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Abstract 
 

Emulsions have been used for centuries in many fields, such as pharmaceutical, 

cosmetic, food, and agriculture industry. Manufacturers of pharmaceutical products 

have recently shown great attention for multifunctional products in which different 

active agents can be incorporated, and for controlled drug delivery systems. 

Emulsion technology is a very simple, inexpensive and easy-to-scale approach. This 

technique is characterized by high loading capacity and encapsulation efficiency for 

therapeutic agents, independently from their nature (hydrophobic or hydrophilic). 

On the other hand, the other advantage is related to the possibility to use emulsion 

technology, to combine materials with different physiochemical properties.  

The aim of my doctoral research was focused on the development of new polymeric 

Alginate-based composite materials for biomedical applications, specifically, 

controlled delivery systems for drugs or bioactive molecules.  

The idea was to use biocompatible and non-toxic polymers, both of synthetic and 

natural origin, to produce the above-mentioned constructs. Biopolymers are widely 

used as scaffolds for biomedical applications, especially in tissue engineering and 

drug delivery systems due to their excellent properties such as biocompatibility, 

biodegradability to non-toxic products and bioactivity. In these fields, the 

biopolymers have been processed in different forms such as films, sponges, beads, 

hydrogels and capsules. 

However, emulsions containing dissolved biopolymers both in the oil and water 

phases are very scarce. In this thesis, we demonstrate such an emulsion, in which the 

oil phase contains a hydrophobic biodegradable polymeric material and the water 

phase is constituted by a sodium alginate solution. Emulsion technology was the 

main technique employed for the fabrication of composite matrices, constituted of 

hydrophilic and hydrophobic polymers, and for the encapsulation of model drugs 

(single and dual delivery of hydrophilic and hydrophobic active principles). Low 



 

xii 

cost raw materials and facile methods of fabrication were considered, in order to 

contain the costs of production, and obtain functional bio-composites easily scalable 

in an industrial setting.  More detailed description about emulsions will be discussed 

in Chapter 1.  

In the first part of the thesis, as will be discussed in Chapter 2, we used an emulsion 

solution casting process to fabricate sodium alginate-Mater-Bi® polymer films that 

can retain both hydrophilic (a cutaneous antiseptic) and lipophilic (curcumin) model 

drugs. The objective was to achieve a biodegradable and biocompatible material as 

active dressing to promote and accelerate skin wound healing. The obtained matrices 

have been characterized in terms of their physio-chemical properties and their ability 

to release these model drugs individually or simultaneously in vitro.  

The novelty in this research was to demonstrate, for the first time the possibility to 

use Mater-Bi® also in the biomedical field. In fact, this commercial hydrophobic 

biodegradable polymer composite comprising polycaprolactone (PCL) and 

thermoplastic starch, obtained by a proprietary compound extrusion method is 

actively marketed as sustainable food packaging material as well as biodegradable 

material for perishable food containers. 

In the second part of the thesis, as will be discussed in Chapter 3, calcium alginate-

Beeswax microbeads have been fabricated by a solvent free emulsion gelation 

technique. The objective of this study was to formulate an all-natural oral-controlled 

delivery system for a natural hydrophilic compound, a concentrated extract from 

Prunus mahaleb L. fruit (here named as mcfe) rich in anthocyanins, optimizing its 

encapsulation and assessing in vitro its release under simulated gastrointestinal 

conditions. The obtained microbeads were investigated for their morphology and 

physico-chemical properties under the different pH conditions that characterize the 

gastrointestinal tract. The novelty in this research was to demonstrate, for the first 

time the possibility to use Beeswax as wall material, acting as retardant in drug 

release of phenolic compounds.  
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Chapter 4 summarizes the conclusions made throughout this study and suggests the 

fulfilment of future works.  
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Chapter 1  
Introduction  

 
1.1.Biodegradable polymers in drug delivery devices             

        Over the last decades, drug delivery has become one of the most interesting and 

rapidly expanding scientific areas to overcome the limitations associated with the 

traditional administration of drugs.  The conventional pharmaceutic preparations, 

administrated by different routes (i.e. oral, parenteral, subcutaneous, topical, 

intravenous, intramuscular, etc.) need to be repeatedly distributed to maintain their 

therapeutic concentration within the body. This causes plasma fluctuations of the 

drug, with spikes in concentration upon administration, followed by rapidly 

decreasing concentration until below its therapeutic effect. Main objectives of a drug 

delivery device are (1) to improve the delivery of the pharmaceutical compound at 

the desired target within the body, (2) to maintain the drug concentration within the 

therapeutic window over the desired time, (3) to protect the drug against degradation, 

and (4) to increase patient compliance due to the reduced frequency of drug 

application1-3. In this context, different biomaterials have been investigated for the 

development of these systems, such as metals, ceramics, glasses, and polymers4. The 

most important features of biomaterials intended for biomedical devices are: non-

immunogenicity, biocompatibility, controllable biodegradability, biofunctionality, 

mechanical flexibility and structural integrity5-6. Among the different classes of 
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biomaterials, polymers have been extensively investigated as biomaterials in 

biomedicine7-10.    

        In drug delivery, polymers are classified based upon the following 

characteristics: origin (synthetic, natural, or a combination of both), chemical nature 

(polyester, polyanhydride, protein-based, cellulose derivatives, etc.), backbone 

stability (biodegradation or non-biodegradability), and water solubility (hydrophilic, 

hydrophobic)11-13. However, some of these properties may lead to usage limitations. 

Natural polymers are difficult to extract from their sources and purify, while 

synthetic polymers have high immunogenicity, which limits their long term-usage. 

However natural polymers have the advantage, respect to the synthetic ones, to be 

biodegradable.  

In fact, non-biodegradable polymers need to be surgically removed after they release 

the drug at the target site, in comparison to biodegradable polymers that degrade into 

the body and not need a second surgical procedure to be removed.  

        In this thesis work, the selection of the polymeric matrix has been based mainly 

on the requirements of the application. The general characteristic features that makes 

the polymer a potential candidate for drug delivery include safety, efficacy, water 

solubility, absence of immunogenicity, biological inertia, sufficient 

pharmacokinetics, and the presence of functional groups for covalent conjugation of 

drugs, targeting moieties, or formation of copolymer14. Polymeric materials may be 

found in a variety of forms such as membranes, films, fibers, gels, hydrogels, 

capsules, spheres, particles and 3D-structures (scaffolds)15.  The work developed in 

this thesis has focused on the use of natural origin polymers in particular alginate 

and therefore, in the next section, this material will be further described.  
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1.2. Alginate  

1.2.1. Sources of alginates 

 Alginates are a class of polysaccharides produced by Brown Algae and 

bacteria. They occur as structural components of marine brown seaweeds, localized 

in the intracellular mucilage and algae cell walls.  Alginate found in the intracellular 

matrix exists of an insoluble gel containing a mixture of salt of various cations found 

in sea water, such as calcium, magnesium, potassium, strontium, barium and sodium 

ions16. Commercially available alginates are derived primarily from different Brown 

Algae species16-17, including Laminaruia Hyperboria Macrocystis Pyriera, 

Laminaria Diagitata, Ascophyllus Nodosum, Laminaria Japonica, Eclonia Maxima, 

Lessonia Nigrescense, Durvillea Antarcitica, and Sargassum Spp. In all of these 

species, alginate is the most abundant polysaccharide, comprising up to 40% of the 

dry weight, conferring mechanical strength and flexibility to the marine plant, and 

acting at the same time as a water reservoir to prevent dehydration of the seaweed 

when exposed to the air. In addition, alginate is also produced by some species of 

bacteria, Azotobacter vinelandii, and several Pseudomonas species. They harvest 

alginate as an extracellular polymer, during their vegetative growth phase, with 

biological functions related to the specie. In Azotobacter vinelandii it acts as a 

structural element protecting the cyst from desiccation and unfavorable 

environmental conditions. In Pseudomonas aeruginosa strains, alginate is associated 

with pathogenicity, acting as the causative agent of cystic fibrosis18.  
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 Alginates produced by bacterial biosynthesis, similar in both species, have 

more defined chemical structures and physical properties, if compared to the ones 

derived from algae19-20. Their biosynthetic pathway comprises four different steps:  

1. synthesis of precursor substrate, 

2. polymerization and cytoplasmic membrane transfer, 

3. periplasmic transfer and modification, 

4. export through the outer membrane. 

The knowledge of the metabolic pathway and the possibility to modify easily 

bacteria, may permit the production of high-quality bacterial alginate with tailor-

made characteristics that can be used for biomedical application in future.  

1.2.2. Alginate extraction from seaweeds  

 The commercial production of various type of alginate are obtained from 

algal material. The alginate extraction process (Fig.1.1) consists mainly in three 

major steps:  

1. Pre-extraction  

2. Neutralization  

3. Precipitation/Purification 

The first step involves an acidic treatment with HCl of the powdered algal mass to 

extract alginic acid and, at the same time, to allow the removal of impurities 

potentially present. These include counter ions (Ca
2+

, Na
+
, Mg

2+
, Sr

2+
, etc.) and 

contaminants (fucoidans, laminarins, proteins and polyphenols) present in the kelp. 

This pretreatment is often repeated several times to ensure full extraction of alginic 

acid. At the end of this process, the supernatant (residual algal particles) is 

eliminated. In the neutralization step the insoluble alginic acid is treated with an 

alkaline solution by using sodium carbonate (Na2CO3) or sodium hydroxide (NaOH), 

leading to a pH=9-10. This process allows the conversion of insoluble alginic acid 
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into the water-soluble sodium alginate. The final step is the precipitation of alginate 

solution to obtain its water-soluble powder as sodium alginate, calcium alginate or 

alginic acid by the addition of alcohol, typically ethanol, calcium chloride and 

hydrochloric acid, respectively16.   
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Figure 1.1: Schematic representation of the extraction process of 

alginates from seaweeds16.  
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1.2.3. Chemistry 

 Structurally speaking, alginates are a family of linear, unbranched binary 

polysaccharides containing blocks of monomers of β-D-mannuronic acid (M) and α-

L-guluronic acid (G) residues joined together by (1,4)-glycoside linkages. The 

monomers can be composed of G-G, M-M and G-M  blocks (Fig. 1.2)21-23.  

 

The M and G contents, the extent of the sequences and the molecular weight give 

different physical and chemical properties to the alginates. The molecular variability 

is dependent on the organism, the algae tissues from which the alginates are isolated 

from the algae, and the time of year when it is harvested16.  For these reasons, 

different types of alginates exist in nature.  One of the main characteristics of alginate 

physical features is the ion-binding property, with an affinity against multivalent 

cations such as Ca2+, Sr2+, or Ba2+ 
inducing the formation of a crosslinked gel24-26. 

Responsible of this process are the G-blocks of alginate, able to participate in 

Figure 1.2: Structural characteristics of alginates: (a) alginate 

monomers, (b) chain conformation, (c) block distribution23. 
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intermolecular cross-linking with divalent cations to form hydrogels. This process is 

based on the substitution of sodium ions of the G residues by calcium ions, resulting 

in the formation of the so-called “egg-box gel” as depicted in Fig.1.3, whose strength 

is dependent on the concentration of divalent ions. In this model, calcium ions are 

packed in the cavity between two diaxially linked glucuronic acid residues27.  
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Figure 1.3: Schematic representation of the egg-box model for calcium alginate 

gelation. (a) Drawing of the binding of polymer chains and (b) the formation of 

junction zones in alginate gels16. 
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1.2.4. Alginate as biomaterial 

 Alginate is a polymer approved by the Food and Drug Administration (FDA) 

for human use as food and medical grade material. Because of its properties of 

biocompatibility, low toxicity, non-immunogenicity, biodegradability, 

hydrophilicity and relatively low cost, alginates have been widely applied as 

biomaterials for multiple biomedical and pharmaceutical applications. However, the 

chemical composition and the mitogenic contaminants found in alginates are the two 

main contributors to its immunogenicity. Alginate biocompatibility have been 

analyzed and confirmed by in vitro cytotoxicity assays together with in vivo 

experiments, after injection or implantation of the polymer28. The biocompatibility 

characteristics are influenced by the concentration of G and M residues. Moreover, 

it has been described that alginates with high M-block content are directly connected 

to the stimulation of inflammatory reaction increasing cytokines production29, 

especially tumor necrosis factor alpha (TNF- α) and interleukin 1 (IL-1) and 6 (IL-

6)30.  In this regard, pattern recognition receptors (PPR’s), especially toll-like 

receptors TLR4 or TLR 2 together with CD1431 are involved. The immunologic 

potential of poly-mannuronate has also been registered in several in vivo animal 

models32. On the contrary, alginates with high G content don’t induce inflammatory 

responses and consequently are used for in vivo research33. In addition, the 

immunogenic reaction can be attributed to impurities residual (i.e. heavy metals, 

endotoxins, proteins, polyphenolic compounds) that could be present in the 

alginate43. Therefore, purification is assumed to eliminate contaminants that can 

cause an undesirable immuno-response, ensuring very high purity of alginate, that 

was reported to not induce any significant foreign body reaction when implanted35 

or subcutaneously injected into animals36. Moreover, properties such as solubility, 

hydrophobicity and physico-chemical and biological characteristics may be 

modified by forming alginate derivatives through functionalizing available hydroxyl 

and carboxyl groups.  
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 The above-mentioned properties of alginate have contributed to diffuse its 

use in many fields, particularly in the food, pharmaceutical and biotechnological 

industries. Alginate has been, and still is, widely studied and has numerous industrial 

application37. Different aspects of its properties had been exploited, namely, 

alginate’s stabilizing, viscosity-enhancing, emulsifying, gelling and film-forming 

properties38-39. As biomaterial, alginate have been used for different biomedical 

applications, due to its biocompatibility and low cost. Different alginate structures 

can be obtained by processing the biopolymer into fibers, films, foams, hydrogels, 

nanoparticles and microspheres, have been proposed based for the wide range of 

uses40-41.  Several commercial alginate-based products have been marketed 

especially as wound dressings (e.g Algicell
® (Derma Sciences), AlgiSite M

® (Smith 

& Nephew), Comfeel Plus
® (Coloplast), Kaltostat

® (ConvaTec), Sorbsan
® (UDL 

Laboratories), and Tegagen
® (3M Healthcare)), as the material provides a moist 

environment that could aid wound healing. Alginate dressings are mainly 

commercially available in freeze-dried porous sheet or fibrous non-woven form. The 

dry form of the dressing will enable the absorption of the wound exudate hereby 

providing a physiological moist environment while concurrently preventing 

infection at the wound site40. However, other commercial products have been 

developed for oral applications, such as Gastrotuss
®

, Algicid
®

, Gaviscon Double 

Action Liquid
®

 or tablets
®

.  These formulations are available as syrups, tablets and 

suspensions.  In oral formulations, alginate acts creating a mechanical barrier 

between the stomach and the esophagus which prevents the reflux, recurrent 

symptoms of respiratory, choking, dysphagia, heartburn, belching, irritability; 

accelerating gastric movement, regenerating mucous membranes of the esophagus 

and ensuring its protection42.  In tissue engineering, several studies report the 

application of alginate for the regeneration of various tissues and organs such as 

liver, pancreas, nerve bone, cartilage, skin and muscle43. In pharmaceutical 

applications, this polysaccharide has been employed both alone and in combination 
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with other material, as a matrix for drug delivery. The possibility to modify alginate 

properties in order to regulate the kinetics of the drug release has been the main 

interest in some researches. The interaction of alginate with the respective drugs and 

also the physical properties that affect the manner in which the drug is released were 

investigated40.  

 Besides the above-mentioned applications, alginate has been investigated as 

a model system for the encapsulation of mammalian cell culture for biomedical study 

purposes.  Stable cultures in alginate beads have been achieved with a number of cell 

types including chondrocytes, bone- marrow stromal cells, islets, myoblasts, 

fibroblasts, Schwann cells, kidney cells, epithelial cells, and hepatocytes. However, 

due to the lack of cell-binding sequence in alginate, RGD-modified alginate is 

primarily utilized for cell-culture substrate purposes nowadays44.  

 

1.3. Emulsions   

1.3.1. Emulsion definition 

 An emulsion is a heterogeneous system consisting of two immiscible liquids, 

combined together to form a semi-stable mixture. Generally, the immiscible liquid 

phases in an emulsion consist of an organic (oil) phase and an aqueous (water) phase. 

In an emulsion, one liquid is dispersed, in the form of droplets, in a second liquid 

continuous phase. The dispersed phase is referred as the internal (disperse) phase and 

the continuous phase as the external one45-47.     

 Emulsions can be classified based on the nature of the external and internal 

phases as oil-in-water (O/W) or water-in-oil (W/O). However, more complex 

systems referred to as “double emulsions” or “multiple emulsions” can be made. 

These systems present an emulsion as the dispersed phase in a continuous phase and 

they can be either water-in-oil-in-water (W1/O/W2) or oil-in-water-in-oil 

(O1/W/O2). These emulsions are usually prepared using a two-stage process to 

obtain the final emulsion (Fig.1.4). 
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Figure 1.4: Emulsion classification according to the distribution of the internal 

and external phase: (a) water-in-oil, (b) oil-in-water, (c) oil-in-water-in-oil and 

(d) water-in-oil-in-water emulsions. Readapted from48. 

Emulsions can be also classified with respect to droplet size in49-50: 

1. Macroemulsions O/W and W/O: These systems usually have a size (of what?) 

range of 0.1–5 μm with an average of 1–2 μm. These systems are usually 

opaque or milky due to the large size of the droplets and the significant 

difference in refractive index between the oil and water phases.  

2. Nano-emulsions: These systems usually have a size range 20–100 nm. 

Similarly to macroemulsions, they are only kinetically stable. They can be 

transparent, translucent or opaque, depending on the droplet size, the 

refractive index difference between the two phases and the volume fraction 

of the disperse phase.  

3.  Microemulsions  These systems usually have the size ranging from 5 to 50 

nm. They are thermodynamically stable and strictly speaking they should not 
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be described as emulsions. A better description is “swollen micelles” or 

“micellar systems”. 

  

1.3.2. Emulsifiers  

 Emulsions are thermodynamically unstable systems, which tend to complete 

phase separation due to droplet coalescence. For this reason, during emulsions 

formulation, a third component is necessary to make these systems kinetically stable, 

the emulsifier. Emulsifiers are ‘amphiphilic’ and ‘surface active’ materials51-52 which 

are not only able to facilitate droplet break-up, thus lowering the oil-water interfacial 

tension53, but they also create a protective layer around the oil droplets, in order to 

prevent them to coalescing54.  

 Surfactants are generally classified according to the nature of the hydrophilic 

group. The hydrophilic regions can be anionic, cationic, or nonionic55. Among them, 

non-ionic surfactants, mainly Tweens and Spans, are widely used in the food and 

pharmaceutical industries. In addition, some surfactants possess both positively and 

negatively charged groups, and can exist in either or both anionic or cationic state, 

depending on the pH of the solution and the pKa of the ionizable groups on the 

surfactant. These surfactants are known as ampholytic compounds. 

 The past two decades have seen the introduction of a new class of surface-

active substance, so-called “polymeric surfactants” or “surface-active polymers”, 

which result from the association of one or several macromolecular structures 

exhibiting hydrophilic and lipophilic characters, either as separated blocks or as 

grafts. They are now very commonly used in formulating products as different as 

cosmetics, paints, foodstuffs, and petroleum production additives56. To select the 

surfactant during emulsion formulation, the hydrophilic-lipophilic balance (HLB 

number) is used. It is a dimensionless scale, ranging from 0 to 20, developed by 

Griffin57. This system is an indicator of the emulsifying characteristics of an 

emulsifier, but not its efficiency and takes into account the relative percentage of 

hydrophilic to lipophilic (hydrophobic) groups in the surfactant molecule. In general, 
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W/O emulsifiers exhibit HLB values in the range 3–8 while O/W emulsifiers have 

HLB values of about 8–18. So, the higher the HLB value of an emulsifying agent, 

the more hydrophilic it is58.   

The average HLB number may be calculated as follow:  

HLB = x1HLB1 + x2HLB2 

where x1 and x2 are the weight fractions of the two surfactants with HLB1 and 

HLB2.  

 

1.3.3. Emulsion stability 

 An emulsion can be defined stable when its properties remain unchanged 

over a certain period of time.  However, emulsions are thermodynamically unstable, 

and changes of their properties will generally occur over time. Moreover, the more 

slowly the properties change, the more stable the emulsion is. For this reason, in 

important to understand the causes of instability to select suitable components to 

form stable emulsions and to distinguish thermodynamic stability and kinetic 

stability. Thermodynamics gives information about processes taking place during 

emulsification or at quiescent conditions. Kinetics gives information about the rate 

at which these processes occur. There are many phenomena of physical instability 

that can alter emulsion properties as creaming/sedimentation, coalescence, 

flocculation, Ostwald Ripening and phase inversion, some of which may occur 

simultaneously59-61 (Fig. 1.5). In addition, chemical instabilities could occur, i.e. 

oxidation of the oil phase, microbiological contamination and adverse storage 

conditions62.   
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Figure 1.5: Overview of the instability phenomena in the emulsion system61 

 

1.3.3.1. Creaming/Sedimentation 

 Creaming/Sedimentation results from external forces, usually gravitational 

or centrifugal. Creaming occurs when dispersed droplets rise to the top of the 

continuous phase, in the case of o/w emulsions, and it is characterized by a 

whitish/yellowish layer at the top of an emulsion. On the contrary, sedimentation 

occurs when dispersed droplets sink the bottom of the continuous phase, in the case 

of w/o emulsions, where in general the oil phase has a lower density than the water 

phase and characterized by a layer that appears at the bottom of an emulsion.  

However, while this process is not considered as serious instability, because can be 

reversed by gently mixing or shaking of the formulation, it may lead to coalescence 

of the dispersed phase.  

 Creaming or sedimentation processes occurring in emulsion can be easily 

assessed by optical observations. Creaming/sedimentation rate can be determined by 

measuring the volume of cream/sediment in the emulsion with time. This may be 
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done by placing the emulsion in a calibrated beaker or tube and measuring the height 

of the cream/sediment every second, minute etc. In some cases, visual observations 

are not accurate enough to measure the creaming/sedimentation rate; creaming or 

sedimentation can occur very quickly or the distinction between continuous phase 

and cream/sediment layer is difficult to visualize. More sophisticated techniques are 

then used to measure the creaming rate, using light scattering
 
or ultrasonic imaging. 

Creaming/sedimentation can be minimized by reducing the droplet size, increasing 

viscosity of the continuous phase, reducing density differences between the two 

phases and increasing the volume fraction of the dispersed phase61.  

 

1.3.3.2. Coalescence 

 Coalescence is also known as breaking of emulsions. This phenomenon 

occurs when two or more droplets fuse together to form larger droplets, due to 

thinning and disruption of the liquid film between the droplets. This process results 

in a considerable change of the droplet size distribution, which shifts to larger sizes. 

Thus, contrary to creaming, coalescence process is irreversible. The limiting case for 

coalescence is the complete separation of the emulsion into two distinct liquid 

phases. The driving force for coalescence is the surface or film fluctuations; this 

results in a close approach of the droplets whereby the van der Waals forces are 

strong and prevent their separation. To prevent coalescence, the repulsive forces 

must exceed the van der Waals attraction, thus preventing film rupture, for example 

altering the viscosity and/or forming a strong interfacial film, using particulate 

solids61. 

 

1.3.3.3. Flocculation 

 Flocculation refers to droplet aggregation into larger ones, initially without 

any change in primary droplet size. It is caused by van der Waals attraction which 

are universal with all disperse systems. It is the result of the van der Waals attractions 
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which are universal with all disperse systems. Flocculation occurs when there is not 

sufficient repulsion to keep the droplets apart at distances where the van der Waals 

attraction becomes very weak. Flocculation may be either strong or weak, depending 

on the magnitude of the attractive energy involved. Specifically, flocculation occurs 

when there is not sufficient repulsion to keep the droplets apart at distances where 

the van der Waals attraction is weak. Flocculation may be “strong” or “weak”, 

depending on the magnitude of the attractive energy involved. In cases where the net 

attractive forces are relatively weak, an equilibrium degree of flocculation may be 

achieved (so-called weak flocculation), associated with the reversible nature of the 

aggregation process. With a strongly flocculated system, one refers to a system in 

which all the droplets are present in aggregates due to the strong van der Waals 

attraction between the droplets. Flocculation of droplets it is not a serious stability 

problem and it can be reversed by gentle mixing or shaking of the emulsion as with 

creaming. However, it can result in coalescence of the droplets if the emulsifier 

showed inadequate mechanical resistance.  

 

1.3.3.4. Ostwald Ripening 

 Ostwald Ripening is a breakdown mechanism that occurs when the droplets 

are not in direct contact. With emulsions which are usually polydisperse, the 

smaller droplets will have larger solubility compared to the larger ones (due to the 

effects of curvature). With time, smaller droplets disappear, and their molecules 

diffuse to the bulk and become deposited on the larger droplets. With time the 

droplet size distribution shifts to larger values. A certain solubility of the dispersed 

in the continuous phase is required for Ostwald ripening to take place and is driven 

by the difference in Laplace pressure between droplets having different radii. It is 

possible to stabilize emulsions against Ostwald ripening by adding components 

of high molecular weight that reduce the rate of diffusion of molecules within the 

dispersed species61,63-64.  
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1.3.3.5. Phase inversion  

 Phase inversion refers to the process whereby there will be an exchange 

between the disperse phase and the medium. For example, an O/W emulsion changes 

to a W/O emulsion and vice versa. It can be affected by a high concentration of 

dispersed phase (≥70%) or by changing the hydrophilic/lipophilic properties of the 

emulsifier by the addition of any additive65.  

1.3.4. Emulsification  

 The process of producing an emulsion by mixing two immiscible liquids is 

called emulsification or homogenization and a mechanical device designed to carry 

out this process in known as homogenizer66-67. Considering the nature of the starting 

materials, this process can be divided into two categories: primary and secondary 

homogenization. In the primary homogenization the creation of an emulsion is 

directly obtained from two separate liquids. On the contrary, secondary 

homogenization occurs when droplets of an already existing emulsion are reduced in 

size63. The size of the droplets produced by a homogenizer depends on a balance 

between two physical processes: droplet disruption and droplet coalescence. Droplet 

disruption involves the disruption of larger droplets into smaller ones and is 

determined by a balance between interfacial forces and disruptive forces 59,68. 

 Interfacial forces are responsible to keep a droplet in a spherical shape and 

are characterized by the Laplace pressure (∆PL), which acts across the oil–water 

interface toward the center of the droplet so that there is a larger pressure inside the 

droplet than outside of it:  

∆PL= 4 γ /d 

The equation indicates that the pressure required to disrupt a droplet increases as the 

interfacial tension (γ) increases or as the droplet size (d) decreases. The nature of the 

disruptive forces responsible of the droplet break-up during emulsification depends 

on the hydrodynamic conditions, i.e. the flow regime (laminar, turbulent, or 

cavitational) that takes place during the mixing process and also on the type of 
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homogenizer used69-70.  In order to induce the droplet break up, the disruptive forces 

must overcome the interfacial forces. The droplet disruption is determined by 

different flow regimes that are dependent on the type of homogenizer and the features 

of the fluids. The type of regime is mainly influenced by the type of forces and by 

the flow type. The forces that act in the droplet separation process are: 

1. Frictional (mainly viscous) forces due to the flow of fluid parallel to 

the surface of the droplets;  

2. Inertial forces due to local pressure fluctuations and that act 

perpendicular to the surface of the droplets.  

While, the types of flow are classified as laminar and turbulent depending on the 

dimensionless Reynolds numbers (Re):   

Re =  
νlρ

η
 

where ν is the linear liquid velocity, ρ is the liquid density, η is its viscosity. l is a 

characteristic length that is given by the diameter of flow through a cylindrical tube 

and by twice the slit width in a narrow slit. If Re <1000 the flow is laminar, while if 

Re>2000 the flow is turbulent.  

 In the case of droplet coalescence, once the droplets are disrupted during 

homogenization, they are constantly moving, and the frequency of collision is very 

high due to agitation. These collisions may lead to coalescence, leading to an increase 

in droplet size. To avoid this phenomenon, the presence of emulsifier in the system, 

adsorbing at the oil-water interface can create a layer around the droplets that 

prevents merging. In this context, the concentration of the emulsifier and that time 

that it requires to adsorb at the interface are two critical parameters. The concertation 

of the emulsifier as to be high enough to cover the droplet surface, in contrast if is 

too low droplets may coalesce. The time needed to the emulsifier to soak up  at the 
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interface (
ADS

), compared to the time between the droplet collision (
COL

), has to be 


ADS /COL 1 in order to minimize the coalescence.  

Emulsions can be fabricated employing a number of different techniques, which are 

generally categorized in high energy or low energy methods depending on the energy 

input requirements71-75. 

 

1.3.5.  High energy methods  

 High-energy techniques generate intensive disruptive forces able to mix and 

breakup the oil and the water phases, producing tiny droplets. During this process, 

the generated disruptive forces have to be higher than the restorative forces, 

determined by the Laplace pressure, which holds the droplets into spherical shapes. 

Consequently, the droplets deform, and the specific surface area increases up to the 

point of disruption. The size of the droplets using high-energy methods depends on 

the homogenizer type, operating conditions (e.g., energy intensity, duration, and 

temperature), sample composition (e.g., oil type, emulsifier type, relative 

concentrations), and physicochemical properties of the phases (e.g., interfacial 

tension and viscosity). The main advantage of this processes is the possibility to 

control the size distribution and composition, producing emulsions with desired 

properties. However, recoalescence can occur during high energy emulsification 

together with chemical degradation events due to the intense energy generated. 

Various devices can be used to fabricate the emulsions such as high pressure, rotor-

stator, ultrasonic and membrane systems73-75. 

 

1.3.5.1.  High-pressure homogenizers 

 High-pressure homogenizers (HPH) are devices comprising of a high-

pressure pump and a homogenizing nozzle. These systems are efficient in reducing 

the size of droplets in a coarse emulsion. The emulsion is introduced into the input 

of the homogenizer and dragged by a pump into a chamber located on the backstroke 
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of the homogenizer. Later, the pump forces the emulsion through a tight valve at the 

end of the chamber on its forward stroke. When the emulsion passes across the valve, 

disruptive forces (turbulence, shear and cavitation) cause the deformation and 

breakup of the larger droplets into smaller ones.  The flow regime responsible of this 

phenomenon depends on the characteristics of the material being homogenized, the 

size of the homogenizer, and the design of the homogenization nozzle68,73-78 

(Fig.1.6). A variety of different nozzle designs is available to increase the success of 

droplet disruption within the homogenizer. For example, for standard and 

microfluidizer nozzles inertial forces in turbulent flow are responsible of droplet 

breakup; while for jet dispenser or orifice valves shear forces in laminar elongational 

flow come into play)76.  

 

 

Figure 1.6: Schematic of high-pressure homogenizer device79 
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1.3.5.2.  Rotor-stator 

 In the rotor-stator system, emulsification is carried out under very high shear 

rate (up to 107 s-1) in a very narrow gap (e.g. 0.1 mm) between a high-speed rotor 

and stator surface.  Rotor-stator systems are used to produce emulsion operating 

discontinuously or continuously. Usually, for discontinuous or quasi-continuous 

operating systems, agitators of different geometry or gear-rim dispersing machines 

are used. Here, the effective breakup energy is registered in the form of forces of 

inertia and shearing in turbulent flow. On the other hand, colloid mills with smooth 

or toothed rotors and stators, gear-rim dispersing machines and intensive mixers are 

employed for continuous process. When the surfaces of the rotor and stator are 

smooth the dominant droplet disruption mechanism is laminar shear flow, but when 

the surfaces are roughened or toothed it is turbulence.  The liquids enter at the bottom 

through suitable tubes and then flow through the narrow slit between the stator and 

the rotor and finally leave the system. In the dispersing zone of these machines 

droplets of a premix are deformed and disrupted80-81(Fig.1.7). 

Figure 1.7: Schematic of Rotor-stator device80 

 

1.3.5.3.   Ultrasonic homogenizers 

 Ultrasonic systems employ high intensity ultrasonic waves (> 20kHz) to form 

an emulsion containing very tiny droplets. The ultrasonic waves generate intense 
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shear and pressure gradient within the material, determining droplet breakup mainly 

thanks to cavitation and turbulent effects82.  The main features regulating the 

efficiency of ultrasonic homogenizers are the intensity, duration and frequency of 

the ultrasonic waves54,83-84. This technique can be used both to generate an emulsion 

homogenizing separate oil and water phases or to reduce the droplet size of a pre-

existing coarse emulsion. The ultrasonication can be done both in a continuous or 

discontinuous way.  It is possible to distinguish two different types of sonicators: (1) 

bench-top and (2) large-scale continuous flow.  

 Bench top homogenizers are mainly used in research laboratories and are 

ideal for the preparation of small volume emulsions. It comprises of an ultrasonic 

probe that contains a piezoelectric crystal enclosed within a protective metal case 

usually tapped at the end. This kind of homogenizers work as follow: the electrical 

wave applied to the transducer causes a rapid oscillation of the piezoelectric crystal 

inside it, which generates ultrasonic waves. As the probe is immersed into the 

sample, the ultrasonic wave generates intense disruptive forces at its tip (cavitation, 

turbulence and interfacial waves) determining the disruption of the liquid sample 

into smaller fragments (Fig.1.8). 

 Large-scale continuous-flow homogenizers are generally used for the 

continuous production of emulsions. In these devices, the sample to be homogenized 

flows through a channel and impacting on a sharp-edged blade causes the rapid 

vibration of the blade which generates intense ultrasonic waves capable to breakup 

any droplet in its immediate vicinity thanks to a combination of turbulence, shear 

and cavitation. 
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Figure 1.8: Ultrasonic setup (a) batch-type ultrasonic setup, (b) components of 

batch-type ultrasonic setup84. 

 

1.3.5.4.  Microfluidizer homogenizers  

 Microfluidizers consist of a fluid inlet, a pumping device and an interaction 

chamber comprising two channels through which the fluids are made to flow and 

interact with each other.  In particular, the fluid (pre-existing coarse emulsion or 

individual water and oil phases) is pushed within the system under high pressure. 

Once into the interaction chamber the fluid is split into two streams that collide to 

each other generating intense disruptive forces and causing the mix of the fluids and 

the droplets breakup allowing the emulsion formation.  In order to increase the 
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efficiency of this process, different channel types have been designed, such as 

straight or zig-zag channels54,74,85  (Fig.1.9). 

Figure 1.9: Schematic of Microfluidization71 

 

 

1.3.5.5.  Membrane and microchannel homogenizers  

 In a membrane homogenizer, an emulsion is formed by pushing the disperse 

phase through the pores of a membrane into the continuous phase. During this 

process, that could be in batch or continuous, the disperse phase is constrained 

perpendicular to the membrane, while the continuous phase flows tangential to the 

membrane.  In general, the membrane has a shape of an hallow cylinder and through 

it the dispersed phase is pressed from outside, while the continuous phase is pumped 

through the cylinder86-87 (Fig.1.10). Several parameters influence the droplet size: 

membrane properties, transmembrane pressure and fluxes88. The membrane pore 

size distribution influences the diameter of the formed droplets. Different 

membranes with several pore dimensions can be manufactured leading to the 

production of emulsions with different mean droplet size89. When the pore density is 

too large, coalescence between the formed drops can occur, while, if the pore density 

is too low, the production rate is insufficient. Preferably, to have a monodisperse 

emulsion, the membrane should have pores with a narrow size distribution, even if 

practically the pore size distribution of a membrane produces usually droplets more 

or less polydisperse90.  
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 The second important property of the membrane to take into account is its 

polarity, which determines the type of emulsion produced. Hydrophobic membranes 

are needed to produce water-in-oil emulsions, whereas hydrophilic membranes are 

needed to produce oil-in- water emulsions87. Also the pressure applied to the 

dispersed phase have to be sufficient high to achieve drop formation.  This pressure 

should be at least of the order of magnitude of the Laplace pressure of a drop of 

diameter equal to the pore diameter. In general, high pressure promotes large drops 

formation or dispersed phase jet, while low pressure decreases the production rate; 

for this reason, a compromise between these two situations is needed88,91. The 

membrane must be sufficiently robust so that it is not broken by the pressures applied 

to the fluids during homogenization and for this reason are commonly made of 

microporous glass or of ceramic materials. The main advantage of this process is the 

low stress induced to the product, so that this method is suitable for sensitive 

products.  

  

 

 

 

 

 

Figure 1.10: Particles production by direct and premix membrane 

emulsification. (A) Direct membrane emulsification and (B) Premix 

membrane emulsification87. 
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 Microchannel emulsification is a technique similar to membrane 

emulsification by using the same principle of force out the dispersed phase into the 

continuous phase92-95. However, in this system, the dispersed phase is pushed 

through microfabricated channels with well-defined geometries, which influence 

droplet size. As in the case of membrane emulsification, also for microchannel 

homogenization, the emulsion type is dependent on the polarity of the channel: 

hydrophilic to produce O/W emulsions and hydrophobic for W/O emulsion type.  

The emulsification process can be followed by using high-speed camera and a 

microscope. During this process (Fig.1.11), the phase to be dispersed is driven across 

a hole in the center of the plate so that it flows through the microchannels onto a 

relative flat area, called terrace, where the droplet can expand to a disk-like-shape. 

Upon extra swelling, the disk reaches the end of the terrace and drops into the deeper 

well, in which spontaneous detached of the droplet takes place. The mechanism of 

droplet detachment is due to the Laplace instability mechanism. This technique has 

demonstrated to be very helpful for generating droplets with very narrow particle 

size distributions. 

 

1.3.6.  Low-energy approaches 

 Low energy methods for emulsion formation, rely on the spontaneous 

formation of small and uniform droplets within the oil-water-surfactant systems 

under specific environmental conditions (i.e. stirring, temperature and composition). 

These methods are mainly dependent on the physicochemical properties of the 

Figure 1.11: Schematic representation of droplet formation 

process in microchannel emulsification93 
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surfactant and the oil phase. They are advantageous because they can avoid the 

disruption or damage of encapsulated molecules by using low quantity of energy to 

generate the emulsions. However, the main drawback is the requirement of large 

amounts of surfactants and in addiction polysaccharides or proteins cannot be used.  

Different techniques to prepare emulsions are based on low-energy methods, 

including: phase inversion and spontaneous emulsification70,96-97.  

 

1.3.6.1. Phase inversion emulsification 

 Phase-inversion methods are based on the induction of a phase inversion in 

emulsions from W/O to O/W and vice versa. Among these approaches it is possible 

to distinguish: phase-inversion temperature (PIT), phase-inversion composition 

(PIC) and emulsion inversion point (EIP) methods73,75. Phase inversion Temperature 

relies changes in the optimum curvature (molecular geometry) or relative solubility 

of non-ionic surfactants with changing the temperature. The molecular geometry of 

a surfactant can be described considering the packaging parameter (p) expressed as 

the ratio between the cross-sectional area of the lipophilic tail group (aT) and the 

hydrophilic head-group (aH) present within the surfactant structure:  

𝑝 =
aT

aH
 

In water, due to the hydrophobic effect, the surfactant molecules tend to self-

assemble creating monolayers with optimum curvatures that permits the most 

effective packing of the molecules95. The driving force of the PIT method is the 

changes in the physicochemical properties (packing parameter or solubility) of the 

surfactant with Temperature. The temperature at which the inversion of the emulsion 

occurs is known as phase inversion temperature (PIT).  At T< PIT -30 °C, the 

surfactant is soluble in water and its packing parameter is p<1, determining an 

optimum curvature that is convex and tend to favor the formation of O/W emulsions. 

When the temperature reached the PIT, the packing parameter is p=1, monolayers 

with zero curvature are present, with the formation of liquid crystalline or 
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bicontinuous systems.  Finally, when the temperature is higher than the PIT (T> PIT 

+20 °C) the surfactant is more soluble in oil than in water, and its packaging 

parameter is p>1, with an optimum concave curvature, supporting the formation of 

W/O emulsion73,75,101.   

 

Figure1.12: Monolayer curvature of W/O, bicontinuous and O/W 

microemulsions70 

 

 Phase-inversion composition method is rather similar to the PIT method. In 

this case the optimum curvature of the surfactant is modified by altering the 

composition of the system, i.e. by adding salt or changing the pH to amend the 

electrical charge and stability of the emulsion, instead of temperature changes99.  

 In both PIT and PIC methods, the conversion of an emulsion type to 

another is governed by a transitional phase inversion (TPI) which, acting on the 

formulation variables (temperature, pH or ionic strength), consequently cause an 

alteration of the surfactant properties. On the other hand, in the emulsion inversion 

point (EIP) method, the transformation of on type of an emulsion to another is 

determined by a catastrophic phase inversion (CPI).  This phenomenon occurs when 

the ratio of the oil and water phase is altered, but the surfactant characteristics remain 

stable, and is caused by increasing or decreasing the volume fraction of the disperse 

phase of an emulsion above or below some critical level. On the other hand, a 

catastrophic-phase inversion occurs when the ratio of the oil-to-water phases is 
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altered while the surfactant proper- ties remain constant. Practically, catastrophic-

phase inversion is usually induced by either increasing (or decreasing) the volume 

fraction of the dispersed phase in an emulsion above (or below) some critical level100. 

 

1.3.6.2.   Spontaneous emulsification 

 In this method, the emulsion is spontaneously created when a combination of 

oil, water, surfactants (lipophilic and/or hydrophilic) and a water miscible 

cosurfactant are mixed together at constant temperature without any phase transitions 

in the system during the emulsification process101-102 (Fig.1.13). This technique can 

be performed in different ways, by varying the compositions of the two phases, the 

environmental conditions (e.g., temperature, pH, and ionic strength), and/or, the 

mixing conditions (e.g., stirring speed, rate of addition, and order of addition). In the 

pharmaceutical field, the systems prepared employing this method are called self-

emulsifying delivery systems (SNEDDS).  

 

 
 

Figure 1.13: Proposed mechanism for spontaneous emulsification70 

 

1.3.7. Emulsions Pharmaceutical Applications   

 Emulsion technology is employed in many industrial applications including 

food (in which emulsions are by far the most widely used in systems such as 
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mayonnaise, salad creams, beverages, etc.), agriculture (for formulation of many 

herbicides and insecticides), cosmetic and personal care products (hand creams, 

lotions, sunscreens, hair sprays, etc.), pharmaceuticals and others. 

More specifically, in the pharmaceutical field, emulsions have been widely used as 

drug carriers both for hydrophilic and hydrophobic drugs, as they can be delivered 

by oral, topical, and parenteral routes103-104.  A more detailed description of these 

three routes of administration will be discussed in the following sections.  

 

1.3.7.1. Parenteral administration   

 The term "parenteral" covers different administration routes: intravenous, 

intramuscular, and subcutaneous. However, among these routes the most important 

delivery is the intravenous one. These kinds of emulsions are in general O/W 

emulsions and are suitable systems for the delivery of lipophilic compounds. The 

mean particle size of this systems ranging from 200 to 500 nm. The have to satisfy a 

very strict requisite regarding the droplets size because fat particles with a diameter 

over 5um can cause fat emboli in small capillaries i.e. lung capillaries105-107. 

Parenteral emulsions have been extensively used for parenteral nutrition in patients 

in a critical nutrition state and also commercialized in most cases for this purpose 

(i.e. Intralipid, Lipofundin, Liposyn)108-109. These emulsions have been also used as 

carriers for delivering lipophilic drugs intravenously110.  

 Lipid emulsions offer numerous advantages as parenteral drug carriers such 

as solubilization of highly lipophilic drugs, stabilization of labile drugs against 

hydrolysis or oxidation, sustained release, and drug targeting. There are two different 

method for drugs incorporation within these systems: (1) de novo production or (2) 

extemporaneous addiction. De novo production is usually used for highly oil soluble 

drugs by dissolving the drug in the oil phase prior to emulsification. On the contrary, 

extemporaneous addiction of the drug occurs when it is added, with the aid of an 

organic solvent, in preformed fat emulsions. The main drawback of this process is 
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related to the possibility to have drug precipitation in the aqueous phase or breaking 

of the carrier emulsion.  

 

1.3.7.2.  Topical administration  

 Topical drug delivery through the skin is a popular method of drug 

administration as it is a non-invasive and painless. In this context, emulsions have 

been used as both dermatological and cosmetic formulations for many centuries. As 

a topical drug delivery system, emulsions have been formulated in a variety of forms 

including lotions, creams, foams, sometimes emulsion-gels and emulsion-ointments, 

used to apply solutions or suspensions of drugs to the skin for therapeutic purposes.  

These systems are able to delivery either water soluble and insoluble active 

ingredients that can be used for cosmetic or pharmaceutical applications111-112. These 

kinds of formulations have higher compatibility with the skin if compared with other 

topical and transdermal dosage forms. For example, in contrast to ointments, 

emulsions do not block the normal evaporation of moisture and are easy to wash 

away with water, being less oily.  Instead, in comparison to liquid formulations, the 

viscosity of emulsions can be adjusted to better control the surface area of the 

application111-113.  

 When the emulsion is applied on the skin, the drug delivery process occurs 

in different steps. First, the drug is released from the formulation, then it partitions 

into the skin surface and finally the drug diffuses through the skin surface into the 

underlying tissues114. The range of topical emulsion products that use an emulsified 

form of drug includes115:  

1. Creams are topical preparations used across a wide range of skin conditions 

(eczema, psoriasis, acne vulgaris). They can be formulated both as O/W and 

W/O dosages.  Creams hold useful barrier properties which can protect the 

skin and can also be used as vehicle for drug substances (antibiotics, 
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antifungal drugs, local anesthetics, anti-inflammatory drugs, antipruritic 

drugs) when dispersed in a suitable base. 

2. Ointment are usually oil-based dosage forms topically applied both on the 

skin and the mucous membranes. Its dispersion medium or vehicle is referred 

as its base, which selection depends upon the end use of the ointment. In 

general, they are used as emollients, for the application of actives to the skin 

or for protective purposes where occlusion is required. 

3. Gel disintegrates on contact with the skin.  

4. Paste consists of oil, water and powder. Also described as an ointment with 

a dispersed powder.  

5. Liniment (balm, lotion or embrocation) are not hugely significant for 

therapeutic use.  

1.3.7.3.  Oral Administration  

           Emulsions for oral delivery, as submicron emulsions, microemulsions, 

multiple emulsions and self-emulsifying drug delivery systems, are formulations in 

which the active ingredients are solubilized or dispersed in the internal phase of the 

emulsion. In general, these emulsions are mainly used in the form of O/W type 

enhancing the oral bioavailability of poorly absorbed drug substances. Oral 

administration of emulsion based formulations offer numerous advantages, 

including: increased absorption, prolonged pharmacological effects of drugs with 

short half-life, decreased toxicity, protection against degradation (hydrolysis or 

enzymatic) in the GIT 116-119. For their formulation, all the materials used have to be 

safe and are in general supplied from the food field in order to overcome toxicity 

effects.  The absorption of O/W formulations mainly depends on many 

formulation−related parameters, such as drug physical properties, particle size, oil 

nature, the presence of surfactant and the polarity of the oil droplets.  

         Among the different emulsions types for oral delivery, self-emulsifying drug 

delivery systems (SEDDS) are the most used, because when compared with 
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emulsions, which are sensitive and metastable dispersed forms, SEDDS are 

physically stable formulations that are easy to manufacture117. SEDDS can be orally 

administered in soft or hard gelatin capsules118 and form fine relatively stable 

oil−in−water (O/W) emulsions upon aqueous dilution owing to the gentle agitation 

of the gastrointestinal fluids. 

Four drug products on the pharmaceutical market, Sandimmune
® and Sandimmun 

Neoral
® (cyclosporin A), Norvir

® 
(ritonavir), and Fortovase

® (saquinavir), present 

active compounds that have been formulated into specific SEDDS, demonstrating a 

significant improvement in oral bioavailability for these drugs120. 
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drug delivery systems for oral insulin delivery: in vitro and in vivo 

evaluations of enteric coating and drug loading. Int. J. Pharm. 477, 390–398 

(2014).  

118. Sim, T., Lim, C., Hoang, N. H., Joo, H., Lee, J. W., Kim, D. W., ... & 

Oh, K. T. (2016). Nanomedicines for oral administration based on diverse 

nanoplatform. Journal of Pharmaceutical Investigation, 46(4), 351-362. 

119. Mohsin K, Shahba AA, Alanazi FK. Lipid based self-emulsifying 

formulations for poorly water-soluble drugs – an excellent opportunity. 

Indian J. Pharm. Educ. 46, 88–96 66 (2012).  



 

47 

120. Karamanidou, T., Bourganis, V., Kammona, O., & Kiparissides, C. 

(2016). Lipid-based nanocarriers for the oral administration of 

biopharmaceutics. Nanomedicine, 11(22), 3009-3032. 

  

 

 

 

 

 

 

 

 

 

 

  



 

48 

 

  



 

 49 

Chapter 2  

Investigation of in vitro Hydrophilic and 

Hydrophobic dual drug release from 

polymeric films produced by sodium 

alginate-MaterBi
®
 drying emulsions  

 

2.1. Introduction  
 

Partially taken from Setti, Chiara, et al. "Investigation of in vitro Hydrophilic and 

Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium 

alginate-MaterBi® Drying Emulsions." European Journal of Pharmaceutics and 

Biopharmaceutics (2018). 

 

 Emulsion science and technology is proving to be an indispensable tool for 

pharmaceutical formulations, in which problems like stabilization of poorly soluble 

drugs in aqueous media can be circumvented, as well as combination or 

encapsulation of hydrophilic and hydrophobic drugs can be achieved in a single 

medium1-3. An example is the transformation of injectable lipid emulsions, that are 

clinically used as a nutritional fatty acid and vitamin source for hospitalized patients, 

into drug releasing media for the intravenous delivery of lipid soluble therapeutic 

agents3-4. At the same time, alginate emulsions have also evolved, as various 
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microencapsulation and microfluidic technologies started to align with emulsion-

based drug delivery approaches5-6. Alginate emulsions are regarded as ideal 

platforms for the encapsulation of hydrophobic drugs, and for high oil cosmetic or 

edible grade payloads, such as proteins5. For instance, alginates have been shown to 

boost stability of dairy-protein emulsions7. They were also indispensably used as pH-

sensitive drug delivery systems8. Sodium alginate can be easily cross-linked 

(gelatinized) by various aqueous salt solutions (i.e. calcium chloride) via an ion 

exchange mechanism9. Being this property transferable to alginate-based 

emulsions10, both hydrophilic and hydrophobic active agents can be effectively 

encapsulated in the form of macro-11, micro-1 or nano-scale emulsified spheres12, 

depending on the targeted pharmaceutical application. Moreover, the extent of ion 

exchange cross-linking can be tuned in order to control the release of the 

encapsulated agents13. In certain cases, cross-linked alginate beads can be coated 

with other natural biopolymers (such as chitosan), in order to further delay or sustain 

the release process in different pH environments, such as the intestinal media14.   

 In the early 90s, surfactant-laden alginate-polymer emulsions containing 

hydrophobic biopolymers dispersed in oil phase were developed15, and, lately, they 

have been gaining in popularity not only in pharmaceutics but also in the field of 

food science and technology16. Recent works showed that these emulsions could be 

electrospun to encapsulate drug reservoirs in fibrillar scaffolds17. According to Qi et 

al.17, many new types of functional biomaterials can be designed by combining 

alginate with various hydrophobic biopolymers in alginate-polymer emulsions, with 

proper surfactant chemistry.  Among these systems, polylactic acid (PLA) polymers 

deserve special attention, considering their extensive use in biomedics18-19. Alginate-

PLA emulsions are considered to be a cost effective one-pot synthesis templates for 

creating porous scaffolds20-21. For instance, biodegradable microspheres containing 

cisplatin (a chemotherapy medication) were formulated by PLA-polycaprolactone 

(PCL) blends in alginate emulsions as sustained drug delivery systems for the control 

of restenosis22. Liquid extrusion of alginate-polymer emulsions into cross-linking 



 

51 

salt solutions is a highly preferred method of producing functional soft materials due 

to the fact that, during liquid extrusion, surfactants are indispensable and can 

maintain micellar stability and phase miscibility. However, production of soft 

materials from drying emulsions requires continuous phase miscibility, since 

surfactants lose their function as the emulsions dry out into films or monoliths23.  

 In the present study, we propose an alternative hydrophobic biocomposite for 

the development of alginate-biopolymer emulsions that can host and deliver, in a 

controlled manner, both hydrophobic and hydrophilic active agents. In particular, we 

show that aqueous solutions of sodium alginate and organic solvent dispersions of 

MaterBi® can be emulsified without the use of any surfactants by ultrasonic 

processing, and, upon drying, novel homogenous polymer films can be obtained. We 

believe that small thermoplastic starch particles in MaterBi® acted as Pickering 

emulsion stabilizers24-26 allowing surfactant-free incorporation of two different 

model drugs, namely a cutaneous hydrophilic antiseptic and hydrophobic curcumin 

into the emulsions. 

 MaterBi® is a proprietary blend based on starch and polyesters, which has 

characteristics of use and workability very similar to those of traditional plastics. 

Main aspect of this material is its complete biodegradability by microorganisms, with 

the production of non-toxic degradation products involving water, CO2 and 

methane27. This bioplastic has been developed and commercialized by Novamont, 

that produces four different classes of biodegradable materials under the MaterBi® 

trademark, all starch-based but differing in synthetic components: A, V, Y and Z.  

• Class A is composed by thermoplastic starch complexed with vinylic 

ethylene alcohol copolymers. Those are biodegradable and non-compostable 

materials, with a biodegradation time frame of 2 years in a liquid 

environment. They are mainly used in areas where compostability is not 

required.  

• Class V comprises materials where the content of starch, as thermoplastic 

plasticized starch, is over 85%. These items are biodegradable, with a 
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biodegradation time shorter than Z grades, compostable and soluble, used as 

substitutes of polystyrene packaging foams.   

• Class Y includes naturally-derived supplies, such as thermoplastic starch in 

a dispersed form and cellulose derivatives. They are biodegradable and 

compostable, with mechanical properties and moldability very close to those 

of polystyrene. These materials are used for rigid and dimensionally stable 

injection molded items.   

• Class Z encompasses materials with thermoplastic starch and PCL in a 1:1 

weight ratio.  Materials of this class are biodegradable, with a biodegradation 

time of 20-45 days in composting conditions. They are used for films and 

sheets production. The micro-structure of the products belonging to this class 

can be very different, ranging from thermoplastic starch dispersed in the 

synthetic component as in the case of MaterBi® ZIOIU, to thermoplastic 

starch in a semi-continuous phase, as in the case of MaterBi® ZF03U/A. 

 MaterBi® of class Z was used in this research project. It is completely 

biodegradable and commercially applied for the fabrication of several biodegradable 

objects (Fig.2.1) such as bags, gloves, food trays, transparent film, disposable cups 

and dishes, cotton sticks, diapers, containers for cosmetics, and toys27-29.  

Figure 2.1: MaterBi® applications 
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 Although both PCL and thermoplastic starch have been extensively used in 

biomedical and pharmaceutical applications, no such applications have been 

published using MaterBi®29. We avoided the use of surfactants to stabilize our 

emulsions. Despite their useful function in various emulsion systems30, several in 

vitro assays demonstrated certain severe side effects and cytotoxicity of surfactants 

on skin31-34. Non-ionic surfactants are considered to be the most suitable ones, due 

to their low irritation potential35. Furthermore, interaction of certain surfactants with 

biological systems can be associated with their ability to penetrate into the biological 

membranes, resulting in toxic effects and limiting their usage in pharmaceuticals.  

For example, surfactants can induce phospholipid emulsification, contributing to 

cellular damage, cytolytic processes and the release of proteins, lysosomal and 

cytoplasmic enzymes as well as inflammatory mediators36-39.  

 We focused our research on the combination of two biopolymers, such as 

Sodium Alginate (SA) and MaterBi®, to develop a novel biodegradable material able 

to incorporate and release hydrophilic and hydrophobic drugs simultaneously, for 

the treatment of skin wounds.  

 The wound healing process, which is a restorative response to tissue injury, 

is characterized by four overlapping and interdepended phases: hemostasis, 

inflammation, proliferation, and remodeling, in which different cellular types (e.g. 

fibroblasts, keratinocytes, macrophages), growth factors and matrix components act 

together to restore the integrity of the damaged tissue40-43 (Fig.2.2). With the aim of 

enhancing the healing process and to counteract several aspects affecting the overall 

tissue remodeling (e.g. excessive inflammation and wound infection), different 

wound dressings have been developed as vehicles able to deliver drugs or therapeutic 

agents to the wound site44-51. 
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Figure 2.2: Stages characterizing the skin tissue wound healing process51 

 

 Neomercurocromo®, a commercial drug, was used as cutaneous antiseptic 

and accelerating healing agent. A standard bottle of 100 mL of this solution contains: 

chloroxylenol (0.3 g), eosin (2.0 g) and propylene glycol (30.0 g), with trace amounts 

of ethanol and sodium EDTA. Being not toxic, this product is used for local 

treatment of wounds, as disinfectant in abrasions, burns and bedsores, by directly 

applicating few drops (1-2 times a day) on the injured part. Neomercurocromo® is 

known to be active against gram-positive bacteria (Staphylococcus aureus, 

Streptococcus pyogenes, Propionibacterium acnes, Corynebacterium xerosis), 

gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella 

pneumoniae), and fungi (Candida albicans). The two main components presenting 

antiseptic functionalities are chloroxylenol and eosin. Chloroxylenol is a chlorinated 

phenolic compound employed in antiseptic or disinfectant formulations52-53, listed 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ethanol
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ethylenediaminetetraacetic-acid
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by the World Health Organization as model of essential medicines54. Thanks to its 

nature, chloroxylenol may probably exert its effect against a wide range of Gram-

positive bacteria by acting on microbial membranes. Eosin (2% in solution) is well-

known for topical treatment of several skin complaints. It acts as a bacteriostatic 

agent against Gram-positive bacteria and fungi; moreover, it is also able to reduce 

pro-inflammatory cytokines and promote injured skin re-epithelialization55. Finally, 

propylene glycol is extensively used as a solvent in dermatological formulations. 

This compound was reported to be able to increase the permeation through the skin 

or the wound site of several active principles, being also employed as co-solvent and 

vehicle for many enhancers. 

 Curcumin (Cur) is the principal active ingredient of turmeric, extracted from 

the rhizomes of the plant Curcuma longa. This natural yellow pigment is nowadays 

considered a therapeutic agent, owning a wide range of pharmacological and 

medicinal applications, as proven and supported by results from in 

vitro investigations, animal model studies and human clinical trials56-59. It exhibits 

anti-inflammatory, anti-cancer, anti-microbial, anti-oxidant, and wound healing 

properties57,59. Cur is a complex molecule, having pleiotropic activities on various 

cellular pathways and many molecular targets (i.e. inflammatory molecules, 

transcription factors, enzymes, protein kinases, protein reductases, carrier proteins, 

cell survival proteins, drug resistance proteins, adhesion molecules, growth factors, 

receptors, cell cycle regulatory proteins, chemokines, DNA, RNA and metal 

ions)58,60-62. More specifically, in the wound healing context, Cur has shown efficacy 

against cutaneous, chronic and excisional wounds, accelerating the healing process63-

65.  

Considering the above-mentioned premises and the physicochemical characteristics 

of the material system under study, we formulated the following hypotheses. 

• Hypothesis (a): the combination of alginate and MaterBi® via emulsion 

technology can lead to the development of a new biodegradable and 

biocompatible material with controlled drug release properties. 
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• Hypothesis (b): given the hydrophilic and hydrophobic domains of the 

composite systems two model drugs can be accommodated, either 

individually or simultaneously. Their respective degradation processes will 

sustain the drug release profiles. 

• Hypothesis (c): Tuning of the water stability of the hydrophilic component 

of the polymeric blend through the establishment of an ion cross-linking 

protocol can finely modulate the release of the drugs from the composite 

matrices over time.  

In order to test our hypotheses, various formulation strategies and characterization 

methods have been implemented, as presented in detail in the following sections of 

this Chapter.  

2.2. Materials and methods  

Partially taken from Setti, Chiara, et al. "Investigation of in vitro Hydrophilic and 

Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium 

alginate-MaterBi® Drying Emulsions." European Journal of Pharmaceutics and 

Biopharmaceutics (2018). 

 

2.2.1. Materials  

 Alginic acid sodium salt (sodium alginate), ammonium hydroxide solution 

(30-33% HN3 in water), chloroform, phosphate buffered saline (PBS) powder, 

curcumin powder, ethanol, cell proliferation reagent WST (water-soluble 

tetrazolium salts)-1 and 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride 

(DAPI), were purchased from Sigma Aldrich and used as received. A commercial 

aqueous cutaneous solution known as Neomercurocromo® (Laboratorio 

Farmaceutico S.I.T. s.r.l. Italy), was purchased from a local pharmacy. Adult Human 

Dermal Fibroblasts (HDFa), Medium 106, Low Serum Growth Supplement Kit 

(LSGS Kit), Alexa Fluor 488 Phalloidin and MitoTracker Red were purchased from 

Thermofisher Scientific. Extruded MaterBi
® sheets were purchased from 

Lavorazione Plastica Srl (Italy).  
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2.2.2. Preparation of alginate and MaterBi
®
solutions 

 In a typical procedure, the alginate solution was prepared by dissolving 1.8 g 

of sodium alginate powder in a mixture of 5 mL of ammonium hydroxide and 55 mL 

of distilled water at room temperature under vigorous stirring. Ammonium 

hydroxide enables extremely rapid solution of sodium alginate in water (within few 

minutes) and also ensures that the stock solution does not degrade in time (easily 

noticeable by the lowering of the viscosity) over long periods of storage due to 

bacterial action. The resultant alginate solution was 3% w/v. The MaterBi® solution 

was prepared by dissolving 1.8 g of MaterBi® resin in 60 mL of chloroform at room 

temperature, to obtain a solution with a concentration of 3% w/v. Dissolution was 

found to be very rapid in chloroform (a few minutes).  

 

2.2.3. Preparation of the emulsions and films 

 Alginate-MaterBi® composite films were prepared by solvent casting and 

evaporation from the respective emulsions.  Dry films with various sodium alginate-

MaterBi® ratios were prepared by blending and emulsifying different amounts of 

alginate and MaterBi® solutions. Note that no surfactants, emulsifiers or 

compatibilizers were used in the preparation of the emulsions. Specifically, the 

following protocol of emulsification was followed. First, appropriate volumes of 

alginate and MaterBi® were transferred into a glass vial (see Figs. 2.3a and b). The 

mixture underwent phase separation within few minutes, as seen in Fig.1b. To avoid 

this phenomenon, the pre-emulsions were ultrasonic processed for 1 min with 40% 

amplitude (Sonics Vibra-Cell). The processing was done by four consecutive 

sonication steps each lasting 15 seconds. At the end of each 15-sec processing, the 

vial was transferred to a vortex mixer and stirred for additional 10 seconds. The 

schematic representation of the emulsification process is shown in Fig.2.3a. Figure 

2.3b shows photographs of alginate (vial 1) and MaterBi® (vial 2) solutions, the 
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separated phases after vortex mixing (vial 3) and the stable emulsions after ultrasonic 

processing (vial 4).  

 Finally, the stable emulsions were poured into Teflon Petri dishes (10 cm in 

diameter) and were allowed to evaporate slowly at room temperature, while resting 

on a levelled surface. In order to understand if the relative sodium alginate to 

MaterBi® ratio in the emulsions affects the stability of the final system, a wide range 

of ratios between alginate and MaterBi® were considered, as shown in Table 2.1. It 

was observed that all the emulsions presented in Table 2.1 were stable and suitable 

for film formation.  

 

 

Figure 2.3:(a) Schematic representation of the emulsion preparation protocol; 

(b) a photograph of the stable, liquid emulsions and (c-e) photographs of the 

dry composite films loaded with individual or two drugs. 
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Table 2.1: Emulsions codes and composition 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 All the compositions reported in Table 2.1 were tested for the hydrophilic 

model drug release studies. However, only certain selected emulsions, such as the 

ones containing 30 wt% and 50 wt% alginate with respect to the MaterBi® were used 

for the hydrophobic model drug release and for dual drug release studies. As an 

example of emulsion preparation, a composite alginate-MaterBi® film containing 50 

wt% alginate was developed by the following process: 7.5 mL of alginate solution 

was transferred into a vial, followed by the addition of 7.5 mL of MaterBi® solution, 

in order to have a final volume of 15.0 mL. Note that densities of sodium alginate 

and MaterBi® are comparable (∼1.25 g/cm3).  

 

2.2.4. Emulsion characterization  

 In order to determine the type of the different emulsions studied in this work, 

dilution tests and dye test were performed. The dilution test is based on the sequential 

addition of one of the two components, until a phase separation is reached and 

macroscopically observed. For example, if water is added to oil in water (O/W) 

emulsion, a diluted system will indicate water as the continuous phase. Similarly, if 

an organic compound is added to water in oil (W/O) emulsion, a diluted system will 

Emulsion Code Composition (wt. %) 

E1 100% alginate 

E2 90% alginate – 10% MaterBi 

E3 80% alginate – 20% MaterBi 

E4 70% alginate – 30% MaterBi 

E5 60% alginate – 40% MaterBi 

E6 50% alginate – 50% MaterBi 

E7 40% alginate – 60% MaterBi 

E8 30% alginate – 70% MaterBi 

E9 20% alginate – 80% MaterBi 

E10 10% alginate – 90% MaterBi 

E11 100% MaterBi 
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indicate oil as the continuous phase. To assess the type of Sodium Alginate-MaterBi® 

emulsions, a set of two parallel dilution tests were conducted. Briefly, 1 mL of each 

Sodium Alginate-MaterBi® emulsions previously described in the manuscript was 

aliquoted in a glass vial. Afterwards, 2 mL of chloroform (the oil phase) were added 

to each vial. The systems were vortexed for a few minutes and kept undisturbed for 

1 hour, prior to visualization and imaging. In a parallel experiment, 2 mL of MilliQ 

water were added to 1 mL of each Sodium Alginate - MaterBi® emulsions. To further 

confirm the results, a dye test was carried out. In this case, 200 L of a hydrophilic 

dye (Acid Blue 80, Sigma Aldrich, 1,5 x 10-3 M in water) were added to 3 mL of 

each Sodium Alginate – MaterBi® emulsions previously described in the manuscript. 

The systems were vortexed for a few minutes and kept undisturbed for 1 hour, prior 

to visualization and imaging.  

 

2.2.5. Model drug loading  

 The hydrophilic cutaneous antiseptic Neomercurocromo® was premixed into 

the sodium alginate aqueous solution by dropwise adding 0.05 mL of the aqueous 

antiseptic solution in 7.5 mL sodium alginate solution before emulsification. The 

amount of cutaneous antiseptic in the emulsions was always maintained at 0.05 mL 

(3 × 10− 4 M). The hydrophobic curcumin, on the other hand, was first dissolved in 

chloroform to obtain a concentrated stock solution (1 mg/mL). A certain amount of 

this stock solution (1 mL) was then added to the 7.5 mL MaterBi® solution. To study 

the dual drug release, emulsification was performed as described above, by using 

both solutions containing different drugs. A slightly different protocol was followed 

in order to emulsify the hydrophilic Neomercurocromo® with the chloroform 

solution of MaterBi® in the absence of alginate. Specifically, 0.05 mL of the 

hydrophilic antiseptic was slowly added into 7.5 mL of MaterBi® solution. The 

antiseptic immediately phase-separated and a first step of homogenization by vortex 

mixing was needed. Upon emulsification by ultrasonic processing as described 

above, a very stable water-in-oil emulsion formed. Films casted from this emulsion 
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were used to measure sustained hydrophilic drug release from 100% MaterBi® films. 

Similarly, in order to be able to measure the hydrophobic curcumin release from 

100% alginate films, 1 mL of curcumin in chloroform solution was slowly added 

into the aqueous sodium alginate solution under constant stirring. In this case, no 

ammonium hydroxide, but only water, was used to prepare the alginate solution (3% 

w/v), in order to avoid the degradation of curcumin. 

 For the dual drug release study, the hydrophilic cutaneous antiseptic and the 

hydrophobic curcumin were loaded, upon dispersion in the water or oil phase 

respectively, using the same amounts encapsulated into the films containing only one 

of the two drugs. Specifically, 0.05 mL (3 × 10−4 M) of Neomercurocromo® were 

dispersed in 7.5 mL of sodium alginate, while 1 mL of curcumin from the stock 

solution was added into 7.5 mL of MaterBi® solution. Afterwards, the two phases 

were ultra-sonicated in order to obtain double-loaded films. Macroscopic inspection 

of the resultant films upon drying of the emulsions indicates that dispersion of 

individual and dual drugs in the films were very homogenous as shown in Fig. 2.3c–

e. 

 

2.2.6. Scanning electron and atomic force microscopy 

 Surface and fracture surface morphology of the alginate-MaterBi® films were 

analyzed using a JEOL JSM-6490LA scanning electron microscope (SEM), with an 

accelerating voltage of 10 kV. The films were cut into small pieces and mounted on 

stubs with double sided adhesive carbon tape. Samples were subsequently sputter-

coated with gold (10 nm), to allow SEM imaging. For the atomic force microscopy 

(AFM) characterization, small pieces of the films were firmly attached on a glass 

slide by means of double-sided tape. A Park System AFM instrument (XE-100) was 

used in true non-contact mode. The images were acquired in air on an anti-vibration 

table (Table Stable TS-150) and within an acoustic enclosure. Single-beam silicon 

cantilevers tips (PPP- NCHR-10) were used for the data acquisition with about less 

than 10 nm nominal radius and 42 N/m elastic force constant for high sensitivity. 
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The resonance frequency was defined around 280kHz. The scan rate was maintained 

at 0.2 Hz. 

 

2.2.7. Thermogravimetric analysis 

 The thermal degradation behavior of the films was investigated by a standard 

thermogravimetric analysis (TGA) method using a TGA Q500 from TA Instruments. 

Measurements were performed on 3–5mg samples in an aluminum pan under inert 

N2 atmosphere with a flow rate of 50 mL/min in a temperature range from 30 to 400 

°C with a heating rate of 10 °C/min. The weight loss and its first derivative were 

recorded simultaneously as a function of time/temperature. 

 

2.2.8. Mechanical stress-strain measurements 

 Mechanical properties of the films were measured by uniaxial tensile tests on 

a dual column Instron 3365 universal testing machine. Dog- bone shaped samples 

(width w = 4 mm, useful length l = 25 mm) were stretched at a rate of 1 mm/min. 

All the stress-strain curves were re- corded at 25 °C and 44% RH. At least three 

measurements were conducted for each sample and the results were averaged to 

obtain a mean value. The Young’s modulus E, ultimate strength UTS and elongation 

at break values were evaluated from the stress-strain curves. For cross- linked 

samples, the dog-bone samples, cut from films, were crosslinked and measured after 

drying. 

 

2.2.9. Fourier transform infrared (FTIR) spectroscopy 

 The chemical analysis of alginate, MaterBi® and alginate-MaterBi® 

composite films was performed by an attenuated total reflectance (ATR) accessory 

(MIRacle ATR, PIKE Technologies) coupled to a Fourier transform infrared (FTIR) 

spectrometer (Equinox 70 FT-IR, Bruker). All spectra were recorded over a range of 

4000–400 cm−1, with 4 cm−1 resolution (accumulating 128 scans). 



 

63 

2.2.10. In vitro drug release measurements 

 In vitro drug release measurements were conducted by placing the composite 

films in aqueous liquid media. The release was quantified by using UV–visible 

spectroscopy (Cary 6000i-Varian). More specifically, circular films of 8 mm in 

diameter were cut using a puncher, while weight and thickness of each piece were 

measured using a sensitive scale and micrometer gauge, respectively. Release 

profiles of the hydrophilic cutaneous antiseptic (Neomercurocromo®) were obtained 

by placing individual film pieces in a UV cuvette containing 2.5 mL PBS (pH 7.4) 

buffer solution. Hydrophobic curcumin release medium was a modified 0.2M PBS 

solution containing 0.5% Tween surfactant and 10.0% ethanol by weight as 

described by X.Li et al.66. During the release experiments, the cuvettes were 

continuously stirred in order to ensure full dispersion of the drugs in the medium. 

Released Neomercurocromo® was quantified by measuring the absorbance at 517 

nm, which is the characteristic absorption wavelength of eosin67-68, while the 

absorbance peak at 425 nm was used to quantify the release of curcumin69-70. At 

specific time points, changes in absorbance were recorded to obtain release profiles 

from selected composite films. 

 

2.2.11. Post processing of the films by crosslinking 

 Calcium chloride was used to induce the gelation/crosslinking process of 

sodium alginate. The cross-linked films of alginate, or alginate-MaterBi® blends 

were obtained by soaking them in different concentrated solutions of calcium 

chloride (1%, 3%, 5% and 15% w/v), for different durations (2, 5 and 10 min). After 

the crosslinking process, the films were washed with MilliQ water in order to remove 

any excess of calcium from their surface and oven-dried at 40 °C. 
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2.2.12. In vitro biocompatibility assay 

 Human dermal fibroblasts adult (HDFa) were used to investigate the 

biocompatibility of the alginate-MaterBi® composite films. Cells were cultured in 

T75 culture flasks with Medium 106 supplemented with LSGS Kit in a humidified 

incubator at 37 °C and with 5% CO2. When the culture was approximately 80% 

confluent, the cells were trypsinized and seeded onto 96-well plates at a density of 

5000 cells/cm2, in 0.1 mL of cultured medium for biocompatibility assays. Extraction 

medium from 100% MaterBi® and from the blends (50% alginate-50% MaterBi® and 

30% alginate-70% MaterBi®) were prepared in accordance to the procedure 

described in ISO10993-5 standard test. The films were sterilized under ultraviolet 

(UV) light for 40 min (20 min for each side of the matrices). Afterwards, the samples 

were immersed in cell culture medium for 24 h at 37 °C. After 24 h of culture, the 

medium was replaced with the extraction one, and the cells were incubated for 

further 24, 72, and 120 h. The cell viability was determined by the WST-1 assay 

(0.01 mL for 0.1 mL of culture medium). Briefly, prior to adding the reagent, the 

extraction media was replaced with the fresh one to avoid alterations during the 

readings due to the presence of the polymer in the culture medium. All the 

experiments were performed in triplicate. Results are reported as mean ± standard 

error. 

 

2.2.13. Cell morphology studies 

 Cells were grown on 14 mm coverslips into 24-well plate filled with Medium 

106, for the controls, or with the extraction media, for the treated samples, for 24, 

72, and 120 h. After the incubation period, the media was removed from each well 

and a pre-warmed staining solution containing MitoTracker probe (300 nM) was 

added and incubated for 45min under growth conditions. After mitochondria 

staining, cells were washed with fresh pre-warmed PBS and fixed with 3.7% 

paraformaldehyde (PFA) in PBS for 15 min. Nuclei staining was obtained incubating 

the cells with a DAPI solution (2.5 μg/mL) for 15 min in the dark, followed by two 
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washing with PBS (1x). For the actin fibers staining, samples were first 

permeabilized with 0.3% Triton X-100 for 8 min and washed 2 times with PBS (1x). 

After the permeabilization step, to reduce nonspecific background staining, an 1% 

of bovine serum albumin (BSA) solution in PBS was added and incubated for 20–30 

min prior to adding the phallotoxin staining solution. Then Alexa Fluor 488 

Phalloidin solution, diluted 1:100 in PBS, was added to each well and incubated for 

20 min at room temperature, covered with Al foil. Cell imaging was carried out via 

confocal microscope Nikon A1 with 401, 488, and 561 lasers and re- corded with 

20x and 60x magnifications. 

 

2.2.14. Statistical analysis 

 All the measured values were expressed as mean ± standard error of the mean 

(SEM). For in vitro biocompatibility tests One-way ANOVA was used to evaluate 

statistical significance, followed by Bonferroni’s post hoc test using GraphPad Prism 

5 (GraphPad Software Inc. San Diego, CA, USA). p values less than 0.05 were 

considered significant. 

 

2.3. Results and discussion  

Partially taken from Setti, Chiara, et al. "Investigation of in vitro Hydrophilic and 

Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium 

alginate-MaterBi® Drying Emulsions." European Journal of Pharmaceutics and 

Biopharmaceutics (2018). 

 

2.3.1. Emulsion stability and emulsion type characterization  

 The emulsions were monitored for stability and remained stable up to 10 days 

without additional stirring or sonic processing (Fig. 2.4).   
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 To evaluate the type of sodium alginate-MaterBi® emulsions by changing the 

components respective weight ratios, dilution test (Fig.2.5A-B) and dye test (Fig.2.6) 

were performed.  

Figure 2.5:  Dilution tests: (A) addition of chloroform, and (B) addition of 

MilliQ water to the emulsions. Systems comprising of 90 wt%, 80 wt%, and 70 

wt% of Alginate are type O/W emulsions, while the other Sodium Alginate - 

MaterBi® systems appeared to be type W/O emulsions. 

 

24h 48h 9	days72h 16	days

Figure 2.4: Emulsion stability over two weeks. 
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 The dilution test is based on the sequential addition of one of the two 

components, until a phase separation is reached and macroscopically observed. To 

assess the type of Sodium Alginate-MaterBi® emulsions, a set of two parallel dilution 

tests were conducted. In Figure 2.5A, by the adding chloroform to the emulsions we 

observed that emulsions containing up to 90 wt.%, 80 wt.%, and 70 wt.% of sodium 

alginate presented a visible phase separation (W/O type of emulsions), while good 

dispersion and mixing was present in the remaining samples (O/W type of 

emulsions). Figure 2.5B shows the systems resulting from the addiction of water to 

the emulsions: from 90 wt.% to 70 wt.% of sodium alginate, water is the predominant 

phase (O/W emulsions), while a phase separation appears visible starting the 

emulsion containing from 60 wt.% sodium alginate - 40 wt.% MaterBi®, indicating 

the transition to the O/W emulsion type.  

 Outcomes of the dye test are reported in Fig.2.6. The addition of Acid Blue, 

a hydrophilic dye, allows the determination of the water phase within the emulsion. 

In the 100 wt.% sodium alginate solution the dye appears completely dissolved. Up 

to an addition of 30 wt.% of MaterBi®, no phase separation is visible, and the dye is 

well dispersed, indicating that water is the predominant phase and O/W emulsions 

types are formed. Lastly, the hydrophilic dye separates when the organic phase is the 

predominant one and W/O emulsions are formed. The emulsion inversion was again 

confirmed for the emulsion 60 wt.% sodium alginate - 40 wt.% MaterBi®. 
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Figure 2.6: Dye test: The addition of Acid Blue, a hydrophilic dye, allows the 

determination of the water phase within the emulsion. The dye is well dispersed 

in the O/W emulsions, were the water is the predominant phase (90 wt%, 80 

wt%, and 70 wt% of Alginate), while it separates when the organic phase is the 

predominant one (W/O emulsions). 

 

2.3.2. Morphology of alginate – MaterBi® films 

 MaterBi® is a commercial hydrophobic biodegradable polymer composite, 

comprising PCL and thermoplastic starch, obtained by a proprietary compound 

extrusion method28,71. It has been actively marketed as sustainable food packaging 

material, as well as biodegradable material for perishable food containers72. 

Although beyond the scope of this study, formation of stable surfactant-free 

emulsions between alginate and MaterBi® can be attributed to the well-known 

emulsion stabilization properties of starches. Morphological attributes of certain 

composite films were investigated by SEM and AFM measurements as seen in Fig. 

2.7 and 2.8. SEM images (Fig. 2.7a-f) illustrated the morphology of the blended 

films. If compared with pure alginate or pure MaterBi® films, the alginate-MaterBi® 

composites showed remarkable differences in terms of surface microstructure. In 

fact, a smooth continuous structure was observed on the surface of the alginate film 

(Fig. 2.7a), as previously reported in the literature73. SEM inspections of pure 

MaterBi® indicates presence of small starch particulates embedded in the PCL matrix 

(Fig. 2.7k).  In the case of the composite samples (Fig. 2.7b-j) the presence of 

MaterBi® caused an appreciable change in the surface topography, leading to the 
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production of films with rough surfaces by increasing its content within the blend. 

Films dominant in alginate compositions are obtained from oil-in-water emulsions, 

whereas films dominant in MaterBi® phase are obtained from water-in-oil emulsions.  

 

 

Figure 2.7: SEM surface micrographs of of pure alginate, MaterBi® and 

composite films. 
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 From the AFM measurements, the composite nature of MaterBi® is reflected 

by the presence of starch granules, easily detected by the AFM surface scan, shown 

in Fig. 2.8a, confirming the SEM observations. On the contrary, pure alginate is 

amorphous and featureless (Fig. 2.8c and d). Surface morphology of the composite 

films with 50 wt.% alginate content, on the other hand, were found to have foam like 

cellular features (1 μm on average in size) as shown in Fig. 8e, in addition to valley-

like roughness features (dark interconnected zones). The composite film comprising 

70 wt.% MaterBi® demonstrates more pronounced cellular surface features and 

much larger in size (∼8 μm), than the composite films having 50 wt.% MaterBi®, as 

seen in Fig. 2.8g.  

 These detailed AFM measurements indicated that indeed the cellular surface 

morphology in the films is dominant in water-in-oil emulsions, whereas surface 

morphology of films obtained from oil-in-water emulsions bears features similar to 

pure alginate film surface topography. In all the cases, however, the composite films 

were uniform blends with no macroscopic phase separated features.  

 

Figure 2.8: Atomic Force Microscope images depicting the surface topography 

of the fabricated matrices in 2D (series 1, top panel) and in 3D (series 2, bottom 

panel): (a) 100% alginate, (b) 70 wt.% alginate – 30wt.% MaterBi®, (c) 60wt.% 

alginate – 40wt.% MaterBi®, (d) 50wt.% alginate - 50 wt % MaterBi®, (e) 40 wt 

% alginate - 60 wt % MaterBi®, (f) 30 wt % alginate - 70 wt % MaterBi®, and 

(g) 100% MaterBi®. Scale bar 10 m. 

 

 

 

 



 

71 

2.3.3. Chemical characterization  

 Potential chemical interactions between sodium alginate and MaterBi® in the 

films were investigated by FTIR spectroscopy as well (Fig.2.9). For pure alginate 

films, several characteristic bonds were identified such as asymmetric COO- 

stretching vibrations at 1600 cm-1, overlapping symmetric COO- stretching and O-

H bending vibrations at 1410 cm-1 and C-O-C stretching at 1030 cm-1. On the other 

hand, in the pure MaterBi® spectrum (Fig. 2.9b) the characteristic peaks of 

polycaprolactone (PCL) corresponding to the C=O lactone stretching vibrations at 

1720 cm-1 and C-O again lactones stretching vibrations at 1180 cm-1 are found. In 

the FTIR spectra of the composite films comprising respectively 30 wt. % alginate 

(Fig. 2.9c) and 50 wt.% alginate (Fig. 2.9d), no new peaks or shifts in peaks were 

measured indicating absence of any new covalent bonds within the composites. As 

such, the emulsion-cast films were simply polymer blends rather than an interacting 

solid polymer solution. 

Figure 2.9: FTIR spectra of selected films: (1) 100 % alginate, (2) 100% 

MaterBi®, (3) 30wt.% alginate – 70wt.% MaterBi® and (4) 50wt.% alginate – 

50wt.% MaterBi®. 
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2.3.4. Thermo-mechanical characteristics  

 Mechanical properties and thermal degradation characteristics of the films 

are discussed next. Figures 2.10a and 2.10b demonstrate stress-strain, while Figures 

2.10c and 2.10d shows thermal degradation curves of un-crosslinked and crosslinked 

films, respectively. Summary of the mechanical measurements are also shown in 

Table2.2. Clearly, MaterBi® is a soft biopolymer whereas alginate is a hard, natural 

polymer, with no practical elongation capability. It has a very high Young’s modulus 

of about 5GPa compared to MaterBi® (213 MPa). Crosslinking alginate by calcium 

extrusion lowers the Young’s modulus to about 1.2 GPa (Fig. 2.10b). This can be 

attributed to the formation of interstitial hydrogen composites demonstrate 

intermediate moduli and elongation values set between pure alginate and MaterBi®. 

Although, comprehensive mechanical characteristics of these films are beyond the 

scope of this work, both Figures 2.10a and 1-b and Table 2.2 demonstrates that 

calcium ion liquid extrusion or crosslinking reduces Young’s modulus in all the 

samples studied.  

 Thermal degradation characteristics of the films are shown in Figures 2.10c 

(un-crosslinked) and 2.10d (crosslinked). In the case of pure alginate films (Fig. 

2.10c), a weight loss about 8% occurs up to and at 100 °C, which is a consequence 

of the film dehydration due to the adsorbed water at the surface. Water loss continues 

until 220 °C and reaches to 15%, after which degradation of alginate starts. This 

secondary water loss is most likely due the further evaporation of the hydrogen 

bonded water molecules surrounding the alginate polymeric chains within the bulk74. 

Around 275 °C half of the alginate degrades. Composite films lose less water due to 

MaterBi® presence as seen in Figure 2.10c; MaterBi® in the composites also extends 

the 50% weight loss temperatures to 350 °C. Thermal degradation behavior of 

crosslinked alginate appears similar to the un-crosslinked one (Fig. 2.10d) except 

that around 220 °C somewhat less water loss (∼10%) was measured. Interestingly, 

crosslinked composite films degradation profiles up to 220 °C become very similar 

to alginate as seen in Figure 2.10d. Although the reason is not obvious, it could be 
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due to water uptake of the starch in MaterBi® during the aqueous salt immersion 

process 75-76. Finally, in the case of pure MaterBi® (Fig. 2.10c), much less significant 

weight loss was observed until 100 °C; typical of a thermoplastic. Further 

degradation steps could be identified as starch degradation (around 320 °C) and 

polycaprolactone degradation (around 400 °C) 7. 

 

 

Figure 2.10 Stress-strain curves of emulsion cast pure polymer and composite 

films (a), stress-strain curves of emulsion cast composite films and pure alginate 

after cross linking (b), thermal degradation weight loss curves for pure 

polymers and composites (c) and thermal degradation weight loss curves of 

alginate and composites after crosslinking (d). 
 

 

 

 

 



 

74 

Table 2.2. Summary of Young’s Modulus and ultimate tensile stress (UTS) 

values of un-crosslinked and crosslinked films. 

  

 

2.3.5. Incorporation of hydrophilic cutaneous antiseptic 

Neomercurocromo® 

 

2.3.5.1. Release kinetics  

 Drug release studies were carried out to examine the suitability of the various 

alginate-MaterBi® films to act as controlled drug delivery systems, and to check 

whether MaterBi® could retain the drug encapsulated. 

 Note that the emulsification process described in this study yielded stable 

emulsions between MaterBi® and the hydrophilic cutaneous antiseptic in the absence 

of sodium alginate (Emulsion E11, Table 2.1), which was otherwise impossible to 

attain using pure PCL polymer24-26. As such, MaterBi® can be used as a slower 

release matrix that does not suffer from water induced excessive swelling, erosion or 

disintegration compared to many other hydrophilic pharmaceutical polymers that 

would encapsulate such hydrophilic cutaneous antiseptic78-80. As will be discussed 

next, emulsification with sodium alginate not only allows acceleration of the release 

Sample 
Young Modulus 

(MPa) 
UTS (MPa) 

100% MaterBi® 213  14 9.5  0.7 

70% MaterBi® - 30% 

alginate 
1039  59 21  8 

50% MaterBi® - 50% 

alginate 
1403  134 20.3  1 

100% alginate 5206  1952 97.7  15 

70% MaterBi® - 30% 

alginate crosslinked 
719  52 10  2 

50% MaterBi® - 50% 

alginate crosslinked 
767  40 6.5  2 

100% alginate 

crosslinked 
1211  100 42  0.6 



 

75 

but also permits further control of the delivery profile by calcium crosslinking. As 

hydrophilic cutaneous antiseptic we used the commercial Neomercurocromo®, 

containing propylene glycol, since the latter can act as a plasticizer for alginate81-82, 

in addition to its other pharmaceutical properties, such as being an emollient for 

softening and smoothing in skin care 83. Note that identical emulsions could be 

produced with aqueous eosin solutions containing no propylene glycol. Films 

obtained from Neomercurocromo®-alginate-MaterBi® emulsions are able to release 

the antiseptic (eosin) in a sustained manner as shown in Fig. 2.11a.  

 Release experiments were conducted up to 7 days in order to carefully asses 

both short and long-term release dynamics, as well as the capability of the films to 

retain the antiseptic. As seen in Fig. 2.11a, at the end of 60 min only about 10% of 

the antiseptic is released in vitro from the MaterBi® matrix. The release rate steadily 

but slowly increases to about 23% at the end of 5 h, as seen in Fig. 2.11b. 

Interestingly, after this period, antiseptic release from pure MaterBi® film starts to 

accelerate, reaching close to 44% at the end of 12 h (Fig. 2.11c). This could be 

attributed to swelling of some starch granules by diffusion of water into regions near 

the film surface and releasing adsorbed antiseptic. At the end of 24 h, 66% of the 

medicine is released in vitro (Fig. 2.11c). After this point, no more hydrophilic 

antiseptic release was measured until the end of the observation period. It may be 

argued that part of the antiseptic retained within the MaterBi® matrix could be due 

Figure 2.11: Antiseptic drug release profiles from various alginate-MaterBi® 

matrices, for release periods of (a) 60 minutes, (b) 5 hours, and (c) 2 days. Each 

data point is an average of at least triplicate measurements. 
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to the fact that starch granules can uptake a certain amount of the hydrophilic 

antiseptic during emulsification84. During drying and film forming by self-assembly, 

most of the starch particles are embedded within the hydrophobic PCL matrix. This 

can severely prevent diffusion of water towards starch granules embedded in the bulk 

of the films to swell them and enable diffusion of the antiseptic back towards the 

liquid medium. Schlesinger et al.85 showed that some portions of both hydrophilic 

and hydrophobic drugs were retained by the PCL even after long periods of in vitro 

monitoring. They attributed this to the potential bonding interactions, such as 

hydrogen bonding or Van der Waals interactions, between the drug molecules and 

the polymer matrix, as well as to the molecular weight of the drugs. Drug release 

from such polymers is known as diffusion-controlled systems, as the matrix does not 

degrade in the release medium during its therapeutic life86. Cutaneous antiseptic 

release from pure alginate films on the other hand was much faster, and in 30 min 

100% of the loaded drug was in the release medium, as seen in Fig. 2.11a. More than 

70% of the antiseptic was released in a steady fashion in the first 10 min. Since 

sodium alginate was not crosslinked or gelled, the release was enabled by the 

swelling-erosion-dissolution mechanism of alginates in aqueous media 87. Release 

profiles from films obtained by alginate-MaterBi® emulsions also display relatively 

rapid antiseptic release profiles, as seen in Fig. 2.11a. Effect of drug retaining nature 

of PCL is clearly evident in the films made with alginate-MaterBi® emulsions. 

Namely, at the time when 100% antiseptic is released in vitro from pure alginate 

(∼40 min), only between 50-70% of the antiseptic is released from the composite 

films comprising 90-60 wt% MaterBi®, as seen in Fig. 2.11a, and at the end of 1 h 

about 70% of the antiseptic was released (Fig. 2.11b). No further release was 

measured from this membrane until the end of 50 h of monitoring (Fig. 2.11c), and 

beyond (7 days).  

 On the other hand, the antiseptic release from the composite films comprising 

50-10 wt% MaterBi®   was faster, thanks to the presence of the hydrophilic polymer, 

and a very persistent drug release up to  about 100% was possible after 5 h, compared 
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to 30 min in the case of pure alginate matrix. The fact that membranes containing 

90-60 wt.% MaterBi® never reached 100% drug release indicates that MaterBi® can 

encapsulate part of the alginate polymer (during self-assembly and drying), 

somehow partially preventing erosion and dissolution, which are known to cause 

high loads of drug release from alginate88. 

 Finally, the AFM and SEM inspection of the topological features of 100 wt.% 

MaterBi® film and alginate-MaterBi® films with 50 wt.% alginate at the end of 1 h 

of release, as reported in Fig.2.12, shows presence of pitting features that indirectly 

indicates occurrence of erosion. dissolution, and escape of the antiseptic from the 

films or membranes.  

 

 

Figure 2.12: Atomic Force Microscope images depicting the surface topography 

of eosin-loaded fabricated matrices, before the drug release experiment (a, d) 

and after 1 hour of release in PBS (b, e). SEM images shown in (c, f) confirm 

formation of pits seen in (b, e). The reported matrices were composed of (a-c) 

50wt.% alginate – 50wt.% MaterBi® and (d-f) 100% MaterBi®. White arrows 

are indicating the “pitting” phenomenon, suggesting the liberation of the drug 

from the matrices. Scale bar 10 m. 
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 The morphology of the films which underwent drug release was also 

investigated after 1 week of dissolution in PBS, via SEM (Fig. 2.13). From the 

analysis, a change in the morphology with an increase of the porosity was observed 

for each of the analyzed samples, which appeared to have holes and cracks in the 

structure. This is probably due to the fact that the starch, the alginate and the drug 

contained inside the various materials were dissolved fully or partially from each 

blend.  

 

2.3.5.2. Optimization protocol of calcium ion cross-linking  

 The drug release profile of pure alginate systems can be tuned by increasing 

the material water stability via cross-linking or gelation process in aqueous solutions 

containing calcium salts. In order to achieve these properties an optimized 

crosslinking protocol was developed using pure alginate films encapsulating the 

hydrophilic model drug, investigating the effect of calcium chloride concentration 

(1%, 3%, 5% and 15% w/v) and the time of dipping into these solutions (2, 5 and 10 

Figure 2.13: SEM images of (a) 100% MaterBi®, (b) 90wt.% MaterBi® – 10wt.% 

alginate, (c) 80wt.% MaterBi® – 20wt.% alginate, (d) 70wt.% MaterBi® – 

30wt.% alginate, (e) 60wt.% MaterBi® – 40wt.% alginate and (f) 50wt.% 

MaterBi® – 50wt.% alginate after 1 week. 
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minutes). However, due to the high hydrophilicity of the Neomercurocromo®, a 

dipping time selected was 2 minutes was fixed, in order to ensure that the antiseptic 

does not permeate into the salt solution during the gelation process. On the other 

hand, once fixed the dipping time, the effect of calcium chloride concentration on 

the drug release was evaluated, as shown in Figure 2.14.  The obtained results 

showed that, compared to the not treated films, by increasing the calcium chloride 

concentration it is possible to better tune the drug release profile. Therefore, we set 

15 wt% CaCl2 aqueous solution (1.4 M) as best condition.  The obtained protocol 

was also applied to the composite films.  

 

2.3.5.3. Effects of calcium ion cross-linking 

 In order to delay the release from alginate matrices, Aslani and Kennedy89 

suggested a gelling time of at least 10 minutes with a CaCl2 salt solutions with less 

than 1 M, in order to reduce drug permeability from the alginate film or membrane. 

Figure 2.14: Effect of Calcium Chloride concentration on drug release (%) of 

the hydrophilic model drug from pure alginate films. 
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For concentrations above 1 M, they demonstrated a similar effect within only a few 

minutes (2–5 minutes) of gelling time. In the present case, in order to ensure that the 

antiseptic molecule does not permeate into the salt solution during gelation, we 

picked a 1.4 M CaCl2 aqueous solution (15 wt%) and a dipping/gelling time of 2 

minutes. Fig. 2.15 shows the temporal evolution of percent reduction of drug release 

from the three films due to calcium crosslinking, with respect to the not crosslinked 

films. In this plot, zero percent reduction means no effect of crosslinking on release. 

According to Fig. 2.15, reduction in release from pure alginate films increases 

sharply within the first 10 minutes and reaches 75% at around 40 min. The reduction 

in release slows down to about 40% after two hours and remains stable afterwards. 

The sudden reduction indicates formation of a good barrier against 

erosion/dissolution-induced burst release77,90. In the case of alginate-MaterBi® films 

with 50 wt.% of alginate content, the reduction in release is lower and not as sharp 

as in pure alginate and maximizes at around 40% at 40 min. In fact, after the first 

five minutes, more drug molecules start to release from this composite compared to 

pure alginate. The trend, however, is similar to pure alginate and the reduction slows 

down to about 25% at the end of two hours. At this point, the composite film still 

releases 15% more drug than pure alginate. The decrease in release trend for alginate-

MaterBi® films with 30 wt.% of alginate content is almost identical to the films with 

50 wt.% within the first 20–30 minutes. Afterwards, the decrease in release due to 

cross-linking reaches 50% at 40 minutes. At the completion of two hours, a slightly 

lower percent decrease in release is observed at around 17%, and, the end of three 

hours, this film is observed to release the highest quantity of antiseptic, with a percent 

decrease at 10% with respect to the un-crosslinked film. No further changes were 

observed in the release profiles after 3 h and at the end of one day of monitoring. 

Similar observations shown in Fig. 2.15 were also reported on other model drug 

release from calcium crosslinked PLA-alginate fibers obtained from emulsions15. 

While not all of the drugs incorporated within materials such as PCL and PLA are 

released fully at the end of a prolonged release test 91, drug retaining capacity of these 



 

81 

biopolymer-based films present several other advantages, such as sustaining 

bacteriostatic activity, until they degrade if they are used as implants91.  Comparisons 

between un-crosslinked and cross-linked films (pure alginate, alginate-MaterBi® 

films with 30 wt% and 50 wt% alginate) time release profiles are shown in Figure 

2.16.   

Figure 2.15: Effect of the crosslinking on 100% alginate, 50 wt.% alginate–50 

wt.% MaterBi® and 30 wt.% alginate–70 wt.% MaterBi® films. Increase in 

percent decrease in release due to cross-linking indicates slower and lower 

amount release. The decline in percent decrease in release after reaching its 

maximum indicates that the release rate starts to catch up with the un-

crosslinked films. If the percent decrease in release does not decline but remains 

steady after reaching the maximum, the crosslinked matrix could not release 

more than the un-crosslinked film. Each data point is an average of at least 

triplicate measurements. 
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Figure 2.16: Effect of the calcium crosslinking treatment on the hydrophilic, 

antiseptic drug (eosin) release from (a) 100% alginate film, (b) 50wt.% alginate 

– 50wt.% MaterBi®, and (c) 30wt.% alginate – 70wt.% MaterBi® matrices. 

 

 Hydrophilic drug release profiles obtained for the case of pure alginate films 

are presented in Figure 2.16a. Sodium alginate film completely delivers the drug in 

30 minutes, due to a sudden swelling of the matrix and its subsequent 

disintegration/dissolution in water. Upon gelation/crosslinking with calcium salt 

solution, at the end of 30 minutes, only 27% of the antiseptic initially loaded was 

dispensed and, after 180 min (3 hours), only up to 56% of the drug was detected in 

the media. More interestingly, a delayed release of the cutaneous antiseptic was 

observed for the case of the composite emulsions. In such films, calcium salt gelation 

caused strong resistance to antiseptic permeability in vitro. For example, in the case 

of membranes containing 50 wt.% of alginate, and cross-linked with 1.4 M calcium 

salt solution, at the end of 1 hour, only about 60% of the antiseptic was dispensed, 

compared to about 90% release with no crosslinking (Fig. 2.16b). Furthermore, after 

3 hours of experiment, only up to 72% of the antiseptic was found in the release 

media while un-crosslinked films reached 98% of release. Increasing the MaterBi® 
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content in the emulsions (30 wt.% alginate, Fig. 2.16c), the cross-linking effect was 

still observable, leading to a 22% of antiseptic release after 1 hour of experiment, 

with respect to about 70% observed for the un-crosslinked films. Moreover, as 

expected, after 3 hours, only about 60% of the loaded hydrophilic drug was released 

from the crosslinked films, while 72% was detected for the un-crosslinked matrices. 

 

3.3.6. Incorporation of hydrophobic drug (Curcumin) 

3.3.6.1. Dynamics of release  

 Curcumin is known to be effective against cutaneous, chronic and excisional 

wounds, accelerating the healing process92-95. It dissolves in aqueous solutions at pH 

values above 7, and hence becomes highly susceptible to hydrolytic degradation95. 

Therefore, there have been only a few reports on the release of curcumin from 

alginate beads prepared in aqueous media. Previously, curcumin was introduced in 

sodium alginate solution by either dissolving it in ethanol96 or using multiple 

surfactants such as Tween and Span97. Due to very limited solubility of curcumin in 

water or in PBS (∼1 ng/mL)83-85,98, some modifications to the release medium were 

required to quantify the in vitro release without significantly altering the pH level of 

PBS. For this purpose, release medium of 10% ethanol in 0.2 M PBS containing 

0.5% Tween 80 was formulated according to earlier reports66. Similar to MaterBi®-

hydrophilic antiseptic emulsions with no alginate, as shown in Fig. 2.11a, emulsions 

with alginate-hydrophobic curcumin with no MaterBi® were also fabricated, to 

investigate potential release kinetics (Fig. 2.17a). Indeed, sodium alginate films can 

uptake curcumin and release it into the modified media via erosion/dissolution. In 

fact, within 10 min, alginate films completely degrade and the entire hydrophobic 

drug escapes into the release media. Fig. 2.17a also shows the release of curcumin 

from films produced by drying alginate- MaterBi® emulsions. Release of curcumin 

from solvent-cast pure MaterBi® films occurs in two stages. In the first stage, within 

the first 10 min, 20% of curcumin is released; afterwards, the release rate slows down 
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and at the end of one hour about 50% of curcumin could be release into the modified 

PBS solution (Fig. 2.17a). This is a significant release rate and quantity compared to 

most of the values reported in literature86-87 on curcumin release from pure PCL 

matrices but rather resembling dynamics from hydrophilic polymer grafted PCL 

matrices99. We attribute this to the presence of starch within the PCL matrix and its 

interaction (swelling and partial dissolution) with the modified aqueous PBS. In fact, 

release of curcumin from MaterBi® films continues to increase steadily and stabilizes 

at around 80% after 5 h (Fig. 2.17b), while no further release could be measured.  

 

 

Figure 2.17: Hydrophobic drug (curcumin) release profiles for 60 minutes (a) 

and 5 hours (b). The release profile is divided in two plots in order to aid 

inspection of the initial release period. Each data point is an average of at least 

triplicate measurements. 

 

 The release of curcumin from alginate-MaterBi® films with 30 wt% alginate 

appears somewhat similar to the release from pure during the first 40 min as seen in 

Fig. 16a. However, for longer time point, the release slows down with respect to the 

one from the MaterBi® matrix and about 50% release is achieved at the end of one 

hour. The reduction in release is more significant afterwards up until five hours, at 

the end of which only about 60% curcumin release can be measured (Fig. 2.17b). 

Alginate-MaterBi® films with 50 wt% alginate, however, release more curcumin than 

pure MaterBi® with faster initial state corresponding to the first ten minutes, at the 

a b
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end of which 35% curcumin is released. Afterwards, the release slows down still 

increasing while remaining above pure MaterBi® levels and reaches close to 70% 

release at the end of one hour (Fig. 2.17a). More interestingly, this composite film 

releases all the cur- cumin at the end of 4h as seen in Figure 2.17b. Due to 

emulsification and subsequent self-assembly of alginate-MaterBi® films with 30 

wt.% alginate, a significant portion of the alginate domains can be encapsulated into 

MaterBi®. These encapsulated alginate domains may also contain curcumin that 

would otherwise be dispersed in MaterBi® matrix as schematically shown in Fig. 

2.18a. Collectively, hydrophobic barrier around alginate due to the MaterBi® can 

slow down the release rate of curcumin. This does not by any means should be taken 

as an indication that alginate in 70wt% MaterBi® composite contains more curcumin 

than 50%. In the case of alginate- MaterBi® films with 50 wt% alginate, however, in 

addition to domains in which alginate is encapsulated by MaterBi®, a significant 

portion of the emulsion can also contain domains (droplets) in which alginate 

encapsulates MaterBi®, instead (Fig. 2.18b). This should, naturally lead to more 

curcumin release compared to pure MaterBi® film but still lower and slower than 

pure alginate film as seen in Fig. 2.17. Therefore, composite films obtained from 

drying emulsions can readily be used to tune hydrophobic drug release depending on 

the desired application. 
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Figure 2.18: Schematic representation of composite films comprising (a) 30 

wt.% alginate-70 wt.% MaterBi® and (b) 50 wt.% alginate-50 wt.% MaterBi®. 

In the latter, the alginate domains encapsulating curcumin can be easily eroded 

by the release media allowing more release of curcumin compared to pure 

MaterBi® or to 30 wt.% alginate-70 wt.% MaterBi®. 

 

 

2.3.6.2. Effects of calcium ion crosslinking 

 The effects of crosslinking on the alginate matrix by calcium ions was 

evaluated next (Fig. 2.19). Original release profiles are given in Fig. 2.20. As 

previously seen for the hydrophilic drug in Fig. 15, also in this case the crosslinking 

strategy appears to significantly decrease the burst release from the sodium alginate 

matrix, due to erosion/dissolution processes arising within the first 10 minutes (Fig. 

2.20). The decrease in release starts to reduce after the first 20 minutes and, at the 

end of three hours, it reaches to 20%, a lower value compared to hydrophilic 

cutaneous antiseptic (Fig. 2.15). This can be attributed to the fact that the modified 

PBS solution has a lower surface tension than water due to the presence of ethanol 

(a)

(b)
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(10wt%) and the surfactant can penetrate deeper into the bulk of the crosslinked film. 

In the case of alginate-MaterBi® with 50 wt.% alginate, a sharp increase in percent 

decrease in curcumin release is observed in the first ten minutes, afterwards the 

increase in percent decrease slows down and reaches about 50% at the end of three 

hours, indicating that a much slower release of curcumin is achieved from this 

composite matrix. Alginate-MaterBi® films with 30 wt% alginate, follow a similar 

trend in which the percent decrease in curcumin release does not exceed 20% at the 

end of three hours. More interestingly, comparing Figures 2.15 and 2.19 the 

following observations and conclusions can be drawn pertaining to release from 

composite films: for the hydrophilic drug, cross link-induced percent decrease in 

release curves are all hump-shaped similar to pure alginate (Fig. 2.15). This means 

that crosslinking has stronger effects in the early stages of the delivery process (0–

30 min), while for longer times the effect of crosslinking diminishes significantly. 

For the hydrophobic drug, however, percent decrease in release curves are not hump-

shaped but rather resemble the original release curves much like a logarithmic 

increase. This means that although not as strong, effect of cross-linking is more 

sustained throughout the whole release process.   
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Figure 2.19: Effect of the crosslinking on 100% alginate, 50 wt.% alginate-50 

wt.% MaterBi® and 30 wt.% alginate-70 wt% MaterBi® films containing 

curcumin. Increase in percent decrease in release due to cross-linking indicates 

slower and lower amount release. The decline in percent release after its 

maximum indicates that the release rate starts to catch up with the un-

crosslinked films. If the percent of decrease does not decline but remains steady 

after reaching the maximum, the crosslinked matrix could not release more 

than the un-crosslinked film. See Fig. 2.20 for a schematic demonstration. Each 

data point is an average of at least triplicate measurements. 

 

 

 Figure 2.20 schematically illustrates this effect. Further monitoring of these 

films up to 48 h indicated that almost all the curcumin is released from pure 

crosslinked alginate films, whereas composite films with 50 wt.% and 30 wt.% 

alginate contents still retain about 10% and 20% of initially loaded curcumin, 

respectively.  
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Figure 2.20: Effect of the crosslinking treatment on hydrophilic (top panel) and 

hydrophobic (bottom panel) drug delivery profile from alginate-MaterBi 

films, expressed in terms of percent decrease in release. 

 

 Comparisons between un-crosslinked and crosslinked films (pure alginate, 

alginate-MaterBi® films with 30 wt.% and 50 wt.% alginate) release profiles are 

shown in Figure 2.21. As previously reported for eosin loaded-alginate films (Fig. 

2.16a), the matrices incorporating curcumin demonstrated the possibility to delay the 

active molecule release, thanks to the gelation strategy, based on the use of calcium 

salt solution. Figure 2.21a shows that, after 30 minutes, only 35% of curcumin was 

released from the crosslinked alginate films, compared to the 100% liberated from 

the un-crosslinked ones. Moreover, at the end of 3 hours of experiment, the treated 

samples were only able to release up to 86% of the hydrophobic compound. Matrices 

composed of 50 wt.% alginate-50 wt.% MaterBi® (Fig. 2.21b) released only about 

28% of curcumin at the end of 1 hour, compared to 62% of initial drug delivered 

from the un-crosslinked samples. In addition, at the end of 3 hours, only about 42% 

of the hydrophobic drug was released, while, when no crosslinking was 

implemented, about 93% of the active molecule was found in the media. Similarly, 
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for the 30 wt.% alginate - 70 wt.% MaterBi® films crosslinking caused lower 

amounts of curcumin release (Fig. 2.21c) and, at the end of 3 hours, only up to 23% 

of the loaded curcumin was delivered, compared to the 49% released from untreated 

matrices.  

 

Figure 2.21: Effect of calcium crosslinking treatment on the hydrophobic drug 

(curcumin) release from (a) 100% alginate film, (b) 50% alginate - 50% 

MaterBi®, and (c) 30% alginate - 70% MaterBi® matrices. 

 

2.3.7. Dynamics of dual drug release 

 In order to demonstrate the capability of the films to release both drugs at the 

same time, we considered three of the samples studied above: namely, pure 

MaterBi®, alginate-MaterBi® films with 50 wt.% and 30 wt.% alginate fractions, 

respectively. We adopted a modified PBS solution as release medium, to monitor the 

hydrophobic curcumin molecules. Fig. 2.22 reports all the release measurements, 

including the effect of calcium ion crosslinking. Additionally, Table 1 compares re- 

lease from all films at the end of a three-hour period with or without crosslinking 

including both individual and dual release experiments. Based on Table 2.3, at the 

end of three hours of release, MaterBi® matrix releases more hydrophilic cutaneous 

drug, when it is loaded with both drugs, presenting curcumin release as practically 

unaltered. When un-crosslinked 50 wt.% alginate films are loaded with both drugs, 

both drugs were released lower than their individual counterparts. On the other hand, 

when un-crosslinked 30 wt.% alginate films are loaded with both drugs, the delivery 
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of the hydrophilic molecules increases, whereas the hydrophobic component release 

appears to decline. Table 2.3 indicates that crosslinking of films containing dual 

drugs ensures decline in the release of both drugs, however in the case of 30 wt% 

alginate films, effect of crosslinking on eosin release is less pronounced. 

 

 

Figure 2.22: (a) Dual drug release from 100% MaterBi®; (b) comparison of the 

dual release from un-crosslinked and crosslinked 50 wt.% alginate -50 wt.% 

MaterBi® film and (c) 30 wt.% alginate-70 wt.% MaterBi®. Each data point is 

an average of at least triplicate measurements. 
 

 

Table 2.3. Comparison of individual and dual drug release from un-

crosslinked and crosslinked films at the end of three hours of monitoring. 

 

 Finally, comparing crosslinked films with individual and dual drug loadings 

in Table 2.3 we noticed that, when less alginate is present in the composite film 

(30/70), the dual drug loading leads to more hydrophilic drug release while curcumin 

release is practically unaffected. One the other hand, when more alginate is present 

(50/50), the dual drug loading causes less curcumin delivery, maintaining the eosin 

 

Matrix 

Individual Release Dual Release 

Un-crosslinked Crosslinked Un-crosslinked Crosslinked 

Eosin Curcumin Eosin Curcumin Eosin Curcumin Eosin Curcumin 

Alginate 100 100 56 86 100 100 92 90 

MaterBi 18 74 n/a n/a 40 70 n/a n/a 

50/50 98 93 72 43 86 67 73 34 

30/70 72 49 60 23 92 40 86 22 

a b c

Mater-Bi

Un-crosslinked

Crosslinked

Crosslinked

Un-crosslinked
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profile almost unaffected. As such, our initial observations indicate that not only 

tuning the relative alginate – MaterBi® ratios allows for a control of each individual 

component delivery, but also the dual drug loading was noticed to affect the release 

profiles. This rather complex phenomenon would require future experiments and 

further characterization for a more detailed explanation.  

 

2.3.8. Biocompatibility of MaterBi® and composite films 

 The biocompatibility of pure MaterBi® and the composite films with 30 and 

50 wt.% alginate contents, respectively, was evaluated using HDFa cells as an in 

vitro model. Figure 2.24a shows cell proliferation reagent WST-1 outcomes after 1, 

3 and 5 days for the samples studied in drug release experiments. The results 

demonstrated that the cells treated with the polymer extraction medium were healthy 

and had very strong proliferation levels (Fig. 2.23a). After one day of treatment no 

significant differences (p < 0.05) were observed in the viability of the treated cells 

in comparison with the control. However, a significant increase (p < 0.01) in their 

proliferation, with respect to the control, was observed after 3 days of incubation in 

the polymer extraction medium. Moreover, we did not find significant differences (p 

< 0.05) in the viability between the treated cells and the control samples up to 5 days 

of culture. Confocal images displayed in Figure 2.23b–e indeed shows that all 

cellular components appeared rather healthy, revealing how MaterBi® itself can be 

considered a human cell-friendly soft matrix that can be safely utilized for wound 

management related applications.  
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Figure 2.23: (a) Cell viability assay on different films.  (b-e) Confocal 

microscopy images highlighting the overall cell morphology after 3 days of 

culture for control cells (b, d) and cells grown in the presence of MaterBi® 

extract (c, e). Actin is stained in green (Alexa Fluor Phalloidin 488), while nuclei 

are highlighted in blue (DAPI), and mitochondria in red (MitoTracker Red). 

Note that images in (d) and (e) are insets. 
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2.4 Conclusions  

Partially taken from Setti, Chiara, et al. "Investigation of in vitro Hydrophilic and 

Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium 

alginate-MaterBi® Drying Emulsions." European Journal of Pharmaceutics and 

Biopharmaceutics (2018). 

 

 In this study, we demonstrated for the first time ultrasonic-assisted self-

emulsification between two biopolymers, namely a hydrophobic PCL/starch 

composite (MaterBi®) and sodium alginate. The emulsions remain stable for several 

days and can be cast into solid films upon drying. MaterBi®-alginate fractions in the 

films can be tuned during the emulsification process, leading to systems able to 

incorporate two model drugs, one being a commercial eosin-based cutaneous 

antiseptic (Neomercurocromo®) and the other hydrophobic curcumin. In vitro 

release studies demonstrated the ability of the composite film matrices to release the 

two model drugs individually or simultaneously in a sustained manner. Due to the 

presence of embedded starch granules, MaterBi® films have been found to release 

more drugs, both hydrophilic and hydrophobic, compared to pure PCL polymer. 

Individual drug release rates can be delayed by calcium crosslinking of the films by 

simple salt solution immersion. Calcium crosslinking is also efficient in delaying 

release rates of both drugs during dual release action. Detailed cell viability assay 

studies also confirmed that the films are highly biocompatible and ideal for 

superficial cell proliferation. These films can have a number of pharmaceutical 

applications as potential wound care materials or hygienic packaging of 

pharmaceutical products.  
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Chapter 3 

Anthocyanin-rich extract release from 

alginate-Beeswax emulsion gel beads.  

3.1. Introduction  

 Anthocyanins (ACNs) are water soluble pigments (red, blue, purple and 

orange) that color the fruits and flowers of many plants. They are phenolic 

compounds belonging to the class of flavonoids, which are secondary metabolites 

synthesized by higher plants. The aglycon form of ACNs, as reported in Fig.3.1, 

called anthocyanidin, is structurally based on the flavylium ion or 2-

phenylbenzopyrilium. ACNs consist of an aromatic ring A bonded to a heterocyclic 

ring C, that contains oxygen. In turn, the C ring is also connected by a carbon-carbon 

bond to third aromatic ring B1-2.  
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Figure 3.1: General Anthocyanins structure1 

 

 The main differences between the individual ACNs found in nature are the 

number of hydroxyl and methoxyl groups, the nature and the number of bonded 

sugars to their structure, the aliphatic or aromatic carboxylates residues bonded to 

the sugar in the molecule, and the position of these functional groups3. The hydroxyl 

groups on the aglycone may be substituted by sugar moieties (i.e. rhamnose, glucose, 

galactose, arabinose and xylose) or acylated with organic aromatic (i.e. p-coumaric, 

caffeic or ferulic acid) or aliphatic acids (i.e. acetic, malic, malonic, oxalic and 

succinic acids). Both glycosylation and acylation can affect the physicochemical 

properties of ACNs4.  

 The most common anthocyanidins in higher plants are: pelargonidin (Pg), 

peonidin (Pn), cyanidin (Cy), malvidin (Mv), petunidin (Pt) and delphinidin (Dp), 

and, among them, the glycosides of three non-methylated anthocyanidins (Cy, Dp 

and Pg) are the most abundant in nature1.  Due to their ionic nature, anthocyanins 

have the unique property to reversibly transform their structures in a pH-dependent 

manner. In water solutions they co-exist as four main equilibrium species:  flavylium 

cation, quinonoidal base, carbinol pseudobase, and chalcone C. At low pH (below 2) 

the predominant specie is the red flavylium cation. As the pH increases ranging from 

2 to 4, the flavylium cation undergoes conversion to the blue quinonoidal base. When 
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the pH ranges from 3 to 6, rapid hydration of flavylium cation generates the 

colourless carbinol pseudobase and chalcone. When the pH is higher than 7 

degradation can occur5-6.  

 

 

Figure 3.2: Chemical transformations of anthocyanins6 

 

 In addition to their colorant properties, ACNs gained a great interest for their 

multiple health benefits to humans, such as anti-inflammatory, anti-carcinogenic, 

antioxidant, anti-aging, cardioprotective, antidiabetic properties, improved eye 

health, and play a vital role in the prevention of degenerative diseases without 

toxicity6-9. For these reasons, they are considered potent nutraceutical and 

pharmaceutical ingredients.  As a nutraceutical, the bioavailability of anthocyanin is 

the key factor for maintaining good health and for prevention of diseases9. 
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Researchers have shown that, when orally administrated, the ACNs passing through 

the gastrointestinal tract (GIT) can be modified both by different pH and different 

microbial populations10-11. These studies demonstrated that ACNs are absorbed in 

the upper GIT (stomach and upper intestine) and this could explain their rapid 

appearance in the blood stream after administration.  In general, they are stable in 

the stomach, due to the low pH (1-2), which should ensure that anthocyanins are 

maintained as the flavylium cation.  In this organ their absorption is mediated by an 

organic anionic carrier, the bilitranslocase 12.   An insufficient retention of ACNs in 

the upper GIT could limit their absorption and contribute to degradation due to both 

high pH values found in the intestines13-14 and to metabolic process15-17. 
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     Figure 3.3: Translocation of anthocyanins and their metabolites within the 

human body10. 
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 Nevertheless, ACNs are highly unstable and it has been reported that they are 

very susceptible to several environmental conditions such as pH, Temperature, light, 

oxygen, presence of other compounds (enzymes, metal ions, phenolic compounds), 

which may subsequently reduce their bioactivity and bioavailability18-19. To 

circumvent these drawbacks, these compounds have been encapsulated with the aim 

to provide protective mechanisms from adverse environmental conditions, to 

maintain these compounds active until the time of consumption and deliver them to 

the physiological target. A wide range of technologies have been developed to 

encapsulate ACNs, including spray drying, micelles, nanoparticles, freeze- drying, 

liposomes coacervation, co-crystallization, emulsions and yeast encapsulation20-21. 

Among these, emulsion-encapsulation, including single, multiple and nano-

emulsions, is regarded as one of the most promising techniques for encapsulation 

and delivery of polyphenols. These systems have evidenced to be useful in 

entrapping anthocyanins, thanks to a high loading efficiency, maintenance of the 

stability of the cargo molecules and controlled release capacity. In addition, some 

polyphenols encapsulated within emulsions have shown a higher biological activity 

than free molecules23.  

 In this study we used Prunus mahaleb L. (P. mahaleb) fruit concentrated 

extract (mcfe), which exhibits a high concentration of anthocyanins. Prunus mahaleb 

L. is a deciduous tree from the Rosaceae subfamily Prunoideae, native to the 

Mediterranean region, Iran and Central Asia.  The fruit exists both in wild and 

cultivated forms for seed production.  P. mahaleb is a tree species commonly used 

as rootstock  for sweet cherry in well-drained soils in Italy, particularly in the Apulia 

Region.  
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Figure 3.4: Botanical characteristics of Prunus mahaleb. From top left to right: 

leaf, tree habit, ripe fruits, bark, flower, bud, branch with ripe fruits23. 

 

Its extract has been characterized to determine the amounts of sugars, organic acids 

and phenolic compounds by HPLC method (Tab.3.1). In mcfe a high concentration 

of bioactive compounds (especially ACNs) have been identified, exhibiting strong 

antioxidant capacities
23-24 

and multiple biological activities, including anti-

proliferative, anti-inflammatory and anti-mutagenic properties
25

.   
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Table 3.1: HPLC characterization of mfce25. 

 

Compounds  

Sugars (g/ml)  

Glucose 0.177 ± 0.007 

Fructose 0.160 ± 0.006 

Sorbitol 0.132 ± 0.0046  

Organic acids (g/ml)  

Tartaric acid 0.075 ± 0.003 

Malic acid 0.033 ± 0.003 

Succinic acid 0.015 ± 0.001 

Citric acid 0.064 ± 0.003 

Anthocyanins (mgKE*/ml) 15.060 ± 0.773 

Flavonols (μg/ml)  

Quercetin 120.244 ± 1.403 

Quercetin-3-O-glucoside 500.736 ± 27.196 

Rutin 512.034 ± 35.853 

 

 Among many biopolymers used so far for ACNs encapsulation, alginate (see 

Chapter 1, section 1.2) has been commonly applied as material for 

microencapsulation of bioactive compounds, because it can protect them from 

adverse environmental conditions, providing controlled release of the encapsulant26-

29. Various methods exist for production of alginate delivery systems and calcium-

alginate beads represent one of the most widely used carriers30-32. Calcium ions were 

commonly used as a cross linking agent for gelling of alginate and obtaining hard 

droplets, by simply adding dropwise a dispersion of the polysaccharide and drug to 

be encapsulated into a calcium chloride bath33-34. The obtained crosslinked 

microspheres exhibit controlled release properties due to the sensitivity of 

Ca2+/COO2 linkage to pH and other ions35.   

Alginate microspheres can be prepared by ionotropic gelation along with extrusion 

method which represent an easy, low-cost and effective technique suitable for the 

encapsulation of both hydrophilic and hydrophobic compounds36-37. 

 Dried forms of microbeads usually have greater stability and mechanical 

stiffness compared with hydrogel forms thus they are preferable for utilization in 
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foods and pharmaceuticals products38. In particular, alginate has been used in recent 

years as a unique vehicle for oral drug delivery39, mostly in the form of gel particles 

and several techniques have been developed and optimized to prepare alginate-based 

microparticles40.  

 Recently, many works reported the use of calcium alginate beads for the 

encapsulation of natural polyphenolic compounds, some of them include cocoa 

extract41 ,  stevia extract42, yerba mate extract43, dandelion (Taraxacum officinalis 

L.) extract44,  Hibiscus extract45 , pomegranate peel’s polyphenol extract46, Tamarind 

Seed Extracts47, mulberry fruits extract48 and harskap berries (Lonicera caerulea L.) 

rich extract49. The physical properties of calcium-alginate beads can be modified by 

the incorporation of insoluble substances, such as waxes50-51 that could increase drug 

entrapment efficiency and retard drug release from the beads.    

 In this study, Beeswax was used as insoluble material, with the aim to 

develop composite alginate-based emulsion gel beads able to encapsulate and release 

in a controlled manner the Prunus mahaleb L. anthocyanin-rich fruit extract. 

Beeswax is a natural and edible material used in pharmaceutical, cosmetics, food and 

other industries. It is produced by the bee Apis millifera L. It is classified as GRAS 

(Generally Recognized as Safe) material and employed as additive, with other waxes 

(carnauba and candelilla), in the European Union (E901-903)52-53. It consists in a 

mixture of both saturated and unsaturated linear and complex monoesters, 

hydrocarbons, free fatty acids, free fatty alcohols, and other minor exogenous 

substances. Beeswax has a melting point range of 62-65 °C and it is practically 

insoluble in water, sparingly soluble in ethanol and soluble in chloroform and other 

oils1. Its advantages include good stability at different pHs and moisture content, 

biocompatibility, with no immunogenicity due to its water insoluble nature, slight 

effects of food in the GI tract, chemical inertness and no dose dumping54. All these 

characteristics make Beeswax a safe material for oral application in humans and 

suggest a high potential for pharmaceutical uses. Specifically, waxes are used to 
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encapsulate various types of drugs55-62 and are mostly exploited as release retardant 

in the design of sustained release systems, including beads, tablets, suspensions, 

implants and microparticles52.  

 Considering the above-mentioned premises and the physicochemical 

characteristics of the material system under study, we formulated the following 

hypotheses. 

• Hypothesis (a): the combination of alginate and Beeswax via emulsion 

gelation method can lead to the development of a new biodegradable material 

with controlled drug release properties. 

• Hypothesis (b): The presence of Beeswax within the material matrix can 

influence the physico-chemical properties and will sustain the drug release 

profile over time under simulated gastrointestinal conditions, preserving its 

antioxidant activity. 

• Hypothesis (c): The presence of pores within the microbeads structure can 

accelerate the release process thanks to higher exposure of the molecule to 

the fluids. 

In order to test our hypotheses, various formulation strategies and characterization 

methods have been implemented, as presented in detail in the following sections of 

this Chapter.  

3.2. Materials and methods 

3.2.1. Materials 

 Sodium alginate powder, Beeswax and Calcium Chloride were supplied by 

Sigma Aldrich (St. Louis, MO, USA). Soy lecithin powder (90%) was purchased 

from Alfa Aesar. Prunus mahaleb rich extract (mcfe) was a gift of Dr. Carmela 

Gerardi from Institute of Science of Food Production, CNR, Territorial Unit Lecce.  

  



 

116 

3.2.2.  Preparation of conventional Calcium Alginate (CaAlg) beads 

and Emulsion gel beads  

 Conventional CaAlg beads were prepared by ionotropic gelation technique. 

Briefly, an aqueous solution of sodium alginate (1 gr; 4% w/v) was extruded through 

a 15G syringe needle into calcium chloride (2% w/v) under gentle agitation at room 

temperature. The dropping rate was kept 5 mL/min. Calcium ions crosslinked the 

alginate molecules, allowing the formation of bead-structures. The obtained gel 

beads were allowed to harden in calcium chloride solution for 2 minutes under 

stirring (500 rpm), separated by sieve, and washed twice with distilled water, in order 

to remove the excess of calcium chloride. Beads were oven dried at 40 °C overnight 

or freeze dried.  CaAlg-Beeswax emulsion gel beads were prepared by emulsion 

gelation method, blending and emulsifying different alginate to Beeswax ratio by 

weight, 100:0; 85:15 and 50:50 respectively. Briefly, appropriate amounts of sodium 

alginate aqueous solution (4% w/v) were heated up to 65°C ± 10 °C, which 

corresponds to the melting temperature for the Beeswax (62-67 °C). Various 

amounts of wax were then added and melted into the hot alginate solution, and the 

mixture was homogenized with a vortex to obtain homogeneous pre-emulsions. The 

pre-emulsions were probe sonicated for 3 min (cycles of 30s on and 30s off) with 

40% Amplitude. Finally, the emulsions were extruded through a 15G syringe needle 

into calcium chloride (2% w/v), cooled at 5 °C, and treated in the same manner as 

conventional CaAlg beads.  

 

3.2.2. Optimization of the formulation and Encapsulation Efficiency  

 To prepare drug-loaded beads anthocyanins-rich extract (mcfe) was added 

dropwise into sodium alginate aqueous solution or into the hot alginate-Beeswax 

aqueous mixture, and then homogenously dispersed by vortex mixing. Upon 

emulsification by ultrasonic processing for 3 minutes (30s on and 30s off) with 40% 

Amplitude, the emulsions were loaded into a plastic syringe and the mcfe-
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incorporating emulsion gel beads were obtained by emulsion gelation method, as 

previously described. In order to examine the effect of some formulation and 

processing parameters on drug entrapment efficiency, the following variables were 

investigated:  

• Hardening time (2, 5 and 10 min)  

• Amount of surfactant, Soy Lecithin (0%,0,5%,1,5%,3%,5% and 10% w/v) 

All experiments were made in triplicates.  

 Drug entrapment efficiency was measured spectrophotometrically and 

calculated indirectly, by determining the non- entrapped drug present in the calcium 

chloride solution. More specifically, the following equation was used:  

EE% =  
(M1 − M2)

M1
× 100 

where M1 is the drug content initially added during the batch preparation and M2 is 

the drug content recovered in the aqueous solutions after beads curing time. Mcfe 

content was then calculated using a pre-constructed calibration curve. Each result is 

reported as mean of at least three separate experiments.  

 

3.2.3. Surface Morphology  

 Scanning Electron Microscopy (SEM) was used to determine particle size 

distribution, surface topography and to examine the internal structure of the beads 

by cutting them in half with a steel blade. SEM studies were carried out by using 

JEOL JSM-6490LA scanning electron microscope, with an accelerating voltage of 

10 kV. The beads were mounted on stubs with double sided adhesive carbon tape 

and coated with gold (10 nm). The samples were then randomly scanned, and 

photomicrographs were taken at different magnifications.  

 

 



 

118 

3.2.4. Thermogravimetric analysis  

 The thermal degradation behavior of the beads was investigated by a standard 

thermogravimetric analysis (TGA) method using a TGA Q500 from TA Instruments. 

Measurements were performed on samples in an aluminum pan under inert N2 

atmosphere with a flow rate of 50 mL/min.  

 

3.2.5. Swelling studies  

 Swelling properties were investigated to assess their pH-dependency by 

soaking the beads in Simulated Gastric Fluid (SGF, NaCl 2 gr, 7 mL HCL and water 

up to 1 L, with a pH=1.2) or Simulated Intestinal Fluid (SIF, Potassium monobasic 

6 gr, 77 mL NaOH 0.2N and water up to 1 L, with a pH=6.8) for 8 hours. In addition, 

a similar experiment was conducted by immersing the beads in SGF for the first 2 

hours and in SIF for the following 6 hours.  Samples (60 mg) were accurately 

weighed in the dry state and immersed in 50 mL Falcon Tubes filled with 20 mL of 

simulated gastrointestinal media, at 37 °C. At pre-defined time intervals, the beads 

were retrieved from the media, blotted to remove the excess of water using blotting 

paper, and immediately weighted. The swelling degree (SD) was calculated as 

follow:  

Swelling degree (SD) = (Wt – W0) / (W0) × 100% 

where Wt and W0 are the wet weight at time t and the initial dry weight of the beads. 

The SD of the beads in terms of weight was expressed as percentage (%) versus time.  

 

3.2.6. Fourier Transform Infrared (FTIR) spectroscopy  

 FTIR spectra of loaded and unloaded beads were obtained by using an 

attenuated total reflectance (ATR) accessory (MIRacle ATR, PIKE Technologies) 

coupled to a Fourier transform infrared (FTIR) spectrometer (Equinox 70 FT-IR, 

Bruker). The beads were powdered prior to perform the analysis, and all spectra were 
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scanned over the range of 4000 to 600 cm
-1

, with 4 cm
-1 resolution (accumulating 64 

scans).  

3.2.7. Porosity 

 Mercury intrusion porosimetry was performed with Pascal 140 Evo and 

Pascal 240 Evo mercury porosimeters (Thermo Fisher Scientific). A double run in 

the Pascal 140 Evo module was required in order to break the particle aggregates. 

The results were obtained combining the second run of the Pascal 140 Evo module 

with the run obtained from the high-pressure module. The pressure of mercury 

intrusion was set at 0.0136 MPa and was continuously increasing up to 200 MPa, 

with a rate of 6 - 14 MPa·min-1. The contact angle of mercury with the samples and 

the surface tension of pure mercury were assumed to be 140° and 0.48 N·m-1, 

respectively. Washburn equation was used to calculate the pore size from the applied 

pressure, assuming that the pores are of spherical shape. The analysis was performed 

using a CD6/P dilatometer (sample holder) for heterogeneous solid samples and 

powders, in which were placed around 3 g for each sample.  

3.2.8. XRD analysis  

 XRD measurements were carried out on a ‘Xpert Panalytical diffractometer 

in reflection mode using CuKα radiation (λ=1.5406 Å) with 0.05° step size in the 

range 10-70° 2θ. 

 

3.2.9. Mechanical properties  

 The stiffness of the beads was measured by uniaxial compression on an 

Instron dynamometer equipped with a 500 N load cell. The diameter of each sample 

was measured by optical observations, then samples were loaded on the compression 

anvil and tested with the rate of 1 mm/min, until 50% deformation. The clamp 

position at the beginning of the test, identified with a small preload, defined the 

sample height. At least five specimens were tested for each material/condition.  
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The Young’s modulus was extracted from the initial portion of stress-strain curves, 

approximating the beads to cylinders. Such approximation, albeit an 

underestimation, is considered reasonable for the low aspect ratio of the beads. 

Results are presented as average, the error as standard deviation. 

3.2.10. Antioxidant activity  

 Antioxidant capacity of the films was determined by the standard DPPH free 

radical scavenging method. Briefly, 15 mg of beads were placed into 1.5 mL of SGF. 

At pre-determined time points, the solution was added to 1.5 mL of 0.2 mM solution 

of DPPH radical in ethanol and it was kept in the dark.  After 10min, the absorbance 

(A1) was determined at 517 nm by UV– Vis spectrophotometer. Meanwhile, a 

control absorbance value (A2) was also measured from a mixture of 1.5 mL SGF and 

1.5 mL of 0.2 mM DPPH free radical solution in ethanol. The percentage of 

antioxidant activity was calculated by following formula:  

%antioxidant activity= A1-A2/A2 

where A1 is the absorbance of the solution containing the extract and DPPH radical, 

A2 refers to the absorbance of DPPH control solution All the absorbance values were 

determined at 517 nm. Each result is the mean of three repetitions.  

3.2.11. In vitro drug release  

 Drug release studies were conducted mimicking the gastrointestinal fluids. 

Briefly, dried samples (150 mg) were placed in capped polypropylene tubes filled 

with 50 mL of releasing medium, either SGF or SIF, and maintained under shaking 

(100 rpm) at 37 °C, for 8 hours. At specific time points (every 15, 30, 45 and 60 

minutes for the first hour and then every hour), aliquots of 0.5 mL were collected 

and replaced with the same amount of fresh medium. The amount of drug released 

at a given time was determined spectrophotometrically at λmax (515 nm) which 

corresponds to characteristic peak detected for the anthocyanins present within the 
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extract. Prior to the studies, a standard curve was acquired. In addition, release 

studies were also performed following an alternative procedure: first, the samples 

(150 mg) were placed for 2 hours into the SGF medium; subsequently, the pH of the 

medium was adjusted and kept at 6.8; the samples were incubated in the SIF for 6 

additional hours. Aliquots of the release media (0.5 mL) were collected every 15, 30, 

45 and 60 mins in SGF and every hour in SIF, replaced with fresh medium, and 

analyzed by UV-Vis spectrophotometer at λmax (515 nm) to determine the amount of 

drug released. All the experiments were performed in triplicates.  

3.3. Results and discussion  

3.3.1. Particle size and morphology of the beads  

 The macroscopical appearance of CaAlg-Beeswax microbeads, produced by 

emulsion-gelation method is presented in Fig.3.5a-c, where in the wet state the beads 

revealed a spherical shape. In addition, freshly-prepared beads (Fig.3.5a-c), showed 

color differences, such as transparent for pure alginate samples (Fig.3.5a), and white 

in the samples comprising 15% wt. (Fig.3.5b) and 50% wt. (Fig.3.5c) of Beeswax.  

However, during drying, the beads shrank, due to the evaporation of the internal 

water, reducing their size. Particle size analysis showed that the dimensions were in 

the range of 2.3 ± 0.2 mm for alginate beads, while for the samples comprising 15% 

and 50% w/w Beeswax were in the range of 1.6 ± 0.17 mm. A decrease in size was 

observed when Beeswax was present into the bead matrix.  The external surface and 

internal structures of CaAlg-Beeswax beads were examined by SEM. From 

micrographs, it is clear that, after the drying process of the micro-particles, the initial 

spherical shape (Fig.3.5a-c) is lost, and a more irregular shape is acquired, as 

confirmed by Fig.3.5d-i. The conventional CaAlg beads (Fig.3.5a and g), with an 

aspect ratio value of 0.6, were red blood cell-like shaped, with a smooth external 

surface. On the other hand, the inclusion of Beeswax in the matrix led to a drop-like 

shape and a rough surface. These features appeared more defined by increasing the 
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amount of wax from 15% (Fig.3.5e and h) to 50% w/w (Fig.3.5f and i), which also 

led to an aspect ratio of 0.5 and 0.8, respectively.  The analysis of the cross-sections 

unraveled a rougher internal matrix, due to an increasing amount of Beeswax, from 

0 to 50% w/w (Fig.3.5l-n).  From this observation it was possible to say that the 

presence of Beeswax into the bead matrix can influence the size, shape and external 

and internal structure of the particles.  

 

3.3.2. Physico-chemical properties 

 Figure 3.6a shows the FTIR-ATR spectra of the beads containing alginate or 

alginate-Beeswax inside their matrix (85% CaAlg-15% Beeswax and 50% CaAlg-

50% Beeswax). Beeswax represents a complex organic mixture of numerous 

compounds (fatty acids and fatty alcohols, long- chain hydrocarbons, and free fatty 

acids) and its main peaks are reported in Fig.3.6a (black spectra)63. The peak at 3333 

cm-1 corresponds to O-H stretching. The peaks at 2916 and 2848 cm-1 were assigned 

Figure 3.5: Morphological features at a macro-scale (a-c) and SEM micrographs 

of surface (d-i) and cross-section (l-n) of CaAlg-Beeswax microbeads. 
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to the asymmetric and symmetric C–H stretching vibrations of the fatty acid chains. 

The C = O stretching in the carboxylic groups of cholesterol ester was observed at 

1737 cm-1 . The peaks at 1462 and 1376 cm-1 were attributed to and the C–H2 and 

C–H3 bending in alkanes, respectively. Finally, the peak at 1171 cm-1 was associated 

with the ketone groups, specifically with the stretching vibrations of the –C–O ester 

groups, while the peak at 1096 cm-1 corresponded to the symmetric C-C stretching 

vibrations. The FTIR spectrum of calcium alginate (Fig.3.6a red spectra) showed 

peaks at 3333, 1593 and 1415 cm-1
, indicating the O-H stretching, the asymmetric 

and symmetric COO- stretching, respectively. The peak at 1303 cm-1 was attributed 

to C-O stretching vibrations, while 1081 cm-1 was related to the C-O, C-C and C-O-

C stretching vibrations. In the FTIR spectrum of alginate-beeswax beads, comprising 

15% (Fig.3.6a blue spectra) and 50% (Fig.3.6a green spectra) of wax, various 

characteristic peaks of alginate and Beeswax were appeared without any significant 

shifting of these peaks. This suggests that there were no interactions between the two 

materials.  

 The diffractograms in the Fig.3.6b are related to the pure sodium alginate 

powder and two different blends in presence of Beeswax. Two main peaks appear 

between 20 and 25° present in the three compositions, compatible with the sodium 

alginate reflections 64. With the increasing beeswax content, the occurrence of low 

intensity peaks below 30° presumably due to the beeswax component arises65. The 

presence of the bands (marked with a star) at 32, 45 and 56° can be ascribed to the 

silicon substrate background signal. 

 The Thermal behavior of the samples was evaluated by TGA, as reported in 

Fig.3.6c. For pure CaAlg beads two weight loss steps at ~ 200°C (weight loss of 

18%) and at 300°C (weight loss of 50%) were reported. The first step is a 

consequence of the water loss, while the second one is attributed to the degradation 

of alginate backbone 66 . The inclusion of Beeswax into the bead matrices improved 

their thermal stability, extending the 50% weight loss temperature to ~300°C, 

proportionally to the amount of wax present inside the samples.  
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 Fig.3.6d shows the Young’s modulus of dry beads as function of Beeswax 

content. The results demonstrated that the Young’s modulus slightly increased when 

Beeswax was added into the bead matrix and its value ranged from 84 MPa for pure 

CaAlg beads to 88 and 103 MPa for the beads comprising 15% wt. and 50% wt. of 

Beeswax respectively.  

3.3.3. Swelling and mechanical properties of Calcium alginate-

Beeswax beads  

 Swelling is the major factor which influences the drug release of any 

encapsulated compound from polymeric beads which require to be re-hydrated 

before usage. This process is very complex in alginate hydrogels, because it 

Figure 3.6: FTIR analysis (a), XRD patterns (b), Thermogravimetric analysis 

(c) and Mechanical properties of CaAlg  and CaAlg-Beeswax microbeads. 
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depends on the pH of the solution in which the beads are placed and the osmotic 

pressure gradient that exist between the gel and the environment acts as important 

factor in the swelling process67. As shown in Fig.3.7, water swelling ability of the 

CaAlg-Beeswax beads was influenced both by the pH of the solution and by the 

particle’s composition after rehydration, by incubating the beads in SGF (Fig.3.7a) 

and in SIF (Fig.3.7b). In both swelling media it was observed that the water uptake 

capability of the beads decreased as the amount of Beeswax increased. Under acidic 

conditions (Fig.3.7a), no significant changes in the weight of the particles were 

recorded, due to the formation of alginic acid in this medium, neither changes in the 

turbidity of SGF were appreciated68-69; moreover, the maximum swelling values 

remained constant until the end of the experiment (8 h).  This phenomenon is due to 

the reduction of the of the electrostatic repulsion among the carboxylate groups, 

minimizing the degree of swelling.  

 On the other hand, when the beads were immersed in SIF (Fig.3.7b), whose 

pH is near neutrality (6.8), their swelling capability enhanced, and an increase in 

their weight was recorded. Responsible for this phenomenon is the anionic nature of 

alginate. At neutral pH, the ionization of the carboxylate groups of the alginate 

backbone, generates a net negative charge, leading to repulsive forces between these 

charges which cause a rapid relaxation in the polysaccharide network.  

This relaxation improves the insertion of water molecule in to the bead network 

structure. In addition, the presence of phosphate ions into SIF act as calcium 

sequestrant, leading to a very fast swelling of the particles and the recovery of their 

initial, spherical shape. The turbidity of this solution can also be attributed to the 

formation of calcium phosphate due to the ionic exchange between the Ca2+ in the 

egg-box structure of the beads and the Na+ contained in the medium68.  Together 

with the pH-effect. Also the Beeswax content appears to influence the process: the 

more amount of Beeswax is present within the bead matrix, the less is the water 

uptake capability. 
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 The mechanical properties of the microbeads were also investigated after 

submersion in SIF or SGF as reported in Fig.3.7c. The results show a dramatic 

decrease of the modulus, attributed to the hydration of alginate, compared to those 

measured for the dried samples (Fig.3.6d). In detail, particles in SIF reached 1 MPa 

after 1h submersion, and kept the same value after 24h, with no variation as a 

function of the beeswax content. In SGF, similarly, no significant difference was 

detected as a function of time, whereas the amount of beeswax plays a role, 

decreasing the modulus fairly linearly as a function of concentration. Interestingly, 

values of pure alginate beads are about three time as high as the same beads in SIF, 

which suggest lower swelling thereof. When beeswax is added, values converge to 

the 2 or 1 MPa for samples comprising 15% and 50% wt. of wax respectively 

Figure 3.7: Swelling profiles of 100%CaAlg (red line); 85%CaAlg-15%Beeswax (blue 

line) and 50%CaAlg-50%Beeswax (green line) in SGF (a) and SIF (b). Mechanical 

properties of emulsion gel beads after immersion in SGF or SIF (c). 
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 Morphological analysis of the beads after 8 hours of experiment showed that, 

under acidic conditions, the shape of the particles was maintained, with some signs 

of erosion on their surface (Fig.3.8a-f). At this pH the system appears stable and does 

not undergo any type of disintegration. On the other hand, when in neutral 

environment, the beads were completely destroyed as consequence of the rupture of 

the cross-linked structure.  

 

 In order to simulate the real gastrointestinal transit, the swelling experiments 

were performed also by placing the beads for 2h in SGF and for the following 6h in 

SIF (Fig.3.9a). The results revealed a water uptake of about ~ 50% in acidic pH, due 

to alginate shrinking. A weight gain of ~ 30 times higher occurs when the pH 

becomes alkaline, with erosion but without any sign of disintegration for all the 

formulations (Fig. 3.9b-d). 

Figure 3.8: SEM micrographs of 100% CaAlg (a-d); 85% CaAlg - 15% Beeswax 

(b-e) and 50% CaAlg - 50% Beeswax (c-f) after 8h in SGF. 
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Figure 3.9: Swelling profiles (a) and SEM micrographs of 100% CaAlg (b), 85% 

CaAlg - 15% Beeswax (c) and 50% CaAlg - 50% Beeswax (c) after 8h under 

simulated gastrointestinal conditions. 

 

3.3.4. Encapsulation of anthocyanin  

 Various formulation and process variables were investigated to maximize the 

encapsulation efficiency (EE%) of the anthocyanin inside the micro-particles. The 

EE% of mcfe, as a function of hardening time before separation of the beads from 

the gelation medium (CaCl2 at 2% w/v) is reported in Tab.1. It was noticed that, 

prolonging the curing time from 2 to 10 min, a reduction in the encapsulation 

efficiency was recorded. In fact, due to its high solubility, the drug diffuses out of 

the beads into the calcium chloride solution. For this reason, a hardening time of 2 

min was selected for further investigations.  
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Table 3.2: Effect of hardening time on the Encapsulation Efficiency of mcfe. 

 

Curing time (min) 
100% CaAlg 

(EE%) 

85% CaAlg -15% 

Beeswax (EE%) 

50% CaAlg -50% 

Beeswax (EE%) 

2 94,5±0,005 93±0,004 81±0,006 

5 89±0,005 86±0,005 74±0,004 

10 80±0,001 81±0,006 70±0,003 

  

 A different formulation strategy to enhance the active molecule encapsulation 

efficiency was based on the addiction of a natural surfactant, soy lecithin. As lecithin 

consists of a glycerol backbone esterified with two fatty acids and a phosphate group, 

it has an excellent emulsifying property and it is widely applied as an emulsifier in 

food-grade emulsions 70-71. As reported in Fig.3.10, increasing the amount of lecithin 

within the formulation leads to an increasing in the EE% values.  The best surfactant 

concentration was found to be 5% w/w of polymer, while for higher concentrations 

of soy lecithin the encapsulation efficiency remained practically unvaried. With the 

addiction of 5% w/w soy lecithin the EE% values increased from 94.5% to 98 % for 

100% alginate beads; from 93 % to 98 % for 85:15 samples and from 81% to 96% 

for 50:50 beads.  
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3.3.5.  In vitro release and antioxidant activity of mcfe from CaAlg-

Beeswax emulsion gel beads  

 Drug release studies were carried out to examine the suitability of the CaAlg 

-Beeswax microparticles as an oral delivery system for mcfe, and to check whether 

Beeswax could retain the drug encapsulated. The release characteristic of mcfe was 

examined in simulated gastrointestinal fluids, SGF and SIF respectively. Fig.9 shows 

the cumulative release of the anthocyanin from CaAlg (conventional) beads and 

emulsion gel beads holding 15% or 50% w/w Beeswax. Under gastric condition 

(Fig.3.11a) the percentage of cumulative release from CaAlg or CaAlg - Beeswax, 

85:15 and 50:50, microbeads within 2h was in the range of 53%, 59%, and 61% 

respectively, due to the insoluble alginic acid formation. This first phase of the 

delivery was followed by a second, slower drug release phase, after 4 hours and up 

Figure 3.10: Effect of soy lecithin concentration on mcfe encapsulation efficiency. 
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to 8 hours, where all the samples reached a plateau. In SGF the release of the 

anthocyanin was driven only by diffusion into the acidic medium.  However, when 

the release was performed in SIF (Fig.3.11b) within 2h the percentage of cumulative 

release from alginate or alginate-Beeswax, 85:15 and 50:50, microbeads, was equal 

to 53%, 53%, and 50%, respectively. At the end of the experiment all the beads were 

completely rehydrated, and an opposite trend was observed starting from 4h, by 

increasing the amount of alginate within the beads also the amount of drug liberated 

increased.  In SIF, the polymeric matrix is eroded thanks to the alkaline pH, and mcfe 

was released by both diffusion and erosion of the bead matrix.  At the end of the 

experiment, all the beads were completely re-hydrated, and an opposite trend was 

observed starting from 4 hours. By increasing the amount of alginate within the 

beads, the amount of drug released also increased. In SIF, the polymeric matrix is 

eroded thanks to the alkaline pH, and mcfe was released by both diffusion and erosion 

of the matrix.  

Figure 3.11: In vitro drug release studies in SGF (a) and SIF (b) up to 8h from 

emulsion gel beads with (Dash lines) and without (Solid lines) soy lecithin 

  

In addition, the dissolution studies were carried by incubating the beads into the two 

different fluids, such as acidic medium and 6.8 phosphate buffer medium for a period 

of 2h and 8 h, at 37 °C under 100 rpm, to have a sequential release of the mcfe 
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simulating the real gastric transit (Fig.3.12a).  In this case, within the first 2 h, 28–

37 % of the drug was released in SGF from all the formulations. Specifically, 33%, 

37% and 28% of mcfe was released from CaAlg (conventional), 85:15 and 50:50 

beads, respectively. The rest of the entrapped drug was released in the SIF, lasting 

for up to 8 h with a sustained release, reaching 36-56% of the amount of drug 

released. Specifically, conventional alginate beads were able to release a further 23% 

of the molecule, resulting in a cumulative release of 56% after 8h. In contrast, for 

samples containing Beeswax a further release of 11% and 8% was measured, causing 

a cumulative release equal to 48% and 36% for beads comprising 15% and 50% of 

wax, respectively.  

 Under the same experimental conditions, antioxidant activity of the 

anthocyanin was also investigated. However, because anthocyanins can undergo 

conversion from the stable form of flavylium cation into unstable forms (quinonoidal 

base, carbinol pseudobase and chalcone C) by increasing the pH, we tested the 

formulation antioxidant activity only at low pH values. As seen in Fig.3.12b, the 

antioxidant can be released in a controlled manner, thanks to the presence of 

Beeswax into the bead matrix. The anthocyanin extract diffuses gradually in the 

surrounding media, prolonging the activity of the encapsulated anthocyanin. 

Particularly, at the end of 2h, mcfe activity was 94% for CaAlg beads and 86% and 

78% for the particles comprising 15% and 50% of Beeswax, respectively. For 

instance, the composition of the microbeads and especially the content of wax can 

be considered as a control factor of the diffusion of the anthocyanin in the medium, 

maintaining its antioxidant properties.   
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Figure 3.12: In vitro drug release of mcfe from the microparticles (a) without 

(solid lines) and with soy lecithin (Dash lines); (b) antioxidant properties of the 

anthocyanin released within the media.  The first 2h of the experiment were 

performed at pH = 2 in SGF, while the next 6h at pH = 7 in SIF. The two media 

were prepared as described in the experimental section. 
 

 The whole release profiles may reflect the outcome of two contributing 

factors: the pH dependence of alginate, which is stable in acidic solution but swells 

and degrades under higher pH values, and the presence of Beeswax within the bead 

matrix that could retard the release from emulsion gel beads. Beeswax may confer 

hydrophobicity to the matrix, consequently delaying the diffusion of the drug from 

the beads.  The addiction of the natural surfactant during the fabrication process 

demonstrated its function either in increasing the encapsulation efficiency of the 

natural extract or in delaying its delivery profile, as reported in Figs.3.11 (a-b) and 

3.12 (a).  
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3.3.6. Effect of Porosity 

3.3.6.1. Morphological analysis of freeze-dried beads and porosity 

examination  

 The surface and internal morphology of the lyophilized beads is reported in 

Fig.3.13(a.i). The freeze-dried beads displayed a slightly shrunk and rough surface. 

The cross-sectional view of these beads exhibited a spongy texture, with numerous 

open channel-like structures, which render them brittle to touch. The pores were 

formed when water molecules slowly sublimated from the polymeric network during 

the freezing step72.  Notably, the three types of beads exhibited different pore 

morphology, although a microporous structure was observed in all of them. The 

beads comprising Beeswax within their matrix revealed smaller pore structures than 

the pure CaAlg beads, proportional to the amount of wax present.  

 Porous beads show in general, expectedly, lower values of Young’s modulus 

and larger scatter in the results (standard deviation), as shown in Fig.3.13l . This is 

attributed to the inhomogeneity added by the freeze-thaw process, and to the variable 

amount of porosity, which make the stress states inhomogeneous. Nonetheless, the 

behavior of dry beads is similar to the non-porous ones, meaning that the addition of 

beeswax acts as a stiffener (from ≈0.5 to 2 Mpa). 
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 A more quantitative analysis of the bead porosity was carried out via mercury 

intrusion porosimetry. Figure 3.14 shows the penetration plots, which represent the 

cumulative penetrated mercury volume that is intruded inside the sample under 

increasing pressure (up to 200 MPa). The penetration pressure is inversely 

proportional to the pore and particle size. The particle size distribution is not 

completely described by the mercury intrusion measurements, due to the average 

diameter of the beads exceeding 580 μm (the maximum particle size detectable by 

the instrument). It is possible to observe a remarkably different behavior for the two 

sets of prepared samples. Specifically, the porous samples exhibit a total intruded 

volume of mercury higher than the one measured for the non-porous beads. The 

values of total intruded volume achieved by the different samples are summarized in 

the Table 3.3. In fact, in addition to the penetration of the mercury inside the inter-

particle voids, at higher pressure the mercury is also forced to intrude the intra-

particle voids present in the porous beads. By increasing the amount of alginate 

inside the matrix it is possible to induce an enhancement of the system porosity. 

From the extrusion curves of the porous samples (Fig.3.14, red dash lines), it is 

Figure 3.13: SEM micrographs of surface(a-c) and cross-sections (d-i) of 

calcium alginate-Beeswax emulsion gel beads and mechanical properties in the 

dry state (l). 
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possible to infer the presence of an interconnected porous system, considering the 

amount of entrapped mercury within the porous beads after the measurements. On 

the other hand, the extrusion curves (Fig.3.14, black dash line) of the non-porous 

beads are similar to the intrusion curves73, so no porosity is present in their structure.  

Further studies are needed in order to understand the total open pore volume for the 

accurate calculation of the pore size distribution. For this reason, the measurement 

of the material real density by a helium pycnometer is required to exclude any effect 

of sample compression during the analysis. The real density is independent on the 

particle aggregation degree and it is related to the real volume occupied by the 

material, if all the porosity is accessible by the helium. Thanks to this information it 

will be possible to define the intra-pore size distribution.  

 

Figure 3.14. Mercury intrusion (solid line)/extrusion (dash line) curves of (a) 

50/50, (b) 85/15 and (c) 100 of the non-porous (black) and porous (red) beads. 
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Table 3.3. Total intruded volume measured by mercury porosimetry. 

 

 

3.3.6.2. Swelling behavior and mechanical properties 

 As in the case of the oven dried beads, also for the lyophilized ones, the 

swelling degree was investigated. Due to their porous structure and larger size, 

freeze-dried beads showed higher water uptake capacity. In SGF (Fig.3.15a), the 

swelling degrees for all the hydrogels was quite low due to the proton-calcium 

exchange forming alginic acid regions, as the media penetrates into the bead gel 

network. However, in comparison to the oven dried samples, the lyophilized beads 

showed marginal swelling with a weight gain 5-fold higher (~ 200%), probably due 

to the penetration of the fluid through the pores.  

However, in SIF (Fig.3.15b) freeze-dried samples had a weight gain, within the first 

2h, of about 5-10 times higher according to the matrix composition. Subsequently, 

the bead structure started quickly to disaggregate, leading to the dissolution of the 

swollen beads at the end of 8h.  

 The mechanical properties of the freeze-dried samples in the wet state was 

also investigated (Fig.3.15c). Beads in SIF follow similar trends as the non-porous 

ones, with roughly constant values, although some stiffening is visible after 24h. 

Beads in SGF, similarly, resemble the non-porous ones, but in this case after 24h 

they are less stiff than at 1h. 

          Total intruded volume (mm3/g) 

Sample Non-porous porous 

50/50 63.3 112.37 

85/15 78.83 187.79 

100 39.63 609.56 
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 The swelling degree of calcium alginate-Beeswax microbeads in simulated 

gastric fluid (SGF) for 2h followed by simulated intestinal fluid (SIF) for 8h is 

shown in Fig. 3.16. Beads were found swollen in the gastric medium 4-time more 

respect to the non-porous beads. When they are subsequently transferred to the 

intestinal fluid,  the beads began to disintegrate starting from 4h.  

Figure 3.15: Swelling profiles of 100%CaAlg (red line); 85%CaAlg-

15%Beeswax (blue line) and 50%CaAlg-50%Beeswax (green line) in SGF (a) 

and SFI (b). Mechanical properties of emulsion gel beads after immersion in 

SGF or SIF (c). 
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3.3.6.3. In vitro drug release  

 The presence of pores within the microbeads structure is also able to 

influence the drug release properties of these matrices. As reported in Fig.3.17a, thus 

using the same material composition, the changes in beads morphology improved 

mcfe relase, making it faster. As reported in Fig. 3.17a, in SGF at the end of 2h was 

detected a 2-fold higher amount of anthocyanin, equal to 64%, 59% and 46% for 

100% CaAlg, 85% CaAlg - 15% Beeswax and 50% CaAlg - 50% Beeswax 

respectively, in comparison to the quantity of drug released from not porous beads 

within this fluid.  When the samples were subsequently incubated into SIF the 

amount of mcfe released was equal to 72%, 67% and 41% for 100% CaAlg, 85% 

CaAlg -15% Beeswax and 50% CaAlg - 50% Beeswax, respectively. The results 

suggested the potentiality of freeze-dried beads to accelerate the release of the 

anthocyanin, due to a higher exposure of the active molecule to the gastrointestinal 

fluids.  Furthermore, also in the lyophilized samples, the presence of soy lecithin 

Figure 3.16: Swelling behavior of porous beads under sequential passage from 

SGF (2h) and SIF (8h). 
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(Fig.3.17b) was able to delay the amount of drug released of about half, in 

comparison with the beads without the emulsifying agent.  

Figure 3.17: (a) In vitro drug release of mcfe from porous microbeads (dash 

lines) vs not porous beads (solid lines); (b) in vitro drug release profiles of mcfe 

from porous microbeads without (solid lines) and with soy lecithin (dash lines). 

 

3.4. Conclusions 

 Prunus mahaleb L. anthocyanin-rich fruit extract (mcfe) was entrapped in 

calcium alginate-Beeswax emulsion gel beads prepared by emulsion gelation 

method, using calcium chloride as cross-linking agent. The beads were evaluated for 

their physico-chemical properties, morphology, drug entrapment efficiency, and 

drug release characteristics in enzyme free Simulated Gastric Fluid and Simulated 

Intestinal Fluid. The drug entrapment was optimized by decreasing the curing time 

into calcium chloride solution, due to the hydrophilicity of the active compound, and 

by adding the natural surfactant soy lecithin. Incorporation of Beeswax into the beads 

influenced the drug release. Therefore, an increased amount of wax favored an 

extended release of the anthocyanin from emulsion gel beads. In addition, mcfe 

appeared to be chemically stable and antioxidant activity was preserved upon 

encapsulation. Freeze-dried beads exhibited significant high release capability 

compared to the oven-dried forms due to a higher exposure of the molecule to the 



 

141 

fluids. We therefore suggested the application of calcium alginate-Beeswax 

emulsion gel beads, using a modified ionotropic gelation technique, as microcarrier 

to enhance the efficiency and control the delivery of the natural anthocyanin and 

improving its stability and bioavailability.  
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Chapter 4 

Conclusions  

 Due to their biodegradability, biocompatibility, heterogeneity in architecture, 

chemical tailorability, morphology, and degradation rate, bio-polymers have been 

widely used for the development of several drug delivery systems. The latter have 

become very attractive in the biomedical and pharmaceutical fields, because they can 

overcome issues related to the conventional drug formulations. In fact, they are able 

to deliver active principles in a controlled and targeted manner, maintaining the drug 

levels within the therapeutic window, overcoming the risk of over or under dosage, 

and reducing the frequency of drug administration while increasing the patient 

compliance.  

 Herein, two polymeric systems were developed using the same technique of 

fabrication, emulsification, which is a facile, inexpensive, quick method for bio-

composite fabrication, and allows the combination of different materials in an easy-

to-scale-up approach. This technique is very versatile because can be used both for 

the encapsulation of bioactive compound or to combine materials with different 

physiochemical properties (hydrophilic and hydrophobic). In both developed 

systems sodium alginate was the hydrophilic polymer, widely investigated in the 

biomedical field due to its natural origin, low cost, biocompatibility, 

biodegradability, non-toxicity, and non-immunogenicity.  
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 The first system was fabricated by means of emulsion casting and solvent 

evaporation method, with the aim of obtaining composite solid films with varying 

MaterBi®-alginate fractions. MaterBi® is a commercial hydrophobic and 

biodegradable polymer, consisting of polycaprolactone (PCL) and thermoplastic 

starch. This bio-polymer, obtained by a proprietary compound extrusion method, is 

actively marketed as sustainable food packaging material as well as biodegradable 

material for perishable food containers. However, it has not been applied in the 

biomedical field so far. In this case, our bio-composite material was design in order 

to simultaneously release two selected drugs, for the treatment of skin wounds. 

Neomercurocromo®, a commercially available antiseptic agent used topically for the 

local treatment of wounds, was identified as the hydrophilic component, while 

Curcumin was selected as lipophilic model drug. This natural yellow pigment has 

been widely studied as a wound healing agent, able to treat cutaneous, chronic and 

excisional wounds, and to accelerate the healing process, given its anti-

inflammatory, anti-oxidant and anti-infective properties. With our alginate-MaterBi® 

system we demonstrated for the first time the possibility of using MaterBi® also in 

the pharmaceutical field, as a potential wound care materia1. Our results 

demonstrated that ultrasonic-assisted self-emulsification between two biopolymers 

allow us to obtain stable and surfactant-free emulsions. Solid films comprising 

different alginate: MaterBi® ratios (100% alginate, 50wt.%alginate-50wt.% 

MaterBi®, 30wt.%alginate-70wt.% MaterBi®, and 100% MaterBi®), were obtained 

upon casting and solvent evaporation. The morphological analysis revealed a foam-

like cellular features for the composite films, while for pure MaterBi® the presence 

of starch granules embedded within PCL matrix was detected. Although beyond the 

scope of this study, formation of stable surfactant- free emulsions can be attributed 

to the emulsion stabilization properties of starches. The presence of MaterBi® 

affected both the thermal degradation and mechanical properties of the biocomposite 

films. The emulsions were also able to incorporate two model drugs, namely the 

hydrophilic antiseptic Neomercurocromo® and the hydrophobic curcumin. Release 
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studies demonstrated the ability of the composite matrices to release the two model 

drugs individually or simultaneously and in a sustained manner, either by tuning the 

polymer fraction in the films during emulsification or by crosslinking sodium 

alginate fraction of the films by calcium salt solution immersion. Moreover, the films 

demonstrate excellent cell biocompatibility against human dermal fibroblast, adult 

cells. 

 The second construct was prepared via hot-melt extrusion along with 

ionotropic gelation, blending sodium alginate with Beeswax to obtain emulsion gel 

beads, encapsulating a concentrated extract from Prunus mahaleb L. fruit (mcfe). 

Beeswax is a natural and edible material, with good stability at different pHs and 

moisture content, biocompatibility, no immunogenicity. In addition, it is non-

swellable and water insoluble, features which make it safe for oral application in 

humans. All these properties suggest a high potential for pharmaceutical 

applications, such as encapsulation of various types of drugs, and delivery retardant. 

Anthocyanins (ACNs) are a group of water-soluble natural pigments present in 

plants with health-promoting, anti-oxidant properties. The extract under study was 

characterized for its phenolic content, revealing a high concentration of bioactive 

compounds, especially ACNs, and exhibiting a strong antioxidant capacity. 

Moreover, it showed biological activities, such as anti-proliferative, anti- 

inflammatory and anti-mutagenic properties.    

 The aim of this work was to optimize the encapsulation of mcfe in calcium 

alginate-Beeswax emulsion gel microbeads to obtain an all-natural delivery 

system. The final system is envisioned as gastro-retentive platform able to increase 

the residence time and modulate the release of ACNs in the upper gastrointestinal 

tract, where they are completely released and absorbed. Our results demonstrated 

that the presence of Beeswax within the bead matrix affects the size, and both the 

external and the internal morphology of the samples. The morphological analysis 

revealed a red-blood cell like shape for conventional CaAlg beads and a drop-like 
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shape for alginate-Beeswax composite beads.  The presence of Beeswax affected 

both the thermal degradation and mechanical properties of the composite beads. 

The water swelling ability of conventional CaAlg or alginate-Beeswax composite 

beads after re-hydration in SGF and SIF, separately or sequentially (2h in SGF and 

6h in SIF) revealed that the swelling was influenced both by the pH and the matrix 

composition.  

 The pH of the media influenced the release profiles of the mcfe-loaded beads, 

previously optimized in their formulation in terms of hardening time (calcium 

chloride solution of 2%w/v) and addition of the natural surfactant soy lecithin, 

evaluating the effect of these parameters on the encapsulation efficiency of the active 

molecules.  Drug release experiments, performed under simulated gastrointestinal 

conditions, revealed that the incorporation of Beeswax within the bead matrix 

favored an extended release of the anthocyanin from emulsion gel beads. 

The addiction to the formulation of soy lecithin, as surfactant, demonstrated its 

capability not only to help the EE% of the anthocyanin, but also to slow down the 

percentage of drug released.   

 Antioxidant properties of the anthocyanin were also investigated, revealing 

that its antioxidant activity was preserved upon encapsulation. Change in matrix 

structure, through the induction of porosity thanks to freeze-drying process, revealed 

a higher amount of anthocyanin released in comparison to the not-porous beads, due 

to an high exposure of the bioactive molecule to the fluids. These results suggested 

the possible application of calcium alginate-Beeswax emulsion gel beads, using a 

modified ionotropic gelation technique, as microcarrier to enhance the efficiency and 

control the delivery of the natural anthocyanin.  
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