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Abstract 

Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT), a pervasive 

neurodevelopmental disorder, that shows also multisystem disturbances associated with a 

metabolic component. The aim of this study was to investigate whether an increased production 

of oxidized linoleic acid metabolites, specifically 9- and 13-hydroxyoctadecadienoic acids 

(HODEs), can contribute to the altered the redox and immune homeostasis, suggested to be 

involved in  RTT. 

Serum levels of 9- and 13-HODEs were elevated in RTT and associated with the expression of 

arachidonate 15-Lipoxygenase (ALOX15) in peripheral blood mononuclear cells (PBMCs). 

Omega-3 polyunsaturated fatty acids supplementation has shown to lower HODEs levels in 

RTT. Statistically significant correlation was demonstrated between the increased plasma 

HODEs levels and the lipoprotein-associated phospholipase A2 (Lp-PLA2) activity.  

Collectively, these findings reinforce the concept of the key role played by lipid peroxidation in 

RTT, and the possible ability of omega-3 polyunsaturated fatty acids supplementation in 

improving the oxinflammation status in RTT. 
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Introduction 

Rett syndrome (RTT; OMIM identifier #312750), although classified as a rare disease, is the 

second most prevalent cause of severe mental retardation in female gender (frequency: 1:10,000 

live births). This neurodevelopmental disorder is characterized by 6-18 months of apparently 

normal neurodevelopment, followed by early neurological regression, with progressive cognitive 

impairment, and replacement of purposeful use of the hands with incessant stereotypies (hand 

wash like) (Armstrong, 1997). The classic form of RTT (affecting 95% of total cases) is caused 

by a specific mutations in the X-linked gene encoding the Methyl-CpG-binding protein 2 

(MECP2) (Amir et al., 1999; Hagberg et al., 2002). 

Cumulating evidence points to a complex, and still not fully known, pathogenic mechanism 

linking MECP2 dysfunction to disease manifestations. MECP2 is a ubiquitous protein and this, 

at least in part, accounts for the proposed multi-systemic nature of RTT, characterized by typical 

pathophysiological manifestations disseminated in the brain but also to other organs/tissues 

(Pecorelli et al., 2016). Indeed, reduced brain size and decreased number of cerebral synapsis are 

often accompanied by abnormalities in microvascular/endothelial system, bone, skin fibroblast, 

red blood cells, etc. (Valacchi et al., 2018). 

We have recently proposed that a detrimental vicious cycle between inflammation and redox 

imbalance could contribute to the pathogenesis and clinical expression of RTT (Pecorelli et al. 

2016). Indeed, clear signs of “OxInflammation” have been observed in the brain and in periphery 

of both animal models and RTT patients (Cortelazzo et al., 2014; Valacchi et al., 2017, 2018).  

Redox homeostasis derangement in RTT seems to stem from impaired enzymatic defensive 

activity, mitochondria dysfunction, endogenous production of H2O2 (NADPH oxidase 

activation), which parallel with an increased oxidative damage (Cervellati et al., 2015). 

Accumulation of by-products of lipid peroxidation, in particular 4-hydroxynonenal (4-HNE) and 

isoprostanes, and uncontrolled activation of NADPH oxidase (NOX), can affect the immune 

response and exacerbate the oxidative stress condition (Uchida, 2003; Valacchi et al., 2017).  

4-HNE is an emblematic example of oxinflammation player, because it translates the original 

oxidative challenge in immunogenic biomolecules able to trigger both innate and adaptive 

immune responses (Kurien et al., 2006). Besides these reactive aldehydes, other bioactive lipid 

derivatives are potential mediators of inflammation and oxidative stress. Among them, 13- and 
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9- hydroxyoctadecadienoic acid (13-HODE and 9-HODE, respectively) have been attracted great 

attention in this last two decades, most for the widely observed implication in the development of 

inflammatory related diseases (i.e. atherosclerosis) (Vangaveti et al., 2010). These stable 

oxidized lipids are produced through the interaction of omega-6 linoleic acid with reactive 

oxygen species (ROS) either free in solution or coordinated by enzymes including pro-oxidant 

15-lipoxygenase (15-LOX) and, at lesser extent, heme-monoxygenases, such a (e.g., cytochrome 

P450s) (Wang et al., 2009). 

In vitro and animal studies have shown that HODEs are able to induce vasodilatation, suppress 

of cell proliferation and cause apoptosis. They also can upregulate NF-kB, induce ER stress, 

oxidative stress and perturb lipid homeostasis (mostly inverse cholesterol transport) (Vangaveti 

et al., 2010; Ogawa et al., 2011). The most important targets of HODEs action are macrophages 

and monocytes, especially those involved in the atherosclerotic processes (Vangaveti et al., 

2010).  

HODEs are bioactive lipids generated by the activation of arachidonate 15-lipoxygenase 

(ALOX15) from linoleic acid. ALOX15 is an enzyme, able to oxidize polyunsaturated fatty acids 

particularly omega-6 and -3 fatty acids, and to generate a number of bioactive lipid metabolites. 

Several scientific contributions have revealed the importance of ALOX15 role in oxidative and 

inflammatory responses. In vitro studies have demonstrated the ability of ALOX15 metabolites 

to induce the expression of various genes and production of cytokine related to inflammation and 

its resolution. In addition, knockout and transgenic animals for ALOX15 have shown its 

involvement in the pathogenesis of a variety of human diseases, including neurological and 

metabolic disorders. For instances it has been shown that ALOX15 levels and its metabolites 

have been increased in brain of Alzheimer and Parkinson’s patients due also to its high 

expression levels in the central nervous system (Singh and Rao, 2018). In addition, it has been 

shown that oxidative imbalance can increase ALOX15 levels and lead to a pro-inflammatory 

status, condition present also in RTT (Cortelazzo et al., 2014; Valacchi et al., 2017, 2018). 

In the present work, we were able to show that in RTT, both ALOX15 and HODEs levels are 

significantly increased respect to comparable healthy subjects, confirming the role of lipid 

mediators in this pathology and their contribute to the OxIflammation condition present in RTT. 
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Materials and Methods 

Subjects population  

The subjects enrolled in the study included female patients with clinical diagnosis of typical RTT 

and MECP2 mutation (n=42; median age: 15) and healthy controls (n = 16; median age: 16). 

Twenty two RTT patients were supplemented with ω-3 PUFAs, administered in the form of fish 

oil (Norwegian Fish Oil AS, Trondheim, Norway, Product Number HO320-6; Italian importer: 

Transforma AS Italia, Forlì Italy; Italian Ministry Registration Code: 10 43863-Y) at a dose of 

5 mL twice daily, corresponding to docosahexaenoic acid (DHA, 22 : 6 ω-3) 74.3 ± 6.8 mg/kg 

b.w./day and eicosapentaenoic acid (EPA, 20 : 5 ω-3) 119.7 ± 10.6 mg/kg b.w./day, with a total 

ω-3 PUFAs of 248.2 ± 25.1 mg/kg b.w./day. Use of EPA plus DHA in RTT was approved by the 

AOUS Ethical Committee (main characteristics of sample groups are displayed in Table 1) 

All the patients were consecutively admitted to the Child Neuropsychiatry Unit of the “Azienda 

Ospedaliera Universitaria Senese” (AOUS, Siena, Italy). This research protocol was carried out 

in strict compliance with the Helsinki Declaration and conducted with the local Institutional 

Review Board approval. Written informed consent was obtained from either the parents or legal 

guardians of all enrolled patients. Blood samplings from RTT patients were obtained during 

periodic clinical checkups, while blood samples in the control group were carried out during 

routine health checks or blood donations. All subjects were on a typical Mediterranean diet. 

Blood sampling 

Fasting venous blood was collected at 8–10 AM following an overnight fast and all 

manipulations were carried out within 2 h. Blood was collected in tubes without anticoagulants 

and allowed to clot at RT. Following centrifugation at 1500×g for 10 min, the sera were 

transferred into clean tubes and stored at −80°C until analysis. 

Biochemical determinations in serum 

For detection of 9-HODE and 13-HODE, an UPLC system was coupled with Quattro Premier 

XE MS (Waters, Milford, MA) and the system was operated in electrospray ionization (ESI) 

negative mode. Serum sample preparation and analysis were performed as previously described 

(Nieman et al., 2016). 
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Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity was spectrophotometrically 

measured as previously described (Hayek et al., 2017). 

Peripheral blood mononuclear cells isolation 

Human PBMC fractions were isolated as previously described (Pecorelli et al., 2016). Briefly, 

aliquots of venous blood from RTT patients (n = 5) and healthy controls (n = 5) were collected in 

heparinized tubes. Manipulations were carried out within 2 h after blood collection and PBMCs 

were separated by density gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare 

Europe GmbH, Milan, Italy), according to the manufacturer’s instructions. 

RNA extraction and RT-qPCR (Reverse Transcription Quantitative Real-Time PCR) 

Total RNA was extracted from isolated PBMCs using the RNeasy mini kit (Qiagen, Hilden, 

Germany). Total RNA was quantified by a Bio-Rad SmartSpec Plus spectrophotometer (Bio-

Rad, Laboratories, Inc., USA). RT-qPCR analysis was performed as previously described 

(Pecorelli et al., 2016). The primers used were: for ALOX15, forward primer, 5’-

TGTGAAAGACGACCCAGAGC-3’; reverse primer, 5’-GGTCCCGAGCCTGTAAAGA-3’; 

for GAPDH, forward primer 5’-GACAGTCAGCCGCATCTTC-3’; reverse primer, 5’-

GCGCCCAATACGACCAAAT-3’. Gene expression was calculated by using the ∆∆Ct method. 

The folds of increase or decrease were determined relative to a control, after normalizing to 

GAPDH (internal standard).  

Statistical analysis 

Mann-Whitney or Kruskall Wallis were used to evaluate the difference between two or more 

than two groups, respectively. Pearson’s correlation analysis was performed to evaluate the 

possible association between the variable of interest. A p<0.05 was considered statistically 

significant. 
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Results 

Serum levels of 9- and 13-HODE in RTT patients 

As shown in Fig. 1, 13-HODE levels were significantly increased in serum samples from RTT 

patients respect to the control group (Mann–Whitney, p < 0.05), and similar trend was observed 

for 9-HODE serum levels, although this result did not reach a significant difference.  

 

Fig. 1. Serum levels of 9- and 13-HODE in controls and RTT patients. 13-HODE levels 

significantly increased in RTT serum samples (n = 42) as compared to control subjects (n = 16). 

Conversely, no significant changes were observed for serum 9-HODE values. Data is provided 

as median ± SD. Mann–Whitney, *p < 0.05. 

 

Increased ALOX15 gene expression in RTT PBMCs 

ALOX15 gene codifies for one of the most important enzymes involved in HODEs formation, 

15-lipoxygenase-1 (Singh and Rao, 2018). As shown in Fig. 2, by the use of real time RT-PCR 

we were able to appreciate an over 2-fold upregulation of ALOX15 gene expression in PBMCs 

isolated from RTT patients.  
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Fig. 2. ALOX15 gene expression in RTT and control PBMCs. Real-time PCR shows the 

upregulation of ALOX15 mRNA expression in RTT PBMCs (n = 5) compared to control subjects 

(n = 5). Unpaired t test with Welch's correction, *p < 0.05. 

 

ω-3 PUFAs supplementation modulates 9- and 13-HODE serum levels in RTT patients 

Interestingly, ω-3 PUFA supplementation was able to affect 9- and 13-HODE serum levels in 

RTT patients respect to the untreated RTT group (Fig. 3). Notably, serum 13-HODE levels were 

significantly decreased in the supplemented RTT patients respect to the not supplemented group. 

This effect was more evident for the 13-HODE than for the 9-HODE although the trends were 

similar for both markers.  

 

 

Fig. 3. Effects of dietary ω-3 PUFAs supplementation on serum HODEs levels in RTT 

patients. Following ω-3 PUFAs supplementation (n = 22), both serum HODEs levels decreased 
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respect to un-supplemented RTT patients (n = 20). Data is provided as median ± SD. Kruskal-

Wallis test, *p < 0.05 versus controls. 

 

9- and 13-HODE serum levels correlate with lipoprotein-associated phospholipase A2 (Lp-

PLA2) activity 

In our recent study, we reported a significant increased serum activity of Lp-PLA2 in RTT 

patients (Hayek et al., 2017). Lp-PLA2 activity is essential in generation of bioactive lipid 

products such as HODEs by breaking down phospholipids and releasing fatty acids which, then, 

can be oxidized (Tyurin et al., 2012). Consistently, here we demonstrated significant positive 

correlations between serum HODEs levels and Lp-PLA2 activity in RTT (r = 0.534, p < 0.001 

and r = 0.403, p < 0.01 for 9- and 13-HODE, respectively) (Fig. 4).  

 

 

 

Fig. 4. Relationship between serum HODEs levels and lipoprotein-associated phospholipase 

A2 (Lp-PLA2) activity. Serum levels of 9- and 13-HODE were significantly and positively 

correlated with Lp-PLA2 activity in RTT. 
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Discussion 

Although RTT is a well-recognized neurological disorder associated with mutations in MECP2 

gene, there is growing evidence that a systemic metabolic component can contribute to its 

peculiar pathological phenotype (Kyle et al., 2018). In particular, a perturbed lipid homeostasis 

with increased serum cholesterol, triglycerides and LDLs has been observed in both RTT 

patients and animal models and linked to both neurological and systemic symptoms (Justice et 

al., 2013; Segatto et al., 2014; Buchovecky et al. 2013; Cobolli Gigli et al., 2016; Sticozzi et al. 

2013; Ciernia et al., 2018). In the last few years, these new findings prompted a part of research 

efforts on RTT to focusing mainly on understanding the molecular mechanisms that could be 

responsible for the altered lipid metabolism. As a result of these studies, an alteration in the 

expression of genes involved in cholesterol biosynthesis has been observed in brain of Mecp2 

mutant mice (Buchovecky et al. 2013; Urdinguio et al., 2008; Lopez et al., 2017). Similarly, an 

alteration of cholesterol regulatory network proteins has been detected also in fibroblasts isolated 

from RTT patients (Sticozzi et al., 2013; Segatto et al., 2014). Even more recently, RTT has been 

associated with fatty liver disease and dyslipidemia for an aberrant transcription of lipogenesis 

enzymes due to failed interaction of Mecp2 with the repressor complex containing NCoR1 and 

HDAC3 (Kyle et al., 2016). 

However, once the lipid dyshomeostasis in RTT has been well established, besides 

understanding what causes these abnormalities, it is important to comprehend the impact of the 

altered lipid profile on RTT patient’s health. Of note, several lines of evidence highlighted a key 

role for an aberrant redox balance and a subclinical inflammation status, i.e. oxinflammation 

phenomena in RTT pathophysiology (Filosa et al., 2015; Pecorelli et al., 2016; Valacchi et al., 

2017). Since lipids are among the main targets of free radicals, under a condition of redox 

imbalance a large variety of secondary byproducts of lipid oxidation can be generated (Frijhoff et 

al., 2015). Indeed, abnormal increased levels of isoprostanes (i.e. F2-isoprostanes, F4-

neuroprostanes, and F2-dihomo-isoprostanes) have been detected in plasma samples from RTT 

patients and in whole brain from different RTT mouse models (Valacchi et al., 2017). In 

addition, our previous studies demonstrated high levels of 4-hydroxynonenal (4-HNE) protein 

adducts in both RTT patients and mouse models (Pecorelli et al., 2011; Valacchi et al., 2017). 

Interestingly, both F4-neuroprostanes and 4-HNE protein adducts were correlated to RTT 

severity score, suggesting that they are not just simple index of oxidative damage, but also potent 
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biological mediators in RTT pathophysiology (Signorini et al., 2011, Pecorelli et al., 2011; 

Valacchi et al., 2017).  

In this study, we further implicated the putative role of oxidized lipids in RTT. Indeed, our 

findings demonstrated that HODEs concentrations, another important class of biologically active 

lipids, were significantly higher in serum of RTT patients. It is possible that the characteristic 

oxidative milieu of RTT and lack of a proper antioxidant defense coupled with the increased 

levels of LDL (Sticozzi et al., 2013; Segatto et al., 2014; Cervellati et al., 2015; Pecorelli et al., 

2016; Valacchi et al., 2017) could drive the higher serum HODEs concentrations observed in our 

study. In addition, besides the free radical-mediated process, linoleic acid oxidation can proceed 

also via enzymatic mechanisms involving, among others, 15-lipoxygenase-1 (Singh and Rao, 

2018). Of note, our findings indicate a significant upregulation of ALOX15 expression in RTT 

PBMC, thus suggesting a possible contribution of its enzymatic activity in the increasing HODEs 

formation. In addition, consistent with these results, our previous lipidomic analysis revealed a 

significant decreased content of linoleic acid in RTT erythrocyte membranes that could be 

ascribed to its increased enzymatic and non-enzymatic oxidation (Signorini et al., 2014). In 

addition, it has been demonstrated that 15-lipoxygenase-1 activity is associated with GSH 

depletion in brain cells (Li et al., 1997); therefore, the increased ALOX15 levels could be 

ascribed to the lower level of GSH detected in RTT cells (Signorini et al., 2014). Finally, 

ALOX15 expression can be also induced by several pro-inflammatory cytokines that have been 

showed to be sub-clinically detected in RTT (Singh and Rao, 2018; Pecorelli et al., 2016).   

As stable oxidized derivatives of linoleic acid, high HODEs levels are commonly found in 

oxidized LDL in pathological conditions characterized by both redox imbalance and 

inflammation (Vangaveti et al., 2010). Therefore, the activation of ALOX15/HODEs circuit 

could constitute another contributor factor to the typical oxinflammation status observed in RTT 

(Pecorelli et al., 2016; Valacchi et al., 2017, 2018). In fact, HODEs are not only indicators of 

lipid peroxidation but they are also able to modulate the inflammatory pathways with either 

beneficial or detrimental effects depending on their levels (Vangaveti et al., 2010). For example, 

ALOX15 and HODEs have received considerable attention as possible players in inflammatory 

responses associated with disorders such as atherosclerosis, hypertension, obesity and diabetes 

(Vangaveti, Baune and Kennedy, 2010), but also neurological conditions including Alzheimer 

disease and multiple sclerosis (Yoshida et al., 2009). HODEs can affect the expression of 
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proinflammatory cytokines and cell adhesion molecules; modulate immune cells chemotaxis and 

monocyte adhesion to vascular endothelial cells; induce activation of transcription factors such 

as peroxisome proliferator activated receptor gamma (PPAR-γ) and nuclear factor-kappa B (NF-

κB) (Ogawa et al., 2011). Of note, a subclinical inflammation status with a deregulated plasma 

cytokine profile and an aberrant NF-κB signaling have been reported in RTT (Cortelazzo et al., 

2014; Pecorelli et al., 2016; Kishi et al., 2016; Jorge-Torres et al., 2018).  

Notably, our results also indicated that serum HODEs levels in RTT were linearly and positively 

correlated with Lp-PLA2 activity, data that also agree with a recent study, where we showed an 

increase in serum Lp-PLA2 activity in RTT patients (Hayek et al., 2017). Elevated levels of Lp-

PLA2 have been associated with an increased risk for cardiovascular disorders (Younus et al., 

2017). Indeed, the main action of this enzyme involve the hydrolysis of fatty acids from 

oxidatively modified phospholipids present in oxidized LDL to produce free fatty acids. Among 

others, Lp-PLA2 is also able to release 13-HODE from ox-LDL in atherosclerotic lesions 

(Tyurin et al., 2012). Accordingly, the positive correlation observed in our study suggests that 

Lp-PLA2-mediated hydrolysis of oxidized linoleic acid can play a harmful role also in RTT, 

promoting an increased HODEs production. 

Evidence indicated that adoption of healthy dietary intervention leads to the decline in plasma 

HODEs levels (Ramsden et al., 2012). In previous studies, we have shown that supplementation 

with ω-3 PUFAs improved clinical severity of RTT patients with a significant decrease of 

isoprostanes and 4-HNE plasma levels (Ciccoli et al., 2012; De Felice et al., 2012). Consistent 

with these observations, in this study, we confirmed the potential beneficial effect of ω-3 PUFAs 

on RTT, as indicated by the decreasing trend of serum HODEs levels in supplemented patients. 

To date, the exact mechanisms by which omega-3 PUFAs exerts their beneficial effects in 

several pathological conditions are not fully understood. Nevertheless, it is well known that 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) compete with omega-6 PUFAs 

for the same molecular pathways involving enzymes like cyclooxygenases and lipoxygenases 

(Gabbs et al., 2015). Therefore, it is likely that the omega-3 fatty acids incorporated into the 

membrane phospholipids after the fish oil-enriched diet in RTT patients can reduce the 

metabolism of acid linoleic and, thus, the HODEs generation through a process of competitive 

inhibition. This possible shift in PUFAs-derived metabolites is confirmed by the work of Shearer 

et al. (2010) that demonstrated how a supplementation with omega-3 PUFAs for 4 weeks in 
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healthy adults is able to lower the concentration of both HODE isomers by 15%. In addition, 

unlike omega-6 PUFAs metabolites, the omega-3 derived lipid mediators such as lipoxins, 

resolvins, and protectins show anti-inflammatory protective properties (Gabbs et al., 2015) that 

could account for the improved inflammation status in supplemented RTT patients (Signorini et 

al., 2014). 

Conclusions 

The present study has been reported for the first time that endogenous formation of 9- and 13-

HODE is increased in RTT patients. These findings concur with prior results obtained from our 

and other laboratories that indicate a clear key role of lipid peroxidation in RTT pathophysiology 

(Pecorelli et al., 2016; Valacchi et al., 2017, 2018). Indeed, given the ability of these compounds 

to modulate redox and immune homeostasis, together with 4-HNE protein adducts and 

isoprostanes, HODEs could contribute to metabolic abnormalities found in this disorder. In 

addition, our results confirm that dietary intervention with ω-3 PUFAs could revert, at least 

partially, the increased lipid peroxidation found in RTT, and potentially improve RTT 

oxinflammation condition in these patients. It should be mentioned that at this time, the RTT 

patients population of this study does not allow us to evaluate whether HODEs can have a role in 

the disease progression, since we could not collect plasma from patients belonging to 4 different 

stages of the disease, as previously reported for 4HNE levels (Pecorelli et al., 2011). 
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Table 1. Age and gender of Controls and RTT patients (all, with and without ù-3 PUFAs 
supplementation) 

 
Controls 

 

(n=16) 

RTT  
 

(n=42) 

 RTT  
not supplemented  

 
(n=20) 

RTT  
supplemented with  

ù-3 PUFAs  
(n=22) 

Age, years (interquartile range) 16 (11-18) 15 (7-25)  16 (6-26) 14 (7-23) 

Gender, % of females 50%a 100%  100% 100% 

Data presented are expressed as: % within the group for categorical variables; median (interquartile range) for continuous 
variables 
a p<0.05 vs.  RTT 
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Rett syndrome (RTT) is a neurodevelopmental rare diseases 

OxInflammation status characterizes this pathology 

Role of lipid mediators in RTT pathogenesis has been suggested 

Increase levels of HODEs, ALOX1 and PLA2 activity confirm the oxidative lipid role 

in RTT 

Omega-3 supplementation alleviate the peroxidation levels 


