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Abstract: Among design engineers, it is known that breaking symmetries of a brake rotor can
help to prevent squeal. From a modelling point of view, in the literature brake squeal is almost
exclusively treated using models with a symmetric brake rotor, which are capable of explaining
the excitation mechanism but yield no insight into the relation between rotor asymmetry and
stability. In previous work, it has been demonstrated with linear models that the breaking of
symmetries of the brake rotor has a stabilizing effect. The equations of motion for this case have
periodic coefficients with respect to time and are therefore more difficult to analyse than in
the symmetric case. The goal of this article is to investigate whether due to the breaking of
symmetries also, the non-linear behaviour of the brake changes qualitatively compared to the
symmetric case.

1 INTRODUCTION

Friction-induced vibrations cause severe problems in

many applications. The squeal problem in disk brakes

and clutches is mentioned as an example. A broad

overview of brake squeal is given in reference [1]

and a more general review of friction-induced vibra-

tions can be found in references [2, 3] for squealing

clutches we refer to [4]. A major problem for engi-

neers working in the field, has been a lack of insight

into the excitation mechanism for the self-excited

vibrations. Therefore, many recent papers have sug-

gested models for the excitation mechanism [5–10]

which inspite of differences in the modelling agree

that sliding friction is causal for the excitation of

self-excited vibrations.

Over decades, engineers have tried to overcome the

problem using active and passive approaches.

Although active measures have done an excellent

job in suppressing squeal, in many cases they are

ruled out by cost arguments. Therefore, in this article,

we concentrate on passive design measures in order

to suppress squeal.

In reference [11], it has been shown that structures

with rotational symmetry are more sensitive to self-

excited vibrations caused by friction than systems

without rotational symmetry. It turns out that rotors

with multiple semi-simple eigenfrequencies are

much more sensitive to squeal than structures with

separated frequencies. From reference [11], it can be

concluded that separating the eigenfrequencies of a

rotor in frictional contact is helpful to prevent it from

self-excited vibrations.

For a brake rotor, this effect can be studied using an

asymmetric version of the discrete two-degrees-of-

freedom wobbling disk model for brake squeal from

reference [10]. Whereas in reference [10], the disk is

mounted such that rotationally symmetric restoring

forces arise, an asymmetric mounting of the disk has

a stabilizing effect as shown in reference [12]. In refer-

ence [13], the transition of a brake system from

stability to squeal through a HOPF bifurcation was

investigated using centre manifold and normal
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form theory. The results showed that in case of a sub-

critical HOPF bifurcation also, the non-linear stability

boundary can be of practical relevance.

The goal of this study is to investigate non-linear

effects on the stability boundary of a model with an

asymmetric brake rotor. Since the equations of

motion are time-periodic, the common autonomous

versions of centre manifold and normal form theory

are not directly applicable. It is however known that

the results for the time-autonomous case can be

extended to systems with periodic coefficients [14].

Time-periodic centre manifold and normal form

theory has been developed by SINHA, BUTCHER, and

coauthors [15–18] revealing many interesting results

including analytical approximations. In this article,

however it is decided to follow an approach of

TROGER and STEINDL [24] and expand the POINCARÉ

map of the system over one period in terms of the

initial conditions. After a cumbersome numerical cal-

culation of the expansion, the equations can be con-

veniently studied using stability and normal form

theory for point maps. Since the equations of

motion for the model studied in this article have the

same structure as for continuous models on brake

squeal [5, 11], the qualitative results are to be

expected for more complex models as well.

2 ASYMMETRIC WOBBLING DISK MODEL

In reference [10], a minimal model for brake squeal

involving a rotating wobbling disk was introduced in

order to explain the excitation mechanism of brake

squeal. The study was based on solving an eigenvalue

problem for linear equations of motion with constant

coefficients. In the sequel, the model is slightly mod-

ified to allow for asymmetric brake rotors and intro-

duce non-linear restoring forces arising from a

possible non-linear material characteristic of the fric-

tion material [20].

2.1 Modelling assumptions and equations

of motion

The model shown in Fig. 1 consists of a rigid disk

rotating about the ~n3 axis at constant angular velocity

� corresponding to the non-holonomic constraint

N~!
D
� ~n3 ¼ � ð1Þ

and free to tilt with respect to the ~n1–~n2 plane. The

torque due to the mounting

~Mt ¼ ~Mtk þ
~Mtd ð2Þ

acting on the disk includes an elastic restoring torque

~Mtk ¼ �kt arccosð~n3 �
~d2Þ �

�

2

� �
~d1

� ð1þ �t Þkt arccosð~n3 �
~d1Þ �

�

2

� �
~d2 ð3Þ

proportional to the tilting angle between the two axes

~d1, ~d2 and the normal vector ~n3, as well as a viscous

damping torque

~Mtd ¼ �dt ð
N ~!D � ~d1Þ

~d1 � ð1þ �t Þdt ð
N ~!D � ~d2Þ

~d2 ð4Þ

proportional to the components of the angular veloc-

ity in the directions ~d1 and ~d2. This definition corre-

sponds to a point-symmetric visco-elastic bedding of

the disk with respect to the ~n3 axis for �t¼ �t¼ 0 and

agrees with the formulation in reference [10] in the

linear terms. The disk is in contact with two idealized

massless brake pads which are pressed onto the sur-

face of the disk by prestressed spring-damper ele-

ments (stiffness k, damping d, and prestress N0).

Between the disk and the pad COULOMB friction

occurs. If the generalized coordinates describing

the orientation of the disk are defined as in reference

[10], i.e. a CARDAN 1-2-3-rotation with angles q1, q2,

and q3 and subsequent elimination of _q3 using the

non-holonomic constraint (1), the linearized equa-

tions of motion read

� 0

0 �

� �
€q1

€q2

� �
þ

dt þ 2dr2 þ 1
2�N0

h2

r�
��

���� dh�r ð1þ �t Þdt

" # 

��t dt
� sin2 �t sin �t cos �t

sin �t cos �t sin2 �t

" #!
_q1

_q2

� �

þ
kt þ 2kr2 þN0h 1

2�N0
h2

r

��ðkhr þ 2N0rÞ ð1þ �t Þkt þ ð1þ�
2ÞN0h

" # 

��rt kt
� sin2 �t sin �t cos �t

sin �t cos �t sin2 �t

" #!
q1

q2

� �
¼

0

0

� �

ð5Þ

Due to the asymmetry of the mounting, the equa-

tions of motion feature periodic coefficients. If the

mounting, is point symmetric (i.e. �t¼ �t¼ 0), the

Fig. 1 Disk brake model with wobbling disk
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linearized equations of motion simplify to the ones

stated in reference [10]. For the following analysis, the

parameters

h ¼ 0:02 m, r ¼ 0:13 m,
� ¼ 0:16 kg=m2, � ¼ 2�,
kt ¼ 1:88 � 107 Nm, k ¼ 6:00 � 106 N=m,

N0 ¼ 3:00 kN, � ¼ 0:6,
d ¼ 5 Ns=m, dt ¼ 0:1 Nms

taken from reference [10] will be used. The dimen-

sionless values �t, �t characterizing the asymmetry

and the rotational speed � will be varied.

2.2 Formulation of a perturbation problem

Changing the sequence of the CARDAN rotations

a formulation of the equations of motion more

suitable for analytical investigations is obtained.

Defining the generalized coordinates by a CARDAN

3-1-2-rotation with angles q3, q1, q2 and subse-

quent elimination of _q3 using the nonholonomic

constraint (1) yields the linearized equations of

motion

� 0

0 �

� �
€q1

€q2

� �

þ

1
2�N0

h2

r�
cos2 �t � 1

2�N0
h2

r�
sin �t cos �t

� 1
2�N0

h2

r�
sin �t cos �t 1

2�N0
h2

r�
sin2 �t

" #

_q1

_q2

� �
þ

k11 k12

k21 k22

� �
q1

q2

� �
¼

0

0

� �
ð6Þ

with

k11 ¼ kt1 þN0h þ��2 þ 2kr2 cos2 �t

þ ð2�N0r þ h�krÞ sin �t cos �t

� h�2N0 sin2 �t ,

k12 ¼h�kr sin2 �t þ h�2N0 sin �t cos �t

� 2�N0r cos2 �t � 2kr2 sin �t cos �t ,

k21 ¼� 2kr2 cos �t sin �t � 2�N0r cos2 �t

� h�kr cos2 �t þ h�2N0 sin �t cos �t ,

k22 ¼ kt2 þN0h þ��2 þ 2kr2 sin2 �t

þ ð2�N0r þ h�krÞ sin �t cos �t

� h�2N0 cos2 �t

stated here for the undamped case only, for the sake

of brevity. Introducing damping in the pad and the

damping torque (4) yields additional terms in

the matrices proportional to q1,2 and _q1,2. The equa-

tions of motion now have the form

M €q þ "�Dðt Þ _q þ ðK þ "�K ðt ÞÞq ¼ 0 ð7Þ

and have been analysed in reference [11] using ana-

lytic perturbation theory. The matrices M¼MT and

K¼KT are the mass and the stiffness matrix of the

undamped disk without pads, respectively. The

terms occurring from the pads and the damping

torque are interpreted as perturbations and repre-

sented by the matrices �D(t)¼�D(tþT),

�K(t)¼�K(tþT), which are periodic with respect

to T¼ 2p/�. The parameter e 55 1 can be interpreted

as a norm of multiple parameters depending linearly

on e and vanishing for e¼ 0. In reference [11], it has

been shown that splitting up the eigenfrequencies of

the unperturbed problem of (7) helps to stabilize the

system. This is done by setting �t¼ 0 and varying �t.

Figure 2 shows the critical speed, i.e. the speed at

which the trivial solution loses stability, as a function

of �t. It can be clearly seen that the critical speed

is minimal in the symmetric case (�t¼ 0), and

increases significantly in the non-symmetric case

for �t> 1 percentile. The stability boundary in Fig. 2

is in good agreement with the analytical approxima-

tion of the corresponding general two dimensional

case in reference [21].

3 NON-LINEAR ANALYSIS

In the previous section, it was shown that an asym-

metric mounting of the disk does not only change the

equations of motion significantly but also has a sta-

bilizing effect. Nevertheless, in case of instability, the

analysis of the study of the linearized equations is

insufficient, since infinite amplitudes are predicted.

In reference [13], the bifurcation behaviour of a sym-

metric elastic disk has been studied and sub- and

supercritical HOPF bifurcations were found in agree-

ment with numerical investigations in reference [22].

Fig. 2 Critical speed (speed at which the trivial solu-
tion loses stability) for varying �t
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The goal of this section is to investigate whether

introducing asymmetry in the rotor and has an influ-

ence on the nonlinear behavior.

3.1 Derivation of the bifurcation equations

In order to account for the non-linearities, the equa-

tions (6) are augmented by material non-linearities

originating from the pad material. Taking into

account that the amplitudes of a squealing brake

are very small, it is assumed that the stiffness charac-

teristic of the pad is dominant, so that geometric

non-linearities can be neglected. The non-linear

equations of motion therefore read

M €q þ�Dðt Þ _q þ ðK þ�K ðt ÞÞq þ f ðq, t Þ ¼0 ð8aÞ

fj ðq, t Þ ¼ k3ðFkjÞ
3
þ k5ðFkjÞ

5
ð8bÞ

where Fkj is the contribution of the geometrically

linear elastic restoring terms of the pad to the equa-

tions of motion. Making use of the fact that the

system is time-periodic, the stability and bifurcation

behaviour of the system is studied through its

POINCARÉ map over one revolution. As described in

reference [24], the POINCARÉ map can be expanded

into a series

Pðx0 þ nÞ ¼ xðx0, T Þ þ
@x

@x0
ðx0, T Þn

þ
1

2

@2x

@x2
0

ðx0, T Þ�2 þ . . .

ð9Þ

around the stability boundary. Since our equations

are homogeneous, we are interested in the stability

behaviour of the trivial solution q(t)¼ 0, which is the

fixed point x0¼ 0 of the POINCARÉ map. A distortion in

the initial conditions m evolves according to the dif-

ference equation

ntþ1 ¼
@x

@x0
ð0, T Þnt þ

1

2

@2x

@x2
0

ð0, T Þn2
t þ . . . : ð10Þ

For convenience of the reader, the necessary

steps are explained. The parameters around the

stability boundary are taken into account via a

state augmentation, sometimes called ‘suspension

trick’

d

dt

p
q
_q

2
4

3
5 ¼ 0

_q
�M�1½�Dðt Þ _q þ ðK þ�K ðt ÞÞq þ f ðq, t Þ

2
4

3
5

ð11Þ

and in the sequel equation (11) is simply written as
_x ¼ F ðx, t Þ. In order to calculate the derivatives of

x(x0, T), equation (11) is differentiated with respect

to x0, i.e.

d

dt

@x

@x0
¼
@F

@x

@x

@x0
ð12Þ

and integrated from 0 to 2p. The higher derivatives

follow analogously by differentiating (11) with

respect to x0 repeatedly and using the results from

previous computations.

Having computed the truncated expansion of the

POINCARÉ map, our next goal is to simplify the quali-

tative analysis as far as possible using normal form

theory. It is known, that around the stability bound-

ary of the linear system, the dynamics of the system is

determined by its behaviour on the centre manifold,

which can be simplified further by transforming it to

normal form. However, for practical reasons, normal

form theory will be applied to the complete system

(10), which implies a decoupling of the centre mani-

fold, as will be seen in the sequel. It turns out that this

fact is completely analogous to the continuous case

previously investigated in reference [23] and is used

in a slightly different way in a projection method in

reference [19] for the derivation of the generic codi-

mension 2 bifurcations. For the reduction process, in

a first step, we transform (10) such that the linear part

is in JORDAN normal form

xtþ1 ¼ ,xt þ f ðxt Þ,

f ðxt Þ ¼ F 2x2
t þ F 3x3

t þ . . . ,
ð13Þ

where ,¼diag(�1, . . ., �n) and �j are the FLOQUET

multipliers. The states are devided into critical and

non-critical variables

xtþ1c ¼ ,c xt c þ f cðxt c , xt sÞ, j�ci j ¼ 1

xtþ1s ¼ ,sxt s þ f sðxt c , xt sÞ, j�ci j5 1

and introduce the near identity transformation

xt ¼ y t þ g ðy t Þ, g ðy t Þ ¼ G2y2
t þ G3y3

t þ . . . ð14Þ

in order to obtain

y tþ1 ¼ ,y t þ hðy t Þ, hðy t Þ ¼ H 2y2
t þH 3y3

t þ . . .

ð15Þ

which should be as simple as possible. Inserting (14)

and (15) in (13) yields

xtþ1 ¼ y tþ1 þ g ðy tþ1Þ ¼ ,y t þ hðy t Þ þ g ð,y t þ hðy t ÞÞ

¼ ,ðy t þ g ðy t ÞÞ þ f ðy t þ g ðy t ÞÞ ð16Þ

In order to solve for the unknown coefficients of g(yt)

we collect terms of each order in (16)

Ord: 0 : ,y t ¼ ,y t

Ord: 1 : H 2y2
t ¼ F 2y2

t þ ,G2y2
t � G2ð,y tÞ

2
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The goal is to eliminate as many terms of the h(yt) as

possible. The equations for the zero order are trivially

satisfied. For each coefficient H2jkl
of H2, we have

H2jkl ¼ �jG2jkl þ F2jkl � �k�l G2jkl ð17Þ

which means we can achieve H2jkl¼ 0 by choosing

G2jkl ¼
F2jkl

�j � �k�l
ð18Þ

unless �j¼ �k�l. Recursively, continuing this process,

it is observed that for the mth order, all terms

Hmm1...mn
can be eliminated unless

�j ¼ �
m1

1 . . . �mn
n ,

X
mi ¼ m ð19Þ

which is called the resonance condition. Writing

�j ¼ e�j with �j¼ djþ i!j and taking the logarithm of

(19), the resonance condition reads

�j ¼ m1�1 þ . . .þmn�n ð20Þ

which coincides with the one for the time continuous

case [23]. Since for the critical variables �j¼ 0,

whereas for the stable variables �j< 0, we see from

(20) that the critical variables can only be resonant

with other critical variables. Therefore, the governing

equations for the normal form decouple up to the

order to which the reduction process is performed.

A bifurcation analysis of (11) can be performed on

the system

y tþ1c
¼ ,c y t c þ hc ðy t c Þ ð21Þ

which contains only the critical variables including

the parameters which were introduced by state aug-

mentation in (11).

Depending on the type of bifurcation through

which the trivial solution of (11) looses its stability,

further information can be obtained from the reso-

nance condition (19). Since the brake investigated in

this article looses stability by a NEIMARK–SACKER bifur-

cation, the discrete version of the HOPF bifurcation,

we concentrate on this case in the sequel. On the sta-

bility boundary of the trivial solution of (13), the crit-

ical variables correspond to a pair of complex

conjugate eigenvalues �c¼ e�ioj and further critical

eigenvalues �c¼ 1, introduced by the state augmen-

tation for the parameters.

Taking into account the fact that no non-linearities

occur in the equations corresponding to the param-

eters in (13) and assuming that !j is not a multiple of

2p, it is seen that in the normal form (21), only odd

non-linearities remain, such that for the critical var-

iables we have

ytþ1c ¼ ð�þ a1ðpÞÞyt c þ a3ðpÞyt
2
c þ a5ðpÞyt

5
c þ . . . ,

ð22Þ

ytþ1c
¼ ð�þ a1ðpÞÞyt c þ a3ðpÞyt

2
c þ a5ðpÞyt

5
c þ . . . ,

ð23Þ

where variables and coefficients are complex conju-

gate since the variables in (13) are real. The ampli-

tudes of limit cycles occurring after a destabilization

of the trivial solution of (11) only depend on the norm

of yt. Therefore, for the analysis of the bifurcation

behaviour, it is sufficient to study only the develop-

ment of

rtþ1 ¼ ytþ1c ytþ1c
¼ b1ðpÞrt þ b2ðpÞrt

2 þ b3ðpÞrt
3 þ . . . ,

ð24Þ

where
ffiffiffi
r
p

is the norm of ytc
. Limit cycles and equilib-

rium solutions correspond to fixed points of (24) and

can be calculated from

rtþ1 � rt ¼ 0 ð25Þ

where only positive real roots r * correspond to a solu-

tion. The stability of these solutions can be studied

by the theory of first approximation by setting

r¼ r *þDr in (24) and investigating the stability of

Dr¼ 0, which yields

�rtþ1 ¼ c1 �rt þ c2 �r2
t þ . . . ð26Þ

In case Wc1W< 1, r * is stable, in case Wc1W> 1, r * is unstable.

3.2 Computational results

In this section, we calculate the bifurcation equations

of the brake model up to fifth order with respect to the

mechanical degrees of freedom. Whereas the ‘sus-

pension trick’ explained in the final section is proba-

bly the easiest way to understand the dependence of

the bifurcation equations on the parameters, in our

application it turns out to be practically infeasible.

The reason is that the dependence of the solution of

the differential equation (8) is in fact not polynomial

and the corresponding expansion converges very

slowly, so that low-order approximations are only

valid in a very small neighbourhood of the origin.

This can be easily understood by considering the ana-

lytical example

_p ¼ 0 ð27aÞ

_x ¼ �p k sinðt Þ x ð27bÞ

of which the solution x¼ ekpsin(t) can be found by var-

iation of the constant. Since the dependence of the

solution on the parameter is exponential, the conver-

gence of a TAYLOR series with respect to p is very slow.

The same holds true for the oscillatory dependence of

the solution on the parameter, which is the case for

the brake model, where many cycles occur per revo-

lution of the disk.

Asymmetric disk brake model 2329
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In order to avoid truncation errors and taking into

account that the FLOQUET multipliers as well as the

non-linearities in (8) are not very sensitive around the

critical angular velocity �* (Fig. 3), we only perform

the expansion of the POINCARÉ map with respect to

the mechanical degrees of freedom q and unfold the

equation for the norm of the normal form (26) with

respect to � around �*

rtþ1 ¼ 1þ 2
d j�j

d

����
��
ð����Þ

� 	
rt þ b2 r2

t þ b3 r3
t þ . . .

ð28Þ

where dW�W/d� can be calculated analytically from

the expansion of the POINCARÉ map with respect to

q and � [25]. When dealing with (28) one has to trun-

cate the series such that no orders higher than the

ones considered in the POINCARÉ expansion are kept,

since otherwise singularities can be induced into the

equations by small non-linearities that have been

removed from lower orders in the normalization pro-

cess. In the following, we demonstrate that the trivial

solution of (8) can loose its stability through a super-

or a subcritical Hopf bifurcation. For the non-linear

stiffness parameters

k3 ¼ 20 � 1012 1=ðNmÞ2 k5 ¼ 50 � 1018 1=ðNmÞ4

ð29Þ

the supercritical case is obtained and presented in

Fig. 4 whereas for

k3 ¼ �20 � 1012 1=ðNmÞ2 k5 ¼ 50 � 1018 1=ðNmÞ4

ð30Þ

a subcritical bifurcation is obtained, as shown in

Fig. 5.

These results coincide with the ones for the time

continuous case in references [23], where especially

the subcritical case goes along well with observations

made in the laboratory. Finally, the dependence of

the norm of the limit cycle on the rate of asymmetry

in the brake rotor is studied. In Fig. 6, the limit cycle

amplitudes are compared for an asymmetry of

�t¼ 0.1, 1.0, 2.5 percentile for the sub- and the super-

critical case. It is seen that the limit cycle amplitudes

shrink with increasing asymmetry, whereas the

critical angular velocity rises. For asymmetries

�t> 3 percentile, no technically relevant critical veloc-

ity can be found.

The results show that an introduction of asymme-

try of the rotor not only increases the linear stability

boundary but is also beneficial from a non-linear

point of view. A detailed study of the basins of attrac-

tion in the non-linear setting is, however, beyond the

scope of this article and postponed to future work.

Fig. 4 Bifurcation diagram and stability chart (coefficient c1 from (26)) for the supercritical case
and �t¼ 1%

Fig. 3 Dependence of max W � W on � for �t¼ 1%
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4 CONCLUSIONS

This article studies the non-linear stability behaviour

of an asymmetric disk brake model. The non-linear

equations of motion feature time-periodic coeffi-

cients and are analysed using FLOQUET theory in

combination with normal form theory for the corre-

sponding expansion of the POINCARÉ map. It is shown

that a distortion of the symmetry of the rotor is not

only beneficial from a linear point of view but also

reduces limit cycle amplitudes and increases the sta-

bility boundary.
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