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Introduction 
 

Cardiovascular and cerebrovascular diseases are among the leading causes of death in 

developed countries. The classic risk factors for the development of atherosclerosis and 

atherothrombosis are now well known, e.g. hypertension, diabetes mellitus, smoking, 

obesity. However, the exact pathomechanism of arterial thrombosis is unknown in many 

respects, although better understanding of the factors leading to the development of 

thrombosis may serve to detect and treat cardiovascular and cerebrovascular diseases 

earlier in the future. A consensus paper published in 2018 by more than 60 

internationally acknowledged researchers stated that more intense research is necessary 

on the pathomechanism of thrombosis and investigating new potential biomarkers as 

diagnostic and prognostic tool of atherothrombotic diseases. 

One of the key factors in the development of arterial thrombosis is the disintegration of 

the balance of hemostasis system. However, the role of some markers of coagulation 

and fibrinolysis in the development of atherothrombotic events is less explored than in 

case of venous thromboembolic events. Meta-analyses and prospective studies have 

been found to have a positive correlation with the risk of coronary artery disease and 

stroke for only a few key factors (e.g. fibrinogen, von Willebrand factor, tissue 

plasminogen activator inhibitor) so far. These studies are far from complete, but the 

findings so far outline the idea that coagulation plays an important role in the 

progression of atherothrombotic processes. Studying the differences in the hemostasis 

system can not only provide a better understanding of the pathomechanism but 

hemostasis factors as biomarkers can provide useful information about the presence, 

severity and prognosis of the disease. In the Maastricht Consensus Statement experts 

also pointed out that studying certain factors (von Willebrand factor, factor VIII, factor 

IX, factor XI, factor XII) is also important in atherothrombotic diseases because they 

may become potential therapeutic targets in the future.  

Among cardiovascular diseases atrial fibrillation is characterized by high-risk arterial 

thrombosis (leading to stroke). It is widely recognized that thromboembolism in AF is 

associated with a combination of pathophysiological mechanisms, which fulfill the 

requirement of Virchow’s triad for thrombogenesis: stasis, abnormal change in the 

vessel wall and pathological imbalance of hemostasis and fibrinolysis. Several studies 

have been carried out to investigate the hypercoagulability in atrial fibrillation, but the 
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starting process that activates the coagulation cascade is not yet clear during atrial 

fibrillation. The examination of the overt hemostasis equilibrium can best be performed 

by analyzing intracardiac blood samples, since the starting point of the differences is the 

left atrium itself. By analyzing blood samples obtained from the left atrium, we can get 

to know the pathomechanism of enhanced arterial thrombosis propensity associated 

with atrial fibrillation and potentially identify markers whose examination can help to 

predict stroke. 

In the case of an established stroke, the outcome of the therapy depends on the 

localization, size and structural features of the thrombus formed. The hemostasis 

changes accompanying the acute thrombotic process and the knowledge of hemostasis 

in the applied therapy allow a better understanding of the therapeutic outcomes. At 

present, intravenous thrombolysis with recombinant tissue plasminogen activator is the 

only registered drug for acute ischemic stroke therapy, but recently mechanical 

thrombectomy is also available. However, the rate of recanalization and clinical 

outcome in the treated patients is very different, and according to our current knowledge 

we can hardly predict it. Intravenous thrombolysis treatment has positive outcome only 

in 33-35% of patients and is provoking symptomatic intracranial hemorrhage in 6-8%. 

Similarly, only 36% of those who have undergone mechanical thrombectomy will be 

completely independent in their daily living, moreover, bleeding complications will 

occur in 2.5%. Studies that enhance our knowledge of certain factors regarding the 

tendency of thrombi to recanalize can make great efforts in the future to improve 

therapy. Understanding the changes in certain hemostasis factors under thrombolytic 

therapy is an opportunity to use biomarkers for the early detection of patients with 

worse prognosis in addition to knowing the pathomechanism.   
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Literature overview 
 
 

Overview of the hemostasis system 

The model described by MacFarlane, Ratnoff and Davie in 1964, which emphasized the 

cascade-like activation of coagulation, has now been replaced by the cell-based model 

described by Hoffman and Monroe in 2001. This model breaks down the coagulation 

pathway into three overlapping portions: an initiation phase on cells carrying tissue 

factor, in which only a small amount of active coagulation protein is generated, the 

amplification phase during which the platelet and cofactor activation occurs, in the 

interest of high thrombin generation, and the propagation stage on the surface of 

activated platelets, in which large amounts of thrombin and fibrin clot are formed. 

At the beginning of coagulation, von Willebrand factor (VWF) binds to subendothelial 

matrix proteins, such as type I, III and VI collagen, and the bound VWF binds to the 

GP-Ibα receptor of circulating platelets initiating the process of platelet adhesion during 

which platelets are activated. Thrombin cleaves factor VIII from platelet-binding VWF-

FVIII complex, thereby activating it (FVIIIa). FVIIIa serves FIXa as a cofactor on the 

surface of activated platelets, their complex converts FX to active FX (FXa). 

 

Summary of fibrinolysis 

The blood clot resulting from the coagulation process would inhibit the local blood flow 

after tissue healing and therefore it needs to be demolished. The fibrinolytic system is 

responsible for the localized, timely demarcation of the fibrin clot, the central protease 

of which is plasmin. Plasmin, generated from plasminogen by plasminogen activators, 

is a single-chain glycoprotein. As a first step in fibrinolysis, plasminogen binds to and 

activates the lysine residues on the fibrin surface. The resulting serine protease plasmin 

cleaves the fibrin clot into partially degraded fibrin, generating various, ever-smaller 

fibrin degradation products. D-dimer consists of two D-regions of the fibrin monomer, 

which is covalently linked to the γ chain, which may complex with the E fragment via 

non-covalent binding. Plasminogen activators include tissue-type plasminogen 

activator (t-PA) and urokinase plasminogen activator (u-PA).  

Although the thinner fibrin fibers are degraded faster, fibrin clot consisting of thin fibrin 
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fibers, is more compact and therefore degraded more slowly than the loose clot 

consisting of thicker fibrin fibers. In the case of high thrombin concentrations, the 

formation of denser, thinner fibrin fibers, which is associated with increased risk of 

thrombosis is observed. At low thrombin concentrations a clot of thicker fibrin fibers 

with a looser structure and a higher risk of bleeding is arisen. 

Inhibitors of fibrinolysis 

Fibrinolysis is regulated at several levels. One of the central elements of regulation is to 

prevent plasminogen and t-PA from binding to fibrin C-terminal lysine. The main 

inhibitor of plasmin is α2-plasmin inhibitor (α2-PI). α2-PI is incorporated into the fibrin 

clot to effectively protect the forming clot against fibrinolysis. This is very important in 

inhibiting premature fibrin degradation. 

The major plasminogen activator inhibitor is serpin-type plasminogen activator 

inhibitor-1 (PAI-1). It blocks both t-PA and u-PA. Because of the predominance of PAI-

1, t-PA is mainly present in the circulation as a t-PA-PAI-1 complex. 

 

The role of endothelium in hemostasis, endothelial damage 

and markers 

 

The vascular endothelium provides an antithrombogenic environment by regulating 

coagulation, platelet adhesion, vessel tone and blood flow. The endothelium is 

heterogeneous, it has varying structures and functions depending on tissue and vessel 

type and the diameter of the vessel. The subendothelial surface is rich in collagen, 

heparan, von Willebrand factor and tissue factor, but their amount differs according to 

tissue type. Subcellular organelles of the endothelial cells, the Weibel-Palade bodies, are 

controlled by an appropriate stimulus to release their contents in inflammatory 

processes, when hemostasis is activated, during regulation of angiogenesis, and changes 

in rheological conditions. For the diagnosis of activated endothelium, both ultrasonic 

tests and measurements of different biomarkers (e.g. VWF) are used. 

 

Characterization and pathophysiology of FVIII and VWF 

Biochemistry of FVIII 

The plasma concentration of FVIII is about 1 nM (100-250 ng / mL) and it has a half-
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life of about 12 hours. FVIII is probably synthesized in hepatocytes and/or 

reticuloendothelial systems, but it can also be found in α-granules of platelets. In the 

circulation, it forms a 1:1 complex with VWF via non-covalent binding. However, the 

plasma concentration of VWF is approximately 50 times higher than that of FVIII. 

Approximately 2% of the FVIII circulates in a free form. The plasma FVIII and VWF 

levels are influenced by the blood type (zero-blood type causes 25% lower plasma 

concentration as compared to non-zero blood type), race (about 20% higher levels in 

African Americans than in the Caucasian population) and age (their levels elevating 

with aging. FVIII is activated by limited proteolysis. Its main activator is thrombin, 

followed by FXa, FXIa and FVIIa. VWF not only prolongs FVIII half-life and stabilizes 

its structure but also regulates its activity: VWF prevents FVIII from binding to 

phospholipids and activated platelets, moreover it protects FVIII from activation by 

FXa and from inactivation by APC. The VWF-FVIII complex binds to the injured 

subendothelium in the initial step in the coagulation process, it not only allows the 

adhesion and aggregation of platelets, but also locally increases the FVIII concentration 

so that FVIII can bind to the phosphatidyl serine of activated platelets.  

 

Biochemistry of the VWF factor 

VWF is one of the largest circulating multimeric glycoproteins. VWF is synthesized by 

endothelial cells, megakaryocytes and platelets. The VWF is stored in the Weibel-

Palade bodies of endothelial cells and in the α-granules of platelets. Weibel-Palade 

bodies can secrete VWF and its propeptide both luminally, into the plasma and 

abluminally into the subendothelial matrix. From the Weibel-Palade bodies, VWF is 

secreted into the plasma in ultralarge-multimer form. Subsequently, the ultralarge VWF 

multimer remains bound to the endothelial cell surface. As a result of higher shear 

forces along the vascular wall, the VWF structure changes, becomes elongated, and the 

VWF proteolytic cleavage site on the A2 domain becomes available and is rapidly 

cleaved by the ADAMTS13 metalloprotease. If the highly thrombogenic ultralarge 

VWF multimer is secreted directly into the bloodstream, platelets spontaneously 

aggregate, resulting in thrombosis. 

VWF plasma concentration is ~10 μg/mL, its half-life is 12 hours. The free propeptide 

has a plasma concentration of ~1 μg/mL, with a half-life of 2-3 hours. People with 

blood group A, B and AB have a VWF antigen level ~25% higher than people with zero 
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blood group. According to the literature, plasmin is involved in the shear force 

dependent degradation of VWF beside ADAMTS13. 

 

Increased levels of FVIII and VWF in different pathologies 

The reason for the persistent increase in FVIII and VWF levels is largely unknown, and 

the rate of contribution of the underlying genetic and acquired factors is not entirely 

clear. Several studies suggest that inherited factors play a more pronounced role in the 

determination of plasma levels of both parameters. It is important to note that both 

FVIII and VWF are positive acute phase proteins, i.e. their levels increase by more than 

25% when the immune system is activated. IL-6, the central cytokine of the acute phase 

reaction, is responsible for elevation of FVIII level and IL-6, IL-1β and TNF-α 

cytokines are responsible for VWF level increase. The elevated levels of FVIII and 

VWF have also been associated with the development of certain diseases and their 

prognosis. 

 

Association of increased FVIII and VWF levels and venous and arterial thrombosis  

Several studies have investigated the relationship between venous and arterial 

thrombosis and elevated levels of FVIII and VWF. It was first described by Leiden 

Thrombophilia Study (LETS) more than 20 years ago that elevated FVIII activity and 

VWF antigen levels, as well as non-zero blood group, are risk factors for venous 

thromboembolism. However, after multivariate analysis, only elevated FVIII activity 

remained a significant independent risk factor suggesting that VWF antigen levels 

contributed to the risk by regulating FVIII plasma levels. The relationship between 

elevated FVIII levels and thromboembolic events was subsequently confirmed in a 

number of case-control studies and similar odds ratio of 6.2 times higher thrombosis 

risk were reported as in LETS, in case of values over the reference range. Increased 

FVIII levels have been shown to be a risk factor for recurrent venous thromboembolism 

as well. FVIII levels have increased the risk of venous thromboembolism in several 

studies in a dose-response manner. Several studies have demonstrated that elevated 

FVIII activity combined with other thrombotic risk factors (e.g. oral anticoncipient, FV 

Leiden mutation, malignancy) results in a much higher thrombosis risk than expected 

for a simple additive model, assuming synergistic effects. Vormittag et al. draw attention 

to the fact that elevated levels of FVIII in tumor patients are independent risk factor for 
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venous thromboembolism. In the study of thrombogenic effects of elevated FVIII 

levels, various in vitro and in vivo experimental results demonstrated that elevated 

FVIII associated with increased thrombin generation may be responsible for high risk of 

thrombosis. To a lesser extent, other mechanisms may also contribute to the increased 

risk of thrombosis: there is a direct inverse relationship between plasma FVIII levels 

and APC resistance. 

The relationship between VWF levels and the formation of venous thromboembolic 

disorders is less clear than for elevated FVIII levels, several controversial reports have 

been made on this subject. In some of the publications, instead of elevated VWF levels, 

only the associated FVIII levels could be justified as an independent risk factor. In a 

large population prospective study (LITE: Longitudinal Investigation of 

Thromboembolism Etiology), however, VWF's independent risk role was demonstrated 

for venous thromboembolism: the risk ratio represented by VWF levels in the highest 

quartile was 4.6. 

Compared to venous thromboembolism a lot more studies have investigated the 

relationship between VWF levels and cardiovascular diseases. According to literature 

data, elevated VWF levels have a significant correlation with the size of atherosclerotic 

plaque in the coronary artery. Clinical studies have shown that VWF levels are higher in 

patients with acute myocardial infarction compared to controls. Those with vascular 

disease and elevated VWF levels have higher risk of future myocardial infarction. 

Several studies have found correlation between elevated VWF and FVIII levels and 

increased risk of cardiovascular disease. According to a number of research, VWF may 

indicate an increased risk of micro- and macrovascular complications (e.g. nephropathy, 

cardiovascular disease) in diabetes mellitus type I and II. In the relationship of elevated 

VWF levels and arterial thrombosis, the effects of high shear forces on VWF play a 

central role. Severe degrees of stenosis caused by atherosclerotic plaques in arteries has 

been associated with altered hemodynamic conditions and high shear forces where the 

VWF creates an important link between the platelet membrane glycoproteins and the 

subendothelium. High shear forces increase the release of VWF from the endothelium, 

which increases the risk of thrombus formation. 

Compared to cardiovascular research, far fewer studies address the role of elevated 

FVIII and VWF levels in cerebrovascular diseases. The risk factors and 
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pathomechanism of coronary diseases and ischemic stroke are largely the same, and 

therefore, it can be hypothesized that elevated FVIII/VWF levels play a role in the risk 

of ischemic stroke. A significant part of the publications describe a positive correlation 

between high VWF levels and ischemic stroke risk. In a meta-analysis of 2532 patients, 

there was a minor but significant correlation between increased levels of VWF and the 

risk of ischemic stroke (OR: 1.55, 95% CI: 1.31-1.83), which was, particularly 

considerable in case of atherosclerosis involving major arteries. The association 

between stroke outcome and FVIII/VWF levels have been much less studied, but most 

of them have drawn attention to the relationship between high VWF levels and 

increased mortality.  
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Atrial fibrillation 

Epidemiology 

Atrial fibrillation is the most common persistent arrhythmia, affecting about 33.5 

million people worldwide, with an estimated lifetime risk of 22-26%. Its prevalence is 

expected to double by 2050, largely due to the aging society. 

Risk Factors for Atrial Fibrillation 

Age is considered to be one of the most significant risk factors for atrial fibrillation. 

More than 70% of patients with atrial fibrillation are over 65 years old. Further risk 

factors for atrial fibrillation include physically inactive lifestyle, extreme physical 

activity, both prior and current smoking, alcohol consumption, obesity, diabetes mellitus 

and left-ventricular hypertrophy. Hypertension is considered to be an extremely 

important risk factor for atrial fibrillation. 

Pathophysiology 

The central factor of atrial fibrillation is very fast, unmanaged atrial activity, which can 

be arisen in two ways. On the one hand, it can be derived from one or more rapidly 

discharging nodules that cause irregular driving and atrial fibrillation in the rest of the 

atrium. On the other hand, it can be created by re-entry. For the production of atrial 

fibrillation, a trigger mechanism is required, usually focal spontaneous discharge, most 

commonly in the area of the pulmonary veins. Atrial fibrillation is maintained by 

structural remodelling, which may be caused by a neurohormonal effect (autonomous 

overweight and overactive thyroid function), aging, myocardial ischemia, hypertension, 

obesity or atrial fibrillation. Atrial reestablishment leads to changed ion currents 

(decreased Ca2+ and increased K+ currents down- and upregulation), faster atrial rhythm 

and reduced action potential. As the time progresses, pulmonary fibrillation becomes 

more persistent and becomes more resistant to therapy. 

Virchow’s Triad 

Changes in atrial fibrillation meet the mechanisms described in Virchow’s Triad for 

thrombogenesis, discussed in more detail below, but it is important to note that 

knowledge of the exact pathomechanism of enhanced thromboembolic risk requires 

further research. Virchow’s Triad consists of the following elements: 1/ endothelial or 

endocardial dysfunction (and related structural changes), 2/ abnormal stasis, 3/ 

abnormal coagulation, platelet and fibrinolysis. 
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The presence of endothelial damage in atrial fibrillation is supported by several 

pathophysiological processes and biomarkers. Rheological changes in atrial fibrillation 

and the reduced contraction of the wall of the left atrium, result in reduced NO synthesis 

of the left atrial endothelium. A further clinical sign of endothelial impairment is a 

reduced flow-induced dilation observed in atrial fibrillation patients. In atrial 

fibrillation, inflammatory processes associated with endothelial dysfunction are also 

directly related to thrombus formation. CRP and IL-6 increase the production of 

monocyte tissue factor in vitro. IL-6 increases platelet count and platelet sensitivity to 

thrombin. IL-6 also stimulates fibrinogen transcription. 

Structural and functional left atrial changes observed in atrial fibrillation cause slow 

flow conditions and stasis in the left atrium. Increased hematocrit levels due to wall 

motion abnormalities and hemoconcentration in some patients promote stasis. Atrial 

fibrillation promotes the development of progressive left atrial dilatation and thus stasis. 

Left atrial dilation contributes to thrombogenicity, the size of the left atrium corrected to 

body surface is an independent risk factor for stroke. Thrombus is detected in the left 

atrium or in the left atrial appendage in about 10% of patients with atrial fibrillation. 

The structure of the left atrial atrial appendage, its narrow ostium, and the changes in 

the diameter of the atrium are particularly prone to the formation of stasis as well. In 

case of thromboembolism, more than 90% of the emboli origins from the left atrial 

appendage in non-valvular atrial fibrillation. In transesophagal echography (TEE) stasis 

appears as spontaneous echo contrast (SEC). In atrial fibrillation, the SEC calls 

attention to the increased risk of thromboembolism. Researches have shown that SEC 

has a positive correlation with prothrombin fragment 1+2 (F1+2), fibrinopeptide A and 

TAT complex levels.  

There are a number of reports available on the activation of coagulation cascade in atrial 

fibrillation investigating mainly peripherial blood samples, but fibrinolytic activity in 

patients with atrial fibrillation has been less studied. In most studies investigating the 

pathophysiology of increased thromboembolic risk observed in atrial fibrillation, mainly 

endothelial cell damage markers, inflammatory markers, prothrombotic markers and 

plasmatic markers of platelet activation were investigated. Various clinical studies found 

a correlation between atrial fibrillation and elevated F1+2, TAT complex, fibrinogen 

levels and markers of endothelial dysfunction such as soluble thrombomodulin (sTM) 

and VWF levels. 

Of the markers indicating the activation of hemostasis, most data relating to D-dimer 
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associated with predicting stroke risk in atrial fibrillation. Taking into account the 

clinical risk factors, elevated D-dimer levels are prognostic for stroke risk in non-

valvular atrial fibrillation in patients receiving oral anticoagulant therapy. Wan et al. 

reported in their meta-analysis, that D-dimer could be useful as a prognostic marker for 

left atrial thromboembolism in atrial fibrillation patients as higher D-dimer levels were 

found in spontaneous echo contrast and even higher values for TEE-confirmed left atrial 

thrombus. Clinical studies suggest that VWF levels may also be useful as elevated VWF 

level may indicate an increased risk of left atrial appendage thrombus in atrial 

fibrillation. In the Rotterdam study, there was a positive correlation between plasma 

VWF levels and atrial fibrillation, which was particularly pronounced among women.  

The few studies examining the relationship between atrial fibrillation and fibrinolytic 

system have yielded controversial results. Some studies found elevated levels of PAI-1 

indicating hypofibrinolysis, while other studies suggested elevated levels of t-PA and 

PAP complexes leading to hyperfibrinolysis. However, other studies found no change or 

reduced levels of PAP complex and PAI-1. According to some studies, the background 

of elevated levels of t-PA and PAI-1 found in atrial fibrillation may be associated with 

endothelial dysfunction, inflammation and vascular disease. Abnormal changes in the 

fibrinolytic system can be related not only to thrombus formation, but also to the 

structural transformation of the atrium as it has strong relationship with extracellular 

matrix turnover. In patients with atrial fibrillation, unfavorable structural changes in the 

fibrin clot have also been demonstrated by Drabik et al. According to their results, the 

fibrin clot consisted of more compacted and thinner fibrin fibers detected in patients 

with paroxysmal and persistent atrial fibrillation leading to hypofibrinolysis which 

contributes to thromboembolism. 

Instead of investigating peripheral blood samples, the examination of intracardiac blood 

samples deserves more attention because prothrombotic changes may only occur 

locally, in the intracardiac environment, without these abnormalities being manifested in 

the peripheral circulation. This could be assumed on the basis of earlier studies that 

have shown that prothrombotic changes are limited to the intracardiac environment in 

atrial fibrillation. However, probably because of the difficult collection of intracardiac 

blood samples, in the last decade, only a few studies have been investigating the 

hemostasis system from left atrial samples in atrial fibrillation. Publications 

investigating left atrial blood samples so far have only studied selected members of the 

hemostasis system (VWF, P-selectin, TAT complex, platelet factor 4, platelet-derived 
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sCD40), furthermore the fibrinolytic system has been less studied in this regard. We did 

not find any data in the literature regarding FXIII and α2-PI, two key members of 

fibrinolysis, investigated in intracardiac blood samples. In most studies investigating 

intracardiac blood samples, the atrial fibrillation patient group was not compared to age 

and sex adjusted non-atrial fibrillation control group. In many studies investigating 

intracardiac blood samples, patients had received non-fractionated heparin prior to 

sampling, which had a major influence on the hemostasis system, thus limiting the 

parameters of hemostasis that could be investigated. Examination of blood samples 

from the left atrial appendage investigating hemostasis and fibrinolysis parameters is 

also rare in the literature, despite the fact that earlier clinical studies indicate that 

thrombus located in the left atrial appendage is the most common source of embolism, 

making it the most potent thrombogenic intracardiac area in atrial fibrillation. 

Diagnosis 

Atrial fibrillation is often asymptomatic or patients present non-specific symptoms: 

palpitations, fatigue, dizziness, dyspnea, chest pain and syncope. The severity of the 

symptoms can be estimated with the EHRA (European Heart Rhytm Association) 

scoring system. The diagnosis is usually based on a 12-lead ECG but in the case of 

paroxysmal cases the arrhythmia is not always detectable. In this case 24-hour Holter 

monitoring can be useful. 

Classification 

Atrial fibrillation can be divided into five groups (first diagnosed atrial fibrillation, 

paroxysmal, persistent, long standing persistent, and permanent atrial fibrillation 

groups) based on the existence and frequency of arrhythmia. 

Therapy 

Stroke prevention 
Atrial fibrillation have increased mortality and morbidity as a result of increased 

thromboembolic complications and increased stroke risk. Prevention of stroke plays a 

central role in the treatment of atrial fibrillation, as stroke risk is increased fivefold in 

patients with atrial fibrillation. To assess the risk of stroke, various clinical scoring 

systems can be used to assist in therapeutic decision making. According to the latest 

recommendations, an improved version of the CHADS2 scale, the CHA2DS2-VASc 

scoring system is most suitable for assessing stroke risk, taking risk factors into account 
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in weighted terms. 

In the case of low stroke risk (0 point in men, 1 point in women) no antithrombotic 

therapy is required. For higher values, vitamin K antagonist or novel oral anticoagulant 

(NOAC) is recommended. Vitamin K antagonist (VKA) reduces stroke risk by 64% and 

total mortality by 26%. In contrast, the use of antiplatelet therapy reduces stroke risk by 

22% and does not significantly reduce total mortality. The latest European guidelines 

recommend NOAC therapy instead of VKA therapy, based on the overall effect of 

NOAC. 

Catheter ablation 
Catheter ablation is indicated in case of non-tolerated or unsuccessful antiarrhythmic 

drug therapy when treating paroxysmal, persistent and long standing persistent atrial 

fibrillation. Catheter ablation is the first line therapy for symptomatic paroxysmal atrial 

fibrillation. 

Professional guidelines for catheter ablation interventions have changed regarding 

periprocedural anticoagulant therapy in recent years. The 2008 and 2010 guidelines 

have suggested that oral anticoagulant therapy should be suspended before catheter 

ablation, before the day of intervention and during the procedure heparin administration 

is recommended. The latest guideline does not recommend the suspension of oral 

anticoagulants, but suggest that thrombosis prophylaxis should be continued before 

catheter ablation (VKA/NOAC), during ablation (heparin) and after the procedure 

(VKA/NOAC) because of increased periprocedural thromboembolic risk. According to 

these latest guideline, oral anticoagulation is recommended for at least 2-3 months after 

the intervention. Thereafter, the need for continued therapy should be judged based on 

stroke risk (CHA2DS2-VASc: ≥1 for men and ≥2 for women). 

Prognosis 

Odutayo et al. examined 104 cohort studies and a total of 587867 patients with atrial 

fibrillation in their meta-analysis. According to their results, atrial fibrillation is 

associated with an increased risk of the following diseases and conditions: all-cause 

mortality, major cardiovascular events, ischemic stroke, ischemic heart disease, sudden 

death, heart failure, chronic kidney disease, peripheral arterial disease. 

Atrial fibrillation and biomarkers 

Biomarker research in atrial fibrillation can be significant in many ways: on the one 

hand, they can contribute to a better understanding of the various pathophysiological 
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mechanisms and the possible complications, on the other hand biomarkers can be useful 

tools for risk assessment of various complications. According to some 

recommendations, the addition of biomarkers (pro-BNP, hs cardial troponin, D-dimer, 

IGDF-15: inflammatory growth differentiation factor-15, micro-RNAs, galectin-3, CRP, 

creatinine, cystatin c) to clinical stroke risk scales may further refine their clinical value. 

According to Roldan et al. the addition of VWF levels to CHA2DS2-VASc and HAS-

BLED scales may further increase their prognostic value. 

 

 

Stroke 

Epidemiology 

According to the literature, stroke is considered to be the second most common cause of 

death and the most common cause of disability worldwide. Between 1990 and 2010, the 

incidence of stroke across the world increased by 68% and the death rate by 26%. The 

incidence of ischemic stroke during this period increased by 37% and its mortality by 

21% worldwide. 

Definition, subtypes 

Acute stroke is a brain, retina or spinal cord focal dysfunction that lasts for more than 

24 hours or longer if imaging procedures (CT or MRI) or autopsy can verify focal 

infarction or hemorrhage. In the case of transient ischemic attack (TIA), focal 

dysfunction lasts less than 24 hours, and infarction cannot be confirmed by imaging 

procedures. Within the five major groups of stroke (ischemic stroke, hemorrhagic 

stroke, subarachnoid hemorrhage, cerebral venous thrombosis, spinal ischemic or 

hemorrhagic stroke) further subgroups can be distinguished. The origin of ischemic 

stroke is usually multifactorial, so the ideal classification system should include the 

most likely etiologic and pathophysiological mechanisms. The etiologic scales include 

the most commonly used TOAST (Trial of ORG 10172 in Acute Stroke Treatment, large 

artery atherosclerosis, cardioembolism, small vessel occlusion, other known etiology, 

unknown etiology) published in 1993. In the 21 to 37% of cases of ischemic stroke, 

there is a cardioembolic source, in 15-48% atherothrombotic cause, in 10-34% small 

vessel disease, and in 30-38% unknown etiology. Of these, the worst outcome is 

expected for the cardioembolic type, with the highest mortality rate in the hospital (6-
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27%). Studies have shown that collateral circulation is better in atherothrombotic stroke 

than in cardioembolic stroke, which can contribute to a less favorable outcome in case 

of cardioembolic stroke, as collateral circulation plays a significant role in the success 

of reperfusion therapies as well as in long-term outcome. 

Risk factors 

The risk of both ischemic and hemorrhagic stroke is increased in advanced age (for 

patients older than 75 years, the relative risk of stroke is fivefold compared to 55-64 

years of age), hypertension (in case of 160/95 mm Hg blood pressure the relative risk of 

stroke is seven times higher compared to 120/80 mm Hg), smoking (the relative risk of 

active smokers is double) and diabetes mellitus (the relative risk of stroke is double). 

The risk factors for hemorrhagic stroke include excessive alcohol consumption, 

thrombolytic, anticoagulant, and antiplatelet therapy. Stroke risk factors include male 

sex, but more women being affected by stroke due to the fact that women have longer 

life expectancy. Obesity and dyslipidemia also increase the risk of ischemic stroke 

(primarily raising the risk of large artery disease). Ischemic heart disease is a triple 

relative risk of stroke, whereas heart failure, atrial fibrillation and previous TIA have a 

five-fold relative risk. Inflammation, infection, migraine with aura and oral 

contraceptives also increase the risk of stroke. Increased VWF levels contribute to the 

increased risk of cardioembolic stroke, elevated leukocyte increase the risk of lacunar 

stroke, and hyperhomocysteinemia may increase the risk of large artery disease. 

Diagnosis 

Typical stroke symptoms include sudden, half-side numbness, paralysis, loss of vision, 

altered speech, ataxia, and non-orthostatic dizziness. Typical symptoms summed up in 

the FAST campaign for the general public for easy recognizability and quick care: facial 

weakness, arm weakness, speech problems, calling emergency services. The purpose of 

diagnostic procedures is to identify the stroke subtype, to determine its localization, to 

exclude other stroke imitating diseases. To do this, the following information should be 

obtained first: time of symptoms onset, blood pressure and blood glucose measurement 

at hospital admission, determination of severity of the stroke by NIHSS (National 

Institute of Health Stroke Scale) and brain imaging procedures: primarily non-contrast 

CT, which is used to detect ischemic and hemorrhagic stroke and to detect early 

ischemic signs and arteriosclerosis. Multimodal CT (CT perfusion, CT angiography, CT 

venography) can provide information on the extent of ischemic injury, perfusion status, 
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vascular stenosis/occlusion, collateral flow and acute stroke differential diagnosis, 

furthermore intracranial hemorrhage can be excluded by multimodal CT. 

With NIHSS, beyond the severity of stroke, stroke progression, response to therapy, 

short and long term outcome can also be estimated. NIHSS examines the level of 

alertness, eye movements, field of vision, the function of facial muscles (paralysis), the 

motoric function of the hands and feet, coordination (presence of ataxia), sensory 

function and speech (presence and extent of aphasia). Its benefits include its validity 

and reliability, also when performed by non-neurologist specialists. It is widely used in 

clinical trials. 

The ASPECT (Alberta Stroke Program Early CT) score was developed and validated for 

systemic detection and quantification of early ischemic changes in CT on the territory of 

middle cerebral artery. On the 10-point scale, the value of 10 means the normal state. 

Clinical research shows that ASPECT score is independently associated with long-term 

functional outcome. The ASPECT value ≤7 has a strong correlation with poor functional 

status (modified Rankin scale: mRS ≥3) and the increased risk of intracerebral 

hemorrhage. A separate ASPECT score was created and validated for the basilar artery 

territory (pc-ASPECT: posterior circulation Alberta Stroke Program Early CT score). 

According to research, the pc-ASPECT <8 value independently predicts poor functional 

outcome (mRS ≥4), despite the complete revascularization. The ASPECT score is 

widely used in clinical trials, it is considered as a useful diagnostic tool, but it is not 

recommended to determine patient prognosis or to exclude patients from a therapeutic 

procedure based on ASPECT score. 

To evaluate the long-term functional status after acute stroke, the modified Rankin scale 

is widely used. On the scale of 0 to 6, mRS evaluates global functional status with a 

focus on mobility. MRS is not only used in everyday clinical practice, but is also used in 

clinical trials, e.g. when comparing the outcome of different study groups. The strengths 

of validated mRS include comprehensive measurement of functionality and having 

good correlation with lesion size, stroke type, neurological damage and other functional 

test measurements. At the same time, its subjectivity and reproducibility are considered 

to be weak. 

Therapy 

Intravenous thrombolytic therapy with alteplase initiated within 4.5 hours of symptom 

onset is considered standard specific treatment for acute ischemic stroke if the patient 
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meets the criteria for inclusion. Dose of intravenous alteplase (iv. rt-PA: recombinant 

tissue-type plasminogen activator) is 0.9 mg/kg which does not exceed 90 mg. 10% of 

the dose should be administered as a bolus and the remaining for 60 minutes as an 

infusion. The best results can be achieved by thrombolysis within the first 90 minutes of 

symptom onset. Thrombolytic therapy should be monitored for 24 hours and the 

patient's blood pressure should be monitored (below 180/105 mm Hg) as well. The 

safety and efficacy of rt-PA therapy was supported by several clinical studies and 

systematic summary reports, but less than half of the patients treated in this way 

achieved functionally independent status three months later with full or nearly complete 

recovery of neurological functions. The most serious complication of thrombolytic 

therapy is intracerebral hemorrhage, which occurs more frequently in large ischemia, 

older age, more serious stroke indicated by NIHSS, hyperglycemia, atrial fibrillation, 

congestive heart failure and renal insufficiency. Intracerebral hemorrhage occurs in 

approximately 7% of patients treated with rt-PA thrombolysis, significantly increasing 

morbidity and mortality. Although many risk factors for the adverse outcome of 

thrombolysis with rt-PA have been identified (e.g. old age, male gender, stroke severity, 

diabetes mellitus, hyperglycemia diagnosed at hospital admission), it is not easy to 

predict the outcome before thrombolysis, due to the fact that most risk assessment 

scales based on clinical and radiological data are not specific and have a moderate 

predictive value. 

Mechanical thrombectomy is another novel option in the treatment of ischemic stroke 

within the first 6 hours. Thrombectomy can be applied after thrombolytic therapy in 

patients eligible for intravenous thrombolysis, as well as in patients who may not be 

eligible for intravenous thrombolysis due to increased bleeding risk. 

Intraarterial thrombolysis therapy may be used within 6 hours after symptom onset in 

patients with large artery occlusion, in patients who are not eligible for iv. rt-PA therapy 

due to anticoagulant therapy or postoperative status, and in patients after iv. 

thrombolysis without any improvement. 

Initial therapies for acute ischemic stroke prior to thrombolysis include reducing blood 

pressure below 185/110 mm Hg to avoid hemorrhagic complications of thrombolytic 

therapy. Treatment of hyperglycemia is also required, as clinical studies have indicated 

that >7.7 mmol/l blood glucose levels have associated with worse long-term outcome. 

24 hours after hospital admission, control brain imaging (CT or MRI) is required to 

exclude hemorrhage and determine radiological changes that can help estimate 
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outcome. 

Prognosis 

The mortality of acute stroke is 15% after one month, 25% after one year and 50% after 

five years. 40% of stroke survivors have unfavorable functional outcome (mRS 3-5). 

The risk of stroke recurrence after ischemic stroke or TIA is 10% one week later, 15% 

one month later, 18% three months later, 10% one year later and 25% five years later. 

The risk of recurrence is greater in case of symptomatic atherosclerosis, vascular risk 

factors, active thrombosis sources and suspension of antiplatelet or antihypertensive 

therapy. In patients with atrial fibrillation the risk of stroke recurrence increases with the 

increase in CHA2DS2-VASc and ABC score. 

Stroke biomarkers 

To improve acute stroke treatment, it would be helpful to supplement risk assessment 

scales based on clinical and radiological data with biomarkers. 

FVIII and VWF as stroke biomarkers 

Several studies confirmed the role of FVIII and VWF in the pathophysiology of acute 

ischemic stroke. In animal experiments, plasma levels of FVIII and VWF showed direct 

correlation with the rate of formation of arterial thrombus and the extent of ischemia. 

Human research has shown that elevated levels of FVIII and VWF increase the risk of 

stroke. Elevated levels of FVIII increased the risk of stroke with atherothrombotic and 

cardioembolic etiology. However, there is much less information regarding the 

relationship between FVIII and VWF levels and the outcome of stroke. There was a 

significant association between low rate of recanalization and adverse outcome and 

elevated VWF levels following the therapy of acute myocardial infarction thrombolysis. 

Changes in the levels of FVIII and VWF during acute stroke thrombolytic therapy are 

less known, although experimental results on animal models suggest that FVIII 

degradation during thrombolysis may have a causal effect on bleeding complications. 

In the past decades particular attention is drawn for the feasibility of VWF inhibition 

therapy for acute stroke. VWF antagonists used in combination with rt-PA may 

contribute to the lysis of thrombus and may limit the formation of consequent thrombo-

inflammatory ischemia or reperfusion injury. The principle of VWF inhibition therapies 

is based on animal experiments which found that the inhibition of GPIb-VWF and 

VWF-collagen interaction are protective against the onset of ischemic brain damage in 

mice with acute stroke. According to the literature, platelets and VWF contribute to the 
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development of neurological lesions not only through the initiation of thrombus 

formation but also through the activation of inflammatory processes. The role of VWF 

is also supported by experimental results with ADAMTS13 metalloprotease. According 

to clinical observations, low ADAMTS13 activity was associated with higher risk of 

ischemic stroke. In animal experiments, use of recombinant ADAMTS13 showed a 

protective effect against reocclusion, reduced leukocyte migration to the site of injury 

and reduced bleeding complications of rt-PA therapy by the preservation of the blood-

brain barrier. Given that most of these researches have been based on animal models, 

human studies on FVIII and VWF levels may provide important findings.  
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Objective 
 

 

In the course of our work, two observational clinical studies were performed to 

investigate the correlation between FVIII and VWF levels and other hemostasis factors 

and the pathomechanism of increased thromboembolic risk in patients with atrial 

fibrillation, and to investigate the correlation between FVIII and VWF levels and the 

outcome of therapy after thrombolysis in patients with acute ischemic stroke. 

 

In detail: 

1. We aimed to identify local hemostasis and fibrinolysis abnormalities, which are 

associated with AF and increase the risk of thromboembolism. Intracardiac 

blood samples taken from the left atrium and left atrial appendage of AF patients 

and non-AF controls were tested for a comprehensive set of hemostasis and 

fibrinolytic factors in order to assess AF associated alterations. 

2. We aimed to investigate the relation of FVIII and VWF levels to stroke severity 

and stroke etiology. Furthermore, we aimed to investigate FVIII and VWF levels 

during the course of thrombolysis in acute ischemic stroke (AIS) patients and to 

find out whether they predict long-term outcomes. 
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Patients and Methods 
 

Intracardiac Hemostasis and Fibrinolysis Parameters in 

Patients with Atrial Fibrillation 

Study Population 

Consecutive patients undergoing radiofrequency ablation for symptomatic paroxysmal 

or persistent AF (AF group) as well as age- and sex-matched patients with any 

arrhythmia other than AF requiring left atrial access (non-AF control group) were 

enrolled in the study. Patients were enrolled between 2013 October and 2015 December. 

All AF patients were undergoing pulmonary vein isolation (PVI) with phased 

radiofrequency (RF) or cryoballoon ablation procedure. Non-AF controls were 

undergoing routine RF ablation of a left atrial substrate (mostly a left-sided accessory 

atrioventricular pathway). 

Inclusion criteria for the AF group were the following: age 18–75 years, documented, 

symptomatic paroxysmal or persistent AF, failure of at least one antiarrhythmic drug, 

and patient being willing to sign a written informed consent. Inclusion criteria for the 

control group were age 18–75 years, documented non-AF arrhythmia including one of 

the following: left atrial tachycardia, paroxysmal supraventricular tachycardia 

(orthodromic or antidromic), or FBI (fast, broad, and irregular) tachycardia due to a left-

sided accessory pathway, preexcitation on the 12-lead electrocardiogram in an 

asymptomatic individual in whom the electrophysiology study revealed a left-sided 

accessory pathway potentially resulting in significant arrhythmia based on its 

conduction properties, and patient being willing to sign a written informed consent. 

Exclusion criteria for the patient and control groups were previous heart surgery, 

valvular heart disease, left ventricular ejection fraction (LVEF) ≤30%, heart failure of 

New York Heart Association functional classification (NYHA) class III or IV, 

documented carotid stenosis, history of ischemic stroke or TIA, prior cardiac surgery, 

unstable angina or myocardial infarction within the last 3 months, severe chronic 

obstructive pulmonary disease, known bleeding or thrombotic disorders, acute 

inflammation, contraindication to oral anticoagulation or to diffusion weighted magnetic 

resonance imaging (DW MRI), and pregnancy. Additional exclusion criteria for the 

patient group were long-standing persistent AF, reversible cause of AF (e.g. 
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hyperthyroidism), and presence of AF thrombus. Risk factors for stroke (hypertension, 

diabetes mellitus, smoking, BMI, etc.) together with the list of current medications were 

assessed before the enrollment of patients.  

 

The CHADS2 score (congestive heart failure, hypertension, age ≥75 years, diabetes 

mellitus, and stroke/transient ischemic attack), CHA2DS2-VASC score (congestive heart 

failure, hypertension, age ≥75 years, diabetes mellitus, stroke/ transient ischemic attack/ 

thromboembolism, vascular disease (prior myocardial infarction, peripheral vascular 

disease, or aortic atherosclerosis), age (65–74 years), and sex category (female)) and 

EHRA score (European Heart Rhythm Association score) were recorded for every AF 

patient.  

The study design was in accordance with the guiding principles of the Declaration of 

Helsinki, and was approved by the Institutional Ethics Committee of the University of 

Debrecen and the Ethics Committee of the National Medical Research Council (ETT-

TUKEB). All patients signed a written informed consent form prior to inclusion.  

Electrophysiology Procedure and Blood Drawing 

Patients were hospitalized 1 or 2 days before the procedure. All medications with a 

potential effect on coagulation or platelet activity were discontinued for a period of at 

least three halflives (or a period needed for reaching complete decay of their action) 

before the procedure. Transesophageal echocardiography was carried out within 24 h 

prior to the procedure in order to rule out the presence of a cardiac thrombus in all AF 

patients. All procedures were carried out under conscious sedation, using midazolam 

and fentanyl. The ablation procedures were performed as described previously. Blood 

samples were taken before the ablation procedures from multiple sites: (1) peripheral 

femoral venous (FV) sheath, (2) left atrial (LA) sheath, and (3) left atrial appendage 

(LAA) sheath. Intracardiac blood samples were collected before the administration of 

unfractionated heparin.  

Briefly, three punctures of the right femoral vein were performed using the Seldinger 

technique and introducers with side arms were placed in the vein. Forty-five ml blood 

sample was drawn through the side arm of a short introducer immediately after access 

to the vein, from which the first 5ml of blood was discarded in order to exclude 

intrasheath hemostasis activation (FV sample). Blood samples were collected into 

vacutainer tubes (tubes anticoagulated with K3-EDTA for complete blood count, tubes 
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containing 0.109 M sodium citrate and CTAD (buffered citrate, theophylline, adenosine, 

and dipyridamole)) for hemostasis and fibrinolysis tests (Becton Dickinson, Franklin 

Lakes, NJ). After blood drawing, a decapolar catheter and an intracardiac echo (ICE) 

catheter were advanced from the femoral vein and positioned in the coronary sinus and 

in the right atrium, respectively. A single ICE-guided transseptal puncture was 

performed using a Mullins transseptal sheath and a Brockenborough needle (Medtronic, 

Kirkland, QC, Canada) under fluoroscopic and ICE guidance using standard technique. 

After crossing the septum, the dilator of the Mullins sheath was removed and 45 ml 

blood sample was drawn from the LA, from which the first 5 ml of blood was discarded 

(LA sample). LA blood samples were collected into vacutainer tubes as described 

above. After the blood drawing of LA samples, the LAA was accessed by using a 5 F 

pigtail catheter (Medtronic, Kirkland, QC, Canada) under fluoroscopy and ICE control. 

A blood sample of 45 ml was taken from the LAA, of which, again, the first 5 ml was 

discarded (LAA sample). LAA blood samples were collected into vacutainer tubes as 

described above. Immediately after blood samplings, 150 IU/kg body weight i.v. 

heparin was administered and ablations were performed according to standard 

protocols. 

Laboratory Investigations 

Blood samples anticoagulated with K3-EDTA were immediately tested for complete 

blood count. Blood samples anticoagulated with citrate or CTAD were centrifuged twice 

at 1500 g at room temperature for 20 min and plasma samples were stored at −70 °C 

until further analysis. The measurement of plasminogen activator inhibitor-1 (PAI-1) 

activity was performed from plasma samples anticoagulated with CTAD; besides this 

measurement, all hemostasis and fibrinolysis tests were performed using citrated 

plasma. Hemostasis and fibrinolysis tests were performed from all sample types (FV, 

LA, and LAA samples). Screening tests of hemostasis (prothrombin time, activated 

partial thromboplastin time, and thrombin time) were performed using routine methods 

(Siemens Healthcare Diagnostic Products, Marburg, Germany). Fibrinogen 

concentrations were measured by the Clauss method. Commercially available ELISA 

tests were used to determine PAI-1 activity (Technozym PAI-1 Actibind, Technoclone, 

Vienna, Austria), plasmin-𝛼�2-antiplasmin (PAP) complex (Technozym PAP complex 

ELISA kit, Technoclone, Vienna, Austria), and thrombin-antithrombin (TAT) complex 

(Enzygnost TAT micro, Siemens Healthcare Diagnostic Products, Marburg, Germany). 
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Factor VIII (FVIII) activity using a chromogenic assay, von Willebrand factor (VWF) 

antigen level, 𝛼�2- plasmin inhibitor (𝛼�2-PI) activity, plasminogen activity and D-dimer 

levels were measured on a BCS coagulometer by standard methods (Siemens 

Healthcare Diagnostic Products, Marburg, Germany). Plasma levels of FXIII activity 

were determined by ammonia release assay using a commercially available reagent kit 

(REA-chrom FXIII kit, Reanalker, Budapest, Hungary). Soluble fibrin monomer levels 

(FM) were measured using the Liatest FM assay (Diagnostica Stago, Asni`eres, France).  

High sensitivity C-reactive protein (CRP) and a comprehensive lipid profile including 

total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein 

(HDL) cholesterol, and triglyceride levels were measured from antecubital vein blood 

samples of all patients upon hospital admission by routine methods (Roche Diagnostics, 

Mannheim, Germany). 

Statistical Analysis 

All data were analyzed using the GraphPad Prism Software version 5.0 (La Jolla, CA) 

and the Statistical Package for Social Sciences (SPSS, Release 22.0, Chicago, IL). 

Normality of the data was evaluated by the D’Agostino and Pearson omnibus normality 

test. A paired t-test or Wilcoxon matched pairs rank-sum test was applied for comparing 

results obtained from intracardiac and FV samples. In case of two-group analyses 

between AF patients and controls, unpaired t-test or in case of nonparametric data 

Mann–Whitney U test was used. ANOVA or Kruskal- Wallis test was applied for 

multiple comparisons. Pearson’s or Spearman’s correlation coefficient was used to 

determine the strength of correlation between variables. Differences between categorical 

variables were assessed by the Fisher’s exact test. P <0.05 was considered statistically 

significant. 

  



 26 

Elevated Factor VIII and von Willebrand Factor Levels 

Predict Unfavorable Outcome in Stroke Patients Treated with 

Intravenous Thrombolysis 

Patients 

Consecutive AIS patients aged 18 years or more, eligible for thrombolysis, admitted to a 

single Stroke Center (Department of Neurology, Faculty of Medicine, University of 

Debrecen, Hungary) were enrolled in the study. All patients were within 4.5 h of their 

symptom onset at the time of admission. Patient enrollment lasted for 22 months 

starting in March 2011. Intravenous thrombolytic therapy was applied according to the 

European Stroke Organization (ESO) guidelines using rt-PA (Alteplase, Boehringer 

Ingelheim, Germany). Inclusion and exclusion criteria of patients were identical to that 

of thrombolysis eligibility as described in the ESO 2008 guideline. The diagnosis of IS 

was based on clinical symptoms and brain imaging using computer tomography (CT) 

scan and CT angiography (CTA). Admission CTA was used to identify the level of 

vessel occlusion in every patient. A control CT was performed for every patient 24 h 

after thrombolysis. All CT images were analyzed by four different investigators blinded 

to the clinical state of the patients and the Alberta Stroke Program Early CT Scores 

(ASPECTS) were calculated. Neurological deficit of patients was determined by the 

NIHSS at various time points: on admission and at 2 h, 24 h, and 7 days post-lysis. 

Stroke etiology was determined according to the Trial of ORG 10172 in Acute Stroke 

Treatment (TOAST) criteria. Hemorrhagic events were classified as symptomatic or 

asymptomatic intracranial hemorrhage (SICH or aSICH, respectively) according to the 

European Cooperative Acute Stroke Study (ECASS) II criteria.  

For each patient a detailed list of clinical parameters was recorded including 

demographic characteristics, neurological status, time of symptom onset, cardiovascular 

risk factors (arterial hypertension, atrial fibrillation, hyperlipidemia, diabetes mellitus, 

smoking status), history of previous cardiovascular events, and medications.  

Patients were followed and long-term functional outcomes were determined at 90 days 

post-event using the modified Rankin Scale (mRS).  

The following outcomes were investigated:  

(1) short-term functional outcome at 7 days post-event: favorable outcome was defined 

as a decrease in NIHSS score by at least 4 points or to 0 by day 7, unfavorable outcome 
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was defined as an increase in NIHSS score by at least 4 points by day 7.  

(2) The presence of therapy-associated SICH or aSICH was defined according to 

ECASS II criteria.  

(3) Long-term functional outcome at 90 days post-event: poor long-term outcome was 

specified as an mRS greater than 2.  

The study was approved by the Ethics Committee of the University of Debrecen, 

Hungary. All patients or their relatives provided written informed consent. 

Blood Sampling and Laboratory Measurements 

Peripheral blood samples were drawn from patients into vacutainer tubes on three 

different occasions: upon hospital admission (before thrombolysis), immediately after 

the administration of rt-PA infusion (~1 h after the initiation of thrombolysis) and 

approximately 24 h after the administration of thrombolytic therapy. Routine laboratory 

tests were performed from blood samples taken before thrombolysis and included the 

measurements of complete blood count, serum ions, glucose levels, basic kidney 

function tests, liver function test, high-sensitivity C-reactive protein (hsCRP), and 

screening tests of coagulation (prothrombin time, activated partial thromboplastin time 

and thrombin time). Blood samples anticoagulated with sodium citrate, theophylline, 

adenosine and dipyridamole (Vacuette CTAD Tubes, Greiner Bio-One, Austria) were 

centrifuged at 1,220 g, room temperature for 15 min. Plasma aliquots were labeled with 

a code and stored at −70 °C until further analysis of FVIII activity and VWF antigen 

levels. FVIII activity, determined by chromogenic method and VWF antigen level, 

determined by immunoturbidimetric assay were measured from coded plasma samples 

on a BCS coagulometer by standard methods (Siemens Healthcare Diagnostic Products, 

Marburg, Germany). 

Statistical Analysis 

Statistical analysis was performed using the Statistical Package for Social Sciences 

(SPSS, Release 22.0, Chicago, IL, USA) and GraphPad Prism 5.0 (GraphPad Prism 

Inc., La Jolla, CA, USA) softwares. Normality of the data was evaluated by the 

Shapiro–Wilk test. As FVIII activity and VWF antigen levels were not normally 

distributed at any time points measured, the Mann–Whitney U test was applied for all 

two-group analyses and the Kruskal–Wallis analysis with Dunn–Bonferroni post hoc 

test was used for multiple comparisons. Differences between categorical variables were 

assessed by the Fisher’s exact or χ2 test. Friedman’s two-way ANOVA with Dunn–
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Bonferroni post hoc test was applied to investigate the effect of thrombolysis on FVIII 

activity and VWF levels. Strength of association between FVIII activity and VWF 

antigen levels was tested using Spearman’s correlation test. In order to test for 

differences between adjusted means, univariate analysis incorporating covariate testing 

(one-way ANCOVA) was performed after logarithmic transformation of data. Positive 

predictive values (PPVs) and negative predictive values (NPVs) of the studied 

parameters were assessed using contingency tables and the Fisher’s exact test. A binary 

backward logistic regression model was used to determine whether elevated FVIII and 

VWF levels of different time points are independent predictors of poor functional 

outcomes at 90 days post-event. Adjustment of the models were based on the results of 

previous statistical analyses (Mann–Whitney U test, Fisher’s exact, or χ2 test), previous 

literature and methodological principles (dichotomized variables wherever possible). 

Results of the logistic regression analysis were expressed as odds ratio (OR) and 95% 

confidence interval (CI). A p-value of <0.05 was considered statistically significant. 
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Results 
 

Intracardiac Hemostasis and Fibrinolysis Parameters in 

Patients with Atrial Fibrillation 

Baseline Characteristics of AF Patients and Non-AF Controls 

In total 32 AF patients and 18 controls were enrolled in the study. Unfortunately, 8 AF 

patients and 4 controls had to be excluded from the study population due to technical 

problems arising during the intracardiac blood drawing procedure (clot formation in the 

sample during the blood drawing procedure, clot formation on the sheath requiring 

instant heparin administration, etc.). In case of 12 AF patients and 8 non-AF controls an 

LAA sample was not possible to obtain due to technical/anatomic difficulties. The final 

numbers of AF patients and non-AF controls included in the study were 24 and 14, 

respectively. No significant differences were observed between the AF patients and non-

AF controls regarding BMI and cerebrovascular risk factors except for smoking, which 

was more frequent in controls. Only two patients experienced paroxysmal AF periods 

during the procedure. Most AF patients had low or moderate risk for stroke according to 

the CHADS2 and CHA2DS2-VASC score. A similar fraction of AF patients and non-AF 

controls received statins and antihypertensive drugs. CRP levels and lipid parameters, 

measured from peripheral venous blood samples, did not differ significantly between 

AF patients and non-AF controls. 

Intracardiac Levels of Hemostasis Factors in AF Patients and Non-AF 

Controls 

FVIII activity and VWF antigen levels were significantly higher in the AF patient group 

as compared to the control group in the samples obtained from the FV and from the LA. 

LAA levels of both proteins showed a marked elevation in AF patients as well; however, 

very likely due to the lower number of LAA samples, results were only borderline 

significance. Elevated levels were not due to acute phase reaction as CRP levels of all 

individuals were in the normal range. In case of AF patients, median values of VWF 

antigen levels were above the upper limit of the reference interval in all sample types 

(171% (IQR: 129.4–195.1%), 176.7% (IQR: 129.3–192.7%), and 164% (IQR: 114.8–

189.8%) for FV, LA, and LAA sample types, resp.). The observed differences between 
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patients and controls remained significant after adjustments for AB0 blood type in the 

statistical model. No local differences were found in the FVIII and VWF levels of 

intracardiac samples as compared to the FV samples in either group. FVIII and VWF 

levels showed good correlation in AF patients (Spearman 𝑟�= 0.808, 95% CI: 0.691–

0.884, 𝑝� <0.0001) as well as in non-AF controls (Pearson 𝑟�= 0.737, 95% CI: 0.502–

0.871, 𝑝� <0.0001), suggesting that they are in a complex form. No considerable 

differences were seen in the correlation of FVIII and VWF levels with respect to 

sampling sites (data not shown). No significant differences were found between sample 

types and patient groups in case of FXIII activity and fibrinogen levels. 

Intracardiac Levels of Coagulation Activation Markers in AF Patients 

and Non-AF Controls 

Median values of soluble FM and TAT complex levels exceeded the upper limit of 

reference interval in the FV samples of AF patients (18.16 𝜇�g/mL (IQR: 5.83–33.91 

𝜇�g/mL) and 15.17 𝜇�g/L (IQR: 6.96–22.83 𝜇�g/L) for FM and TAT, respectively) and 

non-AF controls (23.05 𝜇�g/mL (IQR: 9.55–51.41 𝜇�g/mL) and 16.36 𝜇�g/L (IQR: 9.84–

28.59 𝜇�g/L) for FM and TAT, respectively). Moreover, both parameters were 

significantly elevated in the samples obtained from the LA as compared to the FV 

samples in case of both groups, suggesting that that the observed differences are not AF-

specific and most probably the catheterization procedure itself has a major effect on the 

results. FM levels showed a decrease in the LAA samples as compared to the LA 

samples; this decrease was significant in case of the patients (𝑝� <0.001, Wilcoxon 

matched pairs rank-sum test). TAT complex levels were also significantly lower in the 

LAA samples versus LA samples of AF patients (𝑝� <0.01, Wilcoxon matched pairs 

rank-sum test), while such significant association was not observed in case of the non-

AF control patients. TAT complex levels were significantly increased in the LAA 

samples of both AF patients and non-AF controls as compared to the FV samples. 

Surprisingly, a marginal but significant elevation was observed in the TAT complex 

levels of the LA samples of non-AF controls versus AF patients (𝑝� <0.05). 

Intracardiac Parameters of Fibrinolysis in AF Patients and Non-AF 

Controls 

Plasminogen activity, 𝛼�2-PI activity, and PAI-1 activity levels showed no difference 

between AF patients as compared to non-AF controls. In general, no difference was 
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observed between the intracardiac and peripheral levels of these parameters, except for 

a small, but significant reduction of plasminogen level in the LAA versus FV sample of 

the AF patients. PAP complex and D-dimer levels were significantly increased in the LA 

samples of both AF patients and non-AF controls as compared to the respective FV 

samples, suggesting that the activation of the fibrinolytic system took place during the 

transcatheter procedure in both groups. In fact, approximately half of the AF patients 

and non-AF controls had D-dimer levels exceeding the cut-off value in the LA sample, 

while median values of D-dimer were well below the cut-off in the FV samples (0.26 

mgFEU/L (IQR: 0.17–0.48 mgFEU/L) and 0.30 mgFEU/L (IQR: 0.18–0.48 mgFEU/L) 

in AF patients and controls, respectively). 
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Elevated Factor VIII and von Willebrand Factor Levels 

Predict Unfavorable Outcome in Stroke Patients Treated with 

Intravenous Thrombolysis 

Study Population 

During the study period, 131 consecutive AIS patients receiving intravenous rt-PA 

treatment were enrolled. In case of six patients, intravenous thrombolytic therapy was 

supplemented with intra-arterial thrombolysis using rt-PA according to standard 

protocol; the duration of thrombolysis and the final dose of rt-PA applied did not 

significantly differ for these patients. Median age of the patient cohort was 69 (IQR: 

59–79) years, 60.3% were men. The most common cerebrovascular risk factor was 

arterial hypertension in this patient cohort (n= 100, 76.3%). Median time from symptom 

onset to treatment was 155 min (IQR: 125–180). Median NIHSS before stroke treatment 

was 8 (IQR: 5–14). According to the TOAST criteria, etiology of stroke was most 

commonly large vessel disease (n= 49, 37.4%), followed by 27 (20.6%) patients with 

cardioembolic stroke. As detected by CTA on admission, 70 patients (53.4%) had a 

vessel occlusion, and 27 patients (20.6%) stenosis. Poor functional outcome at 7 days 

post-event was observed in 20 cases (15.3%), while poor outcome at 90 days (mRS ≥3) 

was observed in case of 51 (38.9%) patients. Therapy-associated intracranial 

hemorrhage was detected in 13 cases, of which 6 cases (4.6%) were symptomatic 

according to ECASS II. Mortality rates by day 7, 14, and day 90 post-event were 3.8, 

6.1, and 22.1%, respectively. 

The Effect of Thrombolysis on FVIII Activity and VWF Antigen Levels 

In the samples taken on admission, the median values of both hemostasis parameters 

were above the upper limit of the respective reference interval in the whole patient 

cohort (FVIII activity median: 188.0%, IQR: 153.0–242.0%, VWF antigen level 

median: 201.3%, IQR: 169.1–259.6%). FVIII activity dropped significantly in the 

samples obtained immediately after thrombolysis as compared to the initial values 

(median: 102.0%, IQR: 62.0–155.5%, p <0.001) and showed an increase 24 h after the 

event (median: 166%, IQR: 130.0–209.0%, p= 0.014). On the contrary, VWF levels 

increased steadily post-lysis (median VWF levels immediately after lysis: 229.1%, IQR: 

157.6–293.3%, at 24 h post-lysis: 231.6%, IQR: 176.8–284.8%, Friedman’s two-way 

ANOVA p= 0.002). Notably, VWF median and IQR values were above the upper limit 
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of the reference interval at all investigated time points in the study cohort.  

Factor VIII activity and VWF antigen levels showed good correlation on admission (r= 

0.748, p <0.001), but no significant correlation was found immediately after 

thrombolysis (r= 0.093, p= 0.299), most probably due to plasmin mediated FVIII 

degradation. Fair correlation was observed between the two parameters in the samples 

obtained 24 h after thrombolysis (r= 0.420, p <0.001). 

The Association of FVIII Activity and VWF Antigen Levels with Stroke 

Severity 

Von Willebrand factor antigen levels were gradually and significantly elevated in case 

of more severe AIS (NIHSS 6–16 and NIHSS >16) at all investigated time points, but 

no such significant association was observed for FVIII activity levels. The association 

between VWF antigen levels and stroke severity remained significant after adjustments 

for confounders (current smoking, hsCRP, age) in the statistical model.  

The association of elevated VWF levels and more severe AIS was also proved as 

significantly higher VWF levels were found at all investigated time points in patients 

presenting with worse 24 h post-lysis CT scans (ASPECTS score 7–0). Similar 

association was observed for FVIII levels, except for the samples investigated 

immediately after lysis. Associations for VWF levels and FVIII activity remained 

significant after adjustments for confounders (current smoking, hsCRP, age) in the 

statistical model. As CT scans on admission are not indicative of stroke severity and 

have less predictive values as the ASPECTS at 24 h post-lysis, it was not surprising that 

no significant association was found between the investigated hemostasis parameters 

and the ASPECTS on admission.  

No association was found between FVIII activity and VWF antigen levels at any time 

points and stroke subtypes according to TOAST criteria (data not shown).  

FVIII activity at 24 h post-lysis was significantly elevated in patients with vessel 

occlusion (median: 175.0%, IQR: 151.5–227.0%) as compared to those with stenosis 

only (median: 137.0%, IQR: 98.5–175.0%) or without occlusion/ stenosis (median: 

142.0%, IQR: 115.0–177.0%) (p= 0.001), while such association was not observed for 

VWF levels. 
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Elevated FVIII Activity and VWF Antigen Levels As Predictors of 

Thrombolysis Outcomes 

Short-term outcome. Factor VIII activity and VWF antigen levels were not associated at 

any investigated time points with short-term therapy outcomes as assessed by the 

changes in NIHSS score by day 7 post-lysis.  

Risk of Intracranial Hemorrhage. No association was found between FVIII activity or 

VWF antigen levels at any investigated time points and therapy-associated ICH, except 

for higher VWF at 24 h post-lysis in patients presenting with SICH (median: 226.8%, 

IQR: 176.5–279.4% vs. median: 347.5%, IQR: 263.3–372.1% for no bleeding or aSICH 

vs. SICH, p= 0.017).  

Long-term outcome. Poor functional outcome (mRS ≥3) at 90 days post-event was 

associated with traditional risk factors including advanced age, increased NIHSS on 

admission, elevated hsCRP, and the presence of diabetes/diabetes treatment. Moreover, 

as expected, ASPECTS at 24 h post-lysis and the level of vessel occlusion as detected 

by CTA was also indicative of the long-term outcome. Among the hemostasis 

parameters investigated at various time points, elevated FVIII activity 24 h post-lysis 

and elevated VWF antigen level measured immediately after lysis and 24 h after therapy 

showed significant association with poor outcomes.  

Both parameters, as measured immediately post-lysis and 24 h post-lysis conferred a 

significant PPV and NPV for poor functional outcomes (highest PPV: VWF 24 after 

thrombolysis: 0.83; 95% CI: 0.59–0.96, p= 0.009 and highest NPV: FVIII immediately 

after thrombolysis: 0.73; 95% CI: 0.50–0.89, p= 0.009).  

A binary backward logistic regression model including age, gender, elevated hsCRP, 

active smoking, diabetes mellitus, and NIHSS >5 on admission revealed that a FVIII 

activity and VWF antigen level above the upper limit of the reference interval (168 and 

160%, respectively) as measured immediately after lysis and 24 h after thrombolysis 

significantly and independently increase the risk of unfavorable functional outcomes at 

90 days. In this model, FVIII activity and VWF antigen levels on admission did not 

prove to have an independent prognostic value regarding poor functional outcomes at 

90 days, while elevated FVIII and VWF levels immediately after thrombolysis 

conferred an independent OR: 7.09 (IQR: 1.77–28.38, p= 0.006) and OR: 6.31 (IQR: 

1.83–21.7, p= 0.003), respectively. Elevated levels of both factors 24 h after lysis were 

also found to have a significant predictive value (OR: 4.67, IQR: 1.42–15.38, p= 0.011 
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for FVIII activity and OR: 19.02, IQR: 1.39–187.0, p= 0.012 for VWF antigen level). 

Besides these hemostasis parameters, only hsCRP >5.2 mg/L and NIHSS >5 on 

admission remained in the stepwise backwards regression analysis model as 

independent risk factors for poor outcomes at 90 days (OR: 4.85, 95% CI: 1.64–14.33, 

p= 0.004 and OR: 3.51, 95% CI: 1.17–10.57, p= 0.026, respectively). 
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Discussion 
 

Intracardiac Hemostasis and Fibrinolysis Parameters in 

Patients with Atrial Fibrillation 

Although it is a general belief that in AF the intracardiac milieu is more thrombogenic 

than the peripheral blood, supporting pieces of evidence derived from measurements 

using intracardiac blood samples are scarce. In this study, we investigated the levels of a 

comprehensive list of hemostasis and fibrinolysis markers from intracardiac blood 

samples of AF patients and non-AF controls and failed to detect significant AF-specific 

alterations of hemostasis or fibrinolysis in intracardiac blood samples. It is to be noted, 

however, that only two patients experienced paroxysmal AF periods during the 

procedure, which means that most patients were on sinus rhythm during blood 

sampling. Our results suggest that as compared to peripheral samples, paroxysmal and 

persistent AF patients have no significant alterations in the intracardiac levels of the 

investigated hemostasis and fibrinolytic parameters, at least when they are not 

experiencing AF periods.  

Although significant local differences were observed for certain coagulation activation 

and fibrinolytic markers (namely, for FM, TAT complex, PAP complex, and D-dimer 

levels) in the intracardiac samples as compared to the FV samples, the same differences 

were found in non-AF control individuals. Moreover, in the LAA sample of both 

groups, a general tendency of decrease was observed in the level of most investigated 

markers as compared to LA samples. In earlier studies in which non-AF control 

population was not investigated, these differences were attributed to AF 

pathophysiology. However, our results imply that changes in the level of these markers 

are not specific to AF and are likely to be attributed to the invasive nature of the 

catheterization procedure, including transseptal puncture and tissue damage.  

Among all investigated hemostasis and fibrinolysis parameters, only the elevation of 

FVIII and VWF levels was found to be AF-associated in our study. Interestingly, FVIII 

and VWF levels were significantly elevated in both peripheral and intracardiac blood 

samples of AF patients as compared to controls. Elevation of VWF levels was 

particularly considerable in the AF patient group as the medians of VWF levels were at 

the upper limit of the reference interval in all sample types. Although the levels of VWF 

in AF patients have been studied earlier using peripheral samples, the relationship 
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between intracardiac and peripheral VWF levels has been obscure. An elevation of 

FVIII and VWF has been described earlier in the peripheral samples of AF patients and 

it has been proposed to be attributed to endothelial damage. Moreover, elevated levels 

of VWF have been associated with increased stroke risk and poor prognosis. Only few 

papers enrolling a limited number of patients have investigated the levels of VWF in AF 

patients from both intracardiac and peripheral blood samples, but in these studies FVIII 

levels were not determined. In line with our findings, in these earlier reports it was 

found that VWF levels were similar in the intracardiac samples and in samples obtained 

from the peripheral sampling site. In our study FVIII and VWF levels showed good 

correlation in all sample types, suggesting that they were in complexed form. As both 

proteins are stored in the Weiber-Palade bodies of the endothelium, these results imply 

that the elevation of VWF and FVIII levels are the consequence of endothelial damage 

and not necessarily restricted to the LA. It has to be noted that in the LAA of patients a 

similar tendency of FVIII and VWF elevation was observed as in case of FV and LA 

samples, but this is most likely due to the limited number of LAA samples since 

differences were not proved to be significant between patients and controls for this 

sample type.  

Despite the important role of the fibrinolytic system in preventing intravascular 

thrombosis, previous studies have paid little attention to the investigation of fibrinolytic 

abnormalities associated with AF. Moreover, little is known about the levels of 

important regulators of fibrinolysis in intracardiac samples in AF. Here we assessed a 

series of fibrinolytic markers from both peripheral and intracardiac blood samples of AF 

patients and non-AF controls. Besides a small but significant decrease in the levels of 

plasminogen in the LAA samples of AF patients as compared to the FV samples, no 

significant differences were observed between AF patients and non-AF controls and 

among sample types concerning FXIII activity, 𝛼�2-plasmin inhibitor, PAI-1 activity, 

and plasminogen activity measurements. There were no differences between PAP 

complex and D-dimer levels in AF patients and non-AF controls either. These findings 

suggest that the investigated components of the fibrinolytic system are mostly unaltered 

in AF. 

Limitations 

Our study has some limitations. First, the number of patients enrolled in the study was 

limited, which was obviously due to the highly invasive nature of blood sampling, 
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during which technical difficulties were often encountered. We would like to highlight, 

however, that the number of patients enrolled in our study is still more than the average 

number of patients undergoing this kind of blood sampling as published so far. 

Moreover, in our study a non-AF control patient group was also enrolled, which was 

often missing from earlier studies. Despite the particularly difficult and potentially risky 

technique of LAA sampling, a considerable number of patients were sampled from the 

LAA as well, which is a rarity in the literature as of yet. Based on our findings larger 

studies are warranted to corroborate our observations.  

Second, most patients enrolled in the study had low or moderate stroke risk according to 

the CHADS2 or CHA2DS2-VASC score, which limits the extrapolation of our findings 

to the general AF patient population. It has to be noted, however, that the stroke risk of 

our patient population reflects the current practice of most ablation centers, which offer 

ablation for younger patients with mostly paroxysmal AF, structurally normal heart, and 

no significant comorbidity. In addition, the necessity and safety of the discontinuation of 

anticoagulation preablation (which was a requirement in our study in order to carry out 

certain measurements) are only evident in low-risk patients.  

Third, only 2 patients experienced a paroxysmal AF period during the catheterization 

and blood drawing procedure. Naturally, more patients having AF period during 

sampling could have supplemented our results with a further interesting aspect. 

Conclusion 

AF patients have elevated FVIII and VWF levels, most likely due to endothelial 

damage, which is present in the intracardiac and peripheral environment as well. 

Intracardiac activation of hemostasis and fibrinolysis was demonstrated in AF patients 

and in non-AF controls to a similar extent, indicating that this might be a consequence 

of the catheterization procedure itself rather than a footprint of AF pathophysiology.  

 

 

Elevated Factor VIII and von Willebrand Factor Levels 

Predict Unfavorable Outcome in Stroke Patients Treated with 

Intravenous Thrombolysis 

In this study, we examined the levels of FVIII and VWF during thrombolysis in 131 

consecutive AIS patients and studied the relationship between the hemostasis factor 
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levels and stroke characteristics and therapy outcomes. Only few papers are found in the 

literature studying the changes of certain hemostasis factors during the course of 

thrombolysis following ischemic stroke and to our knowledge, none of them studied the 

levels of FVIII and VWF comprehensively in this respect. It has been known for almost 

40 years that in vitro plasmin degrades and inactivates FVIII. Studies in animal models 

also suggested such effect of plasmin on FVIII; however, the in vivo effect of plasmin 

on FVIII in humans during the course of rt-PA induced thrombolysis has not yet been 

characterized. Here we showed that FVIII activity drops significantly immediately after 

thrombolysis as compared to levels measured on admission of patients. However, as the 

vast majority of patients had elevated FVIII levels on admission, this reduction is most 

probably due to plasmin-mediated degradation, and did not reach a level that would 

suggest a potential risk for intracerebral hemorrhage. In fact, FVIII levels measured at 

any point in time in this study were not associated with bleeding complications, which 

is in line with the results of studies in animal models. As opposed to FVIII activity, 

VWF antigen levels showed a rising tendency during the course of thrombolysis in our 

study. This, in theory might be due to two reasons. The first apparent reason is VWF 

degradation by plasmin, which has been shown before in vitro. As the test we used for 

measuring VWF antigen levels contains polyclonal antibody against VWF, the 

degradation of the protein leads to an increased antigen level. In an early paper 

describing the time course of certain hemostasis factors in a few patients (n= 7) with 

AMI treated by rt-PA induced thrombolysis, it was shown that thrombolysis treatment 

resulted in the elevation of VWF antigen levels, most probably due to the proteolysis of 

VWF multimers. The degradation of VWF multimers has been speculated to be a 

potential causative factor for hemorrhagic complications in AMI patients treated with 

thrombolysis. In our study, VWF antigen levels were found to be significantly higher at 

24 h post-lysis in patients with SICH as compared to the rest of the cohort, but due to 

the relatively low number of patients with SICH in this population (n= 6), this 

association should be confirmed by other studies. As for the second reason for the 

elevation of VWF antigen levels post-lysis, it is plausible that the increase is due to 

endothelial damage caused by ischemic damage. Studies in AMI patients suggested that 

thrombolysis induced by streptokinase is associated with an increase of VWF antigen 

levels due to endothelial damage as a result of oxidative stress caused by the 

thrombolytic agent. Interestingly, in our study, VWF antigen levels showed an increase 

after thrombolysis only in patients with more severe stroke (NIHSS 6–16 and 
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NIHSS >16 on admission), while in the group of patients with less severe stroke 

(NIHSS 0–5) this elevation was not seen, suggesting that at least in part endothelial 

dysfunction is likely to contribute to this finding.  

Many studies have investigated the association between FVIII and/or VWF levels and 

the risk of cardiovascular or cerebrovascular events. Despite few conflicting results, it 

has been well established that elevated FVIII and/or VWF levels predispose patients to 

AIS. In line with our findings, most studies revealed that in the majority of tested 

patients with AIS, high FVIII and VWF levels were found; moreover, baseline stroke 

severity as measured by the NIHSS score was associated with elevated FVIII and/or 

VWF levels. Furthermore, beyond these previously known results, here we describe a 

strong association between elevated FVIII/VWF levels during the course of 

thrombolysis and the ASPECT score in patients as assessed 24 h post-lysis. The only 

non-significant association in this respect was FVIII activity tested immediately after 

lysis, which was most probably due to plasmin-mediated degradation of the protein. The 

finding that the ASPECT score the day after stroke shows a strong association with the 

tested hemostasis parameters is of considerable interest, as it indicates a link between 

the investigated factors and stroke severity as verified by not only the NIHSS functional 

score but by imaging analysis as well. Similar findings on the relation of any hemostasis 

factors and the results of such imaging analysis is practically lacking in the literature as 

of yet.  

Limited evidence is available on the possible association of FVIII/VWF levels with the 

etiology of stroke; moreover, reports are often discordant in this respect. Here, we could 

not find any association of FVIII/VWF levels with the subtype of stroke as classified by 

the TOAST criteria.  

While the association between VWF levels and thrombolysis outcome following AMI 

has been studied before, surprisingly, similar data regarding ischemic stroke are much 

more limited. Here we show that a FVIII activity and VWF antigen level above the 

upper limit of the reference interval, as measured immediately after or 24 h post-lysis, 

confer a significant, independent risk for poor functional outcomes at 90 days post-

event.  

Our results indicate that both factors could be useful biomarkers having significant 

prognostic values on long-term outcomes, which might help with patient selection 

requiring alternative treatment post-lysis. At the same time, at least according to results 

of this cohort, pre-treatment FVIII and VWF levels were not indicative of thrombolysis 
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outcomes.  

Although here we propose that our results have prognostic value in the studied patient 

cohort, nevertheless, we consider the relevance of our findings as potentially useful 

descriptive data which might provide basis for future research, while its clinical 

relevance remains to be fully elucidated. In the era of mechanical thrombectomy, the 

management of AIS faces new types of decision-making questions in the clinical 

practice. Useful biomarkers with predictive values regarding poor outcomes might be 

incorporated into algorythms designed to select candidates for alternative approaches 

rather than rt-PA alone, e.g. mechanical thrombectomy or other pharmacological 

approaches. Moreover, studies on VWF in particular might prove even more useful in 

the future, as preclinical and clinical studies on inhibitors of VWF are promising and 

show a safe antithrombotic potential. When used in combination with t-PA, VWF 

antagonists were able to prevent ongoing microvascular thrombus formation reducing 

stroke progression. These findings are particularly interesting in the light of our 

observations showing that VWF median and IQR values were constantly above the 

upper limit of the reference interval in the studied AIS population. Although drugs that 

target the inhibition of the action of VWF have not yet reached approval for the market, 

studies on FVIII/VWF levels during stroke and thrombolysis might provide useful 

descriptive data to understand the pathophysiology relevant to the potential clinical 

application of these inhibitors in humans in the future. 

Limitations 

Our study has limitations. The sample size is limited, but in the light of other studies on 

AIS patients treated by thrombolysis it is considered representative. Due to the limited 

number of patients with SICH and with poor outcomes in this cohort, despite the 

significant associations found, results presented here need to be verified by larger 

studies. We did not investigate AIS patients who were not suitable for rt-PA therapy. In 

theory, measuring FVIII/VWF levels of patients receiving and not receiving rt-PA and 

comparing the results with outcomes might be useful. However, due to the important 

baseline differences between the two groups (e.g. the group not receiving rt-PA might be 

highly heterogeneous regarding time window from symptom onset, baseline coagulation 

screening tests, effective anticoagulation, age, etc.) which may significantly affect the 

results, such comparison might fail to support relevant conclusions.  

The lack of advanced neuro-imaging (e.g. perfusion and collateral circulation imaging) 
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limits the application of this study.  

Finally, as the study was designed to find potential biomarkers with predictive values 

for long-term outcomes following thrombolysis, we did not perform any functional 

characterization studies on the plasmin-mediated effect of FVIII and VWF proteins. In 

case of FVIII activity, we assumed based on previous studies, that the reduction in 

activity levels as detected immediately after thrombolysis is due to plasmin-mediated 

degradation and did not perform any biochemical tests to prove this hypothesis. In case 

of VWF, functional activity tests, including ristocetin induced activity tests, collagen-

binding assay, multimer testing, etc. were not measured in the patient population. Future 

studies are required to elucidate whether the qualitative changes of both proteins 

following stroke and thrombolysis would have any pathophysiological relevance and 

prognostic value.  

Conclusion 

Here we report the changes in FVIII activity levels and VWF antigen levels during the 

course of thrombolysis in a cohort of consecutive AIS patients. Elevated FVIII activity 

and VWF antigen levels immediately after lysis and 24 h post-therapy were shown to 

have independent prognostic values regarding poor functional outcomes at 90 days. 
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Summary of discussion 

Cardiovascular and cerebrovascular diseases are among the leading causes of death in 

developed countries. Although these groups of diseases have been intensively 

researched because of their public health significance, better understanding of their 

pathomechanism and identifying biomarkers, predicting the risk of developing cardio- 

and cerebrovascular diseases and/or having prognostic value, remain a challenge. 

One of the most serious complication of atrial fibrillation is cardiembolic ischemic 

stroke. Cardioembolic stroke occurs in approximately 21-37% cases of ischemic stroke. 

According to literature data, studying VWF in patients with atrial fibrillation may be a 

useful biomarker for cardioembolic ischemic stroke and may complement the currently 

used clinical scales using only anamnestic data. Our studies confirm the presence of 

increased VWF and associated elevated FVIII levels in patients with atrial fibrillation 

compared to non-atrial fibrillation controls. Our results also highlighted that the rate of 

increase is similar in intracardial and peripheral blood. Based on our results, FVIII and 

VWF may be useful biomarkers after the thrombolysis therapy of ischemic stroke, 

predicting post-thrombolysis severity and long-term outcome. Examination of the two 

parameters can help to better understand the causes of therapeutic failure, and the 

knowledge gained can provide a starting point in the future to develop alternative 

therapeutic approaches. At the same time, it should be emphasized that further 

investigation of the changes in the hemostasis parameters we have studied in both atrial 

fibrillation and ischemic stroke, and the results discussed in the thesis need to be studied 

with a larger population. 

 

Summarizing our results, elevated FVIII and VWF levels may indicate thromboembolic 

risk associated with atrial fibrillation, while elevated FVIII and VWF levels after 

thrombolytic therapy in ischemic stroke are independent predictors of adverse long-term 

outcomes.   
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The candidate's own results and new findings 
 

 By examining several markers of the hemostasis and fibrinolytic system in the 

intracardiac and peripheral blood samples of AF patients and non-AF controls, 

FVIII activity and VWF antigen levels were found to be significantly increased 

in AF patients in intracardiac and peripheral blood samples as well. Good 

correlation between FVIII activity and VWF levels suggests that elevated levels 

may be due to endothelial damage. 

 Blood samples obtained from the left atrial appendage were not associated with 

increased prothrombotic differences in AF patients and non-AF controls as 

compared to blood samples obtained from the left atrium.  

 Among the examined hemostasis or fibrinolysis parameters, local (intracardial), 

atrial fibrillation-specific differences were not detected. However, local 

(intracardial) non-atrial fibrillation-specific differences were observed in case of 

several parameters. We found that TAT complex, FM, PAP complex, D-dimer 

levels were significantly higher in the left atrium blood samples in both AF and 

non-AF groups. The elevated levels of these parameters during catheterisation 

indicated non-atrial fibrillation-specific transient thrombotic risk in both patient 

cohorts. 

 By investigating blood samples of patients undergoing intravenous thrombolytic 

therapy following acute ischemic stroke prior to thrombolysis, immediately after 

thrombolysis and 24 hours after thrombolysis, we established that the VWF 

antigen level medians and the lower limit of the interquartile range were above 

the reference range in the tested patient cohort. The median FVIII activity prior 

to thrombolysis also exceeded the upper limit of the reference range but showed 

a significant reduction immediately after thrombolysis and increased again 24 h 

after thrombolysis. 

 We observed that VWF antigen levels were significantly higher in patients with 

more severe stroke (NIHSS> 16 and NIHSS 6-16) as compared to patients with 

mild stroke (NIHSS <6) in blood samples taken prior to thrombolysis. In 

patients with more severe stroke, VWF antigen levels gradually and significantly 

increased after thrombolysis. Elevated VWF antigen levels as observed 24 hours 
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after thrombolysis showed significant correlation with the occurrence of 

symptomatic intracranial bleeding in the studied population. 

 The relationship between more severe acute ischemic stroke and elevated VWF 

antigen levels was also supported by the observation that worse ASPECT score 

in the control radiological examination 24 h post-event was associated with 

significantly higher VWF antigen levels at all sampling occasions. FVIII as 

measured immediately after thrombolysis did not have significant correlation 

with an unfavorable ASPECT score determinated at 24 h post-event, but there 

was a significant correlation between unfavorable ASPECT scores at 24 h post-

event and elevated FVIII activity levels as measured in samples prior to 

thrombolysis and 24 h after thrombolysis. 

 We observed good correlation between FVIII activity and VWF antigen levels 

(r=0.748, p <0.001) in blood samples prior to thrombolysis. However, there was 

no significant correlation immediately after thrombolysis, which is surmized to 

be due to plasmin-mediated FVIII degradation. 

 Using a multivariate logistic regression model, we demonstrated that elevated 

FVIII and VWF antigen levels detected immediately after and 24 hours after 

thrombolysis were independent risk factors of unfavorable long-term functional 

outcomes (mRS 90 days later thrombolysis ≥3) (immediately after thrombolysis 

FVIII: OR: 7.1, 95% CI: 1.8-21.7, p= 0.003, 24 hours after lysis: FVIII OR: 4.7, 

95% CI: 1.4-15.4, p= 0.011, VWF: OR: 19.0, 95% CI: 1.9-187.0, p= 0.012). 

 

  



 46 

Authors contribution 
 

Intracardiac Hemostasis and Fibrinolysis Parameters in Patients with Atrial 

Fibrillation. 

 

Csiba L, Csanádi Z, Muszbek L, Bereczky Z and Bagoly Z designed the study. Tóth 

NK, Csanádi Z, Kiss A, Hajas O, Nagy-Baló E, Kovács KB, and Sarkady F were 

involved in sample collection. Csanádi Z, Kiss A, Hajas O, Nagy-Baló E, Kovács KB 

were involved in clinical data preparation. Tóth NK performed the laboratory 

measurements. Tóth NK and Bagoly Z analyzed the data, designed and performed the 

statistical analysis, and wrote the paper. 

 

 

Elevated Factor VIII and von Willebrand Factor Levels Predict Unfavorable 

Outcome in Stroke Patients Treated with Intravenous Thrombolysis. 

 

Csiba L and Bagoly Z designed the study. Szekely EG, Czuriga-Kovács KR, Sarkady F, 

Berényi E, Lánczi LI, Fekete K, and Fekete I were involved in sample collection and 

source data preparation. Tóth NK and Nagy O performed the laboratory measurements. 

Tóth NK and Bagoly Z analyzed the data, designed and performed the statistical 

analysis, and wrote the paper. 

  



 47 

Summary 
Introduction. Cardiovascular and cerebrovascular diseases, as the leading causes of 

mortality and long-term morbidity are intensively investigated disorders. Still, today the 

understanding of their pathomechanism as well as the identification of biomarkers as 

potential risk factors and/or prognostic markers remain a challenge.  

Patients and methods. We have carried out two observational clinical studies in order to 

investigate the levels of certain hemostasis and fibrinolytic factors, particularly factor 

VIII (FVIII) and von Willebrand factor (VWF) in patients with atrial fibrillation and 

acute ischemic stroke. The first patient group consisted of 24 patients with atrial 

fibrillation and 14 patients with other supraventricular tachycardia (controls) 

undergoing transcatheter radiofrequency ablation. Blood samples were drawn from the 

femoral vein, left atrium and left atrial appendage before the ablation procedure. FVIII 

activity, VWF antigen level, fibrinogen, factor XIII, α2 plasmin inhibitor activity, 

thrombin-antithrombin (TAT) complex, quantitative fibrin monomer (FM), 

plasminogen, plasmin-α2 antiplasmin (PAP) complex, PAI-1 activity, and D-dimer were 

measured from all samples. The other study population included 131 consecutive acute 

ischemic stroke patients who underwent i.v. thrombolysis with recombinant tissue 

plasminogen activator (rt-PA). Blood samples were taken on admission, 1 and 24 h after 

rt-PA administration to measure FVIII activity and VWF antigen levels. Results were 

compared to stroke severity and to short- and long-term clinical outcomes.  

Results. In atrial fibrillation patients, FVIII activity and VWF antigen levels were 

significantly elevated in intracardiac and peripheral blood samples as compared to 

controls. TAT complex, FM, PAP complex and D-dimer levels were significantly 

elevated in the intracardiac samples of both groups, indicating a temporary thrombotic 

risk associated with the catheterization procedure. When investigating ischemic stroke 

patients, significantly elevated VWF levels were detected on admission in case of more 

severe stroke. In a binary backward logistic regression analysis elevated FVIII and 

VWF levels after thrombolysis were independently associated with poor long-term 

functional outcomes (immediately after thrombolysis FVIII: OR:7.1, 95% CI: 1.7-28.4, 

p=0.006; VWF: OR: 6.31, 95% CI: 1.8-21.7, p=0.003). 

Conclusions. Elevated FVIII and VWF levels might predict increased thromboembolic 

risk in atrial fibrillation patients, while in case of ischemic stroke patients, elevated 

FVIII and VWF levels after thrombolysis are independent predictors of poor long-term 

functional outcomes.  
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