
Simulation

Online railway delay management:
Hardness, simulation and computation*

André Berger1, Ralf Hoffmann2, Ulf Lorenz3 and
Sebastian Stiller4

Abstract

Delays in a railway network are a common problem that railway companies face in their daily operations. When a train is

delayed, it may either be beneficial to let a connecting train wait so that passengers in the delayed train do not miss their

connection, or it may be beneficial to let the connecting train depart on time to avoid further delays. These decisions

naturally depend on the global structure of the network, on the schedule, on the passenger routes and on the imposed

delays. The railway delay management (RDM) problem (in a broad sense) is to decide which trains have to wait for

connecting trains and which trains have to depart on time. The offline version (i.e. when all delays are known in advance)

is already NP-hard for very special networks. In this paper we show that the online railway delay management (ORDM)

problem is PSPACE-hard. This result justifies the need for a simulation approach to evaluate wait policies for ORDM. For

this purpose we present TOPSU–RDM, a simulation platform for evaluating and comparing different heuristics for the

ORDM problem with stochastic delays. Our novel approach is to separate the actual simulation and the program that

implements the decision-making policy, thus enabling implementations of different heuristics to ‘‘compete’’ on the same

instances and delay distributions. We also report on computational results indicating the worthiness of developing

intelligent wait policies. For RDM and other logistic planning processes, it is our goal to bridge the gap between

theoretical models, which are accessible to theoretical analysis, but are often too far away from practice, and the

methods which are used in practice today, whose performance is almost impossible to measure.

Keywords

online railway delay management, Web-based simulation, discrete event simulation, PSPACE

1. Introduction

Delays in a railway network are one of the biggest
problems for the daily operations of a railway com-
pany. Delayed trains and missed connections lead to
dissatisfied customers and possibly refunds that have
to be paid to delayed passengers.

When a train does get delayed, it may be beneficial
to let another train wait so that passengers in the
delayed train do not miss their connection. However,
passengers in the waiting train will then get delayed
and may in turn miss their connections. Owing to the
complexity of both the network and the schedule, one
decision may have a large impact on the propagated
delays later during the day.

Even today, the decision whether a train should wait
or not, is still made by a human dispatcher, mainly based
on a lot of training and experience. However, to decrease
the delays incurred by making bad decisions, it may be
favorable to have these decisions made by an algorithm

or at least support a dispatcher by making proposals.
Algorithmically, this becomes the problem of finding a
good wait policy, a mechanism that decides at any point

1Maastricht University, Department of Quantitative Economics, PO Box

616, 6200 MD, Maastricht, The Netherlands.
2Technische Universität Berlin, Department of Mathematics, Berlin,

Germany.
3Technische Universität Darmstadt, Department of Mathematics,

Darmstadt, Germany.
4Massachusetts Institute of Technology, Sloan School of Management, 77

Massachusetts Avenue, Cambridge, MA 02139, USA.

*A preliminary version of this article appeared in Berger et al.1

Corresponding author:

André Berger, Maastricht University, Department of Quantitative

Economics, PO Box 616, 6200 MD, Maastricht, The Netherlands

Email: a.berger@maastrichtuniversity.nl

Simulation: Transactions of the Society for

Modeling and Simulation International

87(7) 616–629

! The Author(s) 2011

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549710373571

sim.sagepub.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/187203046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0037549710373571&domain=pdf&date_stamp=2010-07-13

in time which trains should depart and which trains
should wait. Different objective functions may be defined
for this problem. In this paper we consider the problem
of minimizing the total delay of all passengers.

It has been shown that even the offline version,
i.e. the case when all delays are known in advance, is
NP-hard even for very special networks.2,3 However, a
branch-and-bound algorithm has been developed to
solve the problem optimally by using an integer pro-
gramming formulation for the problem.4

This IP formulation is based on a model of railway
delay management (RDM) that uses an event–activity
network, where the nodes represent arrival or departure
events, and the edges represent driving, transfer,
or waiting activities. The only network for which an
optimal (polynomial time) algorithm is known for the
online problem is the line.2

Moreover, simulation models of railway networks
and the corresponding operations and scheduling
policies have been developed before in other
contexts.5,6,7,8,9,10,11,12

In this paper our main focus lies on the algorithmic
aspects as well as the simulation of the online delay
management problem. We use the above-mentioned
description of the event–activity networks in Section 2
to show that the online railway delay management
(ORDM) problem is PSPACE-hard. Thus, for practical
applications, heuristics have to be developed. It lies in
the nature of such heuristics that their performance is
really hard to measure. In particular, for a PSPACE-
hard problem, it is infeasible to obtain good bounds on
the optimal solution. Moreover, it is difficult to com-
pare different heuristics due to differences in the model,
the objective and the implementation. For the case of
RDM, it is also important that the source delays are in
some sense comparable when different heuristics are
evaluated.

In order to overcome the above-mentioned pro-
blems, we have developed the simulation platform
TOPSU–RDM for RDM problems, on which different
heuristics can be applied to different instances and on
which their performance can be evaluated. The frame-
work and the simulation platform are described in
Sections 3 and 4.

In Section 5 we present some examples of wait poli-
cies that we have implemented as well as computational
results. In Section 6 we also discuss how our approach
can be used for other logistics and production planning
problems as well.

2. Online railway delay management
is PSPACE-hard

It is widely assumed that the complexity class PSPACE
is not contained in NP. In other words, there are

problems in PSPACE for which there is no polyno-
mial-time checkable certificate. If this holds, e.g., for
the RDM problem, then one may not evaluate a
delay management strategy in polynomial time and
one could not decide for every value k in polynomial
time whether a certain strategy scores in expectation
better or worse than k. In general, this would also inhi-
bit the comparison of different strategies. In the follow-
ing we show that the ORDM problem is indeed
PSPACE-hard. This result justifies the simulation-
based evaluation of wait policies.

Definition 2.1. The complexity class PSPACE is the
set of all decision problems that can be decided on a
deterministic Turing machine using space limited by a
polynomial in the input size. A problem P is said to be
PSPACE-hard, if there is a Karp reduction from every
problem in PSPACE to P. A problem in PSPACE that is
PSPACE-hard is called PSPACE-complete.

We prove that the following simple version of the
ORDM problem is already PSPACE-hard, i.e. at least
as hard (by polynomial-time reduction) as any problem
in PSPACE.

For the reduction we use the following PSPACE-
complete problem.

Definition 2.2. Deciding whether a logical expression of
the following type is true

9x18x2 . . . 9xn�18xn :
^

i

_

j

zij,

where zij are literals in the variables {x1,. . ., xn} and their
negations, is called the quantified Boolean formula
(QBF) problem.

We reduce the QBF to a simple version of the online
delay management problem.

2.1. The basic online delay management
problem

We present the delay management problem for this
reduction on an event (nodes)–activity (arcs) network,
whereas our simulation contains an infrastructure
graph. It will become clear that the model used for
the reduction is even slightly simpler than that of the
simulation. This means that every instance of the reduc-
tion model can be described as an instance for our
simulation tool. Yet, some further complicating aspects
such as single tracks, which are included in the simula-
tion, are not needed for the reduction, and thus not
modeled in this section.

Berger et al. 617

An instance of the basic online delay management
(BODM) problem

ðG,T,C,�,S,DÞ

consists of an infrastructure graph G, a set of trains T, a
directed graph C with a vertex set V(C) of relevant
events and an arc set A(C) representing precedence con-
straints among those events, a timetable p : V(C)!R�0,
a set S containing functions � : A(C)!R�0 (which we
call scenarios) for the minimal time distances of two
events connected by a precedence constraint, and finally
some mathematical object D expressing a cost model for
the delay management.

The vertex set of C is the set of relevant events. Each
relevant event is characterized by a triple (t, a, b),
with t2T a train, and a, b2V(G)[E(G) are either ver-
tices or edges of the infrastructure graph. The triple
(t, a, b) represents the event that train t changes from
infrastructure vertex (edge) a to infrastructure edge
(vertex) b. The timetable entry p((t, a, b)) states the
time for which this event is scheduled.

2.2. Disposition timetable

The goal is to give a non-anticipative strategy that con-
structs a feasible disposition timetable in every scenario.
A disposition timetable is a vector p0 : V(C)!R�0

that respects the timetabling condition p0 � p. It is fea-
sible in a scenario �, if for all precedence constraints
a¼ (i, j)2A(C) we have p(j)� p(i)� �(a).

As the strategy is required to be non-anticipative, the
data �((x, y)) are only available after the time when
p0(x) took place.

2.3. Cost model

Different ways to define the cost model D are possible.
We use the following. The cost model contains a set of
origin–destination pairs with a certain weight, i.e. we
know how many passengers want to travel from a cer-
tain starting station to a certain final destination. Their
paths through the infrastructure network G are fixed.
They may follow that path on different trains, but the
sequence of stations they pass is fixed. In each scenario
the total delay of the passengers in p0 compared with p,
plus a certain fixed cost for those passengers, who will
not reach their destination at all, defines the cost.

An alternative way to define the costs specifies a
certain cost for each transfer that is broken and for
each arrival which is delayed in p0. The two models
are not equivalent, but can be translated into each
other in many cases. For the reduction we use the
model described above. However, we sometimes refer
to the costs as the costs of breaking a transfer or

delaying a train, because these terms are more conve-
nient, and in the specific case can be translated into the
original cost model.

The decision problem, which we show to be
PSPACE-hard, is the following question.

Definition 2.3. The following question is called the
BODM decision problem. Given a BODM instance
and a budget B, is there a non-anticipative strategy for
constructing a disposition timetable, that achieves a cost
value lower than the budget B in every realization of
� 2S?

2.4. Reduction of QBF to the BODM
decision problem

For a given Boolean formula in conjunctive normal
form,

V
i

W
j zij, with literals in the set of variables

{x1,. . ., xn} and their negations, we construct an instance
of the BODM decision problem. Below we show that for
this BODM instance there exists a strategy that achieves
a cost lower than the budget B, if and only if the quan-
tified Boolean formula, 9x18x2 . . . 9xn�18xn :

V
i

W
j zij,

is true. This will imply that the BODM decision problem
is PSPACE-hard.

In our construction we use fixed and non-fixed trains.
A train is fixed in the sense that delaying this train
would automatically exceed the budget by yielding a
cost M0>B. Nevertheless, we use fixed trains, that
are a priori fixed to be late. Such a late fixed train has
an initial delay prior to the decisions of the strategy, but
may neither be delayed any further, nor does it have a
buffer time to compensate for the delay. We introduce
the late, fixed trains to explain transfers that are a priori
broken, i.e. lead from an arrival (of a late, fixed train)
to an earlier departure. The costs for the initial delays
of those trains are constant for all further unfolding of
the scenario and all disposition timetables. Therefore,
we can neglect them.

The non-fixed trains fall into two different groups.
Each train of the first group, the variable trains, corre-
sponds to a variable xi of the Boolean formula. If such
a train is delayed, we interpret the corresponding vari-
able xi as being false, and true if the train is on time.
The trains of the second group are called modeling
trains, as they serve some technical purpose in the
reduction. They can also be delayed or run on time
while the strategy is carried out. However, the reduc-
tion will be constructed such that their delay is entirely
dependent on the delay of the variable trains.

For modeling reasons we want that for every non-
fixed train the decision about running delayed or on
time must be taken at the start of the train‘s ride and
kept until the final destination. We enforce this by an
incoming transfer from a late, fixed train at the

618 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

beginning of the ride and an outgoing transfer to an on
time, fixed train at the end. The non-fixed train cannot
meet both transfers. Thus, it always incurs the cost for
breaking one of these transfers, M1. Let m be the
number of non-fixed trains, then the total budget
M1mþC<B<M1(mþ 1)þC is set such that none of
these trains may break both transfers. (The constant C
is the constant cost of all gadgets, as explained below.)

With these ingredients (on-time fixed trains, late
fixed trains, variable trains, modeling trains, and the
rule that any of the latter two types of trains must be
scheduled either late in the whole disposition timetable
or on time in the whole disposition timetable) below we
devise a gadget for a logical NON operator and a
gadget for a logical, multiple AND operator. The
NON gadget will yield that a certain modeling train
is delayed if and only if a certain other train is on
time. The AND gadget has an out train that is on
time, if and only if all trains of a certain set are
on time. Before we describe the mechanism of these
gadgets, we first show how they are used to reduce
the QBF, 9x18x2 . . . 9xn�18xn :

V
i

W
j zij. Actually, we

use an alternative way to write the Boolean formula
namely,

V
i

W
j zij ¼

V
i :ð

V
j :zijÞ.

The time horizon of the constructed BODM instance
is split into five phases (cf. Figure 1).

1. In the first phase all decisions about whether a variable
train is delayed or not are taken one after the other.
The incoming transfer from the fixed train determines

the order by which these decisions must be taken.
Recall, that because of the transfers to the fixed
trains, these decision cannot be changed later. In this
way we reflect the consecutive mechanism in the QBF.
For those variable trains that correspond to an all-
quantified xi the decision whether they run late or on
time, shall be taken by the adversary. The scenario set
S is restricted such that the adversary may produce
exactly one of the two following situations: delay the
train i before the incoming transfer from a late, fixed
train at the beginning of the ride of train i, or (exclusive
or) delay train i immediately before the outgoing trans-
fer to a punctual, fixed train at the end of the ride of
train i.
In principal, the dispatcher can also delay a train of an
all-quantified variable. However, this would allow the
adversary to delay this train a second time and thereby
exceed the cost limit. Therefore, we can assume that
the dispatcher will never make an all-quantified
train wait.

2. Then each variable train runs through a NON
gadget, producing its negated train, which is late if
and only if the variable train was on time.

3. The variable trains and their negations pass through
the AND gadgets for each of the re-written clauses.
A re-written clause i,

V
j:zij, is modeled by an AND

gadget with those variable trains as in trains that
correspond to the negations of the literals in the
original clause.

4. Each out train of those AND gadgets is negated.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

x1x1

x2x2

xnxn

¬x1

¬x2

¬xn

a

¬

¬

¬

¬

∧

∧∧

Figure 1. Using the gadgets.

Berger et al. 619

5. Finally all of those negations enter the central AND
gadget. The out train a of this gadget has a tight
transfer to a fixed train. If that out train is late,
it yields a cost of M2.

We make sure that every AND and NON gadget
yields a fixed cost in every scenario. Thus, we can
choose B and M2 such that the total cost is below B,
if the train a is on time, and the cost exceeds B, if a is
late. In this way the BODM instance is feasible with
cost limit B, if and only if the quantified Boolean for-
mula is true. This completes the reduction.

2.5. The NON gadget

The initial state of a NON gadget is depicted in
Figure 2. There is a fixed train (drawn as a bold line)
and two non-fixed trains. The lower of the non-fixed
trains, the in-train is always late for its transfer to the
other non-fixed train. We draw a rhombus to symbolize
some fixed delay that should explain this fact. The
upper train can wait for the lower train and thus keep
the connection (Figure 4). But, if the lower train is
additionally delayed before the rhombus, the upper
train would have to wait so long, that is has to break
a transfer to a fixed train. The costs for breaking this
transfer are M0, i.e., would immediately exceed the
budget. Thus, the strategy will break the transfer
from the in-train to the out-train, and the latter
will leave the gadget on time (Figure 3). A delayed
in-train yields an on time out-train, and vice versa.

Still the gadget would not work, because we cannot
guarantee that the transfer is not broken if the in train
is on time or the out train is delayed although it breaks
the transfer from a late in train. To exclude these cases,
we have to make sure that a NON gadget yields a fixed
cost in both dispositions we desire (in train on time and
out train late and vice versa), and exceeds this cost in
any other disposition. To this end, let cw be the cost of
delaying the out train, cb the cost of breaking the trans-
fer from the in train, and cb� cw¼ cg a positive number.
We introduce an a priori broken transfer from a late,
fixed train to the in train, which to break costs cg. This
transfer is broken, if and only if the in train is on time.
In other words, the desired dispositions are the only
two dispositions by which the gadget has a cost of
less than or equal to cb, and those yield cost equal to cb.

Note that we use NON gadgets, which output the
out train and the in train, and NON gadgets that only
output the out train.

2.6. The AND gadget

The AND gadget is fairly simple: all in-trains have to
be on time for the out train to be on time. Therefore, all

in trains have a tight connection of breaking cost M0 to
the out train. Again, we have to make sure that the out
train is not scheduled late although all in trains are on
time. To this end, all in trains run along the same track
for some distance. There are some passengers that want
to travel this distance, but come from a late, fixed train.
Only if at least one of the in trains is late, these passen-
gers will reach their destination. The cost ch of not
serving these passengers equals the cost of delaying
the out train. Thus, the gadget at least costs ch, and

Not Gadget

Figure 3. Delayed yields on time.

Not Gadget

Figure 2. The initial situation.

Not Gadget

Figure 4. On time yields delayed.

620 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

will exceed this cost in cases where the out train is late
even though all in trains are punctual.

3. The TOPSU framework

TOPSU–RDM has been developed within the TOPSU
framework (Tournaments for Optimal Planning and
Control under Uncertainty1). TOPSU is an interactive
framework for optimal planning and control of produc-
tion or other control processes under uncertainty. It
divides an optimization task into three parts: model
building, an algorithm for solving the problem, which
is induced from the model, and the experimental eva-
luation of the algorithm inside the model (cf. Figure 5).

One most crucial point of TOPSU is that the frame-
work does not only demand this partition, but also allows
the distribution of these three tasks to different people.

Thus, it can be considered as a platform for the competi-
tion of algorithms. The second crucial point is the fact
that TOPSU supports the influence of uncertainty within
its implicit optimization model. We decided to incorpo-
rate this feature for two reasons. First, practitioners often
claim that production processes have massively to deal
with several kinds of uncertainty. Second, production
systems are typically so large that optimization must
focus on a certain part of this system or, in other
words, we have to optimize parts of a supply chain. We
think that it will be advantageous for the optimization of
a supply chain if its components are aware of uncertain
boundaries.

Technically, TOPSU is realized with the help of the
Internet. On one site, we have a so-called server, where
the ultimate simulation proceeds. On this server, all
necessary data are available for download. The control
of the simulation, however, is remotely executed at the
so-called clients.

model

simulation
(over many time steps)

1) ask optimizer for
 a proposal
2) commit the proposal
3) sample from
 distributions
4) inform about progress

SERVER

Optimizer

evalua–
tion

1) receive problem

2) solve problem

3) make proposal

instances:

data,

machines,

demands,

schedules,

etc.

Figure 5. The TOPSU idea: splitting the tasks.

1TOPSU is the abbreviation of the German translation.

Berger et al. 621

The field of optimization under uncertainty, espe-
cially with probability-based uncertainties, is a fast-
growing and increasingly important area. Just think
of planning tasks for railways or aircraft, and remem-
ber your own experiences with disruptions. Disruptions
reflect the fact that, at planning time, not all informa-
tion is available. Optimization problems, considering
these uncertainties, often become PSPACE-hard. In
some cases it will be possible to extract easy subpro-
blems which can be solved in polynomial time, and that
simultaneously serve as good solutions for the real-
world application. However, if this is not possible,
simulation experiments promise a lot of gain in insights.
Experimental work for the evaluation of optimization
processes often has the disadvantage that results of dif-
ferent authors cannot be compared with each other.
One reason is that each author examines slightly mod-
ified problems, and another reason is that measuring is
not standardized. In TOPSU, the methodical tasks
‘‘finding a problem for examination’’, ‘‘algorithms
and heuristics’’, and ‘‘measuring’’ are split to different
persons. Moreover ‘‘finding a problem for examina-
tion’’ and ‘‘measuring’’ are centralized. That increases
comparability and, simultaneously, the credibility of
the experiments.

We now give a brief overview of the contents of the
paper. In Section 4 we present the model and the details
of the RDM simulation platform. We show that
ORDM is PSPACE-hard in Section 2, and in Section
5 we present our computational results. In Section 6 we
consider a more generic modeling tool and we discuss
future work and give some conclusions in Section 7.

4. The simulation platform

In this section we describe in more detail the model that
is used in our simulation and the specifics of the simu-
lation. The simulation platform consists of three parts:
a server program that implements the model, a program
that implements the wait policy (called an engine), and
a graphical user interface (GUI) which enables the com-
munication between the server and the engine and
which provides a visualization of the simulation.

4.1. The server

We start with a description of the model that is imple-
mented on the server. In our model stations are the
nodes and tracks are the edges of a directed graph on
which the trains can move. Physical tracks that can be
used in both directions are modeled as two distinct
directed edges, and the server makes sure that only
one of these two edges is used at any time. Each station
and each track has a capacity, the maximum number of
trains that can be in that station or on that track,

respectively, at any time. Moreover, each edge has a
timeslack, i.e. the minimum time that has to pass
between two trains entering or leaving that track. The
edges have the first in first out (FIFO) property, i.e. the
trains leave an edge in the same order that they entered
that edge. There is also a minimum halt time in the
stations, the minimum time that trains have to stay in
a station before they continue their scheduled route.

In addition to stations and tracks, the server has
information about the trains, the schedule, and the pas-
sengers. Each entry in the schedule consists of a train,
an edge, a departure time, an arrival time, and a pointer
to the delay distribution for this entry. Passenger flows
are called origin–destination pairs, each having a
weight (corresponding to the number of passengers), a
start time, and a list of edges that these passengers are
going to traverse during their travel. Note that rerout-
ing of trains and passengers is not allowed in our
model. In addition, there is a (global) constant, the
minimum change time, which is the time needed for a
passenger to transfer between one train and another.
It is assumed, that each passenger always uses the
first train going towards his/her next intermediate des-
tination. This may be the train he/she is currently in, or
another train that is heading in the same direction
and not leaving before the minimum change time
has passed.

The simulation running on the server is discrete time
and event based. During initialization, for each train,
an event for its first entry in the schedule is created and
inserted into a (time-sorted) priority event queue. As
the trains move along the edges, events will be taken
out from the event queue and new events will be gen-
erated. An event consists of a time, a train, an edge, and
an indicator whether this event means the train wants
to enter or leave that edge at the specified time. The
server will then run the following loop until the end of
the schedule has been reached:

1. Collect queries at current time from the event queue.
2. Send a query message to the engine.
3. Receive a result message from the engine.
4. Commit the answers from the result message, if

feasible.
5. Sample delays for trains that in fact have left a

station.
6. Send message about committed decisions and

sampled delays to the engine.

We now describe some details of the points above.

Collect queries. In this step all events from the top of
the event queue, whose event time is equal to the current
simulation time, are checked for feasibility and inserted
into a query collection that will be sent to the engine.

622 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

This means that no query is generated for an event which
cannot be implemented at that time, e.g. a train wants to
enter an edge that is full (i.e. the number of trains on that
edge equals the edge’s capacity). In this case, a new
event for that train is created at the earliest possible
time at which the ‘‘infeasibility reason’’ may disappear,
e.g. the time of the next event of the first train on
that edge.

Sending queries and receiving results. All queries
that have been collected in the previous step will be
sent to the engine in a single message. The simulation
on the server stops until a corresponding result message
is received from the engine.

Committing decisions. Similar to the method used
while collecting queries, only those queries will be com-
mitted which are feasible and were answered positively
by the engine. Whenever a query is committed, e.g. a
train is entering a track, a new event for that train to
leave the edge is created at the expected arrival time: the
scheduled travel time plus the sampled delay. If all
queries were denied by the engine, the simulation
jumps to the next point in time in the event queue,
and the events corresponding to the current queries
are postponed to that time.

Sampling delays. Delays are sampled whenever a train
actually leaves a station. A delay is sampled from the
distribution linked to the corresponding entry in the
schedule and added to the travel time for that train
on that edge.

Sending information to the engine. After committing
the decisions and sampling the delays, a message is sent
to the engine to inform about the decisions and the
delays.

The actual arrival and departure times are stored
during the simulation. After the end of the simulation,
the objective value of the simulation is computed. This
is actually the only time when the passenger data is
used. For each origin–destination pair the actual
travel time is computed and the scheduled travel time
is subtracted. The sum of these (weighted) delays is the
objective value. It may happen, that a passenger does
not reach his/her final destination due to large delays or
a bad wait policy. In this case, the actual travel time is
replaced by a large constant (e.g. the costs to pay for
accommodation for that passenger).

For each instance and each user that runs an engine
on that instance, an entry is written to the highscore
list of that instance. For several runs by the same

user on the same instance, average scores can be seen
in the GUI.

4.2. The graphical user interface

The GUI (cf. Figure 6) enables the communication
between the server and the engine. It is also used to
connect engine and server, display highscores, and for
visualizing the network and the simulation.

The steps in using the GUI to run a simulation are as
follows:

. Login (username and password can be obtained
from the authors).

. Choosing RDM as the ‘‘game’’.

. Choosing an instance.

. Getting the pre-specified parameters.

. Connecting an engine.

. Starting a simulation.

If necessary and recognized by the engine, para-
meters can be passed to the engine via the GUI. The
user can also specify a subinterval of the pre-defined
timeframe on which the simulation should run, or
change parameters such as the cost that is added to
the objective for passengers who do not reach their
final destination. However, highscores will be only writ-
ten when the full timeframe with the pre-specified para-
meters is simulated.

In the visualization panel (cf. Figure 7) of the GUI,
the user can stop and continue the simulation, and pro-
ceed stepwise. This may be helpful for the analysis, at
least for smaller instances.

4.3. The engines

An engine for RDM, i.e. a program implementing a
certain wait policy, basically just has to say yes or no
to the queries sent by the server. It may do so, of
course, without keeping any information about the net-
work, the schedule, or the passengers. ‘‘Intelligent’’
engines, however, will need such information.

This may be information such as previous arrivals
and departures, the current location of a train, or the
next event of a train in the event queue on the server.
For algorithm/wait policy developers, a set of Java
classes is available that take care of keeping up to
date all of the necessary data during a simulation. An
engine can use these classes and just has to implement
the method that determines the answers to the queries
posed by the server. Instructions to implement an
engine are available at the TOPSU–RDM Webpage.13

Sample engines that implement the ‘‘always yes’’, ‘‘wait
for all connections’’ and ‘‘wait randomly’’ are available
for testing purposes.

Berger et al. 623

5. Computational results

In this section we report our computational results. We
consider an instance derived from a simplified network
of the Berlin S-Bahn and a schedule running from 06:00
until 10:00. The instance contains 37 trains, 24 stations,
60 edges, 782 entries in the schedule, and 378 origin–
destination pairs. The origin–destination pairs and the
probability distributions for the delays are estimates
and resemble realistic values.

We have run the simulation 50 times for each of the
tested wait policies. In the following we describe the
wait policies whose performance we have tested (our
implemented wait policies are called engines):

1. YesEngine (YE): this engine answers ‘‘YES’’ to all
wait or leave questions posed by the server.

2. WaitEngine (WE): this engine initially computes
all connections for all origin–destination pairs.
During the course of the simulation, it only answers
‘‘YES’’.

3. RuleWaitEngineX (RWEX): this engine does the
same as the WaitEngine, except it says ‘‘YES’’ to a
leave query if the train is currently already X seconds
late, even if not all connecting trains have arrived at
the current station yet.

4. MonteCarloEngine (MCE): a wait policy based on
ideas from Monte Carlo tree search, alpha–beta
pruning and bounded lookahead. It considers the
wait decision problem as a game between the deci-
sion maker and the delay maker. The quality of the
answer mainly depends on the number of possible
nodes in the game tree that the algorithm can visit in
a certain amount of allowed time, i.e. the more time
we allow the engine to compute its answer, the better
the answer should be.

The results depend heavily on the penalty that is
imposed for passengers who do not make it to their
final destination within the given timeframe due to
bad wait decisions. In a future version it may therefore
be useful to give a multi-criteria score for each run of

Figure 6. The graphical user interface of TOPSU–RDM.

624 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

a wait policy, e.g. the total delay of all arrived passen-
gers and the number of ‘‘stranded’’ passengers.

Tables 1, 2 and 3 show the results when this penalty
is either 1000, 10,000 or 100,000, respectively. The
results are normalized so that in each run the
YesEngine has an objective value of 100%. The first
line in each table shows the average performance of
the other engines, and the bottom shows how often
each engine was ranked first, second, etc., among all
five engines over the 50 runs (the different number of
total first and second places is due to ties).

It can be seen that the most trivial wait policy, the
YesEngine, still performs best if the penalty is very low.
However, more realistically we should assume that
this penalty is rather high, as this would imply that a
good wait policy should in any case try to avoid
stranded passengers. For the highest tested penalty
(cf. Table 3), it turns out that the WaitEngine, which
ensures no passengers miss any connection, performs
best on average, as well as ranking first most often.

This shows that considerable effort should be put
into an intelligent wait policy if it should perform
better than any of the rather trivial wait policies.
Note that the first four wait policies consider neither
the passenger routes nor the delay probabilities when
making their decision.

In contrast, the MonteCarloEngine does use these
parameters. Owing to its complexity the time it needs

Figure 7. A visualization of the simulation for a (simplified) Berlin S-Bahn schedule.

Table 1. Penalty 1000

YE WE RWE30 RWE90 MCE

Objective 100% 114% 102% 113% 229%

1st place 18 25 19 26 0

2nd place 3 11 11 10 1

3rd place 10 13 12 13 0

4th place 17 1 7 0 3

5th place 2 0 1 1 46

Berger et al. 625

to answer a query is quite long. In our experiments we
did not give the engine much time to find an answer to a
query, and on average, the objective value of the
MonteCarloEngine is three times as bad as that of
the WaitEngine. However, as can be seen from
Table 3, it performs best on 12 of the 50 days. This is
very promising, and we hope that when this engine is
developed further, it will be able to compete with or
even beat the other more simple wait policies.

Our data do not show that one of our engines is
significantly superior to another. Such a statement,

however, is not necessarily the intention of our trans-
parent, tournament-driven environment. Instead, the
transparent tournaments have the task to help distin-
guishing good from bad procedures, when statistics fail
or developers are ought to have no chance for manip-
ulation. The probability spaces of our problems are
enormously large, especially due to the interplay of
random events and active decisions.

Nevertheless, descriptive statistics can give us addi-
tional information. For example, the Friedman test is a
non-parametric statistical test which is based on var-
iance rank analysis. Its task is to compare several
non-independent samples concerning their error of cen-
tral tendency. If we compare the 50 samples that we
have available for each of our engines (for the case
where the penalty is 100,000), the p-value of the
Friedman test is nearly zero. Thus, it is nearly certain
that the distributions over those random variables
which show the profitability of the different engines,
are different. This at least means that the different
engines do not have the same profitability.

The reason that we chose a non-parametric test is
due to the fact that our data are not normally distrib-
uted, as the quantile plot for the WaitEngine shows
(cf. Figure 8).

The box plot in Figure 8 shows medians inside boxes
which contain half of all sample points. There is one
box for each of the five engines. Also from this perspec-
tive, the WaitEngine has an advantage over the other
engines.

Last, but not least, the scatter plots in Figure 9
show that the YesEngine, the WaitEngine and the
WaitEngine30 have statistical similarities, i.e. their out-
puts are linearly correlated. In contrast to this

Quantile plot, distribution: Normal(a) (b)

–3 –2 –1 0 1 2 3
Theoretical quantiles

0.01 0.05 0.25 0.50 0.75 0.90 0.99

–1.6E7

–1.4E7

–1.2E7

–1E7

–8E6

–6E6

–4E6

–2E6

0

2E6

E
m

pi
ric

al
 q

ua
nt

ile
s

Plot of mean values +/– 2 standard errors

YesEngine WaitEngine Wait 90 Wait 30 MonteCarlo
–1.5E7

–1.4E7

–1.3E7

–1.2E7

–1.1E7

–1E7

–9E6

–8E6

–7E6

Mean value
Mean +/– 2 std.err.

Figure 8. Quantile plot for the WaitEngine (left) and box plot for average values (right).

Table 2. Penalty 10,000

YE WE RWE30 RWE90 MCE

Objective 100% 85% 92% 85% 143%

1st place 4 45 15 44 0

2nd place 0 2 4 2 0

3rd place 11 3 26 4 0

4th place 33 0 5 0 2

5th place 2 0 0 0 48

Table 3. Penalty 100,000

YE WE RWE30 RWE90 MCE

Objective 100% 77% 89% 78% 225%

1st place 1 35 9 34 12

2nd place 3 12 8 11 1

3rd place 9 1 19 3 6

4th place 20 2 13 2 3

5th place 17 0 1 0 28

626 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

observation, the MonteCarlo engine and the
WaitEngine90 are not correlated with the other three
engines.

6. A scheduling and planning simulation
generator

Currently, we are working on a generalization of the
RDM simulation. Many production, transportation
and operations problems resemble some similarities
with the delay management problem. It is often the
case that some items (e.g. trains, parts, goods, etc.)
move along a network (e.g. railway tracks, road net-
works, conveyor belts in a production facility) and
are processed in some stationary objects (e.g. stations,
warehouses, machines, etc.).

Our goal is to build a simulation generator that can
be used for a wide variety of planning problems occur-
ring in practice. We restrict our efforts to optimization
problems, where some passive objects pass some other
active objects. We think that a proper entity–relation-
ship description, plus some extra information including

message layout between clients and server, suffices to
automatically construct a generic simulation block,
where the messaging as well as the basic event handling
of the simulation are included.

We call a specific planning or production problem in
this context a game. Although the simulation of a new
game on the game server contains only a fair number of
lines of code, we had to accept that developing a new
simulation kernel is quite a difficult task. Therefore, we
are developing TOPSU2.0, which is an extension of the
described concept. With TOPSU2.0 we go one step
further to more modeling and less programming.
Indeed, we are developing a simulation generator for
TOPSU.

First, the main idea is that we are mainly interested
in more or less classic flow settings. There may be trains
which pass stations and go on tracks, or there may be
items which pass machines and become products, etc.
Many such problems can be modeled with the help of
some ‘‘active objects’’ such as stations or machines and
some ‘‘items’’ such as product items or trains. The items
move trough the system of active objects in some way,

Scatter plots

YesEngine

WaitEngine

Wait 90

Wait 30

MonteCarlo

Figure 9. Scatterplot matrix.

Berger et al. 627

and a movement from one active object to another
is called a transition. After all, for modeling we need
mainly SQL tables which describe the active objects, the
items, and some meta-information. A METATABLE
holds the information, what the main data structure
of an object is (e.g. multiset, FIFO etc.), what the
role of the object is (e.g. container, item, none, directed
FIFO edge), and how it can be identified. A transition
describes which item can move from one active object
to another. Moreover, we standardized some tables,
such as the description of probability distributions.

Second, we have to specify the messages between
server, client and GUI. We introduced a simple textfile
format for this purpose. Our simulation generator takes
the SQL database and the text description of messages
as input and generates a simple engine which produces
solutions, and the necessary program code for all mes-
saging between GUI, server and engine, and a simula-
tion module which can be easily plugged into the server
software. Additional, hand-made, source code can be
added to the generated class code such that we can
model delays in machines etc.

We hope that this approach will simplify the imple-
mentation of other simulation environments for similar
planning processes, and that it will underscore the use-
fulness of the TOPSU concept.

7. Future work

7.1. Refinement of the model

The following refinements can be made to the model to
improve the applicability of the simulation tool and to
move the model closer to practice. First, different objec-
tives should be implemented and should be made avail-
able to the users in the GUI. This could be, for
example, minimizing the maximum delay of all passen-
gers, or minimizing the number of missed connections.

Moreover, the minimum change times of passengers
do depend on the station where a passenger switches
between trains and may also depend on the passengers
themselves. Similarly, the halt times in a station may
differ during peak periods and may also depend on the
train and on the station. Another refinement to the
model would also be to model the tracks and their
respective capacities inside a station.

7.2. Improving the wait policies

The main algorithmic challenge and one of our future
goals is to develop a wait policy that can reduce the
delays occurring in actual railway networks. We believe
that our approach used in the MonteCarloEngine is
very promising. However, other ideas and heuristics
may also be exploited, and using our simulation

framework it will possible to easily and objectively eval-
uate and compare new wait policies for the Railway
Delay Management problem.

8. Conclusions

In this paper we have presented TOPSU–RDM, a
simulation platform for the ORDM problem. We also
showed that this problem is PSPACE-hard, justifying
that a simulation approach is suitable to verify the per-
formance of different wait policies. Our approach is
implemented within a framework that allows a fair
and non-manipulable comparison of the wait policies.
In particular, we ensure that the initial delays (which
are based on probability distributions) that the wait
policies have to deal with, are identical for all wait
policies.

We also provided results of preliminary computa-
tional studies, indicating that with some effort we can
improve upon the performance of some trivial wait
policies. Moreover, we discussed several extensions
for further usage of the ideas and methods presented
here for further research in simulating real-world pro-
duction and operation processes with uncertainties.

Funding

The first three authors have been partially supported by
the European Regional Development Fund (ERDF).
Sebastian Stiller’s work was partially supported by
the ARRIVAL project, within the 6th Framework
Programme of the European Commission under con-
tract no. FP6-021235-2.

Acknowledgments

We would like to thank two anonymous referees for their
helpful comments that greatly improved the presentation of
this paper. We would also like to thank Robert Pankrath for

developing the visualization for TOPSU–RDM.

References

1. Berger A, Hoffmann R, Lorenz U, Stiller S. TOPSU–

RDM—a simulation platform for online railway delay

management. In Simutools ’08: Proceedings of the 1st

International Conference on Simulation Tools and

Techniques for Communications, Networks and Systems

and Workshops. Brussels: Institute for Computer

Sciences, Social-Informatics and Telecommunications

Engineering, 2008, pp. 1–8.
2. Gatto M, Glaus B, Jacob R, Peeters L, Widmayer P.

Railway delay management: Exploring its algorithmic

complexity. In: Algorithm Theory—Proceedings SWAT

2004 (Lecture Notes in Computer Science. Vol. 3111).

Berlin: Springer, 2004, pp. 199–211.

628 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

3. Gatto M, Jacob R, Peeters L, Schöbel A. The computa-

tional complexity of delay management. In: Kratsch D

(ed.), Graph-Theoretic Concepts in Computer Science:

31st International Workshop (WG 2005) (Lecture

Notes in Computer Science. Vol. 3787), Berlin: Springer,

2005.
4. Schöbel A. Integer programming approaches for solving

the delay management problem. In: Geraets F, Kroon L,

Schoebel A, Wagner D, Zaroliagiis C (eds), Algorithmic

Methods for Railway Optimization (Lecture Notes in

Computer Science. Vol. 4359). Berlin: Springer, 2007,

pp. 145–170.
5. Chundi M, Zhao W, Tianyuan X. A platform for

simulation of railway network operation scheduling.

In 1997 IEEE International Conference on Intelligent

Processing Systems, 1997 (ICIPS’97), October 1997,

Vol. 2, pp. 1342–1346.
6. Rizzoli AE, Fornara N and Gambardella LM. A simula-

tion tool for combined rail/road transport in intermodal

terminals. Math Comput Simul 2002; 59: 57–71.
7. Vromans MJCM, Dekker R and Kroon LG. Reliability

and heterogeneity of railway services. Eur J Operat Res

2006; 172: 647–665.

8. Sharma G, Asthana RGS and Goel S. A knowledge-based

simulation approach (K-SIM) for train operation and

planning. SIMULATION 1994; 62: 381–391.
9. Paolucci M and Pesenti R. An object-oriented approach to

discrete-event simulation applied to underground railway

systems. SIMULATION 1999; 72: 372–383.

10. Dessouky MM and Leachman RC. A simulation model-
ing methodology for analyzing large complex rail net-
works. SIMULATION 1995; 65: 131–142.

11. Kesling GD and Whittaker IC. A simulation model of
railroad reliability. SIMULATION 1985; 44: 168–180.

12. Eichler J and Turnheim A. A combined simulation of a
rapid transit system. SIMULATION 1978; 30: 155–167.

13. Berger A, Hoffmann R, Lorenz U and Stiller S.
TOPSU–RDM—A Web-based simulation for railway
delay management. http://wwwcs.uni-paderborn.de/cs/ag-

monien/PERSONAL/FLULO/PP/TOPSU_RDM1.html

André Berger is Assistant Professor at Maastricht
University, Department of Quantitative Economics,
Maastricht, The Netherlands.

Ralf Hoffmann is System Administrator at Technische
Universität Berlin, Department of Mathematics, Berlin,
Germany.

Ulf Lorenz is Privatdozent (Adjunct Professor) at
Technische Universität Darmstadt, Department of
Mathematics, Darmstadt, Germany.

Sebastian Stiller is currently a Marie Curie Fellow at
the Massachusetts Institute of Technology, Sloan
School of Management, Cambridge, USA.

Berger et al. 629

