua/.

The corresponding saddle point .u.!t/, ua.!t// is characterized by

@uL.!t , u.!t/, ua.!t//. Ou/ D 0 8 Ou 2 H1.�/2,

@uaL.!t , u.!t/, ua.!t//. Oua/ D 0 8 Oua 2 H1.�/ � H1
0,� .�/,

Theorem 5 (First-order shape derivative)
The shape derivative of the functional J in the direction V 2 D1.�,R2/ is given by

D!J .!; V/ D

Z
�

˛1A0V.0/r.uN � uD/ � r.uN � uD/C ˛2juN � uDj
2� 0V.0/ dx

C

Z
�

�A0V.0/ru � rua dx C

Z
@!

pu � uaw0V.0/ ds.
(36)

Alternatively, the shape derivative can be rewritten in a more structured way using the tensor representation:

D!J .!, p/.V/ D

Z
�

S.u, ua/ � DV dx C

Z
@!

S0.u, ua/ � D�V ds, (37)

where

S.u, ua/ :D �2˛1 .r.uN � uD/˝r.uN � uD// � � .ru˝rua Crua ˝ru/

C
�
�ru � rua C ˛2juN � uDj

2 C ˛1r.uN � uD/ � r.uN � uD/
�

I,

and

S0.u, ua/ :D p.u � ua/I.

Proof
Let us consider transformations Tt defined in (5). Our aim is to compute the derivative of the functional J using Theorem 8. In order to
differentiate L.!t ,u,ua/with respect to t, the integrals in L.!t ,u,ua/ on the domain !t needs to be transported back on the reference
domain ! using the transformation Tt . However, composing by Tt inside the integrals creates terms u ı Tt , and ua ı Tt , which might be
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non-differentiable. To avoid this problem, we need to parameterize the space H1.�/ by composing the elements of H1.�/ with T�1
t .

Following this argument, we rewrite

G.t,u,ua/ :D L


!t ,u ı T�1,ua ı T�1

t

�
.

After change of variable, we obtain

G.t,u,ua/ D

Z
�

˛1AV.t/r.uN � uD/ � r.uN � uD/C ˛2juN � uDj
2�V.t/ dx

C

Z
�

�AV.t/ru � ru
a dx C

Z
@!

pu � uawV.t/ ds

�

Z
@�

g ı Ttu
a
NwV.t/ dsC

Z
@�

.f ı Tt � u
a
D/�1@�u

a
Dw.t/ ds,

(38)

where �V.t/, wV.t/, and AV.t/ are defined in (6), (7), and (8).
Note that in (38), the integrals on @� are unchanged because Tt D I on @�. The functional G has a saddle point .ut , ua,t/ :D

..ut
N, ut

D/, .u
a,t
N , ua,t

D // that solve

Z
�

�AV.t/rut
N � r N dx C

Z
@!

put
N NwV.t/ ds D

Z
@�

g ı Tt NwV.t/ ds

Z
�

�AV.t/rut
D � r D dx C

Z
@!

p'D DwV.t/ ds D �

Z
@�

.f ı Tt � 'D/�1@� DwV.t/ ds,

Z
�

�AV.t/r1ua,t
N � r'N dx C

Z
@!

pua,t
N wV.t/'N ds D

� 2

Z
�

˛1AV.t/r.u
t
N � ut

D/ � r'N C ˛2.u
t
N � ut

D/�V.t/'N dx

Z
�

�AV.t/rua,t
D � r'D dx C

Z
@!

pua,t
D wV.t/'D ds D

2

Z
�

˛1AV.t/r.uN � uD/ � r'D C ˛2.u
t
N � ut

D/�V.t/'D dx,

for all . N, D,'N,'D/ 2 H1.�/ � H1.�/ � H1.�/ � H1
0,� .�/.

Under hypothesis of Theorem 8, we obtain

DJ .!; V/ D @tG.t, u, ua/
ˇ̌

tD0

D

Z
�

˛1A0V.0/r.uN � uD/ � r.uN � uD/C ˛2juN � uDj
2� 0V.0/ dx

C

Z
�

�A0V.0/ru � rua dx C

Z
@!

pu � uaw0V.0/ ds.

Using the algebraic relations

A0V.0/ru � rua D .ru � rua/I � DV �

0
@ 2X

jD1

ruj ˝rua
j Crua

j ˝rui

1
A � DV

and

div� V :D I � D�V ,

we obtain the expression (37).
Verification of hypothesis of Theorem 8: Introduce the sets

X.t/ :D

(
xt 2 H1.�/2 : sup

y2H1.�/�H1
0,� .�/

G.t, xt , y/ D inf
x2H1.�/2

sup
y2H1.�/�H1

0,� .�/

G.t, x, y/

)
,

and

Y.t/ :D

(
yt 2 H1.�/ � H1

0,� .�/ : inf
x2H1.�/2

G.t, x, yt/ D sup
y2H1.�/�H1

0,� .�/

inf
x2H1.�/2

G.t, x, y/

)
.
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We obtain

8 t 2 Œ0, "� S.t/ D X.t/ � Y.t/ D fut , ua,tg ¤ ¿,

and assumption .H1/ is satisfied.
Assumption .H2/: The partial derivatives t! @tG.t,', / exist everywhere in Œ0, ��, and the condition .H2/ is satisfied.
Assumption .H3/ and .H4/ : Due to the strong continuity of AV.t/, wV.t/ as a functions of t, the assumption H0, and the boundness of
.ut

N, ut
D, vt

N, vt
D/, one can deduce the strong convergence ut

N ! uN, ut
D ! uD, ua,t

N ! ua
N in H1.�/, and ua,t

D ! ua
D in H1

0.�/. Finally, in view
of the strong continuity of .t,u/! @tG.t,u,ua/ and .t,ua/! @tG.t,u,ua/, assumptions H3 and H4 are verified.

5.2. Second-order shape derivative

In this subsection, we compute the second-order shape derivative of the Kohn–Vogelius cost functional J using a general method that
applies to differentiable semiconvex cost functionals.

5.2.1. Lagrange formulation and adjoints states. For the second shape derivative, we need two vector fields V and OV in D1.�;RN//

and the expression of the first shape derivative DJ .Tt.!/; V/, where Tt.!/ is the perturbation of the domain ! by Tt defined in (5)
correspond to a vector filed OV . Then, we can express DJ .Tt.!/; V/ as the min-sup of new Lagrangian

DJ .Tt.!/; V/ D min
U2H1.�/3�H1

0,� .�/

sup
W 2H1.�/3�H1

0,� .�/

L2.!t ,U ,W /,

whereU :D .uN,uD,ua
N,ua

D/,W :D .wN,wD,wa
N ,wa

D/ and L2 is given by

L2.!t ,U ,W / D

Z
�

˛1A0V.0/r.uN � uD/ � r.uN � uD/C ˛2juN � uDj
2� 0V.0/ dx

C

Z
�

�A0V.0/ru � ru
a dx C

Z
@!

pu � uaw0V.0/ ds.

C

Z
�

�rU � rW dx C

Z
@!

pU �W ds �

Z
@�

gwN dsC

Z
@�

.f � uD/�1@�wD ds

C 2

Z
�

˛1r.uN � uD/ � rw
a
N C ˛2.uN � uD/w

a
N dx

� 2

Z
�

˛1r.uN � uD/ � rw
a
D C ˛2.uN � uD/w

a
D dx.

The adjoint state W :D .wN, wD, wa
N, wa

D/ solves the following equations:

@UL2.!, U, W/. OU/ D 0 8 OU 2 H1.�/2 � H1
0,� .�/

2,

or equivalently

Z
�

�rwa
N � r N dx C

Z
@!

pwa
N N dsC

Z
�

�A0V.0/rua
N � r N dx C

Z
@!

pua
Nw0V.0/ N ds D 0 8 N 2 H1.�/, (39)

Z
�

�rwa
D � r D dx C

Z
@!

pwa
D N dsC

Z
�

�A0V.0/rua
D � r D dx C

Z
@!

pua
Dw0V.0/ D ds D 0 8 D 2 H1

0,� .�/, (40)

Z
�

�rwN � r'N dx C

Z
@!

pwN'N dsC 2

Z
�

˛1r.w
a
N � wa

D/ � r'N C ˛2.w
a
N � wa

N/'N dx

C 2

Z
�

˛1A0V.0/r.uN � uD/ � r'N C ˛2.uN � uD/�
0
V.0/'N dx C

Z
�

�A0V.0/rua
N � r'N dx

C

Z
@!

pua
Nw0V.0/'N ds D 0 8'N 2 H1.�/,

(41)

Z
�

�rwD � r'D dx C

Z
@!

pwD'D ds � 2

Z
�

˛1r



wa
N � wa

D

�
� r'D C ˛2



wa

N � wa
D

�
'D dx

� 2

Z
�

˛1A0V.0/r.uN � uD/ � r'D C ˛2.uN � uD/�
0
V.0/'D dx C

Z
�

�A0V.0/rua
D � r'D dx

C

Z
@!

pua
Dw0V.0/'D ds D 0 8'D 2 H1

0,� .�/.

(42)
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Theorem 6 (Second-order shape derivative )
The second-order shape derivative of the functional J in the directions V and OV is given by

D2
!J .!, p/.V , OV/ D

Z
�

˛1P
0.0/r.uN � uD/ � r.uN � uD/C ˛2Q

0.0/juN � uDj
2 dx

C

Z
�

�P 0.0/ru � rua dx C

Z
@!

pu � uaQ0� .0/ ds

C

Z
�

�A0
OV
.0/rU � rW dx C

Z
@!

pU �Ww0
OV
.0/ ds

C 2

Z
�

˛1A0
OV
.0/r.uN � uD/ � r.w

a
N � wa

D/C ˛2.uN � uD/.w
a
N � wa

D/�
0
OV
.0/ dx,

where

P 0.0/ D r.div.V// OVI � D2V OV � D2V� OV , Q0.0/ D r.div.V/ O/V C div.V/div. OV/, and Q0� .0/ D r.div� .V// OV C div� .V/div� . OV/.

Proof
Introduce the Lagrangian

G2.t,U ,W / :D L2



!t ,U ı T�1

t ,W ı T�1
t

�
.

After change of variable, we obtain

G2.t,U ,W / D

Z
�

˛1AOV.t/A
0
V.0/ ı Ttr.uN � uD/ � r.uN � uD/C ˛2juN � uDj

2� 0V.0/ ı Tt�OV.t/ dx

C

Z
�

�AOV.t/A
0
V.0/ ı Ttru � ru

a dx C

Z
@!

pu � uaw0V.0/ ı TtwOV.t/ ds

C

Z
�

�AOV.t/rU � rW dx C

Z
@!

pU �W wOV.t/ ds �

Z
@�

gwN dsC

Z
@�

.f � uD/�1@�wD ds

C 2

Z
�

˛1AOV.t/r.uN � uD/ � rw
a
N C ˛2.uN � uD/w

a
N�OV.t/ dx

� 2

Z
�

˛1AOV.t/r.uN � uD/ � rw
a
D C ˛2.uN � uD/w

a
D�OV.t/ dx.

Under hypotheses of Theorem 8, we have

@tG2.t, U, W/
ˇ̌

tD0
D

Z
�

˛1P
0.0/r.uN � uD/ � r.uN � uD/C ˛2Q

0.0/juN � uDj
2 dx

C

Z
�

�P 0.0/ru � rua dx C

Z
@!

pu � uaQ0� .0/ ds

C

Z
�

�A0
OV
.0/rU � rW dx C

Z
@!

pU �Ww0
OV
.0/ ds

C 2

Z
�

˛1A0
OV
.0/r.uN � uD/ � r.w

a
N � wa

D/C ˛2.uN � uD/.w
a
N � wa

D/�
0
OV
.0/ dx.

Now, we need to check hypotheses of Theorem 8. The Lagrangian G2 is affine in W D .wN,wD,wa
N,wa

D/ but not necessarily convex
in U D .uN,uD,ua

N,ua
D/. However, it is semi-convex in U D .uN,uD,ua

N,ua
D/, and we can apply Theorem 8 of Correa and Seeger for

the Lagrangian G2. The reader is referred to [11] for more details about the differentiability of semi-convex cost functionals. For the
verifications of hypotheses, the technique is the same as in the proof of Theorem 5. Therefore, we shall not repeat it here.

Theorem 7 (Second-order mixed derivative)
The functional D!J .!, V/ is Gateaux differentiable, and its Gateaux derivative at p 2 L1.@!/ in the direction Op is given by

@pD!J .!, V/Op D

Z
@!

Op.U �W C u � uaw0V.0// ds. (43)

Proof
Let pt D pC t Op, where Op 2 L1.@!/ and t 2 R is sufficiently small parameter. As in the previous sections, and under the hypothesis of
Theorem 8, we have

DpD!J .!, V/Op/ D @tL2.pt , U, W//
ˇ̌̌

tD0
,
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where

L2.pt ,U ,W / D

Z
�

˛1A0V.0/r.uN � uD/ � r.uN � uD/C ˛2juN � uDj
2� 0V.0/ dx

C

Z
�

�A0V.0/ru � ru
a dx C

Z
@!

ptu � u
aw0V.0/ ds.

C

Z
�

�rU � rW dx C

Z
@!

ptU �W ds �

Z
@�

gwN dsC

Z
@�

.f � uD/�1@�wD ds

C 2

Z
�

˛1r.uN � uD/ � rw
a
N C ˛2.uN � uD/w

a
N dx

� 2

Z
�

˛1r.uN � uD/ � rw
a
D C ˛2.uN � uD/w

a
D dx.

and

@tL2.pt , U, W/
ˇ̌̌

tD0
D

Z
@!

Op.U �W C u � uaw0V.0// ds.

From the aforementioned equation yields (43).

Appendix A

Proposition 2
Let� be a bounded connexe domain in R2 with C1 boundary @�. The mapping

u! kuk :D
�
kruk2

L2.�/
C kuk2

L2.@!/

�1=2

is a norm on H1.�/ equivalent to the natural norm.

Proof
It is clear that if kuk D 0, then ru D 0 in L2.�/ and u D 0 in L2.@!/. We can deduce that ru D 0 in the sense of distribution and thus
u is constant in�. Because u D 0 in L2.@!/, we conclude that u D 0 in�. In the next step, we prove the equivalence with the H1-norm.

From the trace theorem, we have kukL2.@!/ � CkukH1.�/. Therefore, kuk � C1kukH1.�/, where C1 is a positive constant. Still to
prove that kuk � C2kukH1.�/. By contradiction, suppose that there exists a sequence .un/ in H1.�/ with kunkL2.�/ D 1 such that
kunkL2.�/ � nkuk. Then, run ! 0 in L2.�/ and un ! 0 in L2.@!/ as n! 0. The sequence un is bounded in H1.�/. From the compact
embedding of H1.�/ into L2.�/, we can extract a subsequence still denoted .un/ such that un ! Nu in L2.�/. Thus, we have un ! Nu
and run ! rNu in the sense of distribution. By the uniqueness of the limit, we conclude that Nu D 0 in �, which contradict the fact

that limn!1 kunkL2.�/ D kNukL2.�/ D 1. Therefore, there exists a positive constant c such that kuk2
L2.�/

� c
�
kruk2

L2.�/
C kuk2

L2.@!/

�
,

which ends the proof.

Definition 3

	 Given a velocity field V 2 D1.�,R2/ and denotes T V
t the corresponding deformations. A functional J : � ! R is said to have an

Eulerian semiderivative at� in the direction V if the following limits exists and is finite:

lim
t!0

J.T V
t .�// � J.�/

t
.

Whenever it exists, it is denoted by dJ.�; V/. The shape functional J is said to be shape differentiable if dJ.�; V/ exists for all
V 2 D1.�,R2/ and the map V ! dJ.�; V/ is linear and continuous.

	 Let V , OV 2 D1.�,R2/ and denotes T V
t , T OVt the corresponding deformations of V and OV , respectively. Assume that for all t 2 Œ0, �/,

dJ.T OVt .�/; V/ exists at T OVt .�/ in the direction V . The functional J is said to have a second-order Eulerian semi-derivative at� in the
directions .V , OV/ if the following limit exists:

lim
t!0

dJ.T OVt .�/; V/ � dJ.�; V/

t
.

Whenever it exists, it is denoted by d2J.�; V ; OV/. The shape functional J is said to be twice shape differentiable if d2J.�; V ; OV/ exists
for all V , OV 2 D1.�,R2/ and the map .V , OV/! d2J.�; V ; OV/ is bilinear and continuous.
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Definition 4
We say that the functional .t, x/ : Œ0, ���X ! F.t, x/ is semiconvex in x if there exists a family of continuous convex functionals C.t, x/ on
the Banach space X such that F.t, x/C C.t, x/ is convex in x. This means that F.t, ./C C.t, ./ and C.t, ./ both have directional derivatives,
and hence, F.t, ./ also has a directional derivative: the following limit exists:

dF.t, x; Ox/ D lim
�!0C

F.t, x C � Ox/ � F.t, x/

�
.

A.1. An abstract differentiability result

We first introduce some notations. Consider the functional

G : Œ0, "� � X � Y ! R (A.1)

for some " > 0 and the Banach spaces X and Y . For each t 2 Œ0, "�, define

g.t/ D inf
x2X

sup
y2Y

G.t, x, y/, h.t/ D sup
y2Y

inf
x2X

G.t, x, y/, (A.2)

and the associated sets

X.t/ D

(
xt 2 X : sup

y2Y
G.t, xt , y/ D g.t/

)
, (A.3)

Y.t/ D

�
yt 2 Y : inf

x2X
G.t, x, yt/ D h.t/


. (A.4)

Note that inequality h.t/ � g.t/ holds. If h.t/ D g.t/, the set of saddle points is given by

S.t/ :D X.t/ � Y.t/. (A.5)

We state now a simplified version of a result from [9], which gives realistic conditions that allows to differentiate g.t/ at t D 0. The main
difficulty is to obtain conditions that allow to exchange the derivative with respect to t and the inf-sup in (A.2).

Theorem 8 (Correa and Seeger[9])
Let X , Y , G, and " be given as previously. Assume that the following assumptions hold:

(H1) S.t/ ¤ ; for 0 � t � ".
(H2) The partial derivative @tG.t, x, y/ exists for all .t, x, y/ 2 Œ0, "� � X � Y .
(H3) For any sequence ftngn2N , with tn ! 0, there exist a subsequence ftnk gk2N and x0 2 X.0/, xnk 2 X.tnk / such that for all y 2 Y.0/,

lim
t&0,k!1

@tG.t, xnk , y/ D @tG.0, x0, y/,

(H4) For any sequence ftngn2N , with tn ! 0, there exist a subsequence ftnk gk2N and y0 2 Y.0/, ynk 2 Y.tnk / such that for all x 2 X.0/,

lim
t&0,k!1

@tG.t, x, ynk / D @tG.0, x, y0/,

Then, there exists .x0, y0/ 2 X.0/ � Y.0/ such that

dg

dt
.0/ D @tG.0, x0, y0/.
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