
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 10, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Performance analysis of the LSU3shell program

 Student: Bc. Martin Kočička

 Supervisor: Ing. Daniel Langr, Ph.D.

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2018/19

Instructions

1) Get familiar with the problem and existing solutions of dynamic memory allocations (glibc malloc,
jemalloc, tcmalloc, tbbmalloc, or others).
2) Get familiar with existing implementations of C++ allocators designed for high performance in sequential
and/or multi-threaded environment (Intel TBB, EASTL, or others).
3) Get familiar with existing implementations of C++ data structures designed for high performance in
sequential and/or multi-threaded environment (Intel TBB, EASTL, facebook/folly, Boost, or others).
4) Analyze the usage of data structures in LSU3shell source code and propose their modification for higher
program performance.
5) Analyze the possibilities of the usage of vectorization in LSU3shell source code and propose their
application for higher program performance.
6) Implement propose changes and measure their impact on performance and memory utilization.

References

Will be provided by the supervisor.

Master’s thesis

Performance analysis of the LSU3shell
program

Bc. Martin Kočička

Department of Theoretical Computer Science
Supervisor: Ing. Daniel Langr, Ph.D.

January 10, 2019

Acknowledgements

I would like to thank Daniel Langr and Tomáš Dytrych for their detailed
consultations throughout the process of writing of this thesis. I would also
like to thank my family for their continuous support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on January 10, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Martin Kočička. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Kočička, Martin. Performance analysis of the LSU3shell program. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2019.

Abstrakt

Ab initio přístup ke zkoumání struktury atomových jader je na popředí součas-
ného vývoje nukleární fyziky. LSU3shell je implementací ab initio metody
zvané symmetry-adapted no-core shell model (SA-NCSM) pro vysoce paralelní
výpočetní systémy.

Cílem této práce bylo zanalyzovat výkonnové charakteristiky programu
LSU3shell se zaměřením převážně na dynamickou alokaci paměti, provést
rešerši metod a řešení která by mohla vést ke zlepšení výkonu a využití paměti,
a provést následnou implementaci.

Tento přístup se ukázal být správný, a bylo možné provést mnoho opti-
malizací vztahujících se k dynamické alokaci paměti. Výsledkem této práce
je průměrné zrychlení LSU3shell o 41 %, což nám ušetří až 1,4 milionu core-
hodin z naší alokace na superpočítači BlueWaters.

Klíčová slova HPC, distribuované výpočetní systémy, dynamická alokace
paměti, výkonová optimalizace

Abstract

Ab initio approaches to nuclear structure exploration are at the forefront of
current nuclear physics research. LSU3shell is an implementation of the ab

vii

initio method called symmetry-adapted no-core shell model (SA-NCSM) opti-
mized for distributed HPC systems.

The goal of this thesis was the analysis of the LSU3shell program with
focus primarily on dynamic memory allocation, research of methods that can
be used to improve performance and memory usage, and their application on
LSU3shell.

The focus on dynamic memory allocation proved to be the right one, lead-
ing to many possible optimizations. I was able to reduce the run time by 41 %
on average, thus potentially saving up to 1.4 million core-hours of our total
BlueWaters allocation.

Keywords HPC, dynamic memory allocation, performance optimization

viii

Contents

Introduction 1

1 Analysis tools 3
1.1 perf . 3
1.2 Heaptrack . 4
1.3 Intel® VTune Amplifier . 4
1.4 Intel® Advisor . 5
1.5 Intel® Trace Analyzer and Collector 6
1.6 Intel® Inspector . 6
1.7 Compiler Explorer . 6
1.8 GNU time . 6
1.9 XRay . 7
1.10 Valgrind . 7
1.11 KCachegrind . 7
1.12 gperftools . 7
1.13 strace . 10
1.14 Compiler optimization output 10

2 LSU3shell performance analysis 11
2.1 Testing environment . 11
2.2 Selected datasets . 12
2.3 LSU3shell analysis . 12
2.4 Conclusion . 17

3 Userland memory allocators 19
3.1 The GNU C Library . 28
3.2 tcmalloc . 36
3.3 jemalloc . 39
3.4 tbbmalloc . 42
3.5 Other userland allocators . 44

ix

4 C++ STL memory allocators 47
4.1 Polymorphic memory resources 48
4.2 Popular implementations . 49

5 Small Size Optimization 57
5.1 std::string . 57
5.2 Vector implementations with SSO 58
5.3 Other data type and data structure implementations 59
5.4 _malloca and _freea . 59

6 Memory pooling 61
6.1 Boost.Pool . 61
6.2 Bloomberg . 63
6.3 nginx . 64
6.4 foonathan/memory . 65

7 Concurrent hash tables 67
7.1 Hash function . 67
7.2 Collision resolution . 68
7.3 Popular implementations . 68

8 LSU3shell improvements 73
8.1 Userland allocators . 73
8.2 Memory pooling . 74
8.3 Small size optimization . 75
8.4 C++ STL memory allocators . 76
8.5 Hash tables . 76
8.6 Vectorization . 77
8.7 Results . 78

Conclusion 81

Bibliography 83

A Acronyms 91

B Contents of enclosed CD 93

x

List of Figures

2.1 CPU utilization of the initial implementation running dataset D
with NDIAG=211 on 8 cores. 14

2.2 Hotspot analysis of the initial implementation running dataset D
with NDIAG=211 on 8 cores. 14

2.3 Initial allocation counts and sizes. 15
2.4 Initial allocation counts and sizes after moving back to variable-

sized RME buffer in the CalculateRME_2 function. 16

3.1 Typical memory layout of a process on a 32 bit Linux system with
ASLR enabled. 21

3.2 Page table for x86 architecture with 4 KiB pages on Linux. 24
3.3 Page table for x86 architecture with 2 MiB pages on Linux. 24
3.4 Structure of an arena with multiple heap segments in the glibc

allocator. 29
3.5 Structure of glibc malloc chunk with boundary tags on a 32 bit

system. 30
3.6 Bins of the glibc malloc allocator. 31
3.7 Fast bin structure. 34
3.8 Thread cache of the tcmalloc allocator. 37
3.9 Central page heap of the tcmalloc allocator. 39
3.10 High-level architecture of the tcmalloc allocator. 40
3.11 Structure of an arena in the jemalloc allocator. 43
3.12 High-level architecture of the tbbmalloc allocator. 44
3.13 Thread-local cache of the tbbmalloc allocator. 45

8.1 Comparison of time and memory utilization of different userland
allocators on dataset A. 74

8.2 Comparison of time and memory utilization of different userland
allocators on dataset B. 75

xi

8.3 Comparison of time and memory utilization of different userland
allocators on dataset C. 76

8.4 Comparison of time and memory utilization of different userland
allocators on dataset D. 77

8.5 Time elapsed in seconds for all optimizations. 79
8.6 Maximum resident set size in GiB for all optimizations. 79
8.7 The number of minor page faults for all optimizations. 80
8.8 The number of voluntary context switches for all optimizations. . . 80

xii

List of Tables

2.1 The configuration of datasets used in benchmarks. 13

3.1 Page sizes supported on most popular CPU architectures. 23
3.2 Number of bins, their spacing, and chunk sizes on 64 bit system. . 32
3.3 Allocation categories and size classes in the jemalloc allocator [1]. . 41

xiii

Introduction

Ab initio models are trying to describe the nuclear structure and reactions
starting from fundamental forces among nucleons [2]. LSU3shell implements
the symmetry-adapted no-core shell model, which takes advantage of symme-
tries inherent to nuclear dynamics, leading to the ability to deal with heavier
nuclei than other ab initio methods. This research is of importance not only to
nuclear physicists, but also to other areas like nuclear energy research. Astro-
physicists need to study reactions with unstable isotopes that are impossible
to be measured in the laboratory. SA-NCSM can help us understand the
processes happening in extreme environments, from stellar explosions to the
interior of nuclear reactors.

Ab initio methods describe the nuclear structure by solving a many-nucleon
non-relativistic Schrödinger equation with interactions among nucleons as the
only input. The process that is used to find the solution to the Schrödinger
equations is what differentiates various ab initio models the most.

SA-NCSM solves this equation by finding eigenstates and eigenvalues of
the Hamiltonian, which is computed in a many-nucleon basis that spans the
relevant subspace of the Hilbert space, as determined by the symmetry con-
siderations. The Hilbert space is referred to as the model space.

The improved LSU3shell algorithm as described by Langr et al. [3] is
divided into three phases. First, many-nucleon basis that spans the given
model space is generated. Second, the Hamiltonian is constructed in this
basis. And third, the Lanczos algorithm is used to compute the eigenstates
and eigenvalues of the Hamiltonian.

LSU3shell uses the Message Passing Interface (MPI) library for distribut-
ing the calculations and communicating over computational nodes of a super-
computer. On a single node, the Open Multi-Processing (OpenMP) library
is used to parallelize local computations using threads. In the current im-
plementation, the MPI load balancing is very simple since we can accurately
divide the Hamiltonian into computationally very similar chunks.

Since the memory consumption was a known bottleneck when I joined the

1

Introduction

project, and the team also already recognized the memory was a performance
bottleneck too when switching from GNU C Library userland allocator to
tbbmalloc, we decided to focus this work on memory in general, and more
specifically on dynamic memory allocation optimizations.

Chapter 1 provides an overview of the best tools that can be currently
used to analyze the performance of a program. These tools are applied in
chapter 2 to analyze the performance and find the hotspots of the LSU3shell
program.

Extensive research spans the chapters 3 to 7. Chapter 3 explores the
problem of userland memory allocation and follows with detailed research of
inner workings of the four most popular userland allocators today. Chapter 4
examines the allocator model in the C++ programming language and looks
at popular implementations of C++ STL allocators. Chapter 5 explores the
small size optimization and goes over data structures that implement this op-
timization. Chapter 6 looks at the memory management technique of memory
pooling and gives an overview of existing implementations of memory pools.
Chapter 7 gives an overview of the hash table data structure and studies
existing concurrent solutions.

This research is applied in chapter 8 and the results are given and dis-
cussed.

LSU3shell as a whole is a result of team effort and collaboration. I will
be using the first person pronoun “I” when referring to my own research and
experimental work, and the plural “we” will be used when talking about work
that was done as part of a team effort.

2

Chapter 1
Analysis tools

Proper analysis should precede any attempts at optimization. When optimiz-
ing an application, it is critical to identify the bottlenecks correctly. Even
if we can make a function thousand times faster, it does not matter if only
0.0001 % of the total CPU time is spent in said function. The code path on
which is spent the most time is called the hot path, and the functions in which
the most time is spent are called hot functions. In this chapter I will intro-
duce a selection of tools that can be used to profile the performance of an
application.

1.1 perf

perf1 is a powerful performance analysis tool that has been part of the Linux
mainline kernel since version 2.6.31 [4]. perf uses the Processor Monitoring
Counters (PMC) that are recorded by Processor Monitoring Unit (PMU).
Brendan Gregg gathered extensive usage examples [5] of all the perf tools.

perf stat can be used to run a command and gather performance counter
statistics. These include cache hits and misses, TLB performance, branch pre-
dictor performance, major and minor page faults, CPU migrations, informa-
tion about the instruction pipeline, and others. Full list of event types that
can be gathered can be seen by calling perf list.

perf record is a sampling profiler. It can either monitor the whole run of
a program, or it can be attached to a running process. perf report is then
used to visualize the gathered data. By default, perf report does not show
call chains, but it can be force via the -g command line flag.

Sampling period for perf record can be set through command line pa-
rameter --count=period. Since perf record generates a large amount of
data, I had to make the sampling period bigger for some workloads.

1https://perf.wiki.kernel.org/index.php/Main_Page

3

https://perf.wiki.kernel.org/index.php/Main_Page

1. Analysis tools

perf annotate tries to make perf report output more understandable—
it shows the actual code annotated with data from the profiler, it colors the
hot lines, can jump through just the hotspots, and much more.

perf sched can be used to trace, measure, and observe the scheduler
behavior.

1.2 Heaptrack
Heaptrack2 is a heap memory profile that is available only on the Linux plat-
form. It tracks memory consumption, the number of allocations and deal-
locations, temporary allocations, and leaked allocations. It show function-
by-function summaries, but it can also point to actual line where allocations
happen. Similarly to userland allocators described in chapter 3, Heaptrack in-
jects its own malloc implementation using LD_PRELOAD environment variable.
It can either run a program directly and monitor its whole run, or it can be
attached to an already running process.

Heaptrack has fairly high overhead—a workload that runs 7 minutes took
4 hours to analyze and generated 7.26 GiB of data. It is still less overhead
than the VTune Amplifier’s Memory Consumption Analysis, and Heaptrack
proved to be very stable for us, while VTune has issues from time to the. Thus
if the time and space is not an issue, it is a great tool for analyzing allocation
patterns and memory consumption.

1.3 Intel® VTune Amplifier
Intel® VTune Amplifier is a performance analysis tool. It can profile on Linux,
Windows, and Android targets, and the data can be visualized and analyzed
on Linux, Windows, and macOS. It comes with GUI and a command line
interface. It is a paid product, but Intel® offers free licenses for students,
educators, and open source developers. It supports a very useful comparison
mode, which lets you see what exactly changed performance-wise after apply-
ing an optimization. Before 2019, VTune Amplifier needed special sampling
drivers for advances analyses, but 2019 version removed this requirement if
perf is available, making the profile much more user friendly. VTune Ampli-
fier contains many analysis profiles, including:

Hotspots Analysis
Runs a sampling profiler that tells us in which functions is spent the
most CPU time, and if also measures CPU utilization. Basic sampling
analysis can be run directly in user mode. Advanced hotspot analysis
works with hardware event-based sampling, and it requires either perf
or special sampling drivers to be installed.

2https://github.com/KDE/heaptrack

4

https://github.com/KDE/heaptrack

1.4. Intel® Advisor

HPC Performance Characterization Analysis
Analysis suitable for computationally-intensive applications. It analyzes
floating-point operation efficiency, CPU utilization, time spent fetching
data from CPU caches and main memory, and the usage of vectorization.
It needs special sampling drivers or perf.

Microarchitecture Exploration Analysis for Hardware Issues
This analysis focuses on efficient pipeline usage and how much time is
spent fetching data from L1 cache, L2 cache, L3 cache, and DRAM.

Memory Access Analysis for Cache Misses and High Bandwidth
Issues
This analysis can help identify performance issues related to memory
access. It measures total number of loads and stores, cache misses and
latency, and it can identify NUMA-related problems.

Memory Consumption Analysis
As the name suggests, this analysis measures memory consumption by
each function. It also records how many allocation requests took place
and how much memory was deallocated.

OpenMP Code Analysis
This analysis shows which parts on code run serially, if there is a load
imbalance (a thread finished and waits for other threads on a barrier),
and which parallel loops have too little iteration to properly utilize all
threads. It can also give simple estimates of potential performance gain
by proper threading utilization.

Intel® VTune Amplifier is the most comprehensive performance analysis
suite I encountered. It is great for analyzing smaller programs, but for our
use-case it had too much overhead—a 10 minute run of LSU3shell generated
20 GiB of profiling data even for simplest analyses. Since our program is very
allocation heavy, the Memory Consumption Analysis could not handle our
workload, and we had to look for another tool.

1.4 Intel® Advisor
The profiler part of Intel® Advisor3 focuses on vectorization. It also includes
a tool for modeling threading designs. The vectorization analysis can help
identify high-impact under-optimized loops, it can find what is blocking vec-
torization is some loops, and it can identify loops that can be safely forced by
the compiler to be vectorized.

3https://software.intel.com/en-us/advisor

5

https://software.intel.com/en-us/advisor

1. Analysis tools

1.5 Intel® Trace Analyzer and Collector
Intel® Trace Analyzer and Collector4 is a performance analysis tool focusing
on distributed MPI applications. It analyzes communication patterns, load
balancing, synchronization bottlenecks, communication hotspots, and others.

1.6 Intel® Inspector
Intel® Inspector5 is a memory and thread debugger. It can identify mem-
ory leaks, memory corruption, allocation and deallocation mismatches, illegal
memory accesses, reading of uninitialized memory, deadlocks, and data races.
It can also find errors in persistent memory, which is an emerging class of
memory storage.

1.7 Compiler Explorer
Compiler Explorer6 created by Matt Godbolt is a web-based interactive tool
that can be used to inspect assembly output of various compilers. It supports
multiple programming languages: C, C++, D, Fortran, Go, Rust, Swift, etc.
It supports all major C++ compilers: GCC, Clang, Intel® icc, and MSVC, and
it supports multiple versions and architectures for each of them.

1.8 GNU time
GNU time7, not to be mistaken with bash command time), is a simple utility
with almost zero overhead that runs another program and reports its resource
usage and other useful information. This information includes:

• User, system, and elapsed time.

• Percent of CPU this job got.

• Average and maximum resident set size (RSS).

• Major and minor page faults.

• Voluntary and involuntary context switches.

• File system inputs and outputs.

• Socket messages sent and received.
4https://software.intel.com/en-us/intel-trace-analyzer
5https://software.intel.com/en-us/intel-inspector
6https://godbolt.org
7https://www.gnu.org/software/time/

6

https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-inspector
https://godbolt.org
https://www.gnu.org/software/time/

1.9. XRay

• The number of signals delivered.

• The exit status code.

1.9 XRay

XRay [6] is a function call tracing system developed by Google that has almost
zero overhead when turned off, and moderate overhead when turned on. It
inserts small no-op sleds in function entry and exit points. If XRay is turned
on, these no-op sleds are overwritten on runtime with instrumentation code.
XRay is implemented in the LLVM compiler infrastructure8.

1.10 Valgrind

Valgrind9 is a popular software suite that consists of six tools: a memory leak
and corruption detector (Memcheck), a profiler with call graph generation
(Callgrind), a heap profiler (Massif), cache and branch prediction profiler
(Cachegrind), and two thread error detectors (Helgrind and DRD).

Valgrind runs the program in its own virtual machine, the program is never
run directly on the host CPU. This brings huge overhead, and makes Valgrind
only usable for small proof-of-concept programs.

1.11 KCachegrind

KCachegrind10 is a visualizer for profiling data. It it mainly useful for study-
ing call graphs and time spent in different functions. It uses the same data
format as the Callgrind tool from the Valgrind suite. Many profilers have
support to convert their data to the Callgrind format, so it can be visualized
by KCachegrind.

1.12 gperftools

gperftools11 is a suite of high-performance tools—a malloc(3) replacement
called tcmalloc, a heap checker, heap profiler, and a CPU profiler. tcmalloc
is described in detail in chapter 3.

8https://llvm.org/docs/XRay.html
9http://valgrind.org

10https://kcachegrind.github.io
11https://github.com/gperftools/gperftools

7

https://llvm.org/docs/XRay.html
http://valgrind.org
https://kcachegrind.github.io
https://github.com/gperftools/gperftools

1. Analysis tools

#include <gperftools/profiler.h>

int main() {
f1();

ProfilerStart("f2.prof");
f2();
ProfilerStop();

f3();

ProfilerStart("f4.prof");
f4();
ProfilerStop();

f5();
}

Listing 1.1: Instrumentation of the gperftools CPU profiler.

1.12.1 CPU Profiler
The sampling CPU profiler provides very bare-bones information compared to
tools like VTune Amplifier, but it was the only profiler we have tried that was
able to handle our actual workloads. It works well with multi-threaded pro-
grams and has extremely low overhead. A workload that takes 204 minutes to
finish without profiling is finished in 215 minutes with profiling enabled, gen-
erating a 1.3 GiB profile output file. We had problems with running gperftools
profiler with older versions of libunwind, but upgrading to newest libunwind
solved the problem.

Usage

The profiler can either be used to monitor the whole program run, or the
code can be instrumented to only profile selected regions. Listing 1.1 shows
this selective profiling—only f2 and f4 function calls will be profiled and the
results will be stored in separate files. The profiling can also be turned on and
off using operating system signals, as shown in Listing 1.2.

The libprofiler library needs to be either loaded using LD_PRELOAD, or
he program to be profiled needs to be compiled against the libprofiler li-
brary. To activate the profiler, the program has to be run with the CPUPROFILE
variable set. The profiler has otherwise zero overhead, so it can be safely
linked even with production binaries. The CPUPROFILE variable points to the
file where profiling results will be stored. The profiling results can be analyzed

8

1.12. gperftools

env CPUPROFILE=program.prof CPUPROFILESIGNAL=12 ./program &

start profiling
killall -12 chrome

stop profiling
killall -12 chrome

Listing 1.2: Turning the gperftools CPU profiling on and off using an operating
system signal.

gcc -lprofiler -g program.c -o program

env CPUPROFILE=program.prof ./program

pprof --callgrind ./program program.prof >program.callgrind

kcachegrind program.callgrind

Listing 1.3: Compilation, profiling, and result analysis done with the
gperftools CPU profiler and KCachegrind.

using the pprof program, that is a part of gperftools. Google has rewritten
the pprof program in Go12, and the original has been deprecated, even though
it is still functional. pprof is able to convert the profiling result to Callgrind
format, so they can be visualized with KCachegrind, which I have found supe-
rior to pprof. The whole profiling sequence, from compiling, to running and
data analysis is shown in Listing 1.3.

Tuning

Some aspects of the CPU profiler can be tuned using environment variables:

CPUPROFILE_FREQUENCY
The frequency of sampling in interrupts per second. By default, the
profiler takes 100 samples per second.

CPUPROFILE_REALTIME
If this variable is set, ITIMER_REAL is used instead of ITIMER_PROF in the
getitimer and setitimer system calls. ITIMER_REAL counts down in
wall clock time, while ITIMER_PROF counts down in CPU time consumed
by the process.

12https://github.com/google/pprof

9

https://github.com/google/pprof

1. Analysis tools

1.13 strace

strace13 is a simple utility that can trace system calls and signals a program
makes. It is useful for us because it can be used to trace memory management
system calls like brk, sbrk, mmap, munmap, madvise, and others.

1.14 Compiler optimization output
All major C and C++ compilers (GCC, Clang, and Intel® icc) support so-
called optimization reports. The reports can contain useful information about
optimization passes that have been run. Especially important for us are
the loop vectorization passes, i.e., the passes that can turn regular loops
to ones using vector instructions. The compiler reports can tell us why
the loop could not be transformed to vectorized one, and it can help us
understand what can be done. Vectorization in GCC is enabled by the
-ftree-vectorize (and it is included in -O3 as well), and the reports can
be turned on using the -ftree-vectorizer-verbose=N flag, where N is the
verbosity level14. Clang has the unified -Rpass interface for the optimiza-
tion pass reports. -Rpass=loop-vectorize shows loops that were success-
fully vectorized, -Rpass-missed=loop-vectorize shows loops that failed the
vectorization pass, and -Rpass-analysis=loop-vectorize show the actual
statements that caused the vectorization pass to fail. Vectorization reports in
Intel® icc are enabled via the -vec-report flag.

13https://strace.io
14https://gcc.gnu.org/ml/gcc-patches/2005-01/msg01247.html

10

https://strace.io
https://gcc.gnu.org/ml/gcc-patches/2005-01/msg01247.html

Chapter 2
LSU3shell performance analysis

2.1 Testing environment

2.1.1 BlueWaters

The main system the LSU3shell is running on is the BlueWaters15 supercom-
puter. Most of the measurements were done on this supercomputer for that
reason. BlueWaters is a Cray hybrid (CPU and GPU) supercomputer located
at the University of Illinois in Champaign, Illinois with total peak performance
of 13.34 PF. It consists of 22,636 XE nodes (CPU) and 4228 XK nodes (CPU
and GPU). The total usable storage is 26.4 PB and the total system mem-
ory is 1.382 PB. Even with memory this large, it is still a bottleneck for us.
The nodes are connected in a 3D torus, and peak node injection bandwidth
is 9.6 GB/s.

Each XE node contains two 64 bit AMD 6276 Interlagos CPUs that are
based on the Bulldozer microarchitecture. Each CPU has 8 cores at 2.3 GHz
and 16 threads—Bulldozer does not use hyper-threading, but each core con-
tains two integer units and two 128 bit floating-point units, that can be either
used separately, or as a one 256 bit floating-point unit. It supports SSE4a and
AVX vector instructions. The peak performance of each node is 313.6 GF.
Most of the XE nodes have 64 GB of memory with the exception of 96 nodes
that have 128 GB of memory.

The XK nodes contain the same model of CPU as XE nodes, but they only
contain one CPU. Each XK node has one Nvidia GK110 (K20X) Kepler GPU.
This GPU has 2688 cores and 6 GB of memory. The peak double-precision
performance of the GPU is 1.31 TF. Most of the XK nodes have 32 GB of
memory with the exception of 96 nodes that have 64 GB of memory.

15https://bluewaters.ncsa.illinois.edu

11

https://bluewaters.ncsa.illinois.edu

2. LSU3shell performance analysis

2.1.2 STAR
STAR is a smaller CPU cluster located at Faculty of Information Technology
at Czech Technical University in Prague. Its nodes are equipped with fairly
new Intel CPUs, and we wanted to see how would the performance profile be
different compared to older AMD processors in BlueWaters. It is composed
of 24 nodes, each node having 64 GB of memory and two 64 bit Intel® Xeon®
E5-2630 v416 processors. Each CPU has 10 cores at 2.2 GHz. Even though
this CPU supports hyper-threading, the hyper-threading is disabled on star.
The CPU supports newer AVX2 vector instructions.

2.1.3 RSJ1
RSJ1 is a server located at Faculty of Information Technology at Czech Tech-
nical University in Prague. Both BlueWaters and STAR run on fairly old
Linux kernels, 3.0.101 and 3.10.0 respectively, both released in 2013, while
RSJ1 runs Linux kernel version 4.4.0, released in 2016. Some benchmarks we
wanted to run required newer Linux kernel, especially comparisons of newest
implementations of the GNU C Library. RSJ1 is equipped with 32 GiB of
system memory and two Intel® Xeon® Processor E5-269017, each having 8
cores and 16 threads thanks to hyper-threading support.

2.2 Selected datasets
We picked 4 datasets for benchmarking that cover many different workloads.
Their configuration is shown in Table 2.1. I will be referring to the datasets
by their assigned letter, e.g., dataset A, dataset B, and so on.

2.3 LSU3shell analysis
The initial analysis was done using the Intel® VTune Amplifier and Heaptrack.
For measurement of both was used a smaller workload, since typical workloads
are not manageable to be profiled with these tools, due to large overhead of
both.

LSU3shell supports so-called simulation mode that is enabled when ei-
ther one of NDIAG, IDIAG, or JDIAG environment variables is set. When the
simulation mode is turned on, the code is only run on one node, but it runs
the same chunk of computations as if the program was running over multiple
nodes. This means that we do not get the final result, but the program out-
puts some useful information, like the final size of lookup tables for Wigner

16https://ark.intel.com/products/92981/Intel-Xeon-Processor-E5-2630-v4-25M-
Cache-2_20-GHz

17https://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-20M-
Cache-2_90-GHz-8_00-GTs-Intel-QPI

12

https://ark.intel.com/products/92981/Intel-Xeon-Processor-E5-2630-v4-25M-Cache-2_20-GHz
https://ark.intel.com/products/92981/Intel-Xeon-Processor-E5-2630-v4-25M-Cache-2_20-GHz
https://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI
https://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI

2.3. LSU3shell analysis

Dataset A
Model space 20Ne_Nmax04_08_eps0.0003_v2_JJ0
Hamiltonian V_N3LO_Vcoul_15MeV_Nmax12

NDIAG 211

Dataset B
Model space 20Ne_Nmax04_08_eps0.0003_v2_JJ4
Hamiltonian V_N3LO_Vcoul_15MeV_Nmax12

NDIAG 211

Dataset C
Model space 16O_Nmax12_SpSnS000_JJ0
Hamiltonian NNLOopt_Vcoul_17MeV_Nmax12

NDIAG 211

Dataset D
Model space 21Mg_Nmax10cut_JJ5_v3
Hamiltonian N2LOopt_15MeV_Nmax12

NDIAG 99

Table 2.1: The configuration of datasets used in benchmarks.

coefficients and the memory consumption for various parts of the program.
This is an important feature for figuring out how many nodes will be needed
to complete a calculation, without actually running the code over and over on
many nodes. Known sizes of lookup tables can also help us reduce memory
usage. All three variables (i.e., NDIAG, IDIAG, and JDIAG) have to be set when
running in simulation mode. NDIAG specifies the number of diagonal processes
when dividing the Hamiltonian, and it has to be an odd number, because
of limitations of the used eigensolver implementation. The total number of
processes can then be calculated as NDIAG×(NDIAG+1)

2 , which means NDIAG=211
is used to utilize the whole BlueWaters supercomputer. IDIAG and JDIAG
specify the index of the block of the basis the process will be computing. Di-
agonal processes (IDIAG == JDIAG) only calculate roughly half of the work
non-diagonal processes do. All measurements will be done on non-diagonal
blocks.

2.3.1 Performance analysis

In Figure 2.1, we can see that the serial part of the program run takes less
than 1.5 % of elapsed time, thus optimizing the serial part does not make sense
at this moment.

13

2. LSU3shell performance analysis

Figure 2.1: CPU utilization of the initial implementation running dataset D
with NDIAG=211 on 8 cores.

From the initial hotspot analysis we can see that 4 out of 5 top hot func-
tions are functions from the userland memory allocator, so there is a lot of
space for improvement in this regard. It might be worthwhile to research and
try other userland memory allocators.

Other significant hotspot seem to be the lookup tables for Wigner coeffi-
cients and also the constructor of the SU3xSU2::RME class.

Figure 2.2: Hotspot analysis of the initial implementation running dataset D
with NDIAG=211 on 8 cores.

2.3.2 Memory analysis

Straight away after the first memory analysis, it is clear that the focus on
memory we picked as the core of this work was the correct one. The program
was calling allocation functions over 230,000 times per second, so over 3 billion
allocation calls were made over the 7 minute run time of the program. Almost

14

2.3. LSU3shell analysis

500 GiB of memory was allocated over that period. Keep in mind that we
usually compute problems that take hours, even tens of hours.

By looking at the distribution of sizes of allocations, shown in Figure 2.3,
we can conclude that small size optimization (SSO) might be something worth
focusing on, since the vast majority of allocations is of size less than or equal
to 64 B. Each color in a bar signifies a location in code where the allocation
took place.

Figure 2.3: Initial allocation counts and sizes.

Looking at the 0 B to 8 B range, the orange bar that is over 30 % of all
allocations in this range is a call to the default C++ STL allocator. These
come mostly from instances of std::vector in our code, which shows that we
allocate a lot of really tiny vectors, that would probably gain advantage from
using SSO.

Allocating buffers for reduced matrix elements (RME) in the SU3xSU2::RME
constructor takes up 22 % of allocations in the 0 B to 8 B range. This buffer
consists of single-precision floating-point numbers, and since the float type
that represents these number is 4 B on all of our test machines, this means
that all these buffers contain 1 or 2 elements, which again seems like an op-
portunity to take advantage of SSO. The orange bars in next two ranges are
also the allocations of this buffer. The CPU profiling data shown previously
confirm that SU3xSU2::RME constructor is a hot function.

In the 33 B to 64 B range, the allocations of SU3xSU2::RME instances in
the CalculatePNInteractionMeData function counts for almost 39 % of all
allocations. This is a fixed-size allocation, so it is ideal scenario for memory
pooling.

In the > 1 KiB range is a curious pattern—the yellow and the orange bar
have exactly the same size and the number of allocations. After further inves-

15

2. LSU3shell performance analysis

tigation, this turned out to be a long-forgotten attempt at performance opti-
mization. Both of the allocations are happening in the CalculateRME_2 func-
tion in the libraries/SU3ME/RME.cpp file. These are pre-allocated buffers
for RME elements. After profiling was done seven years ago, it was discovered
that 2 % of the whole LSU3shell CPU time was spent calculating the required
length of these buffers. It was decided that fixed-size buffers of size 1024 will
be allocated for every request, since that should be enough memory for any
use case, and it was not causing a radical change in memory consumption.

The first assumption was proven wrong a couple of months ago—we started
getting seemingly random segmentation faults on some workloads, and it was
exactly because these workloads needed RME buffers larger than 1024. When
talking about memory consumption, what matters the most to us is the max-
imum resident set size (RSS), i.e., the number of pages allocated by this pro-
gram that are currently backed by physical memory. Maximum RSS truly did
not change, even though the total amount of allocated memory went down
dramatically (from 490 GiB to 110 GiB). We may conclude from this that
these buffers are very short-lived. We decided to revert this change, and the
results can be seen on Figure 2.4. Most of the RME buffers still fall into 0 B
to 64 B range.

These seem to be the most pressing memory allocation problems right now

Figure 2.4: Initial allocation counts and sizes after moving back to variable-
sized RME buffer in the CalculateRME_2 function.

When looking at which allocations actually consistently take up the most
space, the focus fell on HashFixed hash tables that are used to store Wigner
coefficients.

16

2.4. Conclusion

2.3.3 Hash table
The lookup hash tables for Wigner coefficients are the most used data struc-
ture in the whole LSU3shell. LSU3shell uses its own hash table implemen-
tation called HashFixed—a fixed-size hash table that terminates the program
if the user tries to insert an element and there is no free space available.
HashFixed has lock-free lookup but insertion requires a lock. It is a chain-
ing hash table, even though the implementation is unusual. It allocates two
arrays, storage and bucket. storage is an array of HashFixed::element
structures that contain the record and index to next bucket, forming a singly
linked list. The storage array is filled linearly from 0th index, and the bucket
array stores the mapping from hashed key (modulo size of the table) to the
index in the storage array. The linking of HashFixed::element is used to
resolve possible collisions. HashFixed has hard-coded limit of holding at most
232 elements, because a 32 bit integer is used internally for indexes to the
storage array. This limit can be simply increased by changing the type to a
bigger one.

Our measurements revealed two interesting behaviors:

• Collisions do not happen frequently, and if a collusion occurs, the colli-
sion set has in 95% of cases size 2, i.e., the next element in the chain is
the right one. Collision sets of size three and larger were very rare, being
only 0.24 % of all collision sets. This means open addressing hash table
with linear probing might bring a performance gain—we store mostly
18 B keys with 8 B pointers as the value, which means that the two
elements would fit on a typical 64 B cache line, making the collision
resolution very cheap.

• Lookups are far more frequent than writes. This may be an important
factor when designing or picking a new hash table.

LSU3shell initially used a LRUCache hash table. This table evicts least re-
cently used items, so it can run the same workloads as HashFixed with smaller
memory footprint. The smaller memory footprint is offset by large perfor-
mance degradation, so the HashFixed is used by default now, even though it
is less user friendly. LRUCache has similar implementation to HashFixed, but
it keeps elements linked in a doubly linked list. This leads to need for both
insertion and lookup to be locked, and both insertion and lookup share the
same lock, which is the biggest reason for the performance degradation.

2.4 Conclusion
I know now where the current performance and memory usage hotspots are.
The focus of next five chapters will be on technologies and methods that can
lesser the impact.

17

Chapter 3
Userland memory allocators

Recent profiling done by Google has shown that almost 7 % of all CPU cycles
in Google’s data centers is spent on dynamic memory allocation [7]. Focusing
on optimizing the dynamic memory itself thus seems like a worthwhile activ-
ity. Since we are developing a user space application, I will focus on userland
(i.e., code running in user space) allocators, more specifically malloc(3) re-
placements. From now on, when talking about dynamic memory allocation, I
will be talking about dynamic memory allocation in user space. When talking
about operating system specific issues in this chapter, I will be only focus-
ing on Linux kernel, unless stated otherwise. By default I will assume 64 bit
system, but I will mention 32 bit variants from time to time.

Dynamic memory allocation priorities changed significantly since 1960s,
when the problem was first introduced and researched [8]. Main memory
was expensive and scarce, so the foremost objective was decreasing memory
usage and fragmentation. As memory sizes grew, and the difference between
memory and processor speeds grew larger, the focus shifted to the speed of
allocation operations. The trade-off between speed and memory usage is what
differentiates many allocators—some focus on being more memory efficient,
and some have performance as the main goal. As symmetric multiprocessing
(SMP) grew in popularity, the main focus fell on scalability—simply locking
the allocator and serializing allocation operations was not enough, and more
complex techniques were devised. One of the first papers about allocation on
SMP systems was published in 1998 by Larson and Krishnan [9].

An userland allocator keeps track of the heap (and mapped) memory—
which parts are allocated, and which are free. Some allocators only care about
free memory, since there is no need to keep track of memory that is currently
in use by the program.

The user could just allocate memory straight from the operating system by
calling sbkr or mmap system calls, but that would not be efficient, since these
system calls incur a context switch, thus being slow. Kernel also allocates
memory only in multiples of page sizes, which would have large overhead for

19

3. Userland memory allocators

small objects. Freed memory is usually not returned by the userland allocator
to the operating system instantly, but the memory is instead reused.

Typical call of malloc takes approximately 40 instructions and 20 cycles
(assuming cache hit) on modern processors [10], so there might not seem to
be much space to make significant improvements.

There is also some interest in creating specialized hardware to make dy-
namic memory allocation faster. Mallacc [10] is an in-core hardware accelera-
tor that speeds up three most important operations of many modern userland
allocators: the size class computation, operations with a free list, and memory
allocation profiling. Authors of Mallacc claim that they were able to achieve
a up to 50 % reduction of malloc latency in exchange for 1500 µm2 of silicon
area, which is less than 0.006 % of typical processor core in 2018. Even though
this research is very impressive, hardware accelerators are out of scope of this
work.

Process’ virtual address space
Every process has its own virtual address space and addresses are then mapped
to physical pages as needed. From the standpoint of the process, it has the
whole address space for itself and its threads. A portion of virtual address
space is reserved for the kernel in every process, as seen on Figure 3.1. This
space is flagged in page tables as exclusive to privileged code, and trying to
access it from user mode usually leads to a segmentation fault. Kernel space
is usually backed by physical pages at all times. Process’ virtual address space
consists of multiple segments:

Text
Contains the code (machine language instructions) of the program itself
and string literals from the program. It is allocated when the process is
created, and it stays the same size for the whole lifetime of the process.
This segment is read-only and can be shared among multiple processes.

Data
Contains static data that were initialized by the user.

BSS
Contains static data that were not initialized, and initializes them to
zero. Since all of these variables are initialized to zero, they could be
stored in the data segment, but to save storage space, only the total size
of all uninitialized variables is stored in the executable, and the actual
memory is allocated at run time.

Stack
Contains the process’ stack used for local variables and function call
stack frames.

20

Heap
This segment is the main interest of this chapter, since this is the memory
that userland allocator manages. The top of the heap is called program
break.

Memory mapping
This segment is also used by most userland allocators by utilizing anony-
mous memory mapping. This segment contains anonymously mapped
memory as well as dynamic libraries. Userland allocators are moving
more toward using mapped memory, because on 64 bit systems the vir-
tual address space is much larger than the physical memory, and it can
reduce fragmentation.

Credit: Gustavo Duarte

Figure 3.1: Typical memory layout of a process on a 32 bit Linux system with
ASLR enabled.

Addresses in the stack grow toward smaller addresses, while addresses in
the heap grow toward larger addresses. If Address Space Layout Random-
ization (ASLR) is enabled, starts of the stack, memory mapping, and heap

21

3. Userland memory allocators

segments have random offset. Memory layout of an object file can be inspected
using the objdump utility [11].

64 bit architectures
Some newer allocators (e.g., scalloc [12] and SuperMalloc [13]) only support
64 bit architectures, and take advantage of this knowledge in multiple ways.
One is by assuming that virtual address space is many times bigger than the
actual physical memory. Therefore there is no need to care about virtual
address space fragmentation, and only the pages that are actually used are
stored in physical memory via demand paging. It might still be useful to get
segmentation fault when accessing virtual addresses that we know should not
be accessed, and it can be done using the mprotect system call.

Processors from both Intel and AMD have been only using 48 bit for virtual
addresses so far, but the new Sunny Cove18 architecture changes this and
extends the addresses to 57 bit. scalloc takes advantage of this and uses the
rest of the address to store ABA counters [14].

Paging
Virtual memory is usually divided into pages, which are contiguous (and usu-
ally aligned) regions of memory. Typical size for a page is 4 KiB. A virtual
page can be backed by actual page of physical memory (called page frame), or
some file in a storage. This file might be a swap file, or even just a regular file.
If the page contains all zeros, it might not have anything backing it at all, and
just have a flag stating it only contains zeros [15]. One page frame might have
multiple pages of virtual memory corresponding to it. Only a subset of virtual
pages is needed to be kept in physical memory—we call this the resident set.

When a process tries to access page that is not currently backed by physical
memory, a page fault occurs. Kernel then has to suspend the process, map
the virtual page to a page frame, and resume. This can be very costly, so
a good allocator tries to minimize the number of page faults. The process
that corrects a page fault is completely transparent to the program accessing
memory. For the program, the memory is always the same, it just experiences
longer delay when page fault occurs. On some architectures, it is possible [16]
to tell the operating system to keep specified pages in memory (lock the page),
so accessing them never causes a page fault. On the other hand, this can lead
to more page faults if we lock too many pages, and there is not enough real
pages to sustain other requests. For this reason many operating systems have
limit on how many pages can a process lock at a time. Locking pages on POSIX
operating systems can be done through mlock(3P) and mlockall(3P) [17]
functions. Even if you lock the page, a copy-on-write page fault [18] may

18https://arstechnica.com/gadgets/2018/12/intel-unveils-a-new-architecture-
for-2019-sunny-cove/

22

https://arstechnica.com/gadgets/2018/12/intel-unveils-a-new-architecture-for-2019-sunny-cove/
https://arstechnica.com/gadgets/2018/12/intel-unveils-a-new-architecture-for-2019-sunny-cove/

Architecture Supported page sizes
x86-32 [19] 4 KiB, 2 MiB (PAE), 4 MiB (PSE)
x86-64 [19] 4 KiB, 2 MiB, 1 GiB (pdpe1gb)
ARM [20] 4 KiB, 64 KiB, 1 MiB, 16 MiB
ppc64 [21] 4 KiB, 64 KiB, 16 MiB, 16 GiB
UltraSPARC [22] 8 KiB, 64 KiB, 512 KiB, 4 MiB, 32 MiB, 256 MiB, 2 GiB, 16 GiB
IA-64 [23] 4 KiB, 8 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 256 MiB

Table 3.1: Page sizes supported on most popular CPU architectures.

occur, since operating system can share real pages among many virtual pages
if they have the same content. To be sure not to have any page fault occur, it
is best to lock the page and write to the memory. The number of page faults
is a good metric for benchmarking userland allocators.

Page table is used to store mappings from virtual to physical pages. Trans-
lation lookaside buffer (TLB) is a hardware cache of these page mappings.
TLB is usually very small (tens of entries for first level of TLB), and its ef-
fect on performance is significant, so a good allocator should care about TLB
behavior.

Since today’s systems can have hundreds of gibibytes of memory, but typ-
ical page size is still 4 KiB, support for huge tables was added. For example,
x86-64 supports 2 MiB pages, and some even support 1 GiB pages (processor
has to have the PDPE1GB flag). This feature is important because the slots in
TLB are scarce, and bigger pages mean more memory mapped in the TLB—
a 2 MiB huge page takes one spot in TLB, while regular 4 KiB pages would
take 512 entries for the same amount of memory. Also 512 page faults can be
replaced with just one page fault, but on the other hand the bigger page takes
longer to clear and copy, so performance improvements in this regard are not
certain. Page tables are usually structured as a tree, and huge page tables
only need three levels, while regular pages need four, as seen on Figures 3.2
and 3.3, so lookup is also faster. Additional level of the page table will be
needed to handle the larger address space of the Sunny Cove architecture.

There are two ways how to use huge pages on Linux. Either through
hugetlbfs19 or by using transparent huge pages (THP). Working with hugetlbfs
can be simplified and tuned using the libhugetlbfs [25] library.

As the name suggest, THP tries to transparently change page sizes ac-
cording to the need of the application. Currently THP is only supported for
anonymous memory mappings, temporary file systems, and shared memory.
To reduce memory consumption, it is best to disable huge pages for most pro-
cesses, and only use them with proper mmap and madvise(MADV_HUGEPAGE)
calls. To be sure that kernel will use huge page for a mmap call, the region

19https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

23

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

3. Userland memory allocators

pgd

pmd

pte

pud

pte

pmd

pte pte

pmd

pte

pud

pte

pmd

pte pte

2 9̂ = 512 arrows, not just 2

Credit: Andrea Arcangeli [24]

Figure 3.2: Page table for x86 architecture with 4 KiB pages on Linux.

pgd

pmd

pud

pmd pmd

pud

pmd

2 9̂ = 512 arrows, not just 2

Credit: Andrea Arcangeli [24]

Figure 3.3: Page table for x86 architecture with 2 MiB pages on Linux.

should be aligned to a huge page size [26]. This can be achieved, for exam-
ple, using the posix_memalign function. Even though this feature is intrigu-
ing, some reports20 claim that the transparent switching may trigger com-
paction and defragmentation of pages, which may lead to unacceptably long
stalling. This problem has been addressed in the Linux kernel version 4.6 [27]
and some aspects of compaction and defragmentation can now be tuned via
/sys/kernel/mm/transparent_hugepage/defrag [24].

System calls
Userland allocators work with heap and memory mapping segments. On
POSIX-based [17] systems, the brk, sbrk, and mmap system calls are used

20https://groups.google.com/d/topic/mechanical-sympathy/sljzehnCNZU/
discussion

24

https://groups.google.com/d/topic/mechanical-sympathy/sljzehnCNZU/discussion
https://groups.google.com/d/topic/mechanical-sympathy/sljzehnCNZU/discussion

to acquire memory from these segments.
I will refer to both brk and sbrk as brk, since sbrk can be implemented

as a simple wrapper around brk, and they serve the same function. brk is
used to manipulate the heap segment by setting the program break. brk(0)
returns the current program break, and we can grow the heap by passing a
larger address as a parameter, or shrink it by passing a lower one. brk system
calls were removed from the POSIX standard in POSIX.1-2001 [28] because
they rely too much on the process’ memory layout. Most of the POSIX-
based systems still implement these system calls: macOS 10.14.2, Linux 4.20.0,
OpenBSD 6.4, and FreeBSD 12.0, which are the latest version of these oper-
ating systems as of writing this work, all contain the brk system call. There
is maximum allowed size of heap segment which can be changes using the
setrlimit(RLIMIT_DATA, limit) system call.

mmap is used in userland allocators to create a private anonymous map-
ping segment. mmap can also be used to map contents of a file to a region of
virtual address space, but this feature is not needed by userland allocators.
Setting the MAP_PRIVATE flag ensures that changes will not be propagated to
the underlying memory and will be seen only by the calling process. The
MAP_ANONYMOUS flag specifies that the mapping is not backed by an actual
file, and the contents of this memory are initialized to zero. This zeroing
out of memory might lead to performance degradation if mmap is used ex-
cessively. Complementary to mmap, munmap is used to remove memory map-
pings. Memory mapping of a process can be examined by looking in the
/proc/{pid}/maps file or by using the pmap(1) utility.

POSIX function posix_madvise (usually referred to as simply madvise [29])
is used to advise the kernel how to work with specific virtual pages. Some in-
teresting options include:

MADV_RANDOM
We expect that these pages will be accessed randomly, so a lookahead
buffer may not be beneficial.

MADV_SEQUENTIAL
On the contrary to MADV_RANDOM, we expect to read the pages sequen-
tially, so a lookahead buffer can be used to increase performance. The
system can also free the pages right after they have been read.

MADV_WILLNEED
We expect to use these pages in the near future.

MADV_DONTNEED
We do not expect these pages in the near future, and the operating
system might reclaim them. If a process uses the returned page be-
fore it is reclaimed by the operating system, the effects of madvise are

25

3. Userland memory allocators

overturned. Using pages that have been already reclaimed by the oper-
ating system is faster than allocating new ones using mmap. Even though
MADV_DONTNEED does not have to take effect right away (the operating
system can decide to free these pages later on), the maximum resident
set size is decreased instantly.

MADV_REMOVE (Linux-specific)
The pages will be freed, and subsequent accesses will only see memory
filled with zeros.

MADV_HUGEPAGE (Linux-specific)
Enable Transparent Huge Pages (THP) for specified pages.

The malloc(3) function
Userland memory allocators usually work in two ways—by providing their
own functions for memory allocation, and by replacing the default malloc(3)
implementation (and some even replace the global C++ operator new and
related functions). The malloc function is standardized in both POSIX [17]
and ISO C [30, 7.22.3.4] standards. The API is very simple:

void *malloc(size_t size);
void free(void *ptr);

The malloc function is used to allocate memory from the heap. It ei-
ther returns a pointer to newly allocated memory or NULL, if error occurred
(most likely insufficient memory space available). This memory will be always
aligned suitably for any C data type. The free function is used to signal to
the allocator that the memory can be reclaimed and reused, or returned to
the operating system.

Locality of reference
Locality of reference [31] is important kind of behavior with regards to mem-
ory. It is usually divided into two types:

Spatial locality
If a memory location is accessed, adjacent memory is going to be accessed
in near the future.

Temporal locality
If a memory location is accessed, it will be accessed in the near future
again.

Improving locality usually leads to performance improvements, therefore
it is one of the goals of some userland memory allocators.

26

False sharing

False sharing occurs when two threads read and manipulate memory residing
on the same cache line. This scenario can lead to caches being invalidated
all the time, thus causing performance degradation. Reducing false sharing is
another goal of userland memory allocators.

Memory blowup

One of the biggest problem in concurrent allocator design is scalable han-
dling of remote frees (i.e., freeing memory allocated by another thread). If
allocator can’t reuse this memory effectively, it can lead to memory blowup.
Memory blowup occurs when a program requests significantly larger amounts
of memory from the operating system than it actually needs for its computa-
tions [32]. Some allocators can not move memory between thread-local data
structures, which can lead to memory blowup. Consider following scenario:
one thread does significant amount of allocations, while other threads do the
deallocations. If the allocator can not move the freed blocks among the thread
structures, the other threads will accumulate the free blocks, while the first
thread will have to access the central data structure to get new free blocks,
thus leading to memory blowup.

Building blocks

In this chapter I will describe in detail the most popular userland allocators of
today—GNU C Library’s malloc, tcmalloc, jemalloc, and tbbmalloc. These
allocators share similar building blocks. There is usually a structure that
serves as a cache for each thread that can be only accessed by that thread,
and allocating and deallocating from it does not require locking (even though
filling and truncating it might). Then there are underlying structures that
might require locking, but the allocators try to mitigate contention by using
multiple instances of these structures per CPU core, fine-grained locking, using
multiple levels of these structures, and other methods. The allocators usually
treat small and large allocations differently, and they also utilize size classes—
selected set of sizes to which the request size is rounded up to. Size classes were
first used by Tadman in his master’s thesis [33]. Size classes are calculated
to ensure a desirable balance between fragmentation, latency, and memory
usage. Some allocators also make use of free lists, which are lists of blocks of
memory that are available for allocation. The space reserved for user data is
used to store the link pointers, leading to less overhead. Usually these free
lists are segregated by size, which means that a free list contains blocks of
approximately the same size.

27

3. Userland memory allocators

Usage
There are multiple ways how to use custom userland memory allocators.
The simplest one is by replacing malloc and related functions by using the
LD_PRELOAD environment variable. The libraries that are specified in the
LD_PRELOAD variable will have precedence before any other library, so if the
library contains malloc, this malloc implementation will replace the one that
would be loaded by the GNU C Library. For example, if jemalloc is installed
at /usr/lib/libjemalloc.so, running a program test with the default user-
land memory allocator replaced by jemalloc would be done by following com-
mand:

env LD_PRELOAD=/usr/lib/libjemalloc.so ./test

One big advantage of this approach is that the program does not need to be
recompiled, and it can be used even with third-party closed-source software.

The userland memory allocator can be also changed by linking the library
when compiling the program. For GCC, tcmalloc installed in standard loca-
tion, and program.c, the linking could be done as follows:

gcc -ltcmalloc program.c -o program

Some userland memory allocators also provide their own functions for al-
location and deallocation. For example, tcmalloc contains all the standard
allocation functions with prefix tc_, e.g., tc_malloc, tc_calloc, tc_free,
etc. User can include tcmalloc’s headers and use these functions directly. This
way, the user could use multiple userland allocators for different parts of the
program. Extra care would have to be taken of correct malloc and free call
pairing, since malloc and free mismatch from different userland allocators
would lead to undefined behavior, and probably a segmentation fault.

3.1 The GNU C Library
Allocator that is shipped with the GNU C Library (glibc) [34] is based on
ptmalloc2 [35] by Wolfram Gloger. This allocator is important because it is the
default userland allocator on most Linux-based systems [36]. It was created
in 2006 as a replacement (and a fork) of the previous allocator dlmalloc [37]
created by Doug Lea. dlmalloc was not developed with parallelization in
mind—it consisted of only one memory arena, which was locked on allocation,
so the allocations were processed serially. As SMP systems were becoming
more common, the need for a parallel allocator emerged, leading to creation
of this allocator.

Returned memory is by default aligned to 2 × sizeof(size_t), which is
usually 16 on 64 bit systems (but by definition the size of size_t has no upper
bound [30, 6.5.3.4]). When the user tries to allocate 0 B by calling malloc(0),

28

3.1. The GNU C Library

glibc malloc always returns a valid pointer to a chunk of smallest allocatable
size, even though it is valid to return NULL in this case, as per standard. The
GNU C Library’s malloc implementation source code is heavily commented
and easy to read.

3.1.1 Arenas
The main data structure of glibc malloc is arena (struct malloc_state).
An arena contains one or more heap segments (struct heap_info), which are
aligned contiguous regions of memory. These regions are divided into chunks
(struct malloc_chunk), which are used to satisfy allocation requests. Basic
structure of an arena is shown in Figure 3.4.

H
e
a
p
1

mstate ar_ptr

heap_ info* prev

size_t size

char pad[...]

H
e
a
p
2

mstate ar_ptr

heap_ info* prev

size_t size

char pad[...]

mutex_t mutex

int flags

mfastbin* fastbins[...]

mchunk* top

Arena 1

mchunk* last_ remainder

mchunk* bins[...]

unsigned int binmap[...]

mstate* next

size_t system_mem

size_t max_system_mem

mutex_t mutex

int flags

mfastbin* fastbins[...]

mchunk* top

Arena 2

mchunk* last_ remainder

mchunk* bins[...]

unsigned int binmap[...]

mstate* next

size_t system_mem

size_t max_system_mem

Credit: Josef Kokeš, Tomáš Zahradnický

Figure 3.4: Structure of an arena with multiple heap segments in the glibc
allocator.

The first created arena is called main arena. Main arena cannot have
multiple heaps, and only extends its one heap segment using the sbrk system
call. All arenas are joined in a linked list through member variables next
and next_free. Heap segments that belong to same arena are also joined in
a linked list through member variable prev, and they contain pointer to the
arena that they are part of. Heap segments are by aligned to either 1 MiB,
or 2 × DEFAULT_MMAP_THRESHOLD_MAX, if the DEFAULT_MMAP_THRESHOLD_MAX
variable is defined. DEFAULT_MMAP_THRESHOLD_MAX is usually 512 × 1024 on
32 bit systems and 4× 1024× 1024× sizeof(long) on 64 bit systems [38].

glibc malloc deals with parallelization by using multiple arenas, which de-
creases the chance that multiple threads will block each other. The maximum
number of arenas is proportional to the number of CPU cores—for 64 bit sys-
tems it is 8 arenas per CPU core, and for 32 bit systems it is 2 arenas per CPU
core [38]. The number of arenas or the ratio to the number of CPU cores can
be configured. If a thread is trying to allocate memory, it goes through all
arenas until it finds one that is not locked. If no such arena exists, and we

29

3. Userland memory allocators

have not hit the arena number limit yet, another arena will be created and
assigned to this thread. If the number of arenas is already at the limit, the
thread will be added to a waiting queue.

3.1.2 Chunks
Unlike all following allocators, glibc malloc stores chunks of different sizes in
one heap segment. At the beginning and at the end of the chunk are boundary
tags, which contain size of the chunk and three flags that are described later in
this section. Boundary tags were invented in 1962 by Donald E. Knuth [39].
If the chunk is free, it also contains the information about its size at the end,
which makes coalescing of neighboring free chunks trivial and O(1). All op-
erations maintain the invariant that no two chunks in small and large bins
are bordering each other—is such two chunks were to exist, they are immedi-
ately coalesced into one chunk in the appropriate operation. Free chunks also
contain pointers to previous and next free chunk, forming a free list.

The three flags stored in the boundary tag are:

PREV_INUSE is set if previous chunk is allocated.

NON_MAIN_ARENA states if the chunk was obtained from main arena or not.

IS_MMAPPED specifies if the chunk was requested via mmap system call or not.
Since chunks obtained by mmap are neither in arena, nor are they next
to a free chunk, the other flags are ignored, if this one is set.

The structure of free and allocated chunk is shown in Figure 3.5. Since
there needs to be space for the boundary tags metadata and at least two
pointers inside the chunk, minimum allocated size is 16 B for 32 bit system
and 32 B for 64 bit system. The heap allocator cares primarily about free
chunks, the chunks that are allocated by the user are not managed in any way
until they are freed.

prev_size (if prev is unused)

size

fd

flags

bk

chunk

mem

nextchunk

4

4

4

4

>= 0

free chunk

size

fd

flags

data

chunk

mem

nextchunk

data

allocated chunk

data from previous chunk 4

4

>= 8

reserved space

Credit: Vern Paxson

Figure 3.5: Structure of glibc malloc chunk with boundary tags on a 32 bit
system.

Since the tags take up 8 B of memory, they can cause significant overhead
when allocating a lot of small objects. Allocator metadata in between appli-

30

3.1. The GNU C Library

cation data also decreases data locality, since less data fits on one cache line.
Boundary tag method also leads to higher internal fragmentation.

3.1.3 Bins
Arena also contains bins (member variables bins and fastbinsY). Bins con-
tain free lists used to fulfill allocations and deallocations. Free list is a linked
list of free chunks. The structure of bins is shown on Figure 3.6. Arena con-
tains multiple bins, where each bin contains free chunks of approximately same
size. When allocating, chunks are removed from bins, and while deallocating
they are put in.

Credit: sploitfun.wordpress.com

Figure 3.6: Bins of the glibc malloc allocator.

In following description of bins, sizes correspond to a 64 bit system with
sizeof(size_t) == 8. There are 126 bins total, 62 of which are considered
small bins. Small bins are bins for sizes 32 B to 1008 B and they contain
chunks of all exactly the same size. Small bin sizes are spaced 16 B apart, so
first small bin contains chunks of size 32 B, second small bin contains chunks
of size 48 B, and so on.

All larger bins are called large bins, and they are approximately logarith-
mically spaced, as seen in Table 3.2. Chunks in large bin are ordered by size.
Ordering small bins by size is not necessary, since all the chunks in one small
bin are of the same size. If more chunks have equal size, the approximately

31

3. Userland memory allocators

most recently freed chunks are at the front. This first-in first-out allocation
order tends to create more consolidated chunks leading to less internal frag-
mentation. Ordering by size is used for finding least wasteful chunk to use in
best-fit allocation. The traversal of ordered list is fast enough so it does not
warrant using a more complex ordered data structure.

Number of bins Spacing Chunk sizes (usable space)
62 16 B 32 B, 48 B, 64 B, . . . , 992 B, 1008 B
32 64 B 1 KiB, 1088 B, 1152 B, . . . , 2944 B, 3008 B
16 512 B 3 KiB, 3.5 KiB, 4 KiB, . . . , 10 KiB, 10.5 KiB
8 4 KiB 12 KiB, 16 KiB, 20 KiB, . . . , 36 KiB, 40 KiB
4 32 KiB 64 KiB, 96 KiB, 128 KiB, 160 KiB
2 256 KiB 256 KiB, 512 KiB
1 — up to DEFAULT_MMAP_THRESHOLD
1 unsorted

Table 3.2: Number of bins, their spacing, and chunk sizes on 64 bit system.

There is also special unsorted bin. Freed chunks are first inserted into
the unsorted bin. Chunks that were created as a remainder of the best-fit
allocation are also placed into the unsorted bin. Each chunk in unsorted bin
has one chance to be used to satisfy an allocation request. If the chunk is not
the exact required size, it is moved from unsorted bin to the appropriate bin
according to its size.

There is a limit how large a request has to be to be handled by mmap. If
the M_MMAP_THRESHOLD option is set, the threshold is fixed to that value. Oth-
erwise the threshold starts at 128 KiB and is dynamically adjusted according
to allocation patterns. The size of a request that will be handled via mmap is
rounded up to nearest page multiple. Overhead for these chunks is bigger by
sizeof(size_t), since we have no following chunk with the prev_size field.

Member variable binmap contains a bit array of bins, where ith bit is set
if ith bin is definitely empty. This bit array is not always up to date, so it can
contain false negatives (the bin is actually empty, but the corresponding bit
is not set), but not false positives. binmap is used to speed up the traversal
of bins by skipping the empty ones.

Chunks of size 16 B to 160 B are called fast chunks. Each arena contains
10 fast bins (spaced 16 B apart), which are used for holding small chunks.
Unlike all previous bins, free lists in fast bins are only singly linked, as seen
on Figure 3.7. Chunks are never removed from the middle of the list, so
double linking is not necessary. Like small bins, chunks in one fast bin are
always of the same size. Chunks in the fast bins are processed in last-in
first-out order. The allocator considers all chunks in fast bins as allocated
(corresponding PREV_INUSE flag is set). They are not coalesced on free, but

32

3.1. The GNU C Library

the consolidation is done in bulk by calling malloc_consolidate. Allocator
tries consolidating chunks in fast bins only if a request of size bigger than
64 KiB (FASTBIN_CONSOLIDATION_THRESHOLD) is received. On allocation, if
the requested size is in range of fast bins, allocator first tries to satisfy the
allocation from the fast bins. Allocator looks in other bins only if there are
no chunks in fast bins that are sufficiently large. When free is called on a
fast chunk, the chunk is put in the appropriate fast bin. Working with fast
bin is lock-free, with the help of atomic CAS instructions. This should make
fast bins faster than small and large bins, since those need to be locked using
a mutex. Each arena also contains flag have_fastchunks, which is used to
skip the fast bins if they are empty. This flag is not up to date at all times.
This flag is checked on allocation, and if it is set, chunks in fast bins are
consolidated.

Top chunk is a chunk that is on top of the heap segment. It does not
belong to any bin, and it is used to fill bins when they are empty. It can also
be trimmed when the top chunk gets too big.

There are two ways how we can get a remainder chunk. First is by allocat-
ing from unsorted or large bin, when the requested size is less than the size of
the selected chunk. Second is by allocating from the top chunk, if top chunk
is bigger than the requested size.

Arenas store a last remainder chunk, which is a chunk that was created
by a split in the most recent small allocation. If a small request can not be
satisfied from unsorted or small bins, allocator selects a chunk from the next
smallest non-empty large bin by scanning binmap bit array, and even if large
bins are empty, the allocator uses the top chunk of the arena. This chunk is
then split in two—one satisfying the allocation request, and the second one is
now the new last remainder chunk. The reason for storing the last remainder
chunk is that when next small allocation occurs, it is satisfied from the last
remainder chunk, resulting in better cache locality.

3.1.4 Thread-local caches

Thread-local caches were added in glibc 2.26 released on August 2, 2017, after
their apparent success in most of other popular malloc(3) implementations
(e.g., tcmalloc, jemalloc, tbbmalloc). Thread-local caches improve perfor-
mance, since there are no locks in neither allocation nor deallocation. Only
when we need to fill the cache with empty blocks, we lock the underlying
arena. The cache can be filled from all bins—unsorted bin, fast bins, small
bins, and large bins. Thread-local cache can be filled without a lock with a
chunk that is passed to the free function.

Thread-local cache is yet another set of bins. The size of a request that can
be handled through thread-local cache has upper bound, which is by default
516 B for 32 bit systems and 1032 B for 64 bit systems. Every request that is

33

3. Userland memory allocators

Credit: sploitfun.wordpress.com

Figure 3.7: Fast bin structure.

under this threshold is first tried to be satisfied from thread-local cache. Each
thread gets 64 bins, and there can be by default at most 7 items in each bin.

3.1.5 Configuration
Runtime

Various aspects of glibc malloc can be set at runtime using the mallopt(3) [38]
function. All of the following options can also be set by an environment
variable. Some interesting parameters are:

M_MMAP_MAX
Sets the maximum number of requests that can be simultaneously ser-
viced by mmap. Setting this value to 0 disables the usage of mmap.

M_MMAP_THRESHOLD
Specifies a size threshold. If a request is bigger than this size, it is
serviced by mmap. If this parameter is not set by the user, its default
value is 128 KiB, and then it is dynamically adjusted according to the
pattern of allocations.

M_TOP_PAD
states how much memory is added by every sbrk request. It can be

34

3.1. The GNU C Library

used to lower the amount of system calls. This pad is also retained when
releasing memory back to the operating system using malloc_trim.

M_TRIM_THRESHOLD
Specifies how much memory has to be in the top chunk to trigger the
release of the memory back to the operating system. If this parame-
ter is not set by the user, its default value is 128 KiB, and then it is
dynamically adjusted according to the pattern of allocations.

M_ARENA_TEST
Sets how many arenas are created per CPU core. By default this value
is 2 for 32 bit systems and 8 for 64 bit systems.

M_ARENA_MAX
Sets the maximum number of arenas that are created.

Tunables

In addition to mallopt(3) and separate environment variables, the GNU C
Library also provides tunables [40]. Tunables allow to tune a variety of glibc
parameters at runtime using the environment variable GLIBC_TUNABLES con-
taining a colon-separated list of key=value pairs. All the parameters above
can be also set by using tunables [41]. For example, to set M_MMAP_MAX to
128 KiB and M_ARENA_TEST to 4, the GLIBC_TUNABLES variable would be set
as

GLIBC_TUNABLES=glibc.malloc.mmap_max=131072:glibc.malloc.arena_test=4

Some additional interesting tunable parameters include:

glibc.malloc.tcache_max
The maximum size of a request in bytes that will be handled through
thread-local caches. This value is by default 516 B on 32 bit systems and
1032 B on 64 bit systems.

glibc.malloc.tcache_count
The maximum number of items in one thread-local cache list. By default
there can be a maximum of 7 items in each thread-local cache free list.
By setting this value to 0, user can effectively disable the thread-local
cache.

glibc.tune.x86_data_cache_size
The size of data cache for memory and string functions. This tunable is
only available on i386 and x86-64 architectures. It is typically set to L1
size.

35

3. Userland memory allocators

Compile-time

If the user is willing to recompile the GNU C library, many more parameters
can be tuned. These include:

MALLOC_ALIGNMENT
The default alignment of returned memory. The alignment has to be at
least 2× sizeof(size_t) and has to be a power of two.

USE_TCACHE
States if the the thread-local caches should be used or not.

These parameters are passed to the compiler, e.g., the default alignment
can be changed to n by passing -DMALLOC_ALIGNMENT=n to the compiler.

3.2 tcmalloc
Allocator tcmalloc was created for Google’s internal use and it was used in
the Chrome web browser until 201421. The tc stands for “thread caching”,
so as the name indicates, each thread holds its own cache for small objects.
tcmalloc tries to keep the metadata overhead under 1 % [42]. tcmalloc comes
as a part of the gperftools software suite, which also includes simple heap
checker22 and heap profiler23.

Detailed analysis of tcmalloc’s performance (fast path, time spent in dif-
ferent stages of allocation, etc.) was done by Kanev et al. [10].

3.2.1 Pages and spans
tcmalloc divides memory into aligned 8 KiB pages. Multiple contiguous pages
are called a span.

3.2.2 Size classes
Unlike ptmalloc, tcmalloc treats small objects (size ≤ 256 KiB), medium ob-
jects (256 KiB < size ≤ 1 MiB), and large objects (size > 1 MiB) differently.
Small allocations can be satisfied from the thread cache, while medium and
large objects are always allocated through the central data structures.

Small objects are divided into approximately 88 size classes. The size
classes are 8 B, 16 B, 24 B, etc., and the gap between size classes gradually
increases. One page always contains objects of only one size class.

When allocating medium and large objects, their size is rounded up to
whole pages.

21https://bugs.chromium.org/p/chromium/issues/detail?id=339604
22https://gperftools.github.io/gperftools/heap_checker.html
23https://gperftools.github.io/gperftools/heapprofile.html

36

https://bugs.chromium.org/p/chromium/issues/detail?id=339604
https://gperftools.github.io/gperftools/heap_checker.html
https://gperftools.github.io/gperftools/heapprofile.html

3.2. tcmalloc

3.2.3 Thread-local caches
Each thread has its own cache which can fulfill small allocations and dealloca-
tions without the need for synchronization. The thread-local cache contains
a list of free objects for every size class, as shown in Figure 3.8. Free objects
are moved from central free list to thread-local caches as needed. Periodic
garbage collection is used to move free objects from thread-local caches back
to the central data structures, thus avoiding memory blowup.

The garbage collection is run in two cases. First one is when the size of
the cache exceeds specified size (initially 64 KiB by default). This size grows
every time garbage collection is run, until hitting specified upper limit for the
total thread cache size. If we hit the upper limit, the thread will try to steal
memory from other threads’ caches.

Second case is when some free list exceeds its maximum length. Thread
cache free lists have variable length, which changes with allocations and deal-
locations from said list. It is important to keep this maximum length appro-
priate, since a list too short leads to more communication with central free
lists (thus increasing contention), and a list too long wastes memory.

Credit: Sanjay Ghemawat

Figure 3.8: Thread cache of the tcmalloc allocator.

3.2.4 Central free list
Central free list acts as an intermediary between the thread-local caches and
the central heap. When allocating small objects, thread first looks in its own
cache if it can satisfy the allocation. If not, it asks central free list for the
needed free object. If the central free list does not have free object of requested
size class, it requests a span from the central heap, splits it into objects, and
adds them to the central free list. Then it moves some of these objects to the
thread-local cache.

Central free list uses fine-grained locking, where free list of each size class
has its own lock. Thus multiple threads can obtain objects from central free
list concurrently, if they request objects of different size class.

37

3. Userland memory allocators

3.2.5 Central page heap
Central page heap contains 128 free lists of spans, where the kth free list
contains spans of k pages (as seen on Figure 3.9). The whole central heap
needs to be locked when accessing, thus increasing contention when accessing
frequently. That is why we try to minimize using the central page heap by
using the central free list and thread-local caches first.

Each free list actually contains two lists—first for spans that are mapped
in current process’s address space, and second for lists that have been returned
to the operating system (using madvise(MADV_DONTNEED)).

Central page heap also contains page map stored in a radix tree. The page
map contains mappings from page number to a information about the page
stored in struct Span. While deallocating, tcmalloc uses this page map to
merge free spans, if applicable.

Central page heap fulfills medium object allocations. As stated before,
sizes of medium and large objects are rounded up to whole pages. So when
allocating medium object of size k × 8 KiB, kth free list is used. If there are
no free objects in kth list, tcmalloc looks into (k + 1)th list, (k + 2)th list, and
so on, until it finds one with free span. If the span is longer than requested,
the span is divided, and the remaining free span is moved back to the free
list. If no free list can satisfy the allocation request, tcmalloc first looks in the
red-black tree of large objects, and even if it cannot be satisfied from there, it
asks the operating system for new memory.

Allocation of large objects is dealt with separately. Spans of free pages
that are in total larger than 1 MiB are kept in a red-black tree sorted by
size. When doing large allocation, best-fit algorithm is used to find the most
suitable span. If the span is larger than requested size, only the needed pages
are used, and the rest is moved either to central page heap, or back to the
red-black tree. If there is no suitable span in the tree, tcmalloc requests the
the memory from the operating system.

Another performance problem with working with the central heap is that a
lot of allocation metadata is accessed when working with it, so it may displace
application data from CPU caches and TLB, thus leading to higher latency
when accessing application data again [43].
The whole architecture of tcmalloc is shown in Figure 3.10.

3.2.6 Configuration
Several aspects of tcmalloc (and other parts of the gperftools suite) can be
configured. The easiest way of configuration is through environment variables.
Some interesting ones include:

TCMALLOC_RELEASE_RATE
Rate at which madvise(MADV_DONTNEED) is called to return the memory
to the operating system.

38

3.3. jemalloc

Credit: Sanjay Ghemawat

Figure 3.9: Central page heap of the tcmalloc allocator.

TCMALLOC_MAX_TOTAL_THREAD_CACHE_BYTES
Maximum total size of all thread caches. The default value is 16 MiB,
which can be too low when using many threads.

TCMALLOC_SKIP_MMAP
Do not use mmap to acquire memory from the operating system.

TCMALLOC_SKIP_SBRK
Do not use sbrk to acquire memory from the operating system.

3.3 jemalloc
Allocator jemalloc was first described by Jason Evans (hence the je) in his
article “A Scalable Concurrent malloc(3) Implementation for FreeBSD” [44].
Evans also provided the initial implementation and the allocator is still being
actively developed. The origin story behind this allocator is similar to ptmal-
loc and dlmalloc—it was an attempt to provide a well parallelized allocator
for the FreeBSD operating system, replacing the older and poorly scalable
phkmalloc [45]. jemalloc also includes simple heap activity profiling.

It is being used by Facebook in large portion of their infrastructure, it is
shipped with the Mozilla Firefox web browser, and it is the default malloc(3)
in FreeBSD operating system—it is an allocator well tested in production
use. The versions shipped with FreeBSD and Firefox are slightly modified
compared to the version found in the official GitHub repository [46]. From
the three malloc(3) replacements discussed in this work (tcmalloc, jemalloc,
tbbmalloc), jemalloc seems to be the most popular one right now. One way
to measure popularity are “stars” on the GitHub repository, where jemalloc
leads, even though both tcmalloc and tbbmalloc are parts of bigger software
suites (gperftools and Intel® Threading Building Blocks respectively).

39

3. Userland memory allocators

…

Transfer Cache

Central Cache

…

Non-empty

spans

Empty spans

Thread Cache

Central Page Heap

1 page

2 pages

3 pages

…

…

…

OS

* Replicated for

 each size class

…

Central Free List

…

Small object

malloc/free

…

Class 1

Class 2 …

…

TCMalloc Application

Process

Thread

Large object

malloc/free
Thread

Span size

Credit: Sangho Lee, Teresa Johnson, Easwaran Raman

Figure 3.10: High-level architecture of the tcmalloc allocator.

jemalloc focuses on keeping low metadata memory usage, so by design,
metadata always take less than 2 % of total memory usage.

3.3.1 Arenas
jemalloc combines properties of both previous allocators—it divides alloca-
tions into size classes and it is parallelized using multiple arenas. By default
four arenas are created for each CPU core. Arena is assigned to a thread at the
time it tries to first allocate memory. Arenas are assigned using a round-robin
method, which assures that distribution of threads to arenas is approximately
uniform. Many older allocators assigned arenas using a hash of a thread iden-
tifier, due to lack of thread-local storage, which lead to some arenas being
overused, while others were not being used at all. jemalloc falls back to as-

40

3.3. jemalloc

signing arenas using thread identifier hash only if thread-local storage is not
available.

3.3.2 Size classes
There are many changes changes in designed since the publishing of the orig-
inal paper [44]—for example, jemalloc now divides allocations into two cat-
egories: small and large, while in the original jemalloc there were three cat-
egories: small, large, and huge. Default size classes for 64 bit system, 4 KiB
pages, and 16 B quantum are shown in Table 3.3.

Category Spacing Size

Small

— 8 B
16 B 16 B, 32 B, 48 B, 64 B, 80 B, 96 B, 112 B, 128 B
32 B 160 B, 192 B, 224 B, 256 B
64 B 320 B, 384 B, 448 B, 512 B
128 B 640 B, 768 B, 896 B, 1 KiB
256 B 1280 B, 1536 B, 1792 B, 2 KiB
512 B 2560 B, 3 KiB, 3584 B, 4 KiB
1 KiB 5 KiB, 6 KiB, 7 KiB, 8 KiB
2 KiB 10 KiB, 12 KiB, 14 KiB

Large

2 KiB 16 KiB
4 KiB 20 KiB, 24 KiB, 28 KiB, 32 KiB
8 KiB 40 KiB, 48 KiB, 54 KiB, 64 KiB
16 KiB 80 KiB, 96 KiB, 112 KiB, 128 KiB
32 KiB 160 KiB, 192 KiB, 224 KiB, 256 KiB
64 KiB 320 KiB, 384 KiB, 448 KiB, 512 KiB
128 KiB 640 KiB, 768 KiB, 896 KiB, 1 MiB
256 KiB 1280 KiB, 1536 KiB, 1792 KiB, 2 MiB
512 KiB 2560 KiB, 3 MiB, 3584 KiB, 4 MiB
1 MiB 5 MiB, 6 MiB, 7 MiB, 8 MiB
2 MiB 10 MiB, 12 MiB, 14 MiB, 16 MiB
4 MiB 20 MiB, 24 MiB, 28 MiB, 32 MiB
8 MiB 40 MiB, 48 MiB, 56 MiB, 64 MiB
· · · · · ·
512 PiB 2560 PiB, 3 EiB, 3584 PiB, 4 EiB
1 EiB 5 EiB, 6 EiB, 7 EiB

Table 3.3: Allocation categories and size classes in the jemalloc allocator [1].

Figure 3.11 shows the structure of jemalloc arena (the image is slightly
outdated—chunks were renamed to extents and page runs were renamed to

41

3. Userland memory allocators

slabs, everything else is correct). Arena stores the allocated objects in extents,
which are continuous blocks of memory aligned to multiples of the page size.
How are extents obtained from the operating system can be configured through
the extent_hooks_s structure. For large allocations, each allocation is backed
by its own extents. For small allocations, extents are divided into slabs, where
each slab can only contain objects of the same size class.

For each size class there is at most one active slab per arena at a time.
Slab being active means that new objects of its size class are allocated in that
slab. For quick allocation and deallocation, arena contains bins, which point
to active slabs of different size classes. Bins also contain a list of full slabs
and heap of non-full extents. Non-full extents are in a heap because jemalloc
always tries to allocate from lowest addresses.

At the beginning of each slab is a bitmap that documents if regions are
free or not. This has many advantages over the approach with boundary
tags—boundary tags have huge overhead for small objects, and the allocator
metadata are interleaved with application data, which can lead to lower data
locality, and thus lower performance because of ineffective utilization of CPU
caches. jemalloc does not try to prevent false sharing—if users wants to protect
against false sharing, they have to take appropriate steps themselves.

When deallocating memory, it does not matter which thread freed the
region, and what arena the thread is associated with—freed memory is always
returned to the arena from which it was allocated.

3.3.3 Thread-local cache
Initially jemalloc did not have thread-local caches, but when the success of
tcmalloc became apparent, thread-local caches were added in addition to are-
nas. Objects up to a specified size class are stored in the thread-local cache.
By default, the maximum size class stored in the thread-local cache is 32 KiB.
This can be configured, but the thread-local cache will contain at least all
small size classes. Thread-local caches can also be completely disabled.

The thread-local cache structure is very simple, consisting mostly of bins
and information for garbage collection. As a time unit for garbage collection
is used the number of allocations. Due to periodical garbage collection, i.e.,
moving free lists from thread-local cache’s bins to corresponding arena bins,
the memory blowup should not occur.

3.4 tbbmalloc
Allocator tbbmalloc [48] is part of the Threading Building Blocks library [49],
created and maintained by the Intel Corporation. It is based on work described
in the “McRT-Malloc - A Scalable Transactional Memory Allocator” paper by
Hudson et al. [50]. This is the least popular major allocator of those described

42

3.4. tbbmalloc

Credit: Patroklos Argyroudis, Chariton Karamitas [47]

Figure 3.11: Structure of an arena in the jemalloc allocator.

in this chapter, but I included it because it was already used in LSU3shell
when I joined the project.

tbbmalloc’s main focus is on scalability and speed, leading to disadvantages
in other areas, to name a few:

• tbbmalloc gives low priority to memory footprint—for example, freed
memory allocated for small objects is never returned back to the oper-
ating system [13].

• tbbmalloc wastes a lot of memory when allocating objects of size 9 KiB
to 12 KiB [51].

• Memory blowup is possible, since the freed objects are always returned
to the thread that allocated the memory.

• tbbmalloc does not focus on optimizing and dealing with paging issues.

43

3. Userland memory allocators

High-level architecture is shown in Figure 3.12. tbbmalloc divides memory
into 16 KiB blocks. These blocks are put inside the global heap of free blocks.
Each thread has also its own heap structure, which is how tbbmalloc deals
with parallelization, since there is no need to lock the thread heap structure
(from now on, I will call this structure a “thread-local cache”). tbbmalloc
also introduces size classes, and the thread-local caches are segregated, which
means that each block contains only objects of one size class.

When deallocating memory, freed objects are returned to the thread that
allocated it, thus allowing the possibility of memory blowup. Each thread has
two types of free lists—public (also called foreign) and private. When thread
A frees memory of thread B, thread A moves the block to the public list of
thread A (thus incurring performance cost of synchronization). Thread always
looks to private lists first, and only tries the public one when the private free
list can not satisfy the allocation.

Credit: Alexey Kukanov, Michael J. Voss

Figure 3.12: High-level architecture of the tbbmalloc allocator.

Structure of thread-local cache is shown on Image 3.13. Local thread heap
contains bins which point to active block for given size class. Blocks for one
size class are joined into doubly linked list, where full blocks are to the right
of the active blocks, and “empty enough” blocks are to the left. When enough
memory is deallocated from full block, it is rearranged back to the left of
active block. Each block has a header, similarly to jemalloc, and application
data are tightly packed together.

3.5 Other userland allocators
I have also researched less popular allocators, but extensive research and anal-
ysis did not make sense for those. All discussed allocators are focusing on
highly parallel workloads.

Hoard[32] is one of the most influential userland memory allocators that
are built with concurrency in mind. It focuses on minimizing contention, false

44

3.5. Other userland allocators

Credit: Alexey Kukanov, Michael J. Voss

Figure 3.13: Thread-local cache of the tbbmalloc allocator.

sharing, and preventing memory blowup.
talloc [52] is a hierarchical memory allocator developed and maintained by

the Samba24 team. It is interesting for its ability of tracking hierarchical data
structures and releasing them properly. It can be used non-hierarchically, but
the overhead of tracking hierarchies makes it not suitable for non-hierarchical
scenarios.

WebKit contains its own allocator called bmalloc25. It does not override
default malloc and free functions, so I had to write my own wrapper.

TLSF [53] (short for Two-Level Segregated Fit) promises O(1) malloc and
free, low memory overhead, and low fragmentation.

StreamFlow [54] promises low overhead, high-performance, and better per-
formance due to taking into account and optimizing for locality of reference.
It also targets false sharing and tries to improve TLB performance.

rpmalloc [55] is a cross-platform lock-free userland allocator. It heavily
utilizes thread-local caches, and many properties of the cache behavior are
configurable. It claims to be faster than most of popular userland memory
allocators without additional memory overhead.

SuperMalloc [13] was already mentioned in this chapter. It is a userland
allocator designed with hardware transactional memory (HTM) and 64 bit
virtual address space in mind.

Lockless’s LLAlloc [56] is built on top of tcmalloc’s design and uses lock-
free techniques to minimize latency.

litemalloc26 is a thread-friendly lock-free userland allocator. It focuses on

24https://talloc.samba.org
25https://github.com/WebKit/webkit/tree/master/Source/bmalloc/
26https://github.com/Begun/lockfree-malloc

45

https://talloc.samba.org
https://github.com/WebKit/webkit/tree/master/Source/bmalloc/
https://github.com/Begun/lockfree-malloc

3. Userland memory allocators

minimizing memory fragmentation and it was designed with 64 bit architec-
tures in mind.

scalloc [12] is a scalable general-purpose memory allocator built with 64 bit
architectures in mind. Many concurrent operations in this allocator are im-
plemented with lock-free techniques and data structures.

MCMalloc [57] introduces new method ti reduce lock contention by using
batch malloc, pseudo free, and fine-grained data-locking.

SSMalloc [58] claims to provide a low-latency locality-conscious allocations
with stable scalability. It minimizes mmap calls and uses lock-free and mostly
wait-free algorithms.

SFMalloc [59] is a lock-free and mostly synchronization-free userland allo-
cator. This allocator neve uses synchronization for common cases, and only
uses lock-free synchronization for the uncommon cases.

46

Chapter 4
C++ STL memory allocators

The allocator requirements [60, allocator.requirements] are a description of
behavior and traits required for memory allocation and deallocation. It is used
heavily through-out STL—in containers (except std::array), std::string,
string streams, and others. The class template std::allocator_traits [60,
allocator.traits] contains a uniform interface to all allocators. The allocator
API is simple:

T* allocate(std::size_t n)
void deallocate(T* p, std::size_t n)

C++ allocators were invented by Alexander Stepanov as a part of the orig-
inal STL [61]. They were initially meant to solve problems with different
pointer types (e.g., near and far pointers) [62], but they are now primarily
used to gain performance advantage by managing memory according to spe-
cific allocation patterns. The allocator definitions are evolving rapidly, with
significant changes in C++11 [63], C++17 [60], and C++20 [64]. Pablo Halpern,
one of the main contributors to the allocator model in the standard, stated
that only in C++17 allocators became really usable [65]. Before C++11, al-
locators had to be stateless, making them practically unusable for manually
managing memory. More than half of the member types and functions of
std::allocator were moved to std::allocator_traits, and they are dep-
recated in C++17 and expected to be removed in C++20. Since many copies
of the allocator are created when working with STL containers, the allocator
should be easily copyable.

The default C++ allocator std::allocator [60, default.allocator] is used
in STL if the user does not provide a custom one. The std::allocator is
guaranteed to be thread-safe (except for the destructor) and it is guaranteed
to use global operator new and delete to obtain and release the memory,
but it does not define how and when are the operators called.

There were four main problems [66] with C++ allocators in previous stan-
dards:

47

4. C++ STL memory allocators

1. Before C++11 custom allocators had to be stateless. An allocator had
to always be equal to any other instance of the same allocator class.

2. The allocator is a part of the STL container type. This can lead to two
problems—containers with same types but different allocators can’t be
interchanged easily, and functions and classes have to be templated, if
we want them to take containers with any allocator. It is also prob-
lem when using interfaces from separately compiled object files. The
std::pmr::polymorphic_allocator was introduced to solve this prob-
lem.

3. If we have nested containers, we might want to pass an allocator to
inner containers. Doing this by hand is error-prone, so in C++11 the
std::scoped_allocator_adaptor [63, allocator.adaptor] was introduced
to automatically pass allocators to nested containers. The
std::pmr::polymorphic_allocator [60, mem.poly.allocator.class] in-
troduced in C++17 is also passed to nested containers.

4. It was assumed that pointer type was always T*. Alternate addressing
models were supported in C++11 through the std::pointer_traits [63,
pointer.traits] structure.

All of these problems were addressed in 2005 by Pablo Halpern in his
“Towards a Better Allocator Model” [62] C++ standardization paper. There
were many C++ standardization papers published [67, 68] trying to improve
the flawed allocator model.

There are many reasons one could have to replace the default allocator—
higher performance (memory pooling, thread-local heaps, allocating from the
stack), debugging of memory allocation errors, or using some special memory,
e.g., shared memory, VRAM [69]. Using the default allocator also makes it
harder to reason about memory usage, fragmentation, and general behavior
of the allocator, unless we know the underlying userland allocator.

4.1 Polymorphic memory resources
The std::pmr namespace was introduced in C++17 [60, mem.res] to counter
many of the previously mentioned problems. The pmr stands for polymorphic
memory resource. Polymorphic memory resources were researched and imple-
mented by Bloomberg in their open-source BSL library [70] over a decade ago,
and the final proposal was written by Pablo Halpern [71].

The std::pmr namespace introduces many members, including:

memory_resource
An abstract interface for obtaining and releasing memory.

48

4.2. Popular implementations

polymorphic_allocator
An allocator that uses underlying memory_resource for obtaining and
releasing memory. This is the way we can have one allocator type using
different memory resources through runtime polymorphism.

list, vector, map, ...
Type aliases for all of the standard STL containers (except std::array),
but with the std::pmr::polymorphic_allocator as the allocator.

synchronized_pool_resource
Memory resource that requests memory from the userland allocator in
chunks, and does the bookkeeping by itself. It owns the memory, so the
memory is released when this resource is destroyed, even if deallocate
wasn’t called for some regions. It is thread-safe.

unsynchronized_pool_resource
Variant of synchronized_pool_resource that is not thread-safe.

monotonic_buffer_resource
Memory resource that releases memory only when the resource is de-
stroyed, with deallocate being a no-op. Initial buffer can be provided
to the resource, so it might use, for example, faster stack memory. If
the buffer size is not sufficient, the default allocator is used. It is not
thread-safe.

There were attempts [72, 73] in past to standardize other allocators with
specific allocation schemes, but so far only the pooling and monotonic buffer
got into standard.

4.2 Popular implementations
4.2.1 Bloomberg BDE
Bloomberg is the company behind many changes to the allocator model in the
C++ standard. They implemented the polymorphic allocators in their BSL
library [70] more than 12 years before they were standardized in C++17. Lakos
et al. from Bloomberg released a paper [74] about allocator design including
benchmarks. More detailed benchmarks were done by Graham Bleaney [75].

The basic interface and helper functionality is in the bslma package, and
allocator implementations are in the bdlma package. Many of these allocators
use memory pools described in chapter 6. Interesting components are:

bsls::BlockGrowth::Strategy
In many allocators and pools, the growth strategy can be specified.
There are two options: geometric and constant. As the name suggests,

49

4. C++ STL memory allocators

with geometric strategy, the newly allocated memory size grows geomet-
rically, while with constant strategy the new allocated memory size is
always the same.

bdlma::MemoryBlockDescriptor
A value-semantic class that describes a block of memory.

bdlma::ManagedAllocator
A protocol for allocator that supports the release capability, i.e., being
able to release all memory allocated by this allocator.

bslma::NewDeleteAllocator
Simple allocator that uses direct calls to global operators new and delete
to obtain and release memory.

bslma::MallocFreeAllocator
Simple allocator that uses direct calls to std::malloc and std::free
functions to obtain and release memory.

bdlma::AlignedAllocator
Interface for memory allocators that support alignment.

bdlma::AligningAllocator
Wrapper for other allocators that makes sure that allocation have at
least the minimum specified alignment.

bdlma::SequentialAllocator
An allocator that uses bdlma::SequentialPool to manage the memory.

bdlma::BufferedSequentialAllocator
An allocator that uses bdlma::BufferedSequentialPool to manage the
memory.

bdlma::LocalSequentialAllocator
Similar to bdlma::BufferedSequentialAllocator, but instead of the
buffer being supplied by the user, it is allocated by the allocator on stack
with compile-time specified size.

bdlma::ConcurrentAllocatorAdapter
Simple adapter for allocators that are not thread-safe. It takes an un-
derlying allocator and a mutex as parameters, and locks the allocation
and deallocation operations. This is very simple synchronization not
suitable for high performance applications.

bdlma::ConcurrentPoolAllocator
Thread-safe allocator that uses bdlma::ConcurrentPool as the underly-
ing memory manager. All requests smaller than the pool’s block size are
handled through this pool, and all other requests are satisfied through

50

4.2. Popular implementations

external allocator, which can be either specified on constructor, or the
default allocator is used.

bdlma::ConcurrentMultipoolAllocator
Thread-safe allocator that uses bdlma::ConcurrentMultipool as the
underlying memory manager.

bdlma::MultipoolAllocator
Variant of bdlma::ConcurrentMultipoolAllocator that is not thread-
safe.

bslma::TestAllocator
Thread-safe allocator adapter that takes a thread-safe allocator as a
parameter on construction (or uses the bslma::MallocFreeAllocator
by default) and accumulates statistics about allocations. The allocator
can be set to throw an exception after the total number of allocations
goes over the specified threshold. The information this allocator stores
include:

• The number of bytes that were allocated by this allocator and are
currently in use.

• The total number of bytes that were allocated by this allocator.
• Last allocated and deallocated address.
• The size of last deallocation request.
• The total number of allocation requests.
• The total number of mismatched deallocations, i.e., requests to

deallocate memory that was not allocated from this allocator.
• The number of times that pad areas around an allocated block of

memory were accessed (only increased on deallocation of such mem-
ory block). This measures the number of possible out-of-bounds
errors.

bdlma::CountingAllocator
Simplified version of bslma::TestAllocator that only stores stores the
number of bytes that are currently in use that were allocated by this
allocator, and the total number of bytes that were allocated by this
allocator. Unlike bslma::TestAllocator, the underlying allocator does
not have to be thread-safe. If the underlying allocator is thread-safe, this
allocator is also thread-safe.

bdlma::GuardingAllocator
Thread-safe allocator that can be used to debug memory overflow and
underflow. It allocates a read and write protected guard page before (or
after) the returned allocated block. It is not suitable for production use,

51

4. C++ STL memory allocators

since it has huge memory overhead, and is not that robust. If we are
looking for secure allocator, there are better alternatives, e.g., Partition-
Alloc27, which is used in the Chromium and Google Chrome browsers,
or the default malloc(3) implementation used in OpenBSD [76].

bdlma::HeapBypassAllocator
This allocator, as name suggests, bypasses heap memory and allocates
directly from virtual memory (e.g., using mmap on Linux or VirtualAlloc
on Windows).

4.2.2 Boost
Most of the STL allocators Boost provides are just wrappers around Boost
implementations of memory pools, which are described in chapter 6.

Boost.Interprocess

Boost.Interprocess28 library simplifies communication among multiple processes—
it provides tools for working with shared memory and memory mapped files,
interprocess synchronization primitives, and others.

The boost::interprocess namespace contains allocators and related classes,
including:

allocator
A general purpose allocator that is a wrapper around a segment man-
ager. Segment manager is responsible for managing shared memory
mapped region or a memory mapped file. This allocator is thread-safe
if the underlying segment manager is thread-safe.

basic_string, vector, map, ...
Type aliases for Boost’s implementations of STL containers that are
compatible with the boost::interprocess::allocator.

slist, flat_set, flat_map, stable_vector, ...
Type aliases for Boost containers that are compatible with the
boost::interprocess::allocator.

node_allocator
Pooling allocator that uses a segment manager. It pools objects of type
T, and all node_allocator instances with same sizeof(T) share the
memory pool. The pool has a reference counter, and it is destroyed when
the last node_allocator using this pool is destroyed. This allocator is
thread-safe if the underlying segment manager is thread-safe.

27https://chromium.googlesource.com/chromium/src/+/master/base/allocator/
partition_allocator/PartitionAlloc.md

28https://theboostcpplibraries.com/boost.interprocess-managed-shared-memory

52

https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://theboostcpplibraries.com/boost.interprocess-managed-shared-memory

4.2. Popular implementations

private_node_allocator
Similar to node_allocator, but the pool is not shared among multiple
instances. It is not thread-safe.

cached_node_allocator
This allocator offers a compromise between node_allocator and
private_node_allocator. It allocates from shared pool like
node_allocator, but keeps some objects in a private cache that does
not need synchronization. It is not thread-safe.

adaptive_pool
When using node pool allocators, the memory is never returned to the
segment manager—it is only reused by the allocator. The
adaptive_allocator was introduced to solve this problem. The maxi-
mum number of free chunks pool can hold can be set, and if the number
of free chunks goes over this threshold, the memory is returned to the
segment manager. Adaptive pool allocators have slightly higher memory
and performance overhead than node allocators. The memory overhead
is used to store metadata. Adaptive pool allocators allocate aligned
chunks, so the metadata can be easily accessed using simple binary mask.
Otherwise the behavior is similar to node_allocator. This allocator is
thread-safe if the underlying segment manager is thread-safe.

private_adaptive_pool
Similar to adaptive_pool, only this allocator owns its pool and does
not share it. It is not thread-safe.

cached_adaptive_pool
Analogous to cached_node_allocator, this is shared adaptive pool al-
locator that caches memory chunks locally. It is not thread-safe.

Boost.Pool

The Boost.Pool library offers two STL allocators—boost::pool_allocator
and boost::fast_pool_allocator. Both of these are based on Boost mem-
ory pools that are described in chapter 6.

boost::pool_allocator is based on boost::singleton_pool. This means
that all allocators with same sizeof(T) share the same pool. This might in-
cur performance degradation in parallel environments due to synchronization,
because the singleton pool is naively synchronized using a mutex.

boost::fast_pool_allocator is almost the same as boost::pool_allocator,
but it is optimized for single objects of T, even though it can also allocate mul-
tiples. boost::fast_pool_allocator should be used if we expect to allocate
mainly single objects, not multiple contiguous objects.

53

4. C++ STL memory allocators

4.2.3 Intel® Threading Building Blocks
Intel® Threading Building Blocks [49] contains two STL allocators:
tbb::scalable_allocator and tbb::cache_aligned_allocator.

tbb::scalable_allocator

As the name suggests, this allocator is supposed to behave better than the
default allocator under parallel workloads. It is only a wrapper around tbb-
malloc, which is described in chapter 3.

tbb::cache_aligned_allocator

In some cases, false sharing can cause vast performance degradation,
tbb::cache_aligned_allocator tries to avoid this problem. Two objects
allocated by this allocator are guaranteed not to be on the same cache line,
but this guarantee does not hold if one object is allocated by
tbb::cache_aligned_allocator, and the other by some different allocator.
This allocator pads allocation with additional memory to avoid false sharing,
so there is a memory overhead to every allocation, and it can be significant for
small allocations. Therefore this allocator should only be used if we know the
false sharing is a big problem for our use case. tbb::cache_aligned_allocator
can also uses tbbmalloc to obtain and release memory by default, but it can
use default malloc and free if tbbmalloc is not available.

4.2.4 EASTL
Electronic Arts Standard Template Library (EASTL) [77, 78] is a C++ library
created and maintained by Electronic Arts Inc. As the name suggests, it is
complementary to C++ STL, containing mostly containers, algorithms, and
iterators. EASTL allocators are actually not standard-compliant, so they
can’t be used interchangeably with STL containers. Unlike standard C++
allocators, EASTL allocators are not bound to any type, and are able to
allocate any amount of memory, while standard allocators can only allocate
multiples of sizeof(T).

EASTL does not contain any advanced allocator implementations, the
only implementation included is a simple wrapper around malloc, free, and
memalign.

4.2.5 stack_alloc

Howard Hinnant’s stack_alloc29 is a simple allocator that generalizes the
small size optimization described in chapter 5. It allocates stack memory

29https://howardhinnant.github.io/stack_alloc.html

54

https://howardhinnant.github.io/stack_alloc.html

4.2. Popular implementations

which size is configured at compile time, and only allocates from heap when
the requested size is larger than the remaining stack memory.

4.2.6 TP and Medius
TP (short for Two Partitions) and Medius by Jula and Rauchwerger [79]
are two STL allocators that try to improve spatial and temporal locality of
reference by using hints. These allocators show promising results in the paper,
but an implementation is not provided.

55

Chapter 5
Small Size Optimization

Small Size Optimization (SSO, sometimes called Small Buffer Optimization)
is an optimization technique that has been gaining popularity in the past few
years. The basic idea is that we pre-allocate a small amount of stack mem-
ory in advance, and we resort to dynamic memory allocation from the heap
only if the stack memory is not sufficiently large. Since allocating memory on
the stack is usually just a matter of increasing the stack pointer, it is faster,
and the memory is usually hot in cache, leading to better performance due
to better locality of reference. This optimization can be, in some cases, made
more efficient by instead of allocating separate SSO stack buffer, overlaying
existing members of the data structure that are related to the dynamically al-
located memory with the stack buffer—a good example of this is std::string
described in the next section.

5.1 std::string

One of the best examples of SSO are various std::string implementations.
Facebook found out that <string> is the most included file in their codebase
and string functions account for 18 % of all CPU time spend in standard
functions [80]. Using their own string implementation with SSO saved them
1 % of CPU time across the whole codebase.

A simplified string implementation is shown in Listing 5.4. The actual
string data are allocated on heap, since we need variable run-time size support.
Assuming a 8 B pointers and 8 B std::size_t, this structure by itself takes
at least 24 B. If we were to store the string itself inside this memory, we could
theoretically store up to 23 characters. Simpler implementation of explicit
SSO is shown in Listing 5.5. This version has simpler implementation, but
it carries SSO_SIZE bytes of overhead for every string, and that memory is
unused if the string is longer than SSO_SIZE.

57

5. Small Size Optimization

class string
{

char* data;
size_t size;
size_t capacity;

}

Listing 5.4: Traditional string memory layout.

class string
{

char* data;
size_t size;
size_t capacity;
char buffer[SSO_SIZE];

}

Listing 5.5: Memory layout of string with explicit SSO.

libstdc++ and libc++

libstdc++ is the implementation of C++ standard library that is shipped with
the GCC compiler, and libc++ is the implementation of C++ standard library
shipped with LLVM/Clang. The std::string implementation in both takes
advantage of SSO, but they use a different approach. The following text is
true for GCC version 8.2 and Clang version 7.0.0.

libstdc++’s std::string takes up 32 B, but can only store strings of
length up to 15 with SSO. This is because this implementation actually con-
tains explicit SSO buffer, that overlaps with the capacity member, but not
the data member. If SSO is used, data then points to the local buffer. This
means that the check for SSO is not needed on every operation, leading to
less conditional branches.

libc++’s std::string takes up 24 B, and can store strings with length
up to 22 with SSO. This is due to libc++ overlaying all the members of
the structure with the SSO buffer. This means that the check for SSO has
to be done on every access of string data, which may lead to performance
degradation due to more conditional branching.

5.2 Vector implementations with SSO

The std::vector can not use SSO because of std::swap and invalidation of
iterators [60, container.requirements.general]. Since SSO can bring significant

58

5.3. Other data type and data structure implementations

performance improvement, many non standard-compliant vector implementa-
tions with SSO exist.

Boost’s implementation of SSO vector, boost::container::small_vector30,
is very simple—it takes the size of SSO buffer as a template parameter, and
does not overlay any internal members with SSO data. It simply uses the
SSO buffer until the user requests more items than it can contain, and then
allocates from dynamic memory. When memory is allocated dynamically, the
static buffer is unused, so that vector items can be laid in memory continu-
ously. small_vector can be converted to small_vector_base, which does
not depend on size of the SSO buffer, thus it can be used to avoid templating
of client code that uses small vector.

Folly’s folly::small_vector31 works the same way as small_vector
from Boost, but it has more features—by template parameters we can disable
the usage of heap all together, and the size_type can be also set as a template
parameter. folly::small_vector unlike boost::container::small_vector
does not have a size-independent base class, making it little less user friendly.
There is a boost::container::small_vector_base class, but it serves a dif-
ferent purpose.

LLVM internally heavily uses llvm::SmallVector, but it is not easily
usable externally as a library, and brings no advantages compared to Folly
and Boost implementations.

EASTL provides the eastl::fixed_vector as the SSO vector. It is simi-
lar to the folly::small_vector, the usage of heap can be disabled altogether.

There is a proposal [81] to introduce SSO vector to C++ standard library.

5.3 Other data type and data structure
implementations

The small size optimization can be used for almost any data type and data
structure. SmallFun32 is a SSO version of std::function that stores captured
variables on the stack. EASTL provides SSO hash table, map, set, list, and
others.

Our analysis has shown that we will only benefit from SSO on vectors, so
no further analysis of other data structures was done.

5.4 _malloca and _freea

Visual Studio tries a lower-level approach and provides two functions—_malloca
and _freea. As the name suggests, these two functions are analogous to user-

30https://www.boost.org/doc/libs/1_69_0/doc/html/boost/container/small_
vector.html

31https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
32https://github.com/LoopPerfect/smallfunction

59

https://www.boost.org/doc/libs/1_69_0/doc/html/boost/container/small_vector.html
https://www.boost.org/doc/libs/1_69_0/doc/html/boost/container/small_vector.html
https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
https://github.com/LoopPerfect/smallfunction

5. Small Size Optimization

land memory allocation functions malloc and free. The requests smaller
than _ALLOCA_S_THRESHOLD bytes are served from stack, only larger requests
allocate dynamic memory from the heap.

60

Chapter 6
Memory pooling

Even if our userland memory allocator implementation is fast, we can still in
some cases improve performance by memory pooling. Memory pool requests
big regions of memory from the userland allocator, and does the bookkeeping
of assigning chunks to the application. Freed memory is not returned to
the userland allocator but instead in can be reused, leading to performance
gain. Using a memory pool can also reduce fragmentation. Some applications
can gain performance by not freeing allocated objects from pool at all, and
only free the whole pool when it is no longer needed. This is only suitable for
short-lived pools because it can lead to higher memory consumption. Memory
pooling can be especially effective if we’re only allocating chunks of one size.

6.1 Boost.Pool
Boost.Pool library provides multiple memory pool implementations. All of
these pools are implemented on top of a memory management algorithm called
simple segregated storage.

6.1.1 Simple segregated storage
Simple segregated storage is represented by the the simple_segregated_storage
class in the boost namespace. Simple segregated storage is responsible for
partitioning provided memory region into fixed-size chunks. The simple seg-
regated storage does not provide any alignment guarantees, so the user should
keep that in mind if alignment is needed. It keeps a free list of memory
chunks. The free list can be in two states—ordered or unordered. The free
list is ordered if repeated allocation from the simple segregated storage yields
a increasing sequence of pointer values. Corresponding to this are two ver-
sions of the deallocation functions—ordered_free and ordered_free_n keep
the list in order, for the price of O(n) complexity, while free and free_n are
O(1), but they may break the ordering. In case of Boost.Pool, the user does

61

6. Memory pooling

not have to work with simple segregated storage directly, but it is used by the
pools internally.

boost::pool

boost::pool is a general implementation of a memory pool on top of
boost::simple_segregated_storage. All chunks that were allocated from a
pool are freed when the pool is destroyed. As with simple segregated storage,
pools can also be considered ordered and unordered, depending on if the pool’s
free lists are ordered or not. Ordered pools are better for allocating multiple
contiguous objects, but the deallocation isO(n). Unordered pools are very fast
for single object allocation, but allocating contiguous arrays of objects might
be slow and inefficient, since the pool might have enough contiguous memory
available, but it does not know about it because the contiguous chunks are
not coalesced. Memory chunks returned by boost::pool are guaranteed to
be properly aligned. User can supply custom allocator that is used to request
and release the blocks of memory that are passed to the simple segregated
storage.

The chunk size that will be returned by malloc and ordered_malloc is
set in the constructor, and can not be changed during the lifetime of the
pool. The size of the first block and the maximum size of the block allocated
by the simple segregated storage can be also set via constructor parameters.
Ordered malloc first tries to allocate from the simple segregated storage, but
if it is empty, it allocates new block and coalesces free lists to put the chunks
in order. The ordered allocation is still amortized O(1). Ordered malloc
has also overload with size parameter n, which allocates n × chunk size of
contiguous memory. If we’re allocating memory for C++ objects, and we want
to properly initialize them, the placement new semantics have to be used.

boost::object_pool

boost::object_pool is a simple pool that can be used for fast allocation
and deallocation of objects. It is very similar to boost::pool, but instead
of taking the size of the chunk as the constructor parameter, is is templated
with type T, and the chunk size is sizeof(T).

Since the pool knows the type of the object it is allocating, it provides func-
tion construct that can be used to allocate and properly initialize the object
via its constructor without using the malloc and placement new combination.
There is also a destroy function that properly destroys the object—calls the
destructor, and frees the memory in the simple segregated storage.

boost::singleton_pool

boost::singleton_pool is a pool that can be shared for types with the same
size. Template tag parameter is used to differentiate between different sin-

62

6.2. Bloomberg

gleton pools. The singleton pool takes the size of the chunks as a template
parameter, and a mutex type that is used to synchronize accesses to the un-
derlying pool. If the pool is not to be used in concurrent environment, Boost
provides boost::details::pool::null_mutex, where the locking is a no-
op. The size of the first block and the maximum size of the block allocated
that is passed to simple segregated storage can be set via template parame-
ters. boost::singleton_pool uses boost::pool as the underlying pool. By
default, the underlying memory pool is never freed. The purge_memory func-
tion can be used to release all memory blocks from the underlying pool, and
release_memory can be used to release memory blocks that do not have any
chunks allocated from them.

6.2 Bloomberg
Bloomberg’s BDE library [70] includes many implementations of memory
pools. All of them except the bdlma::ConcurrentFixedPool have a cor-
responding STL allocator that uses the pool as the primary memory resource.
These allocators are described in chapter 4. The memory pools provided in
BDE are:

bdlma::SequentialPool
Fast sequential pool that stores memory blocks in internal dynamically-
allocated buffers. It can satisfy requests of varying sizes. This pool is
best for single-threaded use when the user does not know the approxi-
mate size of memory they will need.

bdlma::BufferedSequentialPool
Allocator that allocates sequentially from user-supplied buffer, and when
the memory in user-supplied buffer is insufficient, additional buffers are
allocated. The user can specify growth rate of the additional dynam-
ically allocated buffers. For best performance, the user know should
know approximately how much memory will be needed and the supplied
buffer should be memory from the stack. When additional buffers are
allocated, the performance decreases significantly.

bdlma::ConcurrentPool
Thread-safe pool that manages memory blocks of fixed size specified
on construction. Growth strategy of newly allocated memory blocks
can be also adjusted on construction. If it is not specified, geometric
growth is used. This pool overrides global placement operator new and
delete to make allocating from these pools simple using the placement
new semantics. Deallocation is lock-free, while allocation can lock when
replenishing the memory block pool.

63

6. Memory pooling

bdlma::Pool
Variant of bdlma::ConcurrentPool that is not thread-safe.

bdlma::ConcurrentFixedPool
Similar to bdlma::ConcurrentPool with the difference being that this
pool has fixed limit of how many memory blocks it can contain. This
change makes lock-free allocation possible.

bdlma::ConcurrentMultipool
Thread-safe memory manager that maintains multiple
bdlma::ConcurrentPool objects. First pool is for memory blocks of size
8 B, and successive pools are always two times the size of the previous
one (i.e., 8 B, 16 B, 32 B, and so on). Allocation requests are rounded
up to the closest larger or equal pool size. Maximum number of pools
can be set on creation.

bdlma::Multipool
Variant of bdlma::ConcurrentMultipool that is not thread-safe.

6.3 nginx

The nginx HTTP server comes with a simple high-performance pool imple-
mentation in C. Even though the pool is not released as a separate library, it
is easy to use in other projects due to having no external dependencies and
the internal dependencies are only architecture-specific configuration options.
The nginx pool has very specific behavior and features—small objects can not
be returned to the pool, they are only freed when the whole pool is destruc-
ted, and objects of variable size can be allocated from the pool. This makes
the nginx pool suitable for short-lived local allocations, which is a common
use-case in servers. The nginx pool is not thread-safe.

The nginx pool is represented by the ngx_pool_s structure. The pool is
created using the ngx_create_pool function (refer to Listing 6.6 for full API),
and it is destroyed by the ngx_destroy_pool function call. The pool can be re-
set using the ngx_reset_pool, if the user wants to reuse the pool. ngx_palloc
is used to allocate aligned memory from the pool, and even though there is
a ngx_pfree function, it can only be used to free large objects, since small
objects can not be freed from nginx pool, as mentioned earlier. ngx_pnalloc
can be used to allocate from the pool if we do not need aligned memory. When
the pool needs to allocate more memory, it allocates a fixed size region, not
using geometrical growth that can be used in Bloomberg and Boost pools.

64

6.4. foonathan/memory

ngx_pool_t* ngx_create_pool(size_t size, ngx_log_t* log)

void ngx_destroy_pool(ngx_pool_t* pool)

void ngx_reset_pool(ngx_pool_t* pool)

void* ngx_palloc(ngx_pool_t* pool, size_t size)

void* ngx_pnalloc(ngx_pool_t* pool, size_t size)

ngx_int_t ngx_pfree(ngx_pool_t* pool, void* p)

Listing 6.6: The nginx pooling API.

6.4 foonathan/memory
The memory library by Jonathan Müller contains multiple C++11 compatible
allocators and pools. The is only a one pool class, memory_pool from the
namespace foonathan::memory, but it can be divided into three time using
a template tag:

node_pool
Pool optimized for nodes. In this library, a node is a memory region
sufficient to hold one single object. It keeps nodes in a free list.

array_pool
Pool optimized for arrays of nodes. It keeps the internal free lists or-
dered, trading better memory usage for performance.

small_node_pool
The free list for node_pool is a regular linked list that stores the pointer
to next element embedded inside the node’s memory. This means that
every object in node_pool has to be at least as big as a pointer. For
small objects that can be a big overhead, so small_node_pool solves
that by only storing 8 bit index, with a little bit more bookkeeping (thus
being slower).

The foonathan::memory::memory_pool can only allocate objects of one
size, or their multiples in case of array_pool. If we want to support more
sizes, there is a foonathan::memory::memory_pool_collection that stores
multiple pools of different sizes, and picks the appropriate one. It can either
store a separate pool for every size, or it can store pools with node sizes that
are powers of two. The maximum node size is set on construction.

65

Chapter 7
Concurrent hash tables

Hash table is a data structure that maps keys to values, and it is a basic build-
ing block of many high-performance parallel systems. Even though LSU3shell
uses many data structures, the only one that has significant performance im-
pact is a concurrent hash table, as seen in the analysis in chapter 2. Hash
table is usually backed by an array and a hash function is used to derive the
index in the array from the key. The elements of the array are called buckets,
and the key/value pair is called a record.

7.1 Hash function

One of the most important factors of hash table performance is the selected
hash function. The most important property of a good hash function is a
uniform distribution of values across buckets. If the hash function is not good,
it leads to collisions, and the performance of the whole hash table degrades.

Popular hash functions

SMHasher [82] is a complex benchmark that tests the uniformity of distribu-
tion, collisions, and performance of hash functions. The original SMHasher
tested ten hash functions, and a fork [83] by Reini Urban added more than 30
additional hash functions. The hash function implementations we tested were
picked based on this benchmark.

boost::hash_combine from the Boost.ContainerHash library was origi-
nally used in LSU3shell as the main hash function. boost::hash_combine
can be called multiple times using the result of previous call as the seed to in-
crementally build the final hash. The boost::hash_combine implementation
is simple, consisting of one XOR, two bit shifts, and three additions.

67

7. Concurrent hash tables

7.2 Collision resolution
A collision occurs when the hash function calculates the same index for two
different keys. The keys have to be also stored in the table for resolving colli-
sions. There are many ways how to handle collisions—the two most popular
are chaining and open addressing. Chaining hash tables store linked lists in
buckets, and the records are chained in the linked list. Open addressing hash
tables embed the records inside buckets, and if collision occurs, another bucket
is selected.

The process of selecting buckets is called probing, and there are many
probing algorithms [84, p. 272], e.g., linear probing, quadratic probing, double
hashing, cuckoo hashing [85], hopscotch hashing [86], and others. The authors
of hopscotch hashing claim it is well suited for concurrent hash tables. There
has been a lot of research done [14, 87, 88, 89] on concurrent cuckoo hashing,
and the results seem promising.

The load factor is a ratio between the number of used buckets and the
number of empty buckets. When load factor gets high, hash tables tend to
degrade in performance, since higher load factor means more collisions. Load
factor is usually used to decide when it is time to resize the hash table.

7.3 Popular implementations
7.3.1 Threading Building Blocks
tbb::concurrent_hash_map

A resizable hash table that supports concurrent traversal, search, insertion,
and erasure [51, p. 91]. It uses chaining to resolve collisions.

Access to elements is done through accesors. Accessor acts as a smart
pointer to the record in the hash table. It holds a lock on the record when it
is created, and the record in unlocked when the accessor is destroyed, or when
the release method is called.

tbb::concurrent_unordered_map

A resizable hash table that is more restricted than tbb::concurrent_hash_map—
it supports concurrent insertion, search, and traversal, but not erasure. This
map might use locking internally, but the locking is never visible to the user.

tbb::concurrent_unordered_map uses a simplified split-ordered list [90]
as the underlying data structure. Split-ordered list is a concurrent lock-free un-
ordered associate container. Even though tbb::concurrent_unordered_map
does not support concurrent erasure, in the original paper the split-ordered
list supported it. Rehashing is significantly faster [91] compared to
tbb::concurrent_hash_map. It supports operator[], making it more user-
friendly.

68

7.3. Popular implementations

7.3.2 Folly
folly::AtomicHashMap

folly::AtomicHashArray is a fixed-size lock-free open addressing hash table.
It is the basic building block of folly::AtomicHashMap.

folly::AtomicHashMap [92] is a resizable concurrent unordered hash ta-
ble built on top of folly::AtomicHashArray. As the name suggests, it re-
lies heavily on fast atomic operations for synchronization. It claims to have
good memory fragmentation properties and to be 2 to 4 times faster than
tbb::concurrent_hash_map in highly concurrent environments. To achieve
this speed, it has a number of limitations:

• Keys must be a 32 bit or a 64 bit integers. The keys have to be swapped
using the CAS atomic operation, and most modern architectures only
support 32 bit an 64 bit lock-free atomic CAS operations.

• It can only grow to approximately 18 times the initial capacity, selecting
initial capacity is thus very important. Picking initial capacity that is
too small might lead to the table not having enough space, and picking
initial capacity that is too large might lead to wasteful memory usage.

• There need to be at least three reserved key values—indication of empty,
locked, and erased key.

• Memory left by erased records can not be freed or reused.

The probing method can be customized via a template parameter. Folly
includes two basic methods—linear probing and quadratic probing. The per-
formance/memory usage trade-off can be tuned by setting maximum load
factor in the constructor. When writing a record, the key is locked using CAS
atomic operation while the value is written. The find function is wait-free.

This table does not support rehashing [93]—when it reaches its maximum
load factor, it grows by allocating additional hash tables, leading to perfor-
mance degradation when the table grows over the initial capacity. If multiple
additional hash tables are allocated, they are searched one by one.

folly::AtomicUnorderedInsertMap

folly::AtomicUnorderedInsertMap is a fixed-size chaining hash table that
supports lock-free access. Contrary to folly::AtomicHashMap, the keys can
be arbitrary values. Reading from the table is wait-free, and inserting is lock-
free. It has some limitations:

• It is insert-only hash table. Updating can be implemented by the user,
but the hash table itself does not support it.

69

7. Concurrent hash tables

• It can not grow, once the hash table is full, the user will no longer be
able to insert records.

• The default maximum capacity is 230 records, since the table uses 32 bit
indexes internally, and 2 of those bits are used for a flag containing the
bucket’s state. The type of the index can be changed via a template
parameter.

7.3.3 Junction
Junction [94] is a library by Jeff Preshing consisting of four concurrent hash
tables, three of which are suitable for high-performance environment. In Junc-
tion tables, the hash is stored instead of the key, so the hash function has to
be invertible for resolving collisions. This differentiates these hash tables from
all others I researched. The key has to be an integer or a pointer type.

Quiescent state-based memory reclamation

All Junction tables rely on quiescent state-based memory reclamation (QSBR) [95].
QSBR requires more involvement from the user than other techniques. Each
participating thread has to periodically call junction::DefaultQSBR.update
at a moment when it is in a quiescent state, i.e., not working with the table.

junction::ConcurrentMap_Linear

junction::ConcurrentMap_Linear is a resizable lock-free open addressing
hash table based on Cliff Click’s lock-free hash table [96] implemented in Java,
which was one the first working lock-free hash tables. It uses linear probing
to resolve collisions.

junction::ConcurrentMap_Leapfrog

A hash table similar to junction::ConcurrentMap_Linear, but it uses prob-
ing strategy loosely based on hopscotch hashing [97], which should improve
efficiency when the load factor is high. It should also scale better.

junction::ConcurrentMap_Grampa

A hash table similar to junction::ConcurrentMap_Leapfrog, except it is
gets split into multiple fixed-size junction::ConcurrentMap_Leapfrog tables
when the load factor gets too high.

7.3.4 cuckoohash_map

cuckoohash_map [89] is a concurrent hash map that uses cuckoo hashing. This
hash table has limited growth to a multiple of its original capacity. It uses fine-

70

7.3. Popular implementations

grained locking for synchronization. The paper also describes implementation
that uses transactional memory, but this version is not yet available in this
library. This map is included in the libcuckoo [98] header-only library.

71

Chapter 8
LSU3shell improvements

Almost all of the code that was tested is in a GitLab33 repository in separate
branches. When referring to branches and commits, it will be referring to this
repository.

8.1 Userland allocators
When I first joined the project, the team already was not using the GNU C
Library, but they were using tbbmalloc.

Most of the less popular userland memory allocators have been prone to
being unstable in our tests. Hoard, TLSF, MCMalloc, scalloc, and Stream-
Flow all cause segmentation faults almost instantly. rpmalloc is able to run
for a longer period of time, but ends up causing a segmentation fault most of
the time also. A request for memory from bmalloc causes deadlock immedi-
ately. Both SFMalloc and SSMalloc run out of memory almost immediately
and get killed by the OOM killer. The only stable ones for us were: glibc,
jemalloc, litemalloc, LLAlloc, SuperMalloc, tbbmalloc, and tcmalloc. Results
of a performance analysis of these userland allocators is shown on Figures 8.1,
8.2, 8.3, and 8.4.

Even though jemalloc is possible the most popular custom userland allo-
cator right now, it the performance was really bad in our use-cases. Profiling
has shown that the CPU is not properly utilized when using jemalloc, and a
large amount of time is spent waiting on locks. This might be a problem with
a specific CPU architecture, since we have not seen such abnormalities when
measuring on the STAR cluster. When looking at voluntary context switches
on dataset A, glibc makes 6,278,795,339 voluntary context switches, jemalloc
makes 3,963,653,772 voluntary context switches, while all the other allocators
make less than 40,000 voluntary context switches. This might explain the
performance characteristic.

33https://gitlab.fit.cvut.cz/kocicma3/lsu3shell

73

8. LSU3shell improvements

LLAlloc has great performance characteristics, in some cases beating even
tcmalloc, but it has almost quadruple the memory usage compared to other
allocators. The memory usage does seem bounded though, so if the memory
usage is not a problem, it might be an allocator worth considering.

Otherwise the measurements do not contain anything surprising—tcmalloc
is the clear winner for our use-cases, and the three remaining userland alloca-
tors have similar performance characteristics.

0

10

20

30

40

50

60

0

10000

20000

30000

40000

50000

60000

glibc jemalloc litemalloc llalloc supermalloc tbbmalloc tcmalloc

Elapsed me in seconds Maximum resident set size in GiB

Figure 8.1: Comparison of time and memory utilization of different userland
allocators on dataset A.

8.2 Memory pooling
From the analysis I picked two spots where pooling made most sense—they are
in the hot path, and they allocate fixed-size memory blocks. When allocating
arrays, the performance of memory pooling degrades significantly.

First is pooling SU3xSU2::RME instances in the CRMECalculator class
(commit 99767b57). Analysis has shown us that these allocations are never
moved among threads, so each thread gets its own thread-local pool for these
instances. Any attempt to use shared pools brought huge performance degra-
dation, since these are contentious parts of the code, and even simplest lock-
free synchronization can cause performance degradation.

Second was pooling instances of CRMECalculator (commit d18200c7) itself
that are allocated in the CTensorStructure::GetRMECalculator and deal-
located in classes CTensorGroup_ada and CTensorGroup. Same as with the
SU3xSU2::RME instances, we observed that pair allocations and deallocations

74

8.3. Small size optimization

0

10

20

30

40

50

60

0

10000

20000

30000

40000

50000

60000

glibc jemalloc litemalloc llalloc supermalloc tbbmalloc tcmalloc

Elapsed time in seconds Maximum resident set size in GiB

Figure 8.2: Comparison of time and memory utilization of different userland
allocators on dataset B.

are always both requested from the same thread, so I used thread_local pool
for these instances.

I did many more experiments with pooling, e.g., branches m_rme_pooling
and fixed_m_rme_pooling, but nothing else lead to significant performance
gain.

Applying pooling in these two places led to reduction in memory allocation
function calls by 13 %.

8.3 Small size optimization

CTensorStructure::GetRMECalculator is one of the most used functions in
LSU3shell, and five small vectors are heavily used inside. Four of these vec-
tors are as big as the number of shells occupied either in bra or ket state.
Our measurements shown that this number is always under 16, and most of
the time under 12, so these vectors seem as a great candidate for SSO. I
used boost::container::small_vector with stack buffer size of 16. Even if
there was more than 16 elements, the vector just switches to using heap mem-
ory. Experimenting with the stack buffer size might give us some interesting
insights.

The results are shown in ?? and ??. We see a significant reduction in run
time, in some cases over 40 %. Maximum RSS slightly grew, but not enough
to offset the performance benefits.

75

8. LSU3shell improvements

0

10

20

30

40

50

60

0

10000

20000

30000

40000

50000

60000

glibc jemalloc litemalloc llalloc supermalloc tbbmalloc tcmalloc

Elapsed time in seconds Maximum resident set size in GiB

Figure 8.3: Comparison of time and memory utilization of different userland
allocators on dataset C.

8.4 C++ STL memory allocators
Experimenting with both userland allocators and memory pooling had shown
us, that any synchronization needed on memory allocation will lead to con-
siderable performance degradation. There are two reasons why I decided not
to used custom STL memory allocators. First, out of all of the implementa-
tions I have researched, none provide thread-local allocation buffers or pools,
and we can not afford any additional synchronization. Second, even in places
where we could gain performance by using a custom STL allocator, small size
optimization can be used instead with far better performance.

8.5 Hash tables

8.5.1 Hash functions
I tried many different hash functions based on the SMHasher [83]: t1ha, Metro-
Hash, SpookyHash, xxHash, and FarmHash. None of these gave us any sig-
nificant speedup compared to boost::hash_combine. We can conclude that
boost::hash_combine is fast enough and gives uniform enough distribution.

8.5.2 Other implementations
Usually the best performing implementations use atomic CAS operation to
swap keys, thus limiting the keys to be at most 64 bit integers. The most

76

8.6. Vectorization

0

10

20

30

40

50

60

0

10000

20000

30000

40000

50000

60000

glibc jemalloc litemalloc llalloc supermalloc tbbmalloc tcmalloc

Elapsed time in seconds Maximum resident set size in GiB

Figure 8.4: Comparison of time and memory utilization of different userland
allocators on dataset D.

heavily used table in our code, the CWig9lmLookUpTable has a key that con-
sists of 18 8 bit components that can not be made more compact in any way.
Therefore these tables are not usable for our the table that is the biggest
bottleneck.

Replacing CWig9lmLookUpTable with cuckoohash_map (implemented in
branch cwig9lm_libcuckoo) was unstable, leading to consistent segmentation
faults.

folly::AtomicHashMap is known to be very fast. Even though it only
supports at most 64 bit keys, I have tried replacing CWig9lmLookUpTable with
using only a part of the key (branch cwig9lm_folly_atomic), which of course
leads to wrong results. I did this to try how fast folly::AtomicHashMap
could be compared to our HashFixed. Surprisingly, folly::AtomicHashMap
was only just as fast as HashFixed with no considerable difference in memory
usage, showing that our implementation is very good despite its limitations.
Tables without limitations on keys like folly::ConcurrentHashMap (branch
cwig9lm_folly_concurrent) or tbb::concurrent_unordered_map (branch
cwig9lm_tbb_unordered) all proven to be slower than our HashFixed, even
though they have some additional features like record erasure and rehashing.
The performance degradation did not justify these additional features for us.

8.6 Vectorization
Most of the loops in the hot path are very complicated, and thus not viable for
vectorization. Those loops that are viable are vectorized automatically by the

77

8. LSU3shell improvements

compiler. For example all mainstream C++ compilers (GCC, clang, Intel® icc,
MSVC) were able to vectorize function SU3xSU2::RME::rme2_x_su39lm_x_rme1
since 2009, as tested with the Compiler Explorer.

8.7 Results
Results for all memory optimizations and their interesting combinations are in
Figures 8.5, 8.6, 8.7, 8.8. The bars (in this order) describe following scenarios:

1. The original code run with GNU C Library memory allocator.

2. The original code run with tbbmalloc memory allocator.

3. The original code run with tcmalloc memory allocator.

4. The code optimized with memory pools run with GNU C Library mem-
ory allocator.

5. The code optimized with small size optimization run with GNU C Li-
brary memory allocator.

6. The code optimized with memory pools and small size optimization run
with GNU C Library memory allocator.

7. The code optimized with memory pools and small size optimization run
with tcmalloc memory allocator (the final result).

Notice that the Y-axis on Figure 8.8 has logarithmic scale. As discussed be-
fore, glibc and jemalloc make abnormal amount of voluntary context switches.

We can see that with both memory pooling and small size optimizations
applied, the gap between the better performing and worse performing userland
allocators is becoming smaller. So even if, for some reason, the userland
allocator can not be replaced, the performance degradation can be offset by
using these techniques in user’s code.

78

8.7. Results

A B C D
0

5000

10000

15000

20000

25000

30000

35000

glibc tbbmalloc tcmalloc pool sso pool + sso tcmalloc + pool + sso

Figure 8.5: Time elapsed in seconds for all optimizations.

A B C D
0

5000000

10000000

15000000

20000000

25000000

30000000

glibc tbbmalloc tcmalloc pool sso pool + sso tcmalloc + pool + sso

Figure 8.6: Maximum resident set size in GiB for all optimizations.

79

8. LSU3shell improvements

A B C D
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

glibc tbbmalloc tcmalloc pool sso pool + sso tcmalloc + pool + sso

Figure 8.7: The number of minor page faults for all optimizations.

A B C D
1

10

100

1000

10000

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

glibc tbbmalloc tcmalloc pool sso pool + sso tcmalloc + pool + sso

Figure 8.8: The number of voluntary context switches for all optimizations.

80

Conclusion

The aim of this thesis has been to explore the problem of dynamic memory
allocation, research the methods that can improve the performance of memory
allocation-heavy code, analyze the performance of the LSU3shell program,
and apply researched methods to the LSU3shell program.

Chapter 1 provided an overview of tools that can be used to analyze the
performance of a program, and these tools were applied in chapter 2 to analyze
the LSU3shell program.

Chapters 3 through 6 provided a detailed research into the problem of
dynamic memory allocation and included an overview of existing solutions for
some of the researched problems. This research was applied to the LSU3shell
program in chapter 8 and the results were discussed.

I proposed several improvements to the LSU3shell program, implemented
them, and measured the performance and memory consumption impact. I
was able to reduce the run time by 41 % on average while slightly lowering the
memory usage.

The optimizations introduced in this work will save our team up to 1.4
million core-hours of our total BlueWaters resource allocation, which I consider
a success.

81

Bibliography

[1] Evans, J. jemalloc(3) User Manual. Aug. 2018.

[2] Navrátil, P.; Quaglioni, S.; et al. Unified ab initio approaches to nu-
clear structure and reactions. Physica Scripta, volume 91, no. 5, 2015: p.
053002.

[3] Langr, D.; Dytrych, T.; et al. Efficient Parallel Generation of Many-
Nucleon Basis for Large-Scale Ab Initio Nuclear Structure Calculations.
In International Conference on Parallel Processing and Applied Mathe-
matics, Springer, 2017, pp. 341–350.

[4] Edge, J. Perfcounters added to the mainline. July 2009, accessed January
9, 2019. Available from: https://lwn.net/Articles/339361/

[5] Gregg, B. Linux perf Examples. June 2018, accessed January 9, 2019.
Available from: www.brendangregg.com/perf.html

[6] Berris, D. M.; Veitch, A.; et al. XRay: A function call tracing system.
2016.

[7] Hazelwood, K.; Kanev, S.; et al. Profiling a Warehouse-Scale Computer.
2015.

[8] Wilson, P. R.; Johnstone, M. S.; et al. Dynamic Storage Allocation: A
Survey and Critical Review. In Proceedings of the International Work-
shop on Memory Management, IWMM ’95, London, United Kingdom:
Springer-Verlag, 1995, ISBN 3-540-60368-9, pp. 1–116.

[9] Larson, P.-Å.; Krishnan, M. Memory allocation for long-running server
applications. In ACM SIGPLAN Notices, volume 34, ACM, 1998, pp.
176–185.

83

https://lwn.net/Articles/339361/
www.brendangregg.com/perf.html

Bibliography

[10] Kanev, S.; Xi, S. L.; et al. Mallacc: Accelerating Memory Allocation.
ACM SIGARCH Computer Architecture News, volume 45, no. 1, 2017:
pp. 33–45.

[11] Free Software Foundation, Inc. objdump(1) GNU Development Tools. July
2018.

[12] Aigner, M.; Kirsch, C. M.; et al. Fast, multicore-scalable, low-
fragmentation memory allocation through large virtual memory and
global data structures. In ACM SIGPLAN Notices, volume 50, ACM,
2015, pp. 451–469.

[13] Kuszmaul, B. C. SuperMalloc: A Super Fast Multithreaded Malloc for
64-bit Machines. SIGPLAN Not., volume 50, no. 11, June 2015: pp. 41–
55, ISSN 0362-1340, doi:10.1145/2887746.2754178.

[14] Herlihy, M.; Shavit, N. The art of multiprocessor programming. Morgan
Kaufmann, 2011.

[15] Free Software Foundation, Inc. Memory Concepts (The GNU
C Library). 2018, accessed November 25, 2018. Available from:
https://www.gnu.org/software/libc/manual/html_node/Memory-
Concepts.html

[16] Free Software Foundation, Inc. Locking Pages (The GNU C Li-
brary). 2018, accessed November 26, 2018. Available from: https://
www.gnu.org/software/libc/manual/html_node/Locking-Pages.html

[17] Institute of Electrical and Electronics Engineers. IEEE Standard for In-
formation Technology—Portable Operating System Interface (POSIX(R))
Base Specifications, Issue 7. Jan. 2018.

[18] Free Software Foundation, Inc. Locked Memory Details (The
GNU C Library). 2018, accessed November 26, 2018. Avail-
able from: https://www.gnu.org/software/libc/manual/html_node/
Locked-Memory-Details.html

[19] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual. 2018.

[20] ARM Holdings. ARM® Architecture Reference Manual: ARMv8, for
ARMv8-A architecture profile. 2017.

[21] International Business Machines Corporation. Power ISA™ Version 3.0
B. 2017.

[22] Oracle. UltraSPARC Architecture 2007. 2010.

84

https://www.gnu.org/software/libc/manual/html_node/Memory-Concepts.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Concepts.html
https://www.gnu.org/software/libc/manual/html_node/Locking-Pages.html
https://www.gnu.org/software/libc/manual/html_node/Locking-Pages.html
https://www.gnu.org/software/libc/manual/html_node/Locked-Memory-Details.html
https://www.gnu.org/software/libc/manual/html_node/Locked-Memory-Details.html

Bibliography

[23] Intel Corporation. Intel® Itanium® Architecture Software Developer’s
Manual. 2010.

[24] Arcangeli, A. 20 years of Linux Virtual Memory: from simple server
workloads to cloud virtualization. Presented at the FOSDEM con-
ference in Brussels, Belgium on February 4, 2017. Available from:
https://archive.fosdem.org/2017/schedule/event/iaas_20yealin/
attachments/slides/1498/export/events/attachments/iaas_
20yealin/slides/1498/VM.pdf

[25] Munson, E.; Gorman, M.; et al. libhugetlbfs/libhugetlbfs. Accessed De-
cember 2, 2018. Available from: https://github.com/libhugetlbfs/
libhugetlbfs

[26] Rapoport, M. Transparent Hugepage Support. Linux Kernel Documen-
tation, 2018.

[27] Nikitin, A. Transparent Hugepages: measuring the performance im-
pact - The mole is digging. 2017, accessed December 2, 2018. Avail-
able from: https://alexandrnikitin.github.io/blog/transparent-
hugepages-measuring-the-performance-impact/

[28] Institute of Electrical and Electronics Engineers. IEEE Standard for
IEEE Information Technology - Portable Operating System Interface
(POSIX(R)). Jan. 2018.

[29] madvise(2) Linux Programmer’s Manual. Sept. 2017.

[30] International Standard ISO/IEC 9899:2018(E) – Information Technology
— Programming Languages — C. Geneva, Switzerland: International
Organization for Standardization (ISO), July 2018.

[31] Kerrisk, M. The Linux Programming Interface: A Linux and UNIX®
System Programming Handbook. No Starch Press, 2010.

[32] Berger, E. D.; McKinley, K. S.; et al. Hoard: A scalable memory allocator
for multithreaded applications. In ACM SIGARCH Computer Architec-
ture News, volume 28, ACM, 2000, pp. 117–128.

[33] Tadman, M. Fast-t: A new hierarchical dynamic storage allocation tech-
nique. Master’s thesis, UC Irvine, 1978.

[34] Free Software Foundation, Inc. The GNU C Library. 2018, accessed
November 13, 2018. Available from: https://www.gnu.org/software/
libc/libc.html

[35] Gloger, W. Wolfram Gloger’s malloc homepage. 2006, accessed February
16, 2018. Available from: http://www.malloc.de/en/

85

https://archive.fosdem.org/2017/schedule/event/iaas_20yealin/attachments/slides/1498/export/events/attachments/iaas_20yealin/slides/1498/VM.pdf
https://archive.fosdem.org/2017/schedule/event/iaas_20yealin/attachments/slides/1498/export/events/attachments/iaas_20yealin/slides/1498/VM.pdf
https://archive.fosdem.org/2017/schedule/event/iaas_20yealin/attachments/slides/1498/export/events/attachments/iaas_20yealin/slides/1498/VM.pdf
https://github.com/libhugetlbfs/libhugetlbfs
https://github.com/libhugetlbfs/libhugetlbfs
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/
https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/
https://www.gnu.org/software/libc/libc.html
https://www.gnu.org/software/libc/libc.html
http://www.malloc.de/en/

Bibliography

[36] Baldassin, A.; Borin, E.; et al. Performance Implications of Dynamic
Memory Allocators on Transactional Memory Systems. SIGPLAN Not.,
volume 50, no. 8, Jan. 2015: pp. 87–96, ISSN 0362-1340, doi:10.1145/
2858788.2688504.

[37] Lea, D. A Memory Allocator. 2000, accessed February 16, 2018. Available
from: http://g.oswego.edu/dl/html/malloc.html

[38] mallopt(3) Linux Programmer’s Manual. Sept. 2017.

[39] Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamen-
tal Algorithms. 1973, ISBN 9780321635747.

[40] Free Software Foundation, Inc. Tunables (The GNU C Library). 2018,
accessed November 19, 2018. Available from: https://www.gnu.org/
software/libc/manual/html_node/Tunables.html

[41] Free Software Foundation, Inc. Memory Allocation Tunables (The
GNU C Library). 2018, accessed November 19, 2018. Avail-
able from: https://www.gnu.org/software/libc/manual/html_node/
Memory-Allocation-Tunables.html

[42] Ghemawat, S.; Menage, P. TCMalloc : Thread-Caching Mal-
loc. 2007, accessed November 5, 2018. Available from: https://
gperftools.github.io/gperftools/tcmalloc.html

[43] Lee, S.; Johnson, T.; et al. Feedback directed optimization of TCMalloc.
In Proceedings of the workshop on Memory Systems Performance and
Correctness, ACM, 2014, p. 3.

[44] Evans, J. A Scalable Concurrent malloc(3) Implementation for
FreeBSD. 2006.

[45] Kamp, P.-H. Malloc (3) revisited. In USENIX Annual Technical Confer-
ence, 1998, p. 45.

[46] Evans, J.; Wang, Q.; et al. jemalloc/jemalloc. Accessed November 2,
2018. Available from: https://github.com/jemalloc/jemalloc

[47] Argyroudis, P.; Karamitas, C. Exploiting the jemalloc Memory Allocator:
Owning Firefox’s Heap. 2012.

[48] Kukanov, A.; Voss, M. J. The Foundations for Scalable Multi-Core Soft-
ware in Intel® Threading Building Blocks. In Intel® Technology Journal,
Volume 11, Issue 04, 2007, pp. 309–322.

[49] Intel Corporation. Threading Building Blocks. 2018. Available from:
https://www.threadingbuildingblocks.org

86

http://g.oswego.edu/dl/html/malloc.html
https://www.gnu.org/software/libc/manual/html_node/Tunables.html
https://www.gnu.org/software/libc/manual/html_node/Tunables.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-Tunables.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-Tunables.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://github.com/jemalloc/jemalloc
https://www.threadingbuildingblocks.org

Bibliography

[50] Hudson, R. L.; Saha, B.; et al. McRT-Malloc: A Scalable Transactional
Memory Allocator. In Proceedings of the 5th International Symposium
on Memory Management, ISMM ’06, New York, NY, USA: ACM, 2006,
ISBN 1-59593-221-6, pp. 74–83, doi:10.1145/1133956.1133967.

[51] Reinders, J. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly, first edition, 2007, ISBN
0596514808.

[52] Březina, P. Talloc - a hierarchical memory allocator. Bachelor’s thesis,
Masaryk University, 2012.

[53] Masmano, M.; Ripoll, I.; et al. TLSF: A new dynamic memory allocator
for real-time systems. 2004.

[54] Schneider, S.; Antonopoulos, C. D.; et al. Scalable locality-conscious mul-
tithreaded memory allocation. 2006.

[55] Jansson, M. rampantpixels/rpmalloc: Public domain cross platform lock
free thread caching 32-byte aligned memory allocator implemented in
C. Accessed January 6, 2019. Available from: https://github.com/
rampantpixels/rpmalloc

[56] Manghwani, R.; He, T. Scalable memory allocation. 2011.

[57] Umayabara, A.; Yamana, H. MCMalloc: A scalable memory allocator
for multithreaded applications on a many-core shared-memory machine.
In Big Data (Big Data), 2017 IEEE International Conference on, IEEE,
2017, pp. 4846–4848.

[58] Liu, R.; Chen, H. SSMalloc: a low-latency, locality-conscious memory
allocator with stable performance scalability. In Proceedings of the Asia-
Pacific Workshop on Systems, ACM, 2012, p. 15.

[59] Seo, S.; Kim, J.; et al. SFMalloc: A lock-free and mostly synchronization-
free dynamic memory allocator for manycores. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on,
IEEE, 2011, pp. 253–263.

[60] International Standard ISO/IEC 14882:2017(E) – Programming Lan-
guages — C++. Geneva, Switzerland: International Organization for
Standardization (ISO), Dec. 2017.

[61] Stepanov, A.; Lee, M. The Standard Template Library. HP Laboratories,
1995.

[62] Halpern, P. N1850: Towards a Better Allocator Model. 2005. Available
from: https://wg21.link/N1850

87

https://github.com/rampantpixels/rpmalloc
https://github.com/rampantpixels/rpmalloc
https://wg21.link/N1850

Bibliography

[63] International Standard ISO/IEC 14882:2011(E) – Information Technol-
ogy — Programming Languages — C++. Geneva, Switzerland: Interna-
tional Organization for Standardization (ISO), Sept. 2011.

[64] N4791: Working Draft, Standard for Programming Language C++. Dec.
2018. Available from: https://wg21.link/N4791

[65] Halpern, P. CppCon 2017: Pablo Halpern “Allocators: The Good Parts”.
Available from: https://www.youtube.com/watch?v=v3dz-AKOVL8

[66] Meredith, A. Allocators in C++11. Presented at the C++Now conference
in Aspen, Colorado on May 16, 2013.

[67] Gaztañaga, I. N2045: Improving STL Allocators. 2006. Available from:
https://wg21.link/N2045

[68] Hinnant, H. N1953: Upgrading the Interface of Allocators using API
Versioning. 2006. Available from: https://wg21.link/N1953

[69] Meredith, A. CppCon 2017: Alisdair Meredith “An allocator model for
std2”. Available from: https://www.youtube.com/watch?v=oCi_QZ6K_qk

[70] Bloomberg L.P. bloomberg/bde. Accessed December 16, 2018. Available
from: https://github.com/bloomberg/bde

[71] Halpern, P. N3916: Polymorphic Memory Resources, 2nd revision. 2014.
Available from: https://wg21.link/N3916

[72] Boyall, M. N3575: Additional Standard allocation schemes. 2013. Avail-
able from: https://wg21.link/N3575

[73] Diduck, L. N2486: Alternative Allocators and Standard Containers. 2007.
Available from: https://wg21.link/N2486

[74] Lakos, J.; Mendelsohn, J.; et al. P0089: On Quantifying Memory-
Allocation Strategies, 2nd revision. 2016. Available from: https://
wg21.link/P0089

[75] Bleaney, G. P0213: Validation of Memory-Allocation Benchmarks. 2016.
Available from: https://wg21.link/P0213

[76] Moerbeek, O. A new malloc(3) for OpenBSD. Presented at the European
BSD Conference in Cambridge, England on September 19, 2009.

[77] Electronic Arts Inc. electronicarts/EASTL. Accessed December 28, 2018.
Available from: https://github.com/electronicarts/EASTL

[78] Pedriana, P. N2271: EASTL – Electronic Arts Standard Template Li-
brary. 2007. Available from: https://wg21.link/N2271

88

https://wg21.link/N4791
https://www.youtube.com/watch?v=v3dz-AKOVL8
https://wg21.link/N2045
https://wg21.link/N1953
https://www.youtube.com/watch?v=oCi_QZ6K_qk
https://github.com/bloomberg/bde
https://wg21.link/N3916
https://wg21.link/N3575
https://wg21.link/N2486
https://wg21.link/P0089
https://wg21.link/P0089
https://wg21.link/P0213
https://github.com/electronicarts/EASTL
https://wg21.link/N2271

Bibliography

[79] Jula, A.; Rauchwerger, L. Two Memory Allocators That Use Hints to
Improve Locality. In Proceedings of the 2009 International Symposium
on Memory Management, ISMM ’09, New York, NY, USA: ACM, 2009,
ISBN 978-1-60558-347-1, pp. 109–118, doi:10.1145/1542431.1542447.

[80] Ormrod, N. CppCon 2016: Nicholas Ormrod “The strange details of
std::string at Facebook”. Available from: https://www.youtube.com/
watch?v=kPR8h4-qZdk

[81] Gadeschi, G. B. P0843: static_vector, 2nd revision. 2018. Available from:
https://wg21.link/P0843

[82] Appleby, A. aappleby/smhasher: Automatically exported from
code.google.com/p/smhasher. Accessed January 5, 2019. Available from:
https://github.com/aappleby/smhasher

[83] Urban, R. rurban/smhasher: Improved fork of
https://code.google.com/p/smhasher/. Accessed January 6, 2019.
Available from: https://github.com/rurban/smhasher

[84] Cormen, T. H.; Leiserson, C. E.; et al. Introduction to algorithms. MIT
press, 2009.

[85] Pagh, R.; Rodler, F. F. Cuckoo hashing. Journal of Algorithms, vol-
ume 51, no. 2, 2004: pp. 122–144.

[86] Herlihy, M.; Shavit, N.; et al. Hopscotch hashing. In International Sym-
posium on Distributed Computing, Springer, 2008, pp. 350–364.

[87] Fan, B.; Andersen, D. G.; et al. MemC3: Compact and Concurrent Mem-
Cache with Dumber Caching and Smarter Hashing. In NSDI, volume 13,
2013, pp. 371–384.

[88] Zhou, D.; Fan, B.; et al. Scalable, High Performance Ethernet Forward-
ing with CuckooSwitch. In Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies, ACM, 2013, pp. 97–
108.

[89] Li, X.; Andersen, D. G.; et al. Algorithmic Improvements for Fast Concur-
rent Cuckoo Hashing. In Proceedings of the Ninth European Conference
on Computer Systems, ACM, 2014, p. 27.

[90] Shalev, O.; Shavit, N. Split-Ordered Lists: Lock-free Extensible Hash
Tables. Journal of the ACM (JACM), volume 53, no. 3, 2006: pp. 379–
405.

[91] Malakhov, A. A. Per-bucket concurrent rehashing algorithms. arXiv
preprint arXiv:1509.02235, 2015.

89

https://www.youtube.com/watch?v=kPR8h4-qZdk
https://www.youtube.com/watch?v=kPR8h4-qZdk
https://wg21.link/P0843
https://github.com/aappleby/smhasher
https://github.com/rurban/smhasher

Bibliography

[92] Ahrens, S.; DeLong, J. folly/AtomicHashmap.h. Nov. 2016. Available
from: https://github.com/facebook/folly/blob/master/folly/
docs/AtomicHashMap.md

[93] Ahrens, S. Massively Parallel Datastructures. Presented at the Face-
book C++ Conference in Menlo Park, California on June 2, 2012. Avail-
able from: https://allfacebook.de/wp-content/uploads/2012/06/
Massively_Parallel_Datastructures.pdf

[94] Preshing, J. preshing/junction: Concurrent data structures in C++. Ac-
cessed January 6, 2019. Available from: https://github.com/preshing/
junction

[95] Hart, T. E. Comparative performance of memory reclamation strategies
for lock-free and concurrently-readable data structures. Master’s thesis,
University of Toronto, 2005.

[96] Click, C. Advanced Topics in Programming Languages: A Lock-Free Hash
Table. Presented at Google Tech Talks on March 28, 2007. Available from:
https://www.youtube.com/watch?v=HJ-719EGIts

[97] Preshing, J. New Concurrent Hash Maps for C++. 2016, accessed Jan-
uary 6, 2019. Available from: https://preshing.com/20160201/new-
concurrent-hash-maps-for-cpp/

[98] Goyal, M.; Scott, J. S.; et al. efficient/libcuckoo: A high-performance,
concurrent hash table. Accessed January 6, 2019. Available from: https:
//github.com/efficient/libcuckoo

90

https://github.com/facebook/folly/blob/master/folly/docs/AtomicHashMap.md
https://github.com/facebook/folly/blob/master/folly/docs/AtomicHashMap.md
https://allfacebook.de/wp-content/uploads/2012/06/Massively_Parallel_Datastructures.pdf
https://allfacebook.de/wp-content/uploads/2012/06/Massively_Parallel_Datastructures.pdf
https://github.com/preshing/junction
https://github.com/preshing/junction
https://www.youtube.com/watch?v=HJ-719EGIts
https://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
https://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo

Appendix A
Acronyms

API Application Programming Interface

ASLR Address space layout randomization

CAS Compare-and-swap

CPU Central processing unit

GNU GNU is a recursive acronym for “GNU’s Not Unix!”

GPU Graphics processing unit

HPC High Performance Computing

HTM Hardware Transactional Memory

MPI Message Passing Interface

NUMA Non-uniform memory

POSIX Portable Operating System Interface [for Unix]

SMP Symmetric Multiprocessing

SSO Small Size Optimization

STL Standard Template Library

TLB Translation lookaside buffer

TLS Thread-local storage

91

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

93

	Introduction
	Analysis tools
	perf
	Heaptrack
	Intel® VTune Amplifier
	Intel® Advisor
	Intel® Trace Analyzer and Collector
	Intel® Inspector
	Compiler Explorer
	GNU time
	XRay
	Valgrind
	KCachegrind
	gperftools
	strace
	Compiler optimization output

	LSU3shell performance analysis
	Testing environment
	Selected datasets
	LSU3shell analysis
	Conclusion

	Userland memory allocators
	The GNU C Library
	tcmalloc
	jemalloc
	tbbmalloc
	Other userland allocators

	C++ STL memory allocators
	Polymorphic memory resources
	Popular implementations

	Small Size Optimization
	std::string
	Vector implementations with SSO
	Other data type and data structure implementations
	_malloca and _freea

	Memory pooling
	Boost.Pool
	Bloomberg
	nginx
	foonathan/memory

	Concurrent hash tables
	Hash function
	Collision resolution
	Popular implementations

	LSU3shell improvements
	Userland allocators
	Memory pooling
	Small size optimization
	C++ STL memory allocators
	Hash tables
	Vectorization
	Results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

