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The quantum Einstein gravity is treated by the functional renormalization group method using the
Einstein-Hilbert action. The ultraviolet non-Gaussian fixed point is determined and its corresponding ex-
ponent of the correlation length is calculated for a wide range of regulators. It is shown that the exponent
provides a minimal sensitivity to the parameters of the regulator which correspond to the Litim’s regulator.
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I. INTRODUCTION

The quantum Einstein gravity (QEG) can be a good
candidate to describe the gravitational interactions in the
framework of quantum field theory [1–3]. The action of
the model is integrated out for all the possible paths
of the field variables, whose role is now played by the met-
rics. The Einstein-Hilbert action of QEG contains only the
cosmological and the Newton couplings [4]. The functional
renormalization group (RG) method allows us to perform
the path integration systematically for the degrees of free-
dom, and gives us the scaling behavior of the couplings
starting from the high energy, UV region down to the
low energy IR regime [5–7]. The method provides an
integro-differential equation for the effective action, the
Wetterich equation. Besides QEG the RG technique is
widely used recently in many areas of gravitational issues
starting from black holes [8,9] to cosmological problems
[10,11]. Renormalization group calculations could show
that QEG is asymptotically safe [1,12,13]. This result
can be considered as one of the greatest achievements of
the RG method. Asymptotic safety means that there is a
UV non-Gaussian fixed point (NGFP) in the phase space
of the model with a finite number of relevant cou-
plings [14,15].
The Wetterich equation contains a regulator function to

remove the divergences of the momentum integrals. In the
IR limit the effective action should not depend on the regu-
lator because it is an artificial term that is put by hand into
the action. However, during the solution of the Wetterich
equation we use several approximations and truncations
which may introduce some regulator-dependence. In the
RG method mostly the optimized Litim’s regulator is used
[16,17], especially due to its analytic form. The sensitivity
of the physical quantities on the regulator parameters
should be minimal [18], since the regulator itself is an arti-
ficial element of the RG method and the results should be
independent on it ideally.
There are several types of regulators which are widely

used, e.g., the power law, the exponential and the Litim

ones, which can be get by the limiting cases of the so-called
compactly supported smooth (css) regulator [19,20]. This
regulator provides us with such a wide class of regulators
that contains all the important types of regulator functions
and enables us to investigate the sensitivity of the physical
quantities on a broader set range of regulators and their
parameters.
Using the css regulator, first we calculate the value of the

exponent ν for the 3-dimensional Oð1Þ model. We inves-
tigate how the exponents depend on the css regulator
parameters and search for those parameter regions where
the exponents are practically parameter independent or
have at least a minimal sensitivity of them. Then we cal-
culate the critical exponent ν of the correlation length
and the anomalous dimension η around the fixed points
of QEG. We obtain that η ¼ −2 independently on the reg-
ulators at the UV NGFP, but the value of the other exponent
ν can be arbitrary there. The strong truncation of the action
might cause such a nonuniversal behavior. We also deter-
mine how the exponents scale around the IR fixed point.
The paper is organized as follows. In Sec. II the inves-

tigated Oð1Þ model, the RG method, and the regulators are
introduced and the critical exponent ν is calculated. In
Sec. III the UV and IR critical behavior is discussed for
the QEG. Finally, in Sec. IV the conclusions are drawn up.

II. 3-DIMENSIONAL Oð1Þ MODEL

The Wetterich equation for the effective average action
Γk is [5]

∂tΓk ¼
1

2
Tr

∂tRk

Γ00
k þ Rk

(1)

with the “ RG time” t ¼ ln k, Furthermore, the prime is
the differentiation with respect to the field variable and
the trace Tr denotes the integration over all momenta
and the summation over the internal indices. The function
Rk plays the role of the IR regulator.
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As it is well known, the 3-dimensionalOð1Þmodel plays
the role of the testing ground for any new improvement of
renormalization. Therefore, in order to test the scaling criti-
cality first we treat this model around the Wilson-Fisher
(WF) fixed point and the corresponding critical exponent
ν. We start with the effective potential

~V ¼
XN

i¼1

~gi
ð2iÞ!ϕ

2i; (2)

with the dimensionless couplings ~gi and restrict ourselves
to the truncations N ¼ 2 and N ¼ 4. In local potential
approximation the evolution equations for the first two cou-
plings read as

~g
:

1 ¼ −2~g1 þ ~g2Φ̄2
3=2ð~g1Þ; ~g

:

2 ¼ −~g2 þ 6~g22Φ̄
3
3=2ð~g1Þ;

(3)

where the threshold function is introduced according to

Φ̄p
nðωÞ ¼ 1

ð4πÞnΓðnÞ
Z

∞

0

dyynþ1
r0

ðyð1þ rÞ þ ωÞp ; (4)

where y ¼ p2=k2 and r ¼ rðyÞ is the dimensionless regu-
lator r ¼ R=p2. The dimensionless css regulator has the
form

rcss ¼
s1

exp½s1yb=ð1 − s2ybÞ� − 1
θð1 − s2ybÞ; (5)

where b ≥ 1 and s1, s2 are positive parameters. Although
this regulator cannot provide an analytic form of the evo-
lution equations, it gives a broader range of regulators. The
limiting cases of the css regulator provide us the following
commonly used regulator functions

lim
s1→0

rcss ¼
�
1

yb
− s2

�
θð1 − s2ybÞ; lim

s1→0;s2→0
rcss ¼

1

yb
;

lim
s2→0

rcss ¼
s1

exp½s1yb� − 1
; (6)

where the first limit gives the Litim’s optimized regulator
when s2 ¼ 1, the second gives the power-law regulator, and
the third gives the exponential one, if s1 ¼ 1. It provides us
with a possibility of simultaneous optimization of some
physical quantities among the Litim’s, the power-law
and the exponential regulators, which can be continuously
deformed from one to the other by only two parameters s1
and s2.
The exponent at the WF fixed point is well known, and

the optimization of the RG regulator was originally per-
formed for the WF fixed point giving the Litim’s regulator.
Furthermore, the value of ν was calculated for every avail-
able type of regulator in the literature. However, by using

the css regulator we can get an optimized exponent among
fundamental regulators which was not investigated so far,
so now we look for the extremum of ν on the parameter
space s1, s2, and b. We considered the RG evolution for
2 and 4 couplings. The truncation of the scalar potential
to only two terms in the Taylor expansion is very strong,
but we also have only two couplings in QEG with the same
level of truncation. The values of the exponents are plotted
in Fig. 1.
For 2 couplings we obtained that we have a maximum of

the exponent ν at b ¼ s2 ¼ 1 and s1 → 0 which corre-
sponds to the Litim’s regulator in Eq. (6). There the sensi-
tivity of ν on the regulator parameters is minimal.
Fortunately even the truncation with N ¼ 2 can provide
us a real physical exponent although it is smaller than
the proper value of ν. We repeated the calculations for
N ¼ 4 couplings. We got another extremum but now it
is a minimum and it corresponds to the Litim’s regulator,
too. Further increase of the number of the couplings and the
inclusion of the evolving anomalous dimension η may give
the Litim’s regulator, too.

III. QUANTUM EINSTEIN GRAVITY

The Einstein-Hilbert effective action is

Γk ¼
1

16πGk

Z
ddx

ffiffiffi
g

p ð−Rþ 2ΛkÞ; (7)

with the dimensionful Newton constant Gk and the cosmo-
logical constant Λk. The RG equations are formulated
by the dimensionless couplings, i.e., λ ¼ Λkk−2 and
g ¼ Gkkd−2. Since the determinant of the metric occurs
only in Eq. (7) and nowhere does it occur anymore in
our paper, the usage of g for the Newton coupling below
shall not be confusing. The action contains the first two
terms in the Taylor expansion of the curvature R. If one
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FIG. 1. The exponent ν is calculated for 2 and 4 couplings and
shown by the curves at the bottom and at the top, respectively.
The Litim’s regulator gives the extremal exponent in both cases
at the point of the crossing of the grey lines.

S. NAGY et al. PHYSICAL REVIEW D 88, 116010 (2013)

116010-2



inserts Eq. (7) into the Wetterich equation then one obtains
the evolution equations for the couplings, which are derived
and given in [4] and have the form

λ
:
¼ 2ð2 − ηÞλþ 1

2
ð4πÞ1−d=2g

× ½2dðdþ 1ÞΦ1
d=2ð−2λÞ − 8dΦ1

d=2ð0Þ�
− dðdþ 1Þη ~Φ1

d=2ð−2λÞ�;
g
: ¼ ðd − 2þ ηÞg;

(8)

with the anomalous dimension

η ¼ gB1ðλÞ
1 − gB2ðλÞ

: (9)

The functions B1ðλÞ and B2ðλÞ are

B1ðλÞ ¼
1

3
ð4πÞ1−d=2½dðdþ 1ÞΦ1

d=2−1ð−2λÞ
− 6dðd − 1ÞΦ2

d=2ð−2λÞ
− 4dΦ1

d=2−1ð0Þ24Φ2
d=2ð0Þ�;

B2ðλÞ ¼ −
1

6
ð4πÞ1−d=2½dðdþ 1Þ ~Φ1

d=2−1ð−2λÞ
− 6dðd − 1Þ ~Φ2

d=2ð−2λÞ�;

(10)

with the threshold functions

Φp
nðωÞ ¼ 1

ΓðnÞ
Z

∞

0

dyyn
r − yr0

ðyð1þ rÞ þ ωÞp ;

~Φp
nðωÞ ¼

1

ΓðnÞ
Z

∞

0

dyyn
r

ðyð1þ rÞ þ ωÞp :
(11)

A. Ultraviolet criticality

The phase structure of QEG is quite involved [4]. In the
positive Newton coupling region the model has two phases,
as is shown in Fig. 2.
The phase space contains 3 fixed points. The UV NGFP

is said to be UVattractive, however it repels the trajectories
from the viewpoint of the RG flow. The trajectories start
there and flow toward the hyperbolic Gaussian fixed point
(GFP). The trajectories with positive λ in the IR limit
constitute the weak coupling phase of the model which con-
tains an attractive IR fixed point [21–23]. This phase gives
degenerate geometry as hgμνi ¼ 0. The cosmological con-
stant appears formally as the coupling −~g1 in the Oð1Þ
model thus the weak coupling phase with positive λ shows
similarity to the (symmetry-) broken phase of the Oð1Þ
model [24]. The other trajectories belong to the strong
coupling phase, and it gives a smooth geometry, i.e.,

hgμνi ∼ δμν and a negative curvature R ¼ 4Λ. This corre-
sponds to the symmetric phase of the Oð1Þ model. One
can linearize the RG equations around the fixed points.
In the case of the UV NGFP the eigenvalues of the corre-
sponding stability matrix can be written as

θUV1;2 ¼ θ0 � iθ00; (12)

where the real part of the exponent can be related to
the critical exponent ν of the correlation length, i.e.,
ν ¼ 1=θ0. We calculated the position of the fixed point
and the corresponding exponent in QEG with the
Einstein-Hilbert action in d ¼ 4. In Fig. 3 we plotted
how the reciprocal of the exponent 1=ν depends on the
parameters of the css regulator. The figure demonstrates
the appearing limiting regulators in Eq. (6).
We look for the extremum of 1=ν as the function of s1,

s2, and b. The increase of the parameters s1 and s2 gives
monotonically increasing exponents, for large values they
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FIG. 2. The phase structure of QEG is shown for css regulator
with the parameters s1 ¼ s2 ¼ b ¼ 1. The grey points denote the
critical points. The thick line represents the separatrix.
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FIG. 3. The reciprocal of the exponent 1=ν is calculated for
various parameters of the css regulator, with b ¼ 3. The value
of 1=ν at the corner s1 ¼ s2 ¼ 0 corresponds to Power-law regu-
lator result, the corner s1 ¼ 0, s2 ¼ 1 gives the Litim’s regulator
result, and the corner s1 ¼ 1, s2 ¼ 0 results in the Exponential
regulator value.
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logarithmically grow. The limit of the power-law regulator
s1 ¼ s2 ¼ 0 gives the minimal value for 1=ν, when b ¼ 3.
However, the exponent grows with increasing b, therefore
one might expect another local extremum at b ¼ 1. We cal-
culated 1=ν at the Litim’s limit (s1 → 0) for different values
of s2 as shown in Fig. 4 for b ¼ 1.
Although the optimization of the exponent ν was per-

formed earlier [25,26], the figure shows that the css regu-
lator can mimic such a great set of regulators (including the
Litim’s, the power-law, and the exponential ones) that it can
generate arbitrary values of 1=ν and enables us to perform
the optimization program among these fundamental regu-
lators simultaneously. Renormalization group calculations
give ν ≈ 0.4 − 0.67 [25,27,28,29–31] and the UVexponent
is ν ¼ 1=3 according to lattice analysis [32]. By a proper
parameter choice of the css regulator any of these values
can be easily obtained and can even be exceeded up to prac-
tically ∞. For example, one can tune the regulator param-
eters to get the lattice result of the exponent, e.g., according
to Fig. 4 the choice b ¼ 1, s1 ¼ 251, and s2 ¼ 1000 does
the trick. However the exponent shows high sensitivity on
the parameters, which implies that it cannot be considered
as the physical exponent, since we usually look for the
parameter regime where the physical quantities show min-
imal sensitivity on the regulator [18,33]. We cannot find
any absolute extremum in the parameter space of b, s1,
and s2. However we have an inflection point at b ¼ 1,
s1 → 0, and s2 ≈ 1=2, where we have minimal sensitivity
to the regulator parameters. It corresponds to a rescaled
Litim’s regulator of the form

ropt ¼
�
1

y
− 1

2

�
θð1 − y=2Þ: (13)

The value of the exponent there should be considered as the
physical exponent, that is ν ≈ 0.679. Other RG equations
provide different values for ν even in the framework of

the Einstein-Hilbert action [25,34], however in this model
if we consider this large set of regulator functions the prin-
ciple of minimal sensitivity gives this result. The power-law
limit of the css regulator does not exist for small b in the
case of d ¼ 4 because the RG equation gives UV divergent
integrals, however the finite small value of s2 serves as a
UV cutoff of the loop integral. As s2 gets smaller and
smaller the value of 1=ν decreases quickly and tends to zero
and negative values. When 1=ν ¼ 0 then the eigenvalue θ0
in Eq. (12) is purely imaginary, then the UV NGFP is not
attractive anymore and the trajectories evolve toward a limit
cycle as was obtained in [35,36]. Further decrease of s2
changes the sign of θ0 to negative making the UV NGFP
a UV repulsive one.
We also calculated the position of the fixed point in the

phase space. If s1 → ∞ the values of λ� and g� become s2
independent and scale according to λ� ∼ s−0.891 and g� ∼
s0.891 implying that the product λ�g� tends to a constant,
lims1→∞λ

�g� ≈ 0.133. The regulator in Eq. (13) gives
λ�g� ¼ 0.136, for which the value is practically the same.
In the limit s1 → ∞ the UV NGFP disappears, since
g� → ∞ making the QEG nonrenormalizable.
There is a crossover (CO) fixed point in QEG, namely

the hyperbolic GFP. However its critical behavior is trivial
since the eigenvalues corresponding to the linearized RG
flows equal the negative of the canonical dimension of
the couplings, and the inclusion of further couplings or tak-
ing into account corrections from the gradient expansion
beyond the local potential approximations do not change
their values. The reciprocal of the negative exponent
s1 ¼ −2 provides ν ¼ 1=2 in the crossover regime.

B. Infrared criticality

In the broken phase of field theoretical models we usu-
ally find an IR fixed point. This is the case in QEG, too
[21–23]. We calculated the exponent ν by the dynamically
induced correlation [23,37,38] around the IR fixed point.
The correlation length scales as

ξ ∼ ðκ − κ�Þ−ν; (14)

with the exponent ν. Furthermore κ ¼ gλ, and κ� ¼ g�λ�
equals the value which is taken at the fixed point. The value
of κ is calculated from those values of the couplings where
the RG evolutions stop. In the IR limit κ� ¼ 0. In Fig. 5 the
scaling of ξ is shown. We obtained that the exponent ν
around the IR fixed point equals that value, which is calcu-
lated around the GFP and it is ν ¼ 1=2.
We also determined the scaling of the anomalous dimen-

sion η, and the results are plotted in Fig. 6. From the evo-
lution of the Newton constant g it is trivial that in the UV
NGFP we have η ¼ −2. This corresponds to marginal scal-
ing of η in Fig. 6. Then, as the flow approaches the GFP it
tends to zero as a power-law function η ∼ k2, where the
exponent 2 is universal. Going further, the η starts to
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diverge as ðk − kcÞ−α, where α is around 3=2 and shows a
slight parameter dependence, e.g., we have α ¼ 7=4 for the
Litim’s regulator. The value kc denotes the critical scale
where the evolution stops due to the appearing singularity
in the threshold functions in Eq. (11). For example, the sin-
gularity appears there at λ� ¼ 1=2 in the case of the Litim’s
regulator. However the β functions for the couplings in
Eq. (8) are finite at the singular point. The exponents
are summarized in Table I.

IV. SUMMARY

By using the functional RG method the critical exponent
ν of the correlation length and the anomalous dimension η
are calculated for the QEG with the css regulator. We con-
sidered the Einstein-Hilbert action with the Newton

constant g and the cosmological constant λ. The value of
ν is calculated around the UV NGFP, the GFP, and the
IR fixed point. We obtained that ν can be arbitrary around
the UV NGFP. There can be several reasons for this result.
On the one hand although the regulator is a masslike term,
it possesses a complicated momentum dependence which
might introduce nonlocal interactions into the action.
Furthermore, the deep IR physics cannot be altered by
the regulator, but the UV limit can show strong regulator
dependence. On the other hand, the Einstein-Hilbert action
contains only two couplings. The inclusion of further cou-
plings in the Taylor expansion in the curvature [39–41] may
restrict the value of ν to a certain interval. Several possible
extensions [42,43] can also give some restriction to the
value of ν. We showed that the value of ν has a minimal
sensitivity on the regulator parameters around a rescaled
Litim’s regulator, and there we have ν ¼ 0.679.
In QEG the CO scaling around the GFP gives ν ¼ 1=2

independently of the approximations that were used. We
demonstrated that the CO scaling in the 3-dimensional
Oð1Þ model can give a wide range of the value of ν, how-
ever an extremum appears in the parameter space, which
also corresponds to the Litim’s regulator. Around the IR
fixed point we obtained that ν ¼ 1=2, and it is independent
of the regulator parameters. The scaling came from the
dynamically induced correlation near the singularity of
the RG flows. The value of ν is inherited from the hyper-
bolic CO fixed point, whose role is now played by the GFP
as in the case of the d-dimensional OðNÞ model [37].
We also showed that the anomalous dimension takes the

value η ¼ −2 at the UV NGFP. It scales in an irrelevant
manner by a universal exponent toward the evolution as
the trajectory approaches the GFP in the CO regime. As
the flow reaches the IR region the scaling turns to a relevant
one with such an exponent that shows moderate depend-
ence on the regulator parameters.
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TABLE I. The summary of the critical exponent ν and the
anomalous dimensions η at the various fixed points of QEG.

Exponent UV G IR

ν 0.679 0.5 0.5
η −2 k2 ðk − kcÞ−3=2
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