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Abstract. Parametrization of 4 x 4-matrices G of the complex linear group GL(4,C) in
terms of four complex 4-vector parameters (k, m,n,l) is investigated. Additional restrictions
separating some subgroups of GL(4, C') are given explicitly. In the given parametrization, the
problem of inverting any 4 x4 matrix G is solved. Expression for determinant of any matrix G
is found: det G = F(k,m,n,l). Unitarity conditions GT = G~ have been formulated in the
form of non-linear cubic algebraic equations including complex conjugation. Several simplest
solutions of these unitarity equations have been found: three 2-parametric subgroups Gi,
G2, G3 — each of subgroups consists of two commuting Abelian unitary groups; 4-parametric
unitary subgroup consisting of a product of a 3-parametric group isomorphic SU(2) and 1-
parametric Abelian group. The Dirac basis of generators Ay, being of Gell-Mann type,
substantially differs from the basis \; used in the literature on SU(4) group, formulas
relating them are found — they permit to separate SU(3) subgroup in SU(4). Special way to
list 15 Dirac generators of GL(4,C) can be used {Ax} = {; ®3;® (a;,V3; = K& LO M)},
which permit to factorize SU(4) transformations according to S = @@ e?F kK gilLgimM
where two first factors commute with each other and are isomorphic to SU(2) group, the
three last ones are 3-parametric groups, each of them consisting of three Abelian commuting
unitary subgroups. Besides, the structure of fifteen Dirac matrices Ay permits to separate
twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be
used as bigger elementary blocks in constructing of a general transformation SU(4). It
is shown how one can specify the present approach for the pseudounitary group SU(2,2)
and SU(3,1).
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1 Introduction

The unitary groups play an important role in numerous research areas: quantum theory of
massless particles, cosmology models, quantum systems with dynamical symmetry, nano-scale
physics, numerical calculations concerning entanglement and other quantum information pa-
rameters, high-energy particle theory — let us just specify these several points:

e SU(2,2) and conformal symmetry, massless particles [7, 19, 20, 39, 72];
e classical Yang-Mills equations and gauge fields [64];
e quantum computation and control, density matrices for entangled states [2, 31, 65];

e geometric phases and invariants for multi-level quantum systems [55];

*This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24-30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA /symmetry2007.html
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high-temperature superconductivity and antiferromagnets [36, 52];

composite structure of quarks and leptons [67, 68, 51];
SU(4) gauge models [73, 29];

classification of hadrons and their interactions [30, 34, 28].

Because of so many applications in physics, various parametrizations for the group elements
of unitary group SU(4) and related to it deserve special attention. Our efforts will be given to
extending some classical technical approaches proving their effectiveness in simple cases of the
linear and unitary groups SL(2,C') and SU(2), so that we will work with objects known by every
physicist, such as Pauli and Dirac matrices. This paper, written for physicists, is self-contained
in that it does not require any previous knowledge of the subject nor any advanced mathematics.

Let us start with the known example of spinor covering for complex Lorentz group: consider
the 8-parametric 4 x 4 matrices in the quasi diagonal form [18, 32, 45]

ko + ko 0
G =

0 mo — mao
The composition rules for parameters k = (ko, k) and m = (mg, m) are

K = khko+ Kk, k' =k\k+ k'ko+ ik’ x k,

mg = mymo +m'm, m” = mym +m/'my —im' x m.

With two additional constraints on 8 quantities kg — k> =41, m% —m? = +1, we will arrive at
a definite way to parameterize a double (spinor) covering for complex Lorentz group SO(4,C).
At this, the problem of inverting of the G matrices with unit determinant det G is solved straight-
forwardly: G = G(ko, k,mg, m), G~! = G(kg, —k, mg, —m). Transition from covering 4-spinor
transformations to 4-vector ones is performed through the known relationship Gy*G~! = ~°L_%
which determine 2 = 1 map from +G to L.

There exists a direct connection between the above 4-dimensional vector parametrization
of the spinor group G(ks,m,) and the Fedorov’s parametrization [32] of the group of complex
orthogonal Lorentz transformations in terms of 3-dimensional vectors Q = k/ko, M = m/my,
with the simple composition rules for vector parameters

_Q+Q+iQ'xQ
B 1+ Q'Q

Evidently, the pair (Q, M) provides us with possibility to parameterize correctly orthogonal
matrices only. Instead, the (k,, m,) represent correct parameters for the spinor covering group.
When we are interested only in local properties of the spinor representations, no substantial
differences between orthogonal groups and their spinor coverings exist. However, in opposite
cases global difference between orthogonal and spinor groups may be very substantial as well as
correct parametrization of them.

Restrictions specifying the spinor coverings for orthogonal subgroups are well known [32].
In particular, restriction to real Lorentz group O(3,1) is achieved by imposing one condition
(including complex conjugation) (k,m) = (k,k*). The case of real orthogonal group O(4) is
achieved by a formal change (transition to real parameters) (ko, k) = (ko,ik), (mo, m) =
(mo,im), and the real orthogonal group O(2,2) corresponds to transition to real parameters
according to (k}o, kl, k‘g, kg) — (k}o, kjl, kQ, ikﬁg), (mo, mi, mao, m3) — (mo, mi, ma, img).

To parameterize 4-spinor and 4-vector transformations of the complex Lorentz group one
may use curvilinear coordinates. The simplest and widely used ones are Euler’s complex angles

M+ M —iM xM
a 1+ MM ’

QI/ , M//
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(see [32] and references in [18]). In general, on the basis of the analysis given by Olevskiy [58]
about coordinates in the real Lobachevski space, one can propose 34 different complex coordinate
systems appropriate to parameterize the complex Lorentz group and its double covering.

A particular, Euler angle parametrization is closely connected with cylindrical coordinates
on the complex 3-sphere, one of 34 possible coordinates. Such complex cylindrical coordinates
can be introduced by the following relations [18]:

ko = cos pcos z, ks = 1 cos psin z, k1 = isin p cos ¢, ko = isin psin ¢,

mgy = cos R cos Z, mg = 1cos Rsin Z, my = ¢sin R, mo = ¢ sin Rsin .

Here 6 complex variables are independent, (p, z, ¢), (R, Z, ®), additional restrictions are satisfied
identically by definition. Instead of cylindrical coordinates in (p, z,¢) and (R, Z,®) one can
introduce Euler’s complex variables («, 3,7) and (A, B,I") through the simple linear formulas:

a=q¢+z, 6 =2p, y=¢—z, A=d+ 7, B =2R, r=o-2.

Euler’s angles («, 3,7) and (A, B,T") are referred to k,, m,-parameters by the formulas (see
in [32])

cosB=k K+ K+ kS, sinf =2k — k3 k2 - k2,

—tikok1 + koks . —ikoks — k1ks
cos o = , sina = ,
Vg — k3y/—k] — k3 Vg — k3y/—k] — k3
—ikok1 — koks . —tkoko + k1ks
cosy = , siny = )
NN Vkg — K3/ —kf — k3
cos B = mg — m3 +m3 +m3, SinB:2\/m(2)—m§\/—m%—m%,
+im0m1 + moms . +im0m2 — mims
cos A = sin A =
\/mo m3\/_m1 m2 \/mo m3\/—m1 m2
+zm0m1 moms . —|—Zm0m2 + mims
cosI' = sinl’ =

E i —mE —m} N N

Complex Euler’s angles as parameters for complex Lorentz group SO(4,C) have a distin-
guished feature: 2-spinor constituents are factorized into three elementary Euler’s transforms
(0! stands for the known Pauli matrices):

B(k‘) _ e—iasa/2€iolﬁ/26+i03'y/2 c SL(27C),
B(m) = e—ia3F/2€iolB/2€+i03A/2 c SL(2,C)’.

The main question is how to extend possible parameterizations of small orthogonal group
S0(4,C) and its double covering to bigger orthogonal and unitary groups'. To be concrete we
are going to focus attention mainly on the group SU(4) and its counterparts SU(2,2), SU(3,1).

There exist many publications on the subject, a great deal of facts are known — in the following
we will be turning to them. A good classification of different approaches in parameterizing finite
transformations of SU(4) was done in the recent paper by A. Gsponer [35]. Recalling it, we will
try to cite publications in appropriate places though many of them should be placed in several
different subclasses — it is natural because all approaches are closely connected to each other.

'In this subject, especially concerned with generalized Euler angles, we have found out much from Murnaghan’s
book [56].
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e Canonical form [53, 54, 56, 57, 60, 61, 75]. They use explicitly the full set of the
Lie generators® so that the group element is expressed as the exponential of the linear
combination

G = expn[i(al)\l + 4 CLnAN)]

the infinite series of terms implied be exp — symbol is usually very difficult to be summed
in closed form — though there exists many interesting examples of those:

e Non-canonical forms [3, 4, 8, 9, 11, 35, 38, 40, 42, 57, 59, 61, 63, 74]. As a consequence
of the Baker—Campbell-Hausdorff theorem [1, 26, 37] it is possible to break-down the
canonical form into a product

G = exp,, (1) X -+ X exp,, k), nM 4. 4k =N

with the hope that exp,,:) could be summed in closed form and also that these factors have
simple properties. This possibility for the groups SU(4) and SU(2,2) will be discussed in
more detail in sections below.

e Product form [12, 13, 14, 16, 27, 38, 56, 57]. An extreme non-canonical form is to
factorize the general exponential into a product of n simplest 1-parametric exponentials

G = expliaiA\1] X - -+ X explianAn].

e Basic elements (the main approach in the present treatment) [8, 9, 35, 40, 44, 45, 46,
47, 74]. This way is to expand the elements of the group (matrices or quaternions) into
a sum over basis elements and to work with a linear decomposition of the matrices over
basic ones:

G =2\ \m, G = xp m, Mo =1, ke{0,1,...,N},
G"'=G'a, TN = T AT = Th Tp A A, (1.1)

as by definition the relationships A\, A = empi A must hold, the group multiplication rule
for parameters x; looks

T} = CmnkTimTn.- (1.2)

The main claim is that the all properties of any matrix group are straightforwardly deter-
mined by the bilinear function, the latter is described by structure constants e, entering
the multiplication rule A\, A\p, = emni k-

e Hamilton—Cayley form [8, 9, 11, 12, 13, 14, 15, 16, 17, 33, 63]. It is possible to expand
the elements of the group into a power series of linear combination of generators:

)\(CL) = i(al)\l —+ o+ GN)\N),

because of Hamilton—Cayley theorem this series has three terms for SU(3) and four terms
for SU(4):

SU3).  Gla) = eo(a)] +e1(a)A(a) + e2(a)\*(a),
SU(4), G(a) = eo(a)] + e1(a)Ma) + ea(a)N?(a) + e3(a)\3(a).

2In the paper we will designate generators in Dirac basis by A; whereas another set of generators mainly used
in the literature will be referred as \;.
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e Euler-angles representations [10, 21, 22, 23, 24, 25, 35, 42, 56, 57, 69]. In Euler-angles
representations only a sub-set {\,,} C {An} of the Lie generators are sufficient to produce
the whole set (for SU(N) we need only 2(N — 1) generators). In that sense all other way
to obtain the whole set of elements are not minimal.

In our opinion, we should search the most simplicity in mathematical sense while work-
ing with basic elements A\; and the structure constants determining the group multiplication
rule (1.1), (1.2).

The material of this paper is arranged as follows.

In Section 2 an arbitrary 4 x 4 matrix G € GL(4,C) is decomposed into sixteen Dirac
matrices?

ko +kd ng—ndo

G = AI +iB~° +iAy' + By'y® + Frpomn = ) (1.3)

*l[) -1 mo — mao

for definiteness we will use the Weyl spinor basis; four 4-dimensional vectors (k,m,l,n) are
definite linear combinations of A, B, A;, Bj, Fiu, — see (2.4). In such parameters (2.3), the
group multiplication law G” = G’G is found in explicit form.

Then we turn to the following problem: at given G = G(k, m,n,[) one should find parameters
of the inverse matrix: G=' = G(K',m/,n’,l') — expressions for (k’,m’,n',I') have been found
explicitly (for details of calculation see [62]). Also, several equivalent expressions for determinant
det G have been obtained, which is essential when going to special groups SL(4,C) and its
subgroups.

In Section 3, with the help of the expression for the inverse matrix G=1(k’,m/,l’,n’) we
begin to consider the unitary group SU(4). To this end, one should specify the requirement of
unitarity Gt = G~! to the above vector parametrization — so that unitarity conditions are given
as non-linear cubic algebraic equations for parameters (k, m, [, n) including complex conjugation.

In Section 4 we have constructed three 2-parametric solutions of the produced equations of
unitarity?, these subgroups G4, G2, G3 consist of two commuting Abelian unitary subgroups.

In Section 5 we have constructed a 4-parametric solution® — it may be factorized into two
commuting unitary factors: G = Go ® SU(2) — see (5.15).

The task of complete solving of the unitarity conditions seems to be rather complicated. In
remaining part of the present paper we describe some relations of the above treatment to other
considerations of the problem in the literature. We hope that the full general solution of the
unitary equations obtained can be constructed on the way of combining different techniques
used in the theory of the unitary group SU(4) and it will be considered elsewhere.

We turn again to the explicit form of the Dirac basis and note that all 15 matrices are of
Gell-Mann type: they have a zero-trace, they are Hermitian, besides their squares are unite:

SpA =0, (A)? =1, (AT =A, Ac{Ay, k=1,...,15},
Exponential function of any of them equals to

Uj = e = cos a; +isinajA;, det %™ = 41, Uj+ = Uj_l, a; € R.
Evidently, multiplying such 15 elementary unitary matrices (at real parameters x;) gives again

an unitary matrix

U = ezalAl ezagAg . eza14A14eza15Al5’ U+ — e_ml/\le—mk/\k L. e—zajAj e—zaiAi'

3That Dirac matrices-based approach was widely used in physical context (see [5, 8, 9, 6, 45, 48, 49, 50, 66|
and especially [40]).

4At this, the unitarity equations may be considered as special eigenvalue problems in 2-dimensional space.

5The problem again is reduced to solving of a special eigenvalue problem in 2-dimensional space.
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At this there arises one special possibility to determine extended Euler angles a1,...,a15. For
the group SU(4) the Euler parametrization of that type was found in [69]. A method to solve
the problem in [69] was based on the use yet known Euler parametrization for SU(3) — the latter
problem was solved in [25]. Extension to SU(N) group was done in [70, 71]. Evident advantage
of the Euler angles approach is its simplicity, and evident defect consists in the following: we
do not know any simple group multiplication rule for these angles — even the known solution
for SU(2) is too complicated and cannot be used effectively in calculation.

In Section 6 the main question is how in Dirac parametrization one can distinguish SU(3),
the subgroup in SU(4). In this connection, it should be noted that the basis A; used in [25]
substantially differs from the above Dirac basis A; — this peculiarity is closely connected with
distinguishing the SU(3) in SU(4). In order to have possibility to compare two approaches we
need exact connection between )\; and A; — we have found required formulas®. The separation
of SL(3,C) in SL(4,C) is given explicitly, at this 3 x 3 matrix group is described with the help
of 4 x 4 matrices”. The group law for parameters of SL(3,C) is specified.

In Section 7 one different way to list 15 generators of GL(4,C) is examined®

a1 =9"2, =i, az=9"2  Bi=i*y, Ba=iy, By =il

these two set commute with each others a8, = By, and their multiplications provides us with
9 remaining basis elements of fifteen:

A = o, B1 = a1 /32, Ci = o133,
Ag = af, By = a3, Cy = aaf33,
Az = a3, B3 = a3 f32, C3 = azfs.

We turn to the rule of multiplying 15 generators «;, G;, A;, B;, C; and derive its explicit form
(see (7.3)).

Section 8 adds some facts to a factorized structure of SU(4). To this end, between 9 generators
we distinguish three sets of commuting ones

K = {AlaBQ>C3}7 L:{017A27B3}7 M = {BI>027A3}7
an arbitrary element from GL(4,C) can be factorized as follows’

G — (idd ,ibf ,ikK LilL MM (1.4)
where K, L, M are 3-parametric groups, each of them consists of three Abelian commuting
unitary subgroups!’. On the basis of 15 matrices one can easily see 20 ways to separate SU(2)
subgroups, which might be used as bigger elementary blocks in constructing a general transfor-
mation'!.

In Sections 9 and 10 we specify our approach for pseudounitary groups SU(2,2) and SU(3,1)
respectively. All generators A} of these groups can readily be constructed on the basis of the
known Dirac generators of SU(4) (see (9.1)).

5This problem evidently is related to the task of distinguishing GL(3,C) in GL(4,C) as well.

"Interesting arguments related to this point but in the quaternion approach are given in [35].

8Such a possibility is well-known — see [40]; our approach looks simpler and more symmetrical because we use
the Weyl basis for Dirac matrices instead of the standard one as in [40].

9These facts were described in main parts in [40].

'"Note that existence of three Abelian commuting unitary subgroups was shown in [40] as well.

1This possibility was studied partly in [13, 14] on the basis of the Hamilton—Cayley approach.
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2 On parameters of inverse transformations G}

Arbitrary 4 x 4 matrix G € GL(4,C) can be decomposed in terms of 16 Dirac matrices (such an
approach to the group L(4, C') was discussed and partly developed in [5, 8, 9, 6, 45, 48, 49, 50, 66]
and especially in [40]):

G = AI +iB~° + Ay + Bin'y® + Frunomn, (2.1)

where

b b b .
Y+ =29, A= -y,

0% = 1(y"" =), ¢ =diag(+1,—1,-1,~1).
Taking 16 coefficients A, B, A;, Bj, Fy,, as parameters in the group G = G(A, B, A;, By, Finn)
one can establish the corresponding multiplication law for these parameters:

G = A'I +iB'y° + Ay + By'y® + EL L omn,

G = Al +iB~° + Ay + Biv'y® + FrnGmm,

G"=G'G = A”I+ iB"’y5 + iAg/,}/l + Bl,/7l75 + Fé/mamm
where

A"=ANA-BB-AA - BB - LF,FF,
B"=A'B+B'A+ AB'— BJA' + LF) Foqe™,
Al = A’A; — B'Bj+ AJA+ B/B + A*Fy,

+ Fl'kAk + %Bsznelkmn + %F;mBkelmnk,
B! = A'Bj+ B'A; — A)B + B/A+ B*Fy,

+ FpBY + S AL ™™ + L F Ape™,,

F' = AF, +F. A—(A A, —A A, — (B, B, — B.B,,) (2.2)
+ A|Bye*mm — Bl Age*™ + 1B Fyet, .+ AF BN+ (F) L FR, — FLFR).

The latter formulas are correct in any basis for Dirac matrices. Below we will use mainly Weyl
spinor basis:

a

o ea
= 0

O.a

-I 0
0 41|

) ot = (I7Jj)a ot = (17_0j)’ /75 = '

With this choice, let us make 3 + 1-splitting in all the formulas:

ko+kd ng—mnd
GeGL4,C), G=| "% TR (2.3)
—lg— 18 mg—mdé
where complex 4-vector parameters (k,[,m,n) are defined by [18]:
ko=A—1iB, kj = aj —1b;, mo= A+ 1B, m; = a; + tbj,
lo = By — iAoy, lj = Bj — iAj, ng = By + iAo, n; = Bj + ZAJ (24)

For such parameters (2.3), the composition rule (2.2) will look as follows:

(K", m”n" 1" = (Km0’ 1) (k,m;n, 1),
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k()/ = k6k0 + Kk - n6l0 + n’l,

k" = kjk + k'ko + ik’ x k —ngl + n'ly +in’ x L,

my = momo +m'm — l[ng + U'n,

m” =mym +m'mo —im’ x m — ljn +U'ng —il' x n,

ng = kono — k'n + ngmo + n'm,

n” = kijn — k'ng + ik’ x n+nim +n'my —in' x m,

Iy = loko + Uk + mply — m/l,

U =10k +Uko+il' x k+myl —m'ly —im/ x L. (2.5)

Now let us turn to the following problem: with given G = G(k, m,n,l) one should find
parameters of the inverse matrix: G=1 = G(k',m’,n’,l'). In other words, starting from

+(ko + k3)  +(k1 — iko) +(no — n3) —(n1 —ing)
+(k1 +ike) +(ko — k3) —(n1 + ing) +(n —|—n)

Glomm D= 20,4t “(h-il)  +Hmo—m) —(m—imy) [ 2O
—(ll + ilQ) —(lo — lg) —(m1 + img) (mo + mg)

one should calculate parameters of the inverse matrix G—'. The problem turns to be rather
complicated!?, the final result is (D = det G, (mn) = mgng — mn, and so on)

k) = D™ [ko(mm) 4+ mo(In) + lo(nm) — no(Im) + il(m x n)],
E = D*l[—k( m) —m(Iln) — l(nm) + n(lm) + 2l x (n x m)
+imo(n x 1) +ilp(n x m) + ing(l x m)],
mly = D™ ko (In) + mo(kk) — lo(kn) + nolk) + in(l x k)],
m’ = D ~k(In) — m(kk) + U(kn) — n(kl) + 2n x (I x k)
+ino(k x 1) +ilg(k x n) + iko(n x 1],
b = D7 ko(ml) — mo(kl) — lo(km) — no(ll) + im(l x k)],
U'= D7 [+k(ml) — m(kl) — l(km) — n(ll) + 2m x (k x 1)
+ imo(l X k) + iko(l x m) + ilp(m x k)],
nfy = D™ —ko(nm) + mo(kn) — lo(nn) — no(km) + ik(m x n)],
n' = D7 [~k(nm) + m(kn) — l(nn) — n(km) + 2k x (m x n)
+ iko(m x n) + imo(k x n) + ing(m x k)]. (2.7)

Substituting equations (2.7) into equation G~!G = I one arrives at

Ikg:k‘ék‘o—i—k/k—n{)lo—l-n,l,
0=~k"=kyk+K'ko+ik' x k —nol +n'lyp+in' x 1,
D = m{ = mymo +m'm — l{ng +U'n,
0=m"=mim+m'myg—im' xm —I{n+1Uny—il' xn,
0 =ng = kyno — k'n + nimo + n'm,
0=n"=kin—k'ng+ ik’ x n+nym+n'my —in’ x m,
0 =15 = lHko + Uk + m{lo — m'l,
0=10"=1{k+Uky+il' x k+ml —m'ly—im' x .

12For more details see [62]; also see a preceding paper [41].
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After calculation, one can prove these identities and find the determinant:
D = det G(k,m,n,l) = (kk)(mm) + (Il)(nn) + 2(mk)(In) + 2(lk)(nm) — 2(nk)(Im)
+ 2i[kol(m x n) + mok(n x 1) + lpk(n x m) 4+ npl(m x k)]
+ 4(kn)(ml) — 4(km)(nl). (2.8)

Let us specify several more simple subgroups.

Case A

Let 0-components kg, mg, lg, ng be real-valued, and 3-vectors k, m, I, n be imaginary. Per-

forming in (2.5) the formal change (new vectors are real-valued)
k = ik, m = im, | =1l n = 1in,
ko +1kd ng—ind
—lg —ild mg—imo 7
then the multiplication rules (2.5) for sixteen real variables look as follows
ky = koko — K'k — nglo — n'l,
E'=kik+EKko— K xk—njl+n'ly—n' x,
m{ = momo —m'm — l{ng — U'n,
m” =mym +m'mo+m' xm —[n+1Uny+1 xn,
ng = kyno + k'n + ngmo — n'm,
n’ =kjm — k'ng — k' x n+nym +n'mo +n’ x m,
0 = loko — Uk + mglo + m',
U=k +Uko—U xk+myl —m'lo+m’ x .
Correspondingly, expression for determinant (2.8) becomes
D = [kk][mm] + [ll][nn] + 2[mk][In] + 2[lk][nm] — 2[nk][Im]
+ 2[kol(m x m) + mok(n x 1) + lpk(n x m) + nol(m X k)]
+ 4(kn)(ml) — 4(km)(nl),

where the notation is used: [ab] = agby + ab.

Case B

Equations (2.5) permit the following restrictions:

* *
ma - kav la - n(zu

and become
ki = koko + K'k — nong +n'n*,
k' = kik + K'ko + ik’ x k —njn* + n/n{ +in’ x n*,
ng = kono — k'n + noky + n'k*,
n”’ = kjn — k'ng + ik’ x n +nik* + n'k} —in’ x k*.
Determinant D is given by
D = (kk)(kk)* 4+ (nn)*(nn) + 2(k*k)(n*n) + 2(n*k)(nk*) — 2(nk)(nk)*
+ 2i[kok™ (n x n*) — kgk(n* x n) + ngn(k x k*) — ngn*(k* x k)]
+ 4(kn)(k*n*) — 4(kk™)(nn™).
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Case C
In (2.9) one can impose additional restrictions

mo = ko, lo = no, m = —k, l=—n; (2.10)
at this G(ko, k,ng, n) looks

(ko +ikd)  (ng —ing)

G =
—(no — ind) (ko + ikd)

)

and the composition rule is
ki = kjko — K'k — njno + n'n,
k" = kjk + Kk'ko — K x k+nyn +mn'ng+n’ xn,
ng = kono + k'n + nyko + n'k,
n’ =kimn —k'ng— k' x n —npk +n'kp —n' x k.
Determinant equals to
det G = [kk|[kk] + [nn][nn] + 2(kk)(nn) + 2(nk)(nk) — 2[nk]|[nk])
+ 4(kn)(kn) — 4(kk)(nn).

Case D

There exists one other subgroup defined by

k k& 0
Na =0, lo=0, _ | o+ k&) N
0 (mg — ma)

the composition law (2.5) becomes simpler

ky = koko + K'k, k" = kik + k'ko + ik’ x k,

m{ = momo +m'm,m” = mim + m'my —im’ x m,
as well as the determinant D

det G = (kk)(mm).

If one additionally imposes two requirements (kk) = +1, (mm) = +1, the Case D describes
spinor covering for special complex rotation group SO(4,C); this most simple case was consid-
ered in detail in [18].
It should be noted that the above general expression (2.8) for determinant can be transformed
to a shorter form
det G = (kk)(mm) + (nn)(ll) + 2[kn][ml]
— 2(k0n + nok — ik x n)(mol + lom + im X l),
which for the three Cases A, B, C becomes yet simpler:
(A):  det G = [kk][mm] + [nn][ll] + 2(kn)(ml)
+ 2(kon + nok + k x n)(mol + lymm — m x 1),
(B):  detG = (kk)(K*k™) + (nn)(n*n*) + 2[kn][k™n"]
— 2(kon + nok — ik x n)(kgn™ + nok™ + ik* x n*),
(C):  detG = [kk]*> 4 [nn]? + 2(kn)? — 2(kon + nok + k x n)2.
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3 Unitarity condition

Now let us turn to consideration of the unitary group SU(4). One should specify the requirement
of unitarity G = G~! to the above vector parametrization. Taking into account the formulas

o+ ks + k' -5 — U6 1 ky +K'c  nj—n'd (3.1)
ny —n*ad my—m*c | U\, —UG m)—m'c |’ '
which can be represented differently
+ _ * ok, % *, * g% * ok -1 _ N W roo! gl oq/

G" = G(ky, kK" ;my, m™; =15, 1", —ng, n™), G~ = G(ky, k'smg, m'sng,n', 1, 1),
we arrive at

ki = kp, k* =K, my = my, m* =m/,

=1 = ny, I*=n/, —ng =1, n* =1, (3.2)

With the use of expressions for parameters of the inverse matrix with additional restriction
det G = +1 equations (3.2) can be rewritten as

k§ = +ko(mm) + mo(In) + lo(nm) — no(Im) + il (m x n),
mg = +mo(kk) + ko(nl) + no(lk) — lo(nk) — in(k x 1),
k* = —k(mm) — m(ln) — l(nm) + n(lm) + 2l x (n x m)
+ imo(n x 1) +ilp(n x m) +ing(l x m),
m* = —m(kk) — k(nl) — n(lk) + l(nk) + 2n x (I x k)
—iko(l x n) —ing(l x k) —ilp(n x k),
Iy = +ko(nm) — mo(kn) + lo(nn) + no(km) + ik(n x m),
ng = +mo(lk) — ko(ml) + no(ll) + lo(mk) —im(l x k),
" = —k(nm) +m(kn) — l(nn) — n(km) + 2k x (m x n)
+ iko(m x n) +imo(k x n) + ing(m x k),
n* = —m(kl) + k(ml) — n(ll) — I(mk) + 2m x (k x 1) —imo(k x 1)
—iko(m x 1) — ilo(k x ™). (3.3)

Thus, the known form for parameters of the inverse matrix G~! makes possible to write easily
relations (3.3) representing the unitarity condition for group SU(4). Here there are 16 equations
for 16 variables; evidently, not all of them are independent.

Let us write down several simpler cases.

Case A
With formal change'?

k = ik, m — im, l =il n — in, (3.4)
equations (3.3) give

ko = +ko[mm] + mo[in] + lo[nm] — ng[lm] + l(m x n),
mo = +mg[]€l€] + ko[nl] + no[lk] - lo[nk] — n(k: X l),

13Tet 0-components ko, mo, lo, no be real-valued, and 3-vectors k, m, I, n be imaginary.
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k = k[mm| + m[ln] + l[nm] — n[lm] + 2l x (n x m)
+mo(n x 1) +lp(n x m) +ny(l x m),

m = +mlkk| + k[nl] + n[lk] — U[nk] +2n x (I x k)

—ko(l xn) —no(l x k) —lp(n x k),

lo = +ko[nm] — mo[kn] + lo[nn] + no[km] + k(n x m),

no = +mo(lk] — ko[ml] + no[ll] + lo[mk] — m(l x k),

l = +k[nm] — mlkn] + l[nn] + n[km] 4+ 2k x (m x n)
+ ko(m x n) + mo(k x n) +no(m x k),

n = +mlkl] — k[ml] + n[ll] + l[mk] + 2m x (k x 1)
—mo(k x 1) — ko(m x 1) —lo(k x m).

Here there are 16 equations for 16 real-valued variables.

Case B

Let
m0:k87 m:k:*, ZQZTLS, l:n*,
ko = mg, k=m", no = g, n=1"

or symbolically m = k*, | = n*. The unitarity relations become
ky = +ko(E*E") + ki (n*™n) + ng(nk™) — no(n* k™) + in*(k* x n),
k* = —k(K*k™) — kK" (n"n) — n*(nk™) + n(n*k")
+2n* x (n x k") +ikg(n x n*) + ing(n x k*) + ing(l x m),
ny = +kg(n*k) — ko(E*n*) + no(n*n*) + ng(k*k) — ik™(n* x k),
n' = —k*(kn*) + k(k™n*) — n(n*n*) — n*(k*k)
+2k* x (k x n*) —iki(k x n*) —iko(k* x n*) —ing(k x k¥),
and 8 conjugated ones
ko = +ko(kk) + ko(nn™) + no(n*k) — ng(nk) — in(k x n’™),
k= —k*(kk) — k(nn*) — n(n*k) + n*(nk)
+2n x (n* x k) — iko(n* x n) —ing(n* x k) —inj(n x k),
no = +ko(nk™) — kg(kn) + ng(nn) + no(kk™) + ik(n x k*),
n = —k(nk™) + k*(kn) — n*(nn) — n(kk")
+ 2k x (K™ x n) +iko(k* x n) 4+ ikj(k x n) +ing(k* x k).

It may be noted that latter relations are greatly simplified when n = 0, or when k = 0. Firstly,
let us consider the case n = 0:

ks = +ko(E*E"), k* = —k(K*k).
Taking in mind the identity
det G = (kk)(kk)" = +1 = (kk) = +1, (kk)* = +1,
we arrive at k = +ko, k* = —k. It has sense to introduce the real-valued vector ¢,:

kS:+k0:CQ, k*=—-k: k =ic,
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then matrix G is

co +ica 0
0 co — ied

G(k,m = k*,0,0) = ~ SU(2).

Another possibility is realized when k = O:
ny = +no(nn)*, n* = —n(nn)*.
With the use of identity
det G = (nn)(nn)* = +1 = (nn) = +1, (nn)* = +1,
we get
ng = +no = co, n* = —n, n = ic,

Corresponding matrices G(0,0,n,l = n*) make up a special set of unitary matrices

0 —(co — ica)
(CO + ZCO_") 0

0 co — icd

G=| _(q+icd) 0

(3.5)

oo

However, it must be noted that these matrices (3.5) do not provide us with any subgroup because

G*=-I

Case C

Now in equations (3.4) one should take
moy = ko, l() = Ny, m = —k, l= —nn,
then

ko = +ko[kk] + ko(nn) + no(nk) — ng[nk],

k = k[kk] — k(nn) — n(nk) — nnk] 4+ 2n x (n x k),

no = +ko(nk) — ko[kn| + no[nn] + no(kk),

n = —k(kn) — k[kn| + n[nn] — n(kk) 4+ 2k x (k x n). (3.6)

4 2-parametric subgroups in SU (4)

To be certain in correctness of the produced equations of unitarity, one should try to solve them
at least in several most simple particular cases. For instance, let us turn to the Case C and
specify equations (3.6) for a subgroup arising when k = (ko, k1,0,0) and n = (ng,n1,0,0):

+ nilnn| — nq1(kk), (4.1)

they are four non-linear equations for four real variables. It may be noted that equations (4.1)

can be regarded as two eigenvalue problems in two dimensional space (with eigenvalue +1):

ko | 10
=10l

(k3 +n3) — 1+ (k¥ — n?) —2n1kq ‘
no

—2n1k1 (k}g + Tl%) —1- (k% — n%)




14

V.M. Red’kov, A.A. Bogush and N.G. Tokarevskaya

10
=0l

(K +n7) — 14 (kg — ng)
—21’Lo k‘o

k1

ny

—2n0k0 ‘
(kf +ni) — 1 — (k§ — nf)

The determinants in both problems must be equated to zero

(k5 +ng) = 1% = (kf —n)* — dniki =0,
(kY +n7) = 1] = (k§ — n§)* — 4nkt =0,

or

[(k§ +ng) = 1> = (K +0)* =0, [(k{ +nf) = 1J° = (k§ +ng)* =0
The latter equations may be rewritten in factorized form:
[(k§ +7ng) =1 = (k% +n])][(kG +ng) — 1+ (kT +ni)]
[(kf +n7) = 1= (kg +ng)][(kf +n7) — 1+ (k§ +ng)] =

0,
They have the structure: AC =0, BC = 0. Four different cases arise.
(1) Let C =0, then

k2 +nd +kF+n? = +1.

(4.2)
(2) Now, let A =0, B =0, but a contradiction arises: A+ B =0, A+ B = —2.
(3)—(4) There are two simples cases:
A=0,C=0 k}+ni=1, ki =0,n =0, (4.3)
B=0,C=0 kl+n?=1, ko = 0,n9 = 0.

4.4)
Evidently, (4.3) and (4.4) can be regarded as particular cases of the above variant (4.2). Now,
one should take into account additional relation

det G = [kk|[kk] + [nn][nn] + 2(kk)(nn)

+ 2(nk)(nk) — 2[nk][nk]) + 4(kn)(kn) — 4(kk)(nn) =1,

which can be transformed to

det G = (k3 + k3 4+ n2 +n?)? — 4(king + kony)? = +1. (4.5)
Both equations (4.2) and (4.5) are to be satisfied

(k§ +nd+ki+nd) =1, (k3 +ki+nd+nD)?—1—4(kino+ kon1)? =0,
from where it follows

king + kgn1 = 0, k%—i—ng—l—k%—i—n% = +1.
They specify a 2-parametric unitary subgroup in SU(4)
G =G7Y,  detGy = +1,

king + kon1 = 0, k3 4+ nd 4+ k2 +n? = 41,

. ) k‘o Zk‘l no _inl
ko + zk‘10’1 ng — mlff1 ik ko —iny no
G — _ . L 0 (4.6)
—ng + inlal ko + ik'lo'1 _.no " 0 i

ma —MNnyo ikl k()
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Two analogous subgroups are possible:

Gy =Gy, detGy=+1,
k?g’l’Lo—Fk‘o’l’Lg :O, ]C%—FTL(Q)—{—]{%—FTL% = —|—1,
) ) k‘o k‘g ng —ny
Gr=| oL ims e | = e e (47)
—ng2 —ng —ka ko
Gf =G5l detGs = +1,

ksng + kong = 0, k3 4+ nd 4+ k3 +n = +1,

(ko + ik3) 0 (ng — ing) 0
_ 0 (ko — iks) 0 (ng + ins)
G| mg—ing) 0 (ketiks) 0| (4.8)
0 —(Tlo + ing) 0 (ko - ik:g)

Let us consider the latter subgroup (4.8) in some detail. The multiplication law for parame-
ters is

! / / !/ 1 / !/

]{36 = k6k0 — k‘3k§3 — ngno + Ngn3s, k3 = kék‘g + k‘3]€0 + n6n3 + ngng,
" / / /! / " / / !/ !/

ng = kono + k3n3 + noko + n3k3, ng = k‘ong — k‘3no - nokg + n3k0.

For two particular cases (see (4.3) and (4.4)), these formulas take the form:

(G k2402 =1, ko =0, no =0,
ky = —ksks + nsna, ks =0,
ng = +king + niks, nf =0,
{G"): kg+ng=1, ks=0,  ng=0,
/{?6/ = kéko - nGnO,
ng = kyno + ngko- (4.9)

Therefore, multiplying of any two elements from G;,O does not lead us to any element from
G;)O, instead belonging to G°: Gg/Gg € GY. Similar result would be achieved for G; and Gs:
GYGY e G, GYGY € GO. In the subgroup given by (4.9) one can easily see the structure of the
1-parametric Abelian subgroup:

ko = cos a, ng = sina,
COS & 0 sin «v 0
0 0 Ccos & 0 sin «v
G’ (a) = , a € [0,27]. (4.10)
—sin« 0 Cos & 0
0 —sin« 0 COS ¢

In the same manner, similar curvilinear parametrization can be readily produced for 2-
parametric groups (4.6)—(4.8). For definiteness, for the subgroup Gs such coordinates are
given by

ko = cos a.cos p, ks = cos asin p,

ng = sin a cos p, —ng =sinasinp, a € [0, 27],
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and matrix Gj is

cos e 0 sin e 0
0 cos ae” P 0 sin e~
Gs(p,a) = L i : (4.11)
— sin ae*” 0 cos ae'f 0
0 —sinae™*? 0 cosae”

One may note that equation (4.11) at p = 0 will coincide with G%(a) in (4.10): Gs(p =
0,a) = G°(a). Similar curvilinear parametrization may be introduced for two other subgroups,
G and Gs.

One could try to obtain more general result just changing real valued curvilinear coordinates
on complex. However it is easily verified that it is not the case: through that change though
there arise subgroups but they are not unitary. Indeed, let the matrix (4.10) be complex: then
unitarity condition gives

cosacosa® +sinasina® =1, —cosasina® + sinacosa® = 0.

These two equations can be satisfied only by a real valued «. In the same manner, the the
formal change {G1,G2,G3} = {G{,GY, G} again provides us with non-unitary subgroups.

It should be noted that each of three 2-parametric subgroup G, Go, G3, in addition to Go(«),
contains one additional Abelian unitary subgroup:

ko + ikiot 0

K=" 01 bo + ikl | KicGy, k4+k=1,
ko + ikoo? 0

Ky=| "0 020 b+ ino? | Ky C Gy, KE4K2=1,
ko + ikso® 0

K3 = 0 0 3 ko +ik30‘3 , K3 C Gs, k‘g + k‘g =1.

It may be easily verified that
G1 = GoK1 = K1Go, G2 = GoK2 = KoGy, G3 = GoK3 = K3Gy.
Indeed

cos akg +icosakiol  sinakg + isin ak;
—sinaky —isinak; cosakg + icosakio!

Go(a)Kl = KlGo(a) =

and with notation
cos aky = ki, cosaky = ki, sin aky = ny, sin ak; = —nf,
kyny + king = 0, k(lf + k‘? + ng + ng =1

we arrive at

ky + kot g —in}

GoK1 = K1Gy = C G1.

—nf +iny kjy+ikjo?

5 4-parametric unitary subgroup

Let us turn again to the subgroup in GL(4, C) given by Case C (see (2.10)):

(ko + k&) (no —na)
—(ng —nad) (ko + ko)

)

o
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when the unitarity equations look as follows:

ko = +kolkk] + ko(nn) + no(nk) — no[nkl,

no = +ko(nk) — kolkn] + no[nn] + no(kk),

k = k[kk] — k(nn) — n(nk) — n[nk] 4+ 2n x (n x k),
n = —k(kn) — k[kn] + n[nn] — n(kk) 4+ 2k x (k x n).

They can be rewritten as four eigenvalue problems:

[kk] + (nn) (nk) — [nk] || ko
(nk) — [nk] (kk)+ [nn] || no
+([kk] — [nn]) —2(nk)
—2(nk) —([kk] — [nn])
+([kk] — [nn]) —2(nk)
—2(nk) —([kk] = [nn])
+([kk] — [nn]) —2(nk)
—2(nk) —([kk] — [nn])

_ ko
_(+1) no )
k k
Sl=n)
ni n1
k k
L= 2,
no no
k k
ns ns

These equations have the same structure

Z1
Z3

)

:A‘

A C || 2
C B Zy

where A = +1. Non-trivial solutions may exist only if

det ‘

which

A1

A-X C

C B—A‘:&

gives two different eigenvalues

A+ B+ /(A-B)?+4C?

2

9

2

\ A+ B+ /(A-B)?2+4C?

2

In explicit form, equations (5.1) looks as follows:

A= (k2 +nd) + (k* —n?),

ko

no

ko

no

=A

)

A C
C B

B = (kg +ng) — (k* —n?),

A = (8 +13) + /(K2 = n2)? + 4(kn)2,

Ao = (k§ +nd) — \/(k:2 —n?)?2 + 4(kn)2.

The eigenvalue A = +1 might be constructed by two ways:

)\1 = +17

)\2 = +17

k3 4+ni=1- \/(k;2 —n?)2 + 4(kn)?,

K+ md =14/ (k2 — n2)2 + 4(kn)?.

These two relations (5.4) are equivalent to the following one:

(1 — k2 —nd)? = (k* —n?)? + 4(kn)>.

C = —2kn,

(5.1)

(5.3)
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Thus, equations (5.3) have two different types:
Type I

(A—1)ko+ Cngp =0, Cko+ (B —1)ng =0,

k3 4+ni=1- \/(k2 —n2)2 + 4(kn)2, (5.5)
k2+nk<+1, (k2 —n?)?+4(kn)? < +1;

Type IT

(A — 1)]€0 + Cng =0, Cko + (B — 1)7’L() =0, (5.6)

k3 4+ nd = 1+\/(k2—n2)2+4(k:n)2, k3 +n > +1.
Now let us turn to equations (5.2). They have the form

ki

n;

‘é_CA‘ = . i=1,2,3,
A=k +k*—ni-n*  B=-4,  C=—2kono—kn),

k;

Ty

A = +\/(kc2) +k? —ng —n?)? + 4(kono — kn)?,

)\2 = —\/(k}g + k2 — n% — ’I’L2)2 + 4(k0n0 — kzn)z.

As we are interested only in positive eigenvalue A\ = +1, we must use only one possibility
A= +4+1 = )y, so that

(A-1)k+Cn=0, Ck—(A+1)n=0, (5.7)
1= (k2 + k% —nd —n?)? + 4(kong — kn)>.

Vector condition in (5.7) says that k and n are (anti)collinear:
k= Ke, n = Ne, e? =1, e € S, (5.8)
so that (5.7) give

(A-1)K+CN =0, CK-(A+1)N =0,
1= (k¥ + K?*—n2— N?? 4 4(kong — KN)?, (5.9)
A=kl + K?*—nd— N2 C = —2(kong — KN).

With notation (5.8), equations (5.5)—(5.6) take the form:
Type I

(A=1Dkg+Cng=0, Cko+(B—-1ng=0, ki+n2=1—(K>+N?),
Type 11
(A=Dko+Cng=0, Chko+(B—-1ng=0, ki+ni=1+(K*+N?, (510
where

A= (kg 4+nd)+(K*-N?, B=(ki+nd)—-(K*-N?, C=-2KN. (511
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Therefore, we have 8 variables e, kg, ng, K, N and the set of equations, (5.9)—(5.11) for them.
Its solving turns to be rather involving, so let us formulate only the final result:

ko, k = Ke, no, n = Ne,
k8 + K24+ n24+ N?>=+1, kN +noK =0,

(ko +iKed) (no—iNed) ’

—(n() - Z'Ne(?) (ko + iKe&') (5.12)

o

It should be noted that
det G = (k§ + K* +nd + N?)? = +1.
The unitarity of the matrices (5.12) may be verified by direct calculation. Indeed,

(kjo — zKeE) —(TLQ + zNe&’)
(ng +iNed) (ko —iKed)

9

s

and further for GG = I we get (by 2 x 2 blocks)

(GG+)11 = k‘g + K2 + n% + ]\72 =+1, (GG+)12 = —2i(n0K + koN)(GO_") =0,
(GGT)gg = k2 + K? +nd + N? = +1, (GG )91 = +2i(noK + koN)(ed) = 0.

One different way to parameterize (5.12) can be proposed. Indeed, relations (5.12) are

ko, k = Ke, no, n = Ne,
2

K N2
k(1 + =) +ng(1+ —) = +1,
kg no

K
ko

gl=

w,
or

ko, k= kowe, no, n = —nowe,
(k3 +nd)A+W?) =41, K=kW, N=-nW, 0<ki+nd<l.

Therefore, matrix G can be presented as follows:

k0(1+iW60_") n0(1+iWe6’)
G =
—n0(1+iWe5') k:o(1+zWe&')

, (5.13)

1

2 2 2

Evidently, it suffices to take positive values for W. The constructed subgroup (5.13) depends
upon four parameters kg, ng, €:

0<k+ni<1l, e=1, (B+nd)(1+W? =+1.
Let us establish the law of multiplication for four parameters kg, ng, W = We:

ky(1+iW'3) n

"o
= eiw's) k

(1 +iW'3) H ko(1+iW&) no(l+iWe)
/
0

(1+iW'G) || —no(1+iW3F) ko(l +iWJ)
or by 2 x 2 blocks

(11) = (kbko — nyno) (1 + iW'3) (1 +iW ),
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(12) = (k{no + noko)(1 +iW'G)(1 + iW3),
(21) = —(kyno + npko) (1 +iW'F) (1 + iW ),
(22) = (khko — nhno) (1 +iW'3)(1 + iW &).

As (11) = (22), (12) = —(21); further one can consider only two blocks:

W4+W -W xW
(11) = (ko = o)1 = W) (14T )

WH+W -W xW
(12) = (k6n0 + nloko)(l — W/W) (1 +1 T W'W U) .

So the composition rules should be

ko = (koko — ngno) (1 — W'W), ng = (kgno + noko)(1 — W'W),
W AW W xW

W//
1-W'w

The later formula coincides with the Gibbs multiplication rule (see in [32]) for 3-dimensional
rotation group SO(3, R). It remains to prove the identity:

(ko2 +ng)(1+W'2) =41
which reduces to

(kbko — nfno)? + (kono + noko)? [(1 — WW)? + (W' + W — W' x W)?]. (5.14)
First terms are

(koko — ngno)” + (Kono + ngko)? = (k* + ng’)(k§ + n§).
Second term is

1-—WW2+ (W +W -W x W)= (1+W?H1+W?).
Therefore, (5.14) takes the form

(ko® + ng) (kg + ng) (1 + W) (1 4+ W?) =1
which is identity due to equalities

K2 +n)A+WhH =1, (KB+nd)1+wW?H =1

It is matter of simple calculation to introduce curvilinear parameters for such an unitary
subgroup:

e = (sinf cos ¢, sin 0 sin ¢, cos 9),

ko = cos a.cos p, K = cosasinp, ng = sin a cos p, N = —sinasin p,

and G looks as follows

G A Y A | o8 a(cos p + isin pcosf) i cos asin psin fe™
=2 A N icos asin psinfe’®  cosa(cosp — isinpcosf |’
o sin a(cos p 4 i sin p cos 6) +i sin o sin psin fe =
N isinasin psin e’ sin a(cos p — isin pcosf) |
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It should be noted that one one may factorize 4-parametric element into two unitary factors,
1-parametric and 3-parametric. Indeed, let us consider the product of commuting unitary groups,
isomorphic to Abelian group G and SU(2):

kh  nl ap + iad 0
= 2) = 2 = 0 0 L
G=Gy® SU(2) =SU(2)® Gy A ‘ 0 4y +iad
_ k6G0 + Zk()a&' n6a0 + Zn6a6' ]{Z/Z + n’2 —1 a2 + a2 -1
—nyag — ingad  kyag + ikyad |’ 0 0 ’ 0 ’
with the notation
k(’)ag = ko, kéa = koW, nf)ag = ny, nf)a =ngW,

(kg +np) (1 + W?) = (ky*ag + ng’ag) (1 + W?) = (ko” +ng’)(ag + a®) =1,
takes the form

. . k0(1+iWE) n0(1+iW5) .
Go® SU(2) =SU(2) ® Gy = —no(1+iW&)  ko(1 +iWa) =G. (5.15)

Let us summarize the main results of the previous sections:

Parametrization of 4 x 4 matrices G of the complex linear group GL(4,C) in
terms of four complex vector-parameters G = G(k,m,n,l) is developed and the
problem of inverting any 4 x 4 matrix G is solved. Expression for determinant of any
matrix G is found: det G = F'(k,m,n,l). Unitarity conditions have been formulated
in the form of non-linear cubic algebraic equations including complex conjugation.
Several simplest solutions of these unitarity equations have been found: three 2-
parametric subgroups Gi, Go, G3 — each of subgroups consists of two commuting
Abelian unitary groups; 4-parametric unitary subgroup consisting of a product of
a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group.

The task of full solving of the unitarity conditions seems to be rather complicated and it will
be considered elsewhere. In the remaining part of the present paper we describe some relations
of the above treatment to other considerations of the problem in the literature. The relations
described give grounds to hope that the full general solution of the unitary equations obtained
can be constructed on the way of combining different techniques used in the theory of the unitary
group SU(4).

6 On subgroups GL(3,C) and SU(3), expressions
for Gell-Mann matrices through the Dirac basis
In this section the main question is how in the Dirac parametrization one can distinguish

GL(3,C), subgroup in GL(4,C). To this end, let us turn to the explicit form of the Dirac
basis (the Weyl representation is used; at some elements the imaginary unit 7 is added)

1 0 00 0010 00 —i 0
s |0 —10 0 o |00 01 5o |00 0 —i
T=lo o 10l TTl1o0o00p TTTIio0 0 ol

0 0 0 1 0100 0 i 0

00 0 —i 000 1 0 0 0 —1
. o0 =i o0 s oo 10 o 01 0
W=lo i 0 ol YY=lo1o0o0l° =09 10 o ©D

i 0 0 0 1000 100 0
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0 0 0 —i 0 0 —i 0 0 0 1 0
0 0 i 0 0 0 0 i 0 0 0 —1
5.2 - 3 5.3
T =lo 0o 0o T Tli o0 o o YV Tl1 0 0 o]
i 0 0 0 0 —i 0 0 0 -1 0 0
01 0 0 0 —i 0 0 1 0 0 0
2" =100 0 alr 2™=o 0 o il *™=|o o -1l
00 -1 0 0 0 —i 0 0 0 0 1
1 0 0 0 0100 0 —i 0 0
1 |0 =10 0 s |1 000 s i 0 0 0
20 =10 0 1 0" P T ooo1]" P00 0 —i
0 0 0 —1 0010 0 0 4 0

All these 15 matrices A; are of Gell-Mann type: they have a zero-trace, they are Hermitian,
besides, their squares are unite:

SpA =0, (A)? =1, (AT =A, Ae{Ay:k=1,...,15}.
Exponential function of any of them equals to
U =eh =cosa+isinaA, det ' = 41, Ut=u-!, a € R.

Evidently, multiplying of such 15 elementary unitary matrices (at real parameters z;) results in
an unitary matrix

U = elahigiazhz | giarahaa gias A5

‘e

At this there arise 15 generalized angle-variables aq,...,a15. Evident advantage of this ap-
proach is its simplicity, and evident defect consists in the following: we do not know any simple
group multiplication rule for these angles.

It should be noted that the basis A; used in [69] substantially differs from the above Dirac
basis A; — this peculiarity is closely connected with distinguishing SU(3) in SU(4). This problem
is evidently related to the task of distinguishing GL(3,C) in GL(4,C) as well.

In order to have possibility to compare two approaches we need exact connection between \;
and A;. In [69] the following Gell-Mann basis for SU(4) were used:

010 0 0 —i 00 1 0 00
1000 i 0 0 0 0 -1 0 0
M=10 00 0| =10 0 0 0l =10 0 0 0]
00 0 0 0 0 00 0 0 00
00 10 00 —i 0 000 0
00 0 0 00 0 0 00 10
M= 000l M0 o0 o MTlo1o ool
00 0 0 00 0 0 00 0 0
00 0 0 10 0 0 000 1
\ 00 —i 0 o Lo 1 0 0 \ 00 0 0
1o i o0 o) *T /310 0 =2 0 71000 0]
00 0 0 00 0 0 1000
00 0 —i 00 0 0 000 0
000 0 000 1 00 0 —i
MO=1g 00 o | M=l 000" 000 0]
i 00 0 01 0 0 0 i 0 0
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0 00O 000 O 10 0 O
0 00O 000 O 01 0 O
A= 0010 MTlooo0 -]t MTW oo 1 o0 (62)
0 010 0 0 ¢« O 0 00 -3
All the A excluding Ag, A15 possess the same property:
A=\, i #8,15.
The minimal polynomials for Ag, A15 can be easily found. Indeed,
10 00 10 0 0
0100 01 0 O
2 _ 1 3_ 1
M) =510 040" M =380 0 -8 0]
0000 00 0 O
therefore
()’ = 3As — %()\8)2‘
Analogously, for A5 we have
1 0 00 10 0 O
0100 010 O
2 _ 1 _ 1
()\15) 6 0 O 1 0 ’ ()\15) 6\/6 0 0 1 O )
0 009 0 0 0 —27
and
(A15)% = $A15 — %()‘15)2'
Comparing A; and \; one can readily derive the linear combinations:
VP =20 A= =20, i it =2,
i =iy’ =22, Y =28 P - =2,
i 4+ 7592 = 2X10, it — 4542 = 2\q, 209 + 21023 = 2\,
209 — 26 = —2)\i3, 202 + 2i03! = 2, 2092 — 2i03t = —2A 14,
and additional six combinations
2 0 00 00 0 O
-2 00 00 0 O
03 - 12 03 _ o: 12 _
2077 4+ 2107 = 0 0 0ol 20 210 00 -2 0
0 0 00 00 0 +2
0 0 00 -2 0 00
0 -2 00 0000
5 03 _ 5_ 9 03 _
VHWT=1g g0 00 V% 0020]
0 0 0 2 0000
0 0 00 -2 0 0 O
0 -2 0 0 0 000
5 C 12 _ 5_ o, 12 _
VHHOT=1g g 9 o) T 20 0000/
0 0 0 0 0 0 0 2
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they should contain three linearly independent matrices. Those three linearly independent
matrices might be chosen in different ways. Let us introduce the notation:

1 0 00 0 00 0 100 0
o -1 00 ,_ |0 —1 00 0000
“1o 0 o0 o0l “lo o010l 7] 0010/

0 0 0 0 0 00 0 000 0

00 0 0 100 0 0 00 0

00 0 0 0000 0 -1 0 0
A=100 21 ol B=l 0000l “=lo 000

00 0 41 0001 0 0 0 1

The matrices a, b, ¢ have the 3 x 3 blocks different from zero, so they could be generators
for SU(3) transformations; whereas A, B, C' may be generators only of the group SU(4). All
six matrices a, b, ¢, A, B, C have the same minimal polynomial:

A% =\

Linear space to which these six matrices a, b, ¢, A, B, C' belong is 3-dimensional. Indeed, one

easily obtains
c=b—a, C—-—A=b, C - B =a, B—-—A=c¢,
basis {a, b, C'} — c=b—a, A=C-b, B=C-a.
These relations can be rewritten differently

a=b—c, C—-—A=b, C—B=b—c¢, B—-A=c¢,
basis {b,c, A} = a=>b-—-c, C=A+b, B=A+c

or
b=a+c, C—-—A=b, C—B=b-c, B—-A=c¢,
basis {a, ¢, B} — b=a+c, C =B +a, A=DB-—c

One should note that in the basis \; (6.2) the corresponding three linearly independent
elements A3, Ag, A\i5 are taken as follows:

_ 1 03 lo, 12 _ 1.5 1 03 1 . 12
)\3 = 520' —+ 5220’ s )\8 = —%’7 —+ 27\/§20- — 27\/527,0' s

A5 = 55207 + J=2i0 2,

1.5
Ve T V5
their minimal polynomials look
(A3)® = As, (As)® =25 — %(AS)Q, (M5)? = 315 — %(Aw)?-

It is the matter of simple calculation to find relationships between A3, Ag, A5 and the basis

{a,b,C} :

A3 = a, Ag = %a — %b, Ais = Jza+ 5=b— 5C. (6.3)

In the following we will use the notation

a=X3, b=\, C=N,,
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so the previous formulas (6.3) will read ({3, As, A5} <= {A3, A5, Nj5})

M=K, A= pha - BN A= gedat A - oM
The inverse relations are
A3 = A3, Mg = 3A3 — f)\& 5= f)\15 + 3A3 — 2\[)\8 (6.4)

Now, starting with the linear decomposition of G € GL(4,C') the in Dirac basis (2.1):

G = CLQI + ibo’yB + iAo’)/O + iAkvk + BOVOVE’ + Bk'yk’y5
4+ ap200k + b12093 + b22031 + b32012
= aol + ibon” + iAoy + Ag(in*) +iBo(i7*7°) — Br(°")
+ ak(200k) — ib1(2i023) — ib2(2i0'31) — ’L'b3(27;0'12),
with the help of the formulas

P+ =20, =P =20, i iy =2,

P —ivd =21, P i =2, AP =iy =22,
=200, iy =P =2, 200 4200 = 2,

2001 — 2i6% = —2)\3, 2072 4 2i03! = 2\, 2002 — 2i631 = —2\14,
20%% 4+ 2012 = 23, 203 —2i0'2 = 2(\i5 — X)), A0 + 207 = 2);,

P =200 =200 — N\3), AP +2i02=2),, 45 —2ic!2 =2(\|5 — \3)

and inverse ones

Y0 = Ag+ A, Yy? =M — A, i7" = X5 + Az, i = X5 — A1z,
Yy = X6 + Ao, iv? = X6 — Ao, iv' = Ao + Ar, Y% = Ao — Az,
2023 = A1+ A1z, 2091 = Al — A3, 2o = Ao + A4, 2092 = Ao — A4,
207 = A3 — (Mg — M), 200 =X+ —MNs), 77 =X+ Mg+ M),

we will arrive at

G = aol + (a1 — b))\ + (az — iba)ha + (iAo — Bs)M + (As + iBo)As + (As — B1)Ag
+ (A1 4+ B2)A7 + (ag — ibs — ibg) A3 + (—ibs + ibg — a3) A + (iby + ag + ib3) N5
+ (=B1 — A2)Ag + (A1 — B2)A1o + (iAo + B3)A11 + (—As + iBo) 12
+ (—a1 — iby)Ass + (—az — iba)Asa.

In variables (k,m,l,n) (see (2.3), (2.4))

By —iAg = o, Bj—iAj:lj, By +iAg = ng, Bj—i-’iAj =Ny,

ao—ibozk‘o, aj—ibj:k:j, a0+ib():mO, aj+ibj =my
the previous expansion looks

G = L(ko +mo)I + ki A1 + kada+ 5[(no — n3) — (lo + I3)]\a+ 3 [—(no — n3) — (lo + 13)]As
*[ (’I’Ll + an) (ll - Zlg)])\ﬁ + %[(nl + ing) (ll — ’ng)])q + [k‘g + 5 (kio — mg)] A3

1
2
[ ms3 + 5 ( ko)] )\é + [m3 + %(mo — ko)] 15 T+ %[—(nl —ing) — (l1 +ila)]Ag
1

+
+
+ 3 1(n1 — ing) — (I +il2)] Mo + 3[(no + n3) — (lo — I3)] A
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+ 3 [—(no +n3) — (lo — I3)]\12 — m1 A1z — maAua.
Let coefficients at Ag, A1g, A11, A12, A13, A14 be equal to zero:

(n1 —ing) + (I1 + il2) = 0, (n1 —ing) — (I3 +1ila) =0, (ng +mns3) — (lo — l3) =0,
(TL() + ng) + (l() — 13) =0, my1 = 0, mo = 0. (6.5)

Note that we do not require vanishing of the coefficient at \}5:

—k
Nis <m3+m02 0> # 0.

As a result we have a subgroup of 4 x 4 matrices defined by 10 complex parameters. At this
four elements are diagonal matrices:

I s, 8 15
all other matrices have on the diagonal only zeros. Equations (6.5) give

ng = nq, nz = —ny, ily = —ly, I3 =g, my =0, mg = 0, (6.6)
so that any matrix G(kq, no,n1,lo, 1, mp, m3) is decomposed according to

G = kidi+ kada+ (no— lo)Aa+ i(no+ lo)As+ (—n1— l1)A¢+ i(—n1+ l1) A7+ & (ko + mo) I
+ [ks + 3 (ko — mo)] Az + [—ms + 5(mo — ko)] Ag + [ms + 5(mo — ko)] Al (6.7)

Explicit form of the matrices parameterized by (6.7) can be obtained from representation for
arbitrary element of GL(4,C') (2.6)

+(ko + k3) +(k1 —ike) +(np—n3) —(n1 —ing)

+(k1 +ika) +(ko—ks) —(n1+ing) +(nop + ng3)

—(lo + 13) —(l1 —ily)  +(mg—m3) —(m1p—img)
—(ly +ila)  —(o—13) —(mi+im2) —+(mo+ms)

G(k,m,n,l) =

with additional restrictions (6.6):

ko + ks k1 — iko +2ng 0
| ki +iks Ro—ks  —2m 0
G = —2[0 —2[1 mo — 1ms 0 (6.8)
0 0 0 mo + m3

If additionally one requires mg + ms = 1, then

ko + ks ki —iko +2ng 0

G — ki +ike ko — k3 —2n1 0
—2l0 —2[1 1-— 2m3 0

0 0 0 1

with decomposition rule
G = k1A + kg + (ng — lo)Aa +i(no + lo)As + (—n1 — L) X6 + i(—n1 + 1) A7

+ 3(14 ko — m3)I + [ks + (ko + m3 — 1)] A3
+ [—m3 + $(1 —m3 — ko)] s + (1 — ko + m3)\js. (6.9)
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In the diagonal part of (6.9), there are four independent matrices because equation (6.9)
represents 4 x 4 matrix with the structure

GN‘ GL(3,0C) (1) ‘

0

To deal with the matrices from GL(3,C), in the diagonal part of (6.9) one should separate
only a 3 x 3 block:

Diag = %(1 + ko — mg)I(S) + [k‘g + l(kﬁo +m3 — 1)] )\(3)
+ [—mg + %(1 —ms3 — ko)] )\/(3) ( — ko + mg))\l(5) =

100 1 0 0
=31 +ko—m3)| 0 1 0|+ [ks+3(ko+ms—1)][0 =1 0
001 0 0 0
0 0 0 0
+[-m3+3(1—-m3—ko)]| 0 =1 0 |+5(1—ko+mg)|0 =1 0
0 0 1 0 0 0

Resolving )\/1(5) in terms of 13, /\g?’)7 )\é(3):

(3 3 "(3
>‘1(5) = _%I(S) + %)‘g ) + %)‘8( )a

we arrive at a 3-term relation:
Diag = L(1+ 2ko — 2ma)I® + [ks + L (ko + 2ms — )] AP + L(—4my — 2ko + 2)ALY.
The group law for parameters of SL(3,C) has the form (the notation M =1 — 2ms3 is used)

ko = koko + K'k + 2(—nglo + n'ly),
(K")1 = (khk + K'ko + ik x )y + 2(—nply + n)lo),
(K")2 = (kok + K'ko + ik’ x k)2 + 2(—ingly — injlo),
(K")3 = (kok + K'ko + ik’ x k)3 + 2(—njlo — nil),
ng = (ko + kg)no — (k) — iky)ny +ngM,
ny = (ko — kg)n1 — (kY + iky)no +ny M
= 1y(ko + k3) + 13 (k1 + ike) + M’ lo,
= 1y(k1 — ko) + 1} (ko — k3) + M'ly,
M" = M'M — 4(l{ng — liny).
These rules determine multiplication of the matrices
ko+ ks ki —ika +2n9 0
ki1 +ika ko—ks —2n; O
-2l -2l M 0
0 0 0 1

If additionally, in equation (6.8) one requires

n0:0, nle, lQZO, l1:0, m3:0, m0:1,
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then
ko+ks ki—1tke 0 O
a— ki1+iko +ko—k3 0 O
- 0 0 1 0|’
0 0 01

with the decomposition rule
G = ki1 + koo + S(1+ ko) + [ks — 3(1 — ko)] A3 + (1 — ko)A + 3 (1 — ko) A]s.
One can readily verify that the 2 x 2 block is given by

G (k) = koI + kAP + koAl + kAP

7 On the multiplication law for GL(4, C) in Dirac basis
In the Gell-Mann basis A;, an element of GL(4,C) is

G =aol + (CL1 — ibl))\l + (CLQ — ibg))\z + (iAo — B3)/\4 + (A3 + iBo))\5 + (AQ — Bl)/\6
+ (A1 + Ba) M7 + (a3 — ibg — ibg) A3 + (—ibg + ibg — az)\g + (—B1 — Az) X9
+ (A1 — Ba)A1o + (iAo + B3)A11 + (= A3 +iBg) A2 + (—a1 — ib1) A3
+ (—ag — ib2) A4 + (ibo + az + ibs) N5,

or in variables (k,m, 1, n):

G = (ko +mo)I+ k11 + kada+ 5[(no — n3) — (lo + I3)]Aa+ 5 [—(no — n3) — (lo + 13)] A5
L= (n1 + inz) — (1 — il)]he + & [(n1 + ina) — (I — ilo)|Ar + [ks + & (ko — mo)] As
[~ + §(mo — ko)] N+ gl=(m — in2) — (I + il2) Ao

gil(m = in2) — (I + il2)]A1o + 3[(no +n3) — (lo — 13)]Ann

+ gi[=(n0 +n3) = (lo = I3)]M2 — M1 Az — madia + [ms + 5(mo — ko)] Ais.

i
The problem is to establish the multiplication rule G” = G’G in A-basis:
az/kl)\k = x;n)\mmn)\n = x;n:z:n)\mAn.
As by definition the relationships A\, A, = emnieAr must hold, the multiplication rule is
T} = CmnkTi Tn- (7.1)

The main claim is that the all properties of the GL(4,C) with all its subgroups are determined
by the bilinear function (7.1), the latter is described by structure constants €,,,k. It is evident
that these group constants should be simpler in the Dirac basis A; than in the basis A;. Our
next task is to establish the multiplication law G” = G'G in A-basis:

Before searching for structural constants F,,,k, let us introduce a special way to list the Dirac
basis A;:

0.2 . 0.5 . .
a1 =777, Qo =1y, az =77y a; Q10 = 103, 0pv] = —10e,

B = iv3At, Bo = i?, Bs =i, B =1, B182 = i3, B231 = —1if33,
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these two set commute with each others a8, = By, and their multiplications provides us with
9 remaining basis elements of {Ay}:

Ap = = -9, By = a1 = 791, Cr = a1fs =7,
Ay = anf = —iv?, By = anfs = —iy'4?, Cy = asfy = —iy*~?,
Az = azp =1, B3 = aszf = 1", Cs = azfs =79 (7.2)
The multiplication rules for basic elements
aq, a2, a3, /617 525 537 Alv A25 A3a Bl) BZa B37 Cla CQ) 035
are
. ay o3 | 61 B2 B3 | AL A A
o 1 iy —iao ar | A1 By Oy ar | 1 1Ag  —iAs
a9 —’iOzg I ’iOq a9 A2 BQ 02 a9 —iAg ﬁl iA1
a3 iag —iOzl I a3 Ag Bg 03 Qs iAQ —iAl ,61
Bi By, Bj | G G Gy |1 ay ag
ap | B iB3  —iDBs ap | B3 iC3  —iCy B1| A1 A As
az | —iBz [ 1By az | —iCs 33 iCh B2 | By By Bs
az | iBy —iB1 [ az | iCy  —iC1 (3 B3| Cr Cy C3
B B2 B3 | A Ay Ag | BB B, B
Br| I i3 —if2 Br| o1 as as 1| iC1  iCy  iC3
Bo | —ifs I i3 B2 | —iCy —iCy —iCs Ba| ai an as
B3| i —ipy 1 B3| iB1 1By  iBj3 B3| —1A; —iAy —iAj3
Ch Cy Cs | o az as |81 B2 B
ﬂl —iBl —iBg —iBg Al ﬁl ZA3 —iAg Al 1 iCl —’iBl
ﬁg iA1 iAQ iAg A2 —iAg ﬁl iA1 A2 a9 iCQ —’iBg
B3| ai o) as Az | Ay —iAL B A3z | az 1C3 —iDB3
Aq Ao As ‘ By By B3 ‘ Ch Cs C3
A1 I iag —iag A1 7:63 —Cg CQ A1 —iﬂg Bg —BQ
AQ —’iag I ial A2 Cg iﬂg —Cl A2 —B3 —iﬁz Bl
A3 iOdQ —iOdl I A3 —CQ Cl iﬁ3 Ag Bg —Bl —iIBQ
aq as a3 | B B2 B | AL Ay Ag
Bl ﬂg iBg —iBg Bl —iCl a1 ’iAl Bl —’iﬁg 03 —CQ
By | —iB3 52 1B By | —iCy a9 iAQ By | —C5 —iﬂg &
Bg iBg —iB1 ﬁg B3 —iC3 as ’iA3 B3 02 —Cl —iﬁg
B Bo Bs | &1 Gy G | o o) as
Bl I iag —’iag B1 iﬁl —Ag A2 Cl 53 ng —iCQ
BQ —iag I ial BQ A3 7;51 —A1 CQ —ng ﬁ3 iCl
Bg iag —i()él I B3 —A2 Al ’iﬂl 03 ’iCQ —iC’l ﬂ3
pr B2 B3 | AL Ay Ag | Bi By B3
Ci|iB1 —iA o Ci| i —B3z DBs Ci| =i Az —Ap
Cy | iBy —iAy an Cy| By i} —DB Cy | —A3 —if A
Cg iBg —iA3 Qs C3 —Bg Bl iﬂg Cg A2 —A1 —iﬂl
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| ¢ G G
Cl I 1%} —1iQ0
Co | —ias I i (7.3)
Cg iag —ial I

These relations provide us with simple formulas for fifteen coordinates of the element of GL(4, C')

G= I + a;o + bj,@j + XjAj + }/}'Bj + ZjCj)
v =1SpG, a; = 1Sp o;G, b; = 15p 3;G
Xj — iSp AjG, }/J = iSijG, Zj = %Sp C]G

With the use of relations (7.3) an explicit form of the group law for (15 + 1) parameters can be
found:

(YT + dlo; + Vi3 + X[ A; + Y!Bi + ZICy) (7] + aja; + b;8; + X;A; + Y;Bj + Z;C;)
=99+ (Ya; + ayy)eg + (Vb + 5785 + (VX + Xj)Aj + (1Y) + Y{v)B;
+ (V' Zj + Zi)Cj + ay (a1 + azias — aziog) + ay(—arios + ag + aziay)
+ aj(aricg — agiag + az) + a’(by Ay + ba By + b3Ch) + ah(by Ay + by Ba + b3Cs)
+ aj5(b1As + baBs + b3C3) + a} (X161 + XoiAs — X3iAs)
+ ah(—X1iAs + Xof + X3i A1) + ah(X1iAs — X2i A1 + X361)
+ay (Y12 + YaiBs — Y3iBs) + ay(—Y1iBs + Y232 + Y3iB1)
+ a5(Y1iBa — Y9iBy + Y3032) + a(Z185 + Z9iC5 — Z3iCs)
+ ay(—=21iCs + Zof33 + Z3iC1) + a5(Z1iCo — Z9iCy + Z3[33)
+ b (a1 A1 + agAs + azAz) + bh(a1 By + aaBs + a3Bs) + by(a1C1 + aaCs + a3Cs)
+ b (b1 + boifs — bsifB2) + by (—b1iBs + by + b3iB1) + by (b1iB2 — baif1 + bs)
4B (Xyan + Xoas + Xsas) + by(— X100y — XiCy — X3iCs)
+ b5 (X1iB1 + X9iBy + X3iB3) + b (Y1iCy + Y2iCy + Y3iCs3)
+ b5 (Yiag + Yaas + Yaag) + b5 (—Y1iA; — YaiAs — Y3iAjg)
+ V) (=Z1iB1 — Z9iBy — Z3iBs) + by(Z1i A1 + Z9iAs + Z3iA3)
+b5(Z1on + Zaag + Zsas) + X1(a151 + axiAs — aziAs)
+ X5(—a1ids + azf + asziAr) + X5(a1ids — agiAr + a3fh)
+ X7 (bray + baiCy — b3iBy)+ X5(biag + baiCo — b3iBa)+ X5(bias + beiC3 — b3iBs)
+ X1 (X1 + Xoiag— Xziao)+ X5(—Xyiag+ Xo + Xgiag)+ X5(Xyiag— Xoiag + X3)
+ Xl(Yﬂﬂg— YoCs+ Y302)+ Xz(chg,—i— Y5i33— Y301)+ X3( Y1Co+ Yo Ch+ Yglﬁg,)
+ X1 (=2Z1if2 + Z2Bs — Z3Bsy) + X4(—Z1Bs — Zsif3s + Z3B1)
+ X4(Z1By — ZaBy — Zsif32) + Y{(a182 + a2iBs — a3iBa)
+ Yy (—a1iBs + azf2 + aziBy) + Y3(a1iBa — a2iBy + a3f2)
+ Y] (=b1iCy + bocvy + b3iAy) + Yy (—b1iC2 + bacva + b3iAg)
+ Y3 (—=b1iC3 + boasz + b3iAs) + Y] (—X1if3 + X2C3 — X3C5)
+ Y5 (= X105 — X2if3 + X301) + Y3(X1Co — XoCh — X3if33)
+ Y] (Y1 + Yaiag — Ysiaa) + Yy (—Yiias + Yo + Yaiaq) + Vs (Yiias — Yaiag + Y3)
+ Y{(Z1i1 — ZoAs + Z3A2) + Yo (Z1 A3 + ZaifB1 — Z3Aq)
(—Z1As + Zo Ay + Zsif) + Z1 (a1 B3 + a2iCs — aziCs)
(—a1iC5 + azf3 + aziCy) + Z4(a1iCy — a2iCy + a3f3)

+Y3
+ Zj
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+ Z1(b1iB1 — bai Ay + bsa) + Zh(b1iBy — boiAg + byas) + Z5(b1iBs — bai Az + bgag)
+ Z1(X1ifs — XoBs + X3B2) + Z(X1 B3 + X2ifBs — X3B1)

+ Z5(=X1Bgy + XoB1 + X3if) + Z1(=Y1i1 + Yo Az — Y3As)

+ Zy(—Y1A3 — Yaif1 + Y3A1) + Z3(Y1 Az — Y2 Ay — Y3if3)

+ Z1(Zy + Zyias — Zsiaw) + Zy(—Zyiag + Za + Zsiay) + Zi(Zviag — Zaicy + Z3).

From these relations we arrive at the following composition rules:

7" ="y + (alar + aas + aaz) + (byby + bybs + bsbs)
+ (X1 X1 4+ X5Xo 4+ X5X3) + (YY1 + VoY + Y3Y3) + (2121 + ZyZo + Z573),
= (Y'a1 + aly) + (01 X1 + WhY1 + b521) + (X1b1 + Y{ba + Z1b3)
+ i(a’2a3 — aéag) + Z(XéXg — XéXQ) + I(Y2Y3 Y3/Y2) + i(ZéZg — Z:/))ZQ),
ay = (v'az + ayy) + (V1 Xo + b5Ya + b322) + (Xob1 + Yabo + Z3bs)
+i(ayar — ajag) +i(X5X1 — X1X3) +i(Y3Yy — Y|Y3) +i(Z5 2, — Z1Z3),
ag = (v'az + agy) + (V1 X5 + byY5 + b3Z3) + (X3b1 + Y3bo + Z3b3)
+i(ajas — ahay) +i(X X — X5 X1) +i(Y{ Yo — oY1) + (2122 — Z4Z1),
b =~'by + by + i(bybs — babe) + (a) X1 + a5 X2 + a5 X3) + (X{a1 + Xsas + Xsas)
+i(Y\ 21 + Y3 Zo + YiZ3) — i(Z)Y1 + Z5Ys + Z45Y3),
by = ~'by + byy + i(b3by — b1b3) + (a1Y1 + a5Ya + a3Y3) + (Y{a1 + Yoaz + Y3as)
+ (21X + Z5 X + Z5X3) — i(X1Z1 + X5 2o + X4 73),
Vy = by + by + i(b by — bhby) + (a) Z1 + ahZy + a4 Z3) + (Ziay + Zhas + Zas)
+i(X1Y1 + X5Yo + X4Y3) — (Y] X1 + Yy Xo + Y3 X3),
X{ = (Y X1 +9X71) + (a1by + a1by) +i(Y{bs — Y1bg) +i(b5Z1 — b2 Z1)
+i(ayX3 — a3 Xo) — i(as X3 — a3 X3) + (Z2Y3 — Z3Y3) + (Z3Y3 — Z3Ya),
X3 = (7' X2 +7X3) + (aght + aby) +i(Yobs — Yabs) +i(b522 — b2 Z3)
+i(ah X1 — ) Xa) —i(asX) — a1 X}) + (Z3Y{ — Z1Y]) + (ZhVi — ZY3),
Xy = (v X3 +7X3) + (azby + agb}) +i(Ysbs — Yaby) +i(b5Z3 — ba Z3)
+i(a1 Xz — apX1) — i(a1 X5 — a2 Xy) + (1Y — Z2Y)) + (Z1Y2 — Z3Y0),
V"= (YY1 +Y() + (aibg + arbh) +i(Z1by — Z1by) + (V5 X1 — b3 X7)
+i(ayYs — agYs) —i(asYs — asYy) + (XoZs — X325) + (X323 — X322),
Yy = (7'Ya + 7Y3) + (ahba + agbh) + i(Z5by — Zoby) +i(by Xo — b3 X3)
+i(agY1 — a1Y3) —i(asY] — a1Y3) + (X321 — X1Z3) + (X321 — X1Z3),
Y3 = (7/Ys +7Y3) + (a4ba + asbh) +i(Z5by — Z3b)) + (b X3 — b3 X35)
+i(a1Ys — agV1) —i(arYy — a2Y{) + (X125 — XoZ1) + (X122 — X321),
Z{ = (Y21 +vZ1) + (aibs + arby) +i(Y1by — Y{b1) +i(X1by — X15)
Vi(ahZs — ahZo) — i(asZh — asZh) + (Ya X} — Y3 X}) + (Y4X3 — YiXo),
Zy = (Y22 +vZ3) + (agbs + asbs) +i(Yaby — Yoby) + i(X3bo — Xob))
+i(a5Zy — a1 Z3) —iasZy — a1 Z3) + (Y3 X1 — YiX3) + (YsX1 — Y{X3),
75 = (v Z3 +v25) + (azbs + azbs) +i(Yab) — Y3b1) +i(X3b2 — X3b5)
+i(d 2y — dyZ1) — i(a1 Z} — as Z)) + (Y1X) — Yo X)) + (Y] X5 — YIX1). (7.4)

+(
2
3

With the help of the index notation
x=cW y=c®, z=c¥,
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it is easy to see a cyclic symmetry in the above relationships:

y' =y + day, + B + CV CY + 0P e 1 P 0,
af =+ ay, +vdy + B,C + 5,0 + (1,CP + b, + B, + by
+ i€k alan + ieklnC’l(l)/C,(ll) + ieklnCl(Q)/C)(f) + ieklnCl(g)/Cff’),
= b+ 3 + ieranbibn + (1O + a1 ) + (5CEY + )
+ (a4CP + a3y + eV ),
oD =40 140V + (a;bl + agb}) +ieyn(CL) by — OB
+ienn(aiCY — a0 + e (CF ) + P,
O =7 CP 4+ 7O+ (aba + agbh) + iy (CL by — CVH,)
+iern(ajC? — alCP") + e (CY O + POV,
O = O 4 4P 4 (dbs + agbly) + ez (CV b, — CLIB))
Fiepn (a)CP — a,C3)) + eggn(C 0(2 +cMo@n), (7.5)

It is readily seen that these group multiplication laws (7.4), (7.5) permit 15 two-parametric
subgroups:

(7761) € {(77a1)7 ('73 a2)> (77a3)a (’Ya bl)? (7a b2)7/77 b3)7 (’7le)’ ('77X2)a (7a X3)7
(77 Yl)v (77 YZ)’ (’Y’ YES)’ (7’ Zl)a (’Ya Z2)7 (/77 Z3)}

with the same composition law:
V"' =4'v +da, a" =+'a+~d,

which in variables v = W cos ¢, a = ¢{W sin ¢ takes the form
w" =Ww'w, o' =ad +a.

The variable W is determined by det G(W, ) = W#, the choice W = 1 guarantees det G = +1.
All 15 basis elements A(,) € {ak, Bk, Ak, B, Ck} possess the same properties:

+ 2

Aoy =her A =T

Therefore, one can construct 15 different elementary unitary (at real valued parameters) matrices
by one the same recipe:

Uggy = €080 = cos ) + isin g, Ay
1 —ippA .-
U(';) = U(p) = e @A = cos By — 1S P(p) A ().

The whole set of unitary matrices SU(4) may be constructed on the basis of a simple factorized
formula:

U fr €Z¢(1)A(1) . ei¢(15)/\(15).

The order of the factors is important. Every such order leads us to a definite parametrization
for the group SU(4) — all them seem to be equivalent.
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In the end of the section let us write down the explicit form of these 15 elementary unitary

transformations:
1 — 0 —09 ) 2 = — ) 3 — o9 0 )
Ue — cos ¢ + i sin ¢pog 0 o | cosp —sing
L 0 cos ¢ — isin oy |’ 2 sing cos¢ |’
o cos¢  isin¢pog o2 O | 0 —iog
Us' = isingos  cos¢ |’ = 0 o9 |’ P2 = iocg 0 |’
By = 0 —ioq B _ | cos ¢ + isin ¢oo 0
57 iy 0 | L 0 cos ¢ + 1 8in posy
s cos ¢ sin ¢og - cos ¢ sin ¢oy A — I 0
2 —singoz  cosg |’ 37| —singoy cosp |’ lo -1
_ 0 o9 10T A __ | cosg+ising 0
AQ" —ioy 0 |’ AS_‘I o" Ui = 0 cos¢ —ising |’
A | cos¢ —singor A | cos¢ ising 10 o
Uy = ’ singoy  cos¢ |’ Us = ising cos¢ |’ B = o1 0|’
—o3 0 | o1 0 B _ cos¢  isin ¢oy
Bz = ‘ 0 —o3 |’ By = ‘ 0 o1’ Ur = isingoy cos¢ |’
UB cos ¢ — isin ¢os 0
N 0 cos ¢ — isin¢og |’
B _ | cos¢ —isin¢goq 0 | 0 —o3
Us' = 0 cos ¢ +isingoy |’ ¢ = ‘ —o3 0 |’
| =01 0 oz O c cos ¢ —isin ¢og
Cr = ‘ 0 —o1 |’ Cs = 0 —o3 |’ Ui ’ —isin ¢os cos ¢ ’
yC _ | cos ¢ — isin poy 0
2 - 0 cos ¢ —isingoy |’
¢ | cos¢+isin¢os 0
Us = 0 cos ¢ — isin ¢os (7.6)

Certainly, these relations provide us with 15 elementary solutions of the unitarity equations (3.3).
For instance, the generator ao gives rise to the above 1-parametric Abelian subgroup G%(a);
whereas the above 4-parametric subgroup Gy x SU(2) (5.15) is generated by (aq; 81, B2, C2).

The question is how one could describe all combinations of the above 15 simple sub-solutions
by a single unifying formula — the latter should evidently exist.

8 On factorization SU(4) and the group fine-structure
On the basis of 9 matrices (7.2) one can construct six 3-dimensional sub-sets:

K = {A; = 11, By = azfh, C3 = azfs},

L ={C1 =183, Ay = azf1, B3z = azfa},

M = {B1 = 132, O = 233, A3 = a3},
K'={-C=—a1f}3, =By = —afh, —Cj = —azfs},
L'={-B) = —a1f2, —Ay = —axf, =By = —azfa},
M' ={-A] = -1, —Cy = —azfl3, —B3 = —azfa},
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(one may recall the rule to calculate the determinant of a 3 x 3 matrix) with the same commu-
tation relations:

Iy = Ty, oIy = T3, 'y — Ty =0, Ty 4+ el = —2T'3, (8.1)
and analogous by cyclic symmetry. The whole set of the above 9 matrices coincides with

& B, K, L, M, (8.2)
or

&, B, K, L, M.

It suffices to consider one variant, let it be (8.2). It seem reasonable to suppose that arbitrary
element from GL(4,C') can be factorized as follows

G — (idd ibB LikK ilL jimM (8.3)
When all parameters are real-valued, the formula provides us with the rule to construct elements

from SU(4) group'*. The order of factors might be different. Let us specify the group law for
these 5 subsets. First are the two groups:

e = cosa + isina(niay + naag + n3as), e = cosb + isin b(n101 + nafay + n3fs).
They are isomorphic, so one can consider only the first one:
€' = cosa+isina(niog + noag + n3as) = xrp — ix1 — iT200 — IT3Q3.

Multiplying two matrices we arrive at

1 / / / / 1 / / / /
Ty = TuTo — T1T1 — TrTy — T3X3, x| = xor1 + 2120 + (Tox3 — THT3),

Th = zxe + Thre + (vhw — 2)3), Tl = whxs + w70 + ()10 — Th). (8.4)
Parameters (xo, z;) should obey

af+ ol 4+ a5 +a3=1 — det €49 = 41.
The inverse matrix looks

(z0,2) " = (w0, —).
With real (zg, ;) we have a group isomorphic to SU(2), spinor covering for SO(3, R):

x , Cc+e+cdxe
c=—, d=—
o 1-Ccc
At complex (xg,x;) we have a group isomorphic to GL(2,C'), spinor covering for SO(3,C) or
Lorentz group.
Now let us turn to finite transformations from remaining subsets. It is readily verified that
these 1-parametric finite elements

et — cosyy +isiny Iy, eW2l' = cosyg + isinyols, eW3ls = cosyg + isinysls,

1 Just such a structure was described in [40].



On Parametrization of GL(4,C) and SU(4) 35

commute with each other:

eWliegiyals — (cosyy +isinyi'1)(cosys + isinys'y) =
= CcoS Y1 COs Y2 + ¢ cosyy sinyal'e 4+ ¢ cosys siny1 'y + siny; sinyoI's,
eW2l2eilh — (cos gy + i sinyal's)(cosyy + isinyI'y) =
= cosyg cosy1 + tcosyzsinyi '] + ¢ cosy; sinyal's + sinys siny; '3,
that is e leiv2lz = e2l20i1lh and so on. Evidently, this property correlates with the com-
mutative relations (8.1). Thus, each of tree subgroups can be constructed as multiplying of

elementary 1-parametric commuting transformations. Their explicit forms are:
subgroup K

K ={A; =161, Bs = azf2, C3 = azfs},

I 0 —o3 0 o3 0
' ’ 0o -1\’ ? ‘ 0 —o3|’ K 0 —o3 |’
e KL = cosky +isin ki A, 251 = cos ky + i sin ke Ba,
etksKs — g k3 + 1 sin k3Cs;
subgroup L
L ={Cy =a1fs, Ay = aof1, B3 = agfh},
0 —03 0 109 -0 0
— Ay =| By =
@ ‘—03 o | 2 —iog 0 |’ ’ ' 0 o |’
el — cosly +isinly Oy, 2l = cosly + isinly Ao, ¢33 — cosl3 + isinl3Bs;
subgroup M
M = {B) = a1, Co = asfl3, A3 = azp},
0 o —o1 0 0 I
B, = = A3 =
! or 0|’ e ‘ 0 —o1 |’ ’ ‘ I oy
™M — cosmy + isinmy By, ™M = cosmy + i sin maCs,

e™M3Ms — o5 mg 4 i sin msAs.

One additional note should be made. In the recent paper by A. Gsponer [35] on the quater-
nion approach to the problem of building the finite transformations from SU(3) and SU(4) an
important point was to divide 15 basis 4 x 4 matrices into three sets:

set A of antisymmetrical matrices,

set S of symmetrical matrices,

set D of diagonal traceless ones.
It is easily seen that

set A={a; ® i} ;
set S = {AQ,Ag,Bl,B3,C1,CQ} = {L D M};
set D ={A;1,By,C3 = K}.
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Turning again to relationship (8.3), let us rewrite it as follows
G — pidd [ kK L eimM] ez‘z}'ﬁ .
which exactly corresponds to the structure used in [35] in connection with the Lanczos decom-

position theorem [43].
Several last comments should be made. On the basis of 15 matrices

ar, agz, as, B, B2, B3,
Ay = a1/, By = a3, C1 = a1 33,
Az = af, By = asfe, Co = azf3s,
Az = asfh, B3 = a3fs, Cs = a3f3

one can easily see the following 20 ways to separate SU(2) subgroups (certainly, those arise at
real-valued parameters; complex-valued parameters give rise to linear subgroups GL(2,C)):

(041,042,043), (ﬁlaﬁ?v/ﬁ?))a

(a1, Ag, As), (A1, e, As), (A1, Ag, a3),
(a1, Ba, Bs), (By, a2, Bs), (B1, By, ai3),
(a1,C4,Cs), (C1,ag,Cs), (C1,C4, ai3),
(B1, B1,Ch), (B1, B2, Ca), (81, B3, C3),
(A1, B2, Ch), (Ag, B2, Cs), (A3, B2, C3),
(A1, B1,033), (A2, B2,533),  (A3,B3,0). (8.5)

Certainly, they provide us with twenty different 3-parametric solutions of the unitarity equa-
tions (3.3). Such 3-subgroups might be used as bigger elementary blocks in constructing of a
general transformation [25, 28].
For instance, for the variant from (8.5): (a1, A2, A3) = (a1, X2, X3) the general multiplica-

tion law (7.4) gives

V' = dia + XoXo + X3 X5, al =7ar +ayy +i(Xp X3 — X3X0),

=0, =0, =0, =0 H=0  XI'=0

Xé’ = /Xg + ’)/Xé + —|—i(—a'1X2) + alXé), Xé’ = /Xg + ’)/Xé + z(a'ng — a1X£),

Y/ =0, Yy =0, Yy =0, Z! =0, Z§ =0, Z¥ =0,
that is

V' = dia + XpXo + X3 X5, al =7an +ayy +i(Xp X3 — X3X0),

XY =+'Xo + v X)) +i(X5a; — a) Xa), XY =~"X5 + X} +i(a) Xo — a1 X3),

which coincides with equation (8.4). The same can be done for any other representative
from (8.5).

9 On pseudo-unitary group SU(2, 2)

As said, the Dirac basis was used previously [9, 40, 48, 50] in studying the exponentials for
SU(2,2) matrices. Let us show how the above formalism can apply to this pseudo-unitary
group SU(2,2). Transformations from SU(2,2) should leave invariant the following form

+1 0 0 O 21

G| o 5 o || 2] =

0o 0 0 -1 Z4
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which leads to

+1 0 0 O
_ 0O +1 0 O

r_ +.,, 1 —
Zz =Ug, where Un=nU"", =109 0 -1 0

Any generator A’ of those transformations must obey relation

Up =",  (A)Tn=nA,,  ke{l,... 15}

or allowing for identity n = —~°

(M) =45, ke{l,...,15}

All generators A}, of the group SU(2,2) can be readily constructed on the basis of the known
generators Ay of SU(4) (see (6.1))

All = A1 = ’}/5, All = iAl = i’yo, Ag = iAg = —’}/5’}/0,
Ny=ihy=—", Ay=ids =iy,  Ag=ile=—"

Ap =il =iy, Ag=ids=—7",  Ay=ilg =07y,
A/10 = AlO = 20’01, /11 = All = 20’02, A/12 = A12 = 20’03’
Mg =AMz =2i0?,  ANjy=Ag=2i0%,  Ajy= A5 = 2i0% (9.1)

Basis elements may be listed as follows:

/ 0.2 o 0.5 I 5.2
o] =a1 =777, Oy =t = —y 7, o3 =1ag = 177y
(@)?=1, (ah)*=-1,  (a4)*=—I,
ahaly = —iay, ahal = iak, alaly = iak;

B =61 =iy, By =ify = —7°, By =ifs = —7',

(ﬁi)Q =1, (/Bé)z =1, (/82,3)2 =—1,

Boby = —ib1,  Byfy=if, iy =B
These two sets commute with each other: ;3 = Bro;; and their multiplications give remaining
9 elements:

A=A =aif == Bi=iBi=aif=10i"", O] =iCi=a\f =i

Ay =iy =apf =7,  By=-By=ayfy = +in'y’,  Cy=—Cy =yl = +iv*"’,

Ay =idz =3B =",  By=-By=as0 =", Cj=-C3=as0=-"7"
Making in relations (7.6) a formal change in accordance with

e = cosa + isina, A =iA,

. . ) y / . . . . .
cosa+isinaA = e — ¢ = cosia + isiniaA = cosha — sinh aA,

we arrive at explicit form of elementary pseudo-unitary SU (2, 2)-transformations:

;o2 0 o | cos@+isingos 0

R R U = 0 cos ¢ — i sin poa
;.10 -1 o | coshx —isinhx

A== ‘ 1 0 | Uy = isinhy coshy |’
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ol = iz = 122 Z'((7)2 - Us= Sﬁ?}?};é _iﬁi@ ’

Bi=p= 0(32 002 ; Uy = COS¢+(§Sin¢02 cos¢+(zsin¢02 ’
Py =ifs = _(3,3 003 SR :‘ —ics(i)zlklliiag isé:)l:hxxgg ’
R A R ) et
. é _()I | Ui = cos¢-5isin¢ cosgb—oisimb ’

Ay = idy = ;)2 o U= Z-;iihf@ ”i?ﬁff” ’
T L R e

e P A A I S
By=-B;= %3 (33 W= COS¢+(§Sin¢03 COS¢+(Z)'sin¢03 ’
Bl — By = (Bl _(()71 7 P = cosd>+ésin¢a1 cos¢—2sin¢01 ’
o] D | e e s
Ch=—Cy = ‘61 ;]1 ,  U§= Cosm(s)iwal cos¢+2sin¢al

We can easily obtain unitarity equations for SU(2,2) group, simple solutions to which are
given by (9.2). Indeed, taking into account the formulas (see (3.1)

Ghy = ki+ k' —i5—-Ud || -1 0 _ | k- k¢ -5 UG
ng —n*ad my—m*c 0 +I —n§+n*d mi—m*G |’
ai_| 10 ko +kd  ng—n'd | | —ky—KF —ny+n'c
n - 0o I B T [ Y2 B T [ [ =2 )
o —=Uad my—m's o—UVa m{—mla

from G*tn =nG~! we produce

ki = kp, k* =K, my = my, m* =m/,
*

I = ny, U'=-n/, ng = lo, n* = -l

These relations differ from analogous ones (3.2) for SU(4) group only in all signs of the second
line. Therefore, the unitarity conditions for the group SU(2,2) are (compare with (3.3))

ko = +ko(mm) + mo(In) + lp(nm) — no(Ilm) +il(m x n),
my = +mo(kk) + ko(nl) + no(lk) — lo(nk) —in(k x 1),
k* = —k(mm) — m(ln) — l(nm) + n(lm) + 2l x (n x m)
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+imo(n x 1) +ilp(n x m) + ing(l x m),

m* = —m(kk) — k(nl) — n(lk) + l(nk) +2n x (I x k)

—iko(l x m) —ing(l x k) —ilp(n x k),
—ly = +ko(nm) — mo(kn) + lo(nn) + no(km) + ik(n x m),
—ng = +mo(lk) — ko(ml) + no(ll) + lo(mk) — im(l x k),
—U" = —k(nm) + m(kn) — l(nn) — n(km) + 2k x (m x n)

+ iko(m x n) + imo(k x n) +ing(m x k),
—n* = —m(kl) + k(ml) — n(ll) — l(mk) + 2m x (k x l) —img(k x I)

—iko(m x 1) —ilp(k x m).

Several words on factorization SU(2,2) = SU(1,1) x [K x L x M] x SU(1,1) and a further
group fine-structure for SU(2,2). On the basis of 9 matrices

A=A =api ==, Bi=iBi=df=ir"', O] =iC =185 =iv"",
Ay =idy = abfy =~%,  By=-Ba=afy=+iv'7?  Cy=—Ch =yl =ir*"’,
Ay=idy=ayf =in",  By=-Bz=ayfy ="y, Cy=-C3=asf=—""

one can construct three 3-dimensional subsets (omitting three others):

K' = {All = Al = O/lﬁia Bé = _B2 = O/Qﬁé) Cé = _03 = O‘gﬁé}a
L'={C] =iCy = | B, Ay =iAy = ayfy, By = —B3 = asfs},
M, = {Bi = iBl = O/lﬁé, Cé = —02 = O/Qﬁé, Ag = iAg = Oééﬁi},

with the same commutation relations:
'y =413, o'y = 413, 'y =TI’y =0, 'y + Tol'y = +2I3,

and analogous ones by cyclic symmetry. Arbitrary element from SU(2,2) can be factorized as
follows

s T - . ;. /
S = elaa ezbﬁ ezk:K ezlL ezmM

)

all parameters are real-valued. Let us specify the group law for these 5 sub-sets. Two groups

iaa! b3 . . . .
e 0" are isomorphic so one can consider only the first one:

Yifeld . ! / / 2 2 2
" = I +i(a10] + azay + azaly) — g (ai — a3 — a3)
1,2 2 9 / / / 1,2 2 219
—ig(ay — a3 — a3)(aray + agay + azag) + g(af —az —a3)” +---
In the variables

a; = ang, n%—n%—n%zl

we have

Yifed . / / / . / ! /
"1 = I +i(nia] + nodk + ngak)a — 5a® — iL(nia) + noak + ngah)a’®
1 5_ 1

4 / / . !
+ ga” + %(nlal + nady + insai)a’ — 6!a6 +oee

that is

2 . : ; ;
" = cosa + isina(nia) + noah + n3ajl) = xg — ir10] — iTaed — T30,
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Multiplying two matrices we arrive at
1 / / / / 1 / / / /
Ty = Toxo — T1x1 + ToTo + T33, x] = xpx1 + rixo — (TeT3 — THT3),
1 / / / / " / / / /
Ty = T2 + THxo + (T371 — T X3), T3 = xox3 + Tyxo + (172 — THT1).
The inverse matrix looks
-1 _
(x()vw) - (1’0,—33)-
Parameters (xg, x;) should obey the following condition

2 2 2 2
o+ ] —x5 —x3 = 1.

In the variables a, n; it will look

2 2 _p2)=1, 2 _ 2

cos® a + sin? a(n? — ni — n? n? —n3—n3=1.

For three particular cases we will have:

n = (1,0,0), cos?a +sina = 1, €% = cosa + isinac/,, a € R;
n = (0,1,0), cos’a —sina = 1,
a = 1ib, cos ib = cosh b, sinib = isinh b, b€ R,

3 / . . . .
"2 = cosa + isin ansaly = cosh b — i sinh ba;

2 2

n = (0,0,1), cos“a —sin“a =1,

a = 1b, cos ib = cosh b, sinib = isinh b, b€ R,

iac .. / . . /
€' = cosa + isinangay = cosh b — isinh bas.

Now let us turn to finite transformations from remaining sub-sets K’, L', M’. Each of tree
subgroups can be constructed as multiplying of elementary 1-parametric commuting transfor-
mations. Their explicit forms are:

subgroup K’

K'={A} = A1 = a\f}, By=—Bs=ayf, C3=—Cs = ajf},
I 0 —o3 0

0 g3

o3 O

[
) BQ_ 0 o3

I

!/
) 03:‘

subgroup L’

L' ={C] =iCy = o35, Ay =iAy = abf3], By =—Bs =33},
o1 0
0 —o1

0 —1i03 ,
. 5 B3 =
—103 0

9

c;:‘

subgroup M’

M' ={B] =iBy = a1, Cy = —Cy = asfl3, Ay =iAs = asf},
0 =2
7 0

0 iO'1 01 0

! _
By = iocr 0

! /
) C’2: ) A3:

0 o1

On the basis of 15 matrices

o, o, o B By B
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Ay =aif,  Bi=aifh,  Cr=aifs,
=apf,  By=abfh, Oy =anfs,
=ayfy,  By=a4f,  Cy=oajsf

one can easily see the following 20 ways to separate SU(1, 1) subgroups:

(af,ah,a8), (B, B2, B3),

(0/17 /27 é)v ( 170427 ) ( I é),
(a}, By, B), (B1, o, B), (B1 B2a a3),
(01,C5,C5),  (C1,05,C3),  (C1,C3,a3),
(81, B1.C1), (B, B3, (), (61,33703),
(41,55, C1), (A5, 05, C3),  (A5,5,C3),
(A1, B, B3), (A2, Ba, 33), (As, Bs, B3).

such 3-subgroups might be used as bigger elementary blocks in constructing a general transfor-
mation.

10 On pseudo-unitary group SU(3,1)

Let us show how the above formalism can apply to the pseudo-unitary group SU(3,1). Trans-
formations from SU(3,1) should leave invariant the following form

+1 0 0 0
. % % % 0 41 0 0 29
(21722723724) 0 0 +1 0

0o 0 0 -1 24

!
, Znz=2z"nd,

which leads to

+1 0 0 0
7 =Uz, where Utn=nU"t, n= 8 461 —El 8
0 0 0 -1
Any generator A’ of those transformations must obey the relation
Upg = e, (A)Tn=nA,.  ke{l,... 15}
The matrix 7 is a linear combination
n=3(2i0" —20% — "+ 1) = 3(iv'y* =" + "y + D).

All generators of the group SU(3,1) can readily be constructed on the basis of the known
generators A, of SU(4) (see (6.2))

)\17 )‘27 )‘37 )\47 )‘57 )‘67 >\77 )‘87 iAQ, Z.Al()v
iA11, iA12, iA13, iA14, A15; (10.1)
generator Ag,...,A14 are multiplied by imaginary unit ¢. Instead of Ag, A15 one can introduce

other generator A\§, |5 see (6.4) (diagonal generators are the same for group SU(4), SU(2,2),
and SU(3,1).
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11 Discussion

Let us summarize the main point of the present treatment.

Parametrization of 4 x 4 matrices G of the complex linear group GL(4,C) in terms of four
complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some
subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of in-
verting any 4 X 4 matrix G is solved. Expression for determinant of any matrix G is found:
det G = F(k,m,n,l). Unitarity conditions G = G~! have been formulated in the form of
non-linear cubic algebraic equations including complex conjugation. Several simplest solutions
of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 — each
of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup
consisting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian
group.

The Dirac basis of generators Ay, being of Gell-Mann type, substantially differs from the
basis \; used in the literature on SU(4) group, formulas relating them are found — they permit
to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C)
can be used {Ay} = {0 ® 3; ® (vf; = K @ L @ M)}, which permit to factorize SU(4)
transformations according to S = /@@ P kK ilLgimM where two first factors commute with
each other and are isomorphic to SU(2) group, the three last are 3-parametric groups, each of
them consists of three Abelian commuting unitary subgroups. Besides, the structure of fifteen
Dirac matrices Ay permits to separate twenty 3-parametric subgroups in SU(4) isomorphic
to SU(2); those subgroups might be used as bigger elementary blocks in constructing a general
transformation SU(4). It is shown how one can specify the present approach for the unitary
group SU(2,2) and SU(3,1).

In principle, all different approaches used in the literature are closely related so that any
result obtained within one technique may be easily translated to any other. There is no sense
to persist in exploiting only one representation, thinking that it is much better than all others.
Success should lie in combining different techniques. For instance, Euler angles-based approach
provides us with the group elements in the separated variables form, which may be of a supreme
importance at calculating matrix elements of the group. In turn, a factorized subgroup- based
structure is of special interest in the particle physics and gauge theory of fundamental interaction.
Geometrical properties of the groups, their global structure, differences between orthogonal
groups and their double covering, and so on, seem to be most easily understood in terms of
bilinear functions in space of linear parameters: G = z;A;, z”j = ejux)x;.

We have no ground to think that only exponential functions e® are suitable for exploration
into group structures. We may expect that in addition to Euler angles many other curvilinear
coordinates might be of value for studying of the group structure. For instance, in the case of
the group SO(4, C') we have known 34 such coordinate systems owing to Olevskiy investigation
[58] on 3-orthogonal coordinates in real Lobachevski space.

In conclusion, several words about possible application areas of the obtained results. The
main argument in favor of constructing the theory of unitary groups SU(4) (and related to it)
in terms of Dirac matrices is the role of spinor methods being widely adopted in physics. Let us
mention several problems most attractive for authors:

SU(2,2) and conformal symmetry, massless particles;
classical Yang-Mills equations and gauge fields;
geometric phases for multi-level quantum systems;
composite structure of quarks and leptons;

SU(4) gauge models.
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In particular, description of the group SU(2,2) in terms of matrices o/, 37 should be of
great benefit in investigation of conformal symmetry in massless particles theory. For instance,
classical Maxwell equations in a medium can be presented in 4-dimensional complex matrix form
with the use of two sets of matrices, exploited above:

.0 ;0 .0 .0 1 p
it — | M+ (i + fI—— | N=—| .
< 28:c0+a6x1> +< Z@xO—I—ﬁaxJ) €| g/c|’
where
M=\ M='(DtiH/)+ (B +icB
=l a1 |0 M=—(D+iH[)+(B+icB),
0 1 . .
N:' ', N =—(D—-iH/c)— (E —icB).
N 60
Acknowledgements

Authors are grateful to participants of the seminar of Laboratory of Physics of Fundamental
Interaction, National Academy of Sciences of Belarus for discussion. Authors are grateful to the
anonymous reviewer for many comments and advice improving the paper.

This work was supported by Fund for Basic Research of Belarus F07-314. We wish to thank
the Organizers of the Seventh International Conference “Symmetry in Nonlinear Mathematical
Physics” (June 24-30, 2007, Kyiv) and ICTP Office of External Activities for having given us
the opportunity to talk on this subject as well as for local and travel support.

References

[1] Baker H.F., On the exponential theorem for a simply transitive continuous group, and the calculation of the
finite equations from the constants of structure, Proc. London Math. Soc. 34 (1901), 91-129.
Baker H.F., Further applications of matrix notation to integration problems, Proc. London Math. Soc. 34
(1901), 347-360.

[2] Barenco A., A universal two bit gate for quantum computation, Proc. Roy. Soc. London A 449 (1995),
679-693.

[3] Barnes K.J., Delbourgo R., Matrix and tensor constructions from a generic SU(n) vector, J. Phys. A: Math.
Gen. 5 (1972), 1043-1053.

[4] Barnes K.J., Dondi P.H., Sarkar S.C., General form of the SU(3) Gursey matrix, J. Phys. A: Math. Gen. 5
(1972), 555-562.

[5] Barut A.O., Bohm A., Reduction of a class of O(4, 2) representations with respect to SO(4,1) and SO(3,2),
J. Math. Phys. 11 (1970), 2938-2945.

[6] Barut A.O., Bracken A.J., Zitterbewegung and the internal geometry of the electron, Phys. Rev. D 23
(1981), 2454-2463.

[7] Barut A.O., Brittin W.E., De Sitter and conformal groups and their applications, Lecture Notes in Theo-
retical Phystics, Vol. 13, 1971.

[8] Barut A.O., Zeni J.R., Laufer A.J., The exponential map for the conformal group O(2,4), J. Phys. A: Math.
Gen. 27 (1994), 5239-5250, hep-th/9408105. 1994.

[9] Barut A.O., Zeni J.R., Laufer A., The exponential map for the unitary group SU(2,2), J. Phys. A: Math.
Gen. 27 (1994), 6799-6806, hep-th/9408145.

[10] Bég M.A.B., Ruegg H., A set of harmonic functions for the group SU(3), J. Math. Phys. 6 (1965), 677—-682.
Bincer A.M., Parametrization of SU(n) with n — 1 orthonormal vectors, J. Math. Phys. 31 (1990), 563-567.

=
A

Bogush A.A., On matrices of finite unitary transformations, Vesti AN BSSR Ser. Fiz.-Mat. (1973), no. 5,
105-112 (in Russian).


http://arxiv.org/abs/hep-th/9408105
http://arxiv.org/abs/hep-th/9408145

44 V.M. Red’kov, A.A. Bogush and N.G. Tokarevskaya

[13] Bogush A.A., On subgroups of the group SU(n) isomorphic to SU(2) and flat unitary transformations,
Vesti AN BSSR Ser. Fiz.-Mat. (1974), no. 1, 6368 (in Russian).

[14] Bogush A.A., On vector parameterization of subgroups of the group SO(n,C) isomorphic to SO(3,C),
Doklady AN BSSR 17 (1973), 995-999 (in Russian).

[15] Bogush A.A., Fedorov F.I., On flat orthogonal transformations, Doklady AN SSSR 206 (1972), 1033-1036
(in Russian).

[16] Bogush A.A., Fedorov F.I., Fedorovykh A.M., On finite transformations of the group SO(n, R) and its
representations, Doklady AN SSSR 214 (1974), 985-988 (in Russian).

[17] Bogush A.A., Otchik V.S., Fedorov F.I.; On finite transformations of the group SO(5) and its finite-
dimensional representations, Doklady AN SSSR 227 (1976), 265-268 (in Russian).

[18] Bogush A.A., Red’kov V.M., On vector parametrization of the group GL(4,C) and its subgroups, Vesti
National Academy of Sciences of Belarus, Ser Fiz.-Mat. (2006), no. 3, 63—69.
Bogush A.A., Red’kov V.M., On unique parametrization of the linear group GL(4,C) and its subgroups by
using the Dirac matrix algebra basis, hep-th/0607054.

[19] Bracken A.J., Massive neutrinos, massless neutrinos, and so(4, 2) invariance, hep-th/0504111.

[20] Bracken A.J., O(4,2): an exact invariance algebra for the electron, J. Phys. A: Math. Gen. 8 (1975),
808-815.

[21] Bracken A.J., A simplified SO(6,2) model of SU(3), Comm. Math. Phys. 94 (1984), 371-377.

[22] Byrd M., Differential geometry on SU(3) with applications to three state systems, J. Math. Phys. 39 (1998),
6125-6136, Erratum, J. Math. Phys. 41 (2001), 1026-1030, math-ph/9807032.

[23] Byrd M., Geometric phases for three state systems, quant-ph/9902061.

[24] Byrd M., The geometry of SU(3), physics/9708015.

[25] Byrd M., Sudarshan E.C.G., SU(3) revisited, J. Phys. A: Math. Gen. 31 (1998), 9255-9268,
physics/9803029.

[26] Campbell J.E., On a law of combination of operators bearing on the theory of continuous transformation
groups, Proc. London Math. Soc. 28 (1896), 381-390.
Campbell J.E., On a law of combination of operators (second paper), Proc. London Math. Soc. 29 (1897),
14-32.

[27] Chacon E., Moshinski M., Representations of finite U(3) transformations, Phys. Lett. 23 (1966), 567-569.

[28] Chaturvedi S., Mukunda N., Parametrizing the mixing matrix: a unified approach, Internat. J. Modern
Phys. A 16 (2001), 1481-1490, hep-ph/0004219.

[29] Dahiya H., Gupta M., SU(4) chiral quark model with configuration mixing, Phys. Rev. D 67 (2003), 074001,
8 pages, hep-ph/0302042.

[30] Dahm R., Relativistic SU(4) and quaternions, Adv. Appl. Clifford Algebras 7 (1997), suppl., 337-356,
hep-ph/9601207.

[31] Deutsch D., Quantum computational networks, Proc. Roy. Soc. London. A 425 (1989), 73-90.

[32] Fedorov F.I., The Lorentz group, Nauka, Moscow, 1979.

[33] Fedorov F.I., Fedorovykh A.V., Covariant parameterization of the group SU(3), Vesti AN BSSR Ser. Fiz.-
Mat. (1975), no. 6, 42-46 (in Russian).

[34] Gonzalez P., Vijande J., Valcarce A., Garcilazo H., A SU(4) ® O(3) scheme for nonstrange baryons, Eur.
Phys. J. A 31 (2007), 515-518, hep-ph/0610257.

[35] Gsponer A., Explicit closed form parametrization of SU(3) and SU(4) in terms of complex quaternions and
elementary functions, math-ph/0211056.

[36] Guidry M., Wu L.-A., Sun Y., Wu C.-L., An SU(4) model of high-temperature superconductivity and
antiferromagnetism, Phys. Rev. B 63 (2001), 134516, 11 pages, cond-mat/0012088.

[37] Hausdorff F., Untersuchungen iiber Ordnungstypen: I, II, III. Ber. tber die Verhandlungen der Konigl.
Sdchs. Ges. der Wiss. zu Leipzig. Math.-phys. Klasse 58 (1906), 106-169.
Hausdorff F., Untersuchungen iiber Ordnungstypen: 1V, V, Ber. dber die Verhandlungen der Koénigl. Sdchs.
Ges. der Wiss. zu Leipzig. Math.-phys. Klasse 59 (1907), 84-159.

[38] Holland D.F., Finite transformations of SU(3), J. Math. Phys. 10 (1969), 531-535.

[39] Keane A.J., Barrett R.K., The conformal group SO(4, 2) and Robertson—Walker spacetimes, Classical Quan-

tum Gravity 17 (2000), 201-218, gr-qc,/9907002.


http://arxiv.org/abs/hep-th/0607054
http://arxiv.org/abs/hep-th/0504111
http://arxiv.org/abs/math-ph/9807032
http://arxiv.org/abs/quant-ph/9902061
http://arxiv.org/abs/physics/9708015
http://arxiv.org/abs/physics/9803029
http://arxiv.org/abs/hep-ph/0004219
http://arxiv.org/abs/hep-ph/0302042
http://arxiv.org/abs/hep-ph/9601207
http://arxiv.org/abs/hep-ph/0610257
http://arxiv.org/abs/math-ph/0211056
http://arxiv.org/abs/cond-mat/0012088
http://arxiv.org/abs/gr-qc/9907002

On Parametrization of GL(4,C) and SU(4) 45

(40]
(41]

42]
(43]

Kihlberg A., Miiller V.F., Halbwachs F., Unitary irreducible representations of SU(2,2), Gomm. Math.
Phys. 3 (1966), 194-217.

Kleefeld F., Dillig M., Trace evaluation of matrix determinants and inversion of 4 x 4 matrices in terms of
Dirac covariants, hep-ph/9806415.

Kusnezov D., Exact matrix expansions for group elements of SU(N), J. Math. Phys. 36 (1995), 898-906.

Lanczos C., Linear systems in selfadjoint form, Amer. Math. Monthly 65 (1958), 665—679, reprinted and
commented Cornelius Lanczos Collected Published Papers with Commentaries, Editors W.R. Davis et al.,
North Carolina State University, Raleigh, 1998, Vol. V, 3191-3205.

Macfarlane A.J., Description of the symmetry group SUs/Zs of the octet model, Comm. Math. Phys. 11
(1968), 91-98.

Macfarlane A.J., Dirac matrices and the Dirac matrix description of Lorentz transformations, Comm.Math.
Phys. 2 (1966), 133-146.

Macfarlane A.J., Parametrizations of unitary matrices and related coset spaces, J. Math. Phys. 21 (1980),
2579-2582.

Macfarlane A.J., Sudbery A., Weisz P.H., On Gell-Mann’s A-matrices, d- and f-tensors, octets, and
parametrizations of SU(3), Comm. Math. Phys. 11 (1968), 77-90.

Mack G., All unitary ray representations of the conformal group SU(2,2) with positive energy, Comm.
Math. Phys. 55 (1977), 1-28.

Mack G., Salam A., Finite-component field representations of the conformal group, Ann. Phys. 53 (1969),
174-202.

Mack G., Todorov I.T., Irreducibility of the ladder representations of U (2, 2) when restricted to the Poincaré
group, J. Math. Phys. 10 (1969), 2078-2085.

Marchuk N.G., A model of the composite structure of quarks and leptons with SU(4) gauge symmetry,
hep-ph/9801382.

Mishra A., Ma M., Zhang F.-C., Plaquette ordering in SU(4) antiferromagnets, Phys. Rev. B 65 (2002),
214411, 6 pages, cond-mat,/0202132.

Moler C., Van Loan C., Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20
(1978), 801-836.

Moshinsky M., Wigner coefficients for the SUs group and some applications, Rev. Modern Phys. 34 (1962),
813-828.

Mukunda N., Arvind, Chaturvedi S., Simon R., Bargmann invariants and off-diagonal geometric phases
for multi-level quantum systems — a unitary group approach, Phys. Rev. A 65 (2003), 012102, 10 pages,
quant-ph/0107006.

Murnaghan F.D., The unitary and rotation group, Spartan Books, Washington, 1962.

Nelson T.J., A set of harmonic functions for the group SU(3) as specialized matrix elements of a general
finite transformation, J. Math. Phys. 8 (1967), 857-863.

Olevskiy M.N., Three-orthogonal systems in spaces of constant curvature in which equation AU + AU =0
permits the full separation of variables, Mat. Sb. 27 (1950), 379426 (in Russian).

Raghunathan K., Seetharaman M., Vasan S.S., A disentanglement relation for SU(3) coherent states,
J. Phys. A: Math. Gen. 22 (1989), L1089-L1092.

Ramakrishna V., Costa F., On the exponentials of some structured matrices, J. Phys A: Math. Gen. 37
(2004), 11613-11628, math-ph/0407042.

Ramakrishna V., Zhou H., On the exponential of matrices in su(4), math-ph/0508018.

Red’kov V.M., Bogush A.A., Tokarevskaya N.G., 4 X 4 matrices in Dirac parametrization: inversion problem
and determinant, arXiv:0709.3574.

Rosen S.P., Finite transformations in various representations of SU(3), J. Math. Phys. 12 (1971), 673-681.

Sédnchez-Monroy J.A., Quimbay C.J., SU(3) Maxwell equations and the classical chromodynamics,
hep-th/0607203.

Schirmer S.G., Greentree A.D., Ramakrishna V., Rabitz H., Constructive control of quantum systems using
factorization of unitary operators, J. Phys. A: Math. Gen. 35 (2002), 8315-8339, quant-ph/0211042.

Ten Kate A., Dirac algebra and a six-dimensional Lorentz group, J. Math. Phys. 9 (1968), 181-185.


http://arxiv.org/abs/hep-ph/9806415
http://arxiv.org/abs/hep-ph/9801382
http://arxiv.org/abs/cond-mat/0202132
http://arxiv.org/abs/quant-ph/0107006
http://arxiv.org/abs/math-ph/0407042
http://arxiv.org/abs/math-ph/0508018
http://arxiv.org/abs/0709.3574
http://arxiv.org/abs/hep-th/0607203
http://arxiv.org/abs/quant-ph/0211042

V.M. Red’kov, A.A. Bogush and N.G. Tokarevskaya

Terazawa H., Chikashige Y., Akama K., Unified model of the Nambu—Jona—Lasinio type for all elementary-
particle forces, Phys. Rev. D. 15 (1977), 480-487.

Terazawa Y., Subquark model of leptons and quarks, Phys. Rev. D 22 (1980), 184-199.

Tilma T., Byrd M., Sudarshan E.C.G., A parametrization of bipartite systems based on SU(4) Euler angles,
J. Phys. A: Math. Gen. 35 (2002), 10445-10465, math-ph/0202002.

Tilma T., Sudarshan E.C.G., Generalized Euler angle parametrization for SU(N), J. Phys. A: Math. Gen.
35 (2002), 10467-10501, math-ph/0205016.

Tilma T., Sudarshan E.C.G., Generalized Euler angle parameterization for U(N) with applications to SU(N)
coset volume measures, J. Geom. Phys. 52 (2004), 263-283, math-ph/0210057.

Vlasov A.Yu., Dirac spinors and representations of GL(4) group in GR, math-ph/0304006.
Volovik G.E., Dark matter from SU(4) model, JETP Lett. 78 (2003), 691-694, hep-ph/0310006.

Weigert S., Baker—-Campbell-Hausdorff relation for special unitary groups SU(n), J. Phys. A: Math. Gen.
30 (1997), 8739-8749, quant-ph/9710024.

Wilcox R.M., Exponential operators and parameter differentiation in quantum physics, J. Math. Phys. 8
(1967), 962-982.


http://arxiv.org/abs/math-ph/0202002
http://arxiv.org/abs/math-ph/0205016
http://arxiv.org/abs/math-ph/0210057
http://arxiv.org/abs/math-ph/0304006
http://arxiv.org/abs/hep-ph/0310006
http://arxiv.org/abs/quant-ph/9710024

	1 Introduction
	2 On parameters of inverse transformations G-1
	3 Unitarity condition
	4 2-parametric subgroups in SU(4)
	5 4-parametric unitary subgroup
	6 On subgroups GL(3,C) and SU(3), expressions for Gell-Mann matrices through the Dirac basis
	7 On the multiplication law for GL(4,C) in Dirac basis
	8 On factorization SU(4) and the group fine-structure
	9 On pseudo-unitary group SU(2,2)
	10 On pseudo-unitary group SU(3,1)
	11 Discussion
	References

