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1 Introduction

The aim of this paper is to give natural generalizations of Fedosov’s simple geometrical construc-
tion for deformation quantization on a symplectic manifold M [21, 22, 23, 24]. In short, the
term “deformation quantization” refers to the construction of an associative ∗ product that is an
expansion in some formal parameter h̄, and whose leading behavior is controlled by a geometric
structure mij , which usually (but not always) is a symplectic structure [8]. Fedosov quantization,
in its most basic form, is a deformation quantization recipe that relies on yet another geometric
input in form of a compatible torsion-free tangent bundle connection ∇. It is an important
feature of Fedosov’s ∗ product that it is a global construction, which applies to a manifold as
a whole, and not just a local neighborhood or vector space. Another characteristic feature that
sets Fedosov’s approach apart from most other methods is the assemblage of a globally well-
defined, flat connection D. We discuss in this paper the following three natural generalizations
of Fedosov’s original construction:

1. We let the base manifold be an arbitrary smooth supermanifold. Previous works on superi-
zing Fedosov’s construction use Batchelor’s theorem (which in turn relies on the existence
of a partition of unity) to give a non-canonical identification of the supermanifold with
the ringed space of sections of the exterior algebra of a vector bundle, so that the bosonic
and fermionic variables are associated with base and fiber directions in this vector bundle,
respectively, see e.g., [13, 44]. On the contrary, we will treat bosons and fermions on equal
footing, and will locally allow the use of arbitrary coordinate systems. This of course
requires that we pay special attention to sign factors, but it will be more elementary –
and more general – in the sense that we will not need any major results from the theory
of supermanifolds.
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2. We do not assume that mij is antisymmetric. This is sometimes referred to as the ∗
product does not have to be of Weyl/symmetric type. It is also not necessarily of the
Wick/normal type [9, 10, 11, 36, 14, 18, 42, 19].

3. We let the two geometric input data mij and ∇ depend on Planck’s constant h̄. A priori,
such a generalization is a non-trivial matter, since Planck’s constant h̄ is charged with
respect to the pertinent resolution degree, cf. equation (6.1). Moreover, for h̄-dependent
structures, there is no analogue of Darboux’ theorem at our disposal, cf. discussion below
equation (3.7).

Certain aspects of each of the three generalizations have appeared in the literature, but
never simultaneously. Our main point is that the three generalizations taken together constitute
a natural habitat for Fedosov’s original variables xi, ci ≡ dxi, yi and h̄, without destroying the
simplicity of his construction.

The paper starts with listing the basic setup and assumptions in Sections 2–3. Then follows an
introduction of the relevant tools: An algebra A of covariant tensors in Sections 4–5, the Fedosov
resolution degree in Section 6, the ◦ product in Sections 7–9, the Koszul–Tate differential δ and
its cohomology in Sections 10–11. Thereafter is given a discussion of Riemann curvature tensors
on supermanifolds in Sections 12–13. The flat D connection, whose existence is guaranteed
by Fedosov’s 1st theorem (Theorem 1), is discussed in Sections 14–16. Fedosov’s 2nd theorem
(Theorem 2), which establishes an algebra isomorphism between symbols and horizontal zero-
forms, is discussed in Section 17. Finally, the ∗ product is constructed in the last Section 18.

We shall focus on the existence of the construction and skip the important question of unique-
ness/ambiguity/equivalence/classification of ∗ products for brevity. In detail, this paper is an
elaboration of the material covered on p. 138–147 in Fedosov’s book [24] subjected to the above
generalizations 1–3. In particular, what we refer to as Fedosov’s 1st and 2nd theorems (Theo-
rems 1 and 2) are generalizations of Theorems 5.2.2 and 5.2.4 in [24], respectively. Some other
references that deal with Fedosov’s original construction are [43, 31, 40, 26, 45, 30]. Historically,
De Wilde and Lecomte were the first to prove the existence of an associative ∗ product on every
symplectic manifold [46]. The same question for Poisson manifolds (which may be degenerate)
was proved by Kontsevich using ideas from string theory [39]. Cattaneo et al. gave an explicit
construction in the Poisson case that merges Kontsevich’s local formula with Fedosov’s flat D
connection approach [15, 16].

General remarks about notation. We shall work with smooth finite-dimensional supermani-
folds in terms of charts and atlases (as opposed to, e.g., ringed spaces or functors of points). We
shall sometimes make use of local formulas, because these often provide the most transparent
definitions of sign conventions on supermanifolds. We stress that all formulas in this paper, if
not written in manifestly invariant form, hold with respect to any coordinate system, and they
transform covariantly under general coordinate transformations. Adjectives from supermathe-
matics such as “graded”, “super”, etc., are implicitly implied. We will also follow commonly
accepted superconventions, such as, Grassmann-parity ε is only defined modulo 2, and “nilpo-
tent” means “nilpotent of order 2”. The sign conventions are such that two exterior forms ξ
and η, of Grassmann-parity εξ, εη and exterior form degree pξ, pη, respectively, commute in the
following graded sense

η ∧ ξ = (−1)εξεη+pξpηξ ∧ η

inside the exterior algebra. We will often not write exterior wedges “∧” nor tensor multiplications
“⊗” explicitly. Covariant and exterior derivatives will always be from the left, while partial
derivatives can be from either left or right. We shall sometimes use round parenthesis “( )” to
indicate how far derivatives act, see e.g., equations (2.1) and (11.1).
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2 Basic settings and assumptions

Consider a manifold M with local coordinates xi of Grassmann-parity εi≡ ε(xi). The classical
limit

f ∗ g = fg +
ih̄

2

(
f

←
∂r

∂xj

)
mjk

( →
∂`

∂xk
g

)
+O(h̄2), f, g ∈ C∞(M)[[h̄]] ≡ A00, (2.1)

of the sought-for associative ∗ multiplication is prescribed by a Grassmann-even contravariant
(2, 0) tensor

m = mij∂`
j ⊗ ∂`

i , ε(m) = 0, ε(∂`
i ) = εi.

(The letter “m” is a mnemonic for the word “multiplication”.) The tensor

mij = mij(x; h̄)

can in principle be a formal power series in Planck’s constant h̄. (The quantum corrections to
mij do not enter actively into the classical boundary condition (2.1), but they will nevertheless
affect the Fedosov implementation of the ∗ multiplication at higher orders in h̄, as we shall see
in equation (7.1) below.) Usually one demands [8] that the classical unit function 1 ∈ C∞(M)
serves as a unit for the full quantum algebra (A00,+, ∗):

f ∗ 1 = 1 ∗ f = f, f ∈ C∞(M)[[h̄]] ≡ A00. (2.2)

(The notation A00 will be explained in Section 4.) Let mT denote the transposed tensor,

(mT )ij := (−1)εiεjmji.

It will be necessary to assume that the antisymmetric part

ωij :=
1
2
(
mij − (mT )ij

)
= −(−1)εiεjωji (2.3)

of the tensor mij is non-degenerate, i.e., that there exists an inverse matrix ωij such that

ωijω
jk = δk

i .

(Note that this does not necessarily imply that mij itself has to be non-degenerate.) Next, let
there be given a torsion-free connection ∇ : Γ(TM)× Γ(TM)[[h̄]]→ Γ(TM)[[h̄]] that preserves
the m-tensor

(∇m) = 0. (2.4)

In local coordinates, the covariant derivative ∇X along a vector field X = Xi∂`
i is given as [12]

∇X = Xi∇i, ∇i =

→
∂`

∂xi
+ ∂r

k Γk
ij

→
dxj . (2.5)

Equivalently, ∇ = d + Γ = dxi ⊗∇i : Γ(TM)→ Γ(T ∗M ⊗ TM), where

Γ = dxi ⊗ ∂r
k Γk

ij

→
dxj . (2.6)
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Here ∂r
i ≡(−1)εi∂`

i are not usual partial derivatives. In particular, they do not act on the
Christoffel symbols Γk

ij in equations (2.5) and (2.6). Rather they are a dual basis to the

one-forms
→
dxi:

→
dxi (∂r

j ) = δi
j .

Phrased differently, the ∂r
i are merely bookkeeping devices, that transform as right partial

derivatives under general coordinate transformations. (To be able to distinguish them from true
partial derivatives, the differentiation variable xi on a true partial derivative ∂/∂xi is written
explicitly.) The assumption (2.4) reads in local coordinates

0 = (∇im
jk) =

( →
∂`

∂xi
mjk

)
+ Γi

j
nmnk + (−1)εj(εk+εn)Γi

k
nmjn,

where we have introduced a reordered Christoffel symbol

Γi
k
j := (−1)εiεkΓk

ij .

Note that the connection ∇ will also preserve the transposed tensor mT , and therefore, by lin-
earity, the antisymmetric part ωij . We shall later explain why it is crucial that the connection ∇
is torsion-free, see comment after equation (16.1). The Christoffel symbols Γk

ij = Γk
ij(x; h̄) for

the connection ∇ is allowed to be a formal power series in Planck’s constant h̄. Finally, we
mention that one traditionally imposes a reality/hermiticity condition on the connection ∇,
the multiplicative structure mij and the ∗ product. However, we shall for simplicity skip the
reality/hermiticity condition in this paper.

3 The two-form ω is symplectic

The inverse matrix ωij with lower indices has the following graded skewsymmetry

ωij = (−1)(εi+1)(εj+1)ωji, (3.1)

cf. equation (2.3). That equation (3.1) should be counted as an skewsymmetry (as opposed to
a symmetry) is perhaps easiest to see by defining the slightly modified matrix

ω̃ij := ωij(−1)εj .

Note that the two matrices ωij and ω̃ij are identical for bosonic manifolds. Then the equa-
tion (3.1) translates into the more familiar type of graded antisymmetry,

ω̃ij = −(−1)εiεj ω̃ji. (3.2)

The skewsymmetry means that the inverse matrix can be viewed as a two-form

ω :=
1
2
ciωijc

j = −1
2
cjciω̃ij ∈ Γ

(∧
2(T ∗M)

)
[[h̄]] ≡ A20. (3.3)

Here

ci ≡ dxi

is the usual basis of one-forms, and

d := ci

→
∂`

∂xi
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denotes the de Rham exterior derivative on M . It follows from assumption (2.4) that the
connection ∇ preserves the two-form

0 = (∇iω̃jk) =
( →

∂`

∂xi
ω̃jk

)
− ((−1)εiεjΓj,ik − (−1)εjεk(j ↔ k)) , (3.4)

where the lowered Christoffel symbol Γk,ij is defined as

Γk,ij := ωknΓn
ij(−1)εj .

The two-form ω is closed

(dω) = 0, (3.5)

or equivalently,

∑
cycl. i,j,k

(−1)εiεk

( →
∂`

∂xi
ω̃jk

)
= 0.

The closeness relation (3.5) is not an extra assumption. It follows from equation (3.4), because
the connection ∇ is torsion-free,

T k
ij := Γk

ij + (−1)(εi+1)(εj+1)(i↔ j) = 0, (3.6)

or equivalently, in terms of the lowered Christoffel symbol,

Γk,ij = (−1)εiεj (i↔ j).

It is practical to call a non-degenerate closed two-form ωij a symplectic structure, even if it de-
pends on Planck’s constant h̄. The inverse structure, i.e., the corresponding Poisson structure ωij

satisfies the Jacobi identity

∑
cycl. i,j,k

(−1)εiεkωin

( →
∂`

∂xn
ωjk

)
= 0. (3.7)

Note that we cannot rely on Darboux’ theorem, i.e., we will not be guaranteed a cover of Darboux
coordinate patches in which the ωij is constant. The issue is that, on one hand, the symplectic
structure is allowed to depend on Planck’s constant h̄, but, on the other hand, we shall not
allow coordinate transformations xi → x′j = x′j(x) that depend on h̄. Luckily, as we shall see,
Darboux patches play no rôle in the Fedosov construction. In fact, as we have mentioned before,
all formulas in this paper, if not written in manifestly invariant form, hold with respect to any
coordinate system, and they transform covariantly under general coordinate transformations.

The classical Poisson bracket is given by the famous quantum correspondence principle [17]

{f, g}cl :=
(

f

←
∂r

∂xj

)
ωjk

(0)

( →
∂`

∂xk
g

)
= lim

h̄→0

1
ih̄

[f ∗, g], f, g ∈ C∞(M). (3.8)

Here

[f ∗, g] := f ∗ g − (−1)εf εgg ∗ f = ih̄{f, g}cl +O(h̄2), f, g ∈ C∞(M)[[h̄]] ≡ A00,

is the ∗ commutator, and

ωij
(0) := lim

h̄→0
ωij .
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It is easy to show that every symplectic manifold (M ;ω) has a torsion-free ω-preserving connec-
tion ∇, see Section 2.5 in [24] for the bosonic case. However, it is not true that every manifold
(M ;m) with a multiplicative structure mij supports a torsion-free m-preserving connection ∇,
cf. assumption equation (2.4). The symmetric part

gij :=
1
2
(mij + (mT )ij) = (−1)εiεjgji

of the tensor mij needs to be compatible with the symplectic structure ω in a certain sense. In
the special case where gij = 0, we return to the usual Fedosov quantization mij = ωij , which
corresponds to a Weyl/symmetric type ∗ product. In the generic case where gij has full rank,
there will exist an inverse matrix gij , which constitute a (pseudo) Riemannian metric, and there
will hence exist a corresponding unique Levi-Civita connection∇LC . In this non-degenerate case,
the necessary and sufficient conditions are ∇ = ∇LC and (∇LC

i ωjk) = 0. This is for instance
satisfied for (pseudo) Kähler manifolds (M ;ω; g), cf. [9, 10, 11, 36, 14, 18, 42, 19].

4 Covariant tensors

Let

Amn := Γ
(∧

m(T ∗M)⊗
∨

n(T ∗M)
)

[[h̄]] (4.1)

be the vector space of (0,m + n)-tensors ai1...imj1...jn(x; h̄) that are antisymmetric with respect
to the first m indices i1 . . . im and symmetric with respect to the last n indices j1 . . . jn. Phrased
differently, they are m-form valued symmetric (0, n)-tensors. As usual, it is practical to introduce
a coordinate-free notation

amn(x, c; y; h̄) =
1

m!n!
cim ∧ · · · ∧ ci1ai1...imj1...jn(x; h̄)⊗ yjn ∨ · · · ∨ yj1 . (4.2)

Here the Fedosov variables yi and the “∨” symbol are symmetric counterparts to the one-form
basis ci ≡ dxi and the “∧” symbol, i.e.,

yj ∨ yi = (−1)εiεjyi ∨ yj .

We will be interested in covariant derivatives ∇iai1...imj1...jn of the above tensors. The covariant
derivative ∇i from equation (2.5) can be implemented on coordinate-free objects (4.2) by the
following linear differential operator

∇i =

→
∂`

∂xi
− Γi

k
jc

j

→
∂`

∂ck
− Γi

k
jy

j

→
∂`

∂yk
. (4.3)

If both the numbers of antisymmetric and symmetric indices are non-zero m 6= 0 ∧ n 6= 0, i.e.,
if the tensor ai1...imj1...jn has mixed symmetry, the covariant derivative ∇iai1...imj1...jn will not
belong to any of the A•• spaces (4.1). We repair this by antisymmetrizing with respect to the in-
dices i, i1, . . . , im. Such antisymmetrization can be implemented on coordinate-free objects (4.2)
with the help of the following one-form valued Grassmann-even differential operator

∇ := ci∇i = d− ciΓi
k
jy

j

→
∂`

∂yk
, (4.4)

where we have followed common practice, and given the differential operator (4.4) the same name
as the connection. In the second equality of equation (4.4) we have used that the connection is
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Table 1. Parities and gradings.

Grading → Grassmann Form Fedosov
parity degree degree

↓ Variable ↓ Symbol → ε p deg
Coordinates xi εi 0 0
1-form basis ci≡dxi εi 1 0
Fedosov coordinates yi εi 0 1
Planck’s constant h̄ 0 0 2
Multiplicative structure mij εi+εj 0 even,≥ 0
Christoffel symbol Γk

ij εi+εj+εk 0 even,≥ 0
Covariant derivative ∇i εi 0 even,≥ 0
1-form valued connection ∇≡ci∇i 0 1 even,≥ 0
de Rham exterior derivative d 0 1 0
Koszul–Tate differential δ={$, ·} 0 1 −1
Contraction δ∗=yji(∂`

j) 0 −1 1
Koszul–Tate Hamiltonian $≡ciωijy

j 0 1 odd,≥ 1
Deformation 1-form r 0 1 ≥ 0
Hamiltonian curvature 2-form R 0 2 even,≥ 2

torsion-free. (References [38, 37] consider a hybrid model where torsion is allowed in the y-sector
but not in the c-sector in such a way that equation (4.4) remains valid.) Since the ∇ operator
is a first-order differential operator, i.e.,

∇(ab) = (∇a)b + (−1)paa(∇b), (4.5)

where a and b are two coordinate-free objects (4.2), it is customary to refer to ∇ as a linear
connection. (The order of the exterior factor

∧
m(T ∗M) and the symmetric factor

∨
n(T ∗M) in

expression (4.1) is opposite the standard convention to ease the use of covariant derivatives ∇
that acts from the left.)

5 The A algebra

The direct sum

A :=
⊕

m,n≥0

Amn
∼= C∞(E)[[h̄]] (5.1)

of the Amn spaces (4.1) is an algebra with multiplication given by the tensor multiplication. It
is both associative and commutative. As indicated in equation (5.1), the elements

a = ⊕m,n≥0amn ∈ A, amn ∈ Amn,

can be viewed as quantum functions a = a(x, c; y; h̄) on the Whitney sum

E := ΠTM ⊕ TM,

where ci are identified with the parity-inverted fiber coordinates for the fiber-wise parity-
inverted tangent bundle ΠTM , and yj are identified with the fiber coordinates for the tan-
gent bundle TM . The word “quantum function” just means that it is a formal power series in
Planck’s constant h̄.
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6 The Fedosov resolution degree

The Fedosov degree “deg” is a (non-negative) integer grading of the A algebra defined as

deg(yi) = 1, deg(h̄) = 2, (6.1)

and zero for the two other remaining variables xj and ck, cf. Table 1. The Fedosov degree will
play the rôle of resolution degree in the sense of homological perturbation theory [29, 7, 27, 1,
2, 25, 35]. We shall therefore often organize the algebra according to this grading:

A =
⊕
n≥0

A(n), A(n) := {a ∈ A | deg(a) = n}.

Similarly, one may write the algebra element

a = ⊕n≥0a(n) ∈ A, a(n) ∈ A(n),

as a direct sum of elements a(n) of definite Fedosov degree deg(a(n)) = n.

7 The ◦ product

One now builds an associative ◦ product A×A → A on the A algebra as a Moyal product
[34, 41] in the y-variables,

a ◦ b :=

a exp

 ←∂r

∂yj

ih̄

2
mjk

→
∂`

∂yk

 b

 , a, b ∈ A. (7.1)

The ◦ product is associative, because the mjk-tensor is independent of y-variables. (The y-
variables have been interpreted by Grigoriev and Lyakhovich [33, 5] as conversion variables for
the conversion of second-class constraints into first-class [3, 4, 6, 28].) The ◦ product “preserves”
the following gradings

deg(a ◦ b) ≥ deg(a) + deg(b),
p(a ◦ b) = p(a) + p(b),
ε(a ◦ b) = ε(a) + ε(b).

The connection ∇ respects the ◦ product,

∇(a ◦ b) = (∇a) ◦ b + (−1)paa ◦ (∇b), a, b ∈ A, (7.2)

as a consequence of the assumption (2.4).

8 The Poisson bracket

It is useful to define a Poisson bracket as

{a, b} :=
(

a

←
∂r

∂yi

)
ωij

( →
∂`

∂yj
b

)
, a, b ∈ A. (8.1)

(It should not be confused with the classical Poisson bracket (3.8).) The Poisson bracket (8.1)
“preserves” the following gradings

0 ≤ deg({a, b}) ≥ deg(a) + deg(b)− 2,
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p({a, b}) = p(a) + p(b),
ε({a, b}) = ε(a) + ε(b).

The connection ∇ respects the Poisson bracket:

∇{a, b} = {∇a, b}+ (−1)pa{a,∇b}, a, b ∈ A.

9 The ◦ commutator

The ◦ commutator is defined as

[a ◦, b] := a ◦ b− (−1)εaεb+papbb ◦ a = ih̄{a, b}+O(h̄2), a, b ∈ A.

Note the following useful observations:

• Each term in the ◦ commutator [a ◦, b] contains at least one power of h̄, so one may consider
the fraction 1

ih̄ [a ◦, b] without introducing negative powers of h̄.

• The ◦ commutator 1
ih̄ [a ◦, b] and the Poisson bracket {a, b} are equal, if one of the entries

a or b only contains terms with less than three y’s.

The ◦ commutator may be expanded according to the Fedosov degree:

[a ◦, b] =
∑
n≥0

[a ◦, b](n),

where

deg([a ◦, b](n)) = deg(a) + deg(b) + n.

10 The Koszul–Tate differential δ

The Koszul–Tate differential is defined as

δ := ci

→
∂`

∂yi
= {$, ·}, deg(δ) = −1. (10.1)

In the second equality in equation (10.1) we have indicated that the Koszul–Tate differential is
an inner derivation in the algebra (A,+, 1

ih̄ [· ◦, ·]) with generator

$ := ciωijy
j = yjciω̃ij ∈ A11, deg($) ≥ 1,

which we shall refer to as the Hamiltonian for δ. The Koszul–Tate differential δ will serve as the
leading term in a resolution expansion of a deformed connection D, see Section 14 [29, 7, 27, 1,
2, 25, 35]. Since the ωij tensor is covariantly preserved, cf. equation (3.4), it follows immediately
that

(∇$) = −yjcick(∇kω̃ij) = 0

even without using the skewsymmetry (3.1) or the antisymmetry (3.2) (or the torsion-free con-
dition for that matter). As a corollary,

[∇, δ] = 0.

The δ-differential is nilpotent

δ2 ≡ 1
2
[δ, δ] = 0, (10.2)

and it respects the ◦ product

δ(a ◦ b) = (δa) ◦ b + (−1)paa ◦ (δb). (10.3)
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11 The Poincaré lemma and the homotopy operator δ−1

There exists a version of the Poincaré lemma where the rôle of the de Rham exterior derivative
d ≡ ci∂`/∂xi has been replaced by the Koszul–Tate differential δ ≡ ci∂`/∂yi, or equivalently,
where the x-coordinates are replaced by the y-coordinates. As we shall see below, the equation

(δb) = a, a ∈ A, (11.1)

may be solved locally with respect to an algebra element b ∈ A whenever a ∈ A is a given δ-
closed algebra element with no 00-part a00 = 0. (The 00-part a00 is the part of the algebra
element a that is independent of the c- and the y-variables, cf. Section 4.) In fact, a local
solution b to equation (11.1) may be extended to a global solution, since the total space is
contractible in the y-directions. We shall use this crucial fact to guarantee the existence of
global solutions to differential equations, whose differential operator is a deformation of the
Koszul–Tate differential δ, see Theorems 1 and 2. As usual when dealing with the Poincaré
Lemma, it is useful to consider the inner contraction

δ∗ := yj

→
∂`

∂cj
= yji(∂`

j),

which is dual to δ with respect to a y ↔ c permutation. The commutator

[δ, δ∗] = ci

→
∂`

∂ci
+ yi

→
∂`

∂yi

is a Euler vector field that counts the number of c’s and y’s. The homotopy operator δ−1 is
defined as

∀ a ∈ Amn : δ−1a :=
{

1
m+n(δ∗a) for (m,n) 6= (0, 0),
0 for (m,n) = (0, 0),

and extended by linearity to the whole algebra A. The homotopy operator δ−1 is not a first-
order differential operator, in contrast to δ∗. One easily obtains the following version of the
Poincaré lemma.

Lemma 1 (Poincaré lemma). There is only non-trivial δ-cohomology in the 00-sector with
neither c’s nor y’s. A more refined statement is the following: For all δ-closed elements a ∈ A
with no 00-part, there exists a unique δ∗-closed element b ∈ A with no 00-part, such that a = (δb).
Or equivalently, in symbols:

∀ a ∈ A :
{

(δa) = 0
a00 = 0

}
⇒ ∃! b ∈ A :


a = (δb)
(δ∗b) = 0
b00 = 0

 .

The unique element b is given by the homotopy operator δ−1a.

12 The Riemann curvature

See [12] and [32] for related discussions. The Riemann curvature R is defined as (half) the
commutator of the ∇ connection (2.6),

R =
1
2
[∇ ∧, ∇] = −1

2
dxj ∧ dxi ⊗ [∇i,∇j ] = −1

2
dxj ∧ dxi ⊗ ∂r

n Rn
ijk

→
dxk, (12.1)
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Rn
ijk =

→
dxn ([∇i,∇j ]∂r

k) = (−1)εnεi

( →
∂`

∂xi
Γn

jk

)
+ Γn

imΓm
jk − (−1)εiεj (i↔ j), (12.2)

where it is implicitly understood in the second equality of equation (12.1) that ∇i does not act
on dxj . If ∇i is supposed to act on dxj , one should include a torsion-term

dxi ∧ [∇i, dxk]∇k = −dxi ∧ Γi
k
jdxj∇k =

(−1)εi

2
T k

ijdxj ∧ dxi∇k, (12.3)

cf. equation (13.1). Note that the order of indices in the Riemann curvature tensor Rn
ijk is

non-standard. This is to minimize appearances of Grassmann sign factors. Alternatively, the
Riemann curvature tensor may be defined as

R(X, Y )Z =
(
[∇X ,∇Y ]−∇[X,Y ]

)
Z = Y jXiRij

n
kZ

k∂`
n,

where X = Xi∂`
i , Y = Y j∂`

j and Z = Zk∂`
k are vector fields of even Grassmann-parity. The

Riemann curvature tensor Rij
n

k reads in local coordinates

Rij
n

k = (−1)εn(εi+εj)Rn
ijk =

( →
∂`

∂xi
Γj

n
k

)
+ (−1)εjεnΓi

n
mΓm

jk − (−1)εiεj (i↔ j).

It is sometimes useful to reorder the indices in the Riemann curvature tensors as

Rijk
n = ([∇i,∇j ]∂`

k)
n = (−1)εk(εn+1)Rij

n
k. (12.4)

For a symplectic connection ∇, we prefer to work with a (0, 4) Riemann tensor (as opposed
to a (1, 3) tensor) by lowering the upper index with the symplectic metric (3.3). In terms of
Christoffel symbols it is easiest to work with expression (12.2):

Rn,ijk := ωnmRm
ijk(−1)εk

= (−1)εiεn

( →
∂`

∂xi
Γn,jk + (−1)εm(εi+εn+1)+εkΓm,inΓm

jk

)
− (−1)εiεj (i↔ j). (12.5)

In the second equality of equation (12.5) we have use the symplectic condition (3.4). If we use
the symplectic condition (3.4) one more time on the first term in equation (12.5), we derive the
following symmetry

Rn,ijk = (−1)(εi+εj)(εk+εn)+εkεn(k ↔ n). (12.6)

This symmetry becomes clearer if we instead start from expression (12.4) and define

Rij,kn := Rijk
mω̃mn = −(−1)εn(εi+εj+εk)Rn,ijk.

Then the symmetry (12.6) simply translates into a symmetry between the third and fourth
index:

Rij,kn = (−1)εkεn(k ↔ n).

We note that the torsion-free condition has not been used at all in this Section 12.
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13 The curvature two-form R

Let us now calculate the commutator of two ∇i operators using the realization (4.3) of the
covariant derivative:

−[∇i,∇j ] = Rij
n

kc
k

→
∂`

∂cn
+ Rij

n
ky

k

→
∂`

∂yn
= Rij

n
kc

k

→
∂`

∂cn
+

1
2
(−1)εk+εn{Rij,knynyk, ·}.

Using realization (4.3) the curvature two-form reads

R := ∇2 = ci[∇i, c
k]∇k −

1
2
cjci[∇i,∇j ]

=
(−1)εi

2
T k

ijc
jci∇k +

1
2
ckcjciRijk

n

→
∂`

∂cn
+

1
2
ykcjciRijk

n

→
∂`

∂yn

=
1
2
ykcjciRij,kn(−1)εn{yn, ·} = {R, ·}, (13.1)

where

R :=
1
4
ynykcjciRij,kn ∈ A22

is a Hamiltonian for the curvature two-form R. In this formalism the connection ∇i is supposed
to act on ck≡dxk, so the torsion-term (12.3) is included in the curvature two-form (13.1). In the
fourth equality of equation (13.1) we use the torsion-free condition (3.6) and the first Bianchi
identity for a torsion-free connection

0 =
∑

i,j,k cycl.

(−1)εiεkRijk
n (13.2)

to ensure that the x- and c-derivative term in equation (13.1) vanishes. As we shall see below,
it is vital that there is no x- and c-derivative term in the R curvature (13.1). This is the
main reason why the connection ∇ is assumed to be torsion-free. (See also the comment after
equation (16.1).) The first Bianchi identity (13.2) also implies that the Hamiltonian curvature
two-form R is δ-closed:

(δR) =
1
2
ckcjciRij,knyn(−1)εn = 0.

Similarly, the second Bianchi identity for a torsion-free connection

0 =
∑

i,j,k cycl.

(−1)εjεk∇kRij
n

m

implies that the ∇ operator preserves the Hamiltonian curvature two-form R:

(∇R) =
1
4
cjcick(∇kRij,nm)ymyn(−1)εn+εm = 0.

14 Higher-order D connection

We next deform the linear ∇ connection from equation (4.4) into a higher-order connection
D : Γ(TM)[[h̄]]×A → A,

D := ∇− δ +
1
ih̄

[r ◦, · ] = ∇+
1
ih̄

[r−$ ◦, · ] =
∑

n≥−1

(n)

D, deg(
(n)

D ) = n,
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with the help of a so-called deformation one-form

r = ⊕n≥0r(n) ∈ A1•, deg(r(n)) = n.

As we soon shall see, it is better to think of D as a deformation of (minus) the Koszul–Tate
differential δ rather than the connection ∇. The word “higher-order” refers to that D is not
necessarily a linear derivation of the tensor algebra (A,+,⊗), cf. equation (4.5). However, it
is a linear derivation of the ◦ algebra (A,+, ◦), similar to equations (7.2) and (10.3). The ∇
and D connections may be expanded in Fedosov degree:

∇ =
∑
n≥0

(n)

∇ , deg(
(n)

∇ ) = n,
(odd)

∇ = 0,

and

(n)

D :=


1
ih̄

[r(1)
◦, · ](0) − δ for n = −1,

(n)

∇ +
1
ih̄

n+2∑
k=0

[r(k)
◦, · ](n+2−k) for n ≥ 0.

(14.1)

Note that the connection D does not depend on r(0). Also note that it will be necessary to
assume that the (1)-sector vanishes

r(1) = 0

to ensure that (minus) the Koszul–Tate differential δ is the sole leading term in the D expan-
sion (14.1).

15 The RD curvature

The curvature two-form RD for the D connection is

RD := D2 =
(
∇+

1
ih̄

[r−$ ◦, · ]
)2

= ∇2 +
1
ih̄

[∇(r−$) ◦, · ] +
1

(ih̄)2
[r−$ ◦, [r−$ ◦, · ]] =

1
ih̄

[RD
◦, · ], (15.1)

where the Hamiltonian RD is

RD := R+∇(r−$) +
1

2ih̄
[r−$ ◦, r−$] = R+ (∇− δ)r +

1
2ih̄

[r ◦, r]− ω. (15.2)

In the third and fourth equality of equation (15.1) we use that ∇ respects the ◦ product (7.2)
and the Jacobi identity for the ◦ product, respectively. In the second equality of equation (15.2)
we use that (∇$) = 0, δ = {$, ·} and {$,$} = −2ω.

16 Flat/nilpotent D connection

The next main principle of Fedosov quantization is to choose the D connection to be flat, or
equivalently, nilpotent:

RD ≡ D2 ≡ 1
2
[D,D] = 0. (16.1)
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In other words, the odd D operator is a deformation of the odd Koszul–Tate differential δ,
such that the nilpotency is preserved, cf. equations (10.2) and (16.1). (This setup is similar to
the construction of an odd nilpotent BRST operator [29, 7, 27, 1, 2, 25, 35].) Since we want
to achieve the nilpotency (16.1), it now becomes clear why it was so important that the x-
and c-derivative terms in the R curvature two-form (13.1) vanish. This is because there are
no other x- and c-derivatives in the RD curvature two-form (15.1) to cancel them. (All other
derivatives in equation (15.1) are y-derivatives.) This crucial point is the main reason that the
∇ connection is assumed to be torsion-free. (References [38, 37] consider a hybrid model where
torsion is allowed in the y-sector but not in the c-sector to avoid the x- and c-derivatives. Note,
however, that they restrict the possible torsion by imposing both the independent conditions
(∇iω̃jk) = 0 and (dω) = 0 at the same time.) For the curvature two-form RD to be zero, it is
enough to let the Hamiltonian curvature two-form RD be Abelian, i.e., to let it belong to the
center

Z(A) := {a ∈ A | [A ◦, a] = 0} = {a ∈ A | {A, a} = 0} = A•0 ≡ Γ
(∧

•(T ∗M)
)

[[h̄]]

of the algebra (A,+, ◦). In other words, there should exist an Abelian two-form C ∈ A20, such
that

RD = −C − ω ∈ A20. (16.2)

Here ω is just the symplectic two-form (3.3) itself. (Recall that ω trivially belongs to the
center Z(A). The signs and the shift with ω in equation (16.2) are introduced without loss of
generality for later convenience.) The Abelian condition (16.2) turns into Fedosov’s r-equation

(δr) = R+ C + (∇r) +
1

2ih̄
[r ◦, r]. (16.3)

Theorem 1 (Fedosov’s 1st theorem). Let there be given an Abelian two-form C ∈ A20 that
is closed (≡symplectic),

(dC) = 0,

and that satisfies the boundary condition

C(0) = 0. (16.4)

Then there exists a unique one-form valued r-solution

r = ⊕n≥0r(n) ∈ A1•, deg(r(n)) = n,

to Fedosov’s equation (16.3) such that r is δ∗-closed,

(δ∗r) = 0, (16.5)

and satisfies the boundary condition

r(1) = 0 (16.6)

for the (1)-sector. As a consequence, it turns out that the first three sectors r(0), r(1) and r(2)

are identically zero.
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Proof. Let us split the Abelian condition (16.3) in Fedosov degree:

δr(0) ≡ 0, (16.7)

δr(n+1) = R(n) + C(n) +
n∑

k=0

(n−k)

∇ r(k)

+
1

2ih̄

k+`≤n+2∑
0≤k,`

[r(k)
◦, r(`)](n+2−k−`) for n ≥ 0. (16.8)

In equation (16.8) the Hamiltonian curvature two-form R and the closed Abelian two-form C
have also been expanded in Fedosov degree

R = ⊕n≥2R(n) ∈ A22, deg(R(n)) = n, R(odd) = 0,

C = ⊕n≥0C(n) ∈ A20, deg(C(n)) = n, C(odd) = 0.

A priori it is known that the (0)-sector r(0) = ciηi(x) is a y- and h̄-independent one-form. The
equation (16.7) is therefore automatically satisfied. It follows from equation (16.5) that

0 = δ∗r(0) = yiηi(x).

Therefore the (0)-sector

r(0) = 0

vanishes identically. Equation (16.8) with n = 0 is automatically satisfied because of the two
boundary conditions (16.4) and (16.6). Putting n = 1 in equation (16.8) yields δr(2) = 0. Hence
the (2)-sector r(2) is a one-form that is both δ-closed and δ∗-closed, and therefore it must be
identically zero as well:

r(2) = 0.

Since r(0), r(1) and r(2) are zero, the right-hand side expression for δr(n+1) in equation (16.8)
will only depend on previous entries r(≤n). Hence equation (16.8) is a recursive relation. The
consistency relation for the Abelian condition (16.3) is that the right-hand side should be δ-
closed. This is indeed the case:

δ(RHS) = δ

(
R+ C +∇r +

1
2ih̄

[r ◦, r]
)

= δR+ [δ,∇]r −∇(δr) +
1
ih̄

[δr ◦, r] = −D(δr)

= −∇
(
R+ C +∇r +

1
2ih̄

[r ◦, r]
)

+
1
ih̄

[
R+ C +∇r +

1
2ih̄

[r ◦, r] ◦, r

]
= 0. (16.9)

In the second equality of equation (16.9) we have used that δ respects the ◦ product. In the
third equality we have used that (δR) = 0, that [δ,∇] = 0, and that δ is nilpotent. In the fifth
(=last) equality we have used that (∇R) = 0, that (dC) = 0, that ∇2 = {R, ·}, that ∇ respects
the ◦ product, and the Jacobi identity for the ◦ product.

We now prove by induction on the Fedosov degree (n) that there exists a unique solution r(n+1)

to equation (16.8) if there exists a unique solution for all the previous entries r(≤n). This is
essentially a consequence of the Poincaré lemma 1. Uniqueness: The difference

∆r(n+1) := r′(n+1) − r′′(n+1)
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between two solutions r′(n+1) and r′′(n+1) must satisfy the homogeneous version δ(∆r(n+1)) = 0
of equation (16.8), i.e., with no right-hand side. Hence the difference ∆r(n+1) is a one-form that
is both δ-closed and δ∗-closed, and therefore it must be identically zero. Existence: Define

r(n+1) := δ−1(RHS(n)) for n ≥ 0,

where RHS(n) is the two-form valued right-hand side of equation (16.8). This clearly defines
a δ∗-closed one-form r(n+1). To check equation (16.8), it is enough to check that the two-form
RHS(n) is δ-closed. But this follows by linearity from the consistency relation (16.9), because ∇
and ◦ both carry positive Fedosov degree, and the first three r-sectors vanish to cancel the
negative Fedosov degree coming from the h̄−1-factor, so that only previous entries r(≤n) can
participate to the (n)-sector. �

We emphasize that the unique deformation one-form r from Fedosov’s 1st theorem is glo-
bally well-defined, since it basically appeared from inverting the Koszul–Tate δ differential, cf.
Section 11. Normally, one would choose a trivial Abelian two-form C ≡ 0. Also note that the
two-form R+ C is the lone source term that forces r to be non-trivial. We list here the first
few unique r-terms:

r(0) = 0, r(1) = 0, r(2) = 0, r(3) = δ−1
(
R(2) + C(2)

)
,

r(4) = δ−1
( (0)

∇ r(3)

)
, . . . .

Similarly, the first few terms in the D expansion read

(−1)

D = −δ,
(0)

D=
(0)

∇,
(1)

D=
1
ih̄

[r(3)
◦, · ](0), . . . .

17 Horizontal sections

Fedosov’s 1st theorem establishes the existence of a globally well-defined, unique, flat/nilpo-
tent D connection. Since this higher-order connection D is flat, it is possible to solve the
horizontal condition (Da) = 0 locally for a zero-form valued section a ∈ A0•. (In other words,
the flatness relation (16.1) is the local consistency relation for the horizontal condition.) As
we shall see below there is no obstruction in patching together local horizontal sections a into
global horizontal sections, basically because D is a deformation of (minus) the Koszul–Tate
δ-differential.

Theorem 2 (Fedosov’s 2nd theorem). Let there be given a quantum function (also known
as a symbol) f ∈ C∞(M)[[h̄]] ≡ A00. Then there exists a unique zero-form valued section

a = ⊕n≥0a(n) ∈ A0•, deg(a(n)) = n,

that is D-horizontal

(Da) = 0,

and that satisfies the boundary condition

a|y=0 ≡ a00 = f. (17.1)

Proof. First note that that a zero-form a ∈ A0• is automatically δ∗-closed:

(δ∗a) ≡ 0, a ∈ A0•.
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The horizontal condition (Da) = 0 becomes

(δa) = (∇a) +
1
ih̄

[r ◦, a]. (17.2)

Let us split the horizontal condition (17.2) in Fedosov degree:

δa(0) ≡ 0,

δa(n+1) =
n∑

k=0

(n−k)

∇ a(k) +
1
ih̄

k+`≤n+2∑
0≤k,`

[r(k)
◦, a(`)](n+2−k−`) for n ≥ 0. (17.3)

Note that the right-hand side expression for δa(n+1) only depends on previous entries a(≤n),
because r(0), r(1) and r(2) are zero. Hence equation (17.3) is a recursive relation. The consistency
relation for the horizontal condition (17.2) is that the right-hand side should be δ-closed. This
is indeed the case:

δ(RHS) = δ

(
∇a +

1
ih̄

[r ◦, a]
)

= [δ,∇]a−∇(δa)− 1
ih̄

[r ◦, δa] +
1
ih̄

[δr ◦, a]

= −∇
(
∇a +

1
ih̄

[r ◦, a]
)
− 1

ih̄

[
r ◦, ∇a +

1
ih̄

[r ◦, a]
]

+
1
ih̄

[
R+ C +∇r +

1
2ih̄

[r ◦, r] ◦, a

]
= 0. (17.4)

In the second equality of equation (17.4) we have used that δ respects the ◦ product. In the
third equality we have used that [δ,∇] = 0. In the fourth (=last) equality we have used that
∇2 = {R, ·}, that ∇ respects the ◦ product, and the Jacobi identity for the ◦ product.

We now prove by induction on the Fedosov degree (n) that there exists a unique solution
a(n+1) to equation (17.3) if there exists a unique solution for all the previous entries a(≤n). This
is essentially a consequence of the Poincaré lemma 1. Uniqueness: The difference

∆a(n+1) := a′(n+1) − a′′(n+1)

between two solutions a′(n+1) and a′′(n+1) must satisfy the homogeneous versions δ(∆a(n+1)) = 0
and ∆a(n+1)00 = 0 of the horizontal condition (17.3) and boundary condition (17.1), i.e., with no
right-hand sides. Hence the difference ∆a(n+1) is both δ-closed, δ∗-closed and with no 00-sector.
Therefore it must be identically zero. Existence: Define

a(0) := f(0),

a(n+1) := f(n+1) + δ−1(RHS(n)) for n ≥ 0,

where RHS(n) is the one-form valued right-hand side of equation (17.3). This clearly defines
a zero-form a(n+1) that satisfies the boundary condition (17.1). To check equation (17.3), it is
enough to check that the one-form RHS(n) is δ-closed. But this follows by linearity from the
consistency relation (17.4), because ∇ and ◦ both carry positive Fedosov degree, and the first
three r-sectors vanish to cancel the negative Fedosov degree coming from the h̄−1-factor, so that
only previous entries a(≤n) can participate to the (n)-sector. �

We list here the solution to the unique first-order correction a(1):

a(1) − f(1) = δ−1(
(0)

∇ a(0)) = yi

( →
∂`

∂xi
f(0)

)
,

which we’ll use in the next Section 18.
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18 The ∗ product

Fedosov’s 2nd theorem establishes an isomorphism

(A00,+, ∗) 3 f
Q7→ Q(f) ∈ (WD,+, ◦) (18.1)

between the algebra A00 of quantum functions (=symbols),

A00 = C∞(M)[[h̄]] = {a ∈ A | (δa) = 0 = (δ∗a)},

and the algebra of zero-form valued horizontal sections,

WD := {a ∈ A0• | (Da) = 0}.

That the vector space (WD,+, ◦) is an subalgebra, i.e., closed with respect to the ◦ product,
follows basically because the connection ∇ respects the ◦ product, cf. equation (7.2). The ∗
product in diagram (18.1) is by definition induced from the ◦ product as

f ∗ g := Q−1 (Q(f) ◦Q(g)) .

This ∗ product obviously inherits associativity from the ◦ product, and the Q map (18.1) is
obviously an algebra isomorphism. Moreover, the inverse map

(WD,+, ◦) 3 a
Q−1

7→ a|y=0 ≡ a00 ∈ (A00,+, ∗)

is simply the restriction to y=0, cf. boundary condition (17.1). It remains to check that the
classical boundary condition (2.1) holds. Let us first expand to the appropriate orders:

Q(f) = a(0) + a(1) + a(2) +O(h̄2, yh̄, y3),

Q(g) = b(0) + b(1) + b(2) +O(h̄2, yh̄, y3),

Q(f) ◦Q(g) = Q(f)Q(g) +
ih̄

2
Q(f)

←
∂r

∂yj
mjk

→
∂`

∂yk
Q(g) +O(h̄2).

Therefore

lim
h̄→0

f ∗ g = f(0)g(0), (18.2)

lim
h̄→0

f ∗ g − f(0)g(0)

ih̄
=

a(2)|y=0

ih̄
b(0) + a(0)

b(2)|y=0

ih̄
+

1
2
a(1)

←
∂r

∂yj
mjk

(0)

→
∂`

∂yk
b(1),

or equivalently,

lim
h̄→0

f ∗ g − fg

ih̄
=

1
2
f(0)

←
∂r

∂xj
mjk

(0)

→
∂`

∂xk
g(0). (18.3)

Equations (18.2) and (18.3) are precisely the content of the classical boundary condition (2.1).
It is also easy to check condition (2.2).

Note added. The author has kindly been informed by a referee of the existence of the Ph.D.
Thesis [20], which the author has been unable to obtain, and which considers Fedosov quanti-
zation on supermanifolds.
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Editorial Comments. This paper presents the Fedosov construction in a fairly general frame-
work. It is generally known that the tensor need not be skew-symmetric as long as its skew-
symmetric part is non-degenerate, can be a series in the deformation parameter, and that Fe-
dosov’s construction has also been extended to the case of super-manifolds. However it appears
from the last reports that there is a point in publishing the unified presentation of the author,
which should be viewed as a good review of Fedosov’s construction in a quite general context,
even if the author overemphasizes somewhat the importance of the generalizations he considers.
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