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eulogy to Cullen B. Owens: 

The blind men and the elephant is an old Indian parable that illustrates the inaccessibility of 

the nature of the truth. It has been adopted across many religions and cultures and interpreted 

in various ways. The story goes that a group of blind men attempts to touch the elephant in 

order to find out exactly what it is. As the different men touch different parts of the elephant’s 

body, they come to different conclusion as to the true nature of the object of inquiry. For 

example, one man touches the leg and describes the object as pillar, while another man 

touches the tail and says it is a rope. Again another feels the trunk and deduces it is a tree 

branch, the ears feel like a hand fan, the belly a wall, and the tusk a solid pipe. Conflict between 

the men and their interpretation ensue.  

This illustration seems fitting to the present thesis as a way to not only exemplify the power of 

neuroscience, but also to admit its limitations. Whereas we know that our subjective 

experience is true, it may not be the totally of the truth. In science we attempt to discover how 

something works, but our limitations are elucidate through only what is possible to perceive.  

Although different versions of the parable resolve the men’s conflict in different ways, I choose 

to see a scientist’s ending to the story, where the men stop arguing, begin listening and 

collaborate their experiences to come to know the “whole” elephant.    

Illustration by Andrea Fiore 

 

For my parents, girlfriend 

and friends, who always 

support me  
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General introduction 

Social cognition 

Nowadays is increasing the interest in social cognitive neuroscience, which is an emergent 

and interdisciplinary field, devoted to the research of the neurobiological processes underlying 

social interactions and the behavioural alterations associated to neuropsychiatric disorders. 

The term “social cognition” refers to the mental operations that underlie social interaction and 

includes the perception and integration of social cues through a complex process involving 

attention, memory, motivation and emotion. Two of the more investigated aspects of social 

cognition are emotion recognition abilities and theory of mind (ToM), two partially overlapping 

but distinct cognitive domains. Emotion recognition refers to an individual’s ability to identify 

and discriminate between the basic emotional states of others, an ability that in human is 

mostly based on recognition of facial or vocal expression of emotions. Theory of mind refers 

to intellectual abilities that enable us to perceive that others have beliefs, desires, plans, hopes, 

information, and intentions that may differ from our own1,2. Collectively these abilities guide 

interpersonal skills that are important for communication, social interaction and emotion 

perception.  

From an evolutionary point of view, social behavior is one of the most important properties of 

animal life and it plays a critical role in biological adaptations. Likewise, social interaction is a 

matter of survival for humans and many other animals. Humans can be considered among all 

primates, the most social, and success in social interactions is one of the major forces driving 

human evolution3. This function is essentially based on exchange of signals. Speech is the 

most obvious signal that characterized social communication in humans; there are many other 

more basic signals, which humans share with other social animals. For example, by monitoring 

eye gaze or by watching body movements humans can infer others intentions4. Many animals 

make use of similar signals to communicate. .  

A successful social interaction requires at least two overlapping steps: (1) perception and 

processing of social signals related to other individuals’ emotional state and intentions; (2) 

formulation of appropriate responses to these signals. These processes must be dynamic and 

flexible, since the social context is continuously changing and updated with new information. 

The neural substrates of social cognitive processing are complex and largely unknown. The 

“social brain” network, involving a range of cortical and subcortical regions and connective 
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pathways5, varies depending on task demands, but is broadly thought to include limbic regions 

(such as the amygdala), the prefrontal cortex and temporoparietal junction, as well as the 

anterior cingulate and insular cortex6,7. Different FMRI human studies indicate that areas as 

the somatosensory and temporal cortices are involved in perception and processing of faces. 

In particular, the somatosensory cortex (SSC) has been involved in the recognition of facial 

emotions8, and the temporal cortex (TC) in the visual processing of faces9. The amygdala, 

conventionally linked to processing of fear-related stimuli or threat detection, is currently known 

to play an important role in social cognition10. Lastly, the prefrontal cortex (PFC) is known to 

modulate decision making and executive control, to enable the choice of the most appropriate 

behavioral response, by integrating sensory and emotional cues11. Remarkably, alterations in 

the functionality of these regions have been highlighted in patients with neurological or 

psychiatric conditions12–14 associated to social cognitive dysfunction, indicating a functional 

role of these regions as possible biological substrates for further investigation.    

Comparative studies have pointed out that the neurobiological and molecular mechanisms 

underlying social behavior are highly conserved across species. The recent development of a 

variety of techniques that can be applied in animal research (especially in rodents), improving 

our knowledge of the study of the neurobiological and molecular mechanisms that underlie 

social behavior.  

For example, a recent study developing a new method to map whole-brain activation, at the 

cellular level, highlighted a number of brain structures as the olfactory bulb, the hypothalamus, 

the lateral septum (LS),the amygdala, the nucleus accumbens (NAcc) and the PFC15 , 

activated in mice after a social behavior paradigm. This study highlights the complexity of the 

network in the regulation social behavior, supporting the notion that the brain structures 

implicated in social processing are conserved among the animal species.  

Fig1. Brain structures and neuronal 

circuits implicated in social cognition in 

rodents. In mice, olfactory signals from a 

social stimulus are perceived through the 

nasal organ area and transferred to cortical 

and subcortical brain areas to be processed 

and generate an output behavior. Figure 

adapted from Fernandez et al. 201816 
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Medial Prefrontal Cortex 

The medial PFC (mPFC) has long been considered the main area controlling high-order 

cognitive functions, such as planning, organizing, decision-making and problem solving. 

Specifically, the PFC plays a critical role in the ability to orchestrate behavior in accordance 

with internal states or intentions. Accordingly, humans with damages to frontal areas often 

show behavioral impairments that include inflexibility, perseveration, isolation and apathy17 or 

antisocial behavior18.  

The mPFC is often referred to as a single brain region, but many subdivisions into distinct 

areas can be made, each defined by specific cytoarchitecture, cytochemistry, connectivity and 

functional properties. Defining and comparing the functional properties of these areas across 

species is complex: a large interspecies differences in the layering per area has in fact been 

described, rising the debate on whether or not rodents possess a region equivalent to the 

human PFC as they lack a granular zone in this area19,20. However, it has been noted that the 

formation of the general laminar pattern in the PFC shows a relation with phylogenesis; indeed, 

in “higher” mammalian species, such as primates and humans, PFC regions possess a 

granular layer IV, as well as an agranular layer. The lower is the species, the smaller is the 

proportion of granular PFC regions19,20. Thus, the concept of homologous structures with 

similar functions may apply. The mPFC in rodents is classified into three distinct 

neuroanatomical subregions based on connectivity and cytoarchitecture: the anterior cingulate 

(ACC), prelimbic (plPFC), and infralimbic (ilPFC) cortices21. These three regions have 

functional and connectional homology to the human Brodmann areas 24b, 32, and 25, 

respectively22. The mPFC is mainly composed by glutamatergic pyramidal neurons (~80–90%) 

and an array of local interneuron populations (~10–20%). The excitatory pyramidal neurons 

mediate output projections to other cortical areas such as sensory and association cortices, as 

well as to subcortical areas of the social circuitry including the striatum, the amygdala and the 

hypothalamus. The impact of the mPFC control can be then observed on neurotransmitter 

systems critical for social functioning such as dopamine (DA) and oxytocin23. This modulation 

is bidirectional, as the PFC also receives inputs from these neuromodulators through 

projections from subcortical structures. 

Recently, by using a novel optogenetic tool to depolarize in vivo mPFC neurons for a long 

period of time, Yizhar and colleagues highlighted that altering the excitatory/inhibithory (E/I) 

balance, would lead to social dysfunction. By targeting both excitatory projection neurons and 

inhibitory parvalbumin interneurons in the mPFC of freely moving mice, they showed that 

elevation, but not reduction, of cellular E/I balance led to a profound impairment in social 
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information processing. This study indicated that a fine regulation of mPFC is required to 

maintain social abilities. In this thesis, further investigations will be presented in order to 

advance our understanding on the mechanisms that lead to profound cognitive and behavioral 

abnormalities. 

 

Oxytocin system 

The hypothalamus is social brain area, which has traditionally been involved in neuroendocrine 

functions24. In recent years, the paraventricular nucleus (PVN) of the hypothalamus has been 

found to be strongly implicated in social behavior. The PVN consists of two different neuronal 

populations, magnocellular and parvocellular neurons. Parvocellular neurons release mainly 

corticotrophin-releasing hormone, which plays a vital role in the stress response trough the 

hypothalamus–pituitary–adrenal axis. Magnocellular neurons synthetize large amounts of the 

neuropeptides oxytocin (OXT) and vasopressin25. These neuropeptides have long been known 

to play key roles in reproductive functions in mammals such as sexual behavior, parturition 

and maternal care26. More recently, animal studies have shown that they are also involved in 

other domains of social behavior in both males and females during non-lactating periods27,28. 

OXT is considered a “social” hormone because of the extensive literature documenting its 

ability to impact a variety of different social behaviors in many species, and because its 

production is dynamically regulated in response to specific social situations29,29,30. 

Oxytocinergic neurons in the PVN send their axons to several brain structures within the social 

network31. However, the brain mechanisms by which endogenous oxytocin produces its effects 

acting at specific brain sites have been not investigated.  

An emerging and promising field of research is represented by the study of the behavioral 

effects produced by systemic or local administration of OXT. Behavioral studies in mice 

genetically modified that cannot produce OXT, or lack the OXT-receptor clearly indicate that 

the oxytocin system plays an essential role in maternal care, social cognition and affiliative 

behaviors32. These findings have led to a great deal of interest in OXT as a potential treatment 

for human social disorders, resulting in a large number of clinical trials to assess its therapeutic 

efficacy. Although the results of these trials have been encouraging in the context of autism 

and anxiety disorders32, the effect of exogenous OXT are still controversial and highly 

variable33–38. Hence, the understanding of the brain circuits engaged by endogenous or 

exogenously supplied OXT and their role in specific behaviors remains incomplete. This topic 

represents one of the main aim in this thesis.  
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Dopamine system 

Dopamine (DA) is a neurotransmitter that has been shown to play roles in various aspects of 

brain function, depending on the brain region involved39. Recent studies have demonstrated 

the involvement of the DA system in the regulation of cognitive and emotional functions40 which 

may be partly associated with rewarding properties of social activity41.  Dopaminergic neurons 

are located in midbrain cluster and recent evidences show a functional heterogeneity within 

these clusters, with subsets of DA neurons influencing specific behavioral outcomes42,43. DA 

signaling is processed thorough two distinct classes of receptors: D1-like (D1 and D5) are 

excitatory and have a low affinity for DA and D2-like (D2, D3 and D4) which are inhibitory and 

have a high affinity for DA, allowing them to respond to low DA concentrations present during 

phasic dopaminergic firing44,45. Dopamine D1 and D2 receptors often appear to yield the 

opposite effects in terms of behavioral outcomes, which are conserved across different species 

including rodents and non-human primates40 and they operate via different intracellular 

signaling pathways46. Furthermore, these two classes of receptors are generally expressed on 

separate neurons, but despite these functional and anatomical differences in their expression, 

animal research has shown that both D1-R and D2-R are involved in the regulation of socially 

relevant behaviors, such as motivation47, bonding44 and aggression48. Indeed studies has been 

shown that dopamine can be important for the develop of E/I balance in the PFC, in this 

regards, a recent work of Petrelli et al. shows how a subset of cortical astrocyte are crucial for 

the regulation and homeostasis of DA during the postnatal development of the mPFC, allowing 

for optimal DA-mediated maturation of excitatory circuits.  

Reduced prefrontal dopaminergic neurotransmission has been also shown to contribute to the 

negative and cognitive aspects observed in schizophrenia patients49,50. However, over the 

years new studies have reported a limited direct evidence of impairment within the 

dopaminergic system itself so the recent hypothesis has been reformulated in dopamine 

imbalance between different brain regions51. In particular impaired afferent circuits onto ventral 

tegmental area (VTA), where are localized dopaminergic neurons, lead to a dysregulated 

dopamine release in other brain region such as prefrontal cortex51. Nevertheless, this is still an 

open question whether different neuronal populations within the same structure contribute to 

the different behaviors, or whether the same neuronal population with different activity pattern 

dictates the behavioral response. Studies in animal models allowing the dissection of specific 

cell type contributions, which are crucial to address these questions. 
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Dysbindin mice 

Neurodevelopmental disorders present a complex etiology involving susceptibility genes and 

environmental factors. Although multiple genes have been found to be associated with 

neurological or psychiatric disorders and the actual function or involvement of individual genes 

in the developmental aspects of brain structures formation are largely unknown. One of these 

candidate gene is dystrobrevin-binding protein 1 gene (DTNBP1) which encode for dysbindin-

1 protein, which is widely expressed in human and mouse brain52. Dysbindin-1 has been 

implicated in the regulation of vesicle formation and synaptic release and it is a component of 

the biogenesis of lysosome-related organelles complex (BLOC-1) 52,53. An animal model of 

dysbindin-1 functions is available in the sandy (sdy) mouse, which has a naturally occurring 

deletion mutation of exons 6 and 7 in the gene (DTNBP1) encoding for the mouse protein, 

resulting in loss of dysbindin-1. Recent studies in these mice show that dysbindin-1 is highly 

expressed during embryonic and early postnatal development compared to adulthood and 

BLOC-1 is involved in neurite outgrowth54. These findings highlight a potential role for 

dysbindin-1 in the normal development of brain structure and function. Indeed different studies, 

using cortical neuronal cultures taken from adult dysbindin-1 KO mice have been associated 

with alteration of various aspects of synaptic function 53,55, and the regulation of both dopamine 

and glutamate signaling in the brain56. In particular, in vitro experiments suggest that dysbindin-

1 suppresses DA release57 and cultured neurons have increased cell surface expression of 

the dopamine D2 receptor due to an increased membrane insertion rate58. In addition, layer 

II/III pyramidal neurons from the PFC of dysbindin-1 KO mice show increased activity at 

baseline, but decreased activity after D2 stimulation compared to wild-type mice and these 

effects may be due to D2-mediated alterations in the excitability of fast-spiking GABAergic 

interneurons58,59. In line with this results, dysbindin-1 KO mice display  deficits in prepulse 

inhibition, social interaction, and diverse aspects of spatial memory 55,59. In accordance with 

animals studies, patients with schizophrenia have lower expression levels of dysbindin-1 

mRNA and protein in the prefrontal cortex and hippocampus60–63 and they show cognitive 

disabilities64,65. Therefore, these data implicate reduced dysbindin-1 function in behavioral and 

neurobiological effects that are thought to play a role in the development of cognitive 

abnormalities. Overall, the dysbindin mouse is useful genetic model for the study of the 

cognitive domains.  
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Scope of the Thesis 

 
Abnormalities in social functions represent a key feature of a number of neuropsychiatric 

disorders. In particular, alteration in social cues identification define autism spectrum 

disorders66. Similarly, patients with schizophrenia have marked impairments in processing 

non-verbal social affective information with poor performance in the emotion recognition test1. 

Relevantly, effective solutions for the treatment of deficits in non-verbal communication are still 

missing. This is also due to a poor understanding of the neurobiology (including brain circuits 

and related mechanisms) of social information processing. In this context, studies in mouse 

models, allowing the dissection of specific social domains and the investigation of the biological 

substrate can be very informative. Interestingly, despite the large array of behavioral tests 

available to assess mice social functions, such as social recognition, sexual maternal and 

aggressive behavior, there is no test available to assess facets of emotion discrimination in 

mice similar to the emotion recognition test used in humans. This was the main reason underlie 

the initial part of my my work (chapther 2 and 3) to set up a novel behavioral test aimed to 

investigate whether mice are able to discriminate unfamiliar conspecifics based on altered 

emotional states. 

In particular in chapter 2 “Oxytocin-dependent emotion recognition in mice”, I will present 

a first validation of this novel paradigm, which allowed to reveal the implication of different 

endogenous OXT pathways in the expression of mice discriminatory behaviors towards 

unfamiliar conspecifics in positive or negative emotional states. In particular, manipulating 

OXT-ergic projections from PVN to different targets using the DREADD technology (designer 

receptors exclusively activated by designer drugs), we found that the release of OXT from the 

PVN to CeA is a necessary substrate for emotion recognition ability in mice. This finding was 

also supported by the evidence that rescuing CeA OXTR reduced levels in a mouse model of 

genetic liability, dysbindin-1, we were able to rescue their emotion recognition deficits. Our 

study provides and support the validity of this novel paradigm to explore social cognitive 

processes not previously investigated in mice, supporting more translational approaches 

between rodent and human social cognitive functions, for the investigation of circuits, genetics 

and neurochemical systems alteration involved in different psychiatric disorders.  

  

My specific contribution to this work was the study of the sensory modalities used by mice to 

communicate emotions. In particular, to investigate which are the signals that mice perceive 

when evaluating emotional states in conspecifics. Investigation of visual, olfactory and auditory 
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cues (USVs) lead to the conclusion that olfactory and visual cues are both relevant in emotion 

communication. 

In chapter 3 “Somatostatin interneurons within the prefrontal cortex control emotion 

recognition in mice” we studied the role of PFC, in particular the E/I balance of mPFC region 

during the emotion recognition test. We investigated the coding of emotionally-relevant 

information using a combination of approaches. We first assessed mPFC neuronal activity in 

freely moving animals with silicon probe implanted in the this brain region during the 

performance of the newly developed emotion recognition task for mice. We revealed that 

neurons in the mPFC are differentially activated during exploration of conspecifics depending 

on their affective state. To investigate the contribution of different PFC cell types in emotion 

recognition, we selectively manipulate the activity of somatostatin (SOM+) and parvalbumin 

(PV+) interneurons, by optogenetic technique. These results indicate that selective inhibition 

of mPFC somatostatin (SOM+) interneurons, but not parvalbumin (PV+), abolishes emotion 

discrimination. Conversely, activation of mPFC SOM+ interneurons is sufficient to induce 

emotion discrimination. 

My contribution to this work was the recording and analysis of the mPFC electrophysiology 

data, which paved the way for the optogenetic investigation of the role of specific cell types in 

the recognition of emotions in conspecifics. In addition, I have contributed to different aspects 

of the setting up of the emotion recognition test.   

The last work presented in chapter 4 “Oxytocin effects on social behavior are genetically 

modulated by astrocytic dopamine D2 receptor” was centered on the investigation of the 

mPFC modulation during freely social interaction. In this study, we used dysbindin-1 mutant 

mice in the social habituation paradigm, to investigate of intranasal OXT effect as potential 

treatment for social disabilities. In particular, we found in dysbindin-1 mice an alteration on the 

behavior and electrophysiology readouts in the mPFC, suggesting a valuable model to 

investigate the effect produced by OXT treatment. We revealed no alteration after the 

treatment in wild type and conversely a beneficial effect in dysbindin-1 mice, implying different 

mechanism might be involved in the two genetic background. Indeed, the gene expression 

profiles in the mPFC of wild type and dysbindin-1 mice show an up-regulation of different genes 

involved in astrogliosis. Overall, This study, linking genetic liability and astrocytes function, 

provides a new framework at the base of oxytocin behavioral  effect. 

My contribution to this work was to design, perform and analyze all different parts of behavioral, 

pharmacological, in vivo electrophysiological and astrocyte-related experiments. 
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Overall, the work presented in this thesis aims to uncover how different brain structures and 

systems contribute to the perception and coding of social stimuli. In chapter 5, I summarized 

how this research provide new contributions in the direction of better addressing the complexity 

of mice social behavior. I will also discuss potential applications of the presented findings in a 

clinical perspective and in relationship to specific genetic alterations and potential future 

direction to follow. 

  



 
18 | P a g e  

 

Chapter 2 

 

Oxytocin-Dependent Emotion Recognition in 

Mice   

Valentina Ferretti, Federica Maltese, Gabriella Contarini, Marco Nigro, Alessandra Bonavia, Huiping 

Huang, Valentina Gigliucci, Giovanni Morelli, Diego Scheggia, Francesca Managò, Giulia Castellani, 

Arthur Lefevre, Laura Cancedda, Bice Chini, Valery Grinevich, Francesco Papaleo 

(Submitted) 

 

Abstract 
 
Recognize and discriminate others’ emotions is a fundamental social cognitive ability that 

influences development, survival and evolution of animals. The oxytocin (OXT) system has 

been linked to human emotion recognition, but mostly through the effects of exogenous OXT. 

Indeed, the implication of endogenous OXT pathways in emotion recognition remains elusive. 

By developing a new assay to measure the ability of mice to discriminate unfamiliar 

conspecifics based on negative- or positive-valence emotional states, here we revealed that 

endogenous OXT projections from the Hypothalamic Paraventricular Nucleus (PVN) to the 

Central Amygdala (CeA) are necessary for emotion recognition processing. OXT release to 

the Nucleus Accumbens, Prefrontal Cortex, and hippocampal CA2 was instead dispensable. 

Notably, mice emotion recognition was distinct from sociability or emotional contagion 

processes. Furthermore, AAV-mediated potentiation of CeA OXT signaling in a mouse model 

of cognitive liability was sufficient to rescue emotion recognition deficits. These findings 

demonstrate a central role of CeA OXT signaling in emotion recognition, and support the 

validity of this novel paradigm to explore social cognitive processes not previously investigated 

in mice. 
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Introduction 

 
Social interactions depend on the ability to distinguish various expressions of emotions in 

others. This biologically innate process defined as “social cognition” has profound implications 

in everyone’s life67,68. Consistently, disturbances in social cognition are early and distinctive 

features of many neuropsychiatric, neurodevelopmental and neurodegenerative disorders68. 

Abnormalities in social cues identification define autism spectrum disorders66. Similarly, 

patients with schizophrenia have marked impairments in processing non-verbal social affective 

information while showing normal affect sharing and emotional experience1. Notably, social 

cognitive impairments in these individuals are not yet effectively cured, despite they have a 

more deleterious impact on daily functioning than non-social cognitive deficits69. 

The Oxytocin (OXT) system has been indicated as a major player in social information 

processing and social cognition, with implications in humans’ emotion recognition, empathy 

and trust, and as a promising target for the treatment of psychiatric disorders characterized by 

social and emotion processing dysfunctions70–79. Remarkably, our knowledge on the 

involvement of OXT system in emotion processing derives from genetic-association 

studies69,80,81, or from the use of exogenous OXT, whose effects are still controversial and 

highly variable33–38. In particular, questions are still open on if/how much exogenous OXT arrive 

into the brain82, if there are preferential effects on specific social functions70, if there are 

differences in effects between healthy and patient groups83,84, the differential effects of acute 

versus chronic exposure85,86, and the modulation of its effects based on genetic 

background70,80,81,81. In this context, a better knowledge about endogenous OXT signaling 

pathways involved in emotion recognition processes, and their specific effects in relation to 

genetic backgrounds would be crucial. 

To investigate the implication of endogenous OXT pathways in complex social cognitive 

processes, here we developed a paradigm to study emotion discrimination abilities in mice. 

Emotion recognition tasks are, indeed, the most-extensively used paradigms to assess human 

social cognition1,68. Moreover, several training programs targeting facial emotion perception 

have been implemented for individuals with schizophrenia and autism87,88. Previous studies 

indicate that rodents are sensitive to the affective states of others. This is demonstrated by the 

existence of so called social contagion 44,89,90, an automatic response evident when a rodent 

witness a familiar conspecific under pain or physical challenge91, and by some sort of helping 

behavior92 or consolatory behavior versus a previously stressed familiar conspecific93. Our new 

paradigm expand these previous tools, reliably addressing mice’ ability to discriminate 
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negative and positive emotions evoked in unfamiliar conspecifics, in a distinct way to emotional 

contagion or basic sociability. 

By chemogenetic inhibition of OXT release from specific PVN projections to several brain 

target areas, we demonstrated the importance of OXT signaling to the CeA in recognizing 

emotions in others. This finding was further supported by the observation that rescuing 

decreased CeA OXT receptor (OXTR) levels in mutant mice with emotion recognition deficits 

was sufficient to restore this ability. Altogether, our results reveal the essential role of specific 

endogenous OXT pathways in the ability to discriminate emotions in others, and that genetic 

background and variation in OXTR within the CeA moderates these effects. This novel 

behavioral paradigm can then be used to explore social cognitive processes not previously 

investigated in mice. 

  

Results 

Mice are able to discriminate unfamiliar conspecifics based on negative-valence 

emotional states 

To test whether mice could discriminate unfamiliar conspecifics in different emotional states, 

we placed an “observer” mouse in a cage containing two age- and sex-matched unfamiliar 

conspecifics (“demonstrators”) in wire cups allowing visual, tactile, auditory and olfactory 

communication (Fig. 1a). The behavior of the observer mouse, concomitantly exposed to a 

neutral demonstrator and to a mouse in an altered emotional state, was then analyzed. Similar 

to emotion recognition tests performed in humans68, this setting is focused on the social 

approach initiated by the observer mouse, avoiding potential confounders resulting from 

aggressive or sexual interactions. 

In the “fear” condition, one of the two demonstrators was fear-conditioned to a tone cue at least 

one day before the test (Fig. 1b and online Methods). Thus, upon successive tone 

presentation, a negative-valence emotional state will be induced94. In order to measure the 

impact of the elicited emotion on observers’ response before, during and after its induction, the 

tone was delivered during the second 2-minute trial of the task (Fig. 1b and online Methods). 

Consistently, we observed in the fear demonstrator a freezing response only during the 2-

minutes tone presentation, associated with a reduction in rearing (Fig. S1a). No other 

behavioral parameters differed between the two demonstrators during the 6-minute test 

session (Fig. S1a). Thus, this experimental design allowed to tightly link observers’ behavior 

with the emotional state evoked in one of the demonstrators. 
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We found that both male and female observers displayed increased social exploration, 

indicated by sniffing, towards the fear demonstrator compared to the neutral one (Fig. 1c-d 

and Fig. S2a). In particular, this effect was specific for the last 2-minute trial, and did not 

correlate with the freezing behavior shown by the fear demonstrator during tone presentation 

(Fig. 1e). A significant inverse correlation was instead evident during the 2-minute tone 

presentation (Fig. 1f) suggesting that demonstrator’s freezing inhibited observer approach in 

trial 2, but did not influence the discriminatory behavior in trial 3. 

In light of previous evidence89,95–97, we searched for signs of fear-transfer from the emotionally-

altered demonstrator to the observer by quantifying freezing behavior, escape attempts, 

changes in locomotor activity and other stress-related behaviors (i.e. rearing and grooming). 

Observers showed no freezing behavior, escape attempts or other stress-related behaviors, 

nor changes in rearing and grooming (Fig. 1g-h), and a normal decrease in locomotor activity 

(Fig. 1i) throughout the whole test. Moreover, the corticosterone levels of observer mice 

exposed to the fear paradigm or to two neutral demonstrators did not differ (Fig.1j). Notably, 

observers showed no discriminatory behaviors if exposed to two neutral demonstrators (Fig. 

S3). These findings suggest an ability of observer mice to discriminate unfamiliar conspecifics 

based on a negative emotional state, which was not associated to emotional contagion. 
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Figure 1. Mouse emotion recognition task for negative emotions. (a) Schematic drawing of the task setting. (b) 

Timeline of pre-test and test procedures to trigger in one of the demonstrator a “fear” emotional state by delivering 

the conditioned tone between the 2-4 minutes period of the testing phase. (c-d) Time (in seconds) spent sniffing 

demonstrators in neutral (grey bars) or tone-induced fearful (red bars) state displayed by (c) male and (d) female 

observer mice during the 6 minutes of the emotion recognition test, divided into three consecutive 2-minute time 

beans (last 2-min RM ANOVA for males F1,15=6.51, p=0.022, and females F1,11=10.98, p=0.006; no significant 

differences for the 0-2 and 2-4 minutes test periods). *p<0.05 versus the exploration of the neutral demonstrator. 

N=8/15 observers per group. (e-f) Correlation analyses between the time spent freezing by the fear-conditioned 

demonstrator (in y axis) and time spent by the observer mouse sniffing the fear-conditioned demonstrator (in x axis) 

(e) in the time 2-4 minutes or (f) in the time 4-6 minutes of the emotion recognition test (Correlation for time 2-4 

minutes r=-0.4310 and time 4-6 minutes r=-0.11). *p<0.005. N=24 observers. (g-h) Time (in seconds) spent in (g) 

rearing and (h) grooming close to demonstrators in neutral (grey bars) or tone-induced fearful states (red bars) 

displayed by the same observer mice during the 6 minutes of the emotion recognition test, divided into three 

consecutive 2-minute time beans (RM ANOVAs showed no significant differences). (i) Locomotor activity displayed 

by the same observer mice during the 6 minutes of the emotion recognition test, divided into three consecutive 2-

minute time beans (RM ANOVA F2,16=4.08, p=0.03.. *p<0.05 versus minutes 0-2. N=9 observers. (j) Blood 

corticosterone levels displayed by observer mice immediately after being tested in the emotion recognition task with 

two neutral demonstrators (grey bar) and one neutral and one fear demonstrator (red bar). Data are expressed as 

fold changes compared to observers exposed to two neutral demonstrators (T-test: df: 9; p=0.58). N=5/6 observers 

per group. 

 

 

Figure 1 
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Figure S1. Demonstrators behavior during test. (a) Observable behaviors displayed by the neutral and fear demonstrator 

mice during the 6 minutes of the fear emotion recognition paradigm, divided into three consecutive 2-minute time beans. No 
demonstrator defecated or urinated during the whole test session. Emotion-by-time statistical interaction for sniffing (F

2,36
=2,72, 

p=0.08), grooming (F
2,36

=1,07, p=0.35), rearing (F
2,36

=5,09, p=0.01), biting (F
2,36

=1,28, p=0.29), and freezing (F
2,36

=48,82, 

p<0.0001). *p<0.05, and ***p<0,0001 versus all other points. N=10 demonstrators per group. (b) Observable behaviors 

displayed by the neutral and relief demonstrator mice during the 6 minutes of the relief emotion recognition paradigm, divided 
by three consecutive 2-minute time bean. No demonstrator defecated or urinated during the whole test session. No significant 
emotion-by-time statistical interaction was evident for sniffing (F2,36=0.09, p=0.92), grooming (F2,36=0.34, p=0.71), rearing 
(F2,36=0.31, p=0.73), and biting (F2,36=0.84, p=0.44. N=10 demonstrators per group. 

Figure S1 

Figure S2 

Figure S2. Equal emotion recognition abilities in male and female mice. Time spent sniffing showed by 
male and female observers towards demonstrators with (a) tone-induced fearful states (last 2-min RM ANOVA 

Male: F
1,15

=6,51, p=0.022; Female: F
1,11

=10,98, p=0.006), or (b) water-induced relief states (first 2-min RM 

ANOVA Male: F
1,14

=15,07, p=0.001; Female: F
1,14

=14,60, p=0.001), represented by red or yellow bars, 

respectively. *p<0.05 and **p<0.005 versus the neutral demonstrator. N=12-16 observers per group. 
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Mice are able to discriminate unfamiliar conspecifics based on positive-valence 

emotional states 

Emotion recognition paradigms to assess human social cognition include the presentation of 

positive-valence emotions. Thus, we investigated whether discriminatory behaviors in the 

observers could be detected towards positive-valence states. In particular, we exposed 

observer mice to a neutral demonstrator and to a demonstrator that received a 1-hour ad 

libitum access to water after 23-hours of water deprivation (Fig. 2a-b). Water was selected as 

a rewarding factor to avoid odor-related cues that could differentiate the two demonstrators. 

We assumed that the relief from the distressful water deprivation would result in a positive-

valence emotional state (“relief”). Indeed, we found that the 1-hour ad libitum access to water 

resulted in a conditional place preference (Fig. 2e) in mice that experienced the 23-hours water 

deprivation, but not in mice in ad libitum water condition (Fig. 2f). Consistently, 1-hour ad 

libitum access to water after the 23-hour deprivation, reduced corticosterone levels (Fig.2g). 

During the emotion discrimination test, this manipulation did not induce any detectable 

behavioral difference between relief and neutral demonstrators (Fig. S1b). 

Figure S3. No discrimination towards two neutral demonstrators. Schematic drawing of the task setting, and 

time (in seconds) spent sniffing two demonstrators in neutral (grey bars) states displayed by observer mice during 
the 6 minutes of the emotion recognition test, divided into three consecutive 2-minute time beans. RM ANOVAs 
reveled no significant differences for the 0-2, 2-4, and 4-6 minutes test period. 

Figure S3 
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Observers of both sexes showed increased social exploration towards the relief demonstrator 

compared to the neutral, selectively in the first two minutes of the task (Fig. 2c-d and Fig. S2b). 

No changes in rearing and grooming patterns towards the demonstrators and throughout the 

tasks were evident (Fig. 2h-i). Moreover, observers showed the typical decrease in locomotor 

activity (Fig. 2j) and did not show freezing behavior, escape attempts or other stress-related 

behaviors during the entire test session. Furthermore, no alteration in corticosterone levels 

was detected between observers exposed to relief/neutral or neutral/neutral demonstrators 

(Fig.S4a). These data indicate that mice are able to discriminate unfamiliar conspecifics based 

on positive valence emotions. 

 

 

 

Figure 2. Mouse emotion recognition task for positive emotions. (a) Schematic drawing of the task setting. (b) 

Timeline of pre-test and test procedures to trigger in one of the demonstrator a “relief” emotional states during the 
testing phase. (c-d) Time (in seconds) spent sniffing demonstrators in neutral (grey bars) or water-induced relief 
(yellow bars) state displayed by (c) male and (d) female observer mice during the 6 minutes of the emotion 

recognition test, divided by three consecutive 2-minute time beans (first 2-min RM ANOVA for males F1,14=15.07, 
p=0.001, and females F1,14=14.60, p=0.001; no significant differences for the 2-4 and 4-6 minutes test periods). 
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**p<0.005 versus the exploration of the neutral demonstrator. N=15 observers per group. (e) Timeline of the Place 

Conditioning procedures used to assess if the “relief” manipulation was associated with a negative-, neutral- or 
positive-valence affective state. (f) Place conditioning scores (in seconds) displayed by mice conditioned during a 

neutral (grey bar) or relief (yellow bar) emotional state. For each mouse, a place conditioning score was calculated 
as the post- minus the preconditioning time spent in the conditioning-paired compartment of the apparatus. A 
positive score indicates place preference, a negative score a place aversion, 0 no place conditioning. (T test: df=12; 
p=0.02). *p<0.05 versus the neutral control group. N=7 per group. (g) Blood corticosterone levels displayed by 

demonstrator mice immediately after a period of 24-hour water deprivation (grey bar) or after a period of 1-hour ad 
libitum access to water following 23-hour water deprivation (yellow bar). (T-test: df: 19; p=0.05). *p=0.05 versus 
water deprived mice. N=11 mice per group. (h-i) Time (in seconds) spent in (h) rearing and (i) grooming close to 

demonstrators in neutral (grey bars) or relief (yellow bars) state displayed by the same observer mice during the 6 
minutes of the emotion recognition test, divided by three consecutive 2-minute time beans (RM ANOVAs showed 
no significant differences). (j) Locomotor activity displayed by the same observer mice during the 6 minutes of the 

emotion recognition test, divided by three consecutive 2-minute time beans. (RM ANOVA F2,18=4.35, p=0.04). 
*p<0.05 versus minutes 0-2. N=10 observers. 

 
 

 

 
 
Figure S4. Corticosterone levels in observer mice (a) Blood corticosterone levels displayed by observer mice 

immediately after being tested in the emotional recognition task with two neutral demonstrators (grey bar), and one 
neutral and one relief demonstrators (yellow bar). Data are expressed as fold changes compared to observers 
exposed to two neutral demonstrators (T-test: df: 9; p=0.18). N=5/6 observers per group.  
Ultrasonic vocalizations in single demonstrators. (b) Schematic drawing of the test setting to record USVs, 

mean number of USV calls per minute, and mean duration of USVs in milliseconds emitted by a single demonstrator 
mouse in neutral (grey bar), fear (red bar), or relief (yellow bar) emotional state. Two-Way ANOVAs showed no 
significant differences. N=6 demonstrators per group.  

Figure S4 
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Impact of sensory cues in the mouse emotion recognition task 

Human emotion discrimination paradigms mostly rely on visual detection of facial and body 

expressions. Rodents’ visual system is developed enough to acquire information as evident 

from observational transfer of fear/pain paradigms95,96. However, knowledge about how 

emotions are expressed and perceived in mice is still poor. Thus, we investigated the impact 

of different sensory modalities (visual, auditory and olfactory) in the ability of mice to 

discriminate emotions in unfamiliar conspecifics. 

To evaluate the use of visual cues we performed the test in complete darkness (Fig. 3a). We 

found that mice were still able to recognize altered emotional states in their conspecifics (Fig. 

3b-c), similarly to what we observed in standard lighting conditions (Fig. 1-2). Removal of visual 

cues however, anticipated fear emotion discrimination to the tone trial (Fig. 3b) and tended to 

extended relief discrimination for the whole session (Fig. 3c). These data suggest that visual 

cues are dispensable to recognize emotions, but they can have a potential inhibitory effect on 

social approach and exploration. 

To investigate the role of auditory information, we recorded ultrasonic vocalizations (USVs) 

during both fear and relief conditions (Fig 3d). We found very few vocalizations and no 

differences between neutral, fear or relief conditions (Fig. 3e-f and S4b). In agreement with 

previous evidence41, our data indicate that USVs in mice do not communicate altered 

emotional states, and that auditory information are not necessary for emotion discrimination. 

Finally, we tested the impact of olfactory cues on observers performance, using a modified 

version of our experimental setting in which the observer was presented with cotton balls 

soaked with odors obtained respectively from neutral, fear or relief demonstrators (Fig. 3g). In 

contrast to emotion discrimination results (Fig. 1) and consistent with previous evidence 98–100, 

we found that observers avoided the odor from a fear demonstrator (Fig 3h). Instead, observers 

spent more time sniffing the relief odor compared to the neutral (Fig.3i), as similarly found in 

the relief emotion recognition (Fig. 2). These results suggest that olfactory cues convey 

information related to emotional states, but the discriminatory behavior that they trigger in 

observer mice are qualitatively different in the presence of the demonstrators. Overall, this set 

of data indicates distinct implications of both visual and olfactory social cues in the expression 

of mouse emotion discrimination. 
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Figure 3. Sensory modalities implicated in the mouse emotion recognition and distinction to sociability. (a) 

Schematic drawing of the test setting performed in complete darkness. (b-c) Time (in seconds) spent by observer 

mice sniffing demonstrators during the 6 minutes of the (b) negative and (c) positive valence versions of the emotion 

recognition test. Time spent sniffing neutral demonstrators are depicted in grey. Time spent sniffing (b) fear or (c) 

relief demonstrator are depicted in red and yellow, respectively (RM ANOVAs for the fear manipulation, 2-4 minutes: 

F1,8=5.63, p=0.04; 4-6 minutes: F1,8=28.08, p=0.0007; for the relief manipulation, 0-2 minutes: F1,5=33.32, p=0.002). 

*p<0.05 and **p<0.005 versus the exploration of the neutral demonstrator. N=6/9 observers per group. (d) 

Schematic drawing of the test setting to record USVs. (e) Mean number of USV calls per minute and (f) mean 

duration of USVs in milliseconds emitted by mice during the fear and relief emotion recognition tasks (Two-Way 

ANOVAs showed no significant differences). N=6 observers per group. (g) Schematic drawing of the test setting 

performed only with demonstrators’ odors for fear and relief conditions. (h-i) Time (in seconds) spent by observer 

mice sniffing the odors from neutral (grey), fear (red), or relief (yellow) demonstrators during the 6 minutes of the 

(h) negative and (i) positive valence versions of the emotion recognition test (RM ANOVA for the fear manipulation, 

0-2 minutes: F1,6=9.15, p=0.02. No significant differences for the 2-4 and 4-6 minutes test periods. RM ANOVA for 

the relief manipulation, 0-2 minutes: F1,20=4.25, p=0.052. Similarly, no significant differences for the 2-4 and 4-6 

minutes test periods). *p<0.05 versus the exploration of the neutral odor. N=7/21 observers per group. (j) Schematic 

drawing of the one-on-one test setting and time (in seconds) spent by observer mice sniffing a single demonstrator 

in a neutral (grey), fear (red) or relief (yellow) state during a 6-minute free interaction test. The tone for which only 

the fear demonstrator was fear-conditioned was delivered between 2-4 minutes of the test (ANOVAs revealed only 

a time effect with normal decreased exploration throughout the 6 minutes, F2,56=132.01, p<0.0001). N=12 

observers. (k) Schematic drawing of the task setting and timeline of pre-test and test procedures to trigger in one 

of the demonstrator a “shock” emotional state. (l) Time (in seconds) spent by the observer mice sniffing 

demonstrators in neutral (grey bars) or shocked emotional state (green bars) during the 6 minutes of the emotion 

recognition test, divided into three consecutive 2-minute time beans (RM ANOVAs, 0-2 min: F1,6=2.40, p=0.17; 2-

4-min: F1,6=5.43, p=0.05; 4-6 min: F1,6=8.11, p=0.02). *p<0.05 versus the exploration of the neutral demonstrator. 

N=7 observers. 
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Emotion discrimination abilities are a stable trait, not relatable to sociability 

Human emotion recognition tasks measure the ability to label or discriminate emotions in 

others, which is distinct from sociability (defined as time spent interacting with others). We 

evaluated the sociability of an observer mouse towards a neutral, a fear, or a relief conspecific 

in a one-on-one setting and found that the levels of social exploration did not differ among 

conditions and showed the classic decrease over time (Fig. 3j). This indicates that mice ability 

to discriminate emotions is specifically highlighted when simultaneously exposing observer 

mice to two demonstrators in two different emotional states. Previous evidence measuring 

affective responses of an observer rat exposed to a demonstrator immediately after shock, 

showed equivalent social interaction data in one-on-one and one-on-two settings40. The 

discrepancy with our result might be due to the scalability feature of emotions45 and not to 

species-specific differences. Indeed, exposing in our setting the observer to a demonstrator 

immediately after shock and a neutral one (Fig. 3k and40), generated a general aversion during 

the whole test session (Fig. 3k). Taken together, these data suggest that the emotion 

recognition setting (Fig. 1-2) is able to highlight specific behavioral responses to mildly graded 

expression of emotions, possibly underestimated by social interaction tests. 

Human emotion recognition paradigms present strong test-retest reliability46, which is a critical 

feature for longitudinal, drug response, psychobiological and clinical trial studies. In 

agreement, the ability to distinguish unfamiliar conspecifics based on emotional states 

remained unchanged when the same observer mouse was re-exposed to the same paradigm 

(Fig. S5c-e) or even if the same mouse was tested in the two different paradigms (Fig. S5b-d). 

This indicates that emotion discrimination in mice is a stable trait, and that this paradigm is 

well-suited to be used for Latin square design in mechanistic manipulations. 
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Endogenous release of oxytocin is necessary for emotion discrimination 

We then asked whether this newly identified social cognitive ability in mice might be mediated 

by conserved neurobiological mechanisms consistent with those implicated in humans. The 

oxytocin (OXT) system plays a pivotal role in social perception and cognition70,71,76. In 

particular, in humans, OXT has been associated with social cognitive functions such as 

emotion recognition, empathy and trust35,70,71,73,74,76. 

To assess whether the central release of OXT is necessary to distinguish emotional states of 

others, we prevented the release of endogenous OXT from paraventricular nucleus of the 

hypothalamus (PVN) neurons by bilateral injections of a recombinant adeno-associated virus 

(rAAV) expressing the inhibitory hM4D(Gi) DREADD receptor under the control of the OXT 

promoter (Fig. 4a). In rodents, neurons in the PVN are the main source of OXT projections to 

brain regions31,101. We found that, in contrast to treatment with vehicle (Veh), inhibition of PVN 

OXT-projecting neurons (upon CNO injection) abolished the ability of mice to discriminate 

either fear or relief emotions in conspecifics (Fig. 4b-c and Fig. S6). This was equally evident 

in male (Fig. 4b-c) and female mice (Fig. S6). CNO treatment per se did not affect the ability 

of mice to discriminate between different emotional states in conspecifics (Fig. S7). 

Furthermore, inhibiting PVN OXT-projections produced selective effects in emotion 

Figure S5. Reliability of the mouse emotion recognition task. (a) Schematic drawing of the test-retest 

reliability validation. (b, c, d, e) Time (in seconds) spent by observer mice sniffing the two demonstrators in the 
fear (b, c) and relief (d, e) paradigms during their (b, d) first and (c, e) second exposure to the 6-minute emotion 
recognition test. Time spent sniffing neutral demonstrators are depicted in grey, fear in red and relief in yellow. 
RM ANOVA for the “fear” manipulation, last 2-minute session, Test: F

1,13
=6,10, p=0.028; Re-Test: F

1,13
=8,59, 

p=0.012. RM ANOVA for the “relief” manipulation, first 2-minute session, Test: F
1,10

=5,15, p=0.046; Re-Test: 

F
1,10

=22,88, p=0.0008. *p<0.05, and **p<0,005 versus the exploration of the neutral demonstrator. N=11-14 

observers per group.  

Figure S5 
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recognition, as no differences were induced by CNO on social exploration when the same mice 

were tested in a one-on-one free-interaction setting with an unfamiliar conspecific (Fig. S8a). 

Overall, these data indicate a direct involvement of PVN OXT release in the ability to 

discriminate different emotional states in conspecifics. 

 

 

 

Fig4. PVN OXT release in emotion recognition and the anatomy of PVN OXT projections in mice. (A) Scheme 

of the viral vector used to infect the PVN OXT neurons. (B-C) Time (in seconds) spent sniffing each wire cage 

contatining two demonstrator mice during the first 2 minutes of the emotion recognition test displayed by the same 

observer mice treated with vehicle or CNO (i.p., 30 minutes before the test), and shown separately for each 

demonstrators emotion. Time spent sniffing neutral demonstrators are depicted in grey and represented by grey 

bars. Time spent sniffing demonstrators with (B) water-induced relief states (first 2-min RM ANOVA veh: F(1,7)=7,24, 

p=0.031; CNO: F(1,7)=0,50, p=0.50) , or (C) tone-induced fearful states (last 2-min RM ANOVA veh: F(1,3)=21,76, 

p=0.018; CNO: F(1,3)=0,10, p=0.77) are represented by yellow or red bars, respectively. *P<0.05 versus the neutral 

demonstrator within the same observer treatment. N=10 observers per group. (D) Scheme of the viral vector used 

to infect the PVN OXT neurons. (E) Anatomical OXT projections from PVN to central amygdala (CeA), hippocampus 

CA2 (CA2), and nucleus accumbens (NAcc). Scale bar: 100micronM.  
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Figure S7. No effects of CNO treatment in emotion 
discrimination abilities. Time (in seconds) spent 

sniffing each wire cage containing two demonstrator 
mice during (a) the last 2 minutes and (b) the first 2 
minutes of the emotion recognition test displayed by 
the same observer mice treated with vehicle or CNO 
(i.p., 3 mg/kg in a volume of 10 ml/kg, 30 minutes 
before the test), and shown separately for each 
demonstrator’s emotion. Time spent sniffing neutral 
demonstrators are depicted in grey and represented 
by grey bars. Time spent sniffing demonstrators with 
(a) tone-induced fearful states (last 2-min RM ANOVA 
Veh: F

1,5
=8,55, p=0.032; CNO: F

(1,5)
=8,60, p=0.042), 

or (b) water-induced relief states (first 2-min RM 
ANOVA Veh: F

1,5
=9,55, p=0.027; CNO: F

1,5
=10,56, 

p=0.022) are represented by red or yellow bars, 
respectively. *P<0.05 versus the neutral 
demonstrator within the same observer treatment. 
N=6 observers per group. 

Figure S6. Inhibition of PVN OXT projecting 
neurons abolished emotion discriminate also in 
female mice. (a) Scheme of the viral vector used to 

infect the PVN OXT neurons. (b) Time (in seconds) 
spent sniffing each wire cage containing two 
demonstrator mice during the first 2 minutes of the 
emotion recognition test displayed by the same 
observer mice treated with vehicle or CNO (3 mg/kg in 
a volume of 10 ml/kg, i.p., 30 minutes before the test), 
and shown separately for each demonstrator’s 
emotion. Time spent sniffing neutral demonstrators are 
depicted in grey and represented by grey bars. Time 
spent sniffing demonstrators with water-induced relief 
states (first 2-min RM ANOVA Veh: F

1,9
=15,61, 

p=0.0033; CNO: F
1,9

=1,04, p=0.33) are represented by 

yellow bars. **P<0.005 versus the neutral 
demonstrator within the same observer treatment. 
N=10 observers per group. 

Figure S6 

Figure S7 
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Figure S8. Inhibition of OXT projections did not alter free social interaction with an unfamiliar conspecific. 

(a-d) Schemes showing the injection of viruses in the PVN and respective projecting area. (e) Time (in seconds) 
spent sniffing an unfamiliar conspecific matched for sex and age during 4 minutes of free social interaction displayed 
by the same mice treated once with vehicle and another time with CNO (i.p., 30 minutes before the test). PVN (1-
way ANOVA F

1,4
=0,19, p=0.68); PVN-CeA (1-way ANOVA F

1,18
=0,081, p=0.78); PVN-NAc (1-way ANOVA 

F
1,16

=0,006, p=0.94); PVN-mPFC (1-way ANOVA F
1,10

=0,005, p=0.94). N=4-10 per group. 

  

 

Figure S8 
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PVN OXT projections to the central amygdala are an essential neural substrate for 

emotion recognition 

To investigate the selective OXT-ergic circuits involved in emotion recognition, we first 

visualized PVN OXT projections in mice, injecting a rAAV expressing Venus under the control 

of an OXT promoter, that allowed the fluorescent labeling of OXT-PVN neurons (Fig. 4d). Our 

assessment focused on brain areas indicated as potential neuroanatomical substrates of 

emotion discrimination in humans102,103 and that presented OXTergic innervation. We identified 

OXT-positive fibers in the central amygdala (CeA), nucleus accumbens (NAcc), hippocampal 

CA2, and medial prefrontal cortex (mPFC; Fig. 4e). Fewer fibers were evident in the insula, 

basolateral (BLA) and medial (MeA) amygdala (Fig. S9). To investigate the functional role of 

selective PVN OXT projections, we injected target areas with the retrogradely transported 

canine adenovirus 2 expressing Cre recombinase (CAV2-Cre). To interfere with the release of 

OXT from back-labeled PVN cells, we combined CAV2-Cre bilateral injections with the 

injection in the PVN of a rAAV carrying a double-floxed inverted open reading frame (ORF) 

(DIO) of hM4D(Gi)DREADD receptor and mCherry under the control of the OXT promoter48. 

With this combination, we achieved DREADD(Gi)-mCherry expression exclusively in PVN OXT 

neurons projecting to the area injected with CAV2-Cre. Selective inhibition of OXT neurons 

projecting from the PVN to the CeA (Fig. 5a and Fig. S10b) was sufficient to recapitulate the 

deficits in emotion discrimination found by silencing all PVN projections (Fig. 4b-c). The same 

mice showed unimpaired emotion discrimination abilities when treated with vehicle (Fig. 5a). 

In contrast, selective inhibition of OXT neurons projecting from the PVN to the NAcc (Fig. 5b 

and Fig. S10c), the mPFC (Fig. 5c and Fig. S10d) and the CA2 (Fig. 5d and Fig. S10e) did not 

interfere with the ability to distinguish emotional states in conspecifics indicating that OXT 

release from PVN to these brain regions is dispensable for emotion recognition. Finally, none 

of the OXT pathways manipulations altered the ability to interact with an unfamiliar conspecific 

in a one-on-one free-interaction setting (Fig. S8b-e), indicating that the differences found in 

emotion discrimination are not due to alterations in other aspects of basic social interaction. 

We verified the regional and cell type specificity of virally-mediated labeling of OXT neurons 

(Fig. 5e and S11). Moreover, to control for the efficacy of DREADD-mediated inhibition in PVN 

back-labeled neurons from the different projection sites, we performed ex vivo patch clamp 

electrophysiology recordings on PVN slices. We found a significant reduction in the number of 

evoked spikes after CNO application in back-labelled PVN neurons, which was equivalent for 

areas with intense OXTergic innervations (i.e CeA and CA2) or with more sporadic innervations 

(i.e. PFC; Fig. 5f-g and Fig. S12). Overall, these findings demonstrate a preponderant 
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contribution of the CeA in emotion recognition abilities in mice and indicate PVN OXT-ergic 

projections to the CeA as an essential neural substrate of such social cognitive function.  

 

 

 

 

 

Figure S9. Anatomy of PVN OXT projections in mice. (A) Scheme of the viral vector used to infect the PVN OXT 

neurons. (B-C) Anatomical OXT projections from PVN to basolateral amygdala (BLA), medial amygdala (MeA), and 
insular cortex (IN). Scale bar: 100 µm. 

 

 

 

 

 

 

 

Figure S9 
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Fig5. PVN-Central Amygdala OXT projections are sufficient to mediate emotion recognition abilities in mice. 

(A, D, G) Schemes showing the injection of viruses in the PVN and respective projecting area. (B-C, E-F, H-I) Time 

(in seconds) spent sniffing each wire cage contatining two demonstrator mice during the first 2 minutes of the 

emotion recognition test displayed by the same observer mice treated with vehicle or CNO (i.p., 30 minutes before 

the test), and shown separately for each demonstrators emotion. Time spent sniffing neutral demonstrators are 

depicted in grey and represented by grey bars. Time spent sniffing demonstrators with (B, E, H) water-induced relief 

states, or (C, F, I) tone-induced fearful states are represented by yellow or red bars, respectively. PVN-CeA relief 

(first 2-min, RM ANOVA veh: F(1,7)=12,66, p=0.009; CNO: F(1,7)=0,13, p=0.73); PVN-CeA fear (last 2-min RM 

ANOVA veh: F(1,8)=5,76, p=0.043; CNO: F(1,8)=1,57, p=0.25); PVN-NAc relief (first 2-min, RM ANOVA veh: 

F(1,8)=7,56, p=0.025; CNO: F(1,8)=6,09, p=0.039); PVN-NAc fear (last 2-min RM ANOVA veh: F(1,5)=6,02, 

p=0.05; CNO: F(1,5)=7,40, p=0.042); PVN-CA2 relief (first 2-min, RM ANOVA veh: F(1,9)=0,018, p=0.90; CNO: 

F(1,9)=5,05, p=0.05); PVN-CA2 fear (last 2-min RM ANOVA veh: F(1,8)=11,39, p=0.010; CNO: F(1,7)=6,27, 

p=0.040). N=6-10 observers per group. *P<0.05 versus the neutral demonstrator within the same observer 

treatment. 
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Figure S10. PVN-Central Amygdala OXT projections are necessary for emotion recognition in mice.  (a-
e) Scheme of the viral vector used to infect the PVN OXT neuronsand respective projecting area (CeA, NAcc, 
mPFC or CA2). (b-c) Time (in seconds) spent sniffing each of the two demonstrators, contained in the wire 

cage, during the emotion recognition test displayed by the same observer mice treated with vehicle or CNO 
(i.p., 30 minutes before the test), and shown separately for each demonstrator’s emotion. Time spent sniffing 
neutral demonstrators are depicted in grey and represented by grey bars. Time spent sniffing demonstrators 
with tone-induced fearful states, or water-induced relief states are represented by red or yellow bars, 
respectively. N=5-11 observers per group. *p<0.05 versus the exploration of the neutral demonstrator.  

Figure S10 
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Figure S11. mcherry immunohistochemistry of retrogradelly labelled PVN neurons.  Placements of selective 

inhibition of OXT neurons in (A) PVN by bilateral injection of hM4D DREADD receptor under the control of the OXT 
promoter, and in neurons projecting from the PVN to the (B) CeA, (C) NAcc, (D) mPFC, and (E) CA2 obtained by 
combined injection of CAV2-Cre bilateral injections with the injection in the PVN of rAAV carrying a double-floxed 
inverted open reading frame (ORF) (DIO) of the inhibitory hM4D DREADD receptor and mcherry under the control 
of the OXT promoter. 

  

Figure S11 
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Figure S12. Electrophysiological validation of hM4D(Gi) action in PVN back labeled and control neurons. 
(a) Representative IR-DIC images of a back labeled parvocellular neuron in the PVN during patch-clamp recordings. 

Right: identification of the cell type by electrophysiological measurements under current clamp mode: the cell 
displays lack of transient outward rectification (black arrow in the zoomed trace) in response to depolarizing current 
pulses delivered at a hyperpolarized membrane potential. (b) Representative IR-DIC image of a magnocellular back 

labeled neuron in the PVN during patch-clamp recordings. Right: identification of the cell type by 
electrophysiological measurements under current clamp mode: the cell displays an inward rectification and a strong 
transient outward rectification (black arrow in zoomed trace) in response to depolarizing current pulses delivered at 
a hyperpolarized membrane potential. (c) Example traces of membrane potential changes (left) and quantification 

(right) of single cell data points of the number of spikes evoked by a depolarizing current step (duration: 1 sec; 
amplitude: 20 pA) in control non infected neurons pre- and post- bath application of CNO in ACSF. Scale bars are 
40 mV and 500 ms. Analyzed with two-tailed Wilcoxon matched-pairs signed rank test  n=12 from 8 mice (p= 0.25). 
(d) Example traces of membrane potential changes (left) and quantification (right) of single cell data points of the 

number of spikes evoked by a depolarizing current step (duration: 1 sec; amplitude: 20 pA) in PVN-CA2 back 
labeled neurons. Pre- and post- bath application of CNO in ACSF. Scale bars are 40 mV and 500 ms. **p< 0.01, 
two-tailed Wilcoxon matched-pairs signed rank test: n=8 from 3 mice (p= 0.0078). 

 
 

Emotion recognition depends on OXTR levels in the CeA 

Altered amygdala reactivity in emotion discrimination has been consistently reported in autism 

and schizophrenia in association with genetic liability104,105. In heterozygous knockout mice for 

dysbindin-1 (Dys+/-), a clinically-relevant mouse model of cognitive and psychiatric 

liability16,106,107 we identified reduced expression levels of OXT receptors (OXTR) compared to 

wild-type littermates (Dys+/+) in the CeA, but not in the basolateral (BLA) or medial (MeA) 

 

Figure S12 
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amygdala (Fig. 6a-b). We then assessed Dys+/- mice emotion recognition abilities, and 

observed deficits in both the fear and relief conditions (Fig. 6c-d). In particular, we found that 

the impact of Dys mutation was selective for emotion recognition, as Dys +/- sociability and 

social memory in the classic 3-chamber test were similar to Dys +/+ controls (Fig. S13). These 

data unravel a clinically-relevant genetic variation which concurrently leads to deficits in 

emotion recognition abilities and in the CeA OXT system. 

Next, to test if reduced OXTR levels in the CeA were responsible of Dys+/- mice emotion 

recognition deficits, we increased the expression of OXTR selectively in the CeA of Dys+/- 

mice by bilateral injection of a AAV-EF1a-OXTR-IRES-EYFP, expressing OXTR and EYFP 

(enhanced yellow fluorescent protein) under the control of the constitutively expressed EF1a 

promoter (Menon et al 2018; Fig. 6e, Fig. S14, Fig. S15). Increased OXTR levels within the 

CeA were confirmed by receptor autoradiography quantification (Fig S14c-d). Increasing 

OXTR levels in CeA of Dys +/- mice was sufficient to rescue their emotion recognition deficits 

(Fig. 6f-g). Altogether, these findings strengthen the conclusion that an appropriate OXTergic 

signaling within the CeA is a necessary condition for emotion discrimination abilities. 
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Figure 4. Intranasal OXT alters OXTR in the CeA and emotion recognition abilities depending on 

dysbindin-1 genetic background. (A) Representative drawing and autoradiograph showing the ligand binding 

of 20 pmol/l I125-labeled OVTA, a potent and selective ligand for OXTR. Autoradiograms were obtained from 

coronal sections of 3/4-month-old brains of mice chronically treated with intranasal OXT 0.3 IU/5 ml (OXT) or 

vehicle (Veh). CeA: central amygdala; BLA: basolateral amygdala. (B) Quantification of the autoradiographic 

I125receptors was obtained using NIH ImageJ- Software. Data is expressed as optical density. Two-Way 

ANOVA, genotype-by-treatment interaction: F(2,21)=9,27, p=0.001. Ns=4-5 for each group; *p<0.05 vs veh-

treated dys+/+ mice; #p<0.05 vs same genotype treated with vehicle. (C) OXTR mRNA expression in the CeA 

measured by real-time PCR in dysbindin-1 +/+, +/- and -/- mice chronically treated with intranasal OXT 0.3 IU/5 

ml (OXT) or vehicle (Veh). Two-Way ANOVA, genotype-by-treatment interaction: F(2,34)=6,15, p=0.005. Ns=4-8 

for each group; *p<0.05 vs veh-treated dys+/+ mice; #p<0.05 vs same genotype treated with vehicle. (D-G) 

Time (in seconds) spent sniffing each wire cage containing two wild-type demonstrator mice during the first 2 

minutes of the emotion recognition test displayed by dysbindin-1 wild-type (Dys+/+), heterozygous (Dys+/-) and 

homozygous (Dys-/-) knockout observer mice, and shown separately for each demonstrators emotion. Time 

spent sniffing neutral demonstrators are depicted in grey and represented by grey bars. Time spent sniffing 

demonstrators with (D, F) water-induced relief states, or (E, G) tone-induced fearful states are represented by 

yellow or red bars, respectively. (D-E) All observer mice were naïve or received two intranasal administrations 

of saline (0.9% NaCl) for 7-9 consecutive days in a volume of 5 microliter on both nostrils. RM ANOVAs, (D) 

Relief first 2-min, dys+/+: F(1,6)=12,24, p=0.012; dys+/-: F(1,6)=5,11, p=0.06; dys-/-: F(1,6)=0,37, p=0.56. (E) Fear 

last 2-min, dys+/+: F(1,6)=12,41, p=0.012; dys+/-: F(1,3)=0,33, p=0.61; dys-/-: F(1,8)=0,006, p=0.94. N=4-9 

observers per group. *P<0.05 versus the neutral demonstrator within the same genotype. (F-G) All observer 

mice received two intranasal administrations of OXT (0.3 IU/5 microliter) for 7-9 consecutive days in a volume 

of 5 microliter on both nostrils. RM ANOVAs, (F) Relief first 2-min, dys+/+: F(1,6)=1,83, p=0.23; dys+/-: F(1,7)=9,76, 

p<0.02; dys-/-: F(1,8)=5,82, p<0.05. (E) Fear last 2-min, dys+/+: F(1,11)=0,001, p=0.98; dys+/-: F(1,10)=1,73, p=0.22; 

dys-/-: F(1,8)=8,89, p<0.02. N=7-12 observers per group. *P<0.05 versus the neutral demonstrator within the 

same genotype.  
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  Figure S13. Dysbindin-1 heterozygous knockout mice show normal sociability and preference for social 

novelty in the 3-chamber task. (a-b) Time (in seconds) spent sniffing each wire cage containing one unfamiliar 

mouse (novel mouse 1) and one novel object during the sociability phase of the 3-chamber task displayed by 
Dys+/+ and Dys+/- (a) male and (b) female  littermates. RM ANOVA, Males Dys+/+: F

1,12
=32,07, p=0.0001; Dys+/-

: F
1,12

=26,16, p=0.0003; Females Dys+/+: F
1,12

=28,60, p=0.0002; Dys+/-: F
1,13

=36,67, p=0.001. **P<0.005 and 

***P<0.0005 versus the novel object within the same genotype. N=8-14 per group. (c-d) Time (in seconds) spent 
sniffing each wire cage containing one unfamiliar mouse (novel mouse 2) and the now familiar mouse (novel 
mouse 1) during the social novelty phase of the 3-chamber task displayed by Dys+/+ and Dys+/- (c) male and (d) 
female  littermates. RM ANOVA, Males Dys+/+: F

1,12
=42,41, p<0.0001; Dys+/-: F

1,12
=13,44, p=0.0032; Females 

Dys+/+: F
1,12

=32,05, p=0.0001; Dys+/-: F
1,13

=29,59, p=0.0001. *P<0.05, **P<0.005 and ***P<0.0005 versus the 

novel mouse within the same genotype. N=8-14 per group. 

Figure S13 
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Figure S14. Validation of AAV virus expressing 
OXTR. The AAV-EF1α-OXTR-EYFP (OXTR) or 
AAV-EF1α-EYFP (Control) viruses were injected (a) 

unilaterally in the central amygdala (CeA) of OXTR 
knockout mice, and (b) bilaterally in the CeA of 

Dys+/+ and Dys+/- littermates determining an 
increased expression of OXTR assessed by 
autoradiography using the ligand binding of 20 pmol/l 
I125-labeled OVTA, a potent and selective ligand for 
OXTR. Autoradiograms were obtained from coronal 
sections. (a and d) autoradiography of OXT binding 

in OXTR-/- and Dys+/- mice, respectively, to 
demonstrate the viral OXTR expression under a 
background of no OXTR expression and in the 
dysbindin mice in which the behavioral deficits were 
rescued. (c) Quantification of the autoradiographic 

I125receptors in Dys+/+ and Dys+/- was obtained 
using NIH ImageJ- Software. OXTR binding sites are 
expressed as fold changes from the Dys+/+ control 
group. The post-hoc analyses on the Two-Way 
ANOVA genotype-by-treatment interaction revealed 
that both OXTR virus groups increased  the OXTR 
protein levels in the CeA, while we confirmed 
reduced levels in the CeA of Dys+/- control virus 
mice. N=3-6 for each group; ***p<0.0005 and 
*p<0.05 versus Dys+/+ control virus group.  

Figure S15. Placements of dys+/- CeA injected 
with AAV virus expressing OXTR. Schematic 

drawing of injection sites of the AVV expressing 
OXTR and EYFP under the control of the EF1a 
promoter in the CeA of Dys +/- mice. 

 

Figure S14 

Figure S15 
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Discussion 

Combining behavioral, chemogenetic and genetic approaches, in this study we demonstrated 

that, similarly to humans102,108,109, CeA is implicated in mice emotion recognition. Moreover, we 

demonstrated that OXTergic projection from the PVN to the CeA is an essential neuronal 

substrate of emotion discrimination. These mechanisms were revealed by a new paradigm 

measuring in mice the ability to discriminate unfamiliar conspecifics based on their emotional 

state, thus extending the opportunity to investigate previously unexplored social cognitive 

processes in mice, distinct from basal sociability and other social functions such as emotional 

contagion. 

The developed paradigm revealed the ability of mice to discriminate unfamiliar conspecifics 

based on altered emotional states. Notably, observers’ emotion discrimination was evident 

after (and not during) the induction of the altered emotional state in the demonstrators. This is 

in line with theories suggesting that emotional states are differentiated from simple reflex 

responses in their persistence after the disappearance of the triggering stimuli110. Previous 

protocols, able to induce emotion contagion/fear transfer, involved observers witnessing 

conspecifics in pain or exposed to foot shock89,90,93,95,96. In contrast, the manipulations we 

performed in demonstrator mice were designed to alter their emotional states causing minimal 

physical distress. Consistently, we did not detect in observer mice responses associable to 

emotional contagion, as freezing, state-matching, escape behaviors or altered corticosterone 

levels. This suggests the involvement of a cognitive process distinct from the automatic 

response to a conspecifics negative-emotional state91. Relevantly, most of previous emotion-

based tests in rodents require familiarity between the observer and the demonstrator and show 

some sex-dependent effects89,93,95. In contrast, emotion recognition abilities in our paradigm 

were evident towards unfamiliar conspecifics and equally observable in male and female mice. 

Similarly, human emotion recognition tasks are mostly based on presentation of unfamiliar 

conspecifics and show similar performance between males and females. Finally, emotion 

discrimination ability in our paradigm was not predicted by sociability toward unfamiliar 

individuals in a classic 3-chamber test or towards emotionally-altered mice in a one-on-one 

setting. Altogether, this indicates that our paradigm parallel what is commonly measured in 

humans with emotion recognition tasks68,111and measure a scarcely explored aspect of 

rodents’ social cognition, which complement currently available tools. 

Observer mice showed similar preference towards demonstrators in negative- or positive-

valence emotional states. The study of the sensory modalities involved in the processing of 

negative and positive emotions, however, provided some insight on possibly different 

ethological meaning of the two paradigms we used. In particular, while the relief condition 



 
45 | P a g e  

 

promoted the approach of the observer in all the modalities explored, the fear condition 

produced divergent responses. That is, social approach immediately after fear was evoked in 

a mouse by a tone, or visual cues were obscured, and aversion in presence of a fear odor, or 

of a recently shocked demonstrator. Rodents have been reported to actively escape from 

intense aversive stimuli95, from aversive USVs calls induced by heavy distress97,112, and from 

odors emitted by a shocked, heavily stressed, defeated, or sick conspecific98–100. Despite it is 

difficult drawing a conclusion on which signals guide mice specific behavioral responses, our 

data suggest that, while different in their emotional valence, fear and relief are not perceived 

by the observers as alarm signals, but as socially relevant states, promoting higher social 

interest than the neutral condition. The ensemble of these results indicate the potential of this 

setting to investigate a range of behavioral responses induced by emotional stimuli of different 

intensity, possibly recruiting different sensory modalities. 

The development of this emotion recognition task for mice allowed us to uncover the primary 

role played by the endogenous OXT system, and specifically PVN-to-CeA OXT projections, in 

emotion recognition. The functional mapping of the selected PVN projections identified the 

CeA as a necessary and sufficient site for OXT to allow recognition of negative and positive 

emotions in conspecifics. Notably, in humans, positive and negative emotions are equally 

discriminated and equivalent brain regions represents positivity and negativity113. In particular, 

our findings are in line with several evidence in humans indicating that the amygdala is 

primarily recruited across all forms of emotion perception, and especially in decoding emotional 

expressions in others102,108,109. Moreover, alterations in amygdala responses to happy and 

fearful emotions have been reported in neuropsychiatric conditions such as autism and 

schizophrenia104,105, in association with OXTR genetic variants114, or following intranasal 

OXT72,74,79,115. However, the biological meaning of this altered amygdala activation and its 

implication in the context of the functionality of the endogenous OXT system were still 

uncertain. Thus, our manipulations of endogenous PVN OXT-ergic projections and preliminary 

evidence that PVN OXT neurons are unlikely to simultaneously project to different brain 

regions (not shown), delineate a first neurobiological substrate for the ability to discriminate 

expression of emotions in others. 

Dysbindin-1 hypofunctioning mice showed emotion recognition deficits, for both negative and 

positive emotions, which depended on their decreased levels of OXTR in the CeA. Genetic 

variations in dysbindin-1 are strongly associated with human intelligence116. Moreover, both 

mice and human studies revealed that dysbindin-1 functional genetic variants that reduce its 

expression consistently modulate higher-order cognitive functions16,106,107. Thus, our current 

findings extend previous evidence, implicating dysbindin-1 genetics also in social cognitive 
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functions. In particular, these new genetic findings strength the evidence that the OXT 

signaling within the CeA and, specifically, OXTR levels within this brain region constitute a final 

target to modulate emotion recognition abilities. Notably, common functional genetic variants 

in dysbindin-1 can predict, in both humans and mice, cognitive responses to psychotropic drug 

treatments106. Thus, based on previous evidence suggesting that OXT treatments might have 

different outcomes depending on the status of the endogenous OXT system80,81,117and the 

current finding that dysbindin-1 alters the OXT CeA signaling, it is intriguing to speculate that 

dysbindin-1 genetic variants might also modulate social cognitive responses to exogenous 

OXT-related treatments. 

An intriguing question raised by our data is how is the specificity of OXT action to emotion 

discrimination achieved in the CeA. The implication of CeA OXT signaling in conditioned threat 

responses31,118 would suggest a specific ability in the detection of fear-mediated responses. 

The effects we found in the discrimination of both negative and positive states, however, 

indicates a more generalized role of the CeA in the detection of socially communicated salient 

information, as similarly evident in humans102,108,109,113. OXT has been documented to increase 

neuronal firing rates, mainly through modulation of interneuron activity, resulting in lower 

background activity and enhanced information transfer119–121. The close proximity of PVN-OXT 

fibers to GABAergic CeA neurons expressing OXTR31,118 suggests that a similar modulation 

might occur during emotion recognition in the CeA. Distinct neuronal populations in sub-

regions of the CeA have been shown to control specific behavioral responses to fear31,118. 

Understanding the specific cell-type identity and state of CeA neuronal subpopulations 

subtending the perception and response to emotional cues of different valence is an important 

line of research for future studies. 

In conclusion, the data here presented provide significant new insights into the role of 

endogenous OXT signaling in the ability to recognize emotions in unfamiliar conspecifics. This 

was achieved by the development of a new method to address previously scarcely explored 

aspects of rodents’ social cognition. This could support more translational approaches 

between rodent and human social cognitive studies, with relevance to circuits, genetics and 

neurochemical systems involved in different psychiatric disorders. 
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Materials and Methods 

 

All procedures were approved by the Italian Ministry of Health (permits n. 230/2009-B and 

107/2015-PR) and local Animal Use Committee and were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the 

European Community Council Directives. Males and females C57BL/6J mice, and dysbindin-

11 heterozygous (Dys+/-) and their wild-type littermates (Dys+/+), all of 3-6 month-old, were 

used. Animals were housed two to four per cage in a climate-controlled (22±2 C) and specific 

pathogen free animal facility, with ad libitum access to food and water throughout, a standard 

environmental enrichment (material for nest and cardboard house), and with a 12-hour 

light/dark cycle (7pm/7am schedule). Experiments were run during the light phase (within 

10am-5pm). All mice were handled on alternate days during the week preceding the first 

behavioral testing. Experimenters were blind to the mouse treatments and genotype during 

testing. Female mice were visually checked for estrus cycle immediately after the test and no 

correlation was found between estrus status and performance in the test. Behavioral scoring 

was performed a posteriori from videos by trained experimenters, blind to the manipulations of 

both the observers and demonstrators. Three independent persons scored the same data with 

an inter-rater reliability r score of 0.954. A sniffing event was considered when the observer 

touched with the nose the demonstrators’ wire cup or when the observer’s nose directly 

touched the demonstrator. The emotion discriminations reported in this work were performed 

and independently replicated by nine different researchers and independently replicated in 

three different laboratories. 

 

Emotion recognition task 

Habituation of the mice to the testing setting occurred on three consecutive days before the 

first experiment; each habituation session lasted 10 minutes. Test observer mice were 

habituated inside a Tecniplast cage (35.5x23.5x19 cm) to a separator and two cylindrical wire 

cups (10.5cm in height, bottom diameter 10.2cm, bars spaced 1 cm apart; Galaxy Cup, 

Spectrum Diversified Designs, Inc., Streetsboro, OH), around which they could freely move, 

as occurred during the test. A cup was placed on the top of the wire cups to prevent the 

observer mice from climbing and remaining on the top of them. The separator (11x14cm) 

between the two wire cups was wide enough to cover the reciprocal view of the demonstrators 

while leaving the observer mice free to move between the two sides of the cage. The wire 

cups, separators and experimental cages were replaced after each subject with clean copies 
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to avoid scent carryover. Similarly, the rest of the apparatus was wiped down with water and 

dried with paper towels for each new subject. After each testing day, the wire cups, separators, 

and cubicles were wiped down with 70% ethanol and allowed to air-dry. Testing cages were 

autoclaved as standardly performed in our animal facility. Demonstrator mice – matched by 

age, sex and genotype to the observers – were habituated inside the same Tecniplast cage 

(35.5x23.5x19 cm), under the wire cups for three consecutive times, ten minutes each. During 

both habituation and behavioral testing, the cages were placed inside soundproof cubicles 

(TSE Multi Conditioning Systems) homogeneously and dimly lit (6±1 lux) to minimize gradients 

in light, temperature, sound and other environmental conditions that could produce a side 

preference. Digital cameras (imaging Source DMK 22AUC03 monochrome) were placed 

facing the long side of the cage and on top of the cage to record from different angles the three 

consecutive two-minute trials, using the Anymaze program (Stoelting, Ireland). 

 

Observers. Before the test, mice were habituated to the experimental setting as reported 

above. The third day of habituation, mice were also habituated to the tone cue (4 kHz, 80 dB 

sound pressure level, three times for 30 seconds each with an intertrial interval of 90 seconds) 

without any conditioning. One hour prior to behavioral testing, mice were placed in the testing 

cage, in experimental setting (i.e. separator and two wire cups), in a room adjacent to the 

testing room. Five minutes before the experiment, the testing cages containing the observer 

mice were gently moved in the testing cubicles. After having placed one emotionally ‘neutral’ 

and one “emotionally altered” demonstrator under the wire cups, the 6-minute experiment 

began. The order of insertion of the neutral or emotionally-altered demonstrator was randomly 

assigned. 

 

‘Neutral’ demonstrators. In the days before the test, all neutral mice were habituated to the 

experimental setting as reported above. For the “relief” condition, neutral demonstrators 

underwent no manipulation the day before the test. For the “fear” condition, the day before the 

test, neutral demonstrators were habituated to the tone cue inside the cups as for the 

experimental setting and as done for the observer mice. On the testing day, neutral 

demonstrators were brought inside their home cages in the experimental room one hour before 

the experiment began. Demonstrators were test-naïve and used only once. In some cases, we 

re-used the same demonstrator for maximum two/three times, with always at least one week 

between each consecutive test. No differences were observed in the performance of the 

observer mice depending on the demonstrators’ previous experience. 
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‘Relief’ demonstrators. The days before the test, mice were habituated to the experimental 

setting as reported above. ‘Relief’ demonstrators were then water deprived 23 hours before 

the experiment. One hour before the test, ad libitum access to water was reestablished, and 

mice were brought inside the experimental room in their home cages. Food was ad libitum all 

the time and some extra pellets were put inside the home cage during the 1-hour water 

reinsertion. 

 

‘Fear’ demonstrators. The days before the test, mice were habituated to the experimental 

setting as reported above. ‘Fear’ demonstrators were fear conditioned using the parameters 

and context previously described2, and using the same tone delivered to the observers and 

neutral demonstrators during their habituation process. In particular, the conditioned stimulus 

was a tone (4 kHz, 80 dB sound pressure level, 30 sec) and the unconditioned stimulus were 

three scrambled shocks (0.7 mA, 2-s duration, 90-s intershock interval) delivered through the 

grid floor that terminated simultaneously with the tone (2 sec). The day of the test these mice 

were habituated, inside their home cages, in a room adjacent to the testing room for one hour 

prior to the test; they were consequently brought inside the experimental room one by one, 

before placing them under their designated wire cup. Fear mice were conditioned only once 

and in a separate room and apparatus (Ugo Basile SRL, Italy) respect to where the emotion 

recognition task would be performed. Fear demonstrator were used only once. In the case of 

a second exposure to the test, these demonstrators were just re-exposed to the same 

conditioned tone, at least one week apart from the previous exposure and maximum 1 month 

from the initial conditioning. 

 

‘Shock” demonstrators. This manipulation was performed for direct comparison with a rat 

protocol and was performed as previously described3. In particular, these demonstrator mice 

were exposed to two footshocks (1 mA, 5-s duration, 60-s intershock interval) immediately 

before the 6-minute test session. All other procedures were identical to the other 

demonstrators as described above. 

 

“Classic” social interaction test and 3-chamber social interaction test 

Social interaction in freely interacting mice was tested as previously reported4. Briefly, mice 

were individually placed in the testing cage 1 h prior to testing. No previous single housing 

manipulation was adopted to avoid any instauration of home-cage territory and aggressive 

behaviors. Testing began when a stimulus mouse, matched for sex and age, was introduced 
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into the testing cage for a 4-min period interaction. Sociability and preference for social novelty 

in the 3-chamber task was tested as previously described5. 

 

One-on-one social exploration tests 

This test was similarly performed as previously described3. One hour prior to behavioral 

testing, each experimental subject was placed into a Tecniplast cage (35.5x23.5x19 cm) with 

shaved wood bedding and a wire lid, in a room adjacent to the testing room. Five minutes 

before the experiment, the testing cages containing the observer mice were gently moved in 

the testing sound proof cubicles. To begin the test a demonstrator mouse was introduced to 

the cage for 6 minutes (as for the emotion recognition task), and exploratory behaviors initiated 

by the test subject were timed by two independent experimenters blind to the manipulations. 

Demonstrators mice were used only once. Each observer was given tests on consecutive 

days: once with an unfamiliar naive conspecific, once with an unfamiliar fear conspecific (fear 

conditioning exactly as above), and once with an unfamiliar relief conspecific (manipulated 

exactly as above). Test order was counterbalanced. 

 

Sensory modality assessment 

In the “complete darkness” experiments, mice were tested as above, but eliminating all sources 

of light within the testing cage as well as in the entire testing room. Videos were recorded for 

successive scoring either with an infrared thermal camera (FLIR A315, FLIR Systems) or with 

Imaging Source DMK 22AUC03 monochrome camera (Ugo Basile). The two cameras setting 

gave the same experimental results. 

For acoustic stimuli experiments, ultrasonic vocalisations (USVs) were recorded during the 

test phases performed as above in two different experimental settings: 1) exactly as reported 

above with one observer mouse and two demonstrators under the wire cups, and 2) with only 

one demonstrator present in the apparatus (and under the wire cup) for each emotional 

condition. This was done to make sure that the USVs recorded could be attributed to a single 

emotional state and/or to a communication between demonstrators and observer. The 

ultrasonic microphone (Avisoft UltraSoundGate condenser microphone capsule CM16, Avisoft 

Bioacoustics, Berlin, Germany), sensitive to frequencies between 10 and 180 kHz, was 

mounted 20 cm above the cage to record for subsequent scoring of USV parameters. 

Vocalisations were recorded using AVISOFT RECORDER software version 3.2. Settings 

included sampling rate at 250 kHz; format 16 bit. For acoustical analysis, recordings were 
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transferred to Avisoft SASLab Pro (Version 4.40) and a fast Fourier transformation (FFT) was 

conducted. Spectrograms were generated with an FFT-length of 1024 points and a time 

window overlap of 75% (100% Frame, Hamming window). The spectrogram was produced at 

a frequency resolution of 488 Hz and a time resolution of 1 ms. A lower cut-off frequency of 15 

kHz was used to reduce background noise outside the relevant frequency band to 0 dB. Call 

detection was provided by an automatic threshold-based algorithm and a hold-time mechanism 

(hold time: 0.01 s). An experienced user checked the accuracy of call detection, and obtained 

a 100% concordance between automated and observational detection. Parameters analysed 

for each test day included number of calls and duration of calls. Quantitative analyses of sound 

frequencies measured in terms of frequency and amplitude at the maximum of the spectrum 

were not performed because of the paucity of emitted USVs in all conditions performed. 

For odor stimuli experiments, observers were tested as described above, but presenting as 

“demonstrator” only cotton balls impregnated with the odor of demonstrators. Odors were 

separately collected from neutral, relief (after the 1 hour ad libitum access to water) and fear 

(immediately after the delivery of the conditioned tone cue) demonstrators by gently brushing 

the cotton ball all over the body of the mice (especially including the nose, body and anogenital 

parts). Each odor was always freshly taken from one single mouse (which was not reused) 

and used only once. 

 

Place conditioning 

Mice were tested in a well-established place conditioning paradigm able to assess either 

positive or negative affective states in mice6, 7. The place conditioning paradigm was performed 

in a rectangular Plexiglas box (length, 42 cm; width, 21 cm; height, 21 cm) divided by a central 

partition into two chambers of equal size (21×21×21 cm) as previously described6. One 

compartment had black walls and a smooth Plexiglas floor, whereas the other one had vertical 

black and white striped (2 cm) walls and a slightly rough floor. During the test sessions, an 

aperture (4×4 cm) in the central partition allowed the mice to enter both sides of the apparatus, 

whereas during the conditioning sessions the individual compartments were closed off from 

each other. To measure time spent in each compartment a video tracking system (Anymaze) 

was used. The place conditioning experiment lasted 5 days and consisted of three phases: 

preconditioning test, conditioning phase and post conditioning test. On day 1, each mouse was 

allowed to freely explore the entire apparatus for 20 min, and time spent in each of the two 

compartments was measured (preconditioning test). Conditioning sessions took place on days 

2 and 4. Mice were divided in two groups: neutral and relief. Mice of the same home- cage 
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were assigned to the same group. Mice were then divided in the two experimental groups with 

similar preconditioning time values in the two sides of place conditioning apparatus. As for the 

same manipulation in the emotion recognition test, the relief group was assigned to receive a 

23-hour water deprivation period before the two conditioning sessions on the day 2 and 4, 

when they were confined with their cage mates in one of the two compartments for 1 hour with 

free access to water and food (conditioning). Food in the home cage was available all time. 

Other than the two 23-hr deprivation periods, water was available all time. The neutral group 

was exposed to the same procedure but without any water deprivation. Post conditioning test 

was performed on day 5 in the same condition of the preconditioning test. For each mouse, a 

conditioning score was calculated as the post conditioning time minus the preconditioning time 

(in seconds) spent in the conditioned compartment of the apparatus. 

 

Viral vectors 

Generation of viral vectors. The OXTp-Venus, OXTp-hM4D(Gi), and OXTp-DIO-hM4D(Gi)-

mCherry AAV serotype 1/2 were cloned and produced as reported previously8, 9. rAAV 

genomic titers were determined with QuickTiter AAV Quantitation Kit (Cell Biolabs, Inc., San 

Diego, California, USA) and RT-PCR using the ABI 7700 cycler (Applied Biosystems, 

California, USA). rAAVs titers were ~1010 genomic copies per µL. CAV2 equipped with Cre 

recombinase was (titer: 2.5x1011 pp) purchased from the Institute of Molecular Genetics in 

Montpellier CNRS, France10. The EF1a-OXTR-IRES:EYFP AAV 1/2 was cloned from the 

mOXTR-PCDNA3.1 plasmid kindly provided by Dr. M. Busnelli and Dr. B. Chini. mOXTR 

fragment (ORF) was released by BamHI and EcoRI restriction and inserted in an AAV 2 

backbone carrying elongation factor 1. Next, the IRES:EYFP sequence was introduced via 

EcoRI and EcoRV ligation sites. E.coli TOP 10 cells were transfected with the helper plasmids 

and plasmids of both viruses and further steps of the viral production and purification were 

conducted in analogy to previous work8, 9. rAAV genomic titers were determined with 

QuickTiter AAV Quantitation Kit (Cell Biolabs, Inc., San Diego, California, USA) and RT-PCR 

using the ABI 7700 cycler (Applied Biosystems, California, USA). rAAVs titers were ~1010 

genomic copies per µL. 

 

Corticosterone assay  

Corticosterone concentration was analyzed from mice plasma. Immediately after the 

behavioral test, each mouse was sacrificed by decapitation. The blood was quickly collected 
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in EDTA(0,5M)-coated tubes and centrifuged at 2500 rpm for 10 min; the supernatant obtained 

was stored at -20°C until the assay. The corticosterone concentration was detected by a 

commercially available Detect X® corticosterone enzyme-linked immunoassay (ELISA) kit 

(Arbor Assays, MI, USA; Cat N K014-H1) following the manufacturer's protocol. The level of 

corticosterone was expressed as fold changes compared to the control group average. 

 

Stereotaxic Injections 

Mice were anesthetized with 2% isoflurane in O2 by inhalation and mounted onto a stereotaxic 

frame (Kopf) linked to a digital reader. Mice were maintained on 1.5 - 2% isoflurane during the 

surgery. Brain coordinates of injections were chosen in accordance to the mouse brain atlas 

(Paxinos and Watson, 1998): PVN (AP: -0.9 mm; L: 0.2 mm; DV: -4.5), CeA (AP: -1 mm; L: 

2.2 mm; DV: -4.5 mm), NAcc (AP: +1.7 mm; L: 0.5 mm; DV: -4 mm), mPFC (AP: +1.9 mm; L: 

0.25 mm; DV: -2.5 mm). Mice that had been injected with AAVs and/or CAV2 were allowed 1 

month to recover and for the viral transgenes to adequately express before undergoing 

behavioral experiments. The injected volume viruses (rAAV and CAV2) were 75-100 nl 

volume, depending on the brain region. CAV2 was pre-diluted at the 1x109 ppl/ml 

concentration. Only mice with appropriate placements were included in the reported data (Fig. 

S10, S11). 

Drugs 

At least 4 weeks after cerebral injections, we inhibited PVN OXT release by i.p. administration 

of Clozapine N-Oxide (CNO, #4936 Tocris Bioscience) dissolved in physiological saline (0.9% 

NaCl) at a dose of 3 mg/kg in a volume of 10 ml/kg , 30 minutes before the emotional 

recognition task. For control experiments, the same mice were injected with the same volume 

of saline. 

Histology 

At the end of the behavioral procedures mice were deeply anesthetized (urethane 20%) and 

transcardially perfused with 4% paraformaldehyde in PBS, pH 7.4. Brains were dissected, post 

fixed overnight and cryoprotected in 30% sucrose in PBS. 40-μm-thick coronal sections were 

cut using a Leica VT1000S microtome. For immunohistochemical studies free-floating sections 

of selected areas were washed in PBS three times for 10 minutes, permeabilized in PBS plus 

0.4% Triton X-100 for 30 min, blocked by incubation in PBS plus 4% normal goat serum (NGS), 

0.2% Triton X-100 for 1 h (all at room temperature) and subsequently incubated with a GFP 
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polyclonal antibody (1:1000, Invitrogen, CatNo. A-11122), or a dsRED polyclonal antibody 

(1:1000 Clontech, CatNo. 632496). Primary antisera were diluted in PBS plus 2% NGS 

overnight at 4°C for GFP antibody and 48 h at 4°C for dsRED antibody. Incubated slices were 

washed three times in PBS plus 1% NGS for 10 minutes at room temperature, incubated for 2 

h at room temperature with a 1:1000 dilution of a Alexa Flour 488 goat anti-rabbit IgG (H+L) 

(1:1000, Molecular Probes®, CatNo.A11034) and Alexa Fluor 633 goat anti-rabbit IgG (H+L) 

(1:1000, Molecular Probes®, CatNo. A21071) in PBS plus 1% NGS, and subsequently washed 

there times in PBS for 10 min at room temperature. The sections were mounted on slides and 

coverslipped. 

Imaging. All images were acquired on a Nikon 1 confocal laser scanning microscope. 

Digitalized images were analyzed using Fiji (NIMH, Bethesda MD, USA) and Adobe Photoshop 

CS5 (Adobe, Montain View, CA). 

 

Brain Autoradiography 

A separate cohort of naïve mice was handled as described above and their brains were rapidly 

explanted, snap-frozen in isopentane at -25 °C and moved at -80 °C for storage. 14μm-thick 

coronal sections were then cut with a cryostat and mounted on chrome-alum-gelatin-coated 

microscope slides. All slides were stored at -80 °C until receptor autoradiography. The binding 

procedure and quantification of the resulting autoradiographic images were performed as 

previously described4. 

 

Ex vivo electrophysiology 

Virus-injected mice were anesthetized with isoflurane and transcardially perfused with an ice-

cold cutting solution containing : 200 mM sucrose, 4 mM MgCl2, 2.5 mM KCl, 1.25 mM 

NaH2PO4, 0.5 mM CaCl2, 25 mM NaHCO3 and 25 mM D-glucose (~300 mOsm, pH 7.4, 

oxygenated with 95% O2 and 5% CO2). Brains were removed and immersed in the cutting 

solution. Coronal slices (270 μm thick, VT1000S Leica Microsystem vibratome) were incubated 

for 2 min in a mannitol solution (225 mM mannitol, 2.5 mM KCl, 1.25 mM NaH2PO4, 8 mM 

MgSO4, 0.8 mM CaCl2, 25 mM NaHCO3 and 25 mM d-glucose (~300 mOsm, pH 7.4, 

oxygenated with 95% O2 and 5% CO2)) and then allowed to recover for 1 hour at 35°C in a 

solution containing: 117 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 3 mM MgCl2, 0.5 mM 

CaCl2, 25 mM NaHCO3 and 25 mM glucose (~310 mOsm, pH 7.4, oxygenated with 95% O2 

and 5% CO2). Recordings were performed in magnocellular and parvocellular neurons of the 
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PVN at room temperature in artificial cerebrospinal fluid (ACSF) with the following composition:  

117 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 1 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO3 

and 25 mM glucose (~310 mOsm, pH 7.4, oxygenated with 95% O2 and 5% CO2). Patch 

pipettes were made from thick-wall borosilicate glass capillaries (B150-86-7.5, Sutter 

Instrument). Pipettes (5-7 mΩ) were filled with an intracellular solution containing: 130 mM K-

gluconate, 10 mM HEPES, 7 mM KCl, 0.6 mM EGTA, 4 mM Mg2ATP, 0.3 Mm Na3GTP, 10 

mM Phosphocreatine. The pH was adjusted to 7.3 with HCl. Whole-cell recordings were 

performed on PVN neurons identified on a fluorescent-based approach. Once stable recording 

conditions were obtained (series resistances in the range of 10–25 mΩ), PVN neurons were 

identified electrophysiologically as magnocellular (presence of transient outward rectification) 

or parvocellular (lack of transient outward rectification)  according to an established current-

clamp protocol in literature11. Validation of iDREADDs was performed evoking spike firing in 

PVN neurons by injection of a small depolarizing current pulse (20 pA for 1 second) under 

current-clamp mode. Activation of iDREADDs was obtained using 10 μM Clozapine N-Oxide 

(CNO, #4936 Tocris Bioscience) applied in the bath for 15 min. Data, filtered at 0.1 Hz and 5 

kHz and sampled at 10 kHz, were acquired with a patch-clamp amplifier (Multiclamp 700B, 

Molecular Devices) and analyzed using pClamp 10.2 software (Molecular Devices). All 

chemicals were purchased from Sigma, otherwise specified. 

 

Statistical analyses 

Results are expressed as mean±standard error of the mean (s.e.m.) throughout. Each 

observer’s behavior towards the two different demonstrator mice was analyzed using a within-

groups Repeated Measures ANOVA (RM-ANOVA). The behaviors of the two demonstrators 

and recorded USVs were analyzed by Two-Way ANOVAs with emotional state as between-

subjects factors, and the within-session 2-min consecutive intervals as a repeated measure 

within-subject factor. The behaviors of the observer mice in the one-on-one setting were 

analyzed by Two-Way ANOVAs with the emotional state of the demonstrator as between-

subjects factors, and the within-session 2-min consecutive intervals as a repeated measure 

within-subject factor. Two or One-Way ANOVAs were used for autoradiography and social 

interactions when different genotypes and treatments were involved. Newman–Keul’s post-

hoc test with multiple comparisons corrections was used for making comparisons within groups 

when the overall ANOVA showed statistically significant differences. The accepted value for 

significance was p<0.05. Statistical analyses were performed using Statistica 13.2 (StatSoft).  
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Abstract 
 
The prefrontal cortex (PFC) has been implicated in the processing of the emotional state of 

others through non-verbal communication. These social cognitive functions are altered in 

psychiatric disorders such as autism and schizophrenia, and are hypothesized to rely on an 

intact cortical neuronal excitation/inhibition balance. Here, we show by combining in vivo 

electrophysiology with a behavioral task for emotion recognition in mice, that neurons in the 

medial prefrontal cortex (mPFC) are differentially activated during exploration of conspecifics 

depending on their affective state. Using optogenetics manipulations, we reveal that selective 

inhibition of mPFC somatostatin (SOM+) interneurons, but not parvalbumin (PV+), abolishes 

emotion discrimination. Conversely, activation of mPFC SOM+ interneurons is sufficient to 

induce emotion discrimination. Our findings provide new insight into the neurobiological 

mechanisms of emotion recognition. The prefrontal cortex (PFC) has been implicated in the 

processing of the emotional state of others through non-verbal communication. These social 

cognitive functions are altered in psychiatric disorders such as autism and schizophrenia, and 

are hypothesized to rely on an intact cortical neuronal excitation/inhibition balance. Here, we 

show by combining in vivo electrophysiology with a behavioral task for emotion recognition in 

mice, that neurons in the medial prefrontal cortex (mPFC) are differentially activated during 

exploration of conspecifics depending on their affective state. Using optogenetics 

manipulations, we reveal that selective inhibition of mPFC somatostatin (SOM+) interneurons, 

but not parvalbumin (PV+), abolishes emotion discrimination. Conversely, activation of mPFC 

SOM+ interneurons is sufficient to induce emotion discrimination. Our findings provide new 

insight into the neurobiological mechanisms of emotion recognition. 
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Introduction 

Understanding others’ emotions by perception of facial and body expressions is an ability 

crucially affecting our everyday life68. Impairments in these recognition measures are common 

in many neurodegenerative, neuropsychiatric and neurodevelopmental disorders. For 

example, emotion recognition deficits are core features of Autism Spectrum Disorders66, and 

are strongly evident in schizophrenia122 and in patients with prefrontal lesions123. Notably, these 

social cognitive impairments might have more deleterious impact on daily functioning than non-

social cognitive deficits69. However, effective cures are still missing. 

The “social brain”, identified by human imaging studies, refers to a network subserving social 

cognitive processes, in which limbic and frontal regions are suggested to play a key role124,125. 

In particular, the top-down control of social cognitive functions is thought to be orchestrated by 

the prefrontal cortex (PFC) over the limbic system126,127. Indeed, damage of the medial PFC is 

associated with significantly impaired emotion recognition128,129. Thus, the PFC become an 

attractive brain regional target129. However, our understanding of PFC neural circuits and 

mechanisms underpinning emotion recognition remains incomplete, mainly due to the 

resolution level of manipulations allowed in humans and the lack of translational models. 

Balance of neuronal excitation and inhibition governs cortical functions130. Perturbations in this 

balance are commonly invoked as a possible final shared pathway in the etiology of autism 

and schizophrenia131. For example, in humans, reduced interneurons132,133 and alteration of 

GABAergic signaling134,135 is a common feature of the autistic brain. In line with these human 

findings, disruption of the excitatory/inhibitory balance in the mPFC of mice led to social 

exploration deficits and sociability impairments136. Moreover, other rodents studies implicated 

the PFC in different social functioning such as social interaction136–138, vicarious freezing139,140, 

social hierarchy141,142, and affiliative behavior143. However, the implication of PFC circuits and 

related excitatory/inhibitory balance in the ability to detect and process expression of emotions 

in others is still uncertain. 

Here, we hypothesized that neuronal sub-populations within the mPFC could contribute 

differently in the processing of emotion discrimination. In humans, this social cognitive process 

is assessed by “emotion recognition tasks” that measure the ability to discriminate basic 

expression of emotions in others144. To explore mPFC circuits involved in emotion 

discrimination in a cell-specific manner, we devised a rodent equivalent of the human “emotion 

recognition task” (ERT). The ERT is designed to study the ability of mice to discriminate 

conspecifics based on their emotional state. This was objectively quantified as discriminatory 

behaviors between an emotionally-altered and a naïve conspecific. By in vivo 

electrophysiology, we first demonstrated the engagement of the mPFC in such discriminations. 
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We then conducted an optogenetics dissection of the involvement of different mPFC neuronal 

sub-populations. In particular, we found that mPFC interneurons expressing somatostatin 

(SOM+), in contrast to interneurons expressing parvalbumin (PV+), are both necessary and 

sufficient for the expression of emotion recognition. 

  

Results 

Mice can discriminate conspecifics based on the emotional state 

In the emotion recognition task (ERT) we tested whether a mouse (“observer”), could 

distinguish between two unfamiliar conspecifics (“demonstrators”), based on their affective 

state. The observer was put in front of demonstrators, matched for sex and age, placed inside 

inverted wire cups, which were divided by a black wall (Fig. 1a). To induce changes in affective 

state, one of the two demonstrators (“relief”) was exposed to a procedure consisting of 60 

minutes of water restoration before the test, following 23 hours of water deprivation, and a 

naïve mouse with ad libitum water access (“neutral”, Fig. 1a). We assumed that this procedure 

was associated with a positive-valence emotional state, because it resulted in a conditioned 

place preference (Supplementary Fig. 1a), and reduced corticosterone levels (Supplementary 

Fig. 1b). After habituation to the testing arena with empty cups, we presented to a naïve 

observer a relieved and a neutral unfamiliar demonstrator, which resulted in higher sniffing 

towards the relieved conspecific (Fig. 1b and Supplementary Fig. 2a) as well as more time 

spent in the related zone, compared to the neutral demonstrator (Fig. 1c). This behavior was 

evident during the first two minutes of observation (Fig. 1b,c and Supplementary Fig. 2a). 

Moreover, when demonstrators were familiar cage-mates, the observers showed a more 

persistent discrimination that lasted four minutes (Supplementary Fig. 3). Demonstrators 

showed no other observable behavioral differences (Supplementary Fig. 1c). Observers made 

similar number of visits to each demonstrator (Supplementary Fig. 2c). However, during the 

first 2 minutes, observers made on average longer visits to the relieved mouse (Supplementary 

Fig. 2d) and the latency to make the first visit was consistently lower towards the relieved 

compared to the neutral demonstrator (Fig 1d). We did not detect differences in other behaviors 

such as grooming and rearing in the observers (Supplementary Fig. 2g). Additionally, we 

tested female mice that revealed no differences for emotion discrimination compared to males 

(Fig. 1k and Supplementary Fig. 2f). Overall, this behavioral analysis suggest that mice are 

capable to discriminate between conspecifics in different affective states. 



 
59 | P a g e  

 

 

 

Figure 1. Mice can discriminate conspecifics based on their emotional state. (a) Left, experimental design of 

the ERT. One demonstrator was given water access for 1 hour before the test, after 23 hours of water deprivation 
(“relief”, yellow), while the other demonstrator had ad libitum water access (“neutral”, grey). Right, schematic 

illustration of testing arena with stressed and neutral demonstrators (counterbalanced left and right across 
experiments) and graphical representation of amount of time observers spent in different parts of the apparatus 
(with blue as the shortest and red the longest time). (b) Increased exploration behavior (sniffing) to the relieved 
(Multiple t-test, Bonferroni correction, 2 min: t=6.22, df=14, p<0.0005; n=8 mice) and (c) increased time spent with 

the relieved demonstrator compared to the neutral, during the first 2 minutes of testing (Multiple t-test, Bonferroni 
correction, 2 min: t=4.28, df=10, p<0.005; n=6 mice). (d) Observers first visited the relieved mice, as latency to the 
first visit was significantly lower compared to the neutral (Unpaired t-test: t=2.31, df=10, p<0.05; n=6 mice). (e) In 

the stress protocol one demonstrator (“stress”, purple) was subjected to restraint stress test for 15 minutes 
immediately before the beginning of ERT. The other demonstrator (“neutral”, grey) waited undisturbed in the home-
cage. (f) Increased sniffing to the stressed demonstrator (Multiple t-test, Bonferroni correction, 2 min: t=3.22, df=12, 
p<0.05; n=7 mice) and (g) time spent with the stressed compared to the neutral (Multiple t-test, Bonferroni 
correction, 2 min: t=2.89, df=10, p<0.05; n=6 mice). (h) Latency to the first visit the stressed demonstrator was 
significantly lower compared to the neutral (Unpaired t-test: t=2.89, df=12, p<0.05; n=7 mice). (i) ERT was replicated 

several times and percentage of exploration towards demonstrators was pooled together (n=96 mice for relief 
manipulation and n=93 for the stress one). Observers explored more the relieved compared to neutral demonstrator 
during the first two minutes of ERT (Unpaired t-test: t=14.32, df=194, p<0.0005). (j) Exploration to the relieved 

demonstrator was higher than chance in a large number of mice, (86/96, one-sample t-test against chance, defined 
as 50%: t=10.12, df=97, p<0.0005) and (k) did not change depending on gender (male/females: 59/39; Unpaired t-
test: t=0.10, df=96, p=0.91). (l) Increased exploration of the stressed compared to neutral demonstrator in several 
replication of the ERT (Unpaired t-test: t=11.63, df=184, p<0.0005). (m) Exploration of the stressed demonstrator 

was higher than chance in a large number of mice (80/93, one-sample t-test against chance, defined as 50%: 
t=8.22, df=92, p<0.0005) and (n) did not change depending on gender (male/females: 63/30; Unpaired t-test: t=0.92, 
df=91, p=0.35). (o) Mice did not show any difference in sociability when presented with a neutral or relieved or a 

stressed mouse in a standard free social interaction test (two-way ANOVA, time X group, F(4,56)=0.21, p=0.93). 
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Supplementary Figure 1. Observable behaviors of demonstrator mice. Related to Figure 1 (a) Left, 

Experimental design for the Conditioned-Place Preference (CPP) test, used to assess if the “relief” manipulation 
was associated with a negative- or positive-valence affective state.  For each mouse a CPP score was calculated 
(post-conditioning – pre-conditioning time spent in the conditioning-paired compartment of the apparatus), with 
positive scores indicating place preference. Water-restricted mice (“relief”, yellow) showed place preference of 
compartment conditioned with water compared to mice with ad libitum water access (“neutral”, gray; unpaired t-
test: t=2.67, df=14, p<0.05; n=7 mice). (b) Increased plasma corticosterone levels in water-restricted animals (red) 

compared to mice that received 1-hour of water restoration, following 23 hours of water restriction (yellow; unpaired 
t-test: t=2.00, df=19, p=0.05; n=10-11 mice). (c) Observable behaviors displayed by the neutral and relieved 

demonstrator mice during the 6 minutes of the ERT, divided by three consecutive 2-minute time beans. No 
significant emotion-by-time statistical interaction was evident for sniffing, grooming, rearing, biting, and freezing 
(n=10 demonstrators per group). (d) Observable behaviors displayed by the neutral and stressed demonstrator 

mice during the ERT. Stressed demonstrators showed increased grooming behavior (Multiple t-test, Bonferroni 
correction, 2 min: t=3.75, df=14, p<0.05; 4 min: t=3.70, df=14, p<0.05; n=8 mice). No significant emotion-by-time 
statistical interaction was evident for sniffing, rearing, biting, and freezing (n=8 demonstrators per group). *p<0.05, 
**p<0.005.  
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Supplementary Figure 2. Mice can make discrimination of conspecifics based on the emotional state. 
Related to Figure 1 (a) Top, Experimental design of the ERT. One demonstrator was given water access for 1 hour 

before the test, after 23 hours of water deprivation (“relief”, yellow), while the other demonstrator had ad libitum 
water access (“neutral”, grey). Mice showed increased exploration behavior, measured as direct sniffing (in 
seconds), to the relieved compared to neutral demonstrator (left, showed in 120-seconds beams, Multiple t-test, 
Bonferroni correction, 2 min: t=3.85, df=14, p<0.005; right, showed in 60-seconds beams, 60s: t=3.6, df=14, p<0.05, 
120s: t=2.77, df=14, p<0.05; n=8). (c) Average number of visits to each zone did not differ. (d) Observers made 

longer visits in the zone related to the relief demonstrators (Multiple t-test, Bonferroni correction, 2 min: t=2.79, 
df=10, p<0.05; n=6). (e) Average distance of observers’ head to the relieved and the neutral demonstrators did not 
differ during ERT. (f) Female mice showed increased sniffing to the relieved compared to neutral, sex-matched, 
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demonstrator (Multiple t-test, Bonferroni correction, 2 min: t=3.32, df=18, p<0.05; n=10). (g) Grooming and rearing 

behaviors, and locomotor activity displayed by the observers during the ERT with the neutral and the relieved 
demonstrators. (h) Top, In the stress protocol one demonstrator (“stress”, purple) was subjected to restraint stress 

test for 15 minutes culminating in the beginning of ERT. The other demonstrator (“neutral”, grey) waited undisturbed 
in his home-cage. Bottom, mice showed increased sniffing to the stressed compared to neutral demonstrator (left, 

showed in 120-seconds beams, Multiple t-test, Bonferroni correction, 2 min: t=3.13, df=10, p<0.05; right, showed 
in 60-seconds beams, 60s: t=3.67, df=10, p<0.05, 120s: t=2.12, df=10, p<0.05; n=6). (i) Average number of visits 
to each zone did not differ. (j) Observers made longer visits in the zone related to the stressed demonstrators 
(Multiple t-test, Bonferroni correction, 2 min: t=2.56, df=10, p<0.05; n=6). (k) Average distance of observer mice 

during exploration to the stressed demonstrator was shorter compared to neutral (Unpaired t-test, Bonferroni 
correction, t=6.11, df=718, p<0.0005; n=6). (l) Female mice showed increased sniffing to the stressed compared to 
neutral, sex-matched, demonstrators (Multiple t-test, Bonferroni correction, 2 min: t=2.69, df=18, p<0.05; n=11). (m) 

Grooming and rearing behaviors, and locomotor activity displayed by the observers during the ERT with the neutral 
and the stressed demonstrators. (n) No correlation between discrimination index and grooming behavior of the 
stressed demonstrators. (o) First and second testing in the same ERT (“relief”) showed similar behavioral pattern 

with increased sniffing towards the relieved demonstrator compared to the neutral (ERT 1: Multiple t-test, Bonferroni 
correction, 2 min: t=2.25, df=20, p<0.05; ERT 2: Multiple t-test, Bonferroni correction, 2 min: t=3.99, df=20, p<0.05; 
n=11). (p) For each observer tested in the ERT with both protocol (relief and stress) a discrimination index was 

calculated to compared performance on ERT 1 (red) and ERT 2 (blue; discrimination index = exploration of 
“relief”/”stress” - exploration of “neutral” / total time of exploration). Positive index means discrimination between 
“emotionally-altered” and “neutral”. Of 41 mice tested in ERT 1 and ERT 2 only 6 did not show a positive 
discrimination index on second testing. Average discrimination index did not differ between ERT 1 and ERT 2. 

 

 
 
Supplementary Figure 3. Emotion discrimination in mice is enhanced between familiar of conspecifics. 
Related to Figure 1. (a) Top, Experimental design of the ERT with cage-mates demonstrators. Observer and 

demonstrators were singly-housed 23 hours before testing. One demonstrator was given water access for 1 hour 
before the test, after 23 hours of water deprivation (“relief”, yellow), while the other demonstrator had ad libitum 
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water access (“neutral”, grey). (b) Increased sniffing to the relieved compared to neutral demonstrator (Multiple t-
test, Bonferroni correction, 2 min: t=3.60, df=12, p<0.05, 4 min: t=3.35, df=12; n=7). (c) Increased time spent in the 

zone related to the relieved demonstrator compared to the neutral (Multiple t-test, Bonferroni correction, 2 min: 
t=3.21, df=12, p<0.05, 4 min: t=2.37, df=12; n=7). (d) Shorter latency to make the first visit to the relieved 

demonstrator compared to the neutral (1.951.0 relief, 7.143.0, Unpaired t-test, t=1.58, df=12, p=0.13). (e) 
Average number of visits to each zone did not differ. (f) When tested with cage-mates, discrimination of relieved 

versus neutral demonstrators was longer as discrimination index was increased compared to mice tested with 
unfamiliar demonstrators (Multiple t-test, Bonferroni correction, 4 min: t=2.07, df=13, p=0.05, n=7). (g) In the stress 

protocol using cage-mates, one demonstrator (“stress”, purple) was subjected to restraint stress test for 15 minutes 
culminating in the beginning of ERT. The other demonstrator (“neutral”, grey) waited undisturbed in his home-cage. 
(h) Increased sniffing to the stressed compared to neutral demonstrator (Multiple t-test, Bonferroni correction, 2 
min: t=4.27, df=12, p<0.005; 6 min: t=5.16, df=12, p<0.0005; n=7). (i) Increased time spent in the zone related to 

the stressed demonstrator compared to the neutral (Multiple t-test, Bonferroni correction, 6 min: t=6.13, df=12, 
p<0.0005, n=7). (j) Shorter latency to make the first visit to the stressed demonstrator compared to the neutral 
(Unpaired t-test, t=2.15, df=12, p<0.05). (k) Average number of visits to each zone did not differ. (l) When tested 

with cage-mates, discrimination of the stressed versus the neutral demonstrators was longer as discrimination index 
was increased compared to mice tested with unfamiliar demonstrators (Multiple t-test, Bonferroni correction, 6 min: 
t=3.45, df=11, p<0.005, n=6-7). (m) To rule out that social isolation 23 hours before testing (to allow water restriction 

of one cage-mate – “relief”) could have affected experiments with familiar mice, we tested singly-housed observers 
with unfamiliar demonstrators. Mice showed increased sniffing towards the relieved demonstrators (Multiple t-test, 
Bonferroni correction, 6 min: t=5.48, df=12, p<0.0005, n=7) and increased time spent in the related zone (Multiple 
t-test, Bonferroni correction, 6 min: t=2.86, df=12, p<0.05, n=7), only during the first 2 minutes of ERT, and not 
further, as showed in b. 
 

 

Discrimination of a negative affective state 

We next tested if emotion discrimination could be extended to a different, negative-affective 

state. To do this, we tested the ability of the observers to discriminate between one 

demonstrator that underwent a mild stress protocol, consisting of 15 minutes of acute restraint 

before the beginning of the ERT, and a neutral demonstrator (Fig 1e). We observed increased 

exploration towards the stressed demonstrator (Fig. 1f and Supplementary Fig. 2h) and higher 

time spent in the related zone (Fig. 1g). Also in this case, mice first entered the zone related 

to the “emotionally-altered” demonstrator (Fig. 1h) and made longer visits to the stressed 

demonstrator during the first 2 minutes of the test (Supplementary Fig. 2j), while the total 

number of visits did not differ between the stressed and neutral demonstrator (Supplementary 

Fig. 2i). Also in stress condition, when the demonstrator was a cage-mate of the observer, the 

discrimination was longer (Supplementary Fig. 3). Moreover, observer mice had a closer 

approach towards the stressed demonstrators as the distance of their head from the 

demonstrators during exploration was shorter for the stressed conspecific compared to the 

neutral (Supplementary Fig. 2k). Observer did not show differences in other behaviors such as 

grooming and rearing (Supplementary Fig. 2m). No differences between male and female mice 

were evident in the discrimination of the stressed demonstrators (Fig. 1n and Supplementary 

Fig. 2l). During the test, stressed demonstrators showed higher grooming compared to neutral 

mice, but similar rearing, sniffing, biting and freezing behaviors (Supplementary Fig. 1d). 

However, grooming was not correlated to observers’ ability to discriminate (Supplementary 
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Fig. 2n). Overall, these results showed that mice can similarly discriminate others based on 

both positive- and negative-valence states. 

 

Emotion discrimination is a stable trait distinct from sociability 

To evaluate the reliability of the emotion discrimination, we replicated the ERT several times 

in naïve mice, with different experimenters, in two different laboratories, and in later 

optogenetics and electrophysiological experiments, replicating our initial findings in a large 

group of animals (n = 96 “relief”, n = 93 “stress”). Data from ERT conducted in naïve animals 

and in mice implanted with electrodes and under “light-OFF” condition were pooled and 

showed as percent exploration towards the emotionally-altered mouse (relief and stress, Fig. 

1i,l). The emotion discrimination was a reliably observable behavior, with only 12% of tested 

mice not discriminating between an emotionally-altered and a neutral demonstrator (relief: 

10/96, Fig. 1j; stress: 13/93, Fig. 1m). The scores of exploration towards the relieved and the 

stressed demonstrators were found to fit a normal distribution (D’Agostino and Pearson 

normality test, stressed: n=93, K2=1.54, p=0.46; relieved: n=96, K2=1.83, p=0.39). Moreover, 

emotion discrimination abilities were stable, as when re-exposed to the same (Supplementary 

Fig. 2o) or to a different paradigm observers showed similar behavior (Supplementary Fig. 2p). 

Thus, these data show that emotion recognition is a stable trait in mice. 

Notably, if observer mice were tested in a one-on-one free social interaction setting with a 

neutral, a relief or a stress mouse (Fig. 1o), they spent a similar amount of time in social 

interaction with the emotionally-altered and neutral demonstrators and showed a classic 

habituation curve that was not influenced by the affective state of the demonstrator (Fig. 1o). 

This suggests that the discrimination revealed by the ERT is not due to a generalized increase 

of social exploration (an index of sociability), but rather is a more specific measure of emotion 

discrimination. 

 

Enhanced mPFC neuronal activity during exploration of an emotionally-altered 

conspecific 

To investigate the possible recruitment of mice mPFC in emotion discrimination, we implanted 

tetrodes in this region on the observer mice and we carried out chronic electrophysiological 

recordings during the ERT (Fig. 2a). In the “relief” versus “neutral” condition, we recorded 57 

well-isolated units, with the majority recorded from the prelimbic cortex (PL). We classified 

these units into narrow-spiking (NS, Fig. 2b) putative inhibitory interneurons and wide-spiking 
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(WS, Fig. 2b) putative pyramidal neurons, based on spike waveform features, such as spike 

width and firing frequency145. In particular, we used three parameters: depolarization phase 

phase at half amplitude, duration of the hyperpolarization phase at half amplitude, and the 

average firing frequency during the entire recording session146,147. We found that among the 

recorded units, 39 out of 57 displayed a different activation during the direct exploration of the 

demonstrators (response to social exploration, Fig. 2b). The remaining cells (n=18) did not 

show any variation in their firing rate either before or during the social exploration, and did not 

display any stronger activation for one of the two emotional state in all of the three intervals we 

recorded (“no response”, Fig. 2b). The majority of responsive units discharged before and after 

the beginning of the exploration (85%), a smaller group only after the interaction started (13%), 

and only few units (2%) activated before the mouse started to explore one of the two 

demonstrators (Fig. 2b). Moreover, the majority of these cells discharged stronger when the 

mouse explored the relieved rather than the neutral conspecific and this behavior was 

observed throughout the 6 minutes of the test (table Fig. 2b). Finally, we observed that 79% of 

responsive neurons displayed a sustained activity for all the length of the social exploration 

(Fig. 2b). In particular, these neurons displayed a higher firing rate until the end of the social 

exploration that drastically decreased when the interaction ended. These responsive cells 

showed increased neuronal activation when exploring the relief demonstrator, compared to the 

neutral, which disappeared at the end of a social event (Fig. 2c). The same pattern of discharge 

was observed at the population level (Fig. 2d). 

A similar mPFC neuronal activation patter was evident in observer mice performing the stress 

ERT paradigm. Of 83-isolated units, 66 responded to social exploration (Fig. 2f). We classified 

52 of these units into NS putative interneurons and 31 WS putative pyramidal cells (Fig. 2f). 

The majority (77%) discharged just before and during the exploration, some of them only after 

the beginning of the interaction (20%), and only few units (3%) activated before the mouse 

started to explore one of the two demonstrators (Fig. 2f). An higher number of responsive units 

showed a sustained activity (85%) rather than a transient response. As for the relief condition, 

exploration of the stressed demonstrator led to higher firing of cells compared to the firing rates 

of the same units during exploration of the neutral demonstrator (Fig. 2g,h). Overall, these data 

indicate that exploration of a demonstrator in either a positively- or negatively-altered affective 

states leads to increased activation of mPFC neurons in mice. Consistent with human fMRI30 

and brain lesions study6, these results show that the mouse mPFC is engaged during emotion 

recognition, with the majority of cells responding to the expression of emotionally-altered 

states. 
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Figure 2. Enhanced neuronal activity during exploration of an emotionally altered conspecifics. (a) Left, 

mice were implanted with electrodes for chronic electrophysiological multi-unit and single-units recordings and 
tested in the ERT. Middle, electrodes placement in the mPFC (Cg, Cingulate; PL, Prelimbic area; IL, Infralimbic 
area). Right, chronic recording electrodes did not modify emotion discrimination. Mice showed increased exploration 
to the relieved demonstrator compared to the neutral during the first 2 minutes of testing (Unpaired t-test: t=2.33, 
df=10, p<0.05; n=6 mice). (b) Left, recorded cells were classified based on three properties: depolarization half-
width, hyperpolarization half-width, and mean firing frequency. A hierarchical clustering method was used to 
separate cells into two populations: wide spike-width (putative pyramidal cell, green) or narrow spike-widths 
(putative interneurons; orange). (c) Top, Rasters and polylines aligned on the beginning (green dotted line) and the 
end (red dotted line) of each exploration of the relieved or neutral demonstrator in the same session, which were 
separated by a variable time interval of the duration of at least of 1 second. Rasters and histograms of single-neuron 
response when the observer explores different demonstrators are shown in different colors. Bottom, Examples of 
two responsive cells recorded in response to the exploration of relieved (yellow) and neutral (grey) demonstrators. 
(d) Population activity of all recorded neurons during the relief ERT (n=57) before, during and after social exploration 
of the two demonstrators throughout the 6-min experiment. Lines indicate the average discharge intensity of 
neurons when observers explored the relieved (yellow) and the neutral (gray) demonstrators aligned as the single 
neurons example in c. Colored shaded regions around each line represent 1 SEM. Gray shaded areas represent 
the windows used for statistical analysis of the populations response that highlight a stronger neuronal activation of 
both the populations during exploration of the relieved compared to neutral demonstrator that disappears when the 
exploration ends.(e) Mice showed increased exploration to the stressed demonstrator compared to the neutral 
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during the first 2 minutes of testing (n=7 mice, Unpaired t-test: t=4.12, df=12, p<0.005). (f) Left, recorded cells were 
classified as wide-spiking (putative pyramidal cell, green) or narrow-spiking (putative interneurons; orange). (g) 
Rasters and histograms of single-neuron response when the observer explored the stressed (purple) or the neutral 
(gray) demonstrators. Bottom, Examples of two responsive cells recorded in response to the exploration of stressed 
and neutral demonstrators. (d) Population activity of all recorded neurons in the stress ERT (n=83) before, during 
and after social exploration throughout the experiment. Purple and gray lines indicate the average discharge 
intensity of neurons when observers explored the stressed and the neutral demonstrators aligned as the single 
neurons example in g. 

 

Enhancement of mPFC neuronal activity is specifically linked with emotion 

discrimination 

To control for the specificity of the observed increase in neuronal activity during exploration of 

conspecifics in different affective states, we repeated the same experiments, but using two 

neutral demonstrators (Supplementary Fig. 4a). Observer mice similarly explored both 

demonstrators showing no discrimination of the two (Supplementary Fig. 4a). Moreover, no 

differences in neuronal activity were evident during exploration of the two neutral 

demonstrators (Supplementary Fig. 4c). This suggest that the observed increase of mPFC 

neuronal activation was specific to exploration of affective states of demonstrator mice. 

We next investigated what sensory modality might trigger emotion discrimination and its 

related mPFC neuronal activation. No significant ultrasonic vocalization (USV) calls were 

recorded in the ERT (Supplementary Fig. 4d), and no differences in the emission of USVs were 

evident when “neutral”, “relief” and “stress” demonstrators were tested separately 

(Supplementary Fig. 4d). This indicate a marginal involvement of auditory cues (i.e. USVs) in 

mouse emotion recognition, consistent with previous literature showing that adult mice do not 

engage USV with conspecifics of same sex148. Similarly, we observed that visual cues were 

not essential, as observer mice tested in complete darkness showed the same increase of 

exploration towards both relieved (Supplementary Fig. 4e) and stressed demonstrators 

(Supplementary Fig. 4f). Thus, we checked if presentation of just odor cues could be sufficient 

to trigger the same activation pattern we revealed with the demonstrator mice (Fig. 2). Here, 

we recorded neuronal activity in mPFC when the observers were presented to the odors of an 

emotionally-altered and a neutral demonstrator (Supplementary Fig. 4g,j). To do this, odors 

were separately collected from neutral, relief and stress demonstrators by gently brushing a 

cotton ball all over the body of the mice (especially including the nose, body and anogenital 

parts). Then odors were placed under the inverted wired cup instead of the demonstrator. 

Notably, in contrast to the results obtained in the ERT (Fig. 1), observers showed a marked 

avoidance towards the odor of a “stress” demonstrator (Supplementary Fig. 4j), while 

observers preferred to explore the odor from a “relief” demonstrator (Supplementary Fig. 4g). 

In these conditions, no differences in neuronal activation related to the exploration of the two 
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odors were evident (Supplementary Fig. 4i,l). Overall, these results revealed that odors alone 

did not elicit a similar behavioral and electrophysiological pattern as compared to demonstrator 

mice, confirming that the increase of mPFC neuronal activity (Fig. 2) was specifically elicited 

by the different affective states of demonstrators. 

 

 
 
 
 
 
Supplementary Figure 4. Neutral demonstrators and odors did not recapitulate the activity pattern elicited 
by emotion discrimination. Related to Figure 2. (a) Mice have been implanted with recording electrodes in the 

mPFC and tested in the ERT with two naïve “neutral” demonstrators. Observers equally explored the two 
demonstrator and did not show observable discrimination. (b) We recorded 83 units and 55 were classified into 

narrow-spiking putative inhibitory interneurons and 27 into wide-spiking putative pyramidal neurons, based on spike 
waveform features, such as spike width and firing frequency149. (c) Population activity of recorded neurons (n=83) 

before, during and after social exploration throughout the experiment representing the average discharge intensity 
of neurons when observers explored neutral 1 (pink) and the neutral 2 (light green) demonstrators aligned on the 
beginning (green line) and the end (red line) of each exploration of the demonstrators in the same session, which 
were separated by a variable time interval of the duration at least of 1 second. Colored shaded regions around each 
line represent 1 SEM. Gray shaded areas represent the windows used for statistical analysis of the populations 
response that highlight a stronger neuronal activation of both the populations during exploration of the relieved 
compared to neutral demonstrator that disappears when the exploration ends. (d) Top, we measured ultra-sonic 

vocalization (USV) during the ERT with a relieved and one neutral demonstrator (yellow), and with a stressed and 
one neutral (purple). The number and the duration of calls was negligible in both conditions. Bottom, we measured 
USV of a relieved a stressed and a neutral demonstrator, separately and without observer. Also in this case the 
number and the duration of calls was negligible. (e and f) We tested observers in the ERT in the darkness. A visible 

light has been replaced with an infrared light to allow camera recording. All the other settings remained the same 
as described in Figure 1. Observers showed increased sniffing towards both the relieved (e) (Multiple t-test, 
Bonferroni correction, 2 min: t=7.15, df=10, p<0.0005; 6 min: t=3.59, df=10, p<0.05; n=7 mice) and (f) the stressed 

demonstrator (Multiple t-test, Bonferroni correction, 2 min: t=6.13, df=10, p<0.0005; 4 min: t=3.08, df=10, p<0.05). 
(g) Mice showed a preference for exploration of the odor of the relieved demonstrator (Multiple t-test, Bonferroni 
correction, 2 min: t=3.57, df=42, p<0.005). (h) We recorded 28 units, 18 were classified into narrow-spiking and 19 
into wide-spiking. (c) Population activity of recorded neurons showed no difference between exploration of the odor 
of the relieved compared to the neutral demonstrator. (j) Mice showed a marked avoidance for the odor of the 

stressed demonstrator (Multiple t-test, Bonferroni correction, 2 min: t=12.35, df=14, p<0.0005; 4 min: t=20.89, 
df=14, p<0.0005). (k) We recorded 40 units, 21 were classified into narrow-spiking and 19 into wide-spiking. (l) 

Population activity of recorded neurons showed no difference between exploration of the odor of the relieved 
compared to the neutral demonstrator. 
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Photo-inhibition of mPFC PV+ interneurons do not affect emotion discrimination 

Our electrophysiological findings during emotion discrimination revealed a major engagement 

of putative interneurons in the mPFC. The most abundant subpopulation of interneurons in the 

mPFC is represented by the parvalbumin-positive (PV+) cells130. Thus, we first investigated 

whether PV+ cells were necessary for emotion discrimination during the ERT. To specifically 

inhibit PV+ cells, we bilaterally injected a double-floxed inverted open-reading-frame (DIO) 

adeno-associated viruses (AAV) encoding eNpHR3.0 coupled to an eYFP tag into the mPFC 

of PV::cre transgenic mice, and implanted chronic optic fibers terminating dorsal to this area 

(Fig. 3a). We did not distinguish between different subtypes of PV+ interneurons, such as 

basket or chandelier cells. We targeted PV+ interneurons across all layers from L2 to L5 (Fig. 

3a). We optically silenced mPFC PV+ cells activity with continuous green light during the first 

2 minutes of the ERT (Fig. 3b,f), to target the time window in which we observed an increased 

exploration to the emotionally-altered demonstrator (Fig. 1). Mice were tested on consecutive 

weeks, with protocol (relief and stress) and treatment (light off and light on) counterbalanced. 

Photo-inhibition of PV+ cells reduced observers general investigation of demonstrators (Fig. 

3c,g), an index of sociability. However, PV+ photo-inhibition did not modify observers’ emotion 

discrimination in both the relief (Fig. 3d,e) and the stress (Fig. 3h,i) paradigms. PV-cre 

transgenic mice also first visited the zones related to the relief (Supplementary Fig. 5a) and 

stress demonstrators (Supplementary Fig. 5c), and the inhibition of PV+ cells did not modify 

this behavior (Supplementary Fig. 5a,c), as well as the total number of visits to each 

demonstrator (Supplementary Fig. 5b,d). These results suggest that PV+ cells in the mPFC 

might be involved in sociability, but not in emotion discrimination. 
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Figure 3. Photo-inhibition of PV+ interneurons did not affect emotion discrimination. (a) Top, PV::cre mice 

were bilaterally injected in the mPFC with AAV-EF1a-DIO-eNpHR-eYFP and implanted bilaterally with optic fibers 
terminating dorsal to the injection area. Bottom, representative image of coronal mPFC section. (b) Mice were 

tested in the ERT with one relieved and one neutral demonstrator. Photo-inhibition was performed for 2 minutes, 

from the beginning of the test, using continuous green light (=532 nm). (c) Reduced social investigation during 
optical inhibition of PV+ cells (Unpaired t-test: t=2.12, df=12, p<0.05; n=6 mice). (d) Increased sniffing (expressed 

in %) to the relieved demonstrator compared to the neutral during the first 2 minutes of testing without light delivery 
(“Light off”; Multiple t-test, Bonferroni correction, 2 min: t=5.93, df=12, p<0.0005; n=7 mice) and during light 
stimulation (“Light on”; t=6.96, df=12, p<0.0005). (e) Increased time spent in the zone related to the relieved 

demonstrator compared to the neutral in Light off condition (Multiple t-test, Bonferroni correction, 2 min: t=2.45, 
df=12, p<0.05). With Light on mice spent more time, although not significantly (Multiple t-test, Bonferroni correction, 

2 min: t=1.56, df=12, p=0.1), into the zone of the relieved mouse (63.1210.55 relief, 40.78.03 neutral). (f) Mice 

were tested in the ERT with one stressed and one neutral demonstrators and photo-inhibition was performed for 
the first 2 minutes. (g) Tendency for Reduced social investigation during optical inhibition of PV+ cells (Light off: 

36.65.30, Light on:21.447.85, Unpaired t-test: t=1.6, df=12, p=0.1; n=7 mice). (h) Increased exploration to the 

stressed demonstrator compared to the neutral in both “Light off” (Multiple t-test, Bonferroni correction, 2 min: 
t=11.46, df=12, p<0.0005, n=7) and “Light on” conditions (Multiple t-test, Bonferroni correction, 2 min: t=6.25, df=12, 
p<0.0005, n=7). (i) Higher time spent into the zone related to the relieved demonstrator compared to the neutral in 

both Light off (Multiple t-test, Bonferroni correction, 2 min: t=2.65, df=12, p<0.05, n=7) and Light on conditions 
(Multiple t-test, Bonferroni correction, 2 min: t=3.33, df=12, p<0.05, n=7). 
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Supplementary Figure 5. Photo-inhibition of PV+ interneurons do not affect emotion discrimination. Related 

to Figure 3. (a) Left, Red areas represent the minimum (darker color) and the maximum (lighter color) expression 
of AAV-EF1a-DIO-eNpHR-eYFP in PV::cre mice. Right, representative images of viral expression in the mPFC (in 
rostro-caudal order) after injection with AAV-EF1a-DIO-eNpHR-eYFP. (b) PV::cre mice were tested in the ERT with 
one relieved and one neutral demonstrator. Photo-inhibition was performed for 2 minutes, from the beginning of the 
test, using continuous green light. (c) PV-cre mice made the first visit to the relieved demonstrator both in light off 
and light on conditions (Multiple t-test, Bonferroni correction, off: t=1.68, df=12, p=0.1, on: t=2.11, df=12, p<0.05; 
n=7). (d) Optical inhibition of PV+ did not modify the number of visits to each demonstrator. (e) PV::cre mice were 
tested in the ERT with one stressed and one neutral demonstrator. Photo-inhibition was performed for 2 minutes, 
from the beginning of the test, using continuous green light. (f) PV-cre mice made the first visit to the stressed 
demonstrator both in light off and light on conditions (Multiple t-test, Bonferroni correction, off: t=2.21, df=12, p<0.05, 
on: t=2.64, df=12, p<0.05; n=7). (g) Optical inhibition of PV+ did not modify the number of visits to each 
demonstrator. 

 

 

Photo-inhibition of mPFC SOM+ interneurons abolish emotion discrimination 

Somatostatin-expressing cells constitute another major subtype of local GABAergic 

interneurons in the cerebral cortex130. To investigate the possible involvement of these 

interneurons, we bilaterally injected an AAV-EF1a-DIO-eNpHR-eYFP into the mPFC of 

SOM::cre transgenic mice and implanted a chronic optic fibers terminating dorsal to this area 

(Fig. 4a and Supplementary Fig. 6a). We targeted SOM+ interneurons across all layers from 

L2 to L5 (Fig. 4a and Supplementary Fig. 6a). Optical inhibition of SOM+ cells, with continuous 

green light during the first 2 minutes of the ERT, abolished emotion discrimination (Fig. 4d,h), 

without affecting social exploration (Fig. 4c,g). This effect was temporary and reversible, as 
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after cessation of photo-inhibition, we observed again an increased exploration of the relieved 

(Fig. 4e) and the stressed demonstrator (Fig. 4i). When tested on “light off” condition, these 

same mice showed the expected discrimination between the neutral and the stressed or 

relieved demonstrators (Fig. 4d,h). Moreover, testing these animals with the same illumination 

protocol, but presented with a neutral demonstrator and an object, or with a familiar and a 

novel demonstrators, as commonly used in the classic three-chambers test150, did not influence 

sociability and social novelty discriminations (Fig. 4j,k). Further, photo-inhibition of SOM+ did 

not modify odor discrimination (Supplementary Fig. 6b,c). Overall, these results indicate that 

SOM+ are selectively implicated in the ability to discriminate conspecifics based on their 

affective state. 

We next set out to control the photo-inhibition of SOM+ using a closed-loop system, such that 

the presence of the observer in the “zone" related to the relieved or the stressed demonstrators 

triggered the optical inhibition of mPFC SOM+ cells (Fig. 4l,p and Supplementary Fig. 6d,i). 

Similarly to what we observed in naïve mice (Fig. 1d), observers first visited the relieved and 

the stressed demonstrators (Fig. 4m,q). In line with above experiments, photo-inhibition of 

SOM+ paired to the exploration of emotionally-altered demonstrators abolished emotion 

discrimination during the first 2 minutes of testing (Fig. 4n,r and Supplementary Fig. 6e,j). 

However, time-locked photo-inhibition further modified the exploration over time, as observers 

started to explore and spend more time with the neutral compared to the emotionally-altered 

demonstrator (Fig. 4o,s and Supplementary Fig. 6e,j), while the number of visits to each 

demonstrators were not affected (Supplementary Fig. 6f,k). To rule out the possibility that 

SOM+ inhibition was aversive per se, we tested these same mice with two neutral 

demonstrators pairing light delivery with the exploration of only one demonstrator. This 

manipulation did not induce any discrimination (Supplementary Fig. 6n). Furthermore, photo-

inhibition of SOM+ did not induce any gross motor deficits (Supplementary Fig. 6g-m) and light 

delivery in non-infected mice did not induce any place avoidance or motor abnormalities 

(Supplementary Fig. 7). Overall, these experiments indicate that SOM+ interneurons in the 

mPFC are necessary for emotion discrimination in mice. 
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Figure 4. Photo-inhibition of mPFC SOM+ interneurons abolished emotion discrimination. (a) Top, SOM::cre 

mice were injected in the mPFC  with AAV-EF1a-DIO-eNpHR-eYFP and implanted bilaterally with optic fibers 
terminating dorsal to the injection area. Bottom, representative image of coronal mPFC section. (b) Mice were tested 
in the ERT with one relieved and one neutral demonstrator. Photo-inhibition was performed for 2 minutes, from the 
beginning of the test, using continuous green light. (c) Total exploration towards the demonstrators was not affected 
by SOM+ photo-inhibition. (d) Increased exploration to the relieved demonstrator compared to the neutral during 
the first 2 minutes of testing (Multiple t-test, Bonferroni correction, 2 min: t=6.63, df=12, p<0.0005; n=7 mice), which 
was abolished in the light on condition (t=1.26, df=12, p=0.22). (e) Immediately after photo-inhibition of SOM+ mice 
explored more the relieved demonstrator (Multiple t-test, Bonferroni correction, 2 min: t=2.34, df=12, p<0.05; n=7 
mice). (f) Mice were tested in the ERT with one stress and one neutral demonstrators and photo-inhibition was 
performed for the first 2 minutes. (g) Total exploration towards the demonstrators was not affected by SOM+ photo-
inhibition. (h) Increased sniffing to the stressed demonstrator compared to the neutral during the first 2 minutes of 
testing (Multiple t-test, Bonferroni correction, 2 min: t=3.97, df=12, p<0.005; n=7 mice), but this effect was abolished 
by photo-inhibition of SOM+ (t=1.76, df=12, p=0.10). (i) Following cessation of photo-inhibition, as in the light off 
condition mice significantly explored more the stress demonstrators, in the last 2 minutes of testing (Multiple t-test, 
Bonferroni correction, 2 min: t=2.78, df=12, p<0.05; n=7 mice). (j and k) SOM+ photo-inhibition did not modify either 
sociability (preference to spend more time with a novel mouse than with novel object) or social novelty (preference 
to spend more time with a novel than with a familiar mouse). (l) Exploration of the relieved demonstrator was paired 
to SOM+ photo-inhibition throughout the test. (m) Mice firstly explored the relief demonstrators (Unpaired t-test: 
t=2.16, df=8, p<0.05; n=5 mice). (n and o) Photo-inhibition of SOM+ paired to exploration of the relieved 
demonstrator abolished emotion discrimination, as sniffing of relieved and neutral mice (n) and time spent in the 
zones (o) were not significantly different. (p) Exploration of stressed demonstrator was paired to SOM+ photo-
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inhibition throughout the test. (q) Mice firstly explored the stressed demonstrators (Unpaired t-test: t=2.32, df=8, 
p<0.05; n=5 mice). (r and s) Photo-inhibition of SOM+ paired to exploration of the stressed demonstrator abolished 
emotion discrimination (Multiple t-test, Bonferroni correction, 2 min: t=0.34, df=10, p=0.74; n=6 mice), as sniffing of 
the demonstrators (r) and time spent in the zones (s) were not significantly different. However, photo-inhibition 
further modified exploration of observer over time, which was increased toward the neutral (Multiple t-test, 
Bonferroni correction, sniffing: t=3.10, df=10, p<0.05, n=6 mice; cumulative time spent: two-way ANOVA RM, time 
x group (neutral, stress): F(359,1436)=5.76, p<0.0005, n=5). 

 

 

 

Supplementary Figure 6. Photoinhibition of SOM+ interneurons abolish emotion discrimination. Related to 

Figure 4. (a) Top, representative images of viral expression in the mPFC (in rostro-caudal order) after injection with 

AAV-EF1a-DIO-eNpHR-eYFP. Bottom, reconstruction of viral expression and location of optical fibers. Red areas 

represent the expression (higher expression = darker color) of AAV-EF1a-DIO-eNpHR-eYFP in SOM::cre mice. (b) 
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Increased exploration toward the odor of the relieved demonstrators compared to the neutral (Multiple t-test, 

Bonferroni correction, off: t=3.00, df=29, p<0.05), and no effects of SOM+ photo-inhibition. (c) Avoidance of the 

odor of the stressed demonstrators (Multiple t-test, Bonferroni correction, off: t=9.89, df=20, p<0.0005), which SOM+ 

photo-inhibition did not change. (d and e) SOM+ photoinhibition with continuous green light for two minutes did not 

induce any gross motor change in both relief and stress ERT.  (f) Exploration of the relieved demonstrator was 

paired to SOM+ photo-inhibition throughout the test (n=5 mice). (g) No preference to spend more time with the 

relieved demonstrator during photo-inhibition of SOM+, on the first two minutes of ERT, and increased time spent 

with the neutral demonstrator in the last two minutes (Multiple t-test, Bonferroni correction, 6 min: t=3.56, df=8, 

p<0.05; n=5 mice).  (h) No change of number of visits to each demonstrator during photoinhibition of SOM+.  (i) 

SOM+ photoinhibition paired to exploration of the relieved demonstrators did not induce any gross motor changes. 

(j) Exploration of the relieved demonstrator was paired to SOM+ photo-inhibition throughout the test (n=9 mice). (k) 

No difference in time spent with the two demonstrators during photoinhibition of SOM+. (l) No difference of number 

of visits to stressed and neutral demonstator during inhibition of SOM+. (m) SOM+ photoinhibition paired to 

exploration of the stressed demonstrators did not induce any gross motor changes. (n) Exploration of one naïve 

“neutral” demonstrator (“neutral 1”) was paired to SOM+ photoinhibition throughout the ERT (counterbalanced, left 

or right, across observers, continuous green light).  and did not induce social discrimination or avoidance.  No 

discrimination of the two neutral demonstrators without light stimulation (“No light”). 

 

 

Supplementary Figure 7. Green light do not induce place avoidance. Related to Figure 4. (a) Naïve C57BL/6J 

mice were implanted bilaterally with fiberoptic implants and tested in the ERT setting with two objects, for 6 minutes. 
Exploration of one object was paired to continuous green light delivery. (b) Illumination of mPFC with green light 
did not induce place avoidance as mice spent similar time with both objects. (c) Illumination of mPFC with green 
light did not modify latency to make the first visit (d) number of visits to each zone and (d and e) did not induce 
gross motor deficits. 

 

Photo-stimulation of SOM+ interneurons in the mPFC guides social discrimination 

We next asked whether, conversely, stimulation of these SOM+ interneurons could be 

sufficient to induce a discrimination between conspecifics not expressing any altered emotion. 

To test this, we injected a cre-dependent channel-rhodopsin-2 vector (AAV-EF1a-DIO-ChR2-

eYFP) into the mPFC of SOM::cre transgenic mice and implanted chronic optic fibers 

terminating dorsal to the injection site (Fig. 5a). We tested these observer mice in the ERT 

while presenting two neutral naïve demonstrators. Exploration of one of the two neutral 
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demonstrators was paired to photo-stimulation of mPFC SOM+ cells in the observer. This 

protocol induced an increase of exploration towards the demonstrator paired with light delivery, 

measured as increased sniffing (Fig. 5c) and time spent in the related zone (Fig. 5d), without 

affecting the number of visits in each zone (Fig. 5e). Photo-stimulation of SOM+ also reduced 

the distance between the observer head and the explored demonstrator, indicating that SOM+ 

activation induced a closer approach (Fig. 5f). As expected, when tested with two neutral 

demonstrators without photo-stimulation, these same observers did not show any 

discrimination (Fig. 5g,h). Moreover, to check whether the formation of a discrimination was 

specifically related to social cues, we repeated the same experiment, but now using two 

identical objects instead of the demonstrator mice. The activation of mPFC SOM+ cells did not 

produce any object discrimination (Fig. 5i). These findings indicate that the stimulation of 

SOM+ interneurons in the mPFC is sufficient to induce a social discrimination. Altogether, our 

results demonstrate that within the mPFC the SOM+ sub-population of interneurons are a key 

modulator of emotion discrimination. 

 

 

Figure 5. SOM+ interneurons in the mPFC are sufficient to induce social discrimination. (a) Left, SOM-cre 

transgenic mice were injected in the mPFC with AAV-EF1a-DIO-ChR2-eYFP, and implanted bilaterally with chronic 
optic fibers terminating dorsal to the injection area. Right, representative image of coronal mPFC section. (b) Mice 
were tested in the ERT with two, naïve non-manipulated, neutral demonstrators. Photo-stimulation was paired to 
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exploration of one of the two demonstrators (counterbalanced, left of right, across observers) using 5s-pulses of 
continuous blue light. (c) Increased sniffing (unpaired t-test: t=3.03, df=14, p<0.05; n=7 mice) and (d) time spent in 
the zone (two-way ANOVA, time x treatment: F(359,2513)=301.5, p<0.0005) of the demonstrator paired to the 
photo-stimulation compared to the unpaired demonstrator. (e) No difference in the number of visits in the zone 
paired with the light compared to the unpaired. (f) Left, head distance of the observers was shorter to demonstrators 
paired with light (two-way ANOVA, time x distance: F(359,3600)=1.43, p<0.0005). Right, schematic of second-by-
second (over 360s) head distance from demonstrators (gray, neutral-unpaired; blue, neutral-light paired). (g) Mice 
tested with two neutral demonstrators without any light stimulation showed no difference of sniffing and (h) time 
spent in each zone. (i) Photo-stimulation coupled to exploration of an object did not induce object discrimination.   
 

Discussion 

In this study, we revealed a specific association between emotion discrimination and mPFC 

neuronal activity using a behavioral paradigm that allows a quantitative assessment of the 

ability of mice to discriminate either positive- or negative-emotional valence in conspecifics. 

Next, using bidirectional optogenetic manipulations, we demonstrated that SOM+ interneurons 

but not PV+ interneurons in the mPFC are crucial for emotion recognition. Increased 

exploratory behavior towards a mouse, manipulated to express an altered affective state, was 

not observable in a classical one-on-one social interaction test. Moreover, the optogenetic 

manipulations of the mPFC revealed double dissociation of the roles of interneurons in social 

functions. Manipulation of SOM+ neurons altered the discrimination of an emotionally altered 

mouse but did not alter social preference more generally, while optogenetic inhibition of mPFC 

PV+ neurons altered general sociability without affecting discrimination of emotions. Overall, 

these findings demonstrate that our paradigm selectively measures discrimination of emotions 

in a distinct way from general sociability and social novelty. 

Rodents actively avoid intense aversive stimuli151,152, including aversive USV calls induced by 

heavy distress153,154 and odors emitted by a shocked, heavily stressed, defeated, or sick 

conspecific155–157. However, in our setting, USVs were not involved, and the discriminations 

were qualitatively different in the presence of the demonstrators or only of their odor cues. 

Neuronal recording during odor discrimination did not recapitulate the same activation pattern 

evoked by the presence of the relieved and stressed demonstrators. Moreover, familiarity 

enhanced the exploration towards the emotionally altered demonstrators, which is similarly 

found in humans during ERTs158. These results suggest that avoidance of aversive stimuli or 

seeking extrinsic rewards were not the sole reason for the discrimination of emotions that we 

observed. Thus, the discriminatory behavior we measured in this study does not reflect a 

simple reaction to “alarm” or “attractive” sensory cues but rather stems from specific 

recognition of expression of emotional states in others. 

Discrimination between neutral and emotionally altered demonstrators was fast, short-lasting 

and did not correlate with observable behaviors of the demonstrators. Indeed, the 
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demonstrators were not under any physical distress during the discrimination but rather carried 

over an altered emotional state from manipulations performed before the test. No signs of 

transfer of behavioral responses between observer and demonstrator, no escape behaviors or 

altered corticosterone levels in the observer mice were present throughout the test session. 

Moreover, emotion discrimination was equally evident in the absence of visual cues. All these 

features differentiate our paradigm from previous settings designed to study emotional 

contagion and vicarious learning151,159–162. In particular, social observational learning such as 

the transfer of fear or pain requires the direct visual observation of a demonstrator during 

physical challenge for a longer period160,163. Furthermore, in contrast to previous paradigms 

specifically designed to address helping behaviors, such as liberating a trapped conspecific164, 

or consolatory behavior, such as allogrooming a distressed conspecific159, our task allows the 

observer to engage in sniffing exploration only. Altogether, these findings indicate that our task 

can measure social cognitive abilities distinct from those addressed by previous paradigms, 

tackling features closer to those measured by human ERTs165,166 and complementing current 

available tools to address the mechanisms underlying higher-order social processes. 

Our findings show that the activity of mPFC neurons increases during the exploration of 

conspecifics manipulated to induce an altered emotional state. The increased mPFC firing 

when approaching a mouse is consistent with previous evidence showing increased social-

dependent firing that did not occur towards an inanimate object or an empty chamber167. 

However, in contrast with the habituation pattern evident in a normal social approach167, the 

increased firing towards an emotionally altered mouse remained sustained for the entire test 

session. Moreover, in contrast to our emotion discrimination data, increasing mPFC excitation 

but not inhibition can reduce sociability and social interaction in a classical 3-chamber test168. 

These findings further support the distinct social function assessed by the ERT and suggest 

that the timing and nature of mPFC firing might differentially code for separate social cognitive 

functions. SOM+ interneurons in the mPFC play an essential role in the process of 

discriminating a mouse manipulated to induce an altered emotional state. Indeed (1) 

temporally specific inhibition of these cells selectively abolished discrimination of emotions but 

not sociability or social odor discrimination, (2) activation of SOM+ neurons was sufficient to 

induce social discrimination, and (3) these effects were not evident towards inanimate objects. 

SOM+ interneurons can disinhibit pyramidal cells by inhibiting PV-expressing interneurons169. 

Thus, SOM+-dependent effects on emotion recognition could ultimately rely upon their 

inhibition of PV+ cell activity. However, SOM+ are low threshold spiking interneurons and have 

electrophysiological properties170 that could allow them to be activated more readily than PV+ 

in the mPFC by excitatory inputs. In support of the latter scenario, we did not find any effect 
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on emotion recognition following the inhibition of PV+ cells. In agreement with this finding, 

activation but not inhibition of PV+ cells could rescue social deficits in an animal model of 

autism171. Together, these findings show a previously unreported role for SOM+ cells in specific 

aspects of social cognition. 

We revealed a previously unexpected differential role of SOM+ and PV+ interneurons with 

respect to social investigation and discrimination of emotions. These interneurons differ in their 

physiological properties as well as in their connectivity with principal neurons172. Indeed, PV+ 

neurons mainly provide perisomatic inhibition to pyramidal neurons173, while SOM+ cells 

preferentially target distal dendritic branches173,174. Thus, we could assume that PV+ provide 

strong network inhibition, while SOM+ could contribute to the correct integration of information 

flow from other brain structures as also recently suggested for working memory functions 

through interactions with the ventral hippocampus175. Another potential source of socially 

related information is the basolateral region of the amygdala (BLA), which is reciprocally 

connected with the mPFC. Excitatory synaptic inputs from the BLA onto principal and PV+ 

neurons in the mPFC display marked short-term depression of principal neurons while 

providing strongly facilitating inputs to SOM+ cells in the mPFC170. The amygdala is one of the 

brain regions most consistently associated in the processing of both negative and positive 

emotional discrimination176,177. Furthermore, interestingly, within the PFC, SOM+ neurons are 

highly enriched in oxytocin receptors178, and the oxytocin system has been strongly implicated 

in social functions179,180 and particularly in emotion recognition181–183. Thus, information on the 

emotional valence from subcortical structures could be integrated by SOM+ neurons within the 

mPFC local network for implementation in cognitive processes required for discrimination of 

emotions. 

Using a reversed translation of a human task to a mouse model, we uncovered a selective and 

pivotal role for mPFC SOM+ interneurons in the ability to discriminate the expression of 

emotions in others. This mechanism and the behavioral assessment employed create new 

opportunities for the study of potential treatment for the still incurable social cognitive 

dysfunctions evident in a number of psychiatric disorders such as autism and schizophrenia. 

Indeed, our findings hold both fundamental and clinical relevance, supporting the implication 

of a cortical excitatory and inhibitory imbalance in core behavioral dysfunctions in these 

disorders and providing a convergent and selective target to manipulate emotion recognition 

abilities.  
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Material and Methods 

Mice. All procedures were approved by the Italian Ministry of Health (permits n. 230/2009-B, 

107/2015-PR and 749/2017-PR) and local Animal Use Committee and were conducted in 

accordance with the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health and the European Community Council Directives. Routine veterinary care 

and animals' maintenance was provided by dedicated and trained personnel. Three to 6-

month-old males and females C57BL/6J animals were used. Founders of the PvalbCre, 

B6.129P2-Pvalbtm1(cre)Arbr/J, id #017320, RRID:IMSR_JAX:017320 (called PV-cre line) and 

SomCre, Somtm2.1(cre)Zjh/J transgenic mice, id #013044, RRID:IMSR_JAX:013044 (called 

SOM-cre line) were purchased from the Jackson Laboratory (Bar Harbor, USA) and then breed 

and expanded in our animal facility for successive testing. Mouse genotypes were identified 

by PCR analysis of tail DNA. Distinct cohorts of naïve mice were used for each experiment. 

Animals were housed two to four per cage in a climate-controlled facility (22±2 C), with ad 

libitum access to food and water throughout, and with a 12-hour light/dark cycle (7pm/7am 

schedule). Experiments were run during the light phase (within 10am-5pm). All mice were 

handled on alternate days during the week preceding the first behavioral testing. Behavioral 

scoring was performed a posteriori from videos by two-three independent trained 

experimenters (inter-rater reliability r score > 0.90), blind to the manipulations and genotypes. 

Female mice were visually checked for estrus cycle immediately after the test and no 

correlation was found between estrus status and performance in the test. The results reported 

in this work were performed and independently replicated in more than XY different batches of 

mice coming from at least 4 different generations. 

Emotion Recognition Task (ERT) 

Testing mice (“observers”) were habituated inside a standard mouse cage (Tecniplast, 

35.5x23.5x19 cm) equipped with a dark separator in the middle of the two cylindrical wire cups 

(10.5cm in height, bottom diameter 10.2cm, bars spaced 1 cm apart; Galaxy Cup, Spectrum 

Diversified Designs, Inc., Streetsboro, OH), around which they could freely move, as during 

the test. The separator (11x14cm) between the two wire cups was wide enough to cover the 

reciprocal view of the demonstrators while leaving the observer mice free to move between 

the two sides of the cage. A cup was placed on the top of the wire cups to prevent the observer 

mice from climbing and remaining on the top of them. The cups, separators and experimental 

cages were replaced after each subject with clean copies to avoid scent carryover. Similarly, 

the rest of the apparatus was wiped with water and dried with paper towels for each new 

subject. After each testing day, the wire cups, separators, and cubicles were wiped down with 
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70% ethanol and allowed to air-dry. Testing cages were autoclaved as standardly performed 

in our animal facility. Habituation to the testing setting occurred on three consecutive days 

before the first experiment; each habituation session lasted 10 minutes. Demonstrator mice – 

matched by age, sex and strain to the observers – were habituated, without observer, inside 

the same cage under the wire cups. During both habituation and behavioral testing, the cages 

were placed inside a dimly lit (6±1 lux) soundproof cubicle (Med Associates). 

Observers. Before the test, mice were habituated to the experimental setting as reported 

above. Ten minutes before the experiment, observer mice were gently moved in the dimly lit 

testing cubicles. For the optogenetics and in vivo electrophysiology experiments, observer 

mice were connected to optic fiber or headstage cable for 10 minutes before testing. Then, 

one emotionally “neutral” and one “relief” or “stress” demonstrator mice were place under the 

wire cups, and the 6-minutes experiment started. 

“Neutral” demonstrators. All neutral mice were habituated to the experimental setting as 

described above. For both “relief” and “stress” conditions, neutral demonstrators did not 

receive any manipulation and were left undisturbed, with ad libitum water access, in their 

home-cage. On the day of testing, neutral demonstrators were brought, inside their home 

cages, in the experimental room one hour before the experiment began. All demonstrators 

were group-housed, separately from cages of stressed and relieved demonstrators. 

Demonstrators were test-naïve and used maximum two/three times, with always at least one 

week between each consecutive test. No differences were observed in the performance of the 

observer mice depending on the demonstrators’ previous experience. 

“Relief” demonstrators. Mice were habituated to the experimental setting as reported above. 

Relieved demonstrators were water-deprived 23 hours before the experiment. One hour before 

the test ad libitum access to water was given, and mice were brought inside experimental room 

in their home cages. Food was ad libitum all the time and some extra pellets were put inside 

the home cage during the 1-hour water restoration. 

“Stress” demonstrators. Mice were subjected to a mild stress consisting in Restraint tube 

test, a standard procedure to induce physiological stress in rodents59, for 15 minutes before 

the beginning of the ERT. Then were immediately moved to the testing arena. 

Digital cameras (Imaging Source DMK 22AUC03 monochrome) were placed facing the long 

side of the cage and on top of the cage to record the test from different angles using a 

behavioral tracking system (Anymaze 6.0; Stoelting, Ireland). These videos were used by 

experimenters blind to the manipulations of both the observers and demonstrators for a 



 
83 | P a g e  

 

posteriori scoring of behaviors: sniffing, grooming, rearing, freezing, time spent in the zones, 

visits in the zones, latency to make the first visit, average length of visits and locomotion 

parameters (distance travelled, average speed). 

One-on-one social exploration tests 

This test was similarly performed as previously described36. One hour prior to behavioral 

testing, each experimental subject was placed into a plastic cage (Tecniplast, 35.5x23.5x19 

cm) with shaved wood bedding and a wire lid, in a room adjacent to the testing room. Five 

minutes before the experiment, the testing cages containing the observer mice were gently 

moved in the testing soundproof cubicles. To begin the test a demonstrator mouse was 

introduced to the cage for 6 minutes (as for the ERT), and exploratory behaviors initiated by 

the test subject were timed by two independent experimenters blind to the manipulations. 

Demonstrators mice were used only once. Each observer was given tests on consecutive 

days: once with an unfamiliar naive conspecific (“neutral”), once with an unfamiliar relieved 

conspecific (“relief”, as described above) and once with an unfamiliar stressed conspecific 

(“stress”, as described above). Test order was counterbalanced. 

Sociability and social novelty tests 

We adapted to our setting a widely employed standard test for assaying sociability in mice32. 

The session started with the observer in the same testing cage used for the ERT for a 6-minute 

habituation period. After habituation, the observer was presented, for other 6 minutes, with a 

white or black plastic object (novel object) contained in one of the two wire cups, placed in one 

side of the chamber. Simultaneously, an adult conspecific mouse (novel mouse 1), which has 

had no previous contact with the observer, was placed in the wire cup in the other side 

chamber. To measure sociability, the tendency of the subject mouse to spend time with a 

conspecific, as compared with time spent with an object, a discrimination index was calculated 

(time spent with novel mouse 1 – time spent with novel object / total time spent with novel 

mouse1 and novel object). Following sociability test, the object was replaced with a novel 

mouse (novel mouse 2) and the observer was tested for other 6 minutes to assess the 

preference for social novelty. This is defined as more time in the chamber with novel mouse 2 

than time in the chamber with novel mouse 1. Most mice prefer to spend more time near the 

completely unfamiliar novel mouse 2. To assess social novelty we calculated a discrimination 

index for each mouse (time spent with novel mouse 2 – time spent with novel mouse 1 / total 

time spent with novel mouse1 and novel mouse 2). 
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Sensory modality assessment  

For testing ERT in the darkness, mice were tested as above, but eliminating all sources of light 

within the testing cage as well as in the testing room. Videos were recorded for successive 

scoring either with an infrared thermal camera (FLIR A315, FLIR Systems) or with Imaging 

Source DMK 22AUC03 monochrome camera (Ugo Basile). The two cameras setting gave the 

same experimental results. 

For auditory stimuli testing, ultrasonic vocalisations (USVs) were recorded during the test 

phases performed as above in two different experimental settings: 1) standard setting as 

reported above with one observer mouse and two demonstrators under the wire cups, and 2) 

with only one demonstrator present in the apparatus (and under the wire cup) for each 

condition (“relief”, or “stress” or “neutral)”. This was done to check whether the USVs recorded 

could be attributed to a single emotional state and/or to a communication between 

demonstrators and observer. The ultrasonic microphone (Avisoft UltraSoundGate condenser 

microphone capsule CM16, Avisoft Bioacoustics, Berlin, Germany), sensitive to frequencies 

between 10 and 180 kHz, was mounted 20 cm above the cage to record for subsequent scoring 

of USV parameters. Vocalisations were recorded using AVISOFT RECORDER software 

version 3.2. Settings included sampling rate at 250 kHz; format 16 bit. For analysis, recordings 

were transferred to Avisoft SASLab Pro (Version 4.40) and a fast Fourier transformation (FFT) 

was conducted. Spectrograms were generated with an FFT-length of 1024 points and a time 

window overlap of 75% (100% Frame, Hamming window). The spectrogram was produced at 

a frequency resolution of 488 Hz and a time resolution of 1 ms. A lower cut-off frequency of 15 

kHz was used to reduce background noise outside the relevant frequency band to 0 dB. Call 

detection was provided by an automatic threshold-based algorithm and a hold-time mechanism 

(hold time: 0.01 s). An experienced user checked the accuracy of call detection, and obtained 

a 100% concordance between automated and observational detection. Parameters analysed 

for each test day included number of calls and duration of calls. Quantitative analyses of sound 

frequencies measured in terms of frequency and amplitude at the maximum of the spectrum 

were not performed because of the paucity of emitted USVs in all conditions performed. 

For olfactory stimuli testing, observers were tested as described above, but presenting as 

“demonstrator” only cotton balls impregnated with the odor of demonstrators. Odors were 

separately and freshly collected from “neutral”, “relief” (after the 1-hour ad libitum access to 

water) and “stress” (immediately after the restraint tube stress) demonstrators by gently 

brushing the cotton ball all over the body of the mice (especially including the nose, body and 
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anogenital parts). Each odor was always taken from one single mouse (which was not reused) 

and used only once. 

For testing ERT in the darkness, mice were tested as above, but eliminating all sources of light 

within the testing cage as well as in the testing room. Videos were recorded for successive 

scoring either with an infrared thermal camera (FLIR A315, FLIR Systems) or with Imaging 

Source DMK 22AUC03 monochrome camera (Ugo Basile). The two cameras setting gave the 

same experimental results. 

For auditory stimuli testing, ultrasonic vocalisations (USVs) were recorded during the test 

phases performed as above in two different experimental settings: 1) standard setting as 

reported above with one observer mouse and two demonstrators under the wire cups, and 2) 

with only one demonstrator present in the apparatus (and under the wire cup) for each 

condition (“relief”, or “stress” or “neutral)”. This was done to check whether the USVs recorded 

could be attributed to a single emotional state and/or to a communication between 

demonstrators and observer. The ultrasonic microphone (Avisoft UltraSoundGate condenser 

microphone capsule CM16, Avisoft Bioacoustics, Berlin, Germany), sensitive to frequencies 

between 10 and 180 kHz, was mounted 20 cm above the cage to record for subsequent scoring 

of USV parameters. Vocalisations were recorded using AVISOFT RECORDER software 

version 3.2. Settings included sampling rate at 250 kHz; format 16 bit. For analysis, recordings 

were transferred to Avisoft SASLab Pro (Version 4.40) and a fast Fourier transformation (FFT) 

was conducted. Spectrograms were generated with an FFT-length of 1024 points and a time 

window overlap of 75% (100% Frame, Hamming window). The spectrogram was produced at 

a frequency resolution of 488 Hz and a time resolution of 1 ms. A lower cut-off frequency of 15 

kHz was used to reduce background noise outside the relevant frequency band to 0 dB. Call 

detection was provided by an automatic threshold-based algorithm and a hold-time mechanism 

(hold time: 0.01 s). An experienced user checked the accuracy of call detection, and obtained 

a 100% concordance between automated and observational detection. Parameters analysed 

for each test day included number of calls and duration of calls. Quantitative analyses of sound 

frequencies measured in terms of frequency and amplitude at the maximum of the spectrum 

were not performed because of the paucity of emitted USVs in all conditions performed. 

For olfactory stimuli testing, observers were tested as described above, but presenting as 

“demonstrator” only cotton balls impregnated with the odor of demonstrators. Odors were 

separately and freshly collected from “neutral”, “relief” (after the 1-hour ad libitum access to 

water) and “stress” (immediately after the restraint tube stress) demonstrators by gently 

brushing the cotton ball all over the body of the mice (especially including the nose, body and 
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anogenital parts). Each odor was always taken from one single mouse (which was not reused) 

and used only once. 

Conditioned place preference 

Mice were tested in a well-established conditioned place preference (CPP) paradigm able to 

assess either positive or negative affective states in mice60,61. The test was performed in a 

rectangular Plexiglas box (length, 42 cm; width, 21 cm; height, 21 cm) divided by a central 

partition into two chambers of equal size (21×21×21 cm) as previously described60. One 

compartment had black walls and a smooth Plexiglas floor, whereas the other one had vertical 

black and white striped (2 cm) walls and a slightly rough floor. During the test sessions, a door 

(4×4 cm) in the central partition allowed the mice to enter both sides of the apparatus, whereas 

during the conditioning sessions the individual compartments were closed off from each other. 

To measure time spent in each compartment a video tracking system (Anymaze 6.0; Stoelting, 

Ireland) was used. The place conditioning lasted 5 days and consisted of three phases: pre-

conditioning test, conditioning phase and post-conditioning test. On day 1, each mouse was 

allowed to freely explore the entire apparatus for 20 min, and time spent in each of the two 

compartments was measured (pre-conditioning test). Conditioning sessions took place on 

days 2 and 4. Mice were divided in two groups: “neutral” and “relief”. Mice of the same home-

cage were assigned to the same group. Mice were then divided in the two experimental groups 

with similar pre-conditioning time values in the two sides of place conditioning apparatus. As 

for the same manipulation in the ERT, the “relief” group was assigned to receive a 23-hour 

water deprivation period before the two conditioning sessions on the day 2 and 4, when they 

were confined with their cage mates in one of the two compartments for 1 hour with free access 

to water and food (conditioning). Food in the home cage was available all time. Other than the 

two 23-hr deprivation periods, water was available all time. The “neutral” group was exposed 

to the same procedure but without any water deprivation. Post-conditioning test was performed 

on day 5 in the same condition of the pre-conditioning test. For each mouse, a conditioning 

score was calculated as the post conditioning time minus the preconditioning time (in seconds) 

spent in the conditioned compartment of the apparatus. 

Corticosterone assay 

Corticosterone concentration was analyzed from mice plasma. Immediately after the 

behavioral test, each mouse was sacrificed by decapitation. The blood was quickly collected 

in EDTA(0,5M)-coated tubes and centrifuged at 2500 rpm for 10 min; the supernatant obtained 

was stored at -20°C until the assay. The corticosterone concentration was detected by a 
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commercially available Detect X® corticosterone enzyme-linked immunoassay (ELISA) kit 

(Arbor Assays, MI, USA; Cat N K014-H1) following the manufacturer's protocol. The level of 

corticosterone was expressed as fold changes compared to the control group average. 

Viral vectors 

AAV5-EF1a-DIO-eNpHR-eYFP.WPRE.hGH (Addgene 20949, qTiter 1.95e13 GC/ml), AAV5-

EF1a-DIO-hChR2(H134R)-eYFP.WPRE.hGH (Addgene 20298P, ddTiter 2.76e13 GC/ml) and 

AAV1-CamKIIa-eNpHR3.0-eYFP.WPRE.hGH (addgene 26971P, qtiter 5.12e12 GC/ml) were 

purchased from the University of Pennsylvania Viral Vector Core.  

Stereotaxic surgery, viral injections and tetrodes implants 

C57BL/6J, SOM-cre and PV-cre transgenic mice were naïve and 2 to 3-months old at the time 

of surgery. All mice were anesthetized with 2% isoflurane in O2 by inhalation and mounted into 

a stereotaxic frame (Kopf) linked to a digital reader. Mice were maintained on 1.5 - 2% 

isoflurane during the surgery. Brain coordinates of viral injection in the mPFC was chosen in 

accordance to the mouse brain atlas (Paxinos and Watson, 1998): AP: +1.9 mm; ML:  0.30 

mm; DV: -2.5 mm. Volume of AAV injection was 0.4 L per hemisphere. We infused virus 

through a glass micropipette connected to a 10-μL Hamilton syringe. After infusion, injector 

was kept in place for 5 min and then slowly withdrawn over 5 min. After virus injection mice 

were allowed 3 weeks to recover and for the viral transgenes to adequately express before 

undergoing optic fibre implantation and behavioral experiments.  

Mice underwent stereotaxic surgery for fiberoptic implantation and for recording 

tetrodes implants 

The skull was exposed and two holes were drilled to target the mPFC in accordance to the 

mouse brain atlas (Paxinos and Watson, 1998): AP: +1.9 mm; L:  0.30 mm; DV: -2.5 mm. 

For fiber optic implantation, bilateral fiberoptic cannula (200 μm, 0.37 NA; Doric Lenses) were 

lowered 2 mm from skull, to be 500 μm dorsal to the virus injection site, and  secured to the 

skull with MetaBond and dental cement. For in vivo electrophysiological recording, mice were 

implanted with silicon probes carrying four tetrodes in the right mPFC (Neuronexus A4x4-3mm-

100-125-177-Z16). Prior to the permanent attachment to the skull, the tetrodes were protected 

with Kwik-Kast silicone elastomer (World Precision Instruments) and secured using dental 

acrylic. After electrodes and fiberoptic implantation, mice were allowed to recover 7 to 10 days 

depending on the general health. 

 



 
88 | P a g e  

 

Optogenetic manipulations 

During behavioral testing, fiberoptic cannulae were connected to patch cords (Doric Lenses), 

which were in turn connected to blue or green light lasers (CNI laser) using a 1x2 intensity 

division fiberoptic rotary joint (Doric Lenses) located above the cubicle containing the testing 

arena. Laser power was adjusted such that the light exiting the fiber optic cable was 4.5 mW. 

For photo-inhibition experiments we used continuous green light (532 nm, CNI laser). For 

photo-stimulation experiments we used 5-s pulses of blue light (447 nm, CNI laser). To control 

optical inhibition or stimulation with a closed-loop system dependent on mice behavior during 

ERT, a behavioral tracking system (Anymaze 6.0, Stoelting, Ireland) detected online the 

location of the observer mouse in the testing arena and triggered the laser. 

In vivo recordings 

Neuronexus silicon probes carrying four tetrodes were implanted in the right mPFC (:+1,8 mm 

anterior, + 0,2  mm lateral from bregma, and -2,5 mm ventral from the brain surface) under 

general anesthesia. After 1 week of recovery from surgery, recordings were carried out mainly 

from the prelimbic cortex by means of a 16 channels Neuralynx Digital X system (NeuroLynx). 

Unit signals were filtered between 300 and 9000 Hz, digitized at 32 kHz, and stored on a 

personal computer using a Cheetah data acquisition system (Neuralynx). The anatomical 

location of the recording region was determined based on the location of a marking lesion. A 

digital camera (Imaging Source DMK 22AUC03 monochrome) was mounted on the side of the 

testing arena, to record mice behaviors using a behavioral tracking system (Anymaze 6.0, 

Stoelting, Ireland). All quantitative analyses of neuronal data were performed offline using 

dedicated software (Plexon). Both putative pyramidal cells and putative interneurons were 

included in the analysis.  

Analysis 

Behavior. Video images were analyzed offline with movie maker. A valid exploration trial was 

defined as a >1 sec exploration of one of the two demonstrators with an interval from the 

previous visit >2sec. 

Definition of epochs of interest 

All the neurons included in the present work were recorded for a variable numbers of trials 

depending on the number of times the observer decided to explore the relief rather than the 

neutral conspecific. Based on the timestamps related to the main behavioral events (start and 

end of the social exploration), we defined four different epochs of interest for statistical analysis 
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of neuronal responses:  (1) pre social interaction epoch, corresponding to 1 sec before the 

onset of the social interaction; (2) post social interaction epoch, including the 1 sec after the 

onset of the social interaction; (3) end social interaction epoch, ranging from 1 s before to the 

end of the social interaction; (4) post social interaction epoch, ranging from 1 s after the end 

of the social interaction. 

Single neurons analysis 

After identification of single units that remained stable over the entire duration of the 

experiment, neurons were defined as “task-related” if they significantly varied their discharge 

during at least one of the epochs of interest (see above), investigated by means of the following 

repeated-measures ANOVAs (with significance criterion of p < 0.05): 

1) Neural response to the beginning of a social interaction. Neurons’ activity during three 

sessions were analyzed separately by means of identical 2x2 Two-way  ANOVAs, with factor 

Epoch (2 levels: pre social interaction, post-social interaction) and Emotional state (2 levels: 

relief/stress, neutral) followed by Bonferroni post hoc tests (p < 0.05) in case of significant 

interaction effects as our goal was not only that of identifying possible activity changes induced 

by the social interaction, but also possible differences when the observer explores the 

relief/stress demonstrator rather than the neutral mouse. Neurons matched the above 

mentioned criteria were classified as responsive cells (activated only pre, or only post the social 

event, or during both the epochs).  

2) Neural response to the end of a social interaction. Possible modulation of single neuron 

activity in correspondence of the end of a social interaction during the three sessions were 

analyzed separately by means of identical 2x2 Two-way ANOVAs, with factor Epoch (2 levels: 

pre- end social interaction, post- end social interaction) and Emotional state (2 levels: 

relief/stress, neutral) followed by Bonferroni post hoc tests (p < 0.05). Subsequently, all of 

these neurons were involved in further statistical analysis.  

Population analyses 

Population analyses were performed on all of recorded neurons, classified on the basis of the 

results of the above described analyses, and taking into account single-neuron responses 

calculated as averaged activity (spk/s) in 20 ms bins across trials of the same condition. The 

same epochs used for single unit data were used for population analyses as well.  
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Histology 

At the end of the behavioral procedures we checked viral expression and position of the optic 

fibers. Mice were deeply anesthetized (urethane 20%) and transcardially perfused with 4% 

paraformaldehyde in PBS, pH 7.4. Brains were dissected, post fixed overnight and 

cryoprotected in 30% sucrose in PBS. 40-μm-thick coronal sections were cut using a Leica 

VT1000S microtome. For immunohistochemical studies free-floating sections of selected 

areas were washed in PBS three times for 10 minutes, permeabilized in PBS plus 0.4% Triton 

X-100 for 30 min, blocked by incubation in PBS plus 4% normal goat serum (NGS), 0.2% Triton 

X-100 for 1 h (all at room temperature) and subsequently incubated with a GFP polyclonal 

antibody (1:1000, Invitrogen, CatNo. A-11122). Primary antisera were diluted in PBS plus 2% 

NGS overnight at 4°C for GFP antibody. Incubated slices were washed three times in PBS 

plus 1% NGS for 10 minutes at room temperature, incubated for 2 h at room temperature with 

a 1:1000 dilution of Alexa Flour 488 goat anti-rabbit IgG (H+L) (1:1000, Molecular Probes®, 

CatNo.A11034) in PBS plus 1% NGS, and subsequently washed three times in PBS for 10 

min at room temperature. The sections were mounted on slides and coverslipped. All images 

were acquired on a Nikon 1 confocal laser scanning microscope. Digitalized images were 

analyzed using Fiji (NIMH, Bethesda MD, USA) and Adobe Photoshop CS5 (Adobe, Montain 

View, CA). 

Statistics 

Results are expressed as mean±standard error of the mean (s.e.m.) throughout the 

manuscript. Behaviors of observers towards the two different demonstrator mice was analyzed 

using a Multiple t-test, followed by Bonferroni correction. Sniffing behavior was calculated in 

percentage to allow direct comparison between mice strains and different manipulations. The 

behaviors of the two demonstrators and recorded USVs were analyzed using a Multiple t-test, 

followed by Bonferroni correction. The behaviors of the observer mice in the one-on-one 

setting were analyzed using a Multiple t-test, followed by Bonferroni correction. For in vivo 

electrophysiological recording analysis we used Two-way ANOVAs with factor Epoch (2 levels: 

pre social interaction, post-social interaction) and Emotional state (2 levels: “relief”/”stress”, 

“neutral”) followed by Bonferroni post hoc tests. The accepted value for significance was 

p<0.05. Statistical analyses were performed using GraphPad Prism 7.  
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Abstract 
 
Reduced sociability represents one of the earlier symptoms associated with several 

neuropsychiatric disorders. Yet, the brain mechanisms implicated in such reductions are poorly 

understood and effective treatment are still missing. Oxytocin (OXT) is an endogenous 

neuropeptide, which has recently received an extraordinary attention as potential treatment for 

social deficits. However, the physiological mechanisms underlying exogenous oxytocin effects 

remain unclear. In this study, we found that mice with reduction in dysbindin-1 gene show 

decreased sociability toward an unfamiliar conspecific associated with altered mPFC firing 

rates recorded during social interaction. Remarkably, intranasal oxytocin administration 

restored both behavioral and physiological alterations in dysbindin-1 mice while produced no 

effects in wild type mice. Relevantly, we identified in the mPFC of dysbindin-1 mice a higher 

astrocytes activity. We tested the hypothesis that oxytocin beneficial effect in dysbindin-1 mice 

could be mediated by a specific action on astrocytes. We showed that oxytocin treatment had 

no effect in wild types, but led to a specific recovery in dysbindin-1 mice astrocytes 

dysregulation mediated by an action at D2-receptors. Together, our data indicate that oxytocin 

treatment is able to restore social deficits and altered PFC function in a model of genetic 

liability. Moreover, we report for the first time a possible role of astrocytes in PFC behavioral 

control, and as a critical site for oxytocin action. 
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Introduction 

The ability to interact with others has profound impact on individual’s life. Relevantly, in a 

number of neuropsychiatric conditions social deficits are among the earlier deficit to appear 

and the most difficult to treat.  

Oxytocin (OXT) is an highly conserved neuropeptide that has been implicated both in humans29 

and other animals27,28 in a wide range of social behaviors, including sexual behavior, parturition 

and maternal care26. This neuropeptide, considered a robust facilitator of social abilities184–186, 

produced  in clinical trials inconsistent effects33–38,  strongly indicating the need to understand 

the brain mechanisms underlying OXT’s effects on social functioning. 

The medial prefrontal cortex (mPFC) is a brain structure implicated in the processing of social 

information, and in the selection of adaptive responses, coordinating cortical and subcortical 

inputs. Alterations in mPFC functioning and social deficits are among the principal hallmarks 

of neuropsychiatric disorders as autism and schizophrenia, characterized by a strong genetic 

component187,188. In this study we took advantage of a mutant mouse, presenting reduced 

expression of the dystrobrevin-binding protein 1 gene (DTNBP1), which encode for dysbindin-

1 protein. Genetic variations in DTNBP1 have been previously reported to impact human and 

mice cognitive abilities64,65,189. In this study using a combination of electrophysiological and 

behavioural approaches, we identified in dysbindin-1 mice (Dys+/-) social deficits and altered 

mPFC excitability during social exploration of an unfamiliar conspecific. We found that both 

effects were rescued by the intranasal administration of oxytocin, before test.  

Astrocytes have been shown to play a key role in the modulation and control of neuronal 

activity190,191. Relevantly, in dysbindin-1 mice we observed an increased astrocytes activity in 

the mPFC. We hypothesized that oxytocin effects in dysbindin-1 mice could be mediated by 

an action on astrocytes. Accordingly, we found that oxytocin application in slices was able to 

reduce the increased astrocyte Ca++ activity observed in dysbindin-1 mice, while producing 

no effect in wild type astrocytes. Based on the evidence of a role of D2 receptors in regulating 

astrocytes function16,192, and of increased D2 receptors in the mPFC of dysbindin-1 mice, we 

tested the hypothesis that D2 receptors in the astrocytes could mediate OXT effects: AAV-

mediated selective down-regulation of  astrocytes D2 receptor in mPFC of dysbindin-1 mice 

abolished the effect of exogenous OXT on mice sociability, indicating a crucial role of 

astrocytes in the regulation of behavioral oxytocin effects.  
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Results  

Intranasal oxytocin rescues dysbindin-1 reduced sociability  

In mice, the exposure to a new conspecific spontaneously leads to social exploration. To 

assess dysbindin-1 mice social abilities, we exposed a test mouse, habituated for 1 hour to a 

new cage, to a matched -age and -sex conspecific, and we allowed them to freely interact for 

for 60 seconds per trials (Fig1a). We analyzed social behaviour of the test mouse, which 

included nose-to-nose, following, ano-genital sniffing, body sniffing. As shown, wild type mice 

gradually decreased social exploration over trials, indicating increasing familiarity with the new 

individual (p=0, one-way analysis of variance (ANOVA), Dunnett’s pairwise comparison to 

control;  wild type baseline versus dysbindin-1 baseline, S1-S4 P < 0.05; over the first 10 

interaction; Fig. 1b). The analysis of trials and genotype effects on social interaction by two-

way analysis of variance (ANOVA) revealed trials (F(3, 90) =29,41 P < 0,0001), genotype (F(2, 

30) =14,78, P < 0,0001), and genotype x trials significant interaction (F (6, 90) =3,649, 

p=0,0027) indicating reduced levels of dysbindin-1 significantly reduced mice sociability. In 

addition total social interaction time differences, we also noted that social duration was 

significantly shorter in dysbindin-1 mice compared to wild type mice in the trial 1 (Turkey’s 

comparison to control; wild type versus dysbindin-1, P < 0.05). To investigate the recruitment 

of mPFC in social interaction, we implanted wild type and dysbindin-1 mice with tetrodes in the 

mPFC. Before performing the electrophysiological recordings we assessed mice social 

behavior during the first two trials of the social interaction test. We choose to perform the 

experiments in these trials as they appeared the most indicative of mice sociability in previous 

experiments with no implants (Fig 1b). Confirming previous behavioral data, dysbindin-1 mice 

show significantly reduced social investigation towards the unfamiliar conspecific, compared 

to wild type mice (one-way ANOVA, Turkey’s comparison to control; wild type versus 

dysbindin-1, P < 0.05; Fig 1b’).  

We then tested the effect of a single dose (60 IU) of intranasal oxytocin, administered 5 minutes 

before the beginning of the test. Oxytocin treated wild type mice showed a normal pattern of 

social interaction over trials (Fig 1c), which was not affected by OXT administration. Differently, 

dysbindin-1 mice presented reduced social exploration when administered with vehicle and 

significantly increase social interaction when treated with OXT as shown in fig. 1c’ (one-way 

ANOVA, Turkey’s comparison test to control; dysbindin-1 vehicle versus dysbindin-1 OXT 

acute, P < 0.05). To verify whether oxytocin induced effects were specific for social abilities, 
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we measured other behavioral parameters previously described as altered in dysbindin-1 mice 

such as hyperactivity, and we found no changes due to oxytocin treatment (data no show).  

 
Fig. 1 Acute intranasal OXT treatment increase social interaction between unfamiliar males. (a) Experimental 

design for the social habituation test. Duration of occurrence of various social behaviors in male mice exposed to 
an unfamiliar conspecific (including nose-to-body, nose-to-nose, nose-to-back sniffing, going on top of another 
mouse and following) in male mice towards unfamiliar male. (b) social investigation of the unfamiliar male in mice 
not implanted and implanted with tetrodes (b’). The first two trials between the two groups; one-way analysis of 
variance (ANOVA), Dunnett’s pairwise comparison to control; wild type (Dys+/+) baseline versus dysbindin-1 
(Dys+/-)  baseline, P < 0.05; (c) single acute dose of saline (VEH in black) or 60 IU/5 μL (in red), 5 min before the 
test in implanted mice. The wild type did not show any effect after the treatment in both trials; instead, dysbindin-1 
mice (c’) show higher exploration respect to saline group in trial 1 one-way ANOVA, Turkey’s comparison test to 
control; dysbindin-1 vehicle versus dysbindin-1 OXT acute, P < 0.05. 
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Intranasal oxytocin rescues PFC excitability  

We then investigated the effects of intranasal oxytocin on PFC activity during social exploration 

in wild type and dysbindin-1 mice. Behavioural videos time-locked to PFC signals were 

collected. mPFC neurons were selected on the base of the quality and stability of signals, and 

their activity was analyzed in time windows of two second: during the baseline (the period 

preceding the introduction of the stimulus mouse), before and after social approach (which 

was defined as the first physical contact of the test mouse sniffing the stimulus mouse) in trial 

one (T1), during the inter-trial period (when the stimulus mouse was removed from the test 

cage) and before and after social approach in the second trial (T2; Fig 2a).   

In the mPFC of the wild type vehicle group, we recorded 171 well-isolated neurons, mainly in 

prelimbic cortex, and 74% of them modulate their firing in proximity of a social event. The 

majority of responsive units (46%) observed increase firing rate preceding social approach 

(main effect of social trial, mean difference 15,61 ± 0,9644 spk/s Student's unpaired t test p < 

0.001 compared to baseline), followed by a significant drop in firing rates at the onset of social 

exploration (main effect of social interaction, mean difference 11,31 ± 1,066 spk/s, Student's 

unpaired t test p <0.001) as shown in the population analysis and representative neuron in Fig 

2b. When the stimulus mouse was removed, firing rates returned to baseline levels indicating 

that mPFC activity was primarily driven by active exploration. From the dysbindin-1 vehicle 

group we selected in total less than 50% of social-related neurons (N=47), showing higher 

baseline activity respect to wild type mice (wild type vs dysbindin-1 baseline, mean difference 

6,229 ± 0,7151 spk/s, Student's unpaired t test p <0.001), suggesting higher mPFC state in 

basal condition. Similarly to controls, neurons displayed increased frequencies when the 

stimulus mouse was introduced in the cage (main effect of social trial, mean difference 2,461 

± 0,6315 spk/s Student's unpaired t test p < 0.001 compared to baseline; Fig 2b’). However, 

we found a different pattern of activity in proximity of the social approach, as we did not observe 

a decrease, but a sustained firing rate after the onset of social behavior (main effect of social 

interaction, mean difference -1,025 ± 0,5861 spk/s, Student's unpaired t test p=0,0818) in both 

trials, as shown in the population analysis in Figure 2b’. Consistently with previous evidence 

on dysbindin-1 PFC excitability193, we found higher basal firing rate also during the inter-trial 

compare to controls (Student's unpaired t test p <0.001).  

Then, we studied the effect of intranasal oxytocin administration on wild-type PFC activity, and 

we found that the same proportion of neurons were socially-modulated compared to vehicle 

treated mice (79%). Despite a decrease in frequencies, we found that no effect was produced 

by OXT in the pattern of activity of wild-type neurons in proximity of social exploration (main 
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effect of OXT treatment, mean difference -3,751 ± 0,2481 spk/s, Student's unpaired t test p 

<0.001). Differently, in dysbindin-1 mice, oxytocin administration increased the number of 

socially-responsive neurons (84%); further, in Trial 1, we found OXT induced a rescue of the 

altered pattern of activity observed in vehicle group, producing the same pattern observed in 

wild type mice (main effect of OXT treatment, mean difference -5,449 ± 0,6581 spk/s, Student's 

unpaired t test p <0.001; Fig 3a’).  

These results indicate that mPFC activity is strongly associated to mice sociability. Moreover, 

they suggest that the reduction in firing rates observed at the onset of social exploration could 

be required for the codifying/processing of social information. Dysbindin-1 genetic reduction 

might have an impact on this process by altering PFC excitability, which we found to be 

restored by intranasal oxytocin administration.   
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Figure 2. Sustained neuronal activity in dysbindin-1mice during social exploration. (a) top, mice were 

implanted with electrodes for chronic electrophysiological multi-unit and single-units recordings and tested in the 
social habituation test. Middle, electrodes placement in the mPFC (Cg, Cingulate; PL, Prelimbic area; IL, Infralimbic 
area). Bottom, experimental design used for the social habituation test associated to electrophysiology recordings. 
(b) Dysbindin-1 mice showed increased activity compared to wild type during the baseline (purple) period and show 
altered modulation during social interaction (Unpaired t-test: t=2.33, df=10, p<0.001; n=6 mice). Rasters and 
polylines aligned on the beginning (green arrows) of each exploration of unfamiliar conspecific in single trial, which 
were separated by a variable time interval of the duration of at least of 1 second. Rasters and histograms of single-
neuron response when the tested mouse explores stimulus in two trials are shown in different colors as well as IEI 
(orange and blue respectively). Top, Examples of two responsive cells recorded in response to the exploration of 
stimulus. Bottom, Population activity of all recorded neurons during the social habituation (n=89) before, during and 
after test of the stimulus throughout the 1-min experiment. Lines indicate the average discharge intensity of neurons 
when tested mouse explored the stimulus, trial 1 in orange and trial 2 in blue, aligned as the single neurons example 

Figure 2 
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in (b). Colored shaded regions around each line represent 1 SEM. (c) Dysbindin-1 mice showed sustained activity 
during no social or social event compared to the WT during the 2 trials of testing (n=7 mice, Unpaired t-test: t=4.12, 
df=12, p<0.001).  

 
 
 

 
 
Figure 3. Intranasal OXT treatment induce the same activity pattern elicited in wild type mice. (a) We 

recorded 97 and 123 units in wild type and dysbinin-1 mice respectively. Bottom, population activity of recorded 
neurons (n=97) before, during and after trials throughout the experiment representing the average discharge 
intensity of neurons when tested mice explored unfamiliar conspecific in trial 1 (orange) and trial 2 (blue) aligned 
on the beginning (black line) of each exploration of the demonstrators in the same session, which were separated 
by a variable time interval of the duration at least of 1 second. Colored shaded regions around each line represent 
1 SEM (t-test, Bonferroni correction, t=7.15, df=10, p<0.001; 6 min: t=3.59, df=10, p<0.001; n=7 mice) in trial 1 and 
trial 2. Dysbindin-1 showed a similar pattern of activity after a single dose of OXT 60IU/5μL in trial 1 (n=4 mice, 
Unpaired t-test: t=4.12, df=12, p<0.001). 
 

Dysbindin-1 mice show altered activation of astrocytes  

The specific pro-social effect of oxytocin in dysbindin-1 mice, lead us to hypothesize that 

dysbindin-1 genetics could determine a physiological substrate for a preferential effect of 

oxytocin on mice sociability. We, then, investigated the different gene expression profiles in 

the mPFC of wild type and dysbindin-1 mice. Remarkably, the meta-analysis revealed an up 

regulation of different genes involved in astrogliosis in dysbindin-1 mice compare to control 

group (Fig. 4).  

To confirm these results, and verify possible altered astrocytes activity in dysbindin-1 mice, we 

performed immunostaining of an astroglial marker, the glial fibrillary acid protein (GFAP) in 

Figure 3 
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mPFC slices and found a significant increase of GFAP intensity in the dysbindin-1 mice 

compared to wild type (p= 0,0489, Fig. 5). We characterized at functional level this increased 

reactivity, by measuring astrocytes dynamics in basal condition and after oxytocin application. 

We imaged Ca2+ influx in PFC slices obtained from wild type and dysbindin-1 mice expressing 

the encoded Ca2+ indicator GCaMP6 selectively in astrocytes (GCaMP6::GFAP). As 

expected, in dysbindin-1 mPFC, we observed an increase number of Ca2+ peaks compared 

to wild type (Fig 6). Notably, a single application of OXT was able to reduce dysbindin-1 Ca2+ 

elevation in astrocytes, specifically in the microdomain. These results demonstrated that 

dysbindin-1 reduction is associated with alteration in astrocytes reactivity, which are restored 

by oxytocin application.  

Interesting, the suppression of neuroinflammation has been described to be regulated through 

D2 receptor on astrocyte. Moreover, variations in D2R signaling have been shown to produce 

alterations in astrocytes reactivity16. Hence, we tested the hypothesis that D2-Rs in the 

astrocytes could mediate oxytocin effects in dysbindin-1 mice. To selectively target D2-

receptors in astrocytes, we injected dysbindin-1 D2 receptors floxed mice with an AAV 

expressing Cre under the GFAP promoter (GFAP - Cre) in the mPFC of wt and dysbindin-1 

D2-floxed mice. Control mice received a bilateral mPFC injection of an AAV expressing GFP 

under the GFAP promoter. We found that, the rescuing effect produced by intranasal oxytocin 

in dysbindin-1 mice was abolished when D2 receptors in the astrocytes were decreased, as 

shown in Figure 7 (F(1,10) = 16.17 P < 0.001 two-way analysis of variance (ANOVA), Newman-

Keuls post hoc, compared to the control group).  

Overall, these results indicated that the effect of oxytocin in dysbindin-1 mice sociability could 

be mediated by a D2 receptors astrocytes action.  
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Figure 4 

Fig. 4. Heat map of inflammatory markers 
selected by a microarray screening from 
the mPFC of wt and dysbindin-1 mice. The 

heat map is based on hierarchical clustering 
(P > 0.001) of genes involved in inflammation 
states. All gene expression levels were 
transformed to scores ranging from −0.5 to 
0.5 and were colored blue, white, or red to 
represent low, moderate, or high expression 
levels, respectively. The relative expression 
levels were scaled based on their mean and 
do not represent expression levels in 
comparison with controls. Dysbindin-1 
heterozygous and knock-out show an higher 
expression for genes involved inflammatory 
process compare to the wild-type. 
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Fig. 6. Higher calcium signal in astrocyte of Dysbindin-1 mice. a. Two-photon images of Tomato (red) and 

GCamp6 (green) expressing astrocytes in PFC brain slices from wild type and dysbindin-1mice. Scale bars, 10 μm. 

b. Representative Ca2+ signal traces from the main astrocytic compartments. c. Raster plots of Ca2+ transients 

from all GCaMP6 astrocyte microdomains in wild type and dysbindin-1 mice, before and after slice perfusion with 

oxytocin (oxt.; 1μM). d. Mean number of events per minute per ROI or astrocyte and mean Ca2+ transients peak 

amplitude for wild type and dysbindin-1 astrocytes (12 astrocytes for both wild type and dysbindin-1 

 mice, 4 animals each, *p<0.05;***p<0.001; Student t test). 

Figure 5 

Figure 6 

Fig. 5. Dysbindin-1 mice show more GFAP positive astrocytes in mPFC. Dys +/+ (4) and Dys +/- (4) mice 

was imaged at confocal microscope (Nikon A1) after immunohistochemestry for GFAP (NB300-141 Rabbit 
Polyclonal GFAP Antibody). (a) Quantification of GFAP signal in wild type (white) and dysbinin-1 (light green). (b) 
Representative images of mPFC in wild type on the right and dysbindin-1 on the left. Scale bar 100μm. (c) Higher 
magnification of the focus plan on the top. Scale bar 20μm. 

a 
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Fig. 7 D2-Rs in astrocytes mediate the positive effect of acute OXT treatment in dysbindin-1 mice. (a) Social 

habituation test in D2 floxed xdysbindin-1 mice injected with the GFAP-GFP AAV (a) or with the GFAP-Cre AAV(b). 

The analysis of first two trials in the two groups indicate that the effect of OXT on sociability depends on D2 receptors 

levels in the astrocytes ( two-way analysis of variance (ANOVA), Newman-Keuls post hoc test Dysbindin-1 x D2flox 

GFAP-GFP vehicle (n=8 black line) vs OXT treatment (n=8 red line),  p < 0.001; over the first 10 interaction bouts; 

(b) dysbindin-1 D2flox GFAP-Cre vehicle (n=6 black line) versus dysbindin-1 D2flox GFAP-Cre OXT (n=6 red line), 

p = 0.77). 

 

 

Discussion 

In this study we focused on the effects produced by reduction of dysbindin-1, the gene product 

encoded by DTNBP1, whose polymorphisms have been considered risk factors for 

schizophrenia onset64,65, on mice sociability. In dysbindin-1 mice, in which we previously 

described alteration of D2 signaling in the mPFC16,16, we identified reduced sociability and an 

altered pattern of mPFC excitability during social interaction.  

The neuropeptide oxytocin (OXT) is considered a robust facilitator of social abilities26,185,186. 

This notion is supported by observations both in humans and mice of beneficial effects of 

intranasal oxytocin (OXT) on processing of social information29,29,30. However, the physiological 

mechanisms underlying oxytocin effects are still unclear.  

Combining the social habituation test with in vivo electrophysiology, we revealed in dysbindin-

1 mice a reduction of social exploration toward unfamiliar conspecific, as well as an alteration 

in mPFC excitability; Increased cortical activity is consistent with a number of findings in which 

alteration in mPFC functioning is associated with neurological or psychiatric disorders12–14. 

Earlier studies have found an increase of activity in mPFC during exploration of unfamiliar 

conspecific in the three-chamber test, in which mice are physically separated by wire cup from 

Figure 7 

a b 
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the stimuli mice or objects194. This differs from our setting in which the animals are physically 

in contact. Thus, our results might suggest that the brain activity mediating direct contact during 

social interaction, or exploration while the subject is confined, might imply different social 

processes and different information coding modalities. In this study, we show that the mPFC 

in wild type is activated before the onset of social exploration and inhibited during the active 

exploration. Differently, dysbindin-1 mice mPFC show a higher, persistent activation, not 

modulated by social exploration, which correlates with a lower sociability (Fig.1b-2b).  

Remarkably, we found that intranasal OXT treatment produced no effect in wild type mice, but 

was able to rescue social behavior and mPFC alterations in mutant mice (Fig.1c-3a) inducing 

a pattern of activation similar to the one observed in wild types controls. A number of studies 

have shown the beneficial effect of OXT in response of social situation29,30. Relevantly, 

Galbusera et al. recently showed that OXT administered via intranasal route, elicits a transient 

activation of cortical regions195 supporting our finding of a specific recruitment of the mPFC 

after intranasal OXT administration. In addition, OXT has been reported to induce the top-down 

recruitment of GABAergic interneurons in the cortex 119 and to increase signal-to-noise ratios 

in the mPFC, improving the temporal precision and fidelity of information transfer, elevating 

inhibitory tone120,121. Our results suggest a similar action could explain the effect of OXT to 

recapitulate in dysbindin-1 mice mPFC a firing rate pattern similar to the one observed in wild 

type mice.  

Our findings also indicated that the alterations found in the E/I balance of mPFC of dysbindin-

1, might involve alterations in astrocytes function190,191. Several studies reported that glia cells 

contribute and regulate PFC homeostasis196–198. Using gene profiling, astrocytes 

immunoreactivity and Ca2+ imaging, we showed that dysbindin-1 mice, together with abnormal 

neuronal activity and behavioural phenotype, present increased astrocytes activity (Fig.5-6). 

In particular, we found higher gene expression of proinflammatory cytokines and GFAP 

expression in mPFC of dysbindin-1 mice (Fig.4). This result was also confirmed by our 

immunohistochemistry study showing increased GFAP expression in dysbindin-1 compared to 

controls. Interestingly, application of OXT to mPFC slices, decreased dysbindin-1 astrocytes 

reactivity leaving unaltered wild type levels. (Fig.6). Notably, increased of neuroinflammation 

has been implicated in a number of psychiatric disorders (e.g., mood and anxiety disorders) 

raising the possibility that inflammatory mechanisms are critical for linking psychosocial factors 

and related disorders to physical health199. 

Recently, suppression of neuroinflammation state has been described to be regulated through 

D2 receptors located on astrocytes, via an intracellular pathway that negatively regulate 
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inflammatory path 16,192. Relevantly for our study, recent findings also reported that activation 

of the oxytocin receptor can increase the D2 signaling in the D2R-OXTR heteroreceptor 

complex, via a facilitatory allosteric receptor-receptor interaction200,201 suggesting D2 receptors 

in astrocytes could mediate oxytocin responses observed in astrocytes. This hypothesis seems 

to be supported by our results showing that silencing astrocytic D2 receptors in the mPFC of 

disbindin-1 mice, we abolished the beneficial effects produced by intranasal OXT 

administration (Fig.7). This result could indicate D2 receptors in mPFC astrocytes as a possible 

mechanism of action of OXT induced behavioral effects. 
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Materials and Methods 

 

All procedures were approved by the Italian Ministry of Health (permits n. 230/2009-B and 

107/2015-PR) and local Animal Use Committee and were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the 

European Community Council Directives. Males dysbindin-1 heterozygous (Dys+/-) and their 

wild-type littermates (Dys+/+), all of 3-6 month-old, were used. Animals were housed two to 

four per cage in a climate-controlled (22±2 C) and specific pathogen free animal facility, with 

ad libitum access to food and water throughout, a standard environmental enrichment (material 

for nest and cardboard house), and with a 12-hour light/dark cycle (7pm/7am schedule). 

Experiments were run during the light phase (within 2-5pm). All mice were handled on alternate 

days during the week preceding the first behavioral testing. Experimenters were blind to the 

mouse treatments and genotype during testing. Behavioral scoring was performed a posteriori 

from videos by trained experimenters, blind to the manipulations of both the observers and 

demonstrators. A sniffing event was considered when the test mouse touched with the nose 

directly the unfamiliar stimulus.  

Habituation social interaction test 

Naïve mice were tested as similarly reported previously202,203 in 2150E Tecniplast cages (35.5 

× 23.5 × 19 cm). Male mice were individually placed in the testing cage 1 h prior to the testing. 

No previous singlehousing manipulation was adopted to avoid any instauration of home-cage 

territory and aggressive behaviors. Testing began 5 min after the intranasal treatment when a 

stimulus male mouse was introduced into the testing cage for a 1-min interaction. At the end 

of the 1-min trial, we removed the stimulus animal and returned it to an individual holding cage. 

We repeated this sequence for four trials with 3-min inter-trial intervals introducing the same 

stimulus mouse in all three trials, instead for the in vivo electrophysiology we recorded and 

performed only two trials with the same inter-trial-interval. Videos of behaviors were recorded 

and subsequently scored offline. After each testing day, testing cages were autoclaved as 

standardly performed in our animal facility. During both habituation and behavioral testing, the 

cages were placed inside soundproof cubicles (TSE Multi Conditioning Systems) 

homogeneously and dimly lit (6±1 lux) to minimize gradients in light, temperature, sound and 

other environmental conditions that could produce a side preference. Digital cameras (imaging 

Source DMK 22AUC03 monochrome) were placed facing the long side of the cage and on top 

of the cage to record from different angles the three consecutive two-minute trials, using the 

Anymaze program (Stoelting, Ireland). 
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Intranasal OXT Administration 

OXT (Novartis Pharma AG, Switzerland) was dissolved in saline (0.9% NaCl) and administered 

intranasally in a volume of 5 μl to each mouse in doses of 0.3 IU/5 μl (OXT 0.3 IU). An amount 

of 1 IU of our solution contained 1.667 μg of synthetic OXT. Thus, 0.3 IU corresponded to 

0.5001 μg (≈4.96e-10 mol) of OXT, for each administration of 5 μl (ie OXT 0.3 IU≈19 μg/kg or 

11 IU/kg). This dose were chosen in order to be much lower than subcutaneous OXT doses 

(ie 250 μg/kg) used in mice that could have produced peripheral effects204. The doses we used 

are also similar to the higher range of intranasal OXT doses recently given to adolescent prairie 

voles205; even though in the previous study they used a much higher volume of injection (ie 

25 μl) compared with our study (ie, 5 μl). Control mice received the same volume of saline 

(VEH). A 200-μl Eppendorf pipette with gel-loading tips (Costar) were used for administration. 

Drops of the 5 μl solution were gently placed equally on both nostrils of each mouse, which 

were taken in when they reflexively inhaled. Administration was rapid (less than 30 s) and 

handling was consistent across treatment groups. For the acute intranasal treatments, mice 

were administered with OXT only once, 5 min before the test. The delay of only 5 min was 

chosen based on evidence indicating that intranasal administration of OXT has very rapid 

pharmacokinetics with effects expected to appear already within a few minutes206. 

Stereotaxic surgery, viral injections and tetrodes implants 

Wild type and dysbindin-1 mice were naïve and 2 to 3-months old at the time of surgery. All 

mice were anesthetized with 2% isoflurane in O2 by inhalation and mounted into a stereotaxic 

frame (Kopf) linked to a digital reader. Mice were maintained on 1.5 - 2% isoflurane during the 

surgery. Brain coordinates of viral injection in the mPFC was chosen in accordance to the 

mouse brain atlas (Paxinos and Watson, 1998): AP: +1.9 mm; ML: ± 0.2 mm; DV: -2.9 / -2.5 

mm. Volume of AAV injection was 0.5 μL per hemisphere. We infused virus through a glass 

micropipette connected to a 10-μL Hamilton syringe. After infusion, injector was kept in place 

for 2 min and then slowly withdrawn to second injection spot. After virus injection mice were 

allowed 3 weeks to recover and for the viral transgenes to adequately express before 

undergoing behavioral experiments.  

The skull was exposed and one holes was drilled to target the mPFC in accordance to the 

mouse brain atlas (Paxinos and Watson, 1998): AP: +1.9 mm; L: + 0.20 mm; DV: -2.6 mm. For 

in vivo electrophysiological recording, mice were implanted with silicon probes carrying four 

tetrodes in the right mPFC (Neuronexus A4x4-3mm-100-125-177-Z16). Prior to the permanent 

attachment to the skull, the tetrodes were protected with Kwik-Kast silicone elastomer (World 
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Precision Instruments) and secured using dental acrylic. After electrodes and fiberoptic 

implantation, mice were allowed to recover 7 to 10 days depending on the general health. 

Histology 

At the end of the behavioral procedures mice were deeply anesthetized (urethane 20%) and 

transcardially perfused with 4% paraformaldehyde in PBS, pH 7.4. Brains were dissected, post 

fixed overnight and cryoprotected in 30% sucrose in PBS. 40-μm-thick coronal sections were 

cut using a Leica VT1000S microtome. For immunohistochemical studies free-floating sections 

of selected areas were washed in PBS three times for 10 minutes, permeabilized in PBS plus 

0.4% Triton X-100 for 30 min, blocked by incubation in PBS plus 4% normal goat serum (NGS), 

0.2% Triton X-100 for 1 h (all at room temperature) and subsequently incubated with a GFAP 

polyclonal antibody (1:1000). Primary antisera were diluted in PBS plus 2% NGS overnight at 

4°C for GFAP antibody. Incubated slices were washed three times in PBS plus 1% NGS for 

10 minutes at room temperature, incubated for 2 h at room temperature with a 1:1000 dilution 

of a Alexa Flour 488 goat anti-rabbit IgG (H+L) (1:1000, Molecular Probes®, CatNo.A11034) 

in PBS plus 1% NGS, and subsequently washed there times in PBS for 10 min at room 

temperature. The sections were mounted on slides and coverslipped. Imaging. All images were 

acquired on a Nikon 1 confocal laser scanning microscope. Digitalized images were analyzed 

using Fiji (NIMH, Bethesda MD, USA) and Adobe Photoshop CS5 (Adobe, Montain View, CA). 

In vivo recordings 

Neuronexus silicon probes carrying four tetrodes were implanted in the right mPFC (:+1,8 mm 

anterior, + 0,2  mm lateral from bregma, and -2,5 mm ventral from the brain surface) under 

general anesthesia. After 1 week of recovery from surgery, recordings were carried out mainly 

from the prelimbic cortex by means of a 16 channels Neuralynx Digital X system (NeuroLynx). 

Unit signals were filtered between 300 and 9000 Hz, digitized at 32 kHz, and stored on a 

personal computer using a Cheetah data acquisition system (Neuralynx). The anatomical 

location of the recording region was determined based on the location of a marking lesion. A 

digital camera (Imaging Source DMK 22AUC03 monochrome) was mounted on the side of the 

testing arena, to record mice behaviors using a behavioral tracking system (Anymaze 6.0, 

Stoelting, Ireland). All quantitative analyses of neuronal data were performed offline using 

dedicated software (Plexon). Both putative pyramidal cells and putative interneurons were 

included in the analysis.  
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Data analysis  

Neuronal firing rate. Single units were isolated using standard principal component and 

template matching techniques, provided by dedicate offline sorting software (Plexon). For each 

isolated unit, we verified that the projection of its spikes in the 3D space formed by the first two 

principal components and the acquisition time remained stable for the entire duration of the 

session and that the percentage of interspike intervals <1 ms was <0.5%. In case of relevant 

changes in the neuronal activity during acquisition, the entire animal was discarded and the 

data not included in the dataset.  

Statistical Analysis. For the analysis of neural data, after identification of single units that 

remained stable over the duration of the experiment, we carried out Student’s t-test applied to 

each trial, using a significance criterion of p<0.05 uncorrected. The null hypothesis was that a 

neuron does not vary its spontaneous activity during one of the two epochs of interest, PRE 

and POST of a social event, compared with a baseline epoch. In this study, the PRE and POST 

epochs correspond to a temporal window of 2 s previous and 2 s after the onset of a social 

event, respectively, while the baseline epoch corresponds to the first two second of the each 

recording session, in which the stimulus mouse had not been introduced yet to the testing 

cage. Therefore, all neurons showing a significant main effect in this analysis in at least one 

epoch of the first or the second trial were analyzed also at population level. Population 

analyses were performed taking into account single neuron responses expressed in terms of 

spk/s. For each neuron, the mean activity was calculated every 20 ms bins in all the recorded 

social events of all the experimental conditions to be compared by means and analyzed with 

different Student’s t test with a significance criterion p<0.05 uncorrected. 
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Chapter 5 

 

 

 

GENERAL CONCLUSION 
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General conclusion 

The aim of this thesis was to clarify the implication of different brain pathways and systems in 

different aspects of mice social behavior. The work presented in the first two chapters of the 

thesis was dedicated to the setting a new behavioral tool able to highlight social cognition 

abilities in rodents. Emotion recognition tasks are the most extensively used paradigms to 

assess human social cognition, but lack of a parallel in rodents study. To fill this gap, we 

developed and validated a new behavioral test to assess these abilities in mice, highlighting, 

in particular, the ability to discriminate unfamiliar conspecific based on their emotional state. 

We showed that the ability to recognize emotions in conspecifics could be distinguished by 

previously reported emotion-associated processes, as vicarious freezing and emotion 

contagion. We investigated the sensory modalities mice use to communicate and perceive 

emotional states in conspecific, and we showed a prominent implication of visual and olfactory 

cues.  More studies will be required to understand the specificity of these signals, and the way 

they lead to social responses in conspecifics. One of the main advantages of this new tool is 

the possibility to achieve causal information about the involvement of specific brain circuits in 

mediating emotion recognition process. In particular, the use of this setting  allowed us to study 

the role of the endogenous oxytocin system in the processing of conspecifics emotions. In 

particular, we provide significant new insights on the role of the PVN-CeA oxytocin pathway. 

This could support more translational approaches between rodent and human social cognitive 

studies, with relevance to circuits, genetics and neurochemical systems involved in different 

psychiatric disorders. 

  

In humans,  damages of the mPFC have been associated with impaired emotion recognition 

ability 128,129. Combining in vivo electrophysiology with the emotion recognition test, we 

investigated the role of the mPFC. In particular, electrophysiology recordings revealed a mainly 

activation of interneurons during the exploration of mice in altered emotional state. By 

optogenetically manipulating two distinct classes of interneurons we revealed that SOM+ 

neurons play a critical role in the ability to recognize emotions, while optogenetic inhibition of 

mPFC PV+ neurons produced no effects. Overall, these results support the implication of a 

cortical excitatory and inhibitory imbalance as core behavioral dysfunctions in social cognitive 

deficits with possible relevance to disorders characterized by these social deficits such as 

autism and schizophrenia. 

In the last period of my thesis, I focused more on the investigation of the behavioral and 

physiological effects produced by exogenous oxytocin administration. In particular, taking 
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advantage of the effects oxytocin produced in a mouse model of genetic liability, we 

investigated the physiological mechanisms of exogenous oxytocin action in the mPFC. We 

found that acute intranasal OXT administration was able to rescue social deficits in dysbindin-

1 knockout mice and to ameliorate the neuronal and astrocytic pattern of activity within the 

mPFC. All together, these results further support the importance of mPFC E/I balance in social 

behavior. Additionally, these findings point to a potential unexpected role of astrocytes as 

possible key regulators of oxytocin effects.  

 

Strength and Weakness 

The findings presented in chapter 2 demonstrate the validity of this novel paradigm to explore 

social cognitive processes in mice. Previous studies on social cognitive function in rodents, 

required familiarity between the observer and the demonstrator or involved observers 

witnessing conspecific in pain or exposed to a foot shock95,96,99,101,102.  Differently, the 

manipulation that we performed was able to detect emotion recognition abilities toward 

unfamiliar conspecific without a direct emotion contagion, as we did not detect changes in 

corticosterone levels and escape or other stressed behavior, such as state-matching or 

freezeing. Moreover, this manipulation that we induced to alter the emotional state, causes 

minimal physically distress to the animal. However, further studies are essential in order to 

better understand how the visual and olfactory social cues are integrated in the brain circuits 

for promoting social interest toward relevant states. Another strength of methods used is the 

successful application of  DREADD technology and ontogenetic manipulations to gain an 

understanding of the role of specific endogenous OXT pathways, as well as PFC microcircuits. 

Further experiments would be needed to explore if OXT PVN-CeA pathways might modulates 

cortical responses to emotion recognition or if the opposite direction is true. A possibility to 

start addressing this issue could be the combination of the DREDD technology in PVN 

projections with electrophysiology recording in mPFC. 

The results presented in chapter 3 were obtained combining in vivo electrophysiology with 

optogentic techniques demonstrate unreported role of mPFC interneurons in specific aspects 

of social cognition. Indeed, related to the rodent abilities for emotion recognition as previously 

discuss in chapter 2, using in vivo electrophysiology approach, we show that also at cortical 

level the emotional state elicit different mPFC activity, showing the social cue are differently 

integrated in the local mPFC network. However, we used silicon probes carrying four fixed 

tetrodes, which did not allow us to regulate deepness or electrodes position, complicating our 

understanding of unique frontal cytoarchitecture. Nevertheless, the optogenetic manipulations 



 
112 | P a g e  

 

of interneurons support the electrophysiology data and highlight the implication of a cortical 

inhibitory/excitatory balance in social function. Further analysis of electrophysiology and 

behavioral data in dysbindin-1 mice may confirm cortical alteration in a model of social deficits 

(data not included in this thesis). Moreover, since SOM+ neurons are highly enriched in 

oxytocin receptors178, further investigation of the influence of OXT treatment at cortical level in 

wild type and dysibindin-1 mice may be important to better understand OXT effect in the 

modulation of emotional stimuli. 

The findings presented in chapter 4 combined multidisciplinary techniques and revealed how 

oxytocin treatment is able to restore social deficits and altered PFC function in dysbindin-1 

mouse model, showing a possible role of astrocytic dopamine D2 receptors. Dysbindin-1 

mutant mice are interesting model for studying the genetic component in the developing 

alteration of cortical and behavioral phenotype related to dopaminergic system, since this 

system is highly involved in psychiatric diseases. Initially in this study, we showed lower 

sociability and higher mPFC activity in dysbindin-1 mice compare to the wild type; however 

further analysis of the electrophysiology data is essential to identify the principal cells (i.e. 

pyramidal or interneurons) involved in the social interaction and to characterized if the OXT 

treatment change the activity of these cells, since OXT receptor is highly express in SOM+ 

cells. One strength of this work was to combine genetic data in mPFC with pharmacological 

response to highlight possible implication of astrocytes function in the ability to modulate social 

behavior. However, it is still missing a better characterization of changes in astrocyte/neuronal 

physiology after reducing astrocytic D2R expression. Another weak point is related to the 

electrophysiological result presented in chapter 3. We observed an increased of mPFC during 

exploration of demonstrator in the ERT, instead in freely moving animals the mPFC show an 

opposite modulation thus, arising questions which inputs drive the initial activation and 

subsequently inhibition during physical contact in the social interaction test and why mPFC is 

inhibited during the interaction and activated during exploration of conspecific. Further studies 

on mPFC circuits will be needed to answer these questions. 
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Future directions  

Using mutant mice is a valuable source of information in determining both physiological and 

behavioral alterations. Our results in the emotion recognition test presented in chapters 2-3 

encourage further studies to investigate the connection between amygdala and cortical regions 

for emotions processing, and a region that could be mediating this information’s flow could be 

the basolateral amygdala (BLA). In fact, an interconnected sheath of GABAergic neurons is 

found interposed between the BLA and CeA207,208. Importantly, the BLA is reciprocally 

connected with cortical regions, especially the prefrontal cortex. Based on this, manipulating 

BLA projections with DREDD or optogenetically technique in distinct phases of social cues 

presentation should be done, in order to find a possible converging point for the integration of 

social signals between cortical and subcortical areas. 

Notably, the selectively optogenetic inhibition of SOM+ neurons in specific target layer of 

mPFC (i.e layer V important for the output generation) or specific area, such as prelimbic or 

infralimbic region could improve our knowledge on the role of prefrontal cortex circuits in social 

cognition functions.  

The results presented in chapter 4 indicate a potential role of astrocytes in modulation of brain 

activity after intranasal OXT administration. Future patch-clamp recording and Ca++ imaging 

experiments on mPFC slices should investigate the physiologic changes in the local network 

after the suppression of astrocytic D2 receptor.  Nevertheless, it is still widely debated whether 

and how astrocytes release chemical transmitters in vivo209, therefore the functional relevance 

of a direct neurotransmitter release and metabolism from astrocytes in the brain physiology 

will require further investigations. Furthermore only a few reports have suggested a link 

between mPFC activity and abnormal social behaviors in rodents 136,141, so future investigation 

are necessary to better identified the role of mPFC and its balance for the output behavior.  

In this thesis we described that genetic variations reducing dysbindin-1 expression, which has 

been reported to impact human cognitive abilities64,65 and responses to antipsychotic drugs189, 

can also predict social responses to intranasal OXT . Future studies will be needed to better 

address the crosstalk between the dopaminergic and oxytonergic systems in the context of 

social behavior and their modulation by dysbindin genetic variants. 
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