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Abstract. Via a Cole–Hopf transformation, the multicomponent linear heat hierarchy leads
to a multicomponent Burgers hierarchy. We show in particular that any solution of the latter
also solves a corresponding multicomponent (potential) KP hierarchy. A generalization of
the Cole–Hopf transformation leads to a more general relation between the multicomponent
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1 Introduction

The well-known Cole–Hopf transformation φ = ψxψ
−1 translates the nonlinear Burgers equation

into the linear heat equation [1, 2, 3]. This extends to a corresponding relation between the
Burgers hierarchy and the linear heat hierarchy, and moreover to their matrix generalizations.
The Cole–Hopf transformation also generates solutions of the KP hierarchy from (invertible)
solutions of the linear heat hierarchy [4, 5, 6], and this extends to the corresponding matrix
hierarchies [7, 8, 9]. There is also a generalization of the Cole–Hopf transformation that produces
a solution of the (scalar or matrix) KP hierarchy from two solutions of the matrix linear heat
hierarchy, connected by an additional relation [7, 8]. Furthermore, this includes a construction
of (matrix) KP solutions from a matrix linear system (see also [10, 11]), which may be regarded
as a finite-dimensional version of the Sato theory [12, 13]. In this work we extend these results
to the multicomponent case. Admittedly, this is not a very difficult task, on the basis of our
previous results [7, 11]. We also take this opportunity, however, to present these results in
a concise form and to add some relevant remarks and examples.

The usual multicomponent KP (mcKP) hierarchy contains subhierarchies that generalize
the matrix KP hierarchy by modifying it with some constant matrix B different from the
identity matrix. We are particularly interested in such matrix hierarchies different from the
ordinary matrix KP hierarchy. The Davey–Stewartson equation [14, 15], a two-dimensional
nonlinear Schrödinger equation that appeared as a shallow-water limit of the Benney–Roskes

?This paper is a contribution to the Proceedings of the XVIIth International Colloquium on Integrable Sys-
tems and Quantum Symmetries (June 19–22, 2008, Prague, Czech Republic). The full collection is available at
http://www.emis.de/journals/SIGMA/ISQS2008.html
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equation [16, 17], emerges from such a modified matrix hierarchy (see Section 3). It is of course
well-known to arise from the two-component KP hierarchy.

Section 2 recalls the Cole–Hopf transformation for a multicomponent Burgers (mcBurgers)
hierarchy and Section 3 reveals relations between the mcBurgers and the mcKP hierarchy. Sec-
tion 4 presents the abovementioned kind of generalization of the Cole–Hopf transformation which
determines solutions of the mcKP hierarchy. From this derives a fairly simple method to con-
struct mcKP solutions. This is the subject of Section 5, which also presents some examples.
All this is closely related to a multicomponent version of a matrix Riccati hierarchy, as briefly
explained in Section 6. Section 7 contains some conclusions.

In the following, let A be an associative (and typically noncommutative) algebra over the
complex (or real) numbers, with identity element I and supplied with a structure that allows
to define derivatives with respect to real variables. Let B be a finite set of mutually commuting
elements ofA. Although this assumption is sufficient to establish the results in this work, further
assumptions should be placed on B in particular in order to diminish redundancy, see the remark
at the end of Section 2. With each B ∈ B we associate a sequence of (real or complex) variables
tB = (tB,1, . . . , tB,n, . . .). Furthermore, for a function f of {tB}B∈B we define a Miwa shift with
respect to B ∈ B by f[λ]B (. . . , tB, . . .) = f(. . . , tB + [λ], . . .), where [λ] = (λ, λ/2, λ/3, . . .) and λ
is an indeterminate. ftn denotes the partial derivative of f with respect to the variable tn.

2 Cole–Hopf transformation
for a multicomponent Burgers hierarchy

Let us consider the multicomponent linear heat hierarchy

ψtB,n = Bn∂n(ψ) ∀B ∈ B, n = 1, 2, . . . , (2.1)

where ∂ = ∂x is the operator of partial differentiation with respect to a variable x, and ψ has
values in A. Since ψtB,1 = Bψx, this implies the ordinary linear heat hierarchy ψtB,n = ∂n

tB,1
(ψ).

Any two flows (2.1) commute as a consequence of our assumptions for B (the elements do not
depend on {tB}B∈B and commute with each other). A functional representation1 of (2.1) is
given by

λ−1(ψ − ψ−[λ]B ) = Bψx ∀B ∈ B. (2.2)

Proposition 1. If ψ is an invertible solution of the above multicomponent linear heat hierarchy,
then

φ = ψxψ
−1 (2.3)

solves the multicomponent Burgers (mcBurgers) hierarchy associated with B, given by the func-
tional representation

ΩB(φ, λ) = 0 ∀B ∈ B, (2.4)

where

ΩB(φ, λ) := λ−1(φ− φ−[λ]B )− (Bφ− φ−[λ]BB)φ−Bφx. (2.5)

1We use this (not quite satisfactory) term for an equation that generates a sequence of equations by expansion
in powers of an indeterminate.
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Proof. We have to consider the following system,

ψx = φψ, ψ−[λ]B = (I − λBφ)ψ ∀B ∈ B.

The integrability condition (ψx)−[λ]B = (ψ−[λ]B )x yields (2.4). The further integrability condi-
tion (ψ−[λ]B1

)−[µ]B2
= (ψ−[µ]B2

)−[λ]B1
is

B2

(
λ−1(φ− φ−[λ]B1

) + φ−[λ]B1
B1φ

)
= B1

(
µ−1(φ− φ−[µ]B2

) + φ−[µ]B2
B2φ

)
,

which is satisfied as a consequence of (2.4) and [B1, B2] = 0. �

(2.3) is a Cole–Hopf transformation. The first equation that results from (2.4) is

φtB,1 = Bφx + [B,φ]φ,

which has been called C-integrable N -wave equation in [9]. If B = I, this reduces to tI,1 = x.
But it is a nontrivial nonlinear equation if φ does not commute with B. The next equation that
results from (2.4) is the (noncommutative) Burgers equation

φtB,2 = φtB,1tB,1 + 2φtB,1Bφ.

Remark 1. In order to avoid redundancy and to maximally extend the hierarchies, further
conditions have to be imposed on B. In particular, the elements of B should be linearly indepen-
dent, since linear combinations correspond to linear combinations of hierarchy equations. But
since products of elements of B also generate (independent or redundant) commuting flows, the
problem is more subtle. If the algebra is semisimple, it admits a maximal set of commuting mu-
tually annihilating idempotents Ea, a = 1, . . . , N , hence EaEb = δa,bEa for all a, b = 1, . . . , N .
Then B = {Ea}N

k=1 is an optimal choice. In fact, in the following we do not really address those
cases of (non-semisimple) algebras where such a choice does not exist. Rather it turns out that
some more flexibility in the choice of B can be used to obtain certain integrable systems within
this framework in a more direct way, see Section 3.

3 Multicomponent KP and relations with the multicomponent
Burgers hierarchy

For B ∈ B let

EB(λ) := I − λ (ωB(λ) +B∂) .

The “discrete” zero curvature condition

EB1(λ)−[µ]B2
EB2(µ) = EB2(µ)−[λ]B1

EB1(λ) (3.1)

then leads to the two equations

λ−1(ωB2(µ)− ωB2(µ)−[λ]B1
) + ωB2(µ)−[λ]B1

ωB1(λ) +B2ωB1(λ)x

= µ−1(ωB1(λ)− ωB1(λ)−[µ]B2
) + ωB1(λ)−[µ]B2

ωB2(µ) +B1ωB2(µ)x

and

B2ωB1(λ)− ωB1(λ)−[µ]B2
B2 = B1ωB2(µ)− ωB2(µ)−[λ]B1

B1.

The last equation is solved by

ωB(λ) = Bφ− φ−[λ]BB,
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and the first equation can then be written in terms of (2.5) as

B2ΩB1(φ, λ)− ΩB1(φ, λ)−[µ]B2
B2 = B1ΩB2(φ, µ)− ΩB2(φ, µ)−[λ]B1

B1 ∀B1, B2∈B. (3.2)

We take this as our defining equations of the (more precisely, potential) multicomponent KP
(mcKP) hierarchy associated with B.2

Remark 2. Choosing B1 = B2 = B in (3.2) and summing the resulting equation three times
with cyclically permuted indeterminates, leads to

3∑
i,j,k=1

εijk
(
λ−1

i (φ− φ−[λi]B ) + φ−[λi]BBφ
)
−[λj ]B

B = 0,

which is a special case of the functional form of the mcKP hierarchy in [27].

Let us take a closer look at (3.2) with B1 = B2 = B. Its λ-independent part is

BΩB(φ, 0)− ΩB(φ, 0)−[µ]BB = [B,ΩB(φ, µ)],

where ΩB(φ, 0) = φtB,1 − [B,φ]φ−Bφx. To first order in µ this gives

BφtB,1xB − 1
2{B,φtB,1tB,1}+ 1

2 [B,φtB,2 ] = BφtB,1 [B,φ]− [B,φ]φtB,1B. (3.3)

(3.2) is the integrability condition of

ΩB(φ, λ) = Bθ − θ−[λ]BB ∀B ∈ B, (3.4)

with a new dependent variable θ. (3.4) represents the mcKP hierarchy in terms of two dependent
variables. By comparison with (2.4), this has the form of an inhomogeneous mcBurgers hierarchy.
The following is an immediate consequence3.

Proposition 2. Any solution of the mcBurgers hierarchy also solves the mcKP hierarchy.

Proof. (3.4) becomes (2.4) if θ = 0. �

The representation (3.4) of the mcKP hierarchy has the advantage that each equation only
involves a single element from the set B. To order λ0, (3.4) yields

φtB,1 −Bφx − [B,φ]φ = [B, θ]. (3.5)

If B = I, then (3.5) reduces to φtB,1 = φx. Otherwise this is a non-trivial nonlinear equation.
Subtracting (3.5) from (3.4), leads to

λ−1(φ− φ−[λ]B )− φtB,1 − (φ− φ−[λ]B )Bφ = (θ − θ−[λ]B )B. (3.6)

The two equations (3.5) and (3.6) are equivalent to (3.4). (3.6) does not involve derivatives with
respect to x. For fixed B ∈ B, it represents the KP hierarchy in A [7], with product modified
by B.

2See also e.g. [18, 19, 20, 21, 22, 6, 23, 24, 25, 26, 27] for different formulations of such a multicomponent KP
hierarchy. We should also mention that the conditions imposed on the set B can be relaxed while keeping the
hierarchy property, see [26] for example.

3It was first noted in [4] that any solution of the first two equations of the (scalar) Burgers hierarchy also solves
the (scalar potential) KP equation. In [28, 29] the (first two) Burgers hierarchy equations have been recovered
via a symmetry constraint from the KP hierarchy and its linear system.
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Proposition 3. For any B ∈ B, as a consequence of the mcKP hierarchy (3.4), Bφ and also
φB solves the ordinary (noncommutative) KP hierarchy.

Proof. This is an immediate consequence of (3.6). �

To first order in λ−1, (3.6) yields

1
2(φtB,2 − φtB,1tB,1)− φtB,1Bφ = θtB,1B.

Differentiating (3.5) with respect to tB,1, and multiplying it by B from the right, we can use
the last equation to eliminate θ. In this way we recover (3.3). As shown in Example 2 below,
(3.3) generalizes the Davey–Stewartson (DS) equation [16, 14, 15, 17]. Eliminating θ from (3.6)
by use of (3.5) thus leads to a (generalized) DS hierarchy.

Example 1. Let B = σ, where σ2 = I. Decomposing φ as

φ = D + U, where D := 1
2(φ+ σφσ), U := 1

2(φ− σφσ),

(3.3) splits into the two equations4

Dt1σ −Dx − 2U2 = 0, (3.7)
Ut2σ + Uxt1 + 2{U,Dt1} = 0, (3.8)

where we write t1, t2 instead of tB,1 and tB,2. Let now A be the algebra of 2×2 matrices over C,
and σ = diag(1,−1). Then D and U are diagonal and off-diagonal parts of φ, respectively.
Writing

U =
(

0 u
v 0

)
, hence u := φ1,2, v := φ2,1, (3.9)

and introducing

s := tr(φ) = φ1,1 + φ2,2, r := φ1,1 − φ2,2,

we obtain the system

ut2 − uxt1 − 2ust1 = 0, vt2 + vxt1 + 2vst1 = 0, (3.10)

and st1 = rx, sx = rt1 − 4uv. The integrability conditions of the latter two equations are

st1t1 − sxx = 4(uv)x, rt1t1 − rxx = 4(uv)t1 . (3.11)

The two equations (3.10) together with the first of (3.11) constitute a fairly simple system
of three nonlinear coupled equations, where all variables can be taken to be real. Allowing
complex dependent and independent variables, after a complex transformation the system for
the dependent variables u, v, s can be further reduced to the DS equation, see the next example.
Of course, the above system (3.10) and (3.11) can also be derived from the usual two-component
KP hierarchy (see e.g. [27]), and the transformation to DS is well-known.

Setting v = 0, we obtain from (3.10) and (3.11) the following linear equations5,

ut2 − uxt1 − 2ϕu = 0, ϕt1t1 − ϕxx = 0, (3.12)

where ϕ := st1 = tr(φ)t1 . This is probably the simplest system that possesses dromion solutions,
as observed in Example 3 in Section 5.

4A constant (with respect to t1) of integration has been set to zero in order to obtain (3.7). The latter equation
can be obtained more directly as the diagonal part of (3.5).

5If u does not depend on t2, then the first equation is part of a Lax pair for the Nizhnik–Novikov–Veselov
equation.
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Example 2. We continue with the previous example and perform a transformation to the DS
equation by first allowing the dependent variables to live in a noncommutative algebra. In this
way we obtain a certain noncommutative generalization of the DS equation (see also [30, 31] for
matrix DS versions). In terms of

F = Dt1 + βU2,

with β ∈ C, (3.7) becomes

Ft1σ − Fx = −β(U2)x + (U2)t1(2 + βσ).

Differentiating this with respect to x and with respect to t1, respectively, and eliminating mixed
derivatives of F from the resulting two equations, yields

Ft1t1 − Fxx = −β(U2)xx + 2(U2)xt1 + (U2)t1t1(2σ + β). (3.13)

Furthermore, (3.8) takes the form

Ut2σ + Uxt1 = −2{U,F}+ 4βU3. (3.14)

Let now A be the algebra of 2×2 matrices over some unital associative algebra with unit denoted
by 1, and σ = diag(1,−1). Using (3.9) and writing

F = diag(f, g),

(3.13) and (3.14) result in the following equations,

ut2 − uxt1 = 2(fu+ ug)− 4βuvu,
vt2 + vxt1 = −2(gv + vf) + 4βvuv,
ft1t1 − fxx = −β(uv)xx + 2(uv)xt1 + (2 + β)(uv)t1t1 ,

gt1t1 − gxx = −β(vu)xx + 2(vu)xt1 − (2− β)(vu)t1t1 .

In terms of the new variables

y =
1 + i
κ
√

2
(x+ i t1), z =

1− i√
2

(x− i t1), (3.15)

with a constant κ 6= 0, and with the choice β = i , this becomes

ut2 + uzz +
1
κ2
uyy = 2(fu+ ug)− 4iuvu,

−vt2 + vzz +
1
κ2
vyy = 2(gv + vf) + 4i vuv,

fzz −
1
κ2
fyy = (1 + 2i )(uv)zz −

1
κ2

(uv)yy −
2i
κ

(uv)yz,

gzz −
1
κ2
gyy = (−1 + 2i )(vu)zz +

1
κ2

(vu)yy +
2i
κ

(vu)yz. (3.16)

If the dependent variables take their values in a commutative algebra, then we obtain

ut2 + uzz +
1
κ2
uyy = 2ρu− 4iu2v,

−vt2 + vzz +
1
κ2
vyy = 2ρv + 4i v2u,

ρzz −
1
κ2
ρyy = 4i (uv)zz,
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where

ρ := f + g = ϕ+ 2iuv (3.17)

(with ϕ = tr(φ)t1). Setting t2 = −i t and

v = i εū with ε = ±1

and the complex conjugate ū of u, one recovers the DS system

iut + uzz +
1
κ2
uyy = 2ρu+ 4ε|u|2u, ρzz −

1
κ2
ρyy = −4ε(|u|2)zz, (3.18)

where now y, z, t, κ2, ρ are taken to be real. Clearly, this system is more quickly obtained
from (3.10) and (3.11) by application of the transformation of independent variables given
by (3.15) and t2 = −i t, and the transformation (3.17) of dependent variables. But on our way
we obtained the system (3.16) which (with t2 = −i t) may be of interest as a noncommutative
version of the DS equation (see [30, 31] for alternatives).

We conclude that the DS equation (and a corresponding hierarchy) is obtained from a matrix
KP hierarchy, but the latter has to be generalized by introduction of a matrix B different from
the unit matrix. Of course, this hierarchy is embedded in the usual two-component KP hierarchy.

3.1 The associated Sato–Wilson system and its translation
into a Burgers hierarchy

(3.1) is the integrability condition of the linear system

ψ̃−[λ]B = EB(λ)ψ̃ ∀B ∈ B.

If W is an invertible solution of

EB(λ)W = W−[λ]BE0,B(λ), E0,B(λ) := I − λB∂, (3.19)

then the linear system is mapped to ψ−[λ]B = E0,B(λ)ψ where ψ := W−1ψ̃. The latter is the
linear heat hierarchy (2.2). The ansatz

W = I +
∑
n≥1

wn∂
−n,

inserted into the functional form (3.19) of the Sato–Wilson equations, leads to

λ−1(wn − wn,−[λ]B )−Bwn,x − (Bφ− φ−[λ]BB)wn = Bwn+1 − wn+1,−[λ]BB, (3.20)

where n = 0, 1, . . . and w0 = I. From the n = 0 equation we get w1 = −φ. In terms of θ := −w2,
the n = 1 equation turns out to be the functional form (3.4) of the mcKP hierarchy. Let us
introduce

Φ := Λᵀ + e1(φ,−w2,−w3, . . .), (3.21)

where eᵀ1 = (I, 0, . . .), and

Λ :=

 0 I 0 0 · · ·
0 0 I 0 · · ·
...

...
. . . . . . . . .

 (3.22)
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is the shift operator matrix with transpose Λᵀ. Then (3.20) can be expressed as the following
mcBurgers hierarchy,

ΩB(Φ, λ) ≡ λ−1(Φ− Φ−[λ]B )− (BΦ− Φ−[λ]BB)Φ−BΦx = 0 ∀B ∈ B. (3.23)

The linear system of the mcKP hierarchy has thus been reformulated as an mcBurgers hierarchy
with an infinite matrix variable of a special form.

We note that (3.21) has the form of a companion matrix, a block of a Frobenius normal
form matrix. This makes contact with recent work in [9], where several integrable systems were
recovered from equations of a Burgers hierarchy with dependent variable of Frobenius normal
form. All these systems are known to arise as reductions of the mcKP hierarchy.

As a consequence of (3.23) with Φ of the form (3.21), it follows that φ = eᵀ1Φe1 solves the
mcKP hierarchy in A.

In the following section, we shall see that Φ of the form (3.21) results, as a particular case,
from a quite general result about solutions of a somewhat generalized mcKP hierarchy.

4 Generalization of the Cole–Hopf transformation

We generalize (3.4) to

ΩB,Q(Φ, λ) = BΘ−Θ−[λ]BB ∀B ∈ B, (4.1)

where

ΩB,Q(Φ, λ) := λ−1(Φ− Φ−[λ]B )− (BΦ− Φ−[λ]BB)QΦ−BΦx, (4.2)

with a constant object Q. We assume that the constituents are elements of linear spaces and that
the products are defined. (4.1) determines a generalization of the mcKP hierarchy, since non-
linear terms now involve Q (which modifies the product). The following generalizes a theorem
in [7] (see also [8]).

Theorem 1. Let X, Y be solutions of the multicomponent linear heat hierarchy, i.e.

λ−1(X −X−[λ]B ) = BXx, λ−1(Y − Y−[λ]B ) = BYx, (4.3)

for all B ∈ B, and furthermore

Xx = RX +QY, (4.4)

with constant objects R, Q. If X is invertible and if all B ∈ B commute with R, then

Φ = Y X−1 (4.5)

solves the mcKPQ hierarchy (4.1) with Θ = ΦR.

Proof. Using (4.5) in the definition (4.2), we have

ΩB,Q(Φ, λ) = (BΦ− Φ−[λ]BB)(Xx −QY )X−1 + (λ−1(Y − Y−[λ]B )−BYx)X−1

− Φ−[λ]B (λ−1(X −X−[λ]B )−BXx)X−1,

which reduces to

ΩB,Q(Φ, λ) = (BΦ− Φ−[λ]BB)R

as a consequence of (4.3) and (4.4). Since [B,R] = 0, this takes the form (4.1) with Θ = ΦR. �
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Now we set up the stage for applications of the theorem. Let A(M,N) := Mat(M×N,C)⊗A,
where Mat(M × N,C) is the space of complex M × N matrices. Let Φ, Θ, Y take values in
A(M,N), and X in A(N,N). Furthermore, let Q ∈ A(N,M) and R ∈ A(N,N) commute with
all B ∈ B.

If Q has rank one over A, in the sense that Q = V Uᵀ with constant vectors U , V , with entries
in A, and if U and V commute with all B ∈ B, then φ = UᵀΦV solves the mcKP hierarchy in A,
provided that Φ solves (4.1). In this way, any solution X, Y of the linear equations formulated
in the above theorem generates an A-valued solution φ of the mcKP hierarchy (3.2).

Choosing M = N , (4.5) is a Cole–Hopf transformation if Y = Xx. Then (4.4) becomes
(I −Q)Xx = RX. Let ek denote the N -component vector with all entries zero except for the
identity element in the kth row.

a) Setting Q = eNeᵀ
N and R =

N−1∑
k=1

eke
ᵀ
k+1 (which is the left shift operator: Rek = ek−1,

k = 2, . . . , N , and Re1 = 0), one finds that (4.4) restricts X to the form of a Wronski matrix
(see also [8]),

X =


X(1) X(2) · · · X(N)

∂(X(1)) ∂(X(2)) · · · ∂(X(N))
...

...
. . .

...
∂N−1(X(1)) ∂N−1(X(2)) · · · ∂N−1(X(N))

 .

X(1), X(2), . . . , X(N) are independent functions with values inA. The remaining assumption (4.3)
in the theorem requires them to be solutions of the multicomponent heat hierarchy.

b) Let R = Λᵀ with the infinite shift operator matrix (3.22), and Q = e1e
ᵀ
1 . Then (4.4) says

that X has to be a pseudo-Wronski matrix

X =


X(1) X(2) X(3) · · ·

∂−1X(1) ∂−1X(2) ∂−1X(3) · · ·
∂−2X(1) ∂−2X(2) ∂−2X(3) · · ·

...
...

...
. . .

 , (4.6)

where ∂−1 is the formal inverse of ∂. This structure appeared in [9] (equations (14) and (50)
therein). (4.3) demands thatX(1), X(2), . . . solve the multicomponent heat hierarchy. With (4.6),
Φ = XxX

−1 has the form (3.21) and hence determines a solution of (3.23).

5 Solutions of the multicomponent KP hierarchy
from a matrix linear system

In order to derive some classes of mcKP solutions via theorem 1 more explicitly, in the framework
specified in Section 4 (after the theorem) we extend (4.4) to

Zx = HZ, (5.1)

where

Z =
(
X
Y

)
, H =

(
R Q
S L

)
,

with new constant objects L ∈ A(M,M) and S ∈ A(M,N) that commute with all B ∈ B. The
two equations (4.3) then combine to

λ−1(Z − Z−[λ]B ) = BZx ∀B ∈ B.
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Taking (5.1) into account, this is equivalent to

ZtB,n = (BH)nZ ∀B ∈ B, n = 1, 2, . . . . (5.2)

Note that B and H commute as a consequence of our assumptions. With a suitable choice of
the algebra A, the solution of the matrix linear system (5.1), (5.2) is given by

Z(x, t) = eξ(x,t;H,B)Z0, (5.3)

where

ξ(x, t;H,B) := xH +
∑
B∈B

∞∑
n=1

tB,n(HB)n,

and t stands for {tB}B∈B. Decomposing Z into X and Y , theorem 1 implies that Φ = Y X−1

solves the mcKPQ hierarchy (4.1). Furthermore, if rank(Q) = 1 over A, hence Q = V Uᵀ with
constant vectors U and V , then the A-valued variable

φ = UᵀΦV

solves the corresponding mcKP hierarchy.
The exponential in (5.3) can be computed explicitly if additional assumptions are made

concerning the form of H (see [11], in particular). Then Φ is obtained via (4.5).

Case 1. Let S = 0 and

Q = RK −KL (5.4)

with a constant N ×M matrix K (over A) that commutes with all B ∈ B. Then we obtain

Φ = eξ(x,t;L,B)Ce−ξ(x,t;R,B)
(
IN −Keξ(x,t;L,B)Ce−ξ(x,t;R,B)

)−1
, (5.5)

where IN is the N × N unit matrix over A (so that the diagonal entries are the identity I
in A), and C is an arbitrary constant M ×N matrix (with entries in A). Φ solves the mcKPQ

hierarchy (associated with B), with Q given by (5.4).6 If moreover Q = V Uᵀ with vectors U , V
that commute with all B ∈ B, then φ = UᵀΦV solves the mcKP hierarchy in A. Of course, it
remains to solve the rank one condition (over A)

RK −KL = V Uᵀ. (5.6)

If M = N and if C is invertible, then (5.5) simplifies to

Φ =
(
eξ(x,t;R,B)C−1e−ξ(x,t;L,B) −K

)−1
,

which remains a solution if we replace C−1 by an arbitrary constant N × N matrix C̃ (with
entries in A).

Example 3. Choosing the components of the matrices L, R as

Lij = piδijI, Rkl = qkδklI, (5.7)

6In particular, if M = N and Q = IN , then Φ (with K, L, R solving RK − KL = IN ) is a solution of the
N ×N matrix (over A) mcKP hierarchy.
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with constants pi, qk, (5.6) is solved by

Kkj =
1

qk − pj
ukvj , (5.8)

where uk and vj are the components of U and V , respectively. We elaborate one of the simplest
cases in some detail. Let us choose A as the algebra of 2× 2 matrices over C, L = pI2, R = qI2,
with constants p and q, Q = I = I2, and B = {B} with B = diag(1,−1) (motivated by the
examples in Section 3). Then we have ξ(x, t;L,B) = diag(ξ+(x, t; p), ξ−(x, t; p)) with

ξ±(x, t; p) := px+
∞∑

n=1

p2nt2n ±
∞∑

n=0

p2n+1t2n+1 (5.9)

(writing tn instead of tB,n), and ξ(x, t;R,B) is obtained by exchanging p by q in these expres-
sions. Writing

C =
(
c1 c2
c3 c4

)
(5.10)

with constants ci, we obtain (with U = V = I2)7

φ(x, t) =
1

D(x, t)

(
c1e

ξ+(x,t;p)−ξ+(x,t;q) + f(x, t) c2e
ξ+(x,t;p)−ξ−(x,t;q)

c3e
ξ−(x,t;p)−ξ+(x,t;q) c4e

ξ−(x,t;p)−ξ−(x,t;q) + f(x, t)

)
, (5.11)

where

f(x, t) :=
c1c4 − c2c3
p− q

eξ+(x,t;p)+ξ−(x,t;p)−ξ+(x,t;q)−ξ−(x,t;q),

D(x, t) := 1 +
1

p− q

(
c1e

ξ+(x,t;p)−ξ+(x,t;q) + c4e
ξ−(x,t;p)−ξ−(x,t;q) + f(x, t)

)
.

This is a solution of (3.3), with B = diag(1,−1), and its hierarchy, and its components thus
provide us with the solution

u =
c2
D
eξ+(x,t;p)−ξ−(x,t;q), v =

c3
D
eξ−(x,t;p)−ξ+(x,t;q),

s =
1
D

(
c1e

ξ+(x,t;p)−ξ+(x,t;q) + c4 e
ξ−(x,t;p)−ξ−(x,t;q) + 2f

)
(5.12)

of the system (3.10), (3.11). φ is regular (for all t) in particular if all constants are real,
c1c4 > c2c3, and either p > q, c1 > 0, c4 > 0, or p < q, c1 < 0, c4 < 0. Fig. 1 presents
a dromion8 solution within this family.

If c3 = 0, we have v = 0 and (5.12) determines a solution of the linear equations (3.12).9 An
extremum of u for a regular solution then moves (in “time” t2) with constant amplitude along
the curve given by

x = −(p+ q)t2 −
1

2(p− q)
log

(
c1c4

(p− q)2

)
, t1 =

1
p− q

log
(
−p
q

√
c4
c1

)
.

The last expression shows that, for a dromion solution, p and q must have opposite signs.
7Since ξ±(x, t; p) − ξ±(x, t; q) = (p − q)(x ± t1) + (p2 − q2)t2 + · · · , this solution becomes independent of t2

(i.e. “static”) if p = −q.
8The characteristic features of a dromion are its exponential localization and that it is accompanied by a field

structure of intersecting line solitons. See [32, 33, 34, 35, 36, 37, 38, 39, 40, 41] for the Davey–Stewartson case,
and especially [42] for an illuminating structural analysis and the appearance of dromions as solutions of other
equations.

9In this case, D factorizes,

D =

(
1 +

c1

p− q
eξ+(x,t;p)−ξ+(x,t;q)

) (
1 +

c4

p− q
eξ−(x,t;p)−ξ−(x,t;q)

)
.
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Figure 1. A dromion solution of (3.10) and (3.11) at t2 = 0, given by (5.12) with p = 2, q = −1,
c1 = c4 = 1, c2 = 1/2 and c3 = 0. The left plot shows ϕ = st1 = tr(φ)t1 . As a consequence of
c3 = 0, we have v = 0. Hence this is actually a solution of the linear equations (3.12) and ϕ solves the
linear wave equation. Regarding t1 as an evolution parameter, the plot of ϕ shows two colliding humps
(with amplitudes having opposite signs) that annihilate at t1 = 0. With 0 6= c3 < 2, the plots remain
qualitatively the same as long as c3 is sufficiently far below the upper bound, and v attains a shape
similar to that of u.

Figure 2. Solutions of (3.10) and (3.11) at t2 = 0, given by (5.11) with p = 2, c1 = c4 = 1, c2 = c3 = 1/2.
The first two plots, where q = 0, show kinks (see (5.13)). In the last two plots, where q = −1/5, these
become exponentially localized structures.

For q = 0 in (5.12), setting tn = 0 for n > 2, we have

u = c2p
2
(
c1p+ c4pe

−2pt1 + e−pt1(p2e−p(x+pt2) + (c1c4 − c2c3)ep(x+pt2)
)−1

,

v = c3p
2
(
c4p+ c1pe

2pt1 + ept1(p2e−p(x+pt2) + (c1c4 − c2c3)ep(x+pt2)
)−1

. (5.13)

If c1c4 > c2c3 and c1p > 0, c4p > 0 (or c1c4 < c2c3 and c1p < 0, c4p < 0), these functions
obviously represent wedge-shaped kinks in the xt1-plane, see also Fig. 2. Choosing p > 0 and
switching on a negative q, these wedges become localized and, around certain negative values
of q, then take the dromion form.

Fig. 3 shows plots of a two-dromion solution determined by (5.7) with L = diag(3I2, 2I2),
R = diag(−2I2,−(3/2)I2), and10

C =


1 1

2 0 0
0 1 0 0
0 0 2 1
0 0 5 3

 .

The diagonal 2 × 2 blocks of these matrices correspond to matrix data of single dromions.
Such a superposition is obtained for any two solutions, provided that off-diagonal blocks of the

10If all lower-diagonal entries of C are zero, we obtain v = 0 and thus a solution of the linear equations (3.12).
The plots are surprisingly insensitive with respect to changes in this range of parameters, as long as the off-
diagonal entries in a diagonal block are not all close to zero and the determinant of the block is not close to
zero.
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Figure 3. A two-dromion solution of (3.10) and (3.11) at t2 = 1, determined by the data specified in
Example 3. The left plot shows ϕ = st1 = tr(φ)t1 .

Figure 4. A dromion solution of the Davey–Stewartson-I equation with ε = −1 at t2 = 0, see the end of
Example 3. Here we chose p1 = p2 = (1+ i )/

√
2, q1 = −q2 = (1− i )/

√
2, c1 = −c2 = i

√
2, c3 = c4 =

√
2.

Here ρ is given by (3.17).

matrix K exist such that (5.6) can be satisfied. This is so in the restricted case considered above
(see (5.7) and (5.8)), which in particular leads to multi-dromion solutions. Introducing non-zero
constants in the off-diagonal blocks of C, leads to solutions with more complicated behaviour.

Setting tn = 0, n > 2, the transition to the Davey–Stewartson system (3.18) with κ = 1,
which is the DS-I case, is given by the transformation of independent variables

x =
1 + i
2
√

2
(z − i y), t1 = −1− i

2
√

2
(z + i y), t2 = −i t.

The dependent variables are u and ρ, the latter given by (3.17). We have to take the additional
constraint v = i εū into account (see Example 2). One recovers a DS-I dromion within the class
of solutions restricted by q1 = p̄1, q2 = −p̄2, c1 imaginary and c4 real, and c3 = ±i c̄2 with sign
corresponding to ε = ±1. Fig. 4 shows an example.

Case 2. Let M = N , R = L, S = 0, and

Q = J + [L,K], (5.14)

with constant N ×N matrices K and J (over A) that commute with all B ∈ B. Furthermore,
J has to commute with L, i.e. [J, L] = 0. Then

Φ = eξ(x,t;L,B)Ce−ξ(x,t;L,B)
(
IN + (ξ′(x, t;L,B)J −K)eξ(x,t;L,B)Ce−ξ(x,t;L,B)

)−1
, (5.15)

where C is an arbitrary constant N ×N matrix (with entries in A) and

ξ′(x, t;L,B) := x+
∑
B∈B

∞∑
n=1

ntB,nL
n−1Bn.
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If also Q = V Uᵀ with vectors U , V that commute with all B ∈ B, then φ = UᵀΦV solves the
mcKP hierarchy in A. It remains to solve

J + [L,K] = V Uᵀ. (5.16)

A natural choice for J is the unit matrix IN , but there are others. (5.15) can also be written as

Φ =
(
eξ(x,t;L,B)C̃e−ξ(x,t;L,B) + ξ′(x, t;L,B)J −K

)−1 (5.17)

with an arbitrary constant N × N matrix C̃.11 If C̃ is chosen such that it commutes with L
and B, then Φ and the corresponding solution φ of the mcKP hierarchy are purely rational
functions of the independent variables. A localized solution of this kind, hence with rational
decay, is usually called a “lump”. The following example in particular demonstrates that there
can be weaker conditions that lead to solutions with rational decay.

Example 4. Choosing B = diag(1,−1), L = diag(p1, p2) and Q = I2, (5.14) is solved by
K = diag(k1, k2). Expressing C again as in (5.10), we find

eξ(x,t;L,B)Ce−ξ(x,t;L,B) =
(

c1 c2e
ξ+(x,t;p1)−ξ−(x,t;p2)

c3e
−ξ+(x,t;p1)+ξ−(x,t;p2) c4

)
,

with ξ±(x, t; p) defined in (5.9), and ξ′(x, t;L,B) = diag(ξ′+(x, t; p1), ξ′−(x, t; p2)), where

ξ′±(x, t; p) := x+
∞∑

n=1

2nt2np
2n−1 ±

∞∑
n=0

(2n+ 1)t2n+1p
2n.

Then (5.15) leads to the following solution of (3.3), with B = diag(1,−1), and its hierarchy,

φ(x, t) =
1

D(x, t)

(
c1 + d(ξ′−(x, t; p2)− k2) c2e

ξ+(x,t;p1)−ξ−(x,t;p2)

c3e
−ξ+(x,t;p1)+ξ−(x,t;p2) c4 + d(ξ′+(x, t; p1)− k1)

)
,

where d := c1c4 − c2c3 and

D(x, t) := 1 + c1(ξ′+(x, t; p1)− k1) + c4(ξ′−(x, t; p2)− k2)
+ d(ξ′+(x, t; p1)− k1)(ξ′−(x, t; p2)− k2).

The components u = φ1,2 and v = φ2,1, together with

s = tr(φ) =
d

D
(
ξ′+(x, t; p1) + ξ′−(x, t; p2) + c

)
,

with a constant c, thus solve the system (3.10), (3.11). For c3 = 0, this determines a solution of
the linear equations (3.12).

The transition to the Davey–Stewartson system (3.18) with κ = i , which is the DS-II case,
involves the transformation of independent variables

x =
1 + i
2
√

2
(y + z), t1 =

1− i
2
√

2
(y − z), t2 = −i t.

We set tn = 0, n > 2, in the following. The lump solution of the DS-II equation [43, 44, 17] (see
also [45, 46, 40, 47]) is obtained as follows from the above formula. Besides taking account of the
constraint v = i εū, we have to arrange in particular that the exponential in u becomes a phase

11In the transition from (5.15) to (5.17), one assumes that C is invertible with inverse C̃. But C̃ need not be
invertible in order that (5.17) determines a solution of the mcKPQ hierarchy.
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factor (up to some constant factor), i.e. the real part of its exponent has to be constant. This
requires setting p2 = −i p̄1. It is more tricky to find conditions on the remaining parameters
such that D 6= 0 for all y, z, t, so that the solution is regular. Choosing

c4 = −i c̄1, c3 = i c̄2, k2 = −i k̄1,

and renaming k1, p1 to k, p, we find that

D =
1
4
(|c1|2 + 2|c2|2)

(
(y − y0 − vyt)2 + (z − z0 − vzt)2

)
+

2|c2|2

|c1|2 + 2|c2|2
,

where vy = −2 Im(p), vz = 2Re(p), and

y0 = Re(k)− 2 Re(c1)
|c1|2 + 2|c2|2

, z0 = Im(k) +
2 Im(c1)

|c1|2 + 2|c2|2
.

The resulting DS-II solution

u =
c2
D
ei (Im(p)y+Re(p)z−Re(p2)t),

ρ =
1

4D2

(
(|c1|2 + 2|c2|2)2

(
(z − z0 − vzt)2 − (y − y0 − vyt)2

)
− 8|c2|2

)
,

with ρ defined in (3.17) and ε = 1, is regular whenever c2 6= 0 and reproduces a well-known
lump solution.

Again, (lump) solutions can be superposed by taking matrix data of (lump) solutions as
diagonal blocks of larger matrices L and C. It then essentially remains to determine the off-
diagonal blocks of the new matrix K so that (5.16) holds.

6 The matrix Riccati system associated
with the multicomponent KP hierarchy

Writing

Hn =:
(
Rn Qn

Sn Ln

)
,

the matrix linear system (5.1), (5.2) implies the matrix Riccati system

Φx = S + LΦ− ΦR− ΦQΦ, (6.1)
ΦtB,n = BnSn +BnLnΦ− ΦBnRn − ΦBnQnΦ. (6.2)

The two solution families presented in Section 5 solve this matrix Riccati system, with the
respective conditions imposed on the matrices L, Q, R, S.

Abstracting from matrices and thinking of L, R, S as (noncommutative) algebraic objects,
their elimination from the above system leads to the mcKP hierarchy with product modified
by Q (cf. [48]). To some extent the above Riccati system thus expresses the mcKP hierarchy as
a hierarchy of ordinary differential equations.

Finite-size matrix Riccati equations, in particular with constant coefficient matrices as above,
were discussed in a context related to integrable systems already long ago (see e.g. [49, 50]),
but apparently not in the context of the KP hierarchy. A special infinite-size matrix Riccati
system involving the shift operator in infinite dimensions appeared, however, in the framework
of the Sato theory (see e.g. [51, 13]). In the one-component case with B = I, the above Riccati
system, with suitable conditions imposed on the coefficient matrices, also generates solutions of
the BKP and the CKP hierarchy [52]. The Riccati system indeed generates solutions of various
integrable systems and therefore deserves to be studied in its own right.
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Remark 3. For fixed r ∈ N, r > 1, and for some fixed B ∈ B, let us consider the condition

(HB)rZ0 = Z0P,

with an N ×N matrix P (over A). For the solution (5.3) of the linear matrix system (5.2), this
implies (HB)nrZ = ZPn for n ∈ N, hence Bnr(RnrX+QnrY ) = XPn and Bnr(SnrX+LnrY ) =
Y Pn, and thus the algebraic Riccati equations Bnr(Snr + LnrΦ) = Y PnX−1 = ΦXPnX−1 =
ΦBnr(Rnr +QnrΦ). The corresponding equations (6.2) of the Riccati system then read

ΦtB,nr = Bnr(Snr + LnrΦ)− ΦBnr(Rnr −QnrΦ) = 0, n = 1, 2, . . . .

Hence φ solves the (r,B)-reduction, i.e. the r-reduction (multicomponent version of rth Gelfand–
Dickey hierarchy) with respect to B.

7 Conclusions

Any solution of a multicomponent Burgers (mcBurgers) hierarchy is a solution of the corre-
sponding multicomponent KP (mcKP) hierarchy. Furthermore, there is a functional equation
that determines the mcKP hierarchy and has the form of an inhomogeneous mcBurgers hierar-
chy functional equation. We have also shown that the mcKP linear system is equivalent to
a mcBurgers hierarchy, where the dependent variable has the structure of an infinite Frobenius
companion matrix (which in particular makes contact with [9]).

Moreover, we have shown how solutions of a mcKP hierarchy are obtained from solutions
of a multicomponent linear heat hierarchy via a generalized Cole–Hopf transformation. An
important subcase generates solutions of a mcKP hierarchy from solutions of a matrix linear
system and we presented some explicit solution formulae. They comprise in particular Davey–
Stewartson dromions and lump solutions.

There is certainly a lot more to be (re)discovered using the rather simple but quite general
method in Section 5 to construct exact solutions, but we are far from a systematic way to
explore the properties of solutions obtained in this way. Furthermore, we have stressed the role
of a matrix Riccati hierarchy in this context.
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