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The quality control of individual semiconductor thin films during fabrication of multiple layers is important for
industry and academia. The ultimate aim of this research is to predict the efficiency of p-n junction solar cells by
photoelectrochemical analysis of the bare p-type semiconductor. A linear correlation between the photocurrent
measured electrochemically on Cu(In,Ga)Se, absorber layers through a Eu®>* electrolyte junction and short circuit
current and efficiency of the corresponding solid state devices is found. However, the correlation is complicated
by pronounced recombination at the semiconductor/electrolyte interface, while the solid state interface behaves

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Being able to predict the final efficiency or photovoltaic (PV) proper-
ties of a p—n junction solar cell from analysis of just the p-type semicon-
ductor film before the addition of the four subsequent layers required to
complete the device would allow a cost effective control of the produc-
tion line (Fig. 1). Besides suggesting if device completion is worthwhile,
accurately assessing PV potential would also provide academic groups
without device completion facilities the means of estimating potential
conversion efficiencies. Hence, the goal of this research is to develop a
photoelectrochemical (PEC) method to test the PV potential of p-type
semiconductor thin films on conductive substrates.

The underlying assumption of this work is that overall device
efficiency is dominated by the quality of the p-type semiconductor
layer. The hypothesis is that a measurable PEC parameter can be corre-
lated to the PV device efficiency. Device efficiency is proportional to the
product of the short circuit current density (Jsc) and the open circuit
voltage. Jsc is proportional to the collection length of excited charge
carriers, and if single-junction devices with same band-gap semicon-
ductors are considered [1], it is a reasonable predictor of efficiency
(Fig. 1). If a PEC parameter could be correlated to Jsc, a relationship
with the final device efficiency would be established.

In a very close similarity with p-n junctions, the electrical behavior
of p-semiconductor/electrolyte junctions as a function of the applied
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bias can be expressed by the diode equation [2], and is shown schemat-
ically in Fig. 1. The theory of semiconductor electrochemistry has been
extensively reviewed by Memming, to whom the reader is referred [3].

This similarity with the p-n junction made possible the design of a
number of PEC solar cells [12-15] that in the case of n-type semiconduc-
tors have achieved power conversion efficiencies as high as 15% [16].
Issues of semiconductor photocorrosion, as well as surface instability
under prolonged operation have somehow discouraged their further
development. Nevertheless, optically transparent semiconductor/
electrolyte junctions, with their near-reversibility and fast implementa-
tion, have been viably and widely employed [17] to characterize single
[18-20] and polycrystalline [21-33] semiconductor materials. Informa-
tion such as conductivity type [29,30], band-gap and flat-band potential
[31], doping density [25,33], as well as insights on the presence of opti-
cally absorbing phases on the film surface [32] have been obtained.

This versatility is appealing for the development of a method aimed
at screening PV semiconductor properties. Perhaps due to its relation-
ship with Jsc and to the simplicity of the measurement, photocurrent
density (Jp,) remains the most reported PEC parameter. However, it is
known that the theoretical correlations between solid state and PEC
solar cells are complicated by experimental issues including the non-
ideality of surface structures and current collection at the semiconduc-
tor/electrolyte interface [34].

In this sense, the present work aims at explicitly testing if the corre-
lation between Jsc and Jp, holds satisfactorily, and thus if Jp, can be con-
sidered a suitable indicator for the quality assessment of thin films for
PV applications. This is an important research question that has never
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Fig. 1. Correlation between Jsc and solar cell power conversion efficiency for a number of
CulnSe,-based devices with equation and coefficient of determination R? [4-11]. Left
inset: ideal current-voltage characteristics of a p-semiconductor/electrolyte junction in
the dark (Jp) and under illumination (J;). Jpy is the intercept of J; on the y axis and is
negative for p-semiconductors. The similarity with solid state p-n junctions is emphasized
by the corresponding solar cell parameter (Jsc). Right inset: schematic structures of bare
CIGSe photoelectrode on conductive substrate and full solar cell device.

been explored in the literature. This work provides an idea of how much
Jpn can be related to Jsc and therefore if comparative assessments of
semiconductors based simply on Jp;, are reliable.

2. Experimental

Six Cu(In,Ga)Se; (CIGSe) absorber layers with strikingly diverse
properties were intentionally produced for this study by deliberate de-
viation from the baseline procedure which consists of electrodeposition
of metal precursors followed by selenization. Each absorber layer was
split into two, with half completed into solar cell devices and the
other half tested photoelectrochemically with a statistics of eight sam-
ples for each absorber and each technique in order to obtain a meaning-
ful data distribution (total of 96 samples). The cell finishing procedure
consisted of 30 s etching in 5 wt.% KCN aqueous solution followed by
chemical bath deposition of CdS, RF-magnetron sputtering of i-ZnO
and Al:ZnO and e-beam evaporation of Ni-Al front contact grids. Impor-
tantly, the cell finishing procedure of the samples was carried out in the
same deposition batches, ensuring similar properties of buffer and
window layers. The power conversion efficiencies of the solar cells
were measured with a current-voltage setup (with a halogen lamp of
AM1.5 intensity equivalent) and ranged between 2 and 11%. The PEC
experiments were performed with a three electrode setup (Ag/AgCl
reference, Pt wire counter electrodes) in a 0.2 M aqueous solution of
EuCl; and consisted of chronoamperometric analyses in reverse bias
(—0.5Vvs Ag/AgCl) under pulsed illumination from a white light emit-
ting diode (LED) source with light intensity corresponding to approxi-
mately 1%. of AM1.5. The series of CIGSe photoelectrodes displayed
very similar open circuit potentials around —0.1 V vs Ag/AgCl when
immersed in the Eu* solution. The potential of —0.5 V vs Ag/AgCl
was chosen because it corresponds to a similar band bending as per
the solid state devices. A 530 nm LED source was also employed to per-
form light intensity dependence measurements. The majority of the
LEDs output power lies at photon energies well above the CIGSe band-
gap, thus any slight variations among the CIGSe films can be neglected.
Apparent quantum efficiency (AQE — aka incident photon to current
conversion efficiency, IPCE) is calculated from a calibrated Si photodi-
ode. The PEC tests were performed on absorbers of 0.2 cm? masked
area immediately after 30 s etching in 5 wt.% KCN aqueous solution.
All data were area corrected.

3. Results and discussion
3.1. Choice of the measurement conditions

The importance of employing intentional redox species for reliable
PEC measurements, besides the naturally occurring hydrated protons in
deionized water is investigated. Fig. 2 shows the chronoamperometric
analyses of a CIGSe film measured in the absence (solid line) and presence
(dotted line) of 0.2 M Eu® T at pH = 3.6 under the pulsed illumination of a
white LED. In both cases a negative photocurrent is recorded when the
light is turned on, as expected for a p-type semiconductor. However, it
is very clear that in the absence of Eu>* Jp, is not reproducible; during
the illumination the photocurrent decreases and the rate of decrease
increases after each LED pulse.

This behavior points to some sort of light-induced surface degrada-
tion of the semiconductor. Due to the absence of electron scavengers
in the electrolyte, it is likely that the photogenerated electrons cause
photoreduction of the CIGSe surface, with formation of surface copper
adatoms acting as recombination centers. Contrarily, the measurement
performed in the presence of Eu>* proved reasonably reproducible.

This result suggests that even though it is possible to measure Jp, in
inert electrolytes, as also reported in the literature [22,23,25], intentional
redox species with suitable reduction potential are needed if the repro-
ducibility of the measurement and semiconductor surface preservation
are considered.

Jprn was determined as the difference between the current density
measured in the dark and under illumination at the steady-state value
(Fig. 2).

3.2. Correlation between Jp, and Jsc of CIGSe films

Fig. 3a shows that linear correlations hold between the PEC-assessed
photocurrent density (Jp;) of the series of CIGSe layers and short circuit
current density (Jsc) and efficiency (1)) of the solid state solar cell devices
(R? ~ 0.9). Since the correlations are composed of two independent data
sets, the graph is obtained by plotting the average values and the stan-
dard deviations (8 + 8 measurements/sample). Although the data
distribution associated with Jp, is broader compared to Jscand ), the cor-
relations indicate that Jp, is a reasonable predictor of Jsc and 1) and may
serve as a quality control indicator for CIGSe absorber layers. Differences
in Jsc could have simply been caused by different surface band-gaps;
however, it is estimated that the measured band-gap variations account
for less than 4% of the variation of Jsc based on the AM1.5 spectrum.
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Fig. 2. Chronoamperometric analysis of a CIGSe film performed in KCl 0.6 M (solid line)
and EuCl; 0.2 M (dotted line) at —0.5 V vs Ag/AgCl. The LED light source is pulsed as
indicated.
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It is interesting to note that the least-squares fitting line (dashed)
has a positive intercept on the Jsc axis, while one would expect the
line to pass through the origin. This behavior may be associated with
the difference in the light intensities employed for the two kinds of
measurements (AM1.5 for Jsc and 1%. of AM1.5 for Jp,). Therefore, in
order to gain insights into the light intensity dependence of Jp,, PEC
measurements were performed by varying the 530 nm LED output
power (Fig. 3b).

The upper inset in Fig. 3b shows the apparent quantum efficiency
(AQE) of two CIGSe films: a “good performing” photoelectrode and a
“bad performing” one taken from samples (e) and (b), respectively.
For both films, AQE increases with increased light intensities until a
seeming plateau is reached. This dependence suggests the existence of
a light intensity threshold below which photogenerated electrons are
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Fig. 3.a) Correlation plot of Jp, versus solid state solar cell Jsc (black) and efficiency 1) (gray)
for the series of CIGSe layers with corresponding least square fitting lines, equations and
coefficients of determination R2 b) Analysis of a typical photocurrent transient with
the decay of photocurrent attributed to a slow recombination kinetics induced by the pres-
ence of trap states. Insets: apparent quantum efficiency (AQE, upper) acquired at —0.8 V
vs Ag/AgCl and proportion of trapped photocurrent expressed as the J;/Jp, dimensionless
ratio (lower) of two CIGSe films from samples (b) and (e) as a function of the 530 nm LED
light intensity expressed as AM1.5 equivalent intensity, as measured with a Si photodiode
(the solid lines are guides to the eye).

poorly collected (Fig. 3b). The reason for this phenomenon may be at-
tributed to the existence of trap states on the semiconductor surface, in-
ducing recombination of the photogenerated electrons with a relatively
slow kinetics [35]. This mechanism is thought to be responsible for the
reduction of the current collection to the steady state photocurrent ob-
served with Eu ™. The use of an intentional electron scavenger ensures
that these trap states are not self-inflicted (Fig. 2). On the other hand,
the fact that Jp, does not saturate at very high light intensity signifies
that there is no shortage of Eu>™ at the interface. Due to the relatively
slow kinetics of recombination via trapped states, the proportion of
trapped photocurrent decreases with the increase of the light intensity
(Fig. 3b lower inset), hence the increase of AQE until the plateau is
reached.

Since the maximum AQEs measured under high illumination inten-
sity (plateau) are still well below the EQEs of the devices, it is assumed
that other interface recombination phenomena are taking place, the
kinetics of which is much faster and cannot be detected with the
employed instrumentation.

The presence of bulk and surface recombination is well known in the
literature for semiconductor single crystals [36], and it seems likely that
recombination for polycrystalline films is exacerbated by the additional
presence of grain boundaries. In this sense, the grain size may play a de-
cisive role in defining the efficiency of carrier collection. Surface recom-
bination may dominate if the crystallite size is smaller than the effective
diffusion length (Leg) of the minority carriers, which is seldom the case
for single crystals. Intensity modulated photocurrent spectroscopy
(IMPS) may prove useful to discriminate the different kinds of recombi-
nation mechanisms taking place [37].

Photoluminescence spectroscopy has shown that CdS exerts a pas-
sivating effect on the CIGSe surface structure [38]. Therefore, it is possi-
ble that, due to the addition of CdS and i-ZnO, the charge carrier
recombination at the solid state interface is lower compared to the
CIGSe/electrolyte case. This may translate into a comparatively high
Jsc, even for samples that display reduced values of J,,, and may there-
fore account for the oversensitivity of J,, to surface defects on the bare
p-type film, making this parameter unreliable for a sound prediction
of PV property, especially for “bad performing” photoelectrodes.

4. Conclusions

This work shows that the photoelectrochemically assessed photo-
current of the bare CIGSe absorbers (J,;) can be correlated to short
circuit current density (Jsc) and efficiency (1)) of CIGSe solar cells
(R? ~ 0.9, statistics of 48 + 48 samples). However, such correlations
are not trivial. Recombination of photogenerated electrons at the
absorber/electrolyte interface can be dominant in polycrystalline mate-
rials and can vary substantially from sample to sample and also as a
function of the illumination intensity. Such a variation is much reduced
in solid state devices because CdS and i-ZnO layers seem to passivate the
surface states reducing interface recombination. As such, although they
provide reasonable qualitative guidance, these correlations cannot be
easily employed to provide quantitative assessment for the control of
CIGSe quality at an industrial level. In this sense, a range of analytical
techniques such as: electroluminescence imaging, photoluminescence
and Raman spectroscopies may prove useful. Nevertheless, in view of
the simplicity offered by PEC, further studies may be able to disentangle
the problems raised by this work or propose an alternative PEC param-
eter for which surface recombination does not pose a serious hindrance.
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