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Abstract 

Understanding the interplay between nanostructured materials and cell membranes is the basis 

of their possible usage for therapeutics and for engineering new bio-applications. With the aim 

to unravel the mechanisms of interaction at the molecular scale, I have studied during my PhD 

the interaction between CdSe/CdS semiconductor nanorods (NRs) and polymeric micelles with 

model and plasmatic lipid membranes. NRs were in-house synthetized and functionalized with 

different amount of bis-amino polyetilenglycol (PEG) and a tertiary amine to tune their surface 

potential
 
(ζ) between -50 mV and +10 mV. Their interaction with lipid mixtures of different 

composition in form of supported lipid bilayers (SLBs), lipid monolayers (LMs) and different 

in vitro cell lines was tested. In particular, NRs adsorption to SLBs was monitored by quartz 

crystal microbalance with dissipation monitoring (QCM-D) varying lipid mixtures charge and 

investigating the influence of gel phase domains; interactions with LMs same in composition as 

SLBs were measured by surface pressure-area isotherms. Results showed that tuning the 

mutual properties of the system regulates the interaction with NRs on the membranes and that 

the increase of membrane complexity inhibits it: in particular a strong interaction was 

registered with fluid state membranes and NRs opposite in charge when Δζ > 70 mV, whereas 

the interaction was hindered in presence of gel phase domains. LMs models gave more detailed 

information, showing removal of lipid molecules from air-water interface or insertion of NRs 

between lipids according to the overall system charge. QCM-D and surface pressure-area 

isotherms results were in agreement.  

 Since the polymer coating of the NRs was shown to regulate the interaction, in order to 

elucidate its effect I have employed also fluorescent polymeric micelles of different dimension 

(60 and 300 nm in diameter). I have tested the interaction of both NRs and micelles with 

different cell lines, namely post-natal mouse neuronal network (known to have a dynamically 

changing membrane potential), mouse neuroblastoma Neuro2a (that can differentiate in 

neuronal-like cells) and Chinese hamster ovary cells (epithelial, with a static membrane 

potential), using confocal microscopy both on fixed samples and in real time. Preliminary 

results showed adhesion of negatively charged NRs and micelles on both dynamic potential 
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membrane cell lines. Again a threshold value was found for NRs interacting with neurons (ζNR 

< -18 mV), similarly to what was observed with models. A neurotoxin was then introduced in 

the experiments, to reduce the spikes of the active cells.  

A satellite project is finally presented as a full paper at the end of the thesis. The project 

concerns the fabrication and characterization of thin anodic porous alumina (tAPA) substrates, 

which surface was made surface-enhanced Raman spectroscopy (SERS) -active by coating with 

a thin gold (Au) layer. My part in this project was related to the monitoring of the 

chemisorption of thiols and the formation of SLB models from lipid vesicles by using the 

QCM-D technique on Au substrates.  
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Introduction 

The global outline of my PhD project was the study of the interactions occurring between 

nanoparticles (NPs) and cells at cell plasma membrane interface. After a general description of 

the plasmatic membrane, which are its most important components and how is possible to 

mimic them using models (described in chapter 1), and a description of the nanostructured 

materials and which are their applications (chapter 2), I introduce the NPs employed during my 

work, i.e. CdSe/CdS nanorods (NRs) and polymeric micelles and the techniques I used to 

characterize and functionalize them (chapter 3). The most relevant part of my PhD project was 

carried on through the use of quartz crystal microbalance with dissipation monitoring technique 

(QCM-D) and Langmuir trough to perform pressure – area (π - A) isotherms applied to 

different lipid model membrane systems, in particular supported lipid bilayers (SLBs) and lipid 

monolayers (LMs). All the techniques employed are described in chapter 4. Different lipid 

mixtures, characterized by different overall charge and phase separation behavior, have been 

employed together with NRs, and the results are described in chapter 5. NRs were then 

employed, also with custom-made polymeric micelles, in the study of the interaction between 

NPs and plasmatic membranes from different cell lines in vitro, such as neurons and epithelial 

cell. This study was carried out by the means of laser scanning confocal microscopy and results 

are showed in chapter 6. 

  Then, an appendix describes the study of the same NRs used in the rest of the 

thesis, but without the presence of the surface tuning functionalization layer, together with 

model membranes. Here, the x-rays diffraction technique is added as an investigation tool. 

Finally, a paper in which I was involved, concerning the use of anodic porous alumina 

substrates as bio-sensing surfaces, is attached.  
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Chapter 1  

Cytoplasmic Membrane and Model Systems 

The cytoplasmic membrane of eukaryotic cells (Figure 1.1) is a complex structure with the 

main function to separate the inner environment of the cell from the extracellular space. It is 

selectively permeable to ions and organic molecules [1] and is involved in important biological 

processes including bidirectional transport of molecules and cell adhesion. It is mainly 

composed by a double layer of amphiphilic lipid molecules with embedded proteins, in a ratio 

which can vary significantly between different cell types [2-4].  

 

Figure 1.1 Schematic representation of a eukaryotic plasmatic membrane (from Campbell Biology 10th Edition). 

Membrane lipids are mainly divided in three classes: phospholipids, glycolipids, and 

sterols [2, 4, 5]. The most abundant are phospholipids; because of their amphiphilic nature, in 

aqueous media and in physiological conditions they tend to organize in a lamellar 

configuration, typical of biomembranes, with the polar head pointing toward the aqueous 

medium and the hydrophobic tails facing each other. Proteins can be temporarily attached to 

Figure 1.1Schematic representation of a eukaryotic plasmatic membrane 
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the bilayer surface (peripheral proteins) or can present a hydrophobic domain which is 

permanently embedded in the membrane (integral proteins) [5].  

The first model of plasma membrane which described in a proper way the molecular 

organization of both lipids and proteins was the fluid mosaic model, proposed by Singer and 

Nicolson in 1972 [3]. According to their hypothesis, the membrane was considered as a mosaic 

of proteins moving in a bidimensional phospholipid fluid, but this model did not take into 

account any lateral organization of proteins or lipids, well established nowadays [6, 7]. Also, 

several evidences collected in the last decades suggested that lipid distribution in the cell 

membrane matrix is not uniform, but presents several microdomains, termed “lipid rafts” 

(Figure 1.2), which differ in composition and physical properties from the surrounding regions 

and which are thought to have an important role in many cellular processes, such as cell 

signaling and protein trafficking [8-10].  

 

Figure 1.2 – Representation of lipid rafts, composed by sphingolipids, cholesterol and proteins (from “The Inner 

Life of the Cell”, Harvard University).  

The propensity of plasma membrane to organize in distinct lateral domains is strongly 

related to the high heterogeneity of membrane lipids, which can coexist in different lipid phases 

according to their molecular structure (see paragraph 1.1). Multi-component model systems can 

Figure 1.2 Representation of lipid rafts 
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be used to reproduce raft behavior in a scale suitable for most of in-vitro investigation 

techniques. 

1.1 Membrane Lipids and Lipid Phases 

 The membrane structure is not fixed, but its high fluidity makes it continuously change 

at the nanoscale in response to stimuli of the external environment. The composition of the 

plasma membrane is cell-type dependent, but in each cell the largest fraction are the 

phospholipids, that include most of the 50% of total lipids of the membrane. Glycolipids only 

2% and the rest is made by sterols  [11]. 

The hydrophobic tails in phospho- and glycolipids contain an even number of carbon 

atoms, typically 16- and 18-carbon (C). They may be saturated or unsaturated, i.e. could 

contain double C-C bonds (in the unsaturated ones). The length of the chains and the number 

and position of unsaturation affect the membrane fluidity: unsaturated lipids have bended 

carbon chains, preventing the tails from packing together tightly and so decreasing the melting 

temperature and the fluidity of the membrane [12, 13]. The entire membrane is bound via non-

covalent interaction of the hydrophobic tails. Physiologically, phospholipid molecules in the 

cell membrane are in the so called “liquid crystalline state”, i.e. the molecules are free to  

 

Figure 1.3 Structures of most common lipid polar heads (modified from https://pubchem.ncbi.nlm.nih.gov/). 

 

Figure 1.3 Structures of most common lipid polar heads Choline Ethanolamine Serine Inositol 
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diffuse along the layer in which they are [14-16]. The major structural lipids in plasma 

membrane, glycerophospholipids, are constituted by a glycerol backbone which binds, through 

an ester bond, two saturated or cis-unsaturated hydrophobic tails. A polar head, which may be 

choline, ethanolamine, serine, or inositol, (Figure 1.3) is also bound to the glycerol backbone 

through a phospho-ester bond.  

 

 

Figure 1.4 – Most common plasma membrane lipids (images from avantilipids.com): each box shows 

exemplifying molecule for each class. From top to bottom: palmitoyl-oleoyl phosphatidylcholine (POPC), 

palmitoyl-oleoyl phosphatidylserine (POPS), sphingomyelin, cholesterol.  

 

Sphingolipids represents the other class of structural lipids in plasma membrane: they 

consist in a ceramide backbone (a sphingosine linked to a fatty acid), which may bind different 

Figure 1.4 Most common plasma membrane 
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headgroups. The main sphingolipids in mammal membranes are sphingomyelin (SM), a 

phosphosphingolipid composed by ceramide and phosphocholine. Phospholipids and 

sphingolipids are amphiphilic molecules, consisting both of a hydrophobic part (diacylglycerol 

/ ceramide) and of a hydrophilic one (polar headgroup). For this reason, in water excess they 

spontaneously assume a lamellar configuration, with the hydrophobic tails facing each other in 

order to prevent their interaction with the solvent. Figure 1.4 shows the structure of the most 

common lipids in plasma membranes. 

Non-lamellar phases, induced by the presence of particular lipids such as 

phosphatidylethanolamine or cardiolipin, are not normally found in plasma membrane, but can 

appear as a transient state associated to specific membrane events, such as fusion, fission and 

pore formation [17-19] (Figure 1.5).  

Cholesterol is the main non-polar lipid in mammal cell membranes, normally found in 

the irregular spaces between the hydrophobic tails of the membrane lipids, where it confers a 

stiffening and strengthening effect on the membrane [20]. Additionally, the amount of 

cholesterol in biological membranes varies between organisms, cell types, and even in 

individual cells. It regulates the fluidity of the overall membrane, meaning that cholesterol 

controls the amount of movement of the various cell membrane components based on its 

concentrations [20-23].
 
  

Lipids are not evenly distributed between the two membrane leaflets [4, 24-27]: 

phosphatidylcholine, which represents more than half of phospholipids in most of eukaryotic 

membranes, is mainly located in the outer leaflet, as well as sphingolipids, while 

phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol are predominantly 

found in the inner leaflet [28]. Cholesterol resides for more than 70% in the inner leaflet [20, 

23]. Nevertheless, its presence and distribution in the outer leaflet is fundamental in 

determining lipid lateral organization. 
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As it has been already pointed out, in fact, membranes also present a lateral 

heterogeneity, characterized by the presence of domains displaying peculiar phase behaviors. 

Membrane lipids can exist in multiple possible phase states [12, 13, 22, 29] (Figure 1.6), 

 

Figure 1.5 – Lipids organize in different lipid phases, according to the volume occupied by the polar headgroup 

and by the hydrophobic fatty acyl chains [30]. Most of glycerophospholipids in plasma membrane have a 

cylindrical geometry, which results in a lamellar phase organization. 

  

depending on the length and on the presence of unsaturations in the acyl chains, as well 

as on temperature. Lipids containing long, saturated chains, such as sphingolipids, tend to 

organize in a tightly packed lamellar configuration, called solid-ordered or gel phase (So or 

Lβ), characterized by a high molecular order and a reduced lateral mobility. Most of 

phospholipids, on the contrary, contain unsaturated chains, which cause them to be fluid at 

room temperature. These lipids normally exist in a disordered state, the liquid disordered phase 

(Ld or Lα), which has a high lateral diffusion. Phospholipids can form a gel phase only below a 

specific transition temperature (Tm), which, because of the presence of unsaturated chains, is 

significantly lower than the physiological one (see Table 1.1). The presence of cholesterol 

between acyl chains may induce a transition both in Ld and in So phase. In fact, its rigid 

structure imposes a conformational order between unsaturated phospholipids, affecting their 

lateral mobility. On the other hand, cholesterol insertion between fully saturated chains 

strongly increases bilayer fluidity, without significantly perturbing the conformational order.  
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Figure 1.6 – A) Lipid phases of glycerophospholipids (GPLs) and sphingolipids (SLs). Phase transition of pure 

GPLs mixtures is triggered by a variation of temperature (T) with respect to GPLs transition temperature (Tm). 

At body T most of GPLs in plasma membrane are fluid, while most of SLs are in So phase. Addition of 

cholesterol induces a transition from both SLs So phase and GPLs Ld phase into Lo phase. B) Cholesterol inserts 

preferentially between SLs and GSLs chains, because of the larger headgroup protection from the solvent. 

Addition of cholesterol in GPLs and SLs mixture induces Lo and Ld phase coexistence [31]. 

 

 In conclusion, the addition of a proper amount of cholesterol in a lipid bilayer can 

induce a phase transition from either Ld or So phase into a liquid ordered phase (Lo), 

characterized by a high conformational order and a high fluidity, being the diffusion coefficient 

generally only two or three times lower than the one measured in the disordered phase [21-23].  

-    Tm    + 

So Ld Lo 

So Lo 

GPLs SLs Cholesterol 

Ld Ld Lo 

Lipid raft 

A) 

B) 

Figure 1.6 Phase transition liquid 
disordered, ordered and solid 
ordered 
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Table 1-1 Properties of lipids related to their fluidity: chain length and unsaturation level 

 Lipid C length Unsaturation degree Tm (°C) 

Saturated 

chains lipid 

DLPC 12 -12 0 - 0 -2 

DMPC 14 -14 0 - 0 24 

DPPC 16 - 16 0 - 0 41 

Unsaturated 

chains lipid 

POPC 16 - 18 0 - 1 -2 

POPS 16 - 18 0 - 1 14 

DOTAP 18 - 18 1 - 1 4 

 

Table 1.1 Properties of lipids related to their fluidity: chain length and saturation level. For every lipid, the C-

length of every chain and the presence of a double C-C bond (unsaturation degree) is indicated.  

 

1.2 Model Membrane 

The investigation of physiological and pathological phenomena happening at the 

nanoscale at cell interface is extremely challenging, because of the high complexity and 

heterogeneity of plasma membrane. For this reason, the use of simplified models [32-37] 

(Figure 1.7), capable of mimicking the behavior of a controlled number of membrane 

components, can be very interesting. Model membranes basically consist in a single or double 

layer of phospholipids, typically planar or spherical, or a combination of both. In 1917, I. 

Langmuir introduced the experimental and theoretical modern concepts of insoluble 

monolayers. Since that time, and because it has been found to provide invaluable information at 

the molecular scale, the monolayer technique has been more and more extensively used, and a 

huge increase in the number of publications has occurred. Half-membranes can be used as 

useful models, especially in the case of interfacial interactions study. Lipid monolayer (LMs) at 

the air-water interface are extensively used for the investigation of interactions with lipid head 

groups [38] (see chapter 4, paragraph 4.4 and 4.5). 

 



10 
 
 

A

B
) 

C
) 

D
) 

E
) 

Double leaflet 
lipid models 

 

Figure 1.7 – Examples of double leaflet model membranes A) GUVs [39]  B) blebs protruding from cells [40] 

C) supported lipid bilayers on solid substrate [41] D) Tethered membranes [42] E) mechanical simulations [43]. 

 

The simplest spherical model membranes are represented by unilamellar vesicles, 

ranging from tens (small unilamellar vesicles, SUVs) to hundreds of nanometers (large 

unilamellar vesicles, LUVs), and, eventually, to tens of micrometers (giant unilamellar 

vesicles, GUVs). These vesicles can be free-standing, connected to each other or tethered to a 

substrate. SUVs and LUVs are generally prepared through extrusion or sonication of a solution 

containing multilamellar vesicles (MLVs), which spontaneously form upon hydration of dried 

lipid films. Giant liposomes, instead, are usually generated through an electro-formation 

process. GUVs are important model systems [33], which are mainly used to investigate lipid 

phase behavior using fluorescent probes [44].  

Figure 1.7 
Examples of 
double leaflet 
model 
membranes 
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 Planar geometry is widely used in surface characterization studies [45-47]. Bilayers 

supported by a rigid substrate (SLBs), which will be described in the next section, are a 

valuable tool to simulate the behavior of the lipid part of plasma membrane, but they may 

present some limitations. First of all, the substrate can influence the study. SLBs do not allow 

the insertion of transmembrane proteins, because the short distance from the substrate (about 1-

2 nm) may induce loss of mobility and, most of all, protein denaturation. This problem can be 

solved with the use of tethered bilayers [48-50], in which the model membrane is separated 

from the substrate by a proper linker. Membrane supported by a softer substrate, such as a 

polymer cushion [51, 52], should be preferred in case of mechanical measurements, since the 

polymer assembly is a better approximation of the cytoskeleton rather than a rigid surface. As 

last mention, mechanical simulation approach is becoming more and more important in the 

investigation of phase behavior [53, 54] and in the study of membrane interaction with different 

nanoparticles [55, 56]. 

1.3 Lipid Monolayers  

 Lipid monolayers can be obtained on the air-water interface of a watery subphase using 

a Langmuir trough. In the Langmuir model system, various parameters such as lipid 

composition, subphase, and temperature can be chosen to imitate biological conditions [32, 38, 

57, 58]. In addition, lipid monolayers are very well-defined bidimensional system with planar 

geometry. The most relevant property of a lipid monolayer is its surface pressure, which can be 

calculated as:  

Equation 1-1 Surface pressure 

π = γ0 -  γsurfactant 

 

in which π is the surface pressure, γ0 is the subphase surface tension  (which is 72 mN/m at 25° 

C for water) and γsurfactant is the surface tension of the subphase in the presence of the monolayer 

[59]. This parameters can be calculated using the Wilhelmy plate method (see chapter 4, 

paragraph 4.4). Typically, the investigation of lipid monolayers interaction with NPs can be 
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performed in two ways. First, a lipid monolayer on the water/buffer surface is compressed by 

applying lateral pressure to a surface pressure (π) at which the lipid packing density is similar 

to the one of plasmatic membrane (π = 30 mN/m) [57].  

By keeping the film area constant, changes in π are recorded upon addition of NPs to the 

subphase. Alternatively, a NP dispersion can be used as a subphase (usually a buffer with pH 

7.4 is used to mimic biological systems) to form a lipid monolayer. The monolayer is then 

compressed, and the values obtained for the pure lipid and for the lipid with NPs are compared. 

 Apart from changes in π, changes in lipid morphology at the air-water interface can be 

studied by Brewster angle microscopy [60]; this method allows in situ study of the two-

dimensional Langmuir monolayers at the air-water interface. This technique does not use probe 

compounds or any other modifications to sample for investigation; thus it ensures that the 

monolayer under investigation is in its original state. 

1.4 Supported Lipid Bilayers  

Supported lipid bilayers (SLBs) are lipid bilayers formed on flat solid substrates such as 

silicon or mica form which they are separated by a thin hydration layer (about 1 – 2 nm of 

watery layer). Thanks to this separation, the lateral fluidity of the lipids is preserved. Generally, 

SLBs are formed by fusion of lipid vesicles onto these solid supports or by the LB technique. 

The vesicle fusion technique, introduced in 1984 by Brian and McConnell [61], basically 

consists in the deposition of a SUVs or LUVs dispersion to a hydrophilic substrate: vesicle 

adsorption and spreading on the surface may lead, under specific conditions, to bilayer 

formation. The final result depends both on lipids and substrate physico-chemical properties, as 

well as on other factors, including temperature, vesicles concentration, and ionic strength of the 

used buffer, which may affect both vesicle-vesicle and vesicle-substrate interaction.  

It is possible that, after the administration, vesicles do not adsorb onto the substrate, they 

adsorb but remain intact, they first adsorb intact and start forming the bilayer only after having 

reached a critical coverage, or they rupture instantaneously, creating bilayer patches. 
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Figure 1.8 Solid supported lipid multilayer in air.  

 

 All these situations can be investigated using Quartz Crystal Microbalance with 

Dissipation Monitoring (QCM-D) [45, 47], that will be introduced in chapter 4. 

 In conclusion, with a proper choice of experimental conditions, it is possible to form 

stable, defect-free lipid mono and bilayers, which can be used to mimic the lipid part of plasma 

membrane and changes in structure, morphology, and surface chemistry. The interactions 

between membranes and nanostructured objects, such as nanoparticles, can be investigated 

using various techniques, such as scanning laser confocal microscopy, scanning electron 

microscopy, transmission electron microscopy, atomic force microscopy, QCM-D, pressure-

area isotherms using a Langmuir trough, dynamic light scattering and X-ray scattering. 
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Chapter 2  

Nanostructured materials in bio-applications 

 

Nanoparticles (NPs) are nanostructured materials with all of their dimensions at the nanoscale. 

They can be synthetized using almost every material and can be inorganic or organic (see 

figure 2.1). It is widely known that the properties of a material at the nanoscale are different 

from the bulk material itself; this is why there is a huge need of understanding how they can 

interact with living organisms. 

Figure 2.1 Example of existing NPs 

Figure 2.1 Example of existing NPs: organic in the first row, inorganic in the second one. Image from [62]. 

 

2.1 State of the art: interaction between nanostructured materials and membranes 

 Nanostructured materials with nanoscale dimensions (between 1 and 100 nm) are largely 

employed in biomedical applications today, especially in field as in cancer treatments, bio-

imaging, drug delivery techniques and for the development of biosensors [63-67]. Evaluating 

the NPs’ interactions in a physiological environment and understanding which is their effect on 

human beings can be challenging due to the complexities related to the system under study: the 
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broad variety of nanomaterial properties that have to be considered (namely the NPs’ size, 

surface charge density and shape [68-72]); the great variations in the biological targets (namely 

cell lines and biomarkers [70]); the conditions (such as the NPs’ concentration [71]) under 

which the interactions are examined and, overall, the intricateness of living organisms. All 

these variables affect the interactions and, in turn, could cause possible hazardous effects. The 

problem related to the complexity of the cellular membrane can be solved using models that 

can mimic the basic plasma membrane structures, providing a system that is suitable for 

studying membrane-NP interactions [33, 34]. 

 Studies on the cytotoxicity of engineered nanomaterials have been reported in literature 

using model membranes [73, 74]: these studies helped to identify a number of mechanisms by 

which nanomaterials induce toxicity, including membrane damage, such as the formation of 

thinned regions and holes [74, 75]. 

 In the last decades, the interaction between nanoparticles and model membranes has 

been investigated by several research groups. The majority of literature on this topic [55, 76-

78] concentrate on the interaction of spherical nanoparticles with cellular or model membranes. 

Verna and Stellacci [79] reviewed how synthetic and natural chemical peculiarities of NP 

surface impact their interaction with lipid bilayers and cells. Granick et al. [80] explained the 

correlation between the presence of nanoparticles and the change in head-groups in lipid 

vesicles, inducing gelation in fluid membranes or fluidizing full gel state ones. Barros-

Timmons at al. [81] investigated the behavior of lipid monolayers with coated NPs and with the 

coating alone. They showed that when there is an interaction with an oppositely charged NP, 

the functionalization alone will induce the same reaction. Also theoretical investigations has 

been performed by molecular simulations: Vattulainen et al. [82] reviewed atomistic and 

coarse-grained simulation studies on carbon NPs interacting with lipid membranes, Yang and 

Ning [83]  described the thermodynamics changes occurring during the interaction between 

zwitterionic membranes and charged NPs, and Weikl et al. [84] investigated the wrapping 

behavior of NPs with lipid membranes. 
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 Recently, it has been reported that the NPs’ interaction with the neuron cell membrane 

was driven by the surface charge of the NPs and, in the case of negatively charged particles, it 

induced a neuronal electrical response [70], whereas no interaction was observed in static 

membrane potential cells (such as glia). These events are reasonably due to the difference in 

superficial potential between the neuronal membrane and the external functionalization of the 

NRs. It has been also shown that NPs can play active roles in mediating biological effects to 

living organisms: the uptake of fluorescent Cadmium Selenium/Cadmium Sulfur (CdSe/CdS) 

nanorods (NRs) by Hydra vulgaris, a simple model organism, can be tuned by modifying the 

NR surface charge [85]. This interaction can lead to biological responses in the living animal (a 

tentacle writhing response) [69].  

 Also biological elements at the nanoscale can induce modifications in the membrane 

structure, such as proteins; an example is given by α-Synuclein, a protein capable of undergo a 

fibrillation process with the consequent formation of plaques, responsible for the onset of many 

neurological diseases such as Alzheimer, Parkinson or dementia [86, 87]. 

2.2 Nanostructured substrates 

 Nanostructured substrates present some of their features at the nanoscale. During my 

PhD, I was involved in a project in which anodic porous alumina (APA) was employed as a 

nanostructured material. APA will be described in the next paragraph. Other examples of 

nanostructured materials that can interact with cell membrane are ultrathin substrates (i.e. 

graphene [88] and nanoflakes [89] ) or nanoporous structures (i.e. nanoporous silica [90] or 

titania [91]).  

2.2.1 Anodic porous alumina 

 Another class of nanostructured material that I directly employed during my thesis is 

anodic porous alumina (APA, see attached paper). APA is a layered material usually obtained 

in thick form (≈10 µm thickness scale) from electrochemical anodization in the acidic aqueous 

electrolyte of aluminum (Al) foils [92]. In APA, the control of pore size, pore density and 

porosity is achieved by changing the anodization voltage during the fabrication and the etching 
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parameters during the post-fabrication treatment [93]. It is widely recognized that the APA 

surface is biocompatible [94] and with its control of the surface roughness can play an 

important role in the adhesion and proliferation of cells [95, 96]. The self-ordered nano-

structured APA after coating with noble metals (such as gold) can be used for plasmonic-based 

enhanced spectroscopy such as in surface-enhanced Raman spectroscopy (SERS) [97, 98]. In 

recent years, the thin form of APA (tAPA), resulting from anodization of Al films of less than 1 

µm thickness, has been increasingly used because it can be better integrated into applications 

involving optical microscopy inspection, which requires flat planar substrates. Additionally, the 

pores in tAPA can potentially serve as nano-wells for localized drug delivery [99]. In fact, 

while lower in loading capacity with respect to thick APA, 500 nm tAPA can still allocate a 

significant amount of bioactive compounds, representing a trade-off between the former case of 

maximized loading and the case of ultra-thin APA showing the highest SERS enhancement 

[100]. Finally, the controlled roughness of APA could also improve the physisorption of 

coating layers of functional materials [101].  

 In the final part of my thesis, a paper describing the project concerning the use of tAPA 

as a bio-sensing surface is attached.  
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Chapter 3  

Materials and Methods 1: NPs 

In this chapter, I will explain the procedure of hydrophilization and functionalization I 

performed on CdSe/CdS nanocrystals, describing the instrumentation employed. 

 

Figure 3.1 Core-shell structure of employed CdSe/CdS NRs. 

3.1 Nanorods surface functionalization and characterization 

In-house synthetized hydrophobic CdSe/CdS nanocrystals [102] were used in this work. 

This rod-shaped crystals were 30 nm in length and 5 nm in diameter and diluted in toluene at a 

concentration of cinitial = 7.3 µM, covered by a layer of hydrophobic surfactant, named 

trioctylphosphine oxide. Table 3.1 shows the NRs’ properties and the emission spectrum 

calculated at the selected wavelength (i.e. 488 nm). Their absorption spectrum is continuous 

(Figure 3.2). A process of water solubilization was needed to make the crystals suitable for the 

measurements.  

3.2 Water solubilization of hydrophobic nanocrystals  

The water solubilization process of the nanocrystals is divided in three steps that are 

water transfer, cleaning and subsequent characterization. 

3.2.1 Water transfer 

This step allows covering the hydrophobic sample with an amphiphilic polymer, i.e.  

(poly(maleic anhydride-1-octadecene), abbreviated as C-18P in the following text. C-18P 
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Figure 3.1 Core-shell structure of 
employed CdSe/CdS NRs 
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intercalates between the hydrophobic chains that cover the surface of the NR, showing its polar 

head outward. 

Table 3-1 Properties of the NRs and emission spectra 

Table 3.1 Properties of the NRs and emission spectra calculated at an excitation wavelength of 488 nm.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Emission spectra at 488 nm excitation wavelength and absorption spectra of NRs (inset). 

 

Properties 

 

ICP results (dilution factor 1000) 

Length (l) 33 ± 7 nm Cd 
 

9.8 ppm 

Diameter (d) 5.0 ± 0.5 nm S 
 

2.6 ppm 

Solvent Toluene Se 
 

0.1 ppm 

Absorption wavelength 488 nm NRs concentration 

 

7.3 µM 

 

Emission wavelength 
596 nm 

Figure 3.1 Emission spectra at 488 nm excitation wavelength and absorption spectra of 
NRs Figure 3.2 Emission spectra at 

488 nm for CdSe/CdS NRs 
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Figure 3.3 Water solubilization process of NRs. 

 The full coverage of the crystal with polymer’s polar head allows the solubilization in a 

polar solvent, i.e. water [103]. 250 molecules of C-18P per nm
2 

of NRs’ surface area were 

sufficient to completely cover the NRs. The surface area of the NRs (Arod) was calculated as the 

sum of the lateral area (Alat) adds the 2 base areas (Abase): 

Arod = Alat + 2 ∗ Abase 

Arod = (2 ∗ 𝜋 ∗
𝑑

2
∗ 𝑙) + (2 ∗ ( 𝜋 ∗ (

𝑑

2
)

2
))  = 557,4 nm

2 

whence 

#molecules of polymer = (250 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑛𝑚2
 ∗  557,4 𝑛𝑚2 ) 

= 139350 molecules 

Using a stock solution of polymer in chloroform at a concentration of cstock C-18P = 137 mM, I 

used 100 µL of NRs, ending up with a final concentration of cfinal = 0,2 µM. The final volume 

Vfinal was 

𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙  =  𝑐𝑓𝑖𝑛𝑎𝑙  ∗ 𝑉𝑓𝑖𝑛𝑎𝑙   

𝑉𝑓𝑖𝑛𝑎𝑙 =  
𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

𝑐𝑓𝑖𝑛𝑎𝑙  

;      𝑉𝑓𝑖𝑛𝑎𝑙 =  3,65 𝑚𝐿 

 

30 x 5 nm 

Ultra 
centrifuge 

C-18P in 
water 
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3
Cl NRs in water 
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Figure 3.3 Water solubilization 
process of NRs 
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The volume of polymer stock solution needed was then 

𝑉 =  
#molecules of polymer ∗ 𝑐𝑓𝑖𝑛𝑎𝑙∗𝑉𝑓𝑖𝑛𝑎𝑙

𝑐 stock C−18P 
;     𝑉 = 742 µL 

4 mL of chloroform, 100 µL of NRs, 742 µL of polymer stock solution were then put, in this 

order, in a round-bottom flask (big enough to contain 4 times the volume needed). After a 

proper stirring, the solvent was let to evaporate using a Rotavapor system, setting the 

temperature at 40 °C and evaporation pressure (for chloroform) ≈ 430 mmHg for 1 hour. Once 

the solvent completely evaporated, I added 4 mL of pH 9 borate buffer to re-suspend the 

sample, which was left overnight in an oven at 60 °C, stirring at 220 rpm.   

3.2.2 Cleaning 

The obtained sample was ultra-centrifuged to eliminate the excess of polymer. 

Ultracentrifuge uses high rotation velocities and gradient solutions to separate components of 

different weights in a sample. In my case, I used water solutions with 20, 40 and 60% molar 

content of sucrose to create the gradient. Starting from the bottom of the centrifuge tube: 

 2 mL of 60% sucrose solution 

 4 mL of 40% sucrose solution 

 2 mL of 20% sucrose solution 

 1 mL sample 

Speed, time and temperature were set at 30’000 rpm, 2 h and 4 °C respectively. Once finished, 

the sample was collected with the help of a syringe with a long needle and a UV lamp to see 

the level reached by the sample into the sucrose solution’s gradient. The sample needed to be 

filtered with a hydrophilic filter (200 nm) and then centrifuged at 3000 rpm 5 times in borate 

buffer, until it was completely cleaned. 

3.2.3 Characterization 

 The obtained samples were characterized using different techniques to be sure that the 

process was successful. 
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 Electrophoresis The electrophoresis is the motion of dispersed particles relative to a 

fluid under the influence of a spatially uniform electric field. It needs the use of a gel. 

Prepared using Tris/Borate/EDTA buffer (TBE) 0,5 % buffer and 1 % in weight of 

Agarose, to be poured in a multi-well. The sample was prepared mixing 5 µL of the 

sample to be investigated with 10 µL of water and 5 µL of the synthetic colored dye, 

Orange G [104], negatively charged and usually used to monitor the electrophoresis 

processes.   

 

Figure 3.4 An electrophoresis image showing the result of the hydrophilization process, with the polymer 

represented with the wavelength 480 nm, the nanocrystals with 630 nm. 

 

The sample was put into one of the wells and the instrument was set with a voltage of 

100 V and a current of 400 mA for 45 min. The charged sample moved towards the 

opposite charged pole of the instrument. The smaller is the molecular weight of the 

element, the more the sample runs towards the opposite charged pole. The lightest 

element is the marker (OrangeG MW = 452,38 g/mol), whereas the molecular weight of 

the C-18P is 30000 g/mol. The complex NRs/C-18P will be reasonably heavier. If the 

ultracentrifugation cleaning process was successful, no polymer should be seen between 

Figure 3.4 Electrophoresis 
result of  water 
solubilized NRs 

+ pole + pole 

sample

well 

reference  
well 

 

sample 

well 
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the OrangeG marker and the complexed sample positions. The OrangeG and the 

polymer are visible with 480 nm wavelength: in figure 3.4, left, is clearly visible the 

ending point of OrangeG run, either in the sample and in the reference well (top of the 

image). In the right image, the sample run is visible with 630 nm wavelength. Nothing is 

visible between the position of the sample and the OrangeG: this means that the cleaning 

process was successful and no free polymer is present in the solution. 

 Dynamic light scattering (DLS) With a DLS tool is possible to determine the size 

distribution profile of small particles in suspension (in nm) and their electro kinetic 

potential (or zeta potential, in mV). Samples were diluted in ultrapure water and if the 

value of zeta potential was around -40 and -50 mV, the procedure had a positive result. 

 Transmission electron microscopy (TEM) TEM is a microscopy technique in which a  

beam of electrons is transmitted through a specimen to form an image. It allows 

reaching high magnification factors, and it’s suitable principally for inorganic samples.  

 

Figure 3.5 TEM images showing the CdSe/CdS nanocrystals in toluene. 

 

Figure 3.5 TEM images 
showing the CdSe/CdS 
NRs 
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The TEM investigation was performed initially to confirm the dimensions of the rods 

(30x5 nm), and in second place to understand if the polymer coverage of the NRs was 

successful. The image shows the NRs sample after polymer coating. The absence of a 

fading halo surrounding the sample confirms the positive result of the process. 

 

 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) Inductively coupled 

plasma mass spectrometry (ICP-MS) is a type of mass spectroscopy which is capable of 

detecting metals and several non-metals at concentrations as low as one part in 

1015 (part per quadrillion, ppq) on non-interfered low-background isotopes. This is 

achieved by ionizing the sample with inductively coupled plasma and then using a mass 

spectrometer to separate and quantify those ions. Using ICP results is possible to 

quantify the actual concentration of the sample, starting from the concentrations of the 

single components. The final concentration was obtained using an in-house developed 

software. Taking into account the components of the core, the shape of the particle and 

its dimensions, the elongation direction of the core seeds and imposing the dilution 

factor used during ICP inspection, the final concentration of the hydrophilic NRs was 

CNRs = 7,23 µM. 

3.3 NRs functionalization for the surface charge tuning 

After water solubilization NRs were surface-functionalized with different amounts of NH2-

PEG-NH2 and a tertiary amine (DMEDA), using an EDC cross-linking reaction scheme [105]   

 Figure 3.6 Functionalization process for surface charge tuning of NRs. 

Figure 3.6 Functionalization process for surface charge tuning of NRs 
Stirring Centrifuge 

EDC PEG 
amine 

NRs in water 
PEGylated NRs 

in water 
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in order to tune the superficial charge towards more positive values. EDC, DMEDA, 

PEG and NRs dispersions in water were mixed together and stirred at high speed for 2 hours. 

The excess was then eliminated by centrifugation and the sample was rinsed in PBS 1X 3 times 

(every step lasted for 10 minutes, 3500 rpm).for NRs surface functionalization 

3.4 Polymeric nyle-red encapsulated micelles 

Polymeric nyle-red encapsulate micelles were also employed in the experiments 

involving the cell membranes (Chapter 6). They were fabricated using the same polymer (C-

18P) employed to make the NRs hydrophilic (see chapter 3, paragraph 3.2). They were 

employed in order to eliminate the influence of the semiconductor core from the previously 

employed NRs. Micelles came in two dimensions (60 nm and 300 nm in diameter) with a fixed 

ζmicelles = -24±2 mV. They were made fluorescent by adding nyle-red fluorophore in the 

preparation procedure (see figure 3.7 for the procedure). Nyle-red is a lipophilic stain that 

adsorbs at λ = 560 nm and emits at λ = 630 nm (see spectra in figure 3.8). 

Table 3-2 Ratio of molecules of EDC, PEG or DMEDA per number of NR particles used for the tuning of NRs’ superficial charge 

 

 

 

 

 

Table 3.2 Ratio of molecules of EDC, PEG or DMEDA per number of NR particles used for the tuning of NRs’ 

superficial charge. 

 

 

 

 

 

Sample name ζ (mV) EDC/NRs PEG/NRs DMEDA/NRs 

NR+ +11 5e+05 500 5000 

NR- -24 3e+05 500 1000 

Figure 3.7 fabrication 
procedure of polymeric 
nyle-red encapsulated 
micelles 
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Figure 3.7 Schematic representation of the fabrication procedure of polymeric nyle-red encapsulated micelles. 

 

 

 Figure 3.8 Excitation (blue) and emission (red) spectra of nyle-red fluorophore. Image from 

www.thermofisher.com. 

  

THF PC-18 

+ 

linker 

H
2
O solvent filtering 

nyle-red 

micelles in 

water 

60 nm 

300 nm 

-24 mV 

Figure 3.8 Excitation and emission spectra of nyle-red fluorophore 
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Chapter 4  

Materials and Methods 2: Membranes 

In this chapter, the instrumentation and methods employed during my PhD for the fabrication 

and characterization of lipid model membranes are described. 

4.1 Vesicles preparation 

Powdered palmitoyl-oleoyl phosphatidylcholine (POPC), palmitoyl-oleoyl-

phosphatidylserine (POPS), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (Figure 4.1) were dissolved in 2:1 vol:vol 

chloroform/methanol and stored at –20 °C. Proper volumes of the dissolved lipids were mixed 

in a round bottom glass vial to obtain anionic (-), cationic (+) or zwitterionic mixtures (+/-). In 

detail, I used for unsaturated lipid mixtures: POPC (+/-), POPC/POPS 90:10 (-), POPC/POPS 

75:25 (-), POPC/DOTAP 75:25 (+), POPC/DOTAP 50:50 (+) (all molar ratios). In other 

mixtures, a molar fraction of DPPC with fully saturated alkyl chains was introduced to obtain 

POPC/POPS/DPPC 85:10:5 (-), POPC/POPS/DPPC 80:10:10 (-), POPC/POPS/DPPC 70:10:20 

(-), POPC/DOTAP/DPPC 45:50:5 (+), POPC/DOTAP/DPPC 40:50:10 (+) and 

POPC/DOTAP/DPPC 30:50:20 (+) molar ratio mixtures. The solvent was left to evaporate 

under a gentle nitrogen flux; the vials were then left under vacuum overnight to completely 

eliminate all of the residual solvent. Vials were weighed before and after solvent evaporation in 

order to know the exact total amount of lipids (in mg). The lipids were then re-suspended in 

ultrapure water for mixtures containing DOTAP, and in PBS 1X for the rest in order to obtain 1 

mg/mL lipid dispersions, an amount that is optimal for the vesicle extrusion. Lipids were left to 

hydrate for 20 min then shortly vortexed before being extruded at least 13 times with an Avanti 

Mini Extruder (Avanti Polar Lipids, Inc.) using 100 nm polycarbonate filters (Whatman, USA) 

to form unilamellar vesicles dispersions at a concentration of 1mg/mL of lipid. Extrusion was 

performed at room temperature for unsaturated lipid mixtures and at 60 °C (i.e. beyond the 

saturated chains lipid Tm) for mixtures containing DPPC. Each vesicle dispersion underwent a 

size and ζ characterization in a 1.4 mM PBS solution. Sizes were all similar (≈ 100 nm), ζ for 

every lipid mixture are listed in Table 4.1. 
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Figure 4.1 Chemical structures of the lipids employed to fabricate the lipid models, divided per saturation 

level. 

Table 4-1 ζ in mV of lipid mixtures studied. 

Fluid  lipid mixtures (mol:mol) +/- ζ (mV) 

POPC/POPS 75:25  - -77 ± 3 

POPC/POPS 90:10 - -54 ± 2 

POPC  +/- -23 ± 1 

POPC/DOTAP 75:25  + 13 ± 1 

POPC/DOTAP 50:50 + 49 ± 2 

Phase separated lipid mixtures (mol:mol:mol)  ζ (mV) 

POPC/POPS/DPPC 85:10:5  - -54 ± 2 

POPC/POPS/DPPC 80:10:10  - -54 ± 2 

POPC/POPS/DPPC 70:10:20  - -54 ± 2 

Figure 4.1 Chemical structures of the lipids emplyed to fabricate the 
lipid model 
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POPC/DOTAP/DPPC 45:50:5  + 49 ± 2 

POPC/DOTAP/DPPC 40:50:10  + 49 ± 2 

POPC/DOTAP/DPPC 30:50:20  + 49 ± 2 

 

Table 4.1 ζ in mV of lipid mixtures studied (positive headgroups +, negative headgroups -, zwitterionic 

headgroups +/-). 

4.2 Quartz Crystal Microbalance with dissipation monitoring 

The quartz crystal microbalance with dissipation monitoring (QCM-D) is a tool capable 

to detect a mass variation per unit area by measuring the change in frequency of its quartz 

crystal resonator. The resonance is modified by the mass adsorption or desorption at the surface 

of the acoustic resonator. The QCM-D can be used under vacuum, in gas phase and in liquid 

environments. In liquid, it is highly effective at determining the affinity of molecules (proteins 

in particular) to surfaces functionalized with linking sites. Larger entities such as polymers can 

be investigated too. In my thesis I have exclusively performed experiments in liquid 

environment. 

 Common equipment allows resolution down to 1 Hz on crystals with a fundamental 

resonance frequency of 5 MHz; hence, it is easy to measure mass densities with a sensitivity of 

1 ng/cm
2
. In addition, the dissipation factor is often measured to help analysis. The dissipation 

factor is the inverse quality factor of the resonance, which is the ratio between frequency and 

bandwidth. It quantifies the damping in the system and is related to the sample's viscoelasticity. 

The frequency of oscillation of the quartz crystal is partially dependent on the thickness of the 

crystal. During normal operation, all the other influencing variables remain constant; thus a 

change in thickness correlates directly to a change in frequency. As mass is deposited on the 

surface of the crystal, the thickness increases; consequently the frequency of oscillation 

decreases from the initial value. With some simplifying assumptions, this frequency change can 

be quantified and correlated precisely to the mass change using the Sauerbray equation [106].  
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Quartz crystal 

SiO
2
 surface 

Voltage supply 

 Planar resonators can be operated at a number of overtones. Only odd harmonics can be 

excited electrically because only these induce charges of opposite sign at the two crystal 

surfaces. The best agreement between theory and experiment is reached with planar, optically 

polished crystals for overtone orders between n = 5 and n = 13. On low harmonics, energy 

trapping is insufficient, while on high harmonics, anharmonic side bands interfere with the 

main resonance. The resonance frequency of acoustic resonators depends on temperature, 

pressure, and bending stress. Temperature-frequency coupling is minimized by employing 

special crystal cuts. A widely used temperature-compensated cut of quartz is the AT-cut.  

AT-cut crystals are singularly rotated Y-axis cuts in which the top and bottom half of the 

crystal move in opposite directions (thickness shear vibration) during oscillation. It has 

limitations at high and low temperature, as it is easily disrupted by internal stresses caused by 

temperature gradients in these temperature extremes (relative to room temperature, ~ 25 °C). 

These internal stress points produce undesirable frequency shifts in the crystal, decreasing its 

accuracy. As a consequence the AT-cut quartz crystal is most effective when operating at or 

near room temperature. The quartz crystal is covered by a thin layer of gold, which is the 

substrate actually coming in contact with the sample. It can be customized and covered with 

any kind of material. In my thesis, I used SiO2 covered sensors for the study of the interaction  

 

Figure 4.2 Sketch representing a QCM setup. 

Figure 4.2 Sketch representing a QCM 
setup 
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between nanostructured NPs and proteins with model membranes and gold covered 

sensors for the study of APA substrates. As I will explain in paragraph 4.2.3, the material of the 

substrate is very important for the process of vesicle fusion and the formation of SLBs. A 

typical setup for the QCM-D contains a temperature controller, frequency sensing, an 

oscillation source and a measurement and recording device (Figure 4.2). 

4.2.1 Sauerbrey equation 

The Sauerbrey equation was first derived by G. Sauerbrey in 1959 and correlates 

changes in the oscillation frequency of a piezoelectric crystal with mass deposited on it. He 

simultaneously developed a method for measuring the resonance frequency and its changes by 

using the crystal as the frequency-determining component of an oscillator circuit. It describes 

the frequency shift induced by a thin sample rigidly coupled to the crystal: 

Equation 4-1 Sauerbray equation 

Δm = - C  
𝛥𝑓

𝑛
 

in which Δm is the mass per unit area that is adsorbed on the sensor, C is the coefficient that 

describes the sensitivity of the instrument to changes in mass,  Δf = f-f0 is the shift in frequency 

and n is the overtone number. It should be noted that the coefficient depends on the crystal 

properties which, in the case of a sensor with a resonance frequency of 5 MHz, is C ≈ 17.7 

ng∙cm
-2

∙Hz
-1

.  

4.2.2 Quantification of dissipative processes 

The bandwidth w quantifies those processes subtracting energy from the oscillation. 

These may include damping by the holder and ohmic losses inside the electrode or the crystal. 

The Q-factor (quality factor) is given by  

Equation 4-2 Q factor 

Q = 
𝑓

𝑤
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where f  is the frequency. The “dissipation factor” D, is the inverse of the Q-factor 

Equation 4-3 Dissipation factor 

D = 𝑄−1  = 
𝑤

𝑓
  

and gives information about the viscosity of the adsorbed layer; when this value is in the order 

of ≈ 1x10
-6 

 is possible to consider the layer rigid and the Sauerbray equation can be used to 

quantify the total mass adsorbed. If this value is high Sauerbray equation is not valid and 

alternative methods have to be employed to calculate the adsorbed mass, as the Voigt model 

[107]. 

4.2.3 Vesicles fusion process 

The process of vesicle fusion on solid substrate in order to obtain a SLB is quite 

common. QCM-D is the ideal tool to monitor the formation of a SLB, and it has been largely 

used in the literature for this purpose. In particular, Richter et al. [47] used QCM-D tool to 

underline the differences in this process due to the use of differently charged lipids or substrate; 

they showed that negatively charged vesicles (i.e. mixtures containing serine) present a typical 

trend in the shift in frequency of QCM-D SiO2 sensor.  The initial negative shift in frequency is 

quite big (typically f ≈ 400 Hz for the 7
th

 harmonic) and represents the adsorption of entire 

vesicles, full of water, on the substrate. Also the increase in D factor is big (ΔD > 10
-5

), due to 

the viscoelasticity properties of the entire vesicle.  

This step is followed by an increase in frequency and decrease in dissipation, which 

represents the moment in which vesicle concentration on the sensor’s surface reach a critical 

value at which they fuse in a SLB. The frequency stabilizes at a negative value respect to the 

beginning of the experiment (indicating the adsorption of material on the sensor’s surface) and 

the dissipation factor will reach the zero value, indicating that the adsorbed layer is rigid and all 

the water contained in the vesicles has been released (see figure 4.3 A). On the contrary, 

positively charged vesicles fuse directly in a SLB, as is possible to see in figure 4.3 B, in which 

the frequency decreases monotonically until a stable value is reached, and no changes can be 

Figure 4.3 QCM-D 
representation of the 
formation of different SLBs 
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Figure 4.3 Shift in frequency (up) and dissipation (bottom) for A) negatively and B) positively charged lipid on 

SiO2 covered QCM-D sensors. Taken from [47]. 

 

registered in the D value. Changing the material covering the surface of QCM-D sensor 

will modify the kinetic of vesicle adsorption. As an example, fabricating a SLB by vesicle 

fusion using gold as a substrate is not trivial and other shrewdness have to be employed, such 

as the functionalization of the substrate with self-assembled monolayers of thiols (see attached 

paper). 

4.3 Supported lipid bilayers and QCM-D measurements  

SLBs were obtained on quartz crystals sensors covered with SiO2 (nominal resonance 

frequency of 5MHz) in a KSV QCM-Z500 QCM-D tool (Biolin Scientific, Gothenburg, 

Sweden). Every crystal was cleaned by sonication in a 2% SDS solution for 20 min, then rinsed 

three times with ultrapure water and dried under N2 flow. To remove any organic contaminants 

from the surface, the sensors were placed in a UV/Ozone ProCleaner™ chamber (BioForce 

Nanosciences, Inc., U.S.A.) for 10 min before use.  

A B 
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To prepare the SLB, ultrapure water or PBS 1X buffer was injected into the QCM-D 

measurement chamber until stability was reached. 2mL of the lipid vesicle solution was then 

added at a concentration of 0.1 mg/mL to form a stable SLB. The temperature for SLB 

formation was 22 °C for unsaturated mixtures and 60 °C for mixtures containing DPPC. After 

it reached stability, the temperature of the SLBs containing saturated lipids was set to 22 °C. 

POPC, POPC/POPS 90:10 and POPC/POPS 75:25 (mol:mol ratios) LUVs showed the usual 

SLB formation kinetics after the vesicles had been adsorbed and subsequently fused on the 

SiO2 substrate, the same for mixtures containing DOTAP (compare paragraph 4.2.3). The 

adsorption of entire vesicles on the surface was indicated by a large negative shift in the 

frequency, i.e., Δf7/7 ≈ -72 Hz (where Δf7/7 is the measured shift in frequency relative to the 7
th

 

overtone, normalized by the overtone number), and a dissipation value ΔD ≈ 12e+06. When the 

vesicles started to fuse, the frequency decreased until a stable value was reached (Δf7/7 ≈ -26 

Hz) and the dissipation value was close to 0. The fusion process lasted 40 min. For positively 

charged LUVs, the formation of SLB was faster and there was no adsorption of entire vesicles. 

However, an SLB was directly formed in 20 min, as was indicated by a Δf7/7 ≈ -16 Hz and a 

constant value of ΔD = 0. In the case of SLBs containing DOTAP, there was no full coverage 

of the sensor’s surface, as can be understood by the differences in the Δf7/7 at the end of the 

SLBs’ formation process between POPC/POPS 90:10 and POPC/DOTAP 50:50 (mol:mol 

ratios) (Figure 4.4). 

After SLB formation, unattached vesicles were rinsed in either ultrapure water or PBS 

1X. Frequency and dissipation change measurements were used to confirm the existence of a 

stable SLB (compare paragraph 4.2.3) [45, 47, 108] for further investigation with NPs 

dispersion in water. In the case of POPC/POPS 75:25 mol:mol, POPC/POPS 90:10 mol:mol 

and POPC, whose vesicles were prepared in PBS 1X buffer, a further rinse with ultrapure water 

was necessary. After stabilization and a rinsing step, a solution of NPs in ultrapure water (at a 

concentration of 1 nM for NR-, 5 nM for NR+ and different concentrations for micelles) was 

injected into the measurement chamber. After 30 min, a final rinsing step with ultrapure water 

was carried out in order to remove any non-interactive NPs. Changes in the dissipation value 
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ΔD gave us information about the viscoelastic properties of the adsorbed layer, which is 

considered rigid for a small value of ΔD. For the quantification of the adsorbed mass of NRs, 

the Sauerbrey equation [106] was used. For every measurement, the 7
th

 overtone was 

considered, since it is the most stable among the 11 overtones that were investigated.  

 

 

Figure 4.4 Shift of the normalized 7
th
 harmonic resonance frequency of the QCM-D sensor due to: formation of 

POPC/POPS 90:10 mol:mol SLB (black) and POPC/DOTAP 50:50 mol:mol SLB (red). The single arrow 

represents rinse with ultrapure water, the double arrow rinse with PBS 1X solution. 

 

4.4 Langmuir-Blodgett Trough  

A Langmuir–Blodgett (LB) trough is a laboratory tool that is used to compress 

monolayers of molecules on the surface of a liquid subphase and measure the surface 

phenomena due to this compression. It can also be used to deposit single or multiple 

Figure 4.4 Shift of the normalized 7th 
harmonic resonance frequency of the QCM-D 
sensor due to the formation of POPC/POPS 
90:10 and POPC/DOTAP 50:50 mol:mol SLB 
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monolayers on a solid substrate. The idea of a Langmuir–Blodgett (LB) film was first proven in 

1917 when Irving Langmuir showed that single water-surface monolayers could be transferred 

to solid substrates. 18 years later, Katharine Blodgett discovered that several of these single 

monolayer films could be stacked on top of one another to make multilayer films [109, 110]. 

The LB trough's general purpose is to study the properties of monolayers of amphiphilic 

molecules (e.g. soaps, detergents or lipids). The LB trough allows to prepare a monolayer of 

amphiphilic molecules on the surface of a liquid, and then compress or expand these molecules 

on the surface modifying the molecular density, or area per molecule. 

Figure 4.5 Langmuir-Blodgett trough 

 

Figure 4.5 A Langmuir-Blodgett trough (from: www.biolinscientific.com). 

 

 This is accomplished by filling the trough with a subphase (usually water), spreading a 

amphiphile dissolved in organic solvent over the surface, and then compressing the surface 

with movable barriers. These barriers are typically made from hydrophobic and chemically 

inert PTFE (polytetrafluoroethylene), as the trough, to create a meniscus on them that will aid 

in keeping the molecules inside even in high packing densities.  

http://www.biolinscientific.com/
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An important property of the system is its surface pressure π (the surface tension of the 

pure subphase minus the surface tension of the subphase with amphiphiles floating on surface, 

see equation 1-1) which varies with the molecular area. The surface pressure – molecular area 

isotherm (-A isotherm) is one of the important indicators of monolayer properties.  

 The surface pressure π is usually measured by the Wilhelmy method, which consists of a 

plate partially immersed in the liquid connected to an electronic linear-displacement sensor, or 

electrobalance. The plate can be made of platinum or filter paper presoaked in the liquid to 

maintain constant mass. The plate detects the downward force exerted by the liquid meniscus 

which wets the plate. The surface tension calculated is then plotted versus the area per 

molecule occupied by the single lipid to obtain the π-A isotherm (figure 4.6).  

 

 

 

 

 

 

 

 

Figure 4.6 Example of Langmuir trough output pressure – area isotherm of a monolayer composed by a 

saturated chains lipid, DPPC. 

In my project, NRs behavior with lipid monolayers was studied using a LB trough. 

Figure 4.6 Pressure – area isotherm of a monolayer composed by 
saturated DPPC 
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4.4.1 Compressibility modulus 

The evaluation of the compressibility modulus of the lipid monolayer Cs
-1

 can be used to 

determine how much it is resistant to compression. In general mechanics, it describes the 

increase in density due to the compression of a substance, and it is directly linked to the 

mechanical properties of the substance under study. In the case of LMs it can be easily 

calculated from their π-A isotherm using the first derivative of π on the molecular area that was 

occupied by the lipids (A). It has been defined as [59, 111] : 

Equation 4-4 Compressibility modulus 

Cs
-1

= −𝐴
𝜕𝜋

𝜕𝐴
 

The most practical information that Cs
-1

 gives regards the rigidity of the monolayer: a high 

value of Cs
-1

 indicate that the layer under study is stiff; on the contrary, a low value indicate a 

soft layer. 

4.4.2 Custom made Langmuir trough 

I used a custom made trough. This trough was made in PTFE and designed in order to fit 

on the setup of the mini-trough by KSV NIMA (Bioline Scientific, Sweden) equipped with two  

 

 

Figure 4.7 A) Sketch of the top view of the custom made Langmuir trough used. The central grey part (65 x 50 

mm
2
) is 6 mm deep, while the white part is 2 mm deep. B) Sketch of the frontal view of the custom made trough. 

Objects not in scale. 
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moving lateral barriers for symmetrical compression, with a central part deeper than the 

peripheral ones. The trough was fabricated in PTFE. The initial open area of the trough is 7500 

mm
2
. It is a rectangular trough of 150 x 50 mm, with a central well 65 x 50 mm 6mm deep. The 

two external regions are 2 mm deep (see figure 4.7). This trough was used in order to minimize 

the volume of the water phase and decrease the amount of materials needed to perform the 

experiments (especially the total volume of NPs dispersion). 

Figure 4.7 Sketch of the custom made Langmuir troug 

4.5 Lipid monolayer and surface pressure area isotherms (π-A) 

  The π-A isotherms were performed to investigate the behavior of NRs with lipid 

monolayers. 0.3 mg/mL of lipid solutions were prepared in a 2:1 chloroform/methanol mixture. 

Every solution was stored in the fridge at 4 °C and left at room temperature for a few hours 

before use. To minimize the risk of changes in the lipid concentration due to the fast 

evaporation of the solvent, vials closed with Mininert® Valves 15 mm (by Supelco, Bellefonte, 

PA, U.S.A.) were used. 20 µL of a lipid solution was spread with a Hamilton micro-syringe (10 

µL, by Sigma-Aldrich®) at the air-water interface of an ultrapure water subphase or a NR 

dispersion subphase (the NRs were dispersed in ultrapure water at a concentration of 0.5 nM) 

in the custom-made Langmuir trough. After spreading the solution, the solvent was left to 

evaporate for ca. 15 min. The subphase temperature was 20 ± 2 °C. Compression π-A 

isotherms were then performed at a compression rate of 10 mm/min. 
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Chapter 5  

NPs interaction with model membranes 

In this chapter, the results obtained on the study of the behavior of PEGylated CdSe/CdS NRs 

(which were developed by our group and used in refs [69, 70] and polymeric micelles 

interacting with model lipid membranes are shown. A systematic study of the interaction 

between the NPs using different surface charges and SLBs and LMs is described. The surface 

potential of the model membranes was modulated by changing the membrane composition; 

mixing zwitterionic lipids with cationic or anionic ones (see Table 4-1). The presence of gel 

domains in fluid membranes was also investigated by introducing lipids with saturated alkyl 

chains to the mixtures. Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) 

technique was used to investigate the SLB and LMs were characterized by performing 

pressure-area isotherms (π-A) in a Langmuir trough [112]. The results were also interpreted 

using the DLVO theory. 

5.1 Fluid state SLBs and NRs 

SLBs made pure of unsaturated lipid chains, fluid at room temperature, were tested with 

positively and negatively charged NRs. 

5.1.1 PEGylated NRs 

The NRs’ adsorption to the SLB was monitored as a function of the lipid charge by 

employing fluid state bilayers. The NRs’ behavior was also tested on bare SiO2 substrates, and 

we discovered that the NR+ were adsorbing on the solid substrate, whereas NR- did not interact 

with the sensor’s surface (Figure 5.1). 

 After the formation of SLBs, the interaction with both NRs was systematically tested. 

After the interaction of NRs with SLB (ΔDNR- ≈ 0.5e+06, ΔDNR+ ≈ 2.5e+06), ΔD values were 

low enough to consider the system as a rigid layer, allowing the Sauerbray equation [106] to be 

used to calculate the adsorbed mass. 
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Figure 5.1 Shift of the normalized 7
th
 harmonic resonance frequency of the SiO2 QCM-D sensor due to the 

adsorption of NR+ (black line) on bare SiO2 sensor. NRs- didn’t interact with the sensor’s surface (red line). The 

arrow indicates the rinse with ultrapure water. 

Figure 5.2 shows the mass of the NRs that was adsorbed on the SLBs as a function of 

the amount of charged lipids that are present in the mixture. NR- was adsorbed on a positively 

charged SLB only when the molar percentage of DOTAP in the preparation mixture was 50%. 

In this case, the difference between the ζ measured for the lipid vesicles that were used for the 

SLB formation and the ζ measured for the NRs was │Δζ(POPC/DOTAP 50:50 – NR-)│≈ 73±2 mV (see 

Figure 5.3 A). In all other cases, no interaction was observed. NR+, however, was adsorbed on 

the anionic SLB in the presence of a POPS molar content as low as 10%, showing a Δζ of 

│Δζ(POPC/POPS 90:10 – NR+)│= 65±2 mV. Increasing the molar percentage of the anionic lipid did 

not increase the adsorbed NR+ mass (ca. 400 ng/cm
2
), which apparently reached a saturation 

value (Figure 5.3 B). Using a SLB with a molar content of POPS of 25%, after the NR+ 

adsorption phase (corresponding to a frequency decrease) that lasted ca. 30 min, an increase in 

the frequency shift was registered, while the dissipation value remained constant. This was 

interpreted as a removal of lipids from the substrate surface. It’s important to underline that no 

adsorption of either NR- or NR+ (Δm ≈ 0) on the zwitterionic lipid bilayer (0% molar of 

Figure 5.1 Interaction of NRs with bare QCM-D sensor 



42 
 
 

charged lipids, pure POPC, ζ = -23±1 mV) was registered: the absolute value of the difference 

between the ζ of the lipids and the ζ of the NRs (│Δζ(POPC – NR)│) is 1±1mV for NRs- and -34±1 

mV for NR+. A small decrease in the frequency was also observed for the NR+ that interacted 

with the positive SLB (both 25% and 50% of DOTAP). This negative Δf is due to the 

adsorption of NR+ on the bare SiO2 surface, phenomenon happening in the substrate areas that 

are not covered by the bilayer, as was previously mentioned.  

 

Figure 5.2 Mass adsorbed per unit surface area (Δm) on SLBs due to the interaction of NRs with lipids. Δm is 

plotted versus the molar percentage of charged lipid in the different lipid mixtures employed. The corresponding 

ζ is plotted as the top x-axis for clarity. Red circles represent the mass of positively charged NRs with SD, the 

blue squares represent the same for negatively charged ones. The sigmoid curves (dotted lines) have been plotted 

so that the correlation between the data points can be easily identified. 

Increasing the DOTAP molar percentage in the vesicles, the SLB coverage on the 

sensor’s surface was so small that both NR+ and NR- interacted producing a similar frequency 

down-shift (data not shown): the NR+ was adsorbed on bare SiO2 and the NR- was adsorbed by 

the positive membrane.  

Figure 5.2 Mass of NRs adsorbed on SLBs vs the molar 
percentage of charged lipid in the mixture 
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Figure 5.3 Frequency shift of all measured overtones (from 3
rd

 to 11
th
) for A) POPC/POPS 90:10 mol:mol SLB 

interacting with NR+ B) POPC/DOTAP 50:50 mol:mol SLB interacting with NR-. 

NR-. 

Summarizing the results,  in order to observe an interaction between NRs and fluid state 

SLBs, not only does the charge of the two objects have to be opposite in sign but a certain 

│Δζ(SLB – NR)│value has to be overcome, e.g., ≈ 70 mV. For lower differences in ζ, no 

interaction occurs in the cases in which an electrostatic interaction is to be expected (e.g. in the 

case of POPC/DOTAP 75:25 mol:mol with NR-,  (│Δζ(SLB – NR)│= 37±1 mV and of POPC with 

NR- (│Δζ(SLB – NR)│=34±1 mV ). 

5.1.2 Polymeric micelles 

 Micelles (that came only with negative surface potential, similar to NR-) were tested 

with positively charged POPC/DOTAP 50:50 mol:mol SLB. It was observed that a minimum 

concentration of 5 µM for the small micelles and 25 µM for the large ones was necessary to 

register an interaction. This concentration is related to the amount of polymer present in the 

solution, and not to the total number of micelles. In both cases, after an initial phase of 

Figure 5.3 QCM-D curves representing the interaction 
between POPC/POPS 90:10 and POPC/DOTAP 50:50 SLB 
and pegylated NRs 

A
) 

B 
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adsorption that lasted for 1 h and 30 min, the micelles destabilized the system leading a 

detachment of lipids from the surface of the sensor, as it is possible to see from Figure 5.4. 

 These concentrations were then used as reference value for the testing with cell lines in 

vitro. 

 

Figure 5.4 Example of micelles behavior with fluid state positive SLB. Small micelles (diameter = 60 nm) are 

taken into account in this experiment. 

 

5.2 Phase segregated domains SLBs and NRs 

After the investigation of the simplest model, made only by lipids that are fluid at the 

room temperature, the system was made more complex adding saturated chains lipids to mimic 

the presence of the lipid rafts in the membrane, introducing gel phase domains with different 

physical properties (especially mechanical) from the fluid bulk. Even the presence of a small 

amount of saturated lipid in the mixture drastically changed the way in which NRs and lipids 

interacted. The mixtures that interact with the oppositely charged NRs - as in the unsaturated 

Figure 5.4 Polymeric micelles interacting 
with positive SLB 
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mixture study - were modified. 5, 10 and 20% mole of the unsaturated zwitterionic lipid (i.e., 

POPC) was substituted with a saturated chains lipid with the same hydrocarbon chain length 

(i.e., DPPC), and the charged lipid molar fraction was kept constant (10% molar POPS or 50% 

molar DOTAP for anionic and cationic SLB). DLS measurements showed the same ζ values 

for unsaturated and saturated lipid mixture vesicles at equal anionic/cationic lipid contents 

(Table 4-1). However, the interaction with the NRs was different in both cases. Figure 5.5 

shows the mass of NRs that was adsorbed on the anionic and cationic SLBs, interacting with 

NR+ and NR- respectively, as a function of the molar percentage of DPPC. In both cases, the 

amount of NRs that were adsorbed significantly reduced, and quite in the same amount, when 

DPPC 5 and a 10% molar content were present. No adsorption was registered for a 20% molar 

content of DPPC. All these data were collected at 22 °C, a temperature at which DPPC is in a 

solid phase but segregates into a gel phase domain in the fluid lipid matrix that is constituted by 

POPC and POPS or DOTAP [113].  

 

Figure 5.5 Normalized mass of NRs adsorbed on SLBs (Δm) versus the molar percentage of the saturated DPPC 

in the lipid mixture. Anionic lipid were tested with NR+ (red line), cationic lipid mixtures with NR- (blue line). 

Figure 5.5 Mass of NRs adsorbed on 
phase separated SLBs versus the molar 
percentage of saturated DPPC in the 
mixture 
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These results indicate that not only the charge of the system drives the interaction 

between the lipid membrane and the NRs, but the membrane composition also plays an 

important role, since even a small quantity of saturated chain lipids can modify the mechanical 

properties of the fluid state bilayer creating stiffer zones made of lipids with more compacted 

hydrophobic chains mimicking the so called lipid rafts in the natural membrane [114], thus 

inhibiting the interaction with the NRs.  

5.3 LMs and NRs 

The experiments on SLB were complemented with measurements on LMs on identical 

systems. Therefore, LMs different in composition were tested with opposite in charge 

PEGylated NRs. The influence of gel phase domains on the interaction was investigated as 

well. 

5.3.1 π-A isotherms for PEGylated NRs 

Having in mind the QCM experiments results, π–A air-water isotherms were performed 

on the same lipid mixtures that showed a stable interaction with NRs of opposite sign, i.e. 

POPC/POPS 90:10 and POPC/DOTAP 50:50 (mol:mol ratios) mixtures with NR+ and NR-, 

respectively. Mixtures containing 10% molar DPPC were also investigated. In Figure 5.6, the 

isotherms obtained from the NR subphase are reported and compared to the isotherms in 

ultrapure water. Four different subsequent isotherms were carried out for each sample. 

POPC/POPS 90:10 mol:mol had a larger lift-off area per molecule (Amol) than POPC/DOTAP 

50:50 mol:mol (120 vs 70 Å
2
/molecule). The collapse pressures (πcol) were 47 and 49 mN/m, 

respectively. In the presence of DPPC, the lift-off Amol was similar for both the anionic and the 

cationic mixtures (≈ 90 Å
2
/molecule), whereas the πcol were 42 mN/m for the anionic and 35 

mN/m for the cationic mixture. In the case of POPC/POPS mixtures, the presence of NR+ in 

the water subphase led to a left-shift of the isotherm, which was more pronounced for each 

subsequent compression. The lift-off Amol progressively changed from 120 to 110 Å
2
/molecule 

during the subsequent compression cycles, indicating that NR+ strongly interacts with the lipid 
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head-groups. NR+ alone did not cause any increase in the surface pressure (as NR-), as is 

shown in Figure 5.7. The left-shifted isotherms and the lower collapse π with respect to the 

previous curves might indicate a complexation of the serine head-groups with the PEGylated 

NRs and a progressive removal of lipid molecules from the surface, as is shown in the sketch 

(Figure 5.6 A).  

Figure 5.6 π –A isotherms of lipid monolayers interacting with surface functionalized NRs. A) 

POPC/POPS 90:10 mol:mol B) POPC/DOTAP 50:50 mol:mol C) POPC/POPS/DPPC 80:10:10 mol:mol:mol 

and D) POPC/DOTAP/DPPC 40:50:10 mol:mol:mol. Black: lipid mixtures in an ultrapure water subphase. Red, 

green, blue, cyan represent the first, second, third and fourth compressions, respectively, in the NR dispersion 

subphase. 

Figure 5.6 π–A isotherms for NRs+ 
and NRs- in water subphase 
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As in the case of the QCM-D experiments, a strong interaction between NR+ and 

POPC/POPS 90:10 mol:mol occurred. However, in the case of SLB, the destabilization of the 

membrane was observed only at a higher POPS content, and this is associated to the lipid 

removal from the sensor surface. This could be an indication that 1) the ζ of the SLB system is 

not exactly the same as that of the monolayer due to possible asymmetries [115]; 2) 

theinteraction in the QCM-D experiment occurs after the SLB has already formed.  

 

The molecular packing could hinder the interaction, considering that the typical surface 

pressure of a lipid bilayer is πbilayer ≈ 30 mN/m [57], whereas the initial pressure is 0 mN/m in 

the case of the LMs. For the anionic mixture containing 10% molar of DPPC (Figure 5.6 C), 

the left-shift of the isotherm is very small but still appreciable, which is in agreement with the 

QCM-D measurements. In this case, less NR+ adsorbed on the bilayer: NRs are attracted by the 

oppositely charged lipids towards the surface but the lateral packing between the lipid  

molecules prevents the insertion of polymer coated NRs between the lipids. 

 

Figure 5.7 π–A isotherms for NRs+ and NRs- in water subphase. POPC/DOTAP 50:50 mol:mol isotherm is 

shown as a reference. 

Figure 5.7 π –A 
isotherms of lipid 
monolayers 
interacting with 
surface 
functionalized 
NRs 
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 For cationic monolayers, the interaction with NR- causes a progressive right-shift of the 

isotherms upon subsequent compressions, suggesting that the NR- (or of their polymer coating) 

interacts with the lipids and causes an increase in the area per molecule (Figure 5.6 B) (the lift-

off area increases from 70 to 95 Å
2
/molecule during four subsequent compressions). As in the 

previous case, this effect is strongly hindered by the presence of DPPC (Figure 5.6 D), and only 

a negligible right-shift of the isotherm is visible at low surface pressure.  

As in the QCM-D measurements, the monolayer isotherms were greatly modified in the 

presence of PEG-amine functionalized NRs in the case of unsaturated lipid mixtures, while 

very small changes in the mixtures containing DPPC were detected.  

5.3.2 Compressibility modulus evaluation 

 The most relevant changes in the investigated parameter took place in the unsaturated 

lipid mixtures: in the presence of pegylated NRs, the monolayer becomes softer for 

POPC/POPS 90:10 mol:mol LM (a decrease in the compressibility modulus (Cs
-1

) can be seen 

in Figure 5.8A) but it becomes more rigid for POPC/DOTAP 50:50 mol:mol (an increase in the 

Cs
-1

 can be seen Figure 5.8B). The differences in the Cs
-1 

in the presence of DPPC were 

practically negligible, as is to be expected (see Figure 5.8 C and D). The softening of the 10% 

molar POPS mixture confirmed the presence of fewer molecules at the interface. The 

interaction takes place at a low π and it is represented by a change in the curve trend in the 

window between 0 and 9 mN/m: instead of the Cs
-1 

growing in a monotone manner, as it does 

in the ultrapure water subphase case (in black), it shows a local maximum at 4mN/m followed 

by a minimum at 9mN/m in the NR+ dispersion subphase (in red). The presence of a local 

minimum at 9 mN/m is an indication of a possible phase transition in the system; at higher π 

the trend was similar to the curve obtained on ultrapure water, but at a slightly lower values.  

As a result of the decreasing number of molecules at the interface, it was not possible to 

reach a collapse value in the NR+ dispersion subphase. Adding DPPC to the mixture, the local 

minimum at 9 mN/m was less pronounced and, at a higher π, the curve was identical to the 

curve on the ultrapure pure water subphase. This result agrees with the QCM-D measurements, 
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which demonstrated that the presence of DPPC hindered the interaction between the NRs and 

the lipids. Regarding the POPC/DOTAP 50:50 mol:mol mixture, no considerable differences 

were registered between the curve obtained in the presence or in the absence of NR- in the 

subphase when a low surface pressure range (π = 0-13 mN/m) was used (there was a decrease 

in Cs
-1 

of ≈ 5 mN/m).  

 

Figure 5.8 Compressibility modulus of LMs Cs
-1

 versus their surface pressure π. Black: LMs in ultrapure water 

subphase. Red: LMs in NR dispersion subphase. A) and C) are anionic mixtures with NR+, B) and D) are 

cationic mixtures with NR-. All lipid compositions are in molar ratio.  

Figure 5.8 Compressibility 
modulus of LMs Cs-1 versus 
their surface pressure π 
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However, when higher pressures were reached, Cs
-1 

in presence of NRs is higher, 

indicating an increase in the rigidity of the monolayer due to the insertion of NR- 

functionalization molecules between the lipids. When DPPC was added to the mixture, values 

at very low pressures (π = 0-4.5 mN/m) and high pressures (π = 16.5-33 mN/m) remained 

unchanged. There were small differences in the middle range of pressures of about 8 mN/m, 

which is comparable with the decrease registered in the unsaturated mixture. 

5.4 DLVO theoretical model 

The Derjaguin, Landau, Verwey and Overbeek (DLVO) theory explains the aggregation 

of aqueous colloidal dispersions and describes the forces of interaction between a charged 

surfaces. DLVO theory is routinely applied to predict the colloidal stability of NP dispersions 

by summing the electrical double layer of two surfaces and the Van der Waals interaction. A 

particle-plate interaction model to describe the interaction between NPs and a lipid bilayer was 

used, following the approach described by Mikelonis et al. [116]. The electrostatic interactions, 

which can be described by a screened Coulomb potential, dominate at large separation distance 

and are sensitive to the electrolyte concentration; the van der Waals interaction dominates when 

the gap between the surfaces is small. The size of the particle was set to the average 

hydrodynamic size of the NRs. ζ values for the supported lipid membrane (which were 

estimated by the corresponding values that were obtained for liposomes in bulk, see Table 4-1) 

and NRs (measured, see Table 3-2) were used. The electrostatic interaction was calculated at a 

constant potential or constant charge approximation according to the following equations: 

Equation 5-1 DLVO constant potential approximation 

Equation 5-2 DLVO constant charge approximation 

V𝑅,𝑝𝑓,𝐶𝐶  =  𝜋𝜀0𝜀𝑟𝑎𝑝 {2Ψ𝑑𝑓
Ψ𝑑𝑝

ln [
1 + 𝑒(−𝜅𝑠)

1 − 𝑒(−𝜅𝑠)
]

− (Ψ𝑑𝑓
2+ Ψ𝑑𝑝

2) ln[1 − 𝑒(−2𝜅𝑠)]} 

(5.1) 

https://en.wikipedia.org/wiki/Boris_Derjaguin
https://en.wikipedia.org/wiki/Lev_Landau
https://en.wikipedia.org/wiki/Evert_Verwey
https://en.wikipedia.org/w/index.php?title=Theodor_Overbeek&action=edit&redlink=1
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V𝑅,𝑝𝑓,𝐶𝑃  =  𝜋𝜀0𝜀𝑟𝑎𝑝 {2Ψ𝑑𝑓
Ψ𝑑𝑝

ln [
1 + 𝑒(−𝜅𝑠)

1 − 𝑒(−𝜅𝑠)
]

+ (Ψ𝑑𝑓
2+ Ψ𝑑𝑝

2) ln[1 − 𝑒(−2𝜅𝑠)]} 

(5.2) 

Equation 5-3 Gouy-Chapman model for surface potential 

Ψ =  
4𝑘𝐵𝑇

𝑧𝑒
tanh−1 (tanh (

𝑧𝑒𝜉

4𝑘𝐵𝑇
) ⨯  𝑒−𝜅𝑑) 

(5.3) 

Equation 5-4 Van der Waals interaction 

     V𝐴,𝑝𝑓 =  
𝐴𝑎𝑝

6𝑠
 (1 +  

14𝑠

𝜆
)

−1

 
(5.4) 

 

Equation (5.1) holds in the case of constant potential approximation. Equation (5.2) was used to 

model the constant charge approximation [116]. Equation (5.3) was used to convert the 

measured ζ into an estimated surface potential using the Gouy-Chapman model. In each of the 

formulae, ε represents permittivity, ap represents the particle size, s represents the separation 

distance, Ψ represents the surface potential, κ represents the Debye length and 𝜉simbolized the 

zeta potential of the NP. 

The van der Waals interaction dominates when the gap between the surfaces is small. It 

is also rather insensitive to the concentration of the electrolytes, and it is obtained by using the 

Hamaker theory (see equation (5.4), in which s represents the separation distance, A is the 

Hamaker constant, and λ is the characteristic wavelength of the interaction). Typically, a value 

of 100 nm is used for λ [117].  

The value of the Hamaker constant is a source of uncertainty in the van der Waals 

energy calculation. In literature, the Hamaker constant of the core material is often used, 

regardless of the outer stabilizing agent [118, 119]. On the other hand, it is recognized that 

steric and electro-sterically stabilized particles require a different effective Hamaker constant. 
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Here, the Hamaker constant was set to 1.62 10
-20

 J, and was calculated as (A11A22)
1/2

 in which 

A11 is the Hamaker constant value for the PEG-H20 interaction (7.2 10
-20

 J) [120] and A22 is the 

Hamaker constant for the lipid bilayer interaction (3.65 10
-21

 J) [121]. All the calculations have 

been performed using the Igor Pro, Version 6.1, Wavemetrics platform. 

5.4.1 DLVO simulations 

The interaction between charged NPs and lipid bilayers of various compositions was 

simulated in the DLVO approximation, and an interaction between a flat plate and a particle 

was considered [116]. Among the different DLVO approximation methods (constant potential, 

constant charge, linear superimposition approximation), we chose to use a linearized Poisson-

Boltzmann approximation at a constant potential or constant charge between the flat plate and 

the particle. The results are displayed in Figure 5.9. The interaction energy profiles showed that 

NR+ (Figure 5.9 A) are attracted by negatively charged bilayers (i.e., POPC/POPS mixtures). 

The interaction is strongest for POPC/POPS 75:25 mol:mol, which is the membrane with the 

most negative ζ. Repulsion is predicted between NR+ and POPC/DOTAP. These results are to 

be expected, and they are in line with the experimental findings (i.e. with the QCM-D results 

which showed NR accumulation and interaction with LM). However, the model also predicts 

an attraction to a POPC bilayer, which is different from what was experimentally observed. 

Therefore, in this case, the repulsive interaction that occurs is higher than the one that was 

predicted by the model. The same holds for the mirror system, in which NR- interacts with 

positive membranes (Figure 5.9 B): for both the highly positive lipid system (POPC/DOTAP 

50:50 mol:mol) and the most negative lipid system, attraction and repulsion were predicted, 

respectively, but the model failed to predict the experimental results for the intermediate case 

(i.e., POPC/DOTAP 75:25 mol:mol). When the potential barrier is low, the data is in 

accordance with the predictions only using an approximation different from the constant 

potential one, i.e. in the model of constant charge approximation, which however overestimates 

the potential barrier [116]. The results indicate that an additional repulsive potential such as a 

steric interaction and/or hydration force [122] plays a role in the short-range NR/lipid 

interaction. The non-DLVO interactions are enhanced when saturated chains are present in the  
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Figure 5.9 Simulations of the lipid bilayer – nanoparticle interaction in the DLVO approximation at constant 

potential. A) The interaction of NR+ with the membrane of different compositions is attractive for POPC/POPS 

75:35, POPC/POPS 90:10 (mol:mol ratios) and for the zwitterionic POPC; repulsion is obtained for a positive 

membrane POPC/DOTAP 75:25 mol:mol B) The interaction of NR- is attractive in the case of lipid bilayers 

containing DOTAP and repulsive for a zwitterionic POPC membrane. 

 
Figure 5.9 
Simulations of the 
lipid bilayer – 
nanoparticle 
interaction in the 
DLVO 
approximation at 
constant potential 
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membranes and in the associated DPPC gel domains, as is clear from the QCM-D and 

Langmuir results. It should be noted that the ζ of the lipids applied in the model calculation is 

measured from the vesicle dispersion therefore it might not represent the actual potential of the 

bilayer, for instance, due to pure geometrical reasons or to an internal rearrangement of the 

charged lipids, resulting in an asymmetric bilayer. Further, equations (5.1) and (5.2) hold for 

spherical particles. 

5.5 Conclusions 

 In the first part of my PhD project, I investigated the interactions between negative NRs 

(NR-, ζ=-24 mV), amphiphilic polymer coated micelles (ζ=-24 mV) and positive NRs (NR+, ζ 

= +11 mV) and lipid model membranes made of POPC, POPS, DOTAP and DPPC mixed at 

different molar ratios as a function of the membrane charge and gel phase presence. 

The majority of literature on this topic [55, 76-78] concentrate on the interaction of spherical 

nanoparticles with cellular or model membranes; my investigation offers information on the 

interplay between nanorods and membranes, of which there has been little to date. 

Supported lipid bilayers and lipid monolayers, either in a fluid phase or in the presence of 

gel phase domains, and lipid multilayers were considered as models. The results have indicated 

that there is a fine interplay between the properties of the PEG-amine complex that was used 

for the functionalization of the NRs and the lipids.  

 In fluid phase bilayers the difference in the zeta potential between the bilayer and the 

nanoparticle (PEG-functionalized NRs and polymeric micelles) drives the interaction. It occurs 

only when a difference of at least 70 mV exists (POPC/POPS 90:10 mol:mol with positive 

NRs, POPC/DOTAP 50:50 mol:mol with negative NRs and micelles). Svedhem et al. [78] 

performed a similar study on fluid state lipid bilayers with different compositions and 

superficial charges, observing that the interaction of un-functionalized spherical TiO2 

nanoparticles is modulated by the charge of the lipid system. Comparing the results with those 

obtained with neuronal cultures [70], also in that case (in which only highly negatively charged 

NPs were interacting with the membrane) the interaction was allowed beyond a zeta potential 
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threshold. Neurons have been known to have action potential, varying their membrane potential 

from highly negative to positive values. Probably, during this dynamic change and when the 

membrane potential turns positive, the NPs interact. Here, we calculated this threshold using a 

model system. In the next chapter, I’ll investigate the behavior of the above mentioned NPs 

with different cell lines to compare with the models.  

 According to the DLVO simulations, however, adsorption is also expected for lower 

values. Therefore, non-DLVO terms play a role in the interaction, which is not purely driven by 

electrostatic and van der Waals forces. This is further supported by the observation that a molar 

content of saturated lipids as small as 5% severely decreases the amount of NRs that are 

adsorbed on the bilayer, although the overall charge is constant. Granick et al. [80] explained 

the correlation between the presence of nanoparticles and the change in head-groups in lipid 

vesicles, inducing gelation in fluid membranes or fluidizing full gel state ones. In our case, the 

steric hindrance, which occurred due to the nano and micro gel phase domains, might inhibit 

the interaction, thus preventing adsorption and state modifications. Again, we can speculate on 

our results as an explanation of the non-interaction between NPs and glial cells, which can be 

modeled by our static negatively charged lipid bilayer. In the presence of gel phase domains 

low or even no interaction was registered, as in the glial cells [70]. This can explain that a 

situation of dynamic potential changes is necessary to induce the adsorption on NPs onto the 

membrane, as it happens during the action potential of the neurons.  

 The lipid monolayer investigations indicate that either a removal of lipids or an 

accumulation of NRs at the interface may occur, regulated by the PEG-amine/lipid group 

interaction. This finding highlights the importance of the polymer coating for fine tuning the 

interaction, which is in line with literature. Barros-Timmons at al. [81] investigated the 

behavior of lipid monolayers with coated NPs and with the coating alone. They showed that 

when there is an interaction with an oppositely charged NP, the functionalization alone will 

induce the same reaction. In these experiments, removal and accumulation events were 

confirmed by an evaluation of the monolayer’s compressibility modulus, which showed 

variations in the rigidity of the system due to the interaction with the NRs, i.e. softening in the 
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anionic monolayer interacting with positive NR and stiffening for cationic monolayers with 

negative particles. Furthermore, we confirmed the inhibition of these phenomena due to the 

presence of saturated chain lipids in the mixture. This suggests that other properties, such as the 

rigidity of the lipid systems, are also important in preventing/allowing NR-membrane 

interaction. The results of the DLVO simulation fully support this fact, since they demonstrate 

that the interaction is not explained by only considering the electrostatic and van der Waals 

forces. Therefore, in order to predict and tune the application of NPs, a fine tuning of the 

membrane/NP interface is necessary in terms of the overall charge and mechanical properties.  

 During my experiments with synthetic model membranes, NPs were dispersed in pure 

water. This could be seen as a simplification that could lead too far from the biological studies 

(in cell medium, the presence of ions and proteins could interfere with the interactions NPs-

membrane [123, 124]). Initially, tests started with NPs dispersed in PBS 1X and TRIZMA 

buffer (from Sigma Aldrich), but no interaction was registered with any system (data not 

shown). Realistically, the ions present in the buffers caused a shield-effect for the superficial 

charge of the NP, which was not enough to trigger an interaction. The purpose of this work was 

to analyze the behavior of the system membrane-NPs related to the charge properties, so we 

decided, at least for the synthetic model part, to use only pure water to prepare NPs dispersions. 
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Chapter 6  

NPs interaction with cellular membrane 

In this chapter, the results obtained on the interaction between three different cell lines and NPs 

are shown. After the study of the interaction on static potential model membranes and NPs, 

described in the previous chapter, I investigated the interaction between the same NPs and 

different cell lines (having either static or dynamic membrane potential) to better understand 

the role of the surface potential in short-term interactions, avoiding long time of  interaction 

which would imply possible endocytosis. The cell lines employed are: primary postnatal 

hippocampal mouse neurons, mouse neuroblastoma (N2a) and Chinese hamster ovary (CHO) 

cells. Neurons are known to be characterized by the so called action potential, an electrical 

spike that changes the membrane potential from negative resting values to more positive ones 

[125, 126] (Figure 6.1). N2a is a peculiar cell line capable to differentiate into neuronal-like 

cells in certain condition (i.e., if incubated 48 h in retinoic acid [127]). Once differentiated, 

they show action potential as neuron, although weaker [127]. 

 

Figure 6.1 Action potential sketch, with representation of ionic channels role in every step. Taken from 

hyperphysics.phy-astr.gsu.edu. 

Figure 6.1 Action 
potential 
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CHO is an epithelial cell line, with a static negative membrane potential. All this cell lines were 

incubated with NRs and polymeric micelles, and investigated by scanning laser confocal 

microscopy technique. Tetrodotoxin (TTX) neurotoxin was used to disturb the natural behavior 

of neuronal cells, inhibiting the action potential. TTX is a potent marine neurotoxin (see figure 

6.2) naturally carried by some species like pufferfish or porcupinefish and infecting bacteria as 

Pseudoalteromonas, TTX is responsible for many human intoxications and fatalities every 

year:  it inhibits the sodium channels inducing paralysis, and in many cases heart failure and 

consequently death. 

 

Figure 6.2 Tetrodotoxin chemical structure (from https://pubchem.ncbi.nlm.nih.gov/). 

 There is no known antidote for this toxin. Due to its paralysis effects, it could be used in 

medical fields as analgesic to treat cancer pains [128]. In my work, it was used to inhibit the 

action potential spikes in neurons. 

6.1 Sample preparation  

The sketch in figure 6.3 describes the procedure of sample preparation. For every cell 

culture coverslip, the short-term incubation with the NPs was limited to 5 min, depositing a 

drop of 300 µL of NPs dispersion in cell culture medium. In the case of measurements with 

TTX neurotoxin, TTX was diluted at a concentration of 1 µM in the culture medium. The 

Figure 6.2 Tetrodotoxin 
chemical structure 

https://en.wikipedia.org/wiki/Pseudoalteromonas_tetraodonis
https://pubchem.ncbi.nlm.nih.gov/
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concentration of the NPs dispersion was different for every NP, but in most cases corresponded 

to the smallest amount needed to observe an interaction with the model membranes (Table 6.1).  

Figure 6.3 Sketch representing the procedure of incubation of NPs with cell lines and sample preparation for 

confocal microscopy investigation. 

Table 6-1 Concentration of every NP employed in the experiments with cells 

 

Table 6.1 Concentration for every NP employed in the study with cell lines. The concentration indicated for 

micelles refers to the total amount of polymer. 

 

 After the incubation, the coverslips were rinsed in PBS 1X two times to remove the 

excess of NPs and the cells were fixed using paraphormaldheyde (PFA) 4%, 25 min for 

neurons and 15 for the other cell lines. 

PFA was then rinsed 3 times using PBS 1X and the coverslip was mounted using DAKO 

(Agilent, California) as a mounting medium. To avoid interference with the spontaneous NRs 

fluorescence in the 520-590  nm range, no  nuclei marker, such as DAPI, was employed, since 

it emits in the same spectral range. 

NP concentration 

NRs 5 nM 

Micelles 60 nm 5 µM 

Micelles 300 nm 25 µM 

Figure 6.3 Cell/NP 
sample preparation 

NPs incubation 

PBS  
rinsing Fixing Mounting w/ 

DAKO 

15 - 25  
min  

X 2  

PBS  
rinsing 

5 
min  

X 3  
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6.2 NPs interacting with cell lines: confocal microscopy investigation 

Cells fixed after interaction with NPs were investigated by laser scanning confocal 

microscopy, using a Nikon A1 confocal microscope. Every image was captured using a 60X 

oil-immersion objective lens. Cell/NP interaction occurs if NPs could be find at the plasmatic 

membrane: no other marker was present in the sample, so cell membrane detection by laser 

scanning is possible only  due to the presence of NPs. Due to their spectral emission properties 

(see Chapter 3) NRs were detected using 488 nm laser, whereas micelles using 560 nm laser. 

For every cell group coming from the same dissection/culture, a control sample was used to 

find the limit of laser power at which no auto-fluorescence was detected. Control images were 

captured with 488 nm laser in order to obtain the parameters for the NRs/cells samples 

investigation, 560 nm laser was used for the control images of micelles/cells samples. 

Negatively charged micelles, negative and positive NRs were tested with these cell lines; for 

neurons, a gradient of charged NRs varying from -50 to +20 mV was tested. 

Figure 6.4 shows the results obtained using cell lines with negative NRs and 60 nm 

micelles. 60 and 300 nm micelles behaved in the same way (data not shown).  As it is possible 

to see, negatively charged NRs (-50 mV) and micelles (-24 mV) interacted with neurons and 

differentiated N2a, whereas no interaction was detected for non-differentiated N2a and CHO 

cell lines. As stated in the chapter introduction, neurons and differentiated N2a are 

characterized by the presence of action potential spikes, during which the trans-membrane 

potential (difference in the distribution of charged ions between extra and intracellular 

environment) changes from resting negative values toward positive values (i.e. from -70 to +30 

mV [126]); instead, non-differentiated N2a and CHO cell lines have a static negative trans-

membrane potential (around -50 mV [129]). The dynamically driven trans-membrane potential 

of the first two groups of cells is the most relevant difference with the other two cell lines, and 

it seems to drive the interaction with the cellular membrane. Positively charged NRs (+20 mV) 

did not interact with any cell lines. 
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In agreement with the results obtained for model membranes described in chapter 5, also 

for cells in vitro, it is necessary to overcome an electrical threshold in order to observe an 

interaction between NP and the cell membrane. Neurons were tested with a gradient of charged 

NRs, i.e. -50, -18, -8, +8 and +20 mV, obtained changing the amount in EDC and DMEDA in 

the procedure of surface functionalization of NRs (see chapter 3, paragraph 3.3). 

 

 

Figure 6.4 Confocal images of neurons, differentiated and non- differentiated N2a and CHO interacting with 

negatively charge NRs and polymeric micelles. Scalebar: 50µm. 

 

  

Figure 6.4 Confocal images of cell lines interacting with NPs 
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The results are shown in figure 6.5: a strong interaction is registered with -50 mV NRs, a 

weaker one, but still appreciable with -18 mV and no interaction was observed in all other 

cases. We can state that also in this case there is a threshold, that, if calculated respect to the 

positive peak of the action potential spike (+ 30mV), is │Δζ(membrane-NR)│≈ 48 mV. The value is 

slightly lower than what was determined with model membranes; however, the zeta potential of 

the SLB was not measured, but only assumed to be the same of the vesicles before fusion on 

SiO2. Positively charged NRs did not interact with any cell line. 

The lipid model system with gel phase separated domains is a good model for the static 

trans-membrane potential cell lines, in which no interaction is registered due to the complexity 

of the membrane under study. 
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Figure 6.5 Confocal images of            

neurons interacting with a gradient  of 

charged NRs. In order: -50, - 18, - 8, 

+20   mV. Scalebar: 50µm. 
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6.3 Real time incubation investigation 

The same microscopy set up was used to perform real time imaging of NPs attachment 

of cellular membrane. The coverslip in which cells were seeded was mounted on an aluminum 

chamber specifically designed for visualization of samples in liquid environment. The chamber 

has an open top and allows the in situ deposition of the NPs dispersion. A transparent cell 

culture medium without phenol-red (Molecular Probes, Eugene, Oregon) was used for this 

purpose, in order to eliminate any other fluorescence source. NPs dispersions were prepared in 

the same medium, using lower concentrations: 1 nM for NRs, 0.7 µM for 300 nm micelles and 

50 nM for 60 nm micelles. The concentration was optimized in order to reduce the background 

fluorescence and to allow the real-time monitoring of the attachment, otherwise too fast. A time 

lapse video was acquired (60X immersion objective lens, 2 frames per second for a total 

duration of 2 min).  

Figure 6.6 shows some consequent frames of the 300 nm micelles attachment to the 

neuronal membrane, figure 6.7 the same experiment with -50 mV NRs: it is clear how the 

number of NPs attached is increasing with time (i.e. the fluorescence intensity is increasing). 

The total time of interaction to saturate the membrane with micelles was about 30 seconds, 

whereas for NRs the process was faster (less than 10 seconds). 

Neurotoxin TTX was then introduced in the experiment to modify the action potential 

spikes of the cells. Cells were incubated for 5 minutes with TTX in transparent medium at 1 

µM. NPs dispersed in the same solution were then deposited on the cell culture coverslip. As is 

possible to observe from figures 6.8 the presence of TTX in the medium caused a decrease in 

the fluorescence intensity, i.e. it decreased the amount of 300 nm micelles attaching to the 

neuronal membrane. The effect of the neurotoxin is evident in the first few seconds from the 

beginning of the experiment. The same experiments were repeated with 60 nm micelles, 

obtaining the same result (data not shown). 

Figure 6.5 Confocal images of 
NRs different in charge 
interacting with neurons 
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Figure 6.6 Frames of the time lapse investigation of interaction neurons/micelles 

Figure 6.6 Subsequent frames of the real-time interaction 

between neurons and 300 nm micelles (ζ = -24 mV) at t= 0, 6, 

15, 30 sec. Scale bar: 50 µm.  The two magnifications show in 

details the initial and final images of the video. 

 

t = 0 sec 

t = 40 sec 

t = 30 sec 

t = 0 sec 
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Figure 6.7 Frames of 
the time lapse 
investigation of 
interaction 
neurons/NRs 

t = 0 sec 

t = 40 sec 

Figure 6.7 Subsequent frames of the interaction between 

neurons and negative NRs (ζ = -50 mV) at time 0, 6, 16 and 

24 and 40 se. Scalebar: 50 µM. The two magnifications show 

in details the initial and final images of the video. 
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t = 0 sec 

t = 30 sec 

Figure 6.8 Subsequent frames of the interaction between 

neurons and 300 nm micelles (ζ= -24 mV) in presence of 

TTX neurotoxin at time 0, 6, 15 and 30 sec. Scalebar: 

50µM. The two magnifications show in details the initial 

and final images of the video. 

 



69 
 
 

tim
e 

 

. 

 

 

 

 

  

 

 

  

   

  

 

 

 

 

 

 

 

 

 

Figure 6.9 Time lapse of neurons interacting with -50 mV 
NRs in presence of TTX neurotoxin 

Figure 6.8 Neurons 
interacting with 
micelles in 
presence of TTX 
neurotoxin 

t = 0 sec 

t = 40 sec 

Figure 6.9 Subsequent frames of the interaction between 

neurons and -50 mV NRs in presence of TTX neurotoxin at t = 

0, 6, 16, 24, 40 sec. Scalebar 50 µM. The two magnifications 

show in details the initial and final images of the video. 
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Figure 6.10 Time lapse of 
neurons incubated with -
18 mV NRs in presence of 
TTX neurotoxin 

 

t = 0 sec 

t = 40 sec 

Figure 6.10 Subsequent frames of the interaction between 

neurons and -18 mV NRs in presence of TTX neurotoxin at t = 

0, 6, 16, 24, 40 sec. Scalebar 50 µM. The two magnifications 

show in details the initial and final images of the video. 
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The effect of TTX in the interaction was tested also on NRs. Figure 6.9 and 6.10 show the 

results obtained with -50 and -18 NRs. Although the presence of the toxin, -50 mV NRs 

interacted with the membrane, whereas no interaction was registered using -18 mV NRs. 

 As I mentioned before, NRs interaction with the neuronal membrane was driven by the 

surface charge of the NRs, and a threshold value at -18 mV was found. At this surface potential 

value, the Δζ is not sufficient to trigger an interaction. 

6.4 Conclusions 

 I investigated the interaction between surface tuned NRs, tuned from negative to positive 

zeta potential values and negative polymeric micelles with 60 nm and 300 nm of diameter with 

in vitro cells. The interaction involves mostly the synaptic elongations, and NPs were employed 

with the aim to modulate the neuronal activity.  

The difference in size did not affect the interaction. Cells investigated were: primary mouse 

neurons, mouse neuroblastoma differentiated and non-differentiated N2a and Chinese hamster 

ovary epithelial cells.  

 The first experiments were conducted incubating cells for 5 minutes with NPs, and then 

fixing them. From these experiments, it was evident that negatively charged NPs were 

interacting only with cell lines presenting variable membrane potential (such as neurons and 

differentiated N2a), whereas no interaction was occurring with static membrane potential cells. 

The static cell membranes can be resembled to the model membranes with gel phase domains, 

in which also if the charge requirements were satisfied (i.e. with positive NRs) no interaction 

was registered due to the steric hindrance created by the complex structure of the membrane. It 

was needed a dynamic membrane potential to induce the interaction, probably creating the 

appropriate conditions during the positive peak of the action potential process. The threshold 

value to observe the interaction is still present, as it is possible to understand  by the experiment 

performed in neurons, in which NRs interacted with the cell membrane only if their potential 

was lower than -18 mV.  
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In the second part, time lapse videos captured in real time the process of interaction between 

NPs and cellular membrane. With these experiments, it was clear that the binding process is 

very fast (30 sec either for micelles and NRs), but the most relevant result was linked to the 

effects of TTX neurotoxin on neurons, that inhibiting the zeta potential spikes, blocked the 

interaction with NPs with a zeta potential not higher than -24 mV, falling back in the static 

cells case were no interaction was occurring. With -50 mV NRs, no differences were observed 

with and without the neurotoxin. 

 During my experiments with cell lines, NPs were diluted in transparent cell culture 

medium. As the results shown, the interaction between NPs and the cellular membrane occurs 

only for dynamically changing membrane potential cells (i.e. neurons and differentiated N2a), 

reinforcing the hypothesis that action potential was triggering the interaction. For the static 

membrane potential cells, we speculated that the situation is similar to the one observed with 

synthetic membrane: no interaction was registered with NRs dispersed in media different from 

water, due to the shield-effect on the charge caused by the ions in solution (see chapter 5). 
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Appendix A  

Study on non-PEGylated NRs and model membranes 

In this appendix, the results obtained using non-PEGylated NRs together with model 

membranes, will be shown. These NRs are the same crystals employed in the rest of my thesis 

but they underwent only the water solubilization process (see chapter 3, paragraph 3.3) and 

present a highly negative surface potential (ζNR = -50mV). In specific, lipid models such as 

fluid state SLBs, LMs and LMLs were investigated by QCM-D, π-A isotherms and x-rays 

diffraction (XRD), respectively. These experiments were performed to reinforce the hypothesis 

of the great importance attributed to the PEG-layer covering the rods in the interaction with 

membranes. Before showing the results, the XRD technique will be briefly explained. 

I. Methods 

I.a X-Ray Diffraction  

X-ray diffraction (XRD) is an analytical technique primarily used for phase 

identification of a crystalline material and that can provide information on unit cell dimensions 

of periodic lattices. XRD is based on constructive interference of monochromatic X-rays on a 

crystalline sample. X-rays are generated by a cathode ray tube, filtered to produce 

monochromatic radiation, collimated to concentrate and directed toward the sample. The 

interaction of the incident rays with the sample produces constructive interference (and a 

diffracted ray) when conditions satisfy Bragg’s Law:   

nλ = 2d sin θ 

 

This law relates the wavelength of electromagnetic radiation λ to the diffraction angle θ and the 

lattice spacing d in a crystalline sample. Diffracted X-rays are then detected, processed and 

counted. By scanning the sample through a range of 2θ angles, all possible diffraction 

directions of the lattice should be attained. Conversion of the diffraction peaks (see table I in 
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paragraph II.c as an example) to d-spacings allows identification of the mineral because each 

mineral has a set of unique d-spacings.  

XRD has been applied in this thesis to investigate the structure of lipid multilayers 

interacting with NPs, measuring the difference in the sample diffraction peaks with and without 

the presence of nanoparticles. LMLs (i.e. hydrated lipids deposited on the substrate) present a 

1D crystalline structure in the z direction, perpendicular to the substrate. The elementary cell of 

this structure is represented by the hydrated bilayer, i.e., the lipid bilayer  including the water 

molecules of the hydration layer. The Bragg’s law can be used to obtain the d-spacing of every 

lamellar cell, i.e. the distance between the two external polar-heads, including the hydration 

water layer.  

 

Figure I. Sketch representing Bragg’s diffraction in a multilayered structure. See figure 1.8 for the LML 

structure. 

 

 The second information in a diffraction pattern is given by the measured intensities Il of 

the Bragg peaks, which allow the determination of the electrons distribution in the crystal 

lattice (i.e. the electron density of the unit cell). The intensities are related to the amplitude of 

the structure factors Fl, which are linked to the electron density by a Fourier transform 

operation. Fl are complex number but, in a centrosymmetric crystal (such as the 1D lipid 

multilayers) their phase can only assume a value of -1 or  1. In this case, it holds that: 
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𝛥𝜌 =  ∑ 𝐹𝑙

𝑁

𝑙=1

cos (2𝜋𝑙
𝑧

𝑑
) 

 

where 𝜌 is the electron density, N is the number of observed Bragg peaks, 𝐹 is the structure 

factor, z is the position in the cell measured in nm and d is the cell dimension in nm, calculated 

using the Bragg’s law. 

 I used this technique to investigate the behavior of non-PEGylated NRs with positively 

charged lipid multilayers. 

I.b XRD sample preparation and measurements 

N-doped SiO2 wafers 2x1 cm
2 

were cut with the help of a diamond blade as substrates 

for XRD measurements. Wafers were cleaned by sonication in a 2% SDS solution for 20 min at 

a temperature of 60 °C, then rinsed three times with ultrapure water and dried under N2 flow. 

To remove any organic contaminants from the surface, the sensors were placed in ozone 

cleaner for 10 min before use. 200 µL of vesicles dispersion at a concentration of 0.5 g/L (with 

and without NRs) were deposited on the wafers and dried under vacuum conditions overnight 

in order to obtain a lipid multilayer (LML). LUVs dispersion were let to interact with NRs 

(NRs : lipids ratio 1:1000) for a total of 2 h before being deposited onto the silicon wafers. 

Samples were annealed in an oven at 60 °C for 30 min, left at room temperature for other 30 

min and then the procedure was repeated 5 times in order to make the samples homogeneous. 

XRD measurements were performed with a rotating anode Rigaku SmartLab diffractometer 

operating in the reflection mode in -2 geometry  with Cu-Kα radiation (35 kV, 30 mA, λ = 

1.54 nm) and diffracted beam monochromator, using a step scan mode with the step of 0.075° 

(2θ) and 4 s per step in dry and wet conditions under a doom. For the wet conditions, 150 µL of 

ultrapure water were deposited in the well of the XRD sample holder. To keep the humidity at 
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90% and prevent the formation of water condense on the top of the doom potassium sulfate was 

deposited into the well.  

II. Results 

II.a Non-PEGylated NRs with fluid state bilayers 

 Non-PEGylated NRs were tested with positively charged POPC/DOTAP 50:50 and 

75:25 mol:mol SLB. Although the difference in ζ between SLB and NRs was overcoming the 

threshold we observed with tuned NRs, in this case no adsorption of NRs occurred, reasonably 

due to the absence of the functionalization agents. 

II.b Non-PEGylated NRs and fluid state monolayers 

Non-PEGylated NRs were tested with positively charged fluid state LMs, specifically 

POPC/DOTAP 50:50 and 75:25 molar ratios. Figure II shows the results obtained. Although no 

interaction was registered using this NRs on SLBs (see paragraph 5.1.2), the figures show a 

strong interaction between lipids and NRs, similar for both compositions: the lift-off area of the 

LM increases going from 110 to 144 Å
2
/molecule in presence of NRs in the subphase; the slope 

of the isotherm decreases drastically until a sort of second lift-off appears at 60 Å
2
/molecule. 

This can be interpreted as a big amount of NRs was attracted towards the surface by the high 

difference in charge they have with the lipids; this interaction was so strong that lipids were 

removed from the surface until a saturation is reached (second lift-off area) and a LM with a 

considerably smaller number of lipids re- arranged with the lipids remaining at the interface. 

Non-PEGylated NRs did not interact with SLB, and this can be reconducted to the fact that 

SLBs are in a highly packed situation when the NRs are injected in the measurement chamber, 

whereas, for LMs, the measurements start from a π ≈ 0 mN/m, i.e. the starting point is in a 

disordered configuration of the lipids at the interface. Starting from higher values was not 

possible with our setup: NRs were injected into the subphase when lipids were already in a 

compressed configuration and they were not dispersing in the water subphase but tent to remain 

clustered in an isolated drop. /DOTAP 75 
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Figure II π –A isotherms of POPC/DOTAP 50:50 (left) and 75:25 (right) mol:mol monolayers interacting with 

non-PEGylated NRs. Black: lipid mixtures in an ultrapure water subphase. Red, green, blue, cyan represent the 

first, second, third and fourth compressions, respectively, in the NR dispersion subphase. Magenta isotherm 

relates to the behavior of NRs in water: they are not going toward the surface in absence of lipids at the interface.  

 :25 LM 

II.c LMLs and NRs 

I have tried to get further insight on the NR/membrane interaction by using XRD. This 

part of the investigation is not fully accomplished yet. I have started my investigation from the 

simplest NRs in term of structure, i.e. the non-PEGylated ones. Experiments with PEGylated 

NRs are still ongoing. In order to obtain a structure suitable for this technique, I produced fluid 

state positive lipid multilayers. The lipid mixture chosen are those already tested in the SLB 

and LM studies for the same particles.  POPC, DOTAP and POPC/DOTAP 50:50 and 75:25 

mol:mol mixtures were investigated by XRD both in dry and in wet conditions. Every wet 

sample was let to stabilize for at least 7 h, in some cases overnight to see no variations in the 

peaks position due to the continue adsorption of water molecules in the LML. Binary mixtures 

were then investigated in presence of NRs and compared to see any structural difference. As an 

example, the pattern of the diffraction peaks for hydrated POPC, DOTAP and POPC/DOTAP 
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50:50 mol:mol mixture with and without NRs is shown in figure II,  Every sample presented 

till the 5
th

  (6
th

  for pure DOTAP) order of evenly spaced diffraction peaks, indicating the 

presence of an ordered lamellar structure. From the angular position of every peak, the d-

spacings of the samples were calculated using the Bragg’s law and performing a linear 

regression on the results obtained for every peak’s order. Table I summarize the value for every 

sample. Then, the relative electron density ρ was calculated. The electron density presents a 

mirrored graph with information about the position of the elements of the cells constituting the 

crystalline structure in which there is a high density of electrons. The maximum in the curve 

represents the water of the hydration layer, followed by the polar head, the unsaturations (i.e. 

the double C-C bonds in the unsaturated chains lipids) and the zero point represents the 

hydrophobic center of the bilayer (see figure III). In the case of POPC/DOTAP 50:50 LML the 

interaction is registered in correspondence of the hydration layer and the polar headgroups (|z| 

= 2.81 and 2 nm, respectively) indicating an interaction in correspondence of the hydrophilic 

elements of the LML cell.   

 

Figure II. Patterns of single POPC, DOTAP and mixtures POPC/DOTAP 50:50 mol:mol (A) and 

POPC/DOTAP 50:50 mol:mol with and without non-PEGylated NRs (B).  

A B 
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Also, a modification in correspondence of the unsaturated bond (|z| = 0.6 nm) was 

observed. The resolution of this part of the cell is lost in a lateral enlargement of the curve in 

presence of NRs. For POPC/DOTAP 75:25 LML the situation is similar, but the biggest 

modification in the Δρ is in correspondence of the hydration layer in this case, indicating that 

the NRs have a weaker interaction with this mixture.   

 

Lipid mixture d-spacing (nm) Lipid mixture d-spacing (nm) 

POPC 5.7 ± 0.2 DOTAP 4.8 ± 0.2 

 

POPC/DOTAP 50:50 5.5 ± 0.2 POPC/DOTAP 75:25 5.5 ± 0.2 

POPC/DOTAP 50:50 + NRs 5.6 ± 0.2 POPC/DOTAP 75:25 + NRs 5.9 ± 0.2 

 

Table I.  d-spacing of every sample calculated by linear regression from the Bragg’s law results of every 

peak order. 

 

In particular, the position of the highest peak is shifted towards higher z values, resulting 

in a total increase of the dimension of the cell in presence of NRs. Also in this mixture, a 

modification in correspondence of the unsaturated bond (|z| = 0.6 nm) was showed but opposite 

respect to the previous one, being that the curve becomes narrower in presence of NRs.  

 

III. Conclusions 

 The first interesting observation on the study of non-PEGylated NRs with model 

membranes is their non-interaction with fluid state bilayers, although the difference in zeta 

potential highly overcomes the above mentioned threshold.  This indicates that the interaction 

is not exclusively regulated by lipid head-group charges, but also other properties such as the 

mechanical behavior of the membrane, or the presence of the outer polymeric layer of 

functionalization plays important roles.  
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Figure III. Relative electron density profile (Δρ) plotted versus the position in the bilayer respect the central 

position (z=0 nm). Red curve represents pure lipids, , black curve lipids + NRs. Left: POPC/DOTAP 50:50, 

right: POPC/DOTAP 75:25. 

 

The importance of the PEG-amine/lipid group interaction is confirmed by the experiments that 

involve the non-PEGylated NRs: in this case, interaction is highly disturbed respect to the 

surface charge tuned NRs investigation, leading to a big removal of lipids from the surface 

after the initial insertion between the polar-heads. 

I carried out also an investigation of lipid multilayers with non-PEGylated NRs. I used 

only fluid state lipids with a positive total charge, and I used the same two compositions, used 

with LMs, POPC/DOTAP 50:50 and 75:25 molar ratios. From the electron density profiles is 

possible to see that the dimension of the elementary cell increased in presence of NRs, 

indicating that an interaction occurred, and that this interaction came in correspondence of the 

hydrophilic part of the cell: in the case of the 50:50 mol:mol composition, the modification is 

equally distributed between the polar head and the hydration layer positions (│z│ = 1.9 and 2.8 

nm respectively), whereas the modification for the less charged mixture 75:25 mol:mol was all 

hydration layer 
polar-head 

double  
C-C bond 

center of  
the bilayer 
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in correspondence of the hydration layer. Here, it is confirmed that hydrophilic NRs interact 

with lipids following the overall charge of the system inserting between polar head and 

hydration layer in the case of POPC/DOTAP 50:50, and when the conditions are not respected 

(as in the case of POPC/DOTAP 75:25) they deposit in the water layer between the single 

lamellar planes. 
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Abstract
Thin anodic porous alumina (tAPA) was fabricated from a 500 nm thick aluminum (Al) layer coated on silicon wafers, through

single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication

etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to

be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm) gold (Au) layer. The as obtained

tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA) and aminothiol (AT), and then

with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB). At each step, the SERS substrate func-

tionality was assessed, demonstrating acceptable enhancement (≥100×). The chemisorption of thiols during the first step and the

formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance

with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells mem-

branes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a

platform for the development of surface-enhanced Raman spectroscopy (SERS) biosensors on living cells. In the future, these

tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

74

Introduction
Anodic porous alumina (APA) is a layered material usually ob-

tained in thick form (≈10 µm thickness scale) from electro-

chemical anodization in the acidic aqueous electrolyte of alumi-

num (Al) foils [1]. In APA, the control of pore size, pore densi-

ty and porosity is achieved by changing the anodization voltage

during the fabrication and the etching parameters during the

post-fabrication treatment [2]. It is widely recognized that the

APA surface is biocompatible with practically all cell types and
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provides a means of controlling the surface roughness [3,4], the

latter of which can play an important role in the adhesion and

proliferation of cells [5-7]. The self-ordered nano-structured

APA, also demonstrated recently as a possible nanolitho-

graphic mask [8,9] and for chemical sensors and biosensors

[10], after coating with noble metals can be used for plas-

monics-based enhanced spectroscopy such as in surface-en-

hanced Raman spectroscopy (SERS) [11-14].

In recent years, the thin form of APA (tAPA), resulting from

anodization of Al films of less than 1 µm thickness, has been

increasingly used because it can be better integrated into appli-

cations involving optical microscopy inspection, which requires

flat planar substrates. Moreover, it allows to move toward a

more robust engineering of APA surfaces by exploiting the

standard microtechnology of photolithography, thereby

paving the way to large scale fabrication in possible future

devices.

The enhancement factor in APA-based SERS can be as high as

1000, which means that the technique may detect molecules

[15]. Additionally, the pores in tAPA can potentially serve as

nano-wells for localized drug delivery [16,17]. In fact, while

lower in loading capacity with respect to thick APA [18],

500 nm tAPA can still allocate a significant amount of bioac-

tive compounds, representing a trade-off between the former

case of maximized loading and the case of ultra-thin APA

showing the highest SERS enhancement [19]. Finally, the con-

trolled roughness of APA could also improve the physisorption

of coating layers of functional materials [20,21].

The main component of the biological membrane that separates

and protects the interior of all living cells from the outside envi-

ronment is a phospholipid bilayer. For this reason, as well as for

the complexity of real samples of living cells, we decided

to test the tAPA–Au SERS-active substrates on SLBs in

phosphate-buffered saline (PBS) buffer solution, which provide

an excellent model system to mimic the native cellular

membranes [22].

In the present work, the fabrication and modification of tAPA

aiming at its exploitation as a functional substrate for

biosensing based on SERS effect are presented. In particular, it

is reported on SERS effect on SLBs obtained from spontaneous

lipid vesicle fusion and representing a simplified model of

living cells membrane. Since the vesicle fusion is not trivial to

achieve on Au surfaces, we first functionalized the Au with

self-assembled monolayers (SAM) of thiols, to provide the

appropriate surface condition to allow SLB formation. SERS

effect was tested and proved for each fabrication step of the

system.

Experimental
tAPA fabrication and modification to achieve
SERS-activity
An ≈500 nm thick Al layer was first coated on a silicon wafer

by an electron-beam evaporation system PVD75 (Kurt J. Lesker

Ltd., UK) working at a base pressure of 10−6 Torr with a depo-

sition rate of 0.5–1 Å/s. tAPA was fabricated in a single-step

(≈15 min) anodization performed at 110 V in 0.4 M phosphoric

acid electrolyte at a bath temperature of ≈15 °C. Post-fabrica-

tion etching in the same electrolyte for 20 min at room tempera-

ture (RT) plus 15 min at 35 °C allowed to obtain tAPA with

≈160 nm pore size and ≈80 nm wall thickness. After thor-

oughly rinsing with de-ionized water, blowing dry with nitrogen

and dehydrating on a hotplate set at 100 °C for 15 min, the

tAPA was overcoated by the same electron-beam evaporation

system with a ≈25 nm thick Au layer to make it SERS-active.

More details on similar fabrication procedure can be found in

references [12,13].

The characteristic size of tAPA pores was obtained by scanning

electron microscope (SEM) imaging with a JSM-7500F (Jeol,

Japan) and subsequent grain analysis carried out with Igor 6.22

(Wavemetrics, OR, USA).

Incubation of thiols and fabrication of lipid
vesicles
Different thiols were used in combination with the different

lipids to be coated onto them by electrostatically-driven physi-

sorption. We used two thiols, namely 4-mercaptobenzoic acid

(MbA) and 11-amino-1-undecanethiol hydrochloride (AT),

from Sigma (Milan, Italy), and three lipids, namely 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phospho-L-serine (POPS) and, 1,2-

dioleoyl-3-trimethylammoniumpropane (DOTAP), from Avanti

Polar Lipids (Alabaster, Alabama, US). All solvents were pur-

chased from Sigma-Aldrich.

First, the substrates were incubated at rt for 2 h with a 1 mM

aqueous solution of the thiol molecule, either MbA or AT, to let

the sulfur of the –SH group bind covalently to the Au surface

(chemisorption). The substrates were then gently washed with

their aqueous solutions and dried under nitrogen flow.

All the lipids were dissolved in chloroform/methanol

2:1 vol/vol, dried under a gentle nitrogen flux in a test tube, and

put under a mild vacuum overnight to remove all solvent traces.

POPC/POPS in a 9:1 mol/mol ratio and DOTAP were then

re-suspended in PBS at a 5 g/L concentration, let to swell for

30 min, and extruded 11 times through a polycarbonate filter

(Whatman, USA) with 100 nm pore diameter to form unil-

amellar vesicles.
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Figure 1: SEM images (20,000× magnification, scale bar 1 µm) of tAPA substrates (thickness ≈500 nm), a) as-prepared, b) after pore widening, and
c) after 25 nm Au coating.

Preparation of the Raman target analytes:
SLBs
The lipid vesicles were diluted to 0.5 g/L in the PBS buffer and

vortexed immediately before use. The thiol SAM was incubat-

ed overnight with the lipid vesicle dispersion, to allow vesicle

physisorption and fusion onto the substrate. The following day

the samples were carefully washed with PBS three times to

remove the exceeding vesicles.

For the cationic lipids (namely DOTAP), we used a thiolated

molecule that presents a positively charged group at its end.

This is MbA, whose COOH group is protonated in PBS buffer

to COO−. For the anionic lipid mixture (namely POPC/POPS)

AT was used, which becomes positive in aqueous solution

because of the terminal amino group.

SERS measurements
SERS measurements were performed with a micro-Raman

spectrometer inVia (Renishaw, UK) equipped with the soft-

ware program WiRE 3.2. We used for excitation a laser with

785 nm wavelength and 100 mW power, equipped for disper-

sion with a grating with 1200 grooves/mm. For detection micro-

scope objectives with a magnification of 50× (NA: 0.75) and

60× (water immersion, NA: 1.0) were used. The spectra were

collected in the 300–3200 cm−1 spectral range.

The SERS enhancement factor G achieved by employing

tAPA–Au with respect to the flat Au on silicon substrate can be

estimated by using a simple formula:

(1)

where P, t, A and I are laser power, accumulation time, active

area for molecule adsorption and Raman intensity of the specif-

ic band, respectively [13]. The subscripts, SERS and Ref, indi-

cate SERS and Raman measurements on tAPA–Au and on flat

Au substrates, respectively.

QCM-D characterization of adsorption
A quartz microbalance Z500 (KSV Instruments, Finland) was

used for the QCM-D experiments. Au coated AT-cut quartz

crystals (QSense, Sweden) with a 5 MHz fundamental reso-

nance frequency were used. Before each experiment, the quartz

sensor was first cleaned in a UV/Ozone ProCleaner (BioForce

Nanoscience, US) for 10 min, then washed with milli-Q

(18.2 MΩ·cm resistivity) water, dried under nitrogen flux and

cleaned again for 10 min in the ozone cleaner.

The sensor was then mounted in the measurement chamber. The

chamber was filled with proper buffer (aqueous solution

for thiols, PBS for DOTAP vesicles and milli-Q water for

POPC/POPS vesicles), and left to reach an equilibrium

(≈30 min) before injecting the solution of interest. 3 mL of solu-

tion (1 mM thiols in aqueous solution, and a concentration of

0.25 g/L for both DOTAP in PBS and POPC/POPS in milli-Q)

where then injected in the measurement chamber and left until

the adsorption process reached an end (overnight measurement

for thiols, 2 h for vesicles). The sensor was then rinsed with the

proper buffer solution. If not stated otherwise, changes in fre-

quency and dissipation of the seventh overtone (35 MHz) are

shown; all experiments were carried out at a temperature of

22 °C.

Results and Discussion
SERS-active tAPA–Au substrates
The control of the geometrical features of nanostructured sub-

strates is of critical importance in SERS [23]. The SEM images

reported in Figure 1 show the good control achieved in both

mean pore size and its dispersion and prove the long range

uniformity of the surfaces with the Au coating to make it plas-

monic-active.
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Figure 2: Raman spectra of thiols a) in powder form (with their molecular structures); b) in flat film form, after adsorption to the flat Au substrates from
water solution; c) in film form on tAPA–Au.

tAPA–Au substrates could possibly be used as a carrier layer

for local drug delivery [24], as a substrate for living cell

cultures thanks to its controlled porosity [3-7], and for SERS

[25]. However, since SERS is a surface-only effect, this sensi-

tive detection will be limited to the top of the tAPA–Au sub-

strates, i.e., to the bottom of the living cells, where they would

adhere to the nanoporous substrate.

SERS enhancement due to tAPA–Au on
thiols, lipids, and thiol–lipid systems
The Raman measurements were performed first on the thiol

molecules. We started from the raw materials, in powder form,

to obtain reference spectra for future comparison and best iden-

tification of the typical bands. Then, we measured the Raman

scattering of the thiols adsorbed to flat Au substrates. For tech-

nical reasons of SLBs assembly, the two thiols selected, MbA

and AT, in ethanol and PBS solutions have a negatively or posi-

tively charged group, respectively.

The spectra of the thiols powder on flat Au, along with the

respective molecular structures, are shown in Figure 2a. In

Figure 2b the spectra of the SAM of the same thiols obtained

after incubation on flat Au from 1 mM water solution for 2 h at

RT are shown. The subsequent step was the deposition of the

thiol molecules for the formation of SAM onto tAPA–Au and

the observation of the respective spectra. The nanopores in the

oxide under the Au, which are replicated by the top Au surface

thanks to the low Au thickness of ≈25 nm, allowed for SERS

effect. In Figure 2c we report the typical Raman spectra ob-

tained on tAPA–Au for both MbA and AT.

The spectra of each thiol in all forms (pristine powder and film

adsorbed onto the flat Au and tAPA–Au substrate) look similar.

MbA present two major peaks at ≈1593 and ≈1076 cm−1, which

can be ascribed to aromatic ring vibrations, and also at ≈1181

and at ≈1290 cm−1, which belong to C–H mode [26-28]. AT

presents the major peaks at ≈1434 and ≈1477 cm−1 assigned to

the C–H and at ≈1074 cm−1 assigned to the N–H, while the

peak at ≈1074 cm−1 belongs to the C–C stretching.

In Supporting Information File 1, Figure S1 again the Raman

spectra of both thiol SAMs, coupled according to the same thiol
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Figure 3: Raman spectra of lipids in powder form on flat Au substrates, with their molecular structures.

deposited on the different substrates of flat Au and tAPA–Au,

are presented, for easier visualization of the substrate effect. It

appears clearly that on tAPA–Au the major characteristic peaks

of both MbA and AT are highly enhanced. Taking into account

the measurement parameters (i.e., tRef and tSERS both 10 s,

while PRef and PSERS are 100 and 1, respectively), a G factor of

approximately 600 and 1000 was calculated for MbA and AT,

respectively. The SERS effect of the nanophotonic tAPA struc-

ture, after coating with Au and thus thanks to the localized sur-

face plasmon resonances of this thin film, emerges. The same

effect may also be used on the SLBs, at the later stage of the

model system fabrication.

For the selected lipids, we first tested the Raman spectra of the

powders and then of the SLB form, on both the flat Au and

nanoporous tAPA–Au. The molecular structure and Raman

spectra of lipids in powder form are shown in Figure 3.

The molecules of choice, i.e., POPC and POPS, are two glyc-

erophospholipids largely present in real cellular membranes. In

particular, we prepared a mixture of POPC and POPS

suspended in PBS with the molar ratio of 8:2, in order to

resemble the plasma membrane composition both for charge

and acyl chain length and unsaturation grade. However, the

reason for the choice of DOTAP is technical, associated with

the fabrication of artificial bilayer membranes [29,30].

The lipids are larger molecules than the thiols and present richer

spectra, at least in the powder form. The main features in their

Raman spectra depend on the hydrocarbon chain, and can be

ascribed to scissoring and twisting of CH2 and CH3 and to

stretching of C–C and C–H. More precisely, the bands identi-

fied in the higher wavenumber region appear at 3007 cm−1

(unsaturated =CH stretching), 2882 cm−1 (CH2 Fermi reso-

nance) and 2847 cm−1 (CH2 symmetric stretching). The middle

wavenumber region presents bands at 1737 cm−1 (C=O ester

stretching), 1657 cm−1 (C=C stretching), 1442 cm−1 (CH2 scis-

soring), 1300 cm−1 (CH2 twisting) and 1267 cm−1 (=C–H

in-plane deformation). In the lower wavenumber region, the

C–C stretching emerges as a broad band around 1090 cm−1. In

particular, two contributions at 1065 and 1089 cm−1 appear

with a shoulder at 1125 cm−1. Additional bands appear at 719

and 876 cm−1 that are ascribed to the symmetric and asym-

metric stretching of choline N+(CH3)3, respectively [31,32].

The lipids were further investigated on tAPA–Au substrates, for

the possible occurrence of SERS. Figure 4 shows Raman spec-

tra for three mixtures of lipids in SLBs form, on both flat Au

and tAPA–Au.

From the comparison of the spectra of lipids in SLBs form

versus those in powder form, the most interesting difference ob-

served is that in the films several peaks disappear or are weaker.

Whereas some form of quenching can’t be excluded, this is

probably due to light polarization constraints in the ordered ge-

ometry of the molecular film, where not all modes of chemical

groups may be excited, as it can be instead in the assembly of

randomly oriented microcrystals of the powders [33].

It appears that on tAPA–Au as compared to flat Au the charac-

teristic thiol peaks are still present and enhanced. As a conse-

quence, for MbA the major peaks at ≈1590 and ≈1080 cm−1,

ascribed to aromatic ring vibrations, and ≈1181 cm−1, ascribed

to C–H deformation, appear. Also AT presents the major peaks
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Figure 4: Raman spectra of the thiol-SLB systems on both flat Au and
tAPA–Au: a) MbA and DOTAP, b) AT and POPC/POPS blend.

at ≈1580, ≈1159 and ≈1074 cm−1, due to C–NH, N–H wagging

and C–C stretching mode, respectively.

Additionally, in Figure 4 we have bands from the lipids, namely

≈1656 cm−1 (C=C stretching), ≈1440 cm−1 (CH2 scissoring),

≈1300 cm−1 (CH2 twisting), ≈1267 cm−1 (=C–H in-plane defor-

mation), and ≈719 cm−1 (choline) [34].

The values of enhancement G due to the tAPA–Au nanostruc-

tured substrates have been calculated according to Equation 1.

Since the peaks on tAPA–Au are 2–4 times higher in the

presence of 100 times lower laser power, a G of ≈250 at

≈1076 cm−1 and 500 at ≈1076 cm−1 is obtained for the

thiol–lipid system of MbA–DOTAP and AT–POPC/POPS,

respectively.

QCM-D measurements
The lipid adsorption process on Au was independently moni-

tored by QCM-D technique. This method allows the quantifica-

tion of the adsorbed mass onto the surface of a vibrating

Au-coated quartz electrode through the measurement of the

mass-induced frequency shift. Additionally, the measurement of

the dissipation gives indication about the viscoelastic properties

of the adsorbed layer. The quartz–Au substrate was thus used as

a control for success of the incubation of the tAPA–Au sub-

strates in the lipid dispersion. In a preliminary step (data not

shown) we have monitored the chemisorption of thiols onto the

Au-coated QCM-D sensors; the functionalized sensors where

then exposed to the lipid vesicles and the process of adsorption

was monitored.

The QCM-D time-evolution profiles presented in Figure 5a,b

show that the lipids successfully adsorbed to the Au surface of

quartz in both cases. However, the two lipid systems behave

differently. For DOTAP on MbA (Figure 5a) one can observe a

big shift in frequency (Δf ≈ −1135 Hz) and a high value of dissi-

pation (D ≈ 40 × 10−6), indicating the adsorption on the

sensor’s surface of a viscoelastic structure [35]. DOTAP vesi-

cles do not fuse on Au functionalized with MbA, rather entire

vesicles are adsorbed instead. On the contrary, for POPC/POPS

on AT (Figure 5b) the frequency shift is low (Δf ≈ −157 Hz for

the reported 7th harmonic) and the value of dissipation is close

to zero, indicating the adsorption of a smaller mass with more

rigid structure on the surface. The reason may be that the

POPC/POPS vesicles rupture in contact with the AT-functional-

ized Au and an SLB forms on the surface [36,37]. Table 1

shows the thickness values of SAM and adsorbed layers ob-

tained with the QCM software. The values have been retrieved

by using the Sauerbrey model of rigid layers for the SLBs and

the Voigt model of viscoelastic layers for the adsorbed vesicles,

assuming for the material densities the following values:

ρAT = 0.9 g/cm3 for AT, ρMbA = 1.34 g/cm3 for MbA, and

ρv = 1 g/cm3 for vesicles (made mostly of water), according to

references [38,39]. The data confirm that DOTAP vesicles

adsorb on the sensor without rupturing, with a thickness of the

adsorbed layer of ≈90 nm. POPC/POPS vesicles create an SLB

on the sensor with a thickness of ≈4 nm. When the formation of

an SLB occurs, the fingerprint region is not visible. As already

pointed out in Figure 4, we ascribe this effect to the orientation

of the molecules and the polarization of the incoming beam.

When vesicles are adsorbed on the surface, all the characteristic

peaks of the lipid molecules are expected from the Raman spec-

tra, since the vesicles contain all molecular orientations. In

accordance to this, the Raman spectra of DOTAP collected

from QCM sensor show a signal in the lipid fingerprint region

which is different from the spectra collected on the Au–tAPA

surface that are flat in the 2800–3000 cm−1 region. This

indicates that the porosity of the substrate may influence

the vesicle fusion process. This finding is still under further

investigation.
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Figure 5: a,b) QCM-D measurements of shift in frequency and dissipation of a) DOTAP on MbA substrate, and b) POPC/POPS on AT substrate; c,d)
respective Raman spectra on QCM sensors coated with c) MbA and DOTAP, and d) AT and POPC/POPS blend.

Table 1: Shift in frequency Δf and shift in dissipation D and relative standard deviations of the layers adsorbed on the QCM sensor’s surface. Every
experiment was repeated three times.

Solution d [nm] std dev [nm] Δf [Hz] std dev [Hz] D [10−6] std dev [10−6]

POPC/POPS (milli-Q) AT 3.9 0.1 −92 14 1.5 0.4
DOTAP (PBS) MbA 96 3.5 −1054 19.4 41.5 0.2

In Supporting Information File, Figure S1 the spectra of both

lipids are presented again, grouped according to the different

types of substrates, which makes it possible to compare the

effect of the substrate on the resulting spectra.

Conclusion
We successfully fabricated tAPA substrates on silicon wafer

through anodization of ≈500 nm thickness and post-production

etching, resulting in oxide films with pores of ≈160 nm size and

≈80 nm wall thickness. After coating with a ≈25 nm Au layer

covering the tAPA features, our substrates become SERS-active

and allow for an investigation of the chemical vibrations of

molecules, as demonstrated by sensitive Raman measurements

on bare thiols and on their combinations with lipid membranes,

namely MbA with DOTAP and AT with POPC/POPS. The en-

hancement factor was estimated to be 500 to 1000 on tAPA–Au

with respect to the flat Au surface and to the silicon substrate.

The chemisorption of thiols and lipids was confirmed on quartz-

Au by QCM-D technique. The present results point to the

possible future use of the tAPA–Au surfaces as disposable

substrates for assessing the cell functionality in biosensors/

bioassays.

Supporting Information
Supporting Information File 1
Additional figures.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-8-8-S1.pdf]

http://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-8-8-S1.pdf
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