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Abstract - This paper is concerned with the way in which R&D activity in the technological and 
scientific domains feeds back into the dimension, the hierarchic structure and the complexity of 
knowledge search spaces. The discussion sets the stage for a critical evaluation of recent 
contributions trying to identify foundations for the existence of laws of returns to R&D. 
 
JEL classification: O3, D83. 
 
I whish to thank Carlo Zappia for helpful comments. This  paper is the first output of an ongoing 
research on structural change and technological progress carried out at Siena University under the 
national project on Growth and Distribution (prot. 2002131335_008) financed by Siena University 
and the Italian MIUR: COFIN 2002. 
 
 
 
 

Mauro Caminati, Dipartimento di Economia Politica, Università degli Studi di Siena 



1. Introduction 
 
 
A salient feature in the recent upsurge of formal models of aggregate long-run economic growth is 

that technological knowledge is considered a producible good, which much like any other good, is subject to 

specific laws of returns to the size of the factors participating in the production thereof. Questionable as it 

may be, this feature responds to the need of giving synthetic formal expression to hypotheses concerning the 

laws of returns to knowledge production, so that their ultimate consequences are brought under analytic 

control1.  

In the attempt to delve more deeply into the foundations of knowledge production, and their relation 

with growth theory, Weitzman (1996, 1998) and Olsson (2000) provide a formal characterisation of 

alternative schemes which may sustain the expansion of the knowledge stock. 

Weitzman’s basic premise is that technological ideas proliferate through recombination2. New and 

potentially useful seed-ideas S available for further development grow out of the untried and successful 

hybridisation of existing ideas A. If H(t) is the number of new hybrids at t, then ( ) ( ) ( )S t H t p t= where p(t) 

is the hybridisation-success probability at t. New hybrid ideas H(t) arise out of the untried pair-wise 

combination of existing ideas3. Development of seed ideas S into new ideas B occurs under the constant 

returns technology B = Φ(S, J) where J is final output invested in R&D and ( 1) ( ) ( )A t A t B t+ = + . 

Weitzman’s main result is that provided the probability p(t) does not decline too fast with the growth of  A(t), 

the growth of ideas will be ultimately limited only by the amount of final output to be invested  in R&D and 

not by the availability of potentially useful ideas. It can be readily understood and is in fact shown by 

Weitzman how his picture of knowledge production “might serve as the core of an endogenous theory of 

economic growth”. 

Weitzman’s somewhat optimistic conclusions are challenged by Olsson (2000) and Olsson and Frey 

(2001). Though accepting the basic premise of knowledge growth through re-combination of existing ideas, 

these authors confine the domain of this combinatorial process to subsets of compatible ideas. The 

technological opportunity set Z(t) is the set within which all potentially useful new combinations of ideas in 

the current knowledge set A(t) are to be found. Through a formal representation of ideas as points in a 

Euclidean metric space of finite dimension n, Olsson (2000) argues that normal science and incremental 

                                                 
1 The standard replication argument refers to non-knowledge-goods production for a given size of the ‘knowledge 
stock’. The argument implies increasing returns in this production to the joint scale of non-knowledge goods, labour and 
‘knowledge’. On the further simplifying premise that the contribution of non-knowledge goods to ‘knowledge 
production’ is negligible, a crucial issue is whether the latter is subject to constant or decreasing returns to the 
‘knowledge input’. If constant returns obtain, then steady-state growth depends on prevailing investment-output ratios; 
if decreasing returns obtain, steady-state per-capita output growth may be strictly positive, but is independent of the 
investment-output ratio; for a generalization see Eicher and Turnovsky (1999) and Caminati (2003). Caballero and Jaffe 
(1993), C. Jones (2002), Porter and Stern (2000),  and many others, discuss some of the issues involved in the choice of 
different specifications for the technology of the R&D sector. Admittedly, their discussion is only tentative, reflecting 
the poor understanding of the grounds for bringing knowledge growth under the discipline of law-like regularities. 
2 He refers back to Poincarè (1908) and Hadamard (1949) rational reconstructions of mathematical creation, to 
anecdotal evidence on Edison’s invention of the electric candle, to Usher (1927) and Schumpeter (1934). 
3 More formally, H(t) = C2(A(t)) − C2(A(t − 1)) where C2(A) is the set of pair-wise combination of the elements in A. 
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R&D expand the knowledge set A through convex combinations of ‘close’ ideas on the boundary of A. In this 

representation, technological opportunities arise out of residual regions of non-convexity that may survive 

near this boundary. Once A is fully convexified, the technological opportunity set becomes empty. In other 

words, far from leading to an expansion of Z, the growth of A takes place at the expense of Z; thus, 

Weitzman’s hybridisation-success probability may well decline very fast down to zero along the  terminal 

phase of a technological trajectory. Scientific revolutions and paradigm shifts are the only means to exit 

states of technological stand-still; they are modelled as global, discontinuous changes in the knowledge set 

giving rise to new areas of non-convexity. The arrival of such revolutions is treated as a random variable and 

is not investigated further. 

From the view-point of this paper, the main problem with Ollson (2000) and Olsson and Frey (2001) 

formalisation4 is that it merely represents the notion of knowledge expansion through re-combination of 

compatible ideas, but, as it stands, it gives no clues on the existence of structural factors behind the notion of 

compatibility and its degree and to study the plausible evolution of these factors over long time spans. Put 

differently, their analysis is of little help in the search for ‘general rules of  structure and change’ (Gould, 

1992) which may be relevant to a theory of invention and innovation. These limits can be traced to the fact 

that the formalisation is not suitable to study how R&D output feeds back into the complexity of knowledge 

search spaces, on the one hand, and into the technology and organization of R&D on the other. 

An ever larger number of  contributions in the theory of innovation has come to recognise how 

important clues in this direction are offered by Kauffman’s (1993) model of evolution on N-K fitness 

landscapes. Here the knowledge set A is not embedded in the Euclidean space nℜ , but in the space of strings 

consisting of N binary ordered components. In this representation an idea is a string x ∈ {0,1}N . 

Complementarity within a given technology and between different technologies is modelled in that the 

contribution of a component ix  to the value (fitness) of x depends not only on the configuration of ix , but 

also of K other components of x (within-complementarity) and may also depend on the configuration of C 

components belonging to strings other than x (between-complementarity). 

In this paper, the N-K model and its extensions provide a unifying formalism to discuss the structural  

regularities affecting the returns to R&D in the very-long run. The analysis exploits results on the 

deformations induced by different search procedures in the structure of a search- space representation5 to 

                                                 
4 Interestingly enough, these authors try to embed in their formalisation not only the economic, but also the social and 
institutional constraints on the pace of technological progress along a given trajectory. 
5 In economics and organization theory the N-K model has been mainly used to study the relative evolutionary 
effectiveness of different search procedures: local versus global (Frenken, Marengo and Valente, 1999; Marengo, Dosi, 
Legrenzi and Pasquali, 2000); centralized versus de-centralized (Kauffman and Macready, 1995; Frenken, 2001); 
cognitive versus experiential (Gavetti and Levinthal, 2000). The N-K model has been also used to discuss the relation 
between complexity, modularity and vertical (dis)integration (Marengo, 2000; Frenken, 2001). A common theme 
coming up in this literature is the interdependence between the design of a search landscape, in particular, the number 
and location of the points that will count as local optima, and the design of a search procedure on the landscape 
(Frenken 2001, McKelvey, 1999; Levinthal and Warglien, 1999).  
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address the evolutionary factors affecting the complexity of the search spaces, which is normally considered 

as a given of the analysis6. 

The notions of modularity and redundancy will come to play an important role in what follows. 

Modularity may be loosely defined as the extent to which the dimension of a problem-structure can be 

reduced through exact or approximate decomposition into separate problems of a lower dimension. 

Redundancy in a system may be defined as the probability that a change in the system configuration is 

unconsequential7.  If modularity and redundancy are taken as given, the rising dimension of a search space, 

resulting from the discovery of novel components, brings with it a drive towards higher inter-relatedness and 

complexity.  

The changing organisations’ boundaries and the associated processes of vertical disintegration 

(integration) shift the R&D complementarities from complementarities within the search space of a given 

organization to complementarities between the search spaces of different organizations (or vice versa)8. As 

long as redundancy, modularity and search cost (the cost of a unit-step in search space) are given, the 

changing organizational boundaries will not be able to avoid that the rising overall dimension of search 

spaces, by creating greater scope for inter-dependency, brings R&D towards a complexity catastrophe 

(Kauffman, 1993) (part 2). 

The tendency above is counteracted by other evolutionary factors. In section 3.1 we consider the 

reduction of interdependency resulting from the diffusion of modularity. The incremental propagation of 

modularity coherent with the ruling interface standards meets an obstacle when progress demands a 

discontinuous, global change of these standards reflecting a paradigmatic shift in knowledge9. Evolution on 

rugged knowledge landscapes can escape the attraction-basin of a paradigm, interpreted as a local peak in the 

landscape, if redundancy offers the possibility of drifting away from the local peak through ‘neutral 

mutations’ (section 3.2). Neutrality still holds its relevance for knowledge evolution after the possibility of 

forward-looking, goal-directed procedures is admitted. Long-jumps on knowledge landscapes may be 

induced by experience-based search exploiting long-term memory, or by goal-directed search (section 3.3). 

There is also a form of horizontal loose coupling between modules which is most relevant to the transition 

between  paradigms. What is crucial here is the variety of functions and applications which is produced by 

technological innovation and scientific discovery. I suggest that there is a rigorous and relevant sense in 

which the availability of specific and relatively isolated application domains provides the matrix of 

knowledge interactions with loosely-coupled functional and structural horizontal modules. In this way, 

                                                 
6 In the lines of enquiry considered in footnote 5, an original problem is posed, such as the exploration of a 
technological landscape of exogenously given complexity. The influence of bounded rationality and computing costs on 
the evolution of search heuristics is then investigated. It is finally shown how different organizational choices 
concerning the search procedure deform the search landscape corresponding to the original problem in different 
directions. 
7 More accurate definitions of redundancy and modularity are given in section 2. 
8 Ceteris paribus, organizational boundaries are in turn affected by the degree of modularity of problem spaces 
(Langlois 2001, 2002; Frenken 2002). 
9 In fact, the emergence of a set of standards, or dominant designs, is part and parcel with the emergence of a new 
paradigm (Caminati, 1999). 
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revolutionary ideas can be brought into use to serve specific purposes for which they are already fit, without 

interfering with the established ideas (section 3.4). 

Part 4 draws together the ways and extent in which the arguments of part 3 qualify or substantially 

alter the main conclusion of part 2. Part 5 concludes that the returns to R&D defy the imposition of law-like 

regularities extending over long spans of scientific or technological history. 

 
 

2. Search on technological landscapes 
 
 
2.1. The family of N-K fitness landscapes 

 
Let us think of x as a configuration, or ‘design’, of idea T. Information on a given design is coded in 

a string of binary components, that we may interpret as characteristics which may be present or absent within 

the given design10. More precisely, a design of T is a string of N binary elements (x1, x2, ..., xN), where each xj 

, j = 1, ..., N can assume value 0 or 1. There are then 2N possible designs of T, corresponding to the number 

of different states in the space {0, 1}N. In fact, T can be thought of as the set of its 2N possible designs. 

Hence, we define T = {0, 1}N. Let x and x’ be N-strings in T. The distance between  x and x’ is defined by 

the number of components of the former having a different value with respect to the corresponding 

components of the latter. The neighbourhood of x is the set of strings in T with distance from x less than or 

equal to 1. It consists of x and its N neighbours.  

The (relative) performance of a design vis a vis the other designs potentially available for the same 

application domain defines its competitive strength, or fitness. The fitness function of T is the map V: T → ℜ 

associating each design of T with its fitness value (a real number). In particular, the fitness value of a string 

is the sum of the fitness contributions of its N components. More formally, the map V is defined as: 

V(x1, x2, ..., xN) = 1/N [
j=
∑

1

N

 Vj(x1, x2, ..., xN)] 

where (1/N)Vj(x1, x2, ..., xN) is the fitness contribution of the string component j. For the present purposes Vj 

is best treated as a random real in the unit interval [0, 1]. The above notation attempts at formalising the 

notion of input interdependence, in that, the fitness contribution of j depends not only on the configuration xj, 

but also on the configuration of one or more string components xh, h ≠ j. If xh  is a non-redundant argument 

of the function Vj(x1, x2, ..., xN), then component h is complementary with respect to j11. Kj ≤ N − 1 is the 

number of string components which are complementary with respect to j. For the sake of simplicity, we 

assume that Kj is constant across the components of T: Kj = K, j = 1, ..., N, and that, for any given K, the 

specific pattern of complementarity relations (epistatic interactions) between string components is fixed 

randomly. 
                                                 
10For the time being we abstract from the otherwise important distinction between information and knowledge  and the 
fact that techniques, like routines, may contain elements of tacit knowledge. See however below, part 3 and 4. 
11 It may be worth stressing that our definition of a complementary input does not correspond to the more restrictive 
definition used in Milgrom and Roberts (1990), or Topkis (1998), which is based on the mathematical notion of super-
modularity. 
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The fitness landscape of T is the graph (V(x), x): T → [0, 1] × T.  

In the absence of complementarity (K = 0), a change 0 → 1, or vice versa, in the configuration of a 

single component, does not affect the fitness contribution of any other. This implies that the fitness landscape 

of T has at most one isolated local peak and a local maximum of V( ) on T is a global maximum. When K > 

0, there may be situations where a fitness increment can be reached only through a changed configuration of  

two or more string components, simultaneously. This amounts to the possibility of multiple isolated local 

peaks on the fitness landscape. When complementarity is maximal (K = N − 1) the fitness landscape is 

random, in the sense that the fitness values of neighbouring states are totally uncorrelated. The cases K = 0 

and K = N − 1 lend themselves to easy formal analysis (Kauffman, 1993). Here, we stress the sample 

properties of the large family of correlated N-K landscapes, which spans the parameter space between the 

single-peaked (K = 0) and the random (K = N − 1) landscape.  

 
Remark 1. (Kauffman, 1993, pp. 55-57): Let V*(N, K) be the expected fitness of a local peak on a N-K 
landscape, the expectation being taken across local peaks and landscapes. (i) For a fixed K, the sample 
average computation of V*(N, K) remains approximately constant as N grows to N = 96. (ii) For a fixed and 
sufficiently large N (Kauffman used N ≥ 8), the sample average computation of V*(N, K) is first increasing 
and then decreasing in K (starting from K = 0), reaches a maximum at K*, 2 ≤ K* ≤ 4, and dwindles towards 
average fitness 0.5 for K sufficiently large (complexity catastrophe). 

 
Remark 2. (Kauffman, 1993): Let N be given and constant. On average, the higher K, 
(i) the higher is the number of local optima; 
(ii) the lower the correlation between the fitness values V( ) of neighbouring strings x, y12. 
 

2.2 Local versus global search 

 
So far we have provided a formal description of (codifiable) knowledge landscapes, but nothing has 

been said on how exploration proceeds on such landscapes. This issue can be addressed building upon 

Simon’s notions of decomposability and near decomposability (Simon, 1962). The problem of exploration on 

the N-K fitness landscape defined by V() is decomposable if the problem can be divided into separate sub-

problems that may be solved independently.  

A decomposition of the search space {0,1}N is a set of Z subspaces {0,1} zN , z = 1, …, Z, such that 

their union recovers {0,1}N. A decomposition is complete for the fitness function V() if xi complementary 

with respect to xj implies that xi and xj belong to the same sub-space in the decomposition. Complete 

decomposability for V() is a sufficient but not a necessary condition in order that a problem be 

decomposable. A necessary and sufficient condition for problem decomposability is stated in Frenken, 

Marengo and Valente (1999) and Marengo (2000).  

Following Holland (1975), and Page (1966) a schema is a ordered sequence of 0, 1 and #. The 

defining bits of the schema are those that differ from #. A schema has dimension, or size,  n if it has n 

defining bits. The projection of a string x ∈ {0,1}N on a schema h ∈ {0,1, #}N is a string y ∈ {0,1}N such that 
                                                 
12 It may be worth noting that, for a fixed K, the correlation between the fitness values of neighbouring strings increases 
with N. 
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yi = hi if i is the index of a defining bit of h and yi = xi otherwise. A schema is dominant if ‘by projecting on it 

all other strings we obtain a new string with higher (or equal) fitness. Of course, only schemata which are 

part of strings with maximum fitness can be … dominant’ (Frenken, et al., 1999, pp. 151-2). A cover of a N-

K fitness landscape is a set of dominant schemata such that their union yields a maximum-fitness string of 

the landscape. The cover size of the fitness function V() on {0, 1}N is the size of the largest schema contained 

in the minimum-size cover for that function, that is the cover with minimum-size schemata (sub-problems). 

The cover size of V() is therefore a measure of the complexity of the fitness landscape defined by V(). Cover 

size lower than N is necessary and sufficient for problem decomposability into independent sub-problems 

which can be solved in parallel. Cover size gives the dimension of the largest sub-problem, thus  fixing an 

upper bound13 on the time required to find the optimal configuration in {0, 1}N. 

When the pattern of epistatic interactions between string-components is arbitrary, the cover-size of 

the fitness function V() is likely to be N or close to N, as soon as the interaction parameter K rises above 2 

(Frenken et al., 1999). Correspondingly, computing the fitness maximizing string x* on the landscape is a 

complex task: solving the problem within a reasonable computing time is most likely to be impractical, if 

problem-size N grows sufficiently large14. In a selection environment where computation time matters and 

cover size is close to N it may be profitable to attack the original problem with an incorrect decomposition 

such that the dimension of the sub-problems, or schemata, is lower than cover size. The price to pay for 

faster computing time is that the algorithm may not lead to the optimal solution. Search strategies induced by 

decompositions with schemata smaller than cover-size qualify to be called local, in that only ‘local’ 

interactions are considered.  

 
Remark 3: The ground for defining a search procedure local has to do with the way in which mutations are 
generated. A decomposition defines a search euristics in the sense that the original problem space is replaced 
by the union of different subspaces. On each subspace search proceeds as if the decomposition is correct, that 
is, without worrying about the fitness effects of a move in the subspace on the other subspaces. The string-
components belonging to the same subspace can be mutated simultaneously. Intuitively, search is local if it 
can not reach a global optimum in a single search round. Conditions sufficient to qualify a search procedure 
‘local’ are that the dimension of every subspace is in the decomposition is lower than cover size, or that it is 
based on an incorrect decomposition, or that there is a multiplicity of subspaces that are searched 
sequentially. 
 
Remark 4: The ground for accepting or rejecting a local mutation depends on the centralized or decentralized 
nature of the decision. If the decision is centralized, a generated local mutation is accepted if and only if it is 
fitness-improving globally. 

 

Frenken et al. (1999) and Marengo (2000) build upon Simon (1962) to suggest that an ε-satisficing 

solution (a solution not-more-than-ε-far from optimal fitness) to the search problem will be available if the 

problem structure is nearly-decomposable. This is the case if there exists a  decomposition of the search 
                                                 
13 “Cover size might over-estimate the complexity of the solution for a search algorithm because, if some schemata 
which form the minimum cover have bits in common, solving one of them reduces the size of those with overlapping 
elements. Of course, the bits which are common to two or more schemata in the cover must take the same value at the 
optimum, thus we can search for such values in the smallest of the overlapping schemata and reduce the dimension of 
the larger ones…” (Frenken et al., 1999, p. 152). 
14 The problem is NP-complete (Rivkin, 2000, p. 832-33). 
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space into sub-spaces with an hierarchic structure such that components belonging to the same sub-space 

receive sufficiently weak (in their fitness effects) epistatic links from components belonging to different sub-

spaces at the same or at higher levels in the hierarchy15.  

For ε negligibly small, the formal conditions for near-decomposability are strong. In particular, if the 

dimension of the nearly-decomposed sub-spaces grows in proportion to the dimension N of the original 

problem, finding the optimum on the sub-spaces will be intractable (NP-complete) much like finding the 

optimum on the original problem space. Frenken et al. (1999) simulate a selection environment where sub-

populations of agents are characterized by different decompositions of a given problem and are faced by 

constraints on their computing resources. They show that sub-populations with sub-optimal decompositions, 

tend to invade the population. This motivates the following conjecture: 

 
Conjecture 1: Consider Kauffman’s N-K problem and the set of possible decompositions of {0,1}N. At K > 2 
search time fixes an upper bound M < cover size on the subspace-dimension of the stable decompositions. 
These are the decompositions that –in a selection environment where sub-populations of agents choose 
between different decompositions on the base of their relative success within a fixed and finite time interval- 
would not be invaded by any other decomposition. If we expand the scale N of the problem while holding K 
> 2 constant, the ratio M/N weakly declines. 

 

An extreme form of local search is Kauffman’s fitter dynamics which follows from the 

decomposition of the N-bit search space into N subspaces, each of size 1 bit: to generate one new 

configuration from a current configuration, one of the N subspaces is randomly selected and its configuration 

mutated; if the fitness value of the new design thus obtained is higher than the fitness value of the current 

design, the idea moves to the new configuration. The procedure is then iterated until a local maximum of V( ) 

is reached. The fitter dynamics is non deterministic, but a local peak of the landscape is a stationary state of 

this dynamics. One may also want to consider situations in which agents choose to experiment more designs 

before making a move with possibly long-lasting implications. Here the polar case is that in which all the 

designs within the neighbourhood of the current state are tried out before making a move on the landscape16. 

Also this polar case is considered, if more briefly, in Kauffman [1993] with the label ‘greedy dynamics’. To 

fix our ideas, we report on simulation results based upon these particular forms of local search; the main 

qualitative features of  the results extend to local search in general. 

 

Remark 5. (Kauffman, 1993): Assume local search through fitter or greedy dynamics on a family of N-K  
landscapes. Let N be given. On average, the higher is K, the smaller is the basin of attraction of a local peak 
and the steeper the adaptive path to it. The ratio between the average number of states in the basin of a ‘high’ 
and of a ‘low’ local peak17 of the landscape, increases with the correlation of the landscape, hence increases 

                                                 
15 To identify the set Σ of ε-satisfacing solutions Frenken et al. (1999) introduce the notion of a ε-cover of the fitness 
function V(). This is a set of schemata which are dominant on the set of strings which do not belong to Σ and such that 
the union of the indexes of their defining bits recovers {1, 2, …, N}.  
16 Through an appropriate re-scaling of time, this generates the assumption that at any given ‘date’ a unit takes a ‘one-
step’ move from the pre-determined state to the state identified by the fittest string in the given neighbourhood, thus 
yielding a fully deterministic dynamics on T. 
17 ‘High’ and ‘low’ local peaks identify here  local peaks with fitness above and below average, respectively. 
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with 1/K, as K declines from N − 1 to zero at given N. Thus, local search converges to a ‘high’ local peak of 
the landscape with a probability that is  decreasing with K, at given N. 
 
 
2.3. Centralized versus decentralized search 

  

A message of section 2.2  is that on rugged landscapes, the gap between maximum sub-space 

dimension in the stable decompositions (in the sense of conjecture 1) of T and cover-size is bound to 

increase with N. If local search is the best one can do, it is worrying that local search on rugged landscapes is 

likely to be trapped on poor local optima (remark 5). A way of escaping very poor local optima is offered by 

admitting local search procedures which may temporarily go in the ‘wrong’ direction, that is, which are 

allowed to move some steps down-hill on fitness landscapes (Kauffman and Macready, 1995, pp 35-40). A 

way of achieving this is to decentralize the search procedure across a multiplicity of ‘agents’. Consider N as 

given exogenously. A decentralization is a disjoint decomposition of T into S sub-systems such that 

subsystem Th, h = 1, …, S, consists of a sub-string of Nh binary components and 
1

S

h
h

N N
=

= ∑ . Decentralized 

search means that each Th evolves on its landscape {0,1} hN autonomously, that is, according to decisions 

that have in their view the performance of Th and neglect the effects on the performance of other sub-strings. 

The decentralization 
1

S

h
h

N N
=

= ∑ induces the corresponding separation Gh = Ch + Kh, where Kh and Ch are the 

average number of links that a component of sub-string h receives from components belonging to the same 

or to other sub-strings, respectively. G, K and C are the cross-h averages of  Gh Kh and Ch. Notice that G is 

independent of the decentralization in use. The rest point of a decentralized search process is such that all the 

sub-strings are simultaneously at a local optimum on the subspaces. Hence it is unlikely that a very poor 

local optimum in the original (non-decentralized) problem space is a rest point of a sufficiently decentralized 

procedure. The other side of the coin is that co-evolutionary relations triggered by decentralized search may 

displace sub-strings from relatively adapted positions on their landscapes18.  

 
Co-evolutionary convergence: Kauffman and Macready (1995) suggests that with extreme local-search 
procedures (1-bit mutations) the optimal number S of subspaces, each of dimension N/S, hence the optimal 
determination of C and K, given N and G, is such that C is poised at a critical intermediate level; above this 
level the co-evolution dynamics does not find a rest point. This defines the ‘best’ position on the trade-off 
between co-evolutionary turbulence and the probability of escaping poor local optima. 
 
 Obviously enough, the same logic19 behind Kauffman and Macready’s decentralized search can be applied 

to local-search procedures less extreme than the 1-bit mutation procedures considered in their paper. In this 

respect, it can be confidently conjectured that local search defined by decompositions admitting schemata of 

varying but on-average-larger dimension would be ‘optimally’ decentralized through a lower number of 
                                                 
18 It is worth stressing that the accepted mutations and the rest points of a decentralized search procedure would not 
generally correspond to those of a centralized procedure. 
19 It may be worth observing that Kauffman and Macready (1995) decentralization is not aimed at speeding-up search 
through parallel, independent search activities. However important, the speed-up side of decentralization is not 
considered here. 
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subspaces. The intuition is that a farther-reaching local search would face lower risk of being trapped on 

poor local optima and on this ground it would require a lower injection of co-evolutionary disorder.  

 

 
2.4. Increasing the scale of problem spaces without selection on structural parameters induces a 
complexity catastrophe 
 
 
Definition1: A radical innovation is defined by an expansion of the set of knowledge components; 
incremental innovations discover new, fitness-increasing configurations in the space defined by the existing 
set of knowledge components. On this ground, a sequence of radical innovations increases the scale N of T. 
 

At this stage, I do not yet introduce selection on the structure of epistatic links or on the ruling  

decentralization of search fixing the separation G = K + C. These will be considered at length in later 

sections. For the sake of the argument,  it is temporarily assumed: 

 
Assumption 1: For given N, the existence of an epistatic link from component j ≠ i to component i of T is a 
random event occurring with probability πij = π(N) > 0, i, j = 1, …, N. The average number G of epistatic 
links received by a component of T increases with N. Recall that G has upper bound N − 1. The motivation 
behind the assumption is that  we are ruling out factors, other than the scale of T, which may affect the 
probability π. On this ground, it is assumed that π(N) does not decline ‘too’ fast when N increases. 
 
Remark 6: For given N and G, assumption 1 implies that the ‘wiring’ of epistatic links is random in the sense 
that if the component xi of T receives epistatic links from G other components of T, then each of the N − 1 
components of T other than xi has the same probability G/( N − 1) of sending a link to xi. 

 

The main emphasis of section 2.4 is on the following remark: 

 
Remark 7: (i) Assume that the structural relation between knowledge and performance of a system T is 
described by a Kauffman N-G fitness landscape, where T, N and G are defined as above. (ii) Assume that  
there is a finite bound on search time and R&D is guided by local search procedures. (iii) Assume that the 
scale N of T increases indefinitely and assumption 1 holds. It is an implication of remark 5 and of the notion 
of optimal co-evolutionary search that, as G keeps increasing, then no matter how organizations’ boundaries 
move the partition G = C + K, from within-organization interactions to between-organization interactions, or 
vice-versa, R&D will not be able to avoid the eventual onset of a complexity catastrophe. 
 

Assumption 1 as well as assumptions (i) and (ii) in remark 7 are all, to some extent, questionable. 

Hypotheses aiming at a strong qualification and revision of these assumptions are presented and discussed in 

part 3. To this end, and by way of introduction, the following section brings in selection forces. 

  
 
2.5 Introducing selection on structural parameters 

 

Selection on the structural parameters G, K, C and S is introduced as follows. 

 At any given date there exist alternative knowledge systems available and a population of units 

explores a population of systems. While a population of units explores the landscape {0, 1}N(T) corresponding 

to system T, another population explores the landscape {0, 1}N(T’) or {0, 1}N(T’’) … corresponding to system 

T’, T’’ … respectively.  Selection on the populations of units induces a selection on the population of 
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systems20 and a corresponding selection on the structural parameters N(T), N(T’) …, G(T), G(T’) …. 

Moreover, the population searching on a given landscape may be divided into sub-populations implementing 

alternative decentralizations of the landscape. In this way a selection is induced on decentralization modes. 

With this framework in mind, we shall discuss at length in part 3 how modular structures evolve 

through the selection for lower values of G aimed at the sustained evolvability of the knowledge system.  

Before that, we stress in the following remark the existence of selection forces participating into the joint 

determination of G and of organization boundaries, but acting in a different direction. The value of G is 

increased rather than decreased. The argument introduces selection on the number of epistatic links, but not 

on the wiring of such links which remains random. 

 
Remark 8: Assume that, for given N and G, the wiring of epistatic links is random in the sense of remark 6. 
Assume that N keeps increasing through time at a possibly slow pace. The conjecture stated in appendix A.0 
implies a drive towards higher C at given G. Kauffman (1993, pp. 248-250) shows that in co-evolution 
episodes there are forces selecting for higher K values when C increases. Thus, decentralizations with rising 
number of sub-spaces induced by rising N (see conjecture 1) and lack of selection on the ‘wiring’ of epistatic 
links,  trigger forces selecting for higher C and K, hence for higher G. This brings with it a positive relation 
between G and N which adds to the positive relation contemplated in assumption 1. 
 

 

3. Evolution cum evolvability 

 

The scenario of a looming complexity catastrophe spelled out in part 2 has been challenged by 

scholars of evolution of complex systems (be they natural, artificial or social). One strand of research has 

brought to the fore the factors which are responsible for a long-term selective suppression of epistatic links 

between string-components and the ensuing increasing modularisation of complex systems. A second strand 

of research has challenged the standard architecture of N-K fitness landscape and  the ensuing evolutionary 

dynamics on such landscapes, in that they downplay the possibility that local optima are connected by a 

network of ‘flat ridges’ enabling a population to drift far away on the landscape.  

 
3.1. Evolvability and the evolution of modularity 
 

Our presentation of N-K fitness landscapes in part 2 exploited a number of simplifying assumptions 

which it is now best to remove.  

The first and most relevant simplification was that every component xj of the string x ∈{0,1}N 

exerted a distinct fitness contribution as if the component identifies a specific function f and the number of 

functions F = N. In a more general setting (Altenberg, 1994), it may be assumed that a component may affect 

a multiplicity of functions and F ≠ N. Overall fitness is the product of the additively separable contributions 

of the F functions:  

                                                 
20 To give a concrete example, the macro-invention of electricity took place with the introduction of two subsets of 
knowledge components corresponding to the direct-current and alternating-current systems, respectively. 
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The pleiotropy of the jth string component is the number of functions affected by it, that is, the number of 
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relation between string components and functions is then described by the N × F  matrix M = [mjf], where mjf 

= 0 or mjf = 1 depending on whether xj is or is not a redundant argument of 1
( ,..., )

f NV x x . To relate the 

present discussion to the notion of near-decomposability, we define xj a redundant argument of 

1
( ,..., )

f NV x x if the fitness effect of the former on the latter is ‘sufficiently weak’. How weak is 

sufficiently weak depends on the value of the satisficing parameter ε. Biologically inspired problem 

representations identify the F functions with F phenotype characters and label M genotype-phenotype map21. 

The main reason behind the above generalization is that the ability to achieve evolvability, that is, 

sustained variation and ‘progress’ over long spans of evolution time, can be referred in a meaningful way to 

the structure of the matrix M. The modularity of the  genotype-phenotype matrix corresponds to a block 

decomposition of M, such that between-blocks pleiotropy effects on fitness are relatively weak with respect 

to within-blocks pleiotropy effects.  

If the idea of a block decomposition of an interaction matrix has a long standing in social science 

(Simon and Ando, 1961), the interesting point raised by scholars of natural and artificial evolution is the 

detailed specification of selection forces changing the block decomposition over time, with the aim of 

preserving and increasing evolvability22. The general thrust behind such selection forces had been anticipated 

by Simon since his formulation of the near-decomposability concept. The implications for technology 

evolution and economic organization are now widely appreciated, if not deployed in all their manifold 

relevant dimensions23. 

                                                 
21 Cf. Altenberg (1995), p. 231. M has F polygeny column vectors and N pleiotropy row vectors. 
22 The grouping of the subset of string components serving the same subset of functions within a relatively isolated 
‘gene net’ “… means that genetic change can occur in one of these gene nets without influencing the others, thereby 
much increasing its chance of being viable. The grouping leads to a limiting of pleiotropy and provides a way in which 
complex developing organisms can change in evolution.” (Bonner, 1988, p. 175, emphasis added.) This implies that 
genetic change can proceed rather smoothly along the subset of dimensions participating in the regulation of a 
functional complex occasionally conveying adaptive advantages, while preserving the functionality of the whole. 
Various selection mechanisms for the evolution of modularity have been suggested (Wagner and Altenberg, 1996; 
Wagner, Mezey and Calabretta, in press). These range from the selective suppression of pleiotropic effects (Wagner, 
1995) to the growth in the number N of string-components, through sub-string duplication, with subsequent selection of  
those strings such that the duplicated segments have relatively low and localized pleiotropic effects (Altenberg, 1994, 
1995). 
23 Cf. Baldwin and Clark (2000), Langlois and Robertson (1992), Buenstorf (2002), Langlois (2002), Axelrod and 
Cohen (2000), Calcagno (2002), Brusoni and Prencipe (2001), Devetag and Zaninotto (2002). As suggested below in 
the text, a discussion of the relation between selection for modularity and paradigmatic changes in knowledge is still 
lacking. 
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Two general conclusion intersect the application domains of the modularity literature. The evolution 

of modularity in complex systems: (i) takes place through a selective pressure against the growth of diffused 

pleiotrpopic effects; (ii) enables high innovation rates along the dimensions in which evolution opportunities 

are favourable, while preserving stability and continuity in the dimensions which guarantee the viability of  

the system as a whole.  

From the view point of the present discussion conclusions (i) and (ii) are most relevant in that they 

single out a process acting counter to the growing interconnectedness of knowledge systems which was 

hypothesized in part 2. Still, a careful reading of (ii) reveals that there are definite bounds to the scope of the 

counter-acting force thus identified. To see this, it is worth recalling that, according to definition 1, a radical 

innovation expands the dimension of the search space and generates a new fitness function V() on the 

expanded domain. A sequence of radical innovations will then preserve the pre-existing modular structure24 

of the genotype-phenotype map only if knowledge expansion occurs in restricted directions, such that the 

new string components, or their configuration, do not establish non-negligible interdependences between the 

pre-existing blocks. The restricted directions referred to above are set by the design rules (Baldwin and 

Clark, 2000) which confer continuity to a given lineage, for instance, a given theory or technological 

paradigm, by fixing a stable set of interface standards which are peculiar to it. There is in this respect a 

crucial difference between the scopes of the forces and counter-forces under discussion. The drive towards 

rising interconnectedness hypothesized in part 2 is specific to the knowledge domain and acts across 

different lineages of this domain, in that it is at work in those saltation events giving rise to new paradigms. 

The counter-acting force related to the evolution of modular architectures, as described in this section, has to 

do with the evolvability of a given lineage; thus, it is at work within the evolution episodes  which mark the 

birth, development and maturity of a given paradigm.  

The history of ideas shows that radical innovations do not always conform to the pre-existing design 

rules. Addition of new components to N, F or both, or selection of new string-configurations may destroy the  

near-independence between the pre-existing blocks; in this case, near-decomposability can be re-established 

only through a global re-design of the block structure of M. On search spaces of rising dimension, global re-

design is an increasingly demanding task. 

We may provisionally conclude that selection for modularity favours evolution along special  

dimensions enabling the acquisition of favourable characteristics. The benefit is circumscribed to the 

evolution of individual lineages and may turn into an obstacle to the advent of macro-mutations involving 

global changes in the product technology and a re-definition of interface standards (for a recent re-statement, 

see Brusoni and Prencipe, 2000). In this sense, the modularity argument, as developed before, does not fully 

escape the logic inherent to the rules of local search on rugged fitness landscapes, which envisage the 

                                                 
24 A block decomposition of the matrix M corresponding to the fitness function V() is induced by an ε-cover of V(). 
Consider the phenotype-genotype maps M and M’ corresponding to the functions V(x), V’(x’) on {0, 1}N and {0, 1}N’, 
respectively and such that N’ ≥ N. For fixed ε, let ε-C, ε-C’ be ε covers of V(x), V’(x’), respectively. ε-C and ε-C’ are 
consistent iff the following conditions hold for i, j = 1, …, N: (a) xi, xj defining elements of the same schema in ε-C 
implies that xi, xj are defining elements of the same schema in ε-C’; (b) xi, xj defining elements of different schemata in 
ε-C implies that xi, xj are defining elements of different schemata in ε-C’. 
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characteristic situation of a lock-in on a possibly poor local peak. In sections 3.2 and 3.3 we consider 

mechanisms conferring wider scope to evolutionary change. 

 

3.2. Escape from local peaks: neutrality 

 
A characteristics of Kauffman’s N-K fitness landscapes described in part 2, including their 

generalization offered in section 3.1 is that every change in a string configuration has relevant fitness effects. 

The alternative idea behind the notion of neutrality25 is that there is a large redundancy in the way relatively 

unchanging functional characteristics are coded in the genotype. 

For the sake of simplicity, we assume that M = [N×N] Identity matrix. Following Barnett (1998), a 

one-bit mutation x’ of x ∈ {0,1}N is neutral if and only if V(x’) = V(x); the neutral degree of x is the number 

of neutral mutations of x. The possibility of neutral mutations arises on an N-K fitness landscape if for any f 

∈ [1, …, N] there is a probability p > 0 that the fitness contribution Vf(x) = 0. The probability p defined 

above introduces the class of N-K-p landscapes. Neutral mutations induce a partitioning of {0,1}N such that x 

and x’ belong to the same equivalence class if and only if there is a sequence of neutral one-bit mutations 

connecting x and x’. “The neutral networks of the fitness landscape are defined to be the equivalence classes 

of this partitioning” (Barnett, 1998, p. 19). A coarser partitioning is induced on {0,1}N by imposing that x 

and x’ are in the same equivalence class if and only if V(x) = V(x’). An equivalence class of this coarser 

partitioning is a neutral set. The neutral networks are the connected components of the neutral sets. The 

reason for introducing the latter is that their properties are easier to study analytically (see appendix A.1). It 

is worth insisting that neutral networks, neutral sets and their properties are observed in spite of the 

‘ruggedness’ of the landscapes, which is scarcely, if at all affected by neutrality (see appendix A.1). 

A discrete evolutionary dynamics of S strings on an N-K-p landscape is induced through selection 

and mutation operators26. Barnett (1997, 1998, 2000) reports on the typical findings from the simulation of 

evolutionary dynamics on N-K-p landscapes (Appendix A.1, Remark 13). 

On the premise that evolution on N-K-p landscapes is relevant to the knowledge domain, the main 

implications that are of potential interest for the fate of R&D may be summarised as follows. As N, and 

(possibly) K slowly increase over time, it may well take longer, on average, to find the way out a neutral 

network of given fitness; but the point is that a way out exists and will be sooner or later be found. This hints 

at factors which make the long term-behaviour of R&D success potentially irregular, with long intervals of 

gradual, relatively-slow progress or even stasis interrupted by rapid outbursts of innovations corresponding 

to the population transition to a new network of higher fitness. We are left with the task of showing how the 

above premise may hold true. 

                                                 
25 The idea can be traced to the contribution of Kimura (1983); recent reformulations in the biological domain are 
corroborated by experimental studies of protein evolution (Huynen, Stadler and Fontana, 1996; Huynen, 1996). 
26 Population at the next ‘generation’ results from S selections, with replacement, from the current population. The 
probability that a string gets selected is proportional to its relative fitness. Every string configuration in the new 
population is then mutated with a fixed, low probability m. It may be worth noting the biological inspiration of this 
dynamics where, unlike the ‘fitter’ dynamics considered in section 2, selection operates only at the population level. 



 14

As a preliminary to this enquiry, it is worth dispensing with Barnett’s restriction of neutrality to one-

bit mutations within strings with a constant number N of information components. We can extend the theme 

of neutrality to local changes in information that do not exceed a given tolerance range in their fitness 

effects. The extended definition admits deliberate downward steps on the landscape designed to increase the 

rate and scope of mutations27, multi-bit mutations and even changes in representation expanding the 

dimension of the search space (see appendix A.2). With this extension in mind, we can state that the 

possibility of neutral changes in information results from a structural rule which is quite generic in its domain 

of application. The rule states the multiplicity of the ways in which the activation of ‘functional 

characteristics’28 achieving a given performance value (fitness), up to the tolerance range, can be coded in a 

replicable string of ‘information’29. In the technological domain the performance value is defined in terms of 

engineering and economic criteria; in the scientific domain it can be defined in terms of ‘explanatory 

coherence’ (Thagard, 1992): the coherence between the items of a conceptual structure and the coherence 

between such items and those contained in the set of the empirical evidence under consideration. 

A multiplicity of coding and an associated instance of neutral local mutations is revealed by the 

tolerance ranges in the parameter settings of a technological design. It is also inherent to the fact that a 

number of simultaneous parameter changes that still qualify the implied mutation as ‘local’ may mutually 

compensate in their effects. Corresponding phenomena arise in the scientific domain when we consider 

alternative theories which locally agree in their explanations and predictions that apply to a restricted subset 

of the experimental domain (think of Newtonian mechanics and Einstein’s relativity dealing with 

experimental speeds far from light speed). 

Neutral networks may therefore exist on knowledge landscapes and populations of information 

strings may correspondingly drift on such networks even if the allowed evolutionary dynamics are restricted 

by strictly-local search heuristics. 

 
3.3. Neutral mutations with non-local search 
 

Drift on neutral networks being a possibility, it can be argued that the idea of neutrality is relevant to 

knowledge revolutions in a more general sense, which takes due account of the variety of search heuristics 

(local versus non-local, experienced-based versus goal-directed)30 available on knowledge landscapes. In 

particular, unfrequent long jumps induced via goal-directed or experience-based procedures, though reaching 

configurations of similar fitness value (neutrality) may deeply mutate the local-search knowledge base. In 

what follows we focus our attention on scientific revolutions. 

 
Connecting concepts 
 

                                                 
27 On search rules designed to speed-up experimentation, see Hovhannisian (2003). 
28 The term ‘functional characteristics’ identifies a particular implementation of  a set of  functions, as determined by 
the ‘genotype’. 
29 In terms of the genotype-phenotype matrix M, two string populations with different genotype-phenotype matrixes and 
competing in the same application domain, can attain the  same fitness. 
30 Gavetti and Levinthal (2000). 
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According to Thagard (1992), fundamental scientific discoveries apparently conforming to the 

discontinuous ‘Gestalt-change’ representation originating with Kuhn (1962), reveal in fact a characteristic 

pattern ingrained in a complex network of evolving conceptual innovations building a link between the old 

theory and the new. Typically, the intermediate steps of the evolving conceptual structure do not yet possess 

the higher ‘explanatory coherence’ which is a property of the new paradigm only in its developed and 

consolidated versions leading to its final adoption by the scientific community. In fact, during the early 

stages of theory development, the attention of the creative mind(s) is focused on a restricted set of new 

concepts and theoretical relations that are credited of being highly coherent with a specific subset of the 

evidence. To the extent that the links of the new concepts and relations with the overall conceptual structure 

are still ill defined, the explanatory coherence of the whole may be in doubt, both for the scientific 

community and, most importantly, for the creative mind(s). In these early stages, it is often the case that 

connecting concepts and relations are introduced, which deform the subjectively perceived fitness landscape 

by adding or deforming information schemata in a way aimed at building a network of coherence links 

connecting the pre-existing theory with the new concepts and relations in the focus of the creative mind(s). 

Such links serve the purpose of filling the gap in explanatory coherence suffered by the emerging, but still 

fuzzy, theory31. We claim that the introduction of the schemata building such links are analogous to neutral 

changes in information; they enable units in the population of strings to search away from the population-

average location, still centred on the received theory, while reducing the risk of a premature suppression by 

selection. In some cases the bridging links are introduced through recombination between the items of the 

pre-existing conceptual structure and new concepts and relations independently formulated through a goal-

oriented activity, for instance, the explanation of a novel experimental evidence. Examples of this type are 

some connecting links in Lavoisier conceptual structure prior to the formulation of his fully developed theory 

of combustion. In fact, for some time after 1772 Lavoisier still regarded his conceptual structure not 

necessarily alternative to the theory of phlogiston. In other cases the connecting concepts pre-exist to the 

formulation of a discovery and indeed serve the purpose of open gates making the discovery itself accessible. 

For instance, Clerk Maxwell through his notion of a ‘mechanical ether’ could formulate his electromagnetic 

equations without deep questioning his un-shaking faith in Newtonian mechanics. Such deep questioning 

only became ripe in the subsequent decades, partly as a result of those equations. 

It may be worth adding that the development of a new theory to the stage in which it represents a 

fully alternative conceptual structure will most often entail the removal of the conceptual links which 

provided a coherent connection with the pre-existing rival. 

 
Selective forgetting, or ‘returning on one’s steps’ 
 

                                                 
31 This may occur through the introduction of a concept without detectable empirical counterpart. The notion of a 
‘mechanical ether’ enabled Maxwell to interpret his newly formulated electromagnetic wave equations in the light of 
his unscathed faith in classical mechanics. In a short time these equations would pave the way to a different non-
Newtonian explanation of wave propagation through space, preparing the ground for special relativity and the notion of 
a mechanical ether could be dispensed with altogether. 
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Other search heuristics on knowledge landscapes exploit the possibility of ‘neutral mutations’ 

(according to our extended definition) through the combined use of short-term and long-term memory. 

Referring to the traditional view of great scientific discoveries originating from sadden ‘illuminations’ of 

apparently unconscious origin, Simon (1966b) argues that both the discontinuity implied by such 

illuminations and the revolutionary aspect of the discovery can be understood as resulting from normal 

problem solving activities. In fact, these activities include experienced-based search strategies that are 

effectively designed to avoid trapping on poor local optima. Experience-based search is guided by 

focalisation mechanisms (inducing local search) which give rise to the stepwise formation of an information 

hierarchy temporarily stored in the short term memory and only selectively transferred in the long term 

memory. To the extent that the frustration resulting from local-search failures makes the focalisation 

mechanisms temporarily dormient, the information stored in the short term memory is lost, but this is 

precisely what activates long-term memory and enables local search to start afresh from the exploration of a 

previously discarded alternative path (Simon, 1966b and 1977, pp.294-99). 

 

3.4. Escape from local peaks: design revolution through segregated modules and knowledge spillovers 

 

In this section we elaborate on a road of escape from local optima on technological landscapes  

which helps explaining how radical innovations, after seeing the light in restricted application domains, can 

develop into macro-innovations. The escape gate is offered by the protected niche of application of a new or 

still unexploited idea which so avoids being prematurely suppressed by the strong competition from fitter 

ideas dominating other application domains. The absence of fitter rivals within the niche enables survival 

and recruitment of the resources necessary for development. In the language of fitness landscapes, a 

population of strings identifies a set of units concerned with a specific application domain, characterized by a 

fitness function V(x) on the search space {0,1}N. The identification of the new fitness function associated 

with the protected niche enables, through birth and migration processes, the agglomeration of a 

corresponding population in a still unexplored region of the search space where the population can 

experiment with alternative configurations until the new idea is developed into a dominant design. 

The crucial point is that the improved knowledge of the search space which is so generated may be 

relevant to other application domains. Some of the information and understanding developed in a specific 

domain may turn out to be general-purpose knowledge. This leads to identify schemata yielding high fitness 

contributions for a large number of fitness functions and a corresponding set of application domains. In other 

words, well targeted long jumps on knowledge landscapes are brought in the reach of other populations. 

Such spillovers are characteristic of knowledge evolution and are unavailable in the biological domain. 

Telling case studies which conform to this basic pattern abound in the history of technological ideas. 

They are offered by the history of wireless communication as synthetically reconstructed in Levinthal 

(1998), by the early development of the steam engine (initially conceived as a device for pumping water out 

of mines), of the machine-tool industry (Rosenberg, 1976) and of electricity (Hughes, 1983). 
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It is worth emphasising the premier position occupied by the variety of application domains in the 

mechanism described above. Variety in applications, enables the initial specialization in use of a novel idea 

which is instrumental to its introduction,  survival and development up to the stage of final spreading across 

different uses. Most notably, if we focus our attention on the technological domain, this points to a relation 

between specialization and technological change which is altogether different from the relation implicated in 

the illustrious line of reasoning associated with Adam Smith (1776) and Allyn Young (1928) and still 

traceable in the more recent contributions of Romer (1990) and Arrow et al. (1998). The main point of 

departure is that indivisibilities play a crucial role in the latter, but not in the former. As a result of 

indivisibilities, Adam Smith and Allyn Young consider specialization-per-se as a source of increasing 

returns. The benefits that are so achieved are persistent only to the extent that specialization is persistent. 

This is not so in the mechanism described before, where specialization in use is a temporary vehicle for the 

exploration of knowledge search spaces32. 

 
4. A final re-assessment 

 

The discussion in this part of the paper attempts at a final assessment of the ways (if any) in which 

the arguments of part 3 question the fundamental assumptions (i), (ii) and (iii) behind Remark 7 of part 2, 

thus preparing the ground for the concluding remark on the existence of ‘laws of returns’ to R&D. 

 
4.1. The structure of knowledge landscapes, variety and local search 

 
If complementarity implies the ruggedness of fitness landscapes, the latter does not rule out the 

existence of narrow, but relatively smooth paths for escaping the basins of poor local optima. As long as the 

local-search heuristics are a fundamental, but not necessarily the unique, mode of exploration on knowledge 

landscapes (on this see below), the existence of such escape paths is a powerful argument for showing the 

long-term influence of variety on the ability to evolve. If a population of almost identical designs has access 

to a narrow escape gate with vanishing-small probability, the chances would be much higher for some 

member of a population of vastly differentiated designs. Under suitable conditions of knowledge transfer, the 

entire population may follow en masse the lucky or clever innovator. 

Variety may be preserved and increased: (i) by making ‘far’ combinations reachable through 

exploration, or by eliciting controlled downward movements on the landscape; (ii) by placing constraints on 

selection. Redundancy and neutral mutations on a specific application domain identify a variety producing 

factor belonging to mode (i) and which is available even in the case (quite extreme on knowledge 

landscapes) that search heuristics are exclusively local. A factor belonging to mode (ii) is the existence or 

creation of new, relatively segregated application domains.  

                                                 
32 A further point of departure of the application-niche argument developed in this section can be marked with respect to 
the relation between variety and technological progress which is to be found in the recent family of neo-Schumpeterian 
endogenous-growth models without scale effects (Aghion and Howitt, 1998, ch. 12; Howitt, 1999, Dinopoulos and 
Thompson, 1998, Segerstrom, 1998 ). Since the source of increasing returns is identified in sector-specific R&D 
employment, the growing variety of intermediate goods has the effect of diluting R&D employment across a growing 
number of sectors, with a corresponding dilution of increasing returns. 
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4.2. A multiplicity of search heuristics and the changing technology of R&D 

 
Sections 3.2 and 3.3 brought to the fore the quite obvious remark that human exploration of 

knowledge landscapes exploits a vast repertoire of search-heuristics which correspond to an array of 

problem-space decompositions of different cover-size (Marengo et al., 2000). The main reason for the co-

existence of different search heuristics is that there are different kinds of human knowledge, which for the 

ease of exposition and the purposes of the present discussion we may classify according to the twofold 

opposition: general versus local; tacit versus codifiable (Antonelli, 1999)33.  

Ceteris paribus (in particular, given the computing resources available), if the weight of the tacit and 

local knowledge components is relatively large, the exploitation versus exploration trade-off is more likely to 

be re-shaped and somewhat relaxed through more extensive reliance on experience-based and local-search 

heuristics. A higher accessibility to general and codifiable knowledge will lower the cost of searching away 

from current practices, thus assigning wider scope to non-local and goal-directed search (Gavetti and 

Levinthal, 2000). 

The organization of knowledge creation (search activity) within and between organizations comes to 

depend upon three main factors. (i) The ruling representations of the problem spaces. (ii) The ruling 

decompositions of such representations as influenced inter alia by the perceived relevance of the different 

forms of knowledge and by computing resources. (iii) The parallel exploration of the sub-spaces through 

decentralized, autonomous search-processes, versus the sequential, centrally planned organization of search 

activity. Decentralization responds to a large number of incentives, some of which are non-cognitive and are 

discussed in the property-right, principal-agent and transaction-costs literature34. Drawing attention to the 

cognitive incentives, Dosi et al. (2001) insist that problem spaces are at best only nearly-decomposable and 

the ruling decompositions are at best an approximation to correct decompositions of the ‘true’ problem 

space. The pay-off expected from more parallel or more sequential search procedures comes to depend in the 

first place upon the strength of the perceived interactions between the sub-spaces of the approximate 

decompositions and in the second place upon the possibility and cost of achieving ‘on-line’, smooth 

integration of diverse knowledge items across decentralized search units35. It is worth stressing how the three 

factors (i), (ii) and (iii) are strongly complementary, each one affecting the other two36.  

                                                 
33 Tacit knowledge is typically context dependent; it is transferred through direct interactions and created through 
learning by doing and by using. Codifiable knowledge is different from information (words of a language), in that it is 
information understood and ready for use. It is communicated as a sequence of information strings, but re-conversion of 
such information into knowledge is a process requiring a human-capital input often referred to as competence. In turn, 
the accumulation of competence requires codifiable and tacit knowledge33. General knowledge is that which maintains 
it relevance across a large number of application domains; local knowledge is application and context specific. Broadly 
speaking, scientific knowledge tends to be more codifiable and general, when compared to technological knowledge 
which contains a larger number of tacit and local components. 
34 Some contributions to the ongoing discussion are collected in Foss (ed.) (2000). 
35  A relevant set of explanatory variables and coordination mechanisms involved in knowledge governance within and 
across business firms are synthesized in Grandori (2000); guidelines on the factors affecting the organization of 
government-funded science are presented in David et al. (1999). 
36 For instance, the organization of search into larger or smaller ‘patches’ (see above, section 2.3) partly reflects the 
more or less widespread reliance on local decompositions of the (perceived) problem spaces, but the ruling 
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The emerging configurations of the three factors is also heavily conditioned by the output of 

previous R&D activity. In other words, the technology and organization of R&D changes dramatically as a 

result of scientific and technological progress. The last part of the twentieth century has been marked by a 

rising integration between the four types (tacit-local, tacit-general, codified-local, codified-general) of 

knowledge, a growing pay-off from knowledge codification (and a corresponding growth in codified 

knowledge37), an increasingly multidisciplinary nature of research (Rosenberg 1992) and a shift away from 

the centralized knowledge creation well exemplified by the R&D laboratory of  A. Chandler’s large 

corporation, towards more decentralized forms sustained by market and non-market interactions. It will not 

escape the reader’s attention how the innovations in the information and communication technologies greatly 

contributed to these changes (Antonelli, 1999) by reducing the costs of knowledge communication and 

integration.  The great majority of studies has considered how a design of micro incentives maps to a form of 

R&D organization38. It is here worth indicating a different and complementary line of investigation. This has 

in its focus the overall cognitive relevance of the emerging decentralized R&D structures as considered from 

a complex-system perspective in which the system behaviour is ‘more than the sum of the parts’ (Simon, 

1962, p. 99). Slightly generalizing the idea that individual organizations perform the cognitive function of 

implementing decompositions of organization-specific search spaces (Marengo et al., 2000; Dosi et al., 

2001), it is here suggested that collective organizational structures perform the cognitive function of 

decomposing collective problem spaces and of decentralizing the emergent sub-spaces to individual nodes in 

the structure39. 

 

4.3. Complexity, selection for modularity and knowledge revolutions 
 

Concerning the long-term influence of R&D on the complexity (ruggedness) of the problem spaces 

faced by discovery, the main point to consider is if and to what extent the selection for low-pleiotropy and 

modularity can exert an effective control and prevail over the drive towards rising inter-connectedness, 

which seems to be otherwise a natural corollary of the rising dimensionality of the search spaces in the 

knowledge domain. Herbert Simon was quite optimistic on the effectiveness of hierarchic and near-

decomposable structures to preserve what we have called ‘evolvability’, both in nature and in knowledge. In 

the closing paragraphs of section 3.1 I have been less optimistic, on the ground that selection for low-

pleiotropy and modularity is successful at explaining the evolvability of individual lineages, in our case 

technological and scientific paradigms, but may loose its grip when paradigm shifts, that is, technological 

                                                                                                                                                                  
decompositions are simultaneously the outcome of the prevailing forms of R&D organization. Kauffman and Macready 
(1995) simulation results on optimal patch size assume that search is strictly local. We may expect that searching 
through larger-size decompositions makes larger patches more attractive. 
37 On this point see Cowan, Foray and David (2000), Foray and Cowan (1997), David and Foray (1995) and the critical 
re-assessment in Nightingale (2002). 
38 A perspective of this kind is adopted in the so called ‘new economics of science’; see David et al. (1999), Mirowsky 
and Sent (2002). 
39 In this respect, the network of market and non-market interactions between interconnected R&D units may be 
regarded as a connectionist network performing the task of problem decomposition. Future research will address the 
task of clarifying if and to what extent the idea is more than a useful metaphor.  
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and scientific revolutions are at stake. A close reading of Simon’s presentation of the relation between short-

run and long-run interactions in nearly decomposable systems offers a way of revealing a source of the 

divergence. In extreme synthesis, Simon argues as if the within-module equilibria resulting from the frequent 

interactions of a complex system are essentially unique and stable. In as far as the between-block 

interactions are concerned, the single-module equilibrium may be characterized in terms of its input from 

and its output to the other blocks. The module may discover different, more efficient ways of transforming 

input into output, but the idea is that such variations will leave input and output essentially unchanged. In 

fact, this is precisely what has been often not fulfilled during scientific and technological revolutions. For the 

very reason that human problem solving can be  forward looking and goal directed, it can brake the 

constraints imposed by the ruling interface standards. When this occurs, the condition enabling the 

evolvability and rising to dominance of a new paradigm is the deconstruction of the pre-existing interaction 

matrix and the global re-design thereof aimed at creating the standards of a new (near) decomposition.  

. 

5. Concluding remark: are there laws of returns to R&D? 

 

According to Olsson (2000), Olsson and Frey (2001) the distinction between incremental and radical, 

paradigm-shift producing changes of the knowledge stock is isomorphic to the distinction between 

recombinant and non-recombinant knowledge growth. This view is challenged by the foregoing discussion. 

Recombination of ideas is a way of generating novelty which can produce both incremental and 

revolutionary discoveries. Symmetrically, paradigm-shift producing novelties may or may not be the mere 

outcome of knowledge recombination. In fact, they conform to one of the following characteristics: (a) They 

introduce new knowledge components affecting the function characteristics of  a high number of pre-existing 

information strings; this mode of creating novelty is non combinatorial. (b) They reach new combinations of  

pre-existing components and such combinations send fitness effects to one or more function characteristics 

of a large number of strings; the latter mode of discovery is indeed combinatorial. 

For the above reasons, and because the addition of radical viable ideas to the knowledge stock 

requires the periodic deconstruction-reconstruction of the near block-decomposition of knowledge 

interactions, knowledge growth need not follow a combinatorial growth process, contrary to the view 

expressed in Weitzman (1996). 

The technology and organization of R&D is bound to change over time in ways that are related to 

not only to the incentive structure provided by institutions, but also to the particular, contingent nature of the 

R&D output and its influence on the costs of computation and knowledge integration. 

More than the slow drive towards a well defined regime of returns to R&D activity, the prediction is 

that of an alternation between periods of progress conforming to a given set of design rules for knowledge 

interaction and periods in which innovations break with the pre-existing rules until a set of standards finally 

emerge that fix the rules of a new modular structure. These periods will not easily map into the ups and 

downs of the statistical records of R&D inputs and outputs. 
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Appendix A.0: Scale properties of sub-space dimension 

 
Assume that for given N and G the ‘wiring’ of epistatic links is random in the sense of remark 6. 

With this assumption in mind, it is worth considering the scale properties of the average sub-space dimension 
in a ‘optimal’ decentralization of {0,1}N , as we let N increase holding G constant. 

 
Remark 9: With random wiring, the ratio K/C is equal the cross-h average of the ratio Nh / (N − Nh). Thus, 

K/C is constant if Nh* / (N − Nh*), where Nh* = 
1

1 S

h
h

N
NN S=

=∑ . The conclusion is that, with random wiring, 

C/K constant is supported by decentralizations such that S is constant and the average dimension Nh* is a 
positive linear function of N. With sub-space dimension being a fixed proportion of N, finding the optimum 
configuration of the sub-spaces is intractable (is NP-complete like finding the optimum on the original 
problem space40).  
 
Remark 10: As we let N increase through time, there must be eventually at some date in the future a gap 
between M and the cover-size in the sequence of decentralizations supporting a fixed ratio C/K. From that 
date onwards, M will increasingly fall short of cover-size. 
 

Remarks 9 and 10 support the following conjecture: 
 

Conjecture: Assume initial values of N and G, G ≤ N − 1 and sufficiently large. Assume random 
wiring of epistatic links. As we let N increase, while holding G constant, the sample average S* of the 
number of sub-spaces of a ‘optimal’ decentralization of  {0,1}N is a non-decreasing function of N. S*(N1) > 
S*(N2) if N1 − N2 is sufficiently large. 

  

Appendix A.1: The structure of N-K-p fitness landscapes 
 
The structure of N-K-p landscapes is more easily understood in the light of the following. 
  

Remark 11 (Barnett, 1998, p. 21): Let ε(x, V, f) the configuration of x at the components which are non 
redundant arguments of Vf(x). Then almost surely V(x) = V(x’) if and only if for all f such that Vf(x) ≠ 0 it 
holds true that ε(x, V, f) = ε(x’, V, f). 
 
 

Neutrality is not spread uniformly on an N-K-p landscape; The landscape can be decomposed into 
subsets Zn(V), each containing only strings x such that the number of fitness contributions  with the property 
Vf(x) = 0 is exactly n. Obviously enough, the higher n, the lower the expected fitness of a string x belonging 
to Zn(V). 
 
  
Remark 12 (Barnett, 1998): The class of N-K-p fitness landscapes has the following properties. 

(a) For large N, the probability of a neutral mutation is roughly independent of N and drops off 
exponentially with K. 

(b) The estimated mean-size of the neutral sets contained in Zn(V) and the expected neutral degree of a 
string contained in Zn(V) scale roughly exponentially with n; this means that the neutral degree and 
expected size of neutral networks fall as fitness increases. “The ‘higher up’ the landscape we go, the 
less neutrality we can expect to encounter” (p. 21). 

(c) The correlation structure41 of an N-K-p landscape is nearly invariant with respect to p. Deviations 
from invariance become less significant for large N. 

                                                 
40 Cf. Rivkin (2000). 
41 The usual measure of ‘ruggedness’ of a fitness landscape is the auto-correlation function. Weinberger (1990) and 
Kauffman (1993) define this function in terms of the fitness difference at successive steps along a random walk. Barnett 
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Remark 13 (Barnett, 1998): At sufficiently high p the evolutionary dynamics on N-K-p landscapes has the 
following properties (the parameter settings are: S = 200, N = 60, K = 12, m = 0.001, length of simulation 
runs = 3000 generations): 

(a) Except at specific saltation episodes, the population is mostly confined to a single neutral network on 
which it drifts at characteristic rate which depends positively on the neutral degree of the network, 
hence it is inversely related with fitness..  

(b) Mutation generates new strings that explore neighbouring networks. If a higher-fitness network is so 
encountered,  the selection pressure being strong relative to mutation, there is a positive probability 
of a fast transfer of the whole population to the newly found network. 

(c) The average distance  travelled by the population after a fixed time-lag tends to be inversely related 
with fitness. The probability that local search finds a way out the basin of a local peak in a N-K-p 
landscape declines as the fitness of the peak increases. If we let the number of knowledge 
components N increase over time, then, if this occurs with the ratio K/N ≈ constant, the probability of 
finding the way out the basin of a local peak of given fitness declines with the rise in K and N. 
Indeed, as N increases, the condition for a higher probability of escape from a local peak of given 
fitness is very restrictive, for it requires that K/N falls sufficiently faster than 1/N. 

(d) The jumps in mean fitness described above are still observed after generation 1500 and the eventual 
mean-fitness level which is so attained exceeds 0.8. In simulations with identical parameter settings, 
except p = 0,  mean fitness stops showing an upward trend after generation 200 and the eventual 
mean-fitness level does not exceed 0.6. 

  
 

 
Appendix A.2: Neutral changes in information 
 

Let {0,1}N’ ⊇ {0,1}N, N’ ≥ N, x ∈{0,1}N, x’ ∈{0,1}N’. The string (x’x) ∈{0,1}N’ is such that x’i = 
xi, i = 1, …, N. The fitness function V’(x’) is the extension of V(x) if for every x ∈ {0,1}N there is (x’x) 
∈{0,1}N’ such that V’((x’x)) = V(x). A change from x ∈{0,1}N to x’ ∈{0,1}N’ , is local if x’ is generated 
through a local-search procedure on the fitness landscape corresponding to V’(x’) starting from some (x’x). 
A local change from x to x’ is ε-neutral if and only if for the given ε ≥ 0 there exists h ∈ [−1, 1] such that 
V’(x’) = V(x) + hε. We may notice that if V’() is an extension of V(), then there exist neutral changes from 
from x ∈{0,1}N to x’ ∈{0,1}N’. 
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