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A valid method of gas foil bearing
parameter estimation: A model
anchored on experimental data

Robert Hoffmann, Oliver Munz, Tomasz Pronobis,
Enrico Barth and Robert Liebich

Abstract

Gas foil bearings are a smart green technology and suitable for the next generation of small turbo machinery e.g.

turbochargers, micro gas turbines, range extenders and compressors of fuel cells. A combination of low power loss,

high speed operation and the omission of an oil system are the major advantages. To enable access to this technology, it is

essential to evaluate critical speeds and onset speeds of subharmonic vibration of the rotor system in the first design

stage. Hence, robust and valid models are necessary, which correctly describe the fluid structure interaction between the

lubrication film and the elastic bearing structure. In the past three decades several experimental and numerical inves-

tigations of bearing parameters have been published. But the number of sophisticated models is small and there is still a

lack of validation towards experimental works. To make it easy for designers dealing with this issue, the bearing

parameters are often linearised about certain operating points. In this paper a method for calculating linearised bearing

parameters (stiffness and damping) of gas foil bearing is presented. Experimental data are used for validation of the

model. The linearised stiffness and damping values are calculated using a perturbation method. The pressure field is

coupled with a two-dimensional plate model, while the non-linear bump structure is simplified by a link-spring model. It

includes Coulomb friction effects inside the elastic corrugated structure and captures the interaction between the single

bumps. For solving the separated perturbed Reynolds equation a static stiffness is used for the 0. order equation

(stationary case) and a dynamic stiffness is applied for 1. order equation (dynamic case). Therefore, an additional dynamic

structural model is applied to calculate the dynamic stiffness. The results depend on the load level and friction state of

each bump. Different case studies including the impact of clearance, frictional contacts and the comparison of a linear and

non-linear structure are carried out for infinitesimal perturbations. The results show, that the linear structure under-

estimates main and cross-coupling effects. The impact of the clearance is notable, while the impact of the overall

frictional contacts is small due to relatively small loadings. The infinitely small perturbation model is adapted to the

experimental setup by using a superposition of two resulting bearing parameters identifications of two total loadings

including shaker forces. Due to this adaptation a good correlation with the experimental results of the bearing param-

eters is achieved.
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Introduction

In the last three decades gas foil bearings (GFBs) have
successfully been introduced into turbo machinery.
Bump type GFBs comprise an elastic bump and top
foil. The foils are fixed with the bearing sleeve e.g. by
spot welds. Fluid dynamic pressure deforms the elas-
tic structure and generates additional damping due to
frictional contacts. Key issues are poor overall damp-
ing level, low load capacity due to the low viscosity of
the air film and the lack of validated numerical
models. In the past, ‘trial and error’ methods have

been applied to improve poor damping and load
capacities. In particular, the poor damping level
cannot prevent sub-synchronous vibrations charac-
terised by limit cycles. These vibrations occur at
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higher rotor speeds, due to self-excitations,1 and poor
balanced systems.2–7 The use of structural modifica-
tions on the elastic structure can avoid or decrease
these vibrations.2–4

In Hoffmann et al.1 the source of the sub-synchro-
nous vibrations is analysed. A thesis is stated, that two
non-linearities are responsible: The fluid film and the
non-linear elastic structure. Well-balanced rotor sys-
tems will be self-excited by the fluid film. Considering
the self-excitation, a Hopf-Bifurcation can describe the
onset speed of sub-synchronous vibrations �0. The
eigenvalue li ¼ �i � j!�i of the Jacobi matrix of an
autonomous system, where the damping ratio �i¼ 0
of the mode i eigenvalue becomes zero, is related on
a Hopf-Bifurcation.8,9 As Hoffmann et al. show,1 the
onset speed �0 can be estimated by using an approxi-
mation based on linearised bearing parameters. This
method agrees well with the results of a time domain
analysis. In detail, linearised bearing parameters (stiff-
ness K(�, !) and damping C(�, !)) are applied in a
linear eigenvalue problem by solving the homogeneous
linear ODE-system, equation (1)

Mu
::
þ Cð�,!Þ �Gð�Þð Þ u

:
þKð�,!Þu ¼ 0 ð1Þ

where the global matrices for mass M, damping
C(�, !) and stiffness K(�, !) are based on the given
rotor structure. Gyroscopic effects are captured by
G(�). Note that the system depends on the rotation
speed � and due to the compressible gas of the bear-
ings on the excitation frequency !. Therefore, the
eigenvalues lið�,!Þ ¼ �ið�,!Þ � j!�i ð�,!Þ are a func-
tion of the rotational speed � and the excitation fre-
quency !. The intersection, where the real part of an
eigenvalue becomes zero (�i(�0, !)¼ 0) and the
imaginary part is equal to the excitation frequency
(j!�i ð�0,!Þ ¼ !), states the point of a self-excitation
(Figure 1). Hence, a correct and robust estimation of
critical speed �0 is significant for the whole design
process and is essential to avoid additional costs.

However, to keep the estimation error as small as
possible a valid method for a parameter identification

has to be applied. In the past, several numerical
models to calculate the linearised bearing parameters
have been published. The parameters can be calcu-
lated by using the infinitely small perturbation
method of Lund.10 Where the numerical parameter
identifications consider simple linear structural
models11–18 or using complex non-linear structural
models, which take bump interactions and frictional
contacts into account.19–25 However, no detailed val-
idation with experimental linearised bearing param-
eters is shown. Only the study of Larsen et al.19

includes a validation with experimental data of a
second generation GFB, but it is limited to one load-
ing case (Wx¼ 200N at 20,000 r/min) and only
sub-synchronous excitation is shown. One important
outcome of this study is that the authors distinguish
between a static and dynamic stiffness, which
improves the agreement to the measured parameters.
Unfortunately, only a small number of published
experimental parameter identification data of GFBs
is published.20–30 However, Rudloff et. al28 deliver the
widest field of experimental data for first generation
bump type GFB. The study includes several load
levels (10–50N), rotor speeds (15,600–35,400 r/min)
and excitation frequencies (100–600 Hz).

The purpose of this paper is to deliver a valid
method for a gas foil bearing parameter estimation.
To achieve realistic results the fluid film is coupled
with a non-linear structure model for the static and
dynamic cases. First, the dynamic structure model is
validated with experimental data from Larsen et al.31

In the second part of the paper, the linearisation
model is validated with Rudloff’s experiments.28

The present paper shows a theory for an improve-
ment of the correlation between linearised simula-
tions and experimental parameter identification.
The theory is based on adapting higher dynamic
shaker forces, if they are in the same range of
static loadings. In addition, the impact of frictional
contacts and nominal clearance is analysed, because
these parameters are affected by uncertainties during
the design process.

Theoretical model

Fluid film

Figure 2 shows a compliant structure of a GFB in a
inertial coordinate system (x, y and �). A turning jour-
nal with an angular speed � and a centre displace-
ment ex and ey generates a forced slip stream with a
film thickness of h(z, �). It results in a dynamic pres-
sure field p(z, �), which produces a reacting force fB.
An equilibrium condition is reached if the sum of the
loading vector w¼ {Wx, Wy}

T and the reacting force
vector fB is zero. An integration of the pressure field
along the axial and circumferential directions yields a
reacting force vector fB, equation (2). It acts under the
attitude angle �. Note that the axial direction z is

ωi

Ω

ω
δi>0δi<0

Ω0

ω=ωi

Self Excitation

*

*

Figure 1. Evaluation of the self excitation: �i vs. � vs. !�i .
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related to the bearing length l.

fB ¼ R

Z l

0

Z 2�

0

pðz, �Þ � pað Þ
cos �
sin �

� �
dzd� ð2Þ

Due to the pressure field, an elastic deformation of the
foil structure is given by hc(z, �) and is calculated by a
structural model as shown below. Equation (3)
describes a perfectly aligned journal, expansion effects
due to temperature gradients and centrifugal forces
are neglected. Note that these effects should be
taken into account if thin journal walls and high tem-
perature operations are present, which is neglected in
this work. The film thickness is composed of a rigid
term hr(�), including the nominal clearance c and the
journal centre displacements, and of a compliant term
hc(z, �). The clearance is a theoretical parameter,
which can be estimated experimentally. Further struc-
tural modifications, e.g. shimming, may affect the
clearance in a circumferential direction,1,2

hð�, zÞ ¼ cþ ex cosð�Þ þ ey sinð�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hr �ð Þ

þhcðz, �Þ ð3Þ

The pressure field p(z, �) is calculated by solving the
Reynolds equation (RE) for a compressible, isother-
mal and isoviscous fluid (equation (4)). It links both
pressure field and film thickness under the presence of
journal rotation speed U¼R�. The following bound-
ary conditions are applied: pðz ¼ 0, �Þ ¼ pðz ¼ l, �Þ
¼ pa and pðz, � ¼ 0Þ ¼ pðz, � ¼ 2�Þ ¼ pa

@

@z
ph3

@p

@z

� �
þ

1

R2

@

@�
ph3

@p

@�

� �
¼

��l

2

@ phð Þ

@�
þ 12�l

@ ð phÞ

@t

ð4Þ

If the pressure falls underneath the ambient pressure
condition p(z,�)< pa, a top foil lift-off occurs and sub-
ambient pressures is reaching the ambient level
(p¼ pa). Thus, sub-ambient pressures are set to
p¼ pa. Bearing parameters are calculated by using
Lunds approach,10 which is based on a perturbation
method. In the equilibrium state of a given static load
w under steady speed condition (�¼ const.) a har-
monic perturbation is superimposed with a frequency
! and infinitely small eccentricity (�ex,y � c). In add-
ition, the pressure field and the film thickness
are affected by perturbations, where i¼ x, y.
Substituting equation (5) into equation (4), while neg-
lecting terms of higher order, generates zero and first
order Reynolds equations, which have to be succes-
sively solved.

e ¼ e0 þ�eie
j!t ð5Þ

p ¼ p0 þ�eipie
j!t ð6Þ

h ¼ h0 þ�ei hi þ hc,i
� �

ej!t ð7Þ

The perturbed pressure fields px and py are used to
calculate the linearised stiffness and damping matrices
(equation (1) and (8)). The calculation delivers com-
plex matrix elements that are known as bearing
impedance zij¼ kijþ j!cij, where i, j¼ x, y. A more
detailed explanation is given by Kim and San
Andrés11

zxx zxy

zyx zyy

	 

¼

kxx kxy

kyx kyy

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Kð!Þ

þj!
cxx cxy

cyx cyy

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Cð!Þ

¼ �R2

Z l

0

Z 2�

0

px cos � py cos �

px sin � py sin �

	 

dzd�

ð8Þ

Structural model

A detailed description of the two non-linearities
caused by the fluid film and the elastic structure is
necessary in order to achieve valid results; a simple
as well as detailed model needs to be introduced. It
includes following features and assumptions:

. top foil displacement including axial and circum-
ferential components;

. non-linear frictional contacts between top- and
bump-foil and between bump-foil and housing
are taken into account by using the Coulomb
model for static and dynamic analyses;

. each bump i can interact with its surrounding the
preceding i� 1 and the subsequent bump iþ 1;

. the applied bump load Fp is concentrated on the
top centre of the bump;

y

x

β

fB

ey

ex

p(z,θ)

c(θ)

hc(z,θ)

θ

Ω

g

Bumps

Top Foil

Sleeve

w

O0

OW

hr(θ)

journal

Figure 2. GFB with a dynamic pressure field.
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. bumps are reduced towards rigid segments linked
by pivots, while bump interactions are transmitted
by linear springs;

. bump deformation along the axial direction is
assumed to be constant;

. no bump-foil separation from the housing is
possible;

. all deformations are elastic.

Recently, Larsen et al.19 have shown that small
perturbations around an equilibrium position result
in significantly higher slopes in hysteresis (stiffer
system) compared to a static load path, as shown in
Figure 3. Due to the decreased slip phase the sticking
phase of the hysteresis is dominating. Hence, stiffness
will increase with a decreasing of the dynamic dis-
placement amplitudes and two structural stiffness ks
and kd have to be calculated, where the static stiffness
ks is used for the zeroth order RE (static station-
ary case) and the dynamic stiffness kd is applied to
solve the perturbed first order RE (dynamic case).
For the two kinds of stiffness different models are
applied.

However, both models are using the same finite
element (FE) structure, where a realistic structure
(Figure 4(a)) is reduced to an equivalent model
(Figure 4(b)): The top foil is described by a thin
two-dimensional (2D) plate, where three-dimensional
(3D) effects due to normal tensions are neglected.
These finite plate elements are linked to equivalent
non-linear bump spring-damper elements, calculated
by the structural models. Both the static and dynamic
bump matrix KBump fp, ff

� �
is a function of the loading

state of the pressure field fp and the frictional contact
forces ff. In addition, the top foil’s Young-modulus E
is increased by a factor of 4 to obtain appropriate
sagging effects between adjacent bumps.16

Static structural bump model. An equivalent link-spring
model is used to describe the structural behaviour; it is

mainly based on the work of Feng et al.21 Figure 5(a)
shows the free punch and the kinematic of the pivot.

The force equilibrium equation (9) is given for a
bump segment ‘I’. The contact forces between bump/
housing (index bot) and bump/top foil (index up) are
included

Fi
bot ¼ Fiþ1

s þ Fi
b,x � Fi

s � Fiþ1
b,x � Fi

x ð9Þ

where beam lever forces for the i and iþ 1 bump seg-
ments are given by Fi

b,x ¼ Fi
r= tan �ið Þ and Fiþ1

b,x ¼

Fi
l = tan �ið Þ, as well as the interaction forces

Fi
s ¼ 2k1�Li and Fiþ1

s ¼ 2k1�Liþ1 due to horizontal
displacement �Li and �Liþ1 of the linear spring k1,
based on the Castigliano theorem.21 The right- and
leftward forces include the friction force Fi

up and the
concentrated bump loading force Fi

p

F i
r ¼

Fi
p

2
�
Fi
up

2
tanð�iÞ

and

Fi
l ¼

Fi
p

2
þ
Fi
up

2
tanð�iÞ

ð10Þ

For the static structure model the motion state is
checked by the force equilibrium equation (9), where
the sign-function of the Coulomb model is considered.
Finally, the equivalent stiffness can be calculated by
estimating the motion states and can be introduced
into the FE-model structure.23 If both segments are
in a stick condition the kinematic of the bump is
changed and delivers a higher stiffness (Figure 5(c)).

Dynamic structural bump model. To calculate the
dynamic hysteresis of a bump structure, equation (9)
has to be solved in the time domain, while varying

p(z,θ)

BumpsHousing

Top 
Foil

θ

(a)

θBump-Spring-Damper

2D-
Plate

p(z,θ)
(b)

Figure 4. GFB Structure: (a) real structure and (b) model

(bump spring and damper model and top foil plate model).

for
ce

displacement

dy
n. 

for
ce

dyn. displacement

kd

ks

Figure 3. Schematic hysteresis according to Larsen et al.19
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�h or Fp. For higher excitation frequencies the Gross-
sliding regime becomes smaller.32 Hence, the Stribeck
effects are reduced and the frequency has no signifi-
cant impact on the structural hysteresis, which has
been experimentally shown.33 Thus, the Stribeck
effect is neglected and only Coulomb friction is
used. Unfortunately, the Coulomb friction that con-
siders the sign-function leads to numerical problems.
The introduction of the dynamic friction model of
Petrov and Ewins34 avoids that problem and a time
domain analysis is possible. This approach has been
successfully introduced in GFB structures already by
Le Lez et al.35 The frictional forces due to acting
normal force N can be described by a relative deflec-
tion (x� xs) of a simple brush model with the stiffness
kt (Figure 6(a))

F ¼ kt x� xsð Þ � ð _xSÞ�N sign ð11Þ

To overcome unsteadiness problems of the sign-func-
tion, an approximation is applied by using an arctan-
gent function

signð _xSÞ �
2

�
arctanðct _xSÞ ð12Þ

The approximation includes ct, which is a model param-
eter that controls the slope of the arctangent function
(Figure 6(b)). A numerical investigation with a multiple
parameter variation (E-modulus, bump number, load
level, and kt-parameter) shows that applying a value
of ct56� 106 in a kt range of [4� 105, 106] N/m the
numerical results of a dynamic hysteresis become inde-
pendent of the slope parameter ct.

36 However, applying
too high ct values increases significantly the solution
time. Hence, ct¼ 6� 106 is chosen. Finally, a time devi-
ation of equation (11) and substitution of equation (13)
in equation (12) yields to equation (13)

dF

dt
¼ kt _x�

1

ct
tan

�F

2�N

� �� �
ð13Þ

Applying this method on a GFB structure, the bump/
top foil contact (index up) and bump segment/housing
contact (index bot) are given by equations (14)

_Fi
up ¼ kt _xiup �

1

ct
tan

�Fi
up

2�Ni
up

 ! !
and

_Fi
bot ¼ kt _xibot �

1

ct
tan

�Fi
bot

2�Ni
bot

� �� � ð14Þ

A time deviation of the force equilibrium of a single
bump segment and substituting the dynamic friction
force results to

d

dt

Fp

tanð�Þ

� �
i

¼ 2k1 2 _xibot � _xi�1bot � _xiþ1bot

� �
þ

d

dt

Fp

tanð�Þ

� �
iþ1

þ2 _Fi
bot þ

_Fi
up þ

_Fiþ1
up

ð15Þ

Furthermore, the kinematic relationships 2�Li ¼

xi�1bot � xiþ1bot and 2xiup ¼ xibot þ xi�1bot are used. Due to
low masses of the GFB structure inertia effects are
neglected. The equation is a non-linear ODE-system
and can be written in a matrix form

u
:

bot
¼ A xbotð Þ

�1_f ð16Þ

An ODE-solver for stiff problems, Matlab’s
ode23s(. . .),35 is used for solving equation (16) in the
time domain. For more details of the structural
models, including a validation based on numerical
results, see Hoffmann et al.23 The overall calculation
process is shown in Figure 7.

Validation of the dynamic structure model

Figure 8 shows the numerical results of the presented
dynamic structural model vs. experimental data from
Larsen et al.31 Two bump strips with three and four

Figure 5. Linked-spring-model: (a) Free punch of a single

interacting bump segment I. (b) Kinematic of a rigid bump lever

and (c) stick-stick condition.

Figure 6. (a) Schematic brush model. (b) Impact of the Form

parameter ct on the sign-approximation.
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bumps (Inconel X-750, sb¼ 7mm, lb¼ 3.3mm,
l¼ 18mm hb¼ 0.9mm, tB¼ 0.127mm and �¼ 0.12)
are considered. Both bump strips have a static loading
of 40N and are excited by a dynamic load with 1Hz
excitation frequency. The dynamic displacement amp-
litudes �ĥ are kept constant between two and 12 mm.
For the dynamic model optimised model parameters
are set to kt¼ 312-585 kN/m and ct¼ 6	1010. The high
value of the model parameter ct is a compromise
between the lowest possible impact on the numerical
results and economical simulation times. Both numer-
ical results show good agreement with the

experimental data. Note that increasing dynamic dis-
placement results in smaller hysteresis slopes. The
loading path in stick (s) and sliding phase (m) correl-
ates well. However, the unloading path has smaller
stick phases (s) in the simulation. Hence, the enclosed
area of the calculated hysteresis is smaller than the
experimental results: smaller energy is dissipated by
the numerical simulation. This effect is more present
for higher displacements and for the stripe with four
bumps. Due to the macroscopic contact modelling by
using the Petrov model changes of the contact surface
characteristics, e.g. curvature effects of the bumps, are
neglected. Thus, the effect is more notable for four
bumps due to the higher number of contacts.
Furthermore, Larsen et al.31 have a very soft struc-
ture. Higher displacement amplitudes may generate
non-linear displacement characteristics and interact
with the contacts. These non-linear effects are neg-
lected in the link-spring structure.

Validation of the GFB parameter
identifi-cation model

In this work the experimental results of Rudloff
et al.28 are used. The data of the first generation
GFB is listed in Table 1. In general, a linearisation
of bearing parameters is based on small perturbations
around an equilibrium position. Applying Lunds
approach10 will deliver theoretical bearing param-
eters, where infinitely small perturbations are
assumed. Hence, to compare measurements with
simulations based on infinitely small perturbations it
is necessary to achieve relatively small perturbations
during experiments. As Qiu and Tieu show37 (related
on an oil lubricated journal bearing parameter iden-
tification) the displacements have to be kept relatively
small (0.02 c; 2% of the nominal clearance c) to

Figure 8. Numerical results (solid line) vs. experimental data from Larsen et al.31 (dashed line). Dynamic hysteresis for four bumps

(a) (kt¼ 585 kN/m) and three bumps (b) (kt¼ 312 kN/m) under 40 N static loading. Dynamic displacement amplitudes 2–12 mm.

Figure 7. Model routine.

Hoffmann et al. 4515



achieve acceptable results between small and infinitely
small displacement theory. In addition, Lund shows
that gas foil bearing parameter identification works
reasonably will up to 0.4 c excitation displacements38

However, studies considering elastic structures have
not been published yet.

Furthermore, most of the works (e.g. Rudloff
et al.28) use an electromagnetic shaker to excite the
system. In order to achieve a quasi linear behaviour,
the applied dynamic loading has to be small compared
to the static bearing loading. If the dynamic forces are
too high increased displacements will be generated.
Hence, significant deviations between experiments
and numerical simulation can occur. In this work
Rudloff et al’s. mean data are used.28 Unfortunately,
no information on the measurement accuracy and
standard deviations of the parameters are given.

Linear vs. non-linear structural model

In the first section, the experimental data were com-
pared with the calculations based on infinitely small
perturbations. In addition, a comparison between the
numerical results for a non-linear bump structural
model, where the static and dynamic bump stiffnesses
were considered, along with a simple linear spring
model for the bump structure11–18 is shown. This ana-
lysis delivers necessary information about the impact
on parameter estimation by using a linear structural
model. The model parameter of the non-linear struc-
tural dynamic bump model is chosen with ct¼ 6	1010,
while kt has been identified by experimental structural
dynamic tests of a gas foil bearing with the same

design as that given in Table 1. Several hysteresis
tests by varying displacement amplitudes, static load
and frequency are carried out. The dynamic structural
model is validated against the test, where an optimisa-
tion identified a model stiffness of kt& 400 kN/m.
Three different loadings are considered – 20, 30 and
40N – while the rotor speed is varied between 21,600
and 35,400 r/min. The structural damping of the elas-
tic structure is described by a structural loss param-
eter 	¼ 0.3, which is a typical value for first
generation GFBs.28 The calculated structural losses
of the dynamic hysteresis model result in values of
the same range. The estimation of the dynamic
bump stiffness considers dynamic forces, which are
based on the shaker force F̂ in a range of 10–14N.
Because the highest bump loading is in the same dir-
ection as the static loading Wx (Figure 9(a)) only the
mean vertical component F̂x ¼ 1=

ffiffiffi
2
p

F̂ is considered.
Due to the assumption of linear system behaviour, the
dynamic force amplitude F̂p,i is scaled

F̂p,i ¼
F̂x

Wx
Fp,0,i ð17Þ

where Fp,0,i is related to the static reaction forces of
the acting bump loads due to the pressure field.

(a)

(b)

Figure 9. (a) Schematic experimental setup of a GFB par-

ameter identification according to Rudloff et al.28 (b) Schematic

total loading vs. time.

Table 1. Data for the first generation gas foil bearings.28

Parameter Value

Bearing radius R 19.050 mm

Bearing length l 38.100 mm

Bump height hb 0.5 mm

Bump thickness tb 0.102 mm

Bump pitch sb 4.566 mm

Bump number Nb 26

Half bump length lb 1.778 mm

Top foil thickness tf 0.102 mm

Young-modulus E 2.07� 1011N/m2

Poisson ratio 
 0.3

Friction coefficient � 0.1

4516 Proc IMechE Part C: J Mechanical Engineering Science 232(24)



Hence, for solving the dynamic bump stiffness model
a dynamic force is applied

Fp,iðtÞ ¼ Fp,0,i þ F̂p,i cos !tð Þ ð18Þ

The first term Fp,0,i is the static term. The second is the
dynamic term, where the scaling ratio F̂x=Wx is based
on the main loading direction x. The experimental
bump structure analysis of Larsen33 showed that the
excitation frequency has no significant influence on
the dynamic stiffness. The same effect can be calcu-
lated with the bump structure model presented here.
Therefore, the dynamic stiffness is calculated for one
discrete frequency of 1 Hz.

In Figures 10 and 11 the stiffness values versus the
excitation frequency for different rotor speeds (21,600–
35,400 r/min) and static bearing loads (20–40N) are
plotted, where the experiments are shown in the sub
plots (a)–(c) and the simulations in (d)–(f). The overall
trend of the experiments,28 can be captured by both
models (linear and non-linear structure) (Figures 10
and 11(d)–(f)). However, a trend reversal in the experi-
mental data is shown at the frequency f& 380 Hz due
to a resonance of the shaker system.28 Furthermore,
the experimental main stiffness values in the X and Y
directions are much higher compared to the simulation.
Clearance variation along the bearing surface due to
manufacturing uncertainties may generate these devi-
ations. Due to variations along the circumferential dir-
ection the converging gap is amplified, stiffens the
system and generates more damping.23 The linear

structural model underpredicts obviously the direct
stiffness in comparison to the non-linear structural
model and both models predict smaller direct stiffness
in comparison to the experimental results. The linear
structural model neglects the increased structural stiff-
ness due to bump interaction, contact forces and the
effect of dynamic stiffness. The underprediction of stiff-
ness values is more distinct at higher loadings due to
additional stiffening effects from the gas film and the
elastic structure. Considering a simple mechanical
model of two springs (gas film and structure), where
both springs are connected in series, the impact of the
elastic structure will be more notable if the gas film
becomes very stiff. Furthermore, the linear model
shows smaller differences of the cross-coupling stiff-
ness. If the difference decreases, the stiffness matrix
will become less skew-symmetric and that will result
in higher threshold speeds of linear instability. Hence,
the non-linear model is suitable for a robust and con-
servative estimation of the onset speed of instability.
Figures 12 and 13 show damping parameters vs. exci-
tation frequency. Both models show similar trends
compared to the experiment, except that the cross-cou-
pling damping in the XY direction is underpredicted.
Interestingly, the damping level of the linear model is
too low in the Y direction and the damping of the non-
linear model shows higher values, which correlate
better with the measurement results. Nevertheless,
there is still a significant deviation between experimen-
tal stiffness values of main stiffness directions
(X and Y) and the damping is still under-predicted
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Figure 10. Stiffness parameters for 20–40 N and 21,600 r/min. Experiments (a)–(c) vs. simulation (d)–(f).
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for lower excitation frequency in the Y direction. A
sensitive analysis is applied to capture influences of:

. friction coefficients;

. bearing clearances;

. and dynamic shaker forces.

Note that the bearing clearance was changed only lin-
early with �20%. However, due to manufacturing
uncertainties the clearance can vary along circumfer-
ential and axial directions, as mentioned by Rudloff
et al.28 This variation has the same effect on the bear-
ing clearance c, e.g. pre-loaded bearings with shims.24
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Figure 11. Stiffness parameters for 20–40 N and 35,400 r/min. Experiments (a)–(c) vs. simulation (d)–(f).
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However, due to the missing information it is neg-
lected. The last point is an adaptation to Rudloff
et al.’s experiment28 and will be necessary to show
the impact of higher shaker forces. For a pre-design
modal analysis using equation (1) the bearing param-
eters can be estimated without the shaker forces.
Thermal effects may influence the parameter identifi-
cation, especially for higher loads and rotor speeds.
However, investigations at the Berlin Institute of
Technology have shown very moderate temperatures
at the journal surface T< 40
C at 40N static load at
30,000 r/min with a comparable 1.5 inch bearing.39 In
addition, the experiments of Rudloff et al.28 were per-
formed at room temperature.

Impact of the nominal clearance

In this section the nominal bearing clearance is varied
between �20% compared to a standard value of
c¼ 32mm, by using the non-linear structural model, as
shown before. Note that the nominal radial clearance is
affected by manufacturing tolerances. It is usually
experimentally estimated.33 It is necessary to state the
film function (equation (3)). Due to fabrication uncer-
tainties, some changes in the nominal clearance are pos-
sible. Figure 14 shows bearing parameters under 20 and
30N static loading conditions and 21,600 r/min. A
decreasing clearance results in higher direct stiffness
and damping. In parallel, the cross-coupling stiffness
differences rise. An evaluation of the clearance shows
a very sensitive behaviour, which yields to high impacts
on the bearing parameter estimation. This highly

sensitive influence has two reasons: First, a direct
impact on the film function is present, which appears
in cubic terms (h3) in the RE. Second, narrow clearance
results in lower journal displacements. Thus, the loading
zone is wider, activates more bumps and, finally, gener-
ates higher dynamic stiffness beside the pressure peak
maximum (indicated by arrows) (Figure 15).

In Figure 15, the static and dynamic stiffness are
plotted for increasing rotor speeds (blue line:
21,600 r/min and red line: 35,400 r/min). In general,
bumps are moving rightward and start to stick at
bump location 8–9. In the loading zone (bump 10–
22) the static stiffness is reduced significantly com-
pared to the dynamic stiffness. The overall dynamic
stiffness is raised compared to the static stiffness,
because local hysteresis includes higher slopes. The
maximum peak decreases for smaller clearances,
higher rotor speeds and lower loadings. An increasing
nominal clearance amplifies the effect of relative jour-
nal displacements and generates higher peak pressures
(Appendix: Figure 21 and 22). Higher rotor speed
reduces the journal centre displacement as well,
while higher static loadings activate more bums,
because the loading zone has increased. However,
the static loading 40N only generates a moderately
gain of stiffness due to the relative moderate increase
of loading compared to the 20N case. Interestingly,
the static stiffness of the higher rotor speeds and
higher clearances is slightly increased for the bumps
11–18. Due to a wider zone more bumps are activated.
Furthermore, the resisting friction forces generate
more sticking bumps (bump 1–10).
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Impact of the frictional contacts
inside the elastic structure

The second sensitive analysis considers a variation of
the friction coefficient �. The coefficient is increased
for this study from 0.1 to 0.15, which is still in the
range of steel-steel contacts. Figure 16 shows the bear-
ing parameters for the 20 and 40N load cases at

21,600 r/min only. For the 20N loading, both stiffness
and damping show no significant change in conse-
quence of an increasing friction. However, when com-
paring the structural stiffness values, the same trend
due to loading and rotor speed is shown as discussed
in sections before. Increasing the friction coefficient
results in higher stiffness (static and dynamic) and
more sticking bumps, as indicated by the static
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stiffness (constant stiffness). But higher structural
stiffness has no direct impact on the fluid film func-
tion; it is only included in the compliant term hc of the
fluid film function. Hence, the link to the pressure
field and the resulting bearing parameters is less sen-
sitive compared to the nominal clearance.

Figure 17 shows the structural stiffness, where the
dynamic stiffness kd is increased compared to the
static stiffness ks. Higher friction coefficient slightly
increases the dynamic stiffness. However, the effect
is not shown in the results of the linearised bearing
parameters. Comparing the influence of the compliant
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term hc of the film function with the effect of the nom-
inal clearance: The compliant term hc is only a frac-
tion of the overall film thickness h (max. 4.2% at 40N
and 21,500 r/min). But changes of the clearance have a
direct impact on the film function (h� c) and the
bump activation. Hence, for this bearing design and
load levels changes in friction has a small influence on
the linearised bearing parameters.

Impact of the dynamic loading in experimental
parameter identification

Figure 9(a) shows the experimental setup schematic-
ally. The parameter identification is founded on a
linear time-invariant system of equation (19), where
all matrix elements are transferred into the frequency
domain. The impedance matrix includes the unknown
bearing parameters. A successive excitation with two
forces F̂ in both directions X and Y by using electro-
magnetic shaker is applied, where cross coupling and
mass inertia effects are neglected in the force matrix.
The output matrix considers the displacements that
can be integrated from the measured accelerations
of the sensors placed in the X and Y direction

F̂X !ð Þ 0

0 F̂Y !ð Þ

" #

¼
zXX !ð Þ zXY !ð Þ

zYX !ð Þ zYY !ð Þ

	 

X̂X !ð Þ X̂Y !ð Þ

ŶX !ð Þ ŶY !ð Þ

" # ð19Þ

An inversion of the displacement matrix yields to the
unknown impedances

zXX zXY

zYX zYY

	 

¼

1

X̂XŶY � X̂YŶX

F̂X 0

0 F̂Y

" #
ŶY �X̂Y

�ŶX X̂X

" #
ð20Þ

Experimental analysis on a comparable 1.5 inch gas
foil bearing have shown, that X̂YŶX � X̂XŶY.

39

Hence, the product of cross coupling displacements
X̂YŶX is neglected

zXX zXY

zYX zYY

	 

�

F̂X

X̂X

F̂XX̂Y

X̂XŶY

F̂YŶX

X̂XŶY

F̂Y

ŶY

24 35
¼ F̂X

1
X̂X
� X̂Y

X̂XŶY

0 0

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

þ F̂Y

0 0

� ŶX

X̂XŶY

1
ŶY

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

ð21Þ

Equation (21)’s impedance matrix is the sum of two
matrices A and B. They include linearly independent
excitations (shaker forces F̂X and F̂Y) in X� and

Y �direction. Each direction generates one column
of the impedance matrix. In fact, static bearing load-
ings (vertical x-direction), which are implicitly
included in the measured displacements, are superim-
posed with the dynamic loadings of excitation (10–
14N, Rudloff et al.28) Furthermore, cross-coupling
effects of the two independent excitations are only
present in the cross-coupling direction (matrix elem-
ents ij and ji) due to the assumption of
X̂YŶX � X̂XŶY. A comparison of the experimental
linearised bearing parameter towards numerical
results based on an infinitely small perturbation is
shown in Figures 10–13. The results show a significant
deviation between simulations and experiments. In fact,
Lunds approach suits well for displacements in a range
up to 0.4 c. The maximal displacement range of Rudloff
et al.28 is approximately 7mm, which is approx. 21% of
the nominal clearance (c¼ 32mm). However, the valid-
ity of Lunds method is based on rigid bearings, without
a compliant structure. As shown, the elastic structure is
mainly affected by bearing loadings and rotor speeds, as
shown in Figures 10–13. Hence, a rough adaption for
infinitely small parameter identification is introduced by
using total bearing loadings, especially if the dynamic
force magnitude is significant.

Considering a non-linear progressive system, as
schematically shown in Figure 18, two cases can
be discussed: If an infinitely small perturbation is
applied around the equilibrium position (Wx, x) the
dynamic force F̂ becomes zero. Due to a quasi-linear
characteristic a linearisation based on infinitely small
perturbations can be applied. However, if the
dynamic perturbation force F̂ is increased, a higher
displacement x0 with the total force Wt is present.
Thus, the gradient, which correlate with the bearing
parameters, of the total state is steeper compared to
the infinitely small perturbation point (k04 k). For
better approximation an extension of the Taylor
series with higher orders 5Oð�2Þ needs no be applied
to equation (5). However, it is assumed that the load-
ing zone of the gas foil bearing mainly generates the
bearing impedance due to the highest number of
active bumps. The loading zone is significantly influ-
enced by total loadings, where the maximum peak of
total loadings in each direction is applied (Figure
9(b)). Hence, the total state of Figure 18 can be sep-
arately evaluated for each direction. Around the total
states, the gradients k0 can be approximated by apply-
ing infinitely small perturbations. Therefore, the total
loads (static and dynamic) due to shakers are given by
equation (22). These loads are used to estimate the
pressure field of the zero order RE

Wt,X ¼ fWx þ
1ffiffiffi
2
p F̂X, �

1ffiffiffi
2
p F̂Xg

T

and

Wt,Y ¼ fWx þ
1ffiffiffi
2
p F̂X, þ

1ffiffiffi
2
p F̂Xg

T

ð22Þ
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Indeed the matrix elements of equation (21) are
independent in each direction. Thus, only the excita-
tion in one direction will allow a bearing parameter
calculation of the considered direction. Therefore, the
matrix rows are separated into two matrices equation
(21). Applying the local loadings of equation (22) for
two different calculations (X and Y excitation) will
result in two impedance matrices (X and Y excitation).
A comparison of the calculated matrices with equa-
tion (21) will deliver a final impedance matrix based
on total loads due to two excitations. The first row of

the X impedance matrix will deliver the bearing par-
ameters in X direction. In addition, the other param-
eters of the calculated X direction matrix are set to
zero (equation (21)). The calculation for the Y direc-
tion is based on the same assumption. It will deliver
the second row of the impedance matrix, where the
other elements (X-direction) of this calculation are set
to zero, as well. A superposition of these two different
matrices (A and B) finally results in the overall imped-
ance matrix.

Figures 19 and 20 show the bearing parameters of
the simulation with the total bearing loadings due to
shaker forces and a rotor speeds of 21,600 and
27,600 r/min. The level of the direct stiffness is
increased and shows a good agreement towards the
measurements for higher excitation frequency. For
lower frequencies the direct values in x and y direction
are underpredicted. However, the behaviour of the
cross coupling effect is well correlated to measure-
ments. The damping values still show some devi-
ations. In main direction the damping values are
slightly smaller for lower excitation frequencies. In
addition, the cross coupling damping XY delivers
values that are too small. Due to the sensitivity of
the bearing clearance in comparison a variation of
the clearance due to manufacturing uncertainties
may generate the deviations for stiffness and damping
at lower frequencies. Nevertheless, the adaptation of
shaker forces improves the bearing parameter correl-
ation especially for stiffness values.
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Conclusion

This paper has used a perturbation method related to
Lund’s work.10 The model couples the fluid film simu-
lation with a non-linear structural model including
frictional contacts and bump interactions. A method
has been applied to calculate a dynamic structural
stiffness19 The dynamic stiffness model is validated
against experimental data of Larsen et al.31 In the
second part of the paper the linearised model is vali-
dated by using data from Rudloff et al.28 The results
of this paper show that:

. dynamic forces may have a significant impact on
the bearing parameter identification;

. a linear model underpredicts the stiffness and
damping values compared to a non-linear model
including static and dynamic stiffness;

. friction has a significant impact on the elastic struc-
ture. But the influence on bearing parameters of
relatively small static loads <40N is insignificant
due to a non-sensitive impact of the compliant part
of the film function;

. the nominal clearance c has a direct link to the
pressure field and has a significant influence on
the bearing parameter;

. damping shows some deviations and is underpre-
dicted for lower frequencies.

As shown in the results (Figures 19 and 20)
dynamic forces may significantly affect the bearing
parameter identification. For the evaluation of critical
speeds and threshold speeds by using equation (1),

when considering a well-balanced system, the infin-
itely small perturbation based on the non-linear struc-
tural models will result in the most realistic values. To
deliver more detailed experimental data for a bearing
parameters identification based on small perturb-
ations, a test rig at Berlin Institute of Technology is
used for further investigation including preloaded and
higher loaded bearings.
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Appendix 1

Appendix 2

Notation

A system matrix dynamic link-spring-
model

C damping matrix
c radial bearing clearance
cij linearised damping value i, j¼x, y
ct Petrov-model parameter
E Young-modulus
ei journal displacement i¼ x, y
�ei perturbed journal displacement i¼ x, y
F force
F̂ dynamic force
f frequency

Fb,x horizontal beam lever force
Fp bump load
Fs interaction force
Fx horizontal reaction force
fB reacting force vector
ff friction force vector
fp pressure force vector
G gyroscopic matrix
h film thickness
�h vertical displacement link-spring-model
�ĥ dynamic vertical displacement link-

spring-model
hb bump hight
hc compliant term of the film thickness
hc,i perturbed compliant film thickness

term i¼ x, y
hi perturbed film thickness i¼ x, y
hr rigid term of the film thickness
j complex number j ¼

ffiffiffiffiffiffiffi
�1
p

K stiffness matrix
KBump bump stiffness matrix
kd dynamic structural stiffness
kij linearised stiffness value i, j¼x, y
ks static structural stiffness
kt Petrov-model stiffness parameter
k1 interaction spring stiffness link-spring-

model
k2 spring stiffness link-spring-model
l bearing length
lb half bump length
�L horizontal displacement link-spring-

model
M mass matrix
N normal contact force
Nb bump number
p pressure
pa ambient pressure
pi perturbed pressure i¼ x, y
R bearing / journal radius
sb bump pitch
T temperature
t time
tb bump thickness
tf top foil thickness
U journal rotation speed U¼R�
u displacement vector
w loading vector w¼ {Wx, Wy}

T

Wi bearing load i¼ x, y
Wt, i total loading i¼X, Y
X Cartesian coordinate
x Cartesian coordinate
xs displacement Petrov-model
Y Cartesian coordinate
y Cartesian coordinate
Z complex impedance matrix
z Cartesian coordinate
zij complex impedance

zij ¼ kij þ j!cij i, j ¼ x, y
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� bump angle link-spring-model
� attitude angle
	 structural loss factor 	¼ c!/kd
�i damping ratio i¼ 1, 2. . .n
li eigenvalue li ¼ �i � j!�i i ¼ 1, 2 . . . n
�l dynamic viscosity
� friction coefficient

 Poisson ratio
! excitation frequency
� rotor speed
�0 onset speed of sub-synchronous

vibrations
� circumferential coordinate

� 0 bump angle

Subscripts

(. . .)bot bottom link-spring-model
i bump counter
(. . .)l left link-spring-model
(. . .)r right link-spring-model
(. . .)up up link-spring-model
(. . .)0 zero order termsdð. . .Þ amplitude of a dynamic value
ð. . .Þ
:

Time derivative
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