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1 Introduction

In classical Hamiltonian mechanics the time-evolution of a physical system is described by canon-
ical transformations in phase space that keep the Poisson brackets of the transformed coordi-
nate and momentum with respect to the initial ones unchanged. This transformation in phase
space can be described (for a one-dimensional problem in physical space and, therefore, a two-
dimensional one in phase space, to which we will restrict ourselves in the following) by the
so-called two-dimensional real symplectic group Sp(2, R), represented by 2 × 2 matrices with
determinant equal to 1. (In order to compare our new results with earlier ones for the time-
independent case, we only consider the homogeneous symplectic group without translations, not
the inhomogeneous symplectic group ISp(2, R).) It has been shown in [1] how it is possible to
obtain the representation of the group of linear canonical transformations in time-independent
quantum mechanics via the determination of the configuration space representation of the uni-
tary operator that connects quantum mechanically the transformed variables x and p with the
initial ones, x′ and p′. A subsequent Wigner transformation shows explicitly that for the time-
independent problems considered by this method, essentially the classical results are reproduced.
This agrees with the fact that at least for quadratic Hamiltonians, the Wigner function evolves
as W (x′, p′, t) = W (xM (x′, p′,−t), pM (x′, p′,−t), 0), where xM and pM are the Moyal time evo-
lution of position and momentum which, again for quadratic Hamiltonians, coincide with the
classical evolution [2, 3, 4, 5].

In a different study [6] it has been shown that, for time-dependent quantum systems, cha-
racteristic differences compared with the classical situation arise, in particular, when the time-
dependence of the quantum mechanical uncertainties of position and momentum are taken into
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account. One such difference can already be found for the most simple physical system, the free
motion.

In classical mechanics, the dynamics of a system may not only be described by its trajectory
but, particularly for systems with many degrees of freedom, a statistical description in terms of
virtual ensembles or distribution functions in phase space (also called Γ-space in this context) is
possible. These density-type functions %Γ(x, p, t) must be globally conserved, which is guaranteed
if they fulfil a kind of conservation law in the form of a continuity equation in phase space
that connects the explicit change in time of the density function %Γ with the divergence of a
current ~jΓ = %Γ~vΓ. If the system obeys Hamilton’s equations of motion, the divergence of the
velocity field ~vΓ always vanishes, ∇Γ~vΓ = 0 (where ∇Γ is the nabla-operator in phase space).
In a hydrodynamical description, this would mean that %Γ describes an incompressible medium.
In this probabilistic context, this corresponds to Liouville’s theorem that, from all possible
transformations of phase space, selects only those where a phase extension always retains its
volume during motion. Making use of the concepts of measure theory, this statement can be
made even more precise in the formulation that the measure of point-sets is an invariant of the
time-evolution of the virtual ensemble.

It can be shown straightforwardly that the quantum mechanical density %(x,t)=Ψ∗(x,t)Ψ(x,t),
corresponding to the complex solution Ψ(x, t) of the time-dependent Schrödinger equation also
fulfils a continuity equation (now in position- or configuration space). In this case, however,
the divergence of the corresponding vector field is proportional to the relative change in time
of the mean square deviation of position (position uncertainty) 〈x̃2〉 = 〈x2〉 − 〈x〉2, i.e., ∇x~v =
1
2

d
dt〈x̃

2〉/〈x̃2〉. So, ∇x~v only vanishes if 〈x̃2〉 is constant which, e.g. for a Gaussian wave packet,
would correspond to a constant width of this wave packet. It is, however, well known that
already for the free motion, the wave packet width is not constant but spreading with increasing
time. If one would consider the wave packet width as a kind of measure for the “volume” of our
quantum system, it certainly would not be conserved under time-evolution. This situation also
does not change if one tries to include the momentum aspect by also taking into account the
corresponding mean-square deviation 〈p̃2〉 and then considering the product of 〈x̃2〉 and 〈p̃2〉 as
an adequate measure for the “volume” of the system; since 〈p̃2〉 is constant for the free motion,
therefore, the product with 〈x̃2〉 still grows in time. (For a more detailed discussion, see also [6].)
A more consistent approach for a comparison with the classical case could, however, make use
of the phase-space formulation of quantum mechanics in the form of the time-dependent Wigner
function which shall be done in this paper.

Unlike in the time-independent situation where the quantum mechanical results mainly re-
produce the classical ones, in the time-dependent case there are obviously, at least, formal
differences between the classical and the quantum mechanical descriptions of the system even
already for such simple ones like the free motion. These differences are intimately connected
with the time-dependence of the typical quantum mechanical aspect of the system, namely,
the uncertainties of position and momentum. Therefore, in this paper, we will investigate the
influence of the time-dependence of the quantum system, in particular of the uncertainties, on
the representation of the group of linear canonical transformations in quantum mechanics.

For this purpose, in Section 2, we briefly summarize the main results of the time-independent
quantum mechanical case. In Section 3 we then consider the time-dependent case and discuss
the characteristic differences compared with the time-independent situation, in particular the
role of the time-dependence of the quantum uncertainties. In order to be on the safe side
of systems with exact analytic solutions, we restrict our discussion to systems with at most
quadratic Hamiltonians, in particular, to the harmonic oscillator (with possibly time-dependent
frequency) and the free motion. Possible ways of overcoming these limitations and of extending
our method to further problems will be mentioned in Section 4 where the results will also be
summarized and some perspectives will be mentioned.
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2 Time-independent case

The time-evolution in classical Hamiltonian mechanics is described by canonical transformations
in phase space that can be represented by(

x
p

)
=
(

a b
c d

)(
x′

p′

)
, (1)

where a, b, c, d are real and the determinant of the 2 × 2 matrix is 1, i.e., ad − bc = 1. The
group of transformations represented by the 2× 2 matrices is the so-called two-dimensional real
symplectic group Sp(2, R).

Following [1] (see Chapter 35 and references cited therein), it is possible to obtain the repre-
sentation of the group of linear canonical transformations (1) in quantum mechanics. Referring
to [1, 7], the main objective is to determine the configuration space representation

〈x|U |x′〉 = K(x, x′)

of the unitary operator U that provides the quantum mechanical relation between x, p and x′, p′,
according to

x = Ux′U−1, p = Up′U−1. (2)

With the help of the kernel K(x, x′), the effect of any canonical transformation (1) can be
described as

Ψ(x) =
∫ +∞

−∞
dx′ K(x, x′)Ψ(x′).

The integral kernel K(x, x′) has been derived taking into consideration the fact that it must
satisfy the following two differential equations [8, 9](

ax + b
~
i

∂

∂x

)
K(x, x′) = x′K(x, x′), (3)(

cx + d
~
i

∂

∂x

)
K(x, x′) = −~

i

∂

∂x′
K(x, x′). (4)

An exponential ansatz, bilinear in x and x′, finally leads to K(x, x′) in the form

K(x, x′) =
(

1
2πb

) 1
2

exp
{
− i

2b

[
ax2 − 2xx′ + dx′2

]}
. (5)

This kernel K(x, x′), related with the specific canonical transformation, is formulated in
configuration space, whereas, the corresponding classical canonical transformation is formulated
in phase space. Therefore, it is interesting to discuss the representation of this canonical trans-
formation in the phase space version of quantum mechanics that was developed by Wigner [10]
with the help of the corresponding distribution function. This distribution function W (x, p) can
be obtained from a given wave function Ψ(x) in configuration space via the so-called Wigner
transformation

W (x, p) =
1

2π~

∫ +∞

−∞
dy eipy/~Ψ∗

(
x +

y

2

)
Ψ
(
x− y

2

)
. (6)

Applying this transformation to the kernel (5) leads to the phase space kernel in the form [7]

K(x, x′, p, p′) = δ[x′ − (ax + bp)]δ[p′ − (cx + dp)],

showing that, for this linear canonical transformation, the kernel coincides with its classical
limit. So, the quantum mechanical problem mainly reproduces the classical situation without
any additional specific quantum mechanical aspect.
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3 Time-dependent case

Now we will investigate how far this is still true in the case of specific quantum dynamical
aspects entering the problem. So, considering time-dependent problems in quantum mechanics
in terms of the time-dependent Schrödinger equation or equivalent formulations, one finds that
not only classical position and momentum change in time (in a way that can be described by
canonical transformations) but, also the typical quantum mechanical degrees of freedom, like
position- and momentum-uncertainties, may be time-dependent (corresponding, e.g., to wave
packets with time-dependent width). For certain problems with exact analytical solutions in
form of Gaussian wave packets, it has been shown (see, e.g., [11] and references cited therein)
how the transition from initial position and time (in configuration space) to any later position
and time can be achieved with the help of a time-dependent kernel (or propagator) K(x, x′, t, t′)
according to

Ψ(x, t) =
∫ +∞

−∞
dx′ K(x, x′, t, t′)Ψ(x′, t′). (7)

The integral kernel K(x, x′, t, t′) can be obtained in different ways, e.g., via Feynman’s path
integral method [12], or, for kernels quadratic in x and x′, similar to the discussion in the
time-independent case [7] in the form

K(x, x′, t, t′ = 0) =
(

m

2πi~α0ẑ

) 1
2

exp

{
im

2~ẑ

[
˙̂zx2 − 2x

(
x′

α0

)
+ û

(
x′

α0

)2
]}

, (8)

where α0 =
√

2m〈x̃2〉0
~ is proportional to the initial position uncertainty, or initial mean square

deviation in space, 〈x̃2〉0 = 〈x2〉0−〈x〉20 (where 〈· · · 〉 denotes mean values calculated according to
〈· · · 〉 =

∫ +∞
−∞ Ψ∗ · · ·Ψ dx′). We choose this form of the kernel because of the explicit appearance

of α0 and, therefore, the initial position uncertainty. This quantity is essential for the time-
evolution of the quantum uncertainties. As has been shown in [11], already for the simple
example of the harmonic oscillator, the time-evolution of the position uncertainty and, hence,
the width of the Gaussian wave packet solution of this problem, behaves qualitatively very
different if the initial position uncertainty corresponds to that of the ground state (constant
width) or differs from it (oscillating width) where the latter represents the general solution
which, in the limit ω → 0, provides the free motion wave packet, whereas, the former only leads
to a plane wave solution in this limit (for further details see [11]). The time-dependence enters
this kernel explicitly via the parameters ẑ(t) and û(t). In the limit t → 0, the kernel turns into
a delta function.

Since, according to (7), the dependence of Ψ(x, t) on x and t enters only via K(x, x′, t, t′), this
kernel also must fulfil the time-dependent Schrödinger equation. Inserting K, in the form given
in (8), into this equation shows that the parameters ẑ(t) and û(t) both fulfil the equation of
motion for the corresponding classical problem (e.g., the free motion or the harmonic oscillator
with possibly time-dependent frequency), however, they are not independent of each other but
are coupled via the relation

˙̂zû− ˙̂uẑ = 1. (9)

This resembles the condition that the determinant of the entries of the 2 × 2 matrix of the
linear canonical transformation (1) must fulfil.

Inserting (8) into (7) with an initial Gaussian wave packet ΨWP(x′, t′) of the form

ΨWP(x′, t′ = 0) =
(

mβ0

π~

) 1
4

exp

{
im

2~

[
i

(
x′

α0

)2

+ 2
p0

m
x′

]}
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leads to a Gaussian wave packet

ΨWP(x, t) =
(m

π~

) 1
4

(
1

û + iẑ

) 1
2

exp

{
im

2~

[
˙̂z
ẑ
x2 −

(x− p0α0

m ẑ)2

ẑ(û + iẑ)

]}
, (10)

whose maximum follows the classical trajectory η(t), which is, therefore, up to a constant,
proportional to ẑ, i.e.,

ẑ =
m

α0p0
〈x〉(t) =

m

α0p0
η(t) (11)

with initial momentum p0 and mean value of position 〈x〉 which is, according to Ehrenfest’s
theorem, identical with the classical trajectory η(t).

The coefficient of the term quadratic in x in the exponent of the Gaussian can be expressed
via the complex quantity

2~
m

y =
˙̂z
ẑ
− 1

ẑ(û + iẑ)
=

λ̇

λ
, (12)

where û and ẑ have been combined to form the complex variable

λ = û + iẑ. (13)

The quantity 2~
m y fulfils the complex nonlinear Riccati equation (here given for the harmonic

oscillator)

2~
m

ẏ +
(

2~
m

y

)2

+ ω2 = 0, (14)

which can be linearized, using equation (12), to a complex Newtonian equation

λ̈ + ω2λ = 0 (15)

for the variable λ (for details see [11, 13]). The complex quantity λ(t) can also be expressed in
polar coordinates as

λ = αeiϕ = α cos ϕ + iα sinϕ, (16)

where relation (9) turns into

ϕ̇ =
1
α2

, (17)

which has similarities with the conservation of angular momentum but, here, for the motion
of λ(t) in the complex plane.

Through equations (13), (15) and (11) it is obvious that the imaginary part of equation (15),
up to a constant factor, is just the Newtonian equation of motion for the wave packet maximum.
The width of the wave packet (10), or its position uncertainty 〈x̃2〉 = 〈x2〉−〈x〉2, respectively, is
connected with the imaginary part of

(
2~
m y
)

via 2~
m yI = ~

2m〈x̃2〉 . From λ in polar coordinates (see
equation (16)) and pursuing equation (12) and (17) it follows that the variable of the complex
Riccati equation (14) can be written as(

2~
m

y

)
=

λ̇

λ
=

α̇

α
+ iϕ̇ =

α̇

α
+ i

1
α2

=
(

2~
m

yR

)
+ i

(
2~
m

yI

)
,
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with α2 = 2m〈x̃2〉/~. The imaginary part of equation (14) agrees with equations (17) and (9).
The real part of equation (14) with the above-mentioned results leads, however, to a real non-
linear differential equation for the position uncertainty α(t),

α̈ + ω2(t)α =
1
α3

. (18)

It is well-known in the literature [14, 15] that a pair of differential equations consisting of
the Newtonian equation of motion (15), but now only for η(t), and the nonlinear equation (18),
possesses a dynamical invariant, the so-called Ermakov invariant,

IL =
1
2

[
(η̇α− ηα̇)2 +

( η

α

)2
]

= const =
1
2

(α0p0

m

)2
, (19)

that connects the classical position and momentum (or velocity) and their uncertainties. This
becomes even more obvious if one realizes that, with the help of α, ϕ and λ and their time-
derivatives (denoted by overdots), the quantum mechanical uncertainties can now be expressed
in the following forms

〈x̃2〉 =
~

2m
α2 =

~
2m

λλ∗, (20)

〈p̃2〉 =
~m

2
(α̇2 + α2ϕ̇2) =

~m

2
(λ̇λ̇∗), (21)

〈[x̃, p̃]+〉 = 〈x̃p̃ + p̃x̃〉 = ~α̇α =
~
2

∂

∂t
(λλ∗), (22)

where x̃ = x− 〈x〉, p̃ = p− 〈p〉.
In order to compare the time-dependent kernel (8) with the kernel K(x, x′) in (5), one must

take into account that K(x, x′) has been obtained via equations (3) and (4) which describe the
transformation of x and p into the initial values x′ and p′, whereas, K(x, x′, t, t′) in (8) describes
the inverse transformation from x′ to x. This is expressed, e.g., by the different signs in the
exponents of (5) and (8). In order to make a direct comparison, one must therefore take the
inverse transformation of (8), obtained by changing the sign in the exponent, and interchan-
ging ˙̂z and û. Inserting this kernel into equations (3) and (4), one obtains the corresponding
equations for the time-dependent problem,

˙̂zx− ẑ
p

m
=

x′

α0
, (23)

− ˙̂ux + û
p

m
= −α0p

′

m
(24)

or, in matrix notation,(
x′

α0

−α0p′

m

)
=
( ˙̂z −ẑ

− ˙̂u û

)(
x
p
m

)
= M

(
x
p
m

)
. (25)

Again, the transformation matrix M has the determinant ˙̂zû − ˙̂uẑ = 1, which corresponds,
according to (17), to a kind of conservation of angular momentum (in a complex plane). However,
different from the time-independent case, the initial state is not only characterized by the initial
position x′ and momentum p′ but, also, by the corresponding initial uncertainties since α0 =
(2m

~ 〈x̃
2〉0)1/2 is proportional to the initial position uncertainty and (for a minimum uncertainty

wave packet with 〈x̃〉20〈p̃2〉0 = ~2/4) the inverse 1
α0

= ( 2
m~〈p̃

2〉0)1/2 is proportional to the initial

momentum uncertainty, i.e., x′

α0
∝ x′√

〈x̃2〉0
, α0p′

m ∝ p′√
〈p̃2〉0

.
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Following the procedure for the inverted propagator (8) outlined in [7], by applying the
Wigner transformation (6), one arrives at a similar result. The kernel K(x, x′, p, p′, t, t′) (being
time-dependent via ẑ(t) and û(t)), which provides the Wigner function W (x, p, t) via

W (x, p, t) =
∫ +∞

−∞
dx′dp′ K(x, x′, p, p′, t, t′)W (x′, p′, t′ = 0)

with

W (x′, p′, t′ = 0) =
1
π~

exp
{
− x′2

2〈x̃2〉0
− p′2

2〈p̃2〉0

}
=

1
π~

exp

{
−m

~

[(
x′

α0

)2

+
(

α0p
′

m

)2
]}

, (26)

(see, e.g., [11]), is given by the product of two delta functions where now, however, x′ is re-
placed by x′

α0
and p′ is replaced by α0p′

m and the transformed variables in the delta functions are
determined by (23), (24), i.e.,

K(x, x′, p, p′, t, t′ = 0) = δ

[(
x′

α0

)
−
(

˙̂zx− ẑ
p

m

)]
δ

[(
α0p

′

m

)
−
(
û

p

m
− ˙̂ux

)]
.

Applying this kernel to the initial Wigner distribution function (26) yields the function
W (x, p, t) as

W (x, p, t) =
1
π~

exp
{
−m

~

[(
˙̂zx− ẑ

p

m

)2
+
(
û

p

m
− ˙̂ux

)2
]}

.

Using the definitions (13) and (16) of λ and its relation to the uncertainties as given in
equations (20)–(22), finally allows one to write

W (x, p, t) =
1
π~

exp
{
− 2

~2

[
〈p̃2〉x2 − 〈[x̃, p̃]+〉xp + 〈x̃2〉p2

]}
, (27)

where the time-dependence of the uncertainties is determined totally by the time-dependence
of ẑ(t) and û(t). In the case of time-dependent Gaussian wave packets, the classical time-
dependence is expressed by the fact that the maximum of the wave packet follows the classical
trajectory. This is taken into account by shifting the variables of position and momentum
from x to x̃ = x − 〈x〉 and p to p̃ = p − 〈p〉. Since 〈x〉 and 〈p〉 are purely time-dependent
quantities, x̃ and p̃ can replace x and p in equations (3), (4) since these equations only contain
derivatives with respect to space, not time. So, x and p in (27) would be replaced by x̃ and p̃
which would lead to the result obtained in [16] showing the connection between the exponent
of the time-dependent Wigner function and the dynamical Ermakov invariant that is connected
with the parameters ẑ and û of the time-dependent kernel K(x, x′, t, t′) and has been defined in
equation (19) (for details see also [11]).

In the quantum mechanical phase space picture according to Wigner, this results not only in
changing initial position- and momentum-uncertainties into their values at time t but, also, an
additional contribution occurs from the time-change of 〈x̃2〉, or α2, respectively, expressed by
the term proportional to 〈[x̃, p̃]+〉, or α̇α, respectively, in the exponent of W (x, p, t).

All these quantum dynamical aspects are contained in the time-dependent parameters ẑ
and û, entering the transformation matrix in (25). In particular, the change of the position
uncertainty (proportional to α) is taken into account by the parameter û, which can be expressed
as [11]

û = ˙̂zα2 − ẑα̇α =
(

m

α0p0

)
[η̇α2 − ηα̇α]. (28)



8 D. Schuch and M. Moshinsky

For constant uncertainty α = α0, û is simply proportional to the classical velocity η̇(t), for
α̇ 6= 0, however, the situation can become quite different. As an example the free motion shall be
discussed briefly, since there α = α(t), which is expressed in the spreading of the corresponding
wave packet solution. For this purpose, also ˙̂u is now given in terms of η and η̇ where the
equations of motion (15) (for η(t)) and (18) (for α(t)) are applied. So it follows from (28) that

˙̂u =
(

m

α0p0

)[
η̇α̇α− η

(
α̇2 +

1
α2

)]
.

For constant α = α0, all terms proportional to α̇ vanish and the transformation matrix in (25)
can be written as

M =
( ˙̂z −ẑ

− ˙̂u û

)
=
(

m

α0p0

)(
η̇ −η
1

α2
0

α2
0η̇

)
.

For the harmonic oscillator with constant width (note: there is another solution with oscil-
lating width) α = α0 = 1√

ω
and η(t) = v0

ω sinωt (η(0) = 0), η̇ = v0 cos ωt (η̇(0) = v0 = p0

m ),
M turns into

MHO =
(

m

α0p0

)(
v0 cos ωt −v0

ω sinωt

v0 sinωt v0
ω cos ωt

)
=

(
1

α0
cos ωt −α0 sinωt

1
α0

sinωt α0 cos ωt

)
,

i.e., (up to the constant α0 that also occurs in the column vectors) just the classical result is
reproduced.

However, for the free motion with η(t) = v0t, η̇(t) = v0, for constant α = α0, one would
obtain

M̃fr =
(

m

α0p0

)(
v0 −v0t

1
α2

0
v0t α2

0v0

)
,

that is different from the classical situation where the matrix element in the first column and
second row would be zero. The consequence for a free motion wave packet with constant width
would be that the transformation matrix would no longer describe a canonical transformation,
since its determinant would no longer be equal to 1 but

det(M̃fr) =

[
1 +

(
t

α2
0

)2
]

,

which just describes the time-dependence of the wave packet spreading.
For α̇ 6= 0, the well-known time-dependence of the wave packet width, given by α2(t) =

α2
0

[
1 +

(
t

α2
0

)2
]

and obtained as a solution of equation (18) for ω = 0, leads to the correct

transformation matrix

Mfr =
(

m

α0p0

)(
v0 −v0t
0 α2

0v0

)
, (29)

with det(Mfr) = 1. This shows explicitly the influence of the time-dependence of the uncer-
tainty α on the transformation describing the dynamics of the system.

It should also be mentioned that the determinant of M, written in terms of η, η̇, α and α̇
takes just the form of the Ermakov invariant, i.e.,

M =
(

m

α0p0

)(
η̇ −η

−η̇α̇α + η
(
α̇2 + 1

α2

)
η̇α2 − ηα̇α

)
(30)



Wigner Function and Canonical Transformations in Time-Dependent Quantum Mechanics 9

yields

det(M) =
(

m

α0p0

)2 [
η̇2α2 − 2ηη̇αα̇ + η2

(
α̇2 +

1
α2

)]
=
(

m

α0p0

)2 [
(η̇α− α̇η)2 +

( η

α

)2
]

. (31)

At this point it appears appropriate to discuss some differences characteristic of our method in
comparison with other approaches that try to find a quantum analogue to the classical canonical
transformations in the case of time-dependent quantum systems, particularly, when the Wigner
phase space formulation is applied.

So in [17, 18] the Wigner function for the free motion and Gaussian-shaped distribution
function is given by (~ = 1)

W (x, p, t) =
1
π

exp
{
−
[
1
b

(
x− p

m
t
)2

+ bp2

]}
with constant parameter b (that would, in our notation, correspond to b = 2

~2 〈x̃2〉0 = α2
0

m~ = ~2

2〈p̃2〉0
(for a minimum uncertainty wave packet)). The equivalence to the conserved volume element
in classical phase space is intended to be established by the statement: “this distribution is
concentrated within the region where the exponent is less than 1 in magnitude” and, for the
choice of a coordinate system where b = 1, “the above phase space distribution function is a circle
at t = 0. As time progresses, the circle becomes a tilted ellipse while preserving its area.” This
elliptic deformation is a canonical transformation that corresponds to our transformation (29)
but, in the case of these authors’ description, the time-dependence in their transformation
only originates from the classical dynamics, transforming the initial position x into x − p

m t
(with constant p). The correct spreading Gaussian wave packet for the free motion, however,
obviously has a time-dependent width, corresponding to a time-dependent parameter b in the
notation of the references quoted. This still holds if one considers the corresponding Wigner
function. However, if the width in position space is time-dependent, in our notation α̇ 6= 0,
a third term in the exponent of the Wigner function, namely, the one taking into account the
position-momentum-correlations (see equations (22) and (27)), must occur. This term is missing
in the above-mentioned approach.

In another approach [19], a relation between the Wigner function for two-photon coherent
states and the one for Glauber coherent states has been established that looks quite similar to
our transformations (1) or (25). However, this method is based on combinations of creation
and annihilation operators. It has been shown recently [20] that the Ermakov invariant (that
is, up to a constant factor, equivalent to the determinant of our transformation matrix (25); see
also (31)), can be factorized into two terms that are a kind of (complex) generalization of the
creation and annihilation operators and turn into these for α̇ = 0 (for further details, see [20]).
Therefore, also in the approach [19] based on the usual creation and annihilation operators, the
time-dependence of the uncertainties expressed by α̇ 6= 0 is not taken into account.

It is also known in the literature that quantum uncertainties are related with classical error
margins and that, particularly for quadratic Hamiltonians, the classical error margins satisfy the
classical Hamiltonian equations [21]. Furthermore, in our case, it can even be shown that the
quantum uncertainties obey equations of motion that can be derived from a quantum-uncertainty
Hamiltonian function that now provides the time-evolution of the quantum uncertainties in
a canonical formalism. This Hamiltonian is nothing but the ground state energy or, respectively,
the energy contribution of the momentum and position fluctuations to the overall energy of the
Gaussian wave packet solution for the system. To make these formal aspects obvious, we write
the energy of the system, calculated as the mean value of the Hamiltonian operator using the
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Gaussian wave packet solutions of the corresponding time-dependent Schrödinger equation, in
the form (for the harmonic oscillator)

〈Hop〉 =
1

2m
〈p2〉+

m

2
ω2〈x2〉 =

(
1

2m
〈p〉2 +

m

2
ω2〈x〉2

)
+
(

1
2m

〈p̃2〉+
m

2
ω2〈x̃2〉

)
=
(m

2
η̇2 +

m

2
ω2η2

)
+
[

~
4
(
α̇2 + α2ϕ̇2

)
+

~
4
ω2α2

]
= Ecl + Ẽ = (Tcl + Vcl) + (T̃ + Ṽ ).

In order to establish a Lagrangian/Hamiltonian formalism for the uncertainties, we assume
that a corresponding Lagrangian L̃ can be written as the difference between kinetic and potential
energy fluctuations, but now expressed in terms of the variables α, ϕ and the corresponding
velocities α̇, ϕ̇, i.e.

L̃(α, α̇, ϕ, ϕ̇) = T̃ − Ṽ =
~
4
(
α̇2 + α2ϕ̇2 − ω2α2

)
.

The corresponding Euler–Lagrange equations are then

d

dt

∂L̃
∂ϕ̇

− ∂L̃
∂ϕ

= 0,
d

dt

∂L̃
∂α̇

− ∂L̃
∂α

= 0.

From the first equation follows d
dt(

~
2α2ϕ̇) = 0, or, α2ϕ̇ = const, in agreement with equation (17);

from the second equation follows α̈ + ω2α = ϕ̇2α = const
α3 , equivalent to equation (18) (for

const = 1).
The corresponding canonical momenta are then given by

∂L̃
∂ϕ̇

=
~
2
α2ϕ̇ = pϕ,

∂L̃
∂α̇

=
~
2
α̇ = pα.

With the help of these definitions, the quantum energy contribution Ẽ = T̃ + Ṽ can be
written in a Hamiltonian form as

H̃(α, pα, ϕ, pϕ) =
p2

α

~
+

p2
ϕ

~α2
+

~
4
ω2α2.

It is straightforward to show [13] that the corresponding Hamiltonian equations of motion
again reproduce the results (17) and (18), only now expressed with the help of the canonical
momenta. An interesting point is that because of relation (17), i.e. ϕ̇ = 1

α2 , the canonical
“angular momentum” pϕ has the constant value pϕ = ~

2 , a value that does not usually describe
an orbital angular momentum but the non-classical angular momentum-type quantity spin.

Finally, using these results, the uncertainty product can be expressed as

U = 〈x̃2〉〈p̃2〉 = p2
ϕ + (αpα)2.

In this context it should be mentioned that some authors (e.g., [22, 23, 24]) assume that the
role of the phase space volume in quantum mechanics is played by the square root of the so-called
“invariant uncertainty product” 〈x̃2〉〈p̃2〉 − 1

4〈[x̃, p̃]+〉2 = ~2

4 , which is definitely a constant of
motion since it is equivalent to our quantity p2

ϕ. So, this square root would just be pϕ = ~
2α2ϕ̇

which, due to the equivalence between equations (9) and (17), leads back to the requirement for
the determinant of our transformation matrix (25) to be equal to 1.
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4 Conclusions and perspectives

In classical mechanics, canonical transformations can be characterized by certain properties, like
the conservation of a volume element in phase space under these transformations, corresponding
to Liouville’s theorem that can easily be checked by calculating the Wronskian determinant of
the transformation that should be equal to 1.

In quantum mechanics, this conservation law appears to have its correspondence in the conser-
vation of a so-called “invariant uncertainty product” that holds for systems with time-dependent
and time-independent quantum uncertainties since any explicit time-dependence of the uncer-
tainties is compensated for by subtracting a term proportional to 〈[x̃, p̃]+〉2. The remaining
conserved quantity corresponds to the conservation of pϕ, the “angular momentum” for the
motion of λ(t) in the complex plane. Due to the equivalence of equations (9) and (17), this
conservation law is identical with the requirement that the determinant of our transformation
matrix (25) for the time-dependent quantum problem must be equal to 1. From equations (30)
and (31), it finally follows that this requirement is identical with the existence of a dynamical
invariant for the system, the so-called Ermakov invariant.

Another major result of our analysis is that, in the time-dependent quantum mechanical prob-
lem, the transformation (25) corresponding to the classical linear canonical transformation (1)
and its time-independent quantum mechanical analogue (3), (4) does not only transform the
initial position and momentum into its values at a later time but, also, does the same simul-
taneously with the corresponding uncertainties! In how far this is connected with the existence
of a Lagrangian/Hamiltonian formulation of the dynamics of the quantum uncertainties will be
further investigated.

So far, the discussion of the time-dependent case included only systems where the potential
is at most quadratic in its variables. This might not be as restrictive as it seems at first sight
since one may sometimes perform canonical transformations to reduce a given Hamiltonian to
a quadratic form [25] which has been shown explicitly by Sarlet for some polynomial Hamil-
tonians. To what extent this method can also be applied in our case requires more detailed
studies.
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