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Zusammenfassung

Die Methoden der Thermolumineszenz (TL) und der optisch stimulierten Lumineszenz
(OSL) sind mittlerweile etablierte, geowissenschaftliche Werkzeuge und ermöglichen bei-
spielsweise Datierungen archäologischer Artefakte oder quartärer Sedimente. Besonders
Quarz eignet sich für diese Anwendungen, da es das zweithäufigste Mineral in der Erd-
kruste ist. Um das komplexe System der Ladungsträgerbewegungen im Quarzkristall zu
verstehen, helfen numerische Simulationen, insbesondere gekoppelte Differentialgleichun-
gen, deren Lösungen die zeitlichen Verläufe von Ladungsträgerkonzentrationen im Kristall
beschreiben. Im Jahr 2001 wurde ein umfassendes Modell veröffentlicht, das viele Effekte
und Phänomene der Quarzlumineszenz im UV (Ultraviolett) gut beschreibt und Grundlage
für viele weitere Veröffentlichungen ist. Nichtsdestotrotz konnte insbesondere das Phänomen
der UV-Radiofluoreszenz (UV-RF), der Emission von Photonen im UV während der Wech-
selwirkung mit ionisierender Strahlung, nicht hinreichend simuliert werden. Die Methode
der Radiofluoreszenz bietet jedoch einige Vorteile gegenüber anderen Lumineszenzsignalen,
z.B. die Möglichkeit zur direkten Beobachtung temperaturabhängiger Lumineszenzeffekte.

Die vorliegende Arbeit zeigt zum einen grundlegende, experimentelle Untersuchungen
zur Quarz UV-RF und zum anderen die qualitative Simulation von UV-RF und möglichst
vieler anderer Lumineszenzphänomene. Hierzu wurden bereits publizierte Quarzmodelle
und ihre zugehörigen Parameter im Open-Source Softwarewarepaket RLumModel zusam-
mengefasst. Die Handhabung wurde möglichst einfach gehalten, sodass eine Benutzung
ohne fortgeschrittene Programmierkenntnisse und physikalisches Hintergrundwissen möglich
ist. Das grundlegende Verhalten der UV-RF nach unterschiedlichen Vorheiztemperaturen
wurde systematisch untersucht und dabei festgestellt, dass die maximale Signalintensität
nach Vorheizen auf ∼ 550 ◦C eintritt. Nach Anpassung der Ladungsträgerkonzentrationen in
den Modellparametern konnten die experimentellen Ergebnisse erfolgreich simuliert werden.
Weitere Untersuchungen zur Abhängigkeit des UV-RF Signals von der Dosisleistung der
Strahlungsquelle erfüllten die theoretisch hergeleiteten Erwartungen, dass die Signalinten-
sität linear mit der Dosisleistung und der Abfall der Signalintensität in den ersten Sekunden
linear mit dem Quadrat der Dosisleistung steigt. Dieses Verhalten konnte ebenfalls nach
Modifikationen der Modellparameter mit hoher Genauigkeit numerisch abgebildet werden.

In allen numerischen Untersuchungen wurde diagnostiziert, dass die Haupteigenschaften
der durchgeführten Experimente mit einem vereinfachten Modell aus drei verschiedenen
Energiestufen simuliert werden können. Auf Grundlage dieses Modells konnten analytische
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Zusammenfassung

Lösungen für die UV-RF Signaldynamik berechnet werden und es wurde dabei festgestellt,
dass diese aus der Summe einer exponentiell abklingenden und exponentiell zunehmenden
Funktion zusammengesetzt sind. Dieses grundlegende Verhalten lässt sich auch auf andere
Emissionsbänder übertragen und ist nicht auf den UV Bereich beschränkt.

Weitere anwendungsbezogene Ergebnisse liefern die Untersuchungen zu Quenchingmecha-
nismen in Quarz. Radiofluoreszenz bietet die Möglichkeit thermal-quenching in Rekombina-
tionszentren zu beobachten und daraus notwendige Parameter zu berechnen, die wiederum
als Grundlage für Simulationen dienen. Ebenso ist es möglich das Phänomen des dose-
quenching direkter als bisher zu analysieren. Vergleiche mit etablierten Messmethoden für
thermal- und dose-quenching zeigen, dass UV-RF Möglichkeiten zum besseren Verständnis
von Lumineszenzeffekten in Quarz bietet. Simulationen zu beiden Effekten konnten erfolg-
reich umgesetzt werden. Darüber hinaus wurden Beobachtungen wie der UV-reversal Effekt
mit UV-RF direkter als jemals zuvor untersucht und bekräftigten die Modellvorstellung,
dass Vorheizen und UV-Bestrahlung gegensätzliche Ladungsträgerverschiebungen verur-
sachen. Eine Anwendung zur Bestimmung absorbierter ionisierender Strahlung in Quarz
mit Hilfe der UV-RF konnte zunächst theoretisch und anschließend auch experimentell
gezeigt werden. Mit Hilfe der entwickelten Messmethode wurden absorbierte Dosen von bis
zu ∼ 300Gy mit einer Genauigkeit von ± 10% erfolgreich bestimmt. Die Anwendungen der
Methode können von der Quellenkalibrierung, bis hin zur Datierung von zuvor ausgeheizten
Materialien, wie z.B. Keramiken, reichen.
Um aus Simulationen Vorhersagen zu generieren (forward modelling), müssen zunächst

passende Parameter gefunden werden. Dazu wurden an den bereits vorhanden Parameter-
sets Sensitivitätsanalysen durchgeführt, um die für das jeweilige Signal einflussreichsten
Parameter zu extrahieren. Anschließend wurden diese Parameter so angepasst, dass sie
gemessene Lumineszenzsignale möglichst genau abbilden (inverse modelling). Diese Technik
wurde auf TL und OSL Signale angewandt. Sensitivitätsanalysen und inverse modelling sind
ebenfalls im Softwarewarepaket RLumModel implementiert. Dies hilft z.B. möglicherweise
zeitaufwändige Messungen zunächst zu simulieren. Als methodologische Weiterentwicklung
werden darüber hinaus erste Überlegungen und Ergebnisse von Monte-Carlo Simulationen
für Quarz RF vorgestellt und mit bisher etablierten Methoden verglichen.

Diese Arbeit zeigt, dass das Zusammenspiel von experimentellen Untersuchungen und
numerischen Simulationen ein umfassenderes Verständnis von Lumineszenz bietet. Darüber
hinaus besitzt Radiofluoreszenz an Quarzen ein breites Anwendungsgebiet und liefert
wichtige Erkenntnisse über Ladungsträgerbewegungen im Quarzkristall. So sind verschiedene
Radiofluoreszenzphänomene mit Hilfe des Bändermodell erklärbar und lassen sich nach
einigen Parameteranpassungen nahtlos in bereits vorhandene Modelle integrieren.
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Summary

Thermoluminescence (TL) and optically stimulated luminescence (OSL) are well-established
methods in geoscience, e.g., used to date archaeological sites or quaternary sediments.
Quartz is well suited for that purpose because it is the second most abundant mineral in
Earth’s continental crust. Numerical simulations, especially coupled differential equations,
can help to understand the complex system of charge carrier transport in the quartz crystal
because the solutions of these differential equations describe the charge carrier movement by
time. In 2001 a comprehensive quartz model was published which was able to describe many
known effects and phenomena concerning quartz luminescence in the UV spectrum (ultra-
violet). This publication is the foundation of many more published models in recent years.
Nevertheless, the luminescence emitted while irradiating quartz with ionising radiation,
known as radiofluorescence (RF), was not well implemented in the model, because even
basic observations are not reproducible. Radiofluorescence offers some key advantages, e.g.,
direct and real-time observation of temperature-driven effects on luminescence production.

This thesis presents fundamental experimental UV-RF investigations and the qualitatively
successful simulation of RF and other luminescence signals and phenomena. Published
quartz models and parameters had been gathered in an open-source software package
called RLumModel. The software has been designed for simplicity to allow use without
deep knowledge of programming or physical understanding of the model. Fundamental
behaviour of UV-RF signals was tested by annealing to different temperatures before UV-RF
measurement. The maximum signal intensity was measured after annealing to ∼ 550 ◦C.
Numerical simulations are able to reproduce this characteristic after some modifications of
charge carrier concentrations in the model parameters. Further investigations on the dose rate
dependence of the UV-RF signal fulfil theoretical findings that the signal intensity is linearly-
dependent on the dose rate and the slope of the initial UV-RF signal is linearly-dependent on
the squared dose rate. Again, after some parameter modifications the numerical simulations
are able to mimic this behaviour. It was remarkable that in all numerical investigations a
simple three-energy-level model was able to simulate the main characteristics of the observed
effects. Due to this, analytical solutions for the UV-RF signal dynamic were derived. The
finding from these analytical solutions is a fitting function for UV-RF signals which is a
composite of two exponential functions: an increasing and a decreasing exponential. This
behaviour is not restricted to the UV band and can also be transferred to other emission
bands.
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Summary

Investigating quenching mechanisms in quartz yield the power of RF for further applica-
tions because RF offers the possibility to measure, e.g., thermal-quenching more directly.
With these measurements it is possible to directly calculate thermal quenching parameters
which can be implemented in the numerical model. Another phenomenon, called dose-
quenching, can also be measured more directly. Comparisons with other methods measuring
quenching effects show the possibilities of RF as analysis tool in quartz luminescence. Both
quenching effects were also simulated and are again in accordance with experimental results.
In addition to that, long-known effects such as the UV-reversal were also analysed more
directly via UV-RF and confirm the idea of reversibility of annealing and UV illumination.
Another application is the determination of absorbed doses with UV-RF, which was first
found by numerical simulations. Further experimental data confirm that the new developed
measurement protocol is able to recover doses up to ∼ 300Gy with a accuracy of ± 10%
with UV-RF. Possible applications of this method range from source calibration to dating
of annealed material, e.g., ceramics.

Generating predictions from simulations (forward modelling) needs appropriate parame-
ters. To get these parameters, sensitivity analysis of the used parameter sets was applied to
extract parameters influencing the outcome of the simulations most. Subsequently these
parameters were adjusted by fitting them to luminescence signals (inverse modelling). This
method was applied to TL and OSL signals. Sensitivity analysis and inverse modelling are
also included in the software package RLumModel. This will help saving measurement time
because users can first simulate their sequences. To develop further methods to calculate
RF signals from models, the first ideas and results from Monte-Carlo simulations for quartz
RF are presented and compared to established numerical methods.

This thesis shows that the interaction of experiments and simulations offers a comprehen-
sive understanding of luminescence. Furthermore, it has been shown that radiofluorescence
of quartz has a wide range of applications and provides important insights into charge carrier
distributions in quartz crystals. Different radiofluorescence phenomena can be explained
with the energy-band-model and can be implemented seamlessly in existing models by
adjusting model parameters.
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1 Synopsis

1.1 Introduction

1.1.1 Numerical models in luminescence

The purpose of computing is insight,
not numbers.

Hamming (1962)

To gain insight into the nature of unknown effects is as old as mankind itself. In 1663
Sir Robert Boyle reported to the Royal Society of London an experiment where he held
a piece of diamond “near the Flame of a Candle, till it was qualify’d to shine pretty well
in the Dark” (Boyle 1664). Nowadays this phenomenon is known as thermoluminescence
but it was already described in the seventeenth century. Nevertheless, the term lumines-
cence was first introduced by Wiedemann (1889) two centuries later. The physics behind
luminescence phenomena (e.g., phosphorescence or fluorescence) was unclear because a
complete understanding of these phenomena requires basic concepts of quantum mechanics,
which was not established until the early years of the twentieth century (Marfunin &
Schiffer 1979; Yukihara & McKeever 2011). The findings of quantum mechanics changed
the understanding of atoms and subatomic particles completely and gave explanations of
observations done in the centuries before. This represented an enormous progress in very
different contexts and applications. Subsequently the development of different devices was
a direct consequence of the findings from quantum mechanics, e.g., lasers, transistors, and
so the microchip, to name a few examples. Electronic devices revolutionised science and
measurements had been performed with an accuracy and complexity such as never before.
One of these inventions was the photomultiplier which played an important role in the
application of luminescence phenomena because it offers the possibility to detect light very
sensitively (Aitken 1985; Hine & Brownell 2013). An application related to this technical
development was the use of the luminescence phenomenon as age determination tool for
archaeology and geology. For that purpose many measurement protocols were developed in
order to find the accumulated dose stored in a mineral to finally calculate an age (e.g., for
pottery or the last deposit of sediments (Aitken 1985, 1998)).

With a mathematical description of the processes taking place in luminescence phenomena
another field came into play: numerical methods. Due to the complex interaction in quantum
mechanical systems the solutions of even simple models can not be solved analytically and
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numerical solutions are needed. The development of more precise and faster numerical
algorithms for more complex systems goes hand in hand with the increase of computation
power in the twentieth century (Gear & Skeel 1987). Starting by Randall & Wilkins (1945)
with one differential equation to Halperin & Braner (1960), who developed a system of three
differential equations describing the TL process, and with even more allowed transitions of
charge carriers (Bräunlich & Scharmann 1966) the development of theoretical luminescence
models is visible. First these equations were solved analytically by making assumptions but
in the 1970s and 80s the first numerical solutions appeared by Bull et al. (1986), Chen et al.
(1981, 1984), Kelly et al. (1971), and McKeever et al. (1985a).

Much more detailed insights into the behaviour of the complex luminescence process was
gained by numerical solutions in the last few decades. With increasing number of publications
concerning luminescence measurements or new developments as new dating protocols (e.g.,
the SAR protocol (Murray &Wintle 2000) or the IR-RF technique (Krbetschek & Trautmann
2000; Trautmann et al. 1998, 1999)) the need for numerical solutions is unbroken to further
explain luminescence behaviour.

1.1.2 Aims of this thesis

The development of the energy band model in quantum mechanics was a breakthrough and
the foundation of many explanations concerning luminescence. The system of equations to
solve for explaining charge carrier transport in crystals is long known and the phenomena
explained range from TL (Randall & Wilkins (1945)) to complex OSL processes, e.g.,
TT-OSL (thermally-transferred OSL (Pagonis et al. 2008a)). During the past decades many
different parameter sets for many different quartz luminescence effects were published until
Bailey (2001) published a comprehensive quartz model which is able to simulate many known
measurement protocols and quartz phenomena, especially TL and OSL. Bailey (2001) also
showed that the suggested model is able to simulate luminescence during irradiation with
ionizing particles (radioluminescence (RL) or radiofluorescence (RF)) but no comparison
to real measurement data has been given. In 2002, Bailey published a new measurement
protocol including RF as correction for sensitivity changes in the most commonly used
dating protocol, the single-aliquot regenerative-dose (SAR) protocol (Murray & Wintle
2000). Nevertheless, an experimental proof as well as comparisons between numerical
solutions of RF and experimental data are still missing.

The objective of this thesis is to close the gap between missing quartz RF experiments and
the integration of the results of these experiments into existing quartz models. This thesis
is part of the DFG project SCHM 3051/4-1 “Modelling quartz luminescence signal dynamics
relevant for dating and dosimetry - Towards a generalised understanding of radiofluorescence
signal dynamics”. One problem of comparing RF experiments and simulations was the fact
that only custom-built instruments were able to record luminescence during irradiation with
ionising radiation. Since the progress in radiofluorescence dating of feldspar (IR-RF), two
manufacturers (Risø and Freiberg Instruments) offer RF attachments for their measurement
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devices. Since then a huge variety of RF experiments can be carried out, so it appears
overdue to fathom the potentials of quartz RF and to integrate it into a model concept.
The late development of common luminescence measurement equipment for RF is one of
the reasons investigating fundamental RF behaviour and compare it to model predictions
in this thesis. The main questions to be solved here are:

1. How could existing models be re-evaluated and modified to be at least able to
reproduce results from RF experiments?

2. How are different modifications and types of quartz (α-, β-quartz, quartz from different
geological and geographical origin) represented in the model?

3. Is there a way to vary input parameters of the model to be able to easily reproduce
luminescence behaviour of various quartz samples?

4. Can an open source software package be developed to enable model predictions for a
wide range of the luminescence community?

5. Can RF be used to obtain a higher accuracy of luminescence dating (through elimina-
tion of systematic errors in the dating procedure) and, hence, progress in Quaternary
geochronology?

1.1.3 Outline of this thesis

In the following the relationship between the chapters in this thesis is given.
Chapter 1 gives an overview of the development of models for luminescence production,

especially the development of the energy band model used in quartz luminescence simulations.
Subsection 1.7 also summarises the main results of the thesis.
Chapter 2 builds the base for the modelling work within this project. With the developed

R-package RLumModel it is possible to simulate quartz luminescence in an elaborated
framework. Within this study many examples of known quartz luminescence phenomena are
given. Different already published numerical models are included and facilitate the usage.
Chapter 3 shows the first successful simulations of experimentally obtained UV-RF

results. Basic behaviour of different quartz samples after different preheat temperatures were
analysed. An explanation for the strong decrease of the initial UV-RF signal after 550 ◦C
was given by numerically investigating the concentration of charge carriers in different
energy levels. Furthermore, the interrelationship of the initial signal in quartz UV-RF
signals on the burial dose was investigated.

In order to better understand the signal dynamics in quartz UV-RF, Chapter 4 describes
the derivation of analytical solutions for a simple three-energy-level model. These results are
compared with numerical solutions of the problem. With these findings a fitting function
for quartz UV-RF was developed and compared with experimental data. Furthermore, the
behaviour of the initial signal and the slope of the UV-RF curve were analytically derived
for different degrees of filled energy levels.
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In Chapter 5 further analysis of basic behaviour of quartz RF was conducted by
irradiating quartz samples with different dose rates and recording RF spectra. The theoretical
findings of Chapter 4 are proved experimentally and numerical simulations are used to
simulate the dose rate effects. In addition, a first concept of using UV-RF for a dosimetric
application is given.
Further applications of quartz RF are given in Chapter 6: Two known quenching pro-

cesses in quartz were investigated with UV-RF. A simple measurement protocol determining
important thermal quenching parameters is given and compared with values from literature.
A comparison between UV-OSL/TL with UV-RF signals is executed to better understand
the phenomena of dose quenching.
Chapter 7 investigates the effect of illuminating quartz with far UV light. Radiofluo-

rescence offers a more direct view to hole transfers in the electronic system of quartz and
the known effect of UV-reversal is investigated more directly than before. The interplay
between annealing and UV illumination is shown by analysing the UV-RF signal of quartz.
Further results of the project are given in Chapter 8. Subsection 8.1 describes the

recuperation of the UV-RF signal after different storage times. These results are important
for subsec. 8.2, which describes the possibility for using UV-RF as dosimetric application.
These investigations are explained in detail, summarised, and finally the results of dose
recovery tests for different applied doses are presented.
Additional findings regarding the development of numerical luminescence models are

presented in subsec. 8.3. Here a technique called inverse modelling is introduced in
luminescence modelling. This method makes it possible to fit model parameters with
experimentally obtained data. Further analysis tools like local and global sensitivity analyses
are presented and tested. The technique is applied on TL and OSL curves and the results
from the simulations with fitted parameters are in accordance with experimental data.
Subsection 8.4 introduces another method to calculate RF signals numerically. The idea
is to use clusters of electron-hole pairs and calculate the RF signal statistically with Monte-
Carlo methods instead of solving sets of ODEs numerically. The results from this new
method are compared with the classical approach.

1.2 Energy levels in solids

1.2.1 Energy levels in a perfect crystal

Ionic crystals were the first solids analysed for crystal form and elastic properties. Born
(1926) executed experiments with X-rays and, assuming the crystal to be built up of
positively and negatively charged ions, gave first values of their lattice energies and elastic
properties (Mott & Gurney 1940). The smallest unit of a crystal is a primitive cell and
identical primitive cells form the periodicity of the crystal lattice when joining them
together. As a consequence, an ideal crystal is an object of infinite length (Madelung 2012).
Schrödinger (1926) developed, after lots of preliminary studies, a schema to handle the
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electron system in crystalline materials, the Schrödinger equation. The time-independent
Schrödinger equation (1.1) describes the movement of a single particle in an electric field.[

~2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r) (1.1)

~ is the reduced Planck constant (~ = h
2π ), m is the particle’s reduced mass, ∇2 is the

Laplacian, V is the potential energy, Ψ is the wave function of the quantum system, r is
the position vector and E is a constant equal to the total energy of the system. Based
on Eq. (1.1), Bloch (1929) developed the theorem that the wave function solution from
Eq. (1.1) in a periodic crystal lattice is given by:

Ψk(r) = uk(r) · exp (ik · r) (1.2)

Here uk(r) is the Bloch function with the same spatial periodicity as the crystal. k is the
crystal wave vector and i the imaginary unit. Summing up, Eq. (1.2) says that multiplying
a plane wave with a periodic function results in a Bloch wave (Kittel 2005; Madelung 2012).

Assuming the simplest case, a one-dimensional periodic lattice with ions distance a, mass
of the particle m and length of the potential b results directly in the existence of band gaps.
This model is called Kronig-Penney model (Kronig & Penney 1931) and the solution for
that model are given in the following. The model can even be more simpler if the potential
V is zero except at atomic sites, where it is infinity, or in other words: the peaks in the
potential are delta functions. Kronig & Penney (1931) found a solution using a Bloch
function with the side condition that Eq. (1.3) is true.

cos(ka) = cos(k0a) +
P

k0a
· sin(k0a) (1.3)

In Eq. (1.3) P = mV ba
~2 and k2

0 = 2m|E|
~2 . Note that in Eq. (1.3) not every value for k0a

gives a solution to the left-hand side of the equation. The expression cos(ka) has to be in
the range of -1 and 1. Figure 1.1 shows the right-hand side of Eq. (1.3) for a fixed value
of P = 3π/2, as suggested in the original publication by Kronig & Penney (1931). The
coloured regions show the parts in which the right-hand side of Eq. (1.3) lies between -1
and 1. These regions are called the allowed region because a real solution exists. From
Fig. 1.1 it can be concluded that the forbidden regions become narrower as the value of k0a

becomes larger. Another fact is that if P vanishes (which in turn means that the potential
V is zero) the forbidden zones disappear and a continuous spectrum of all energies from 0
to ∞ is allowed. This is the case for free electrons. The other extreme is that P approaches
infinity. This corresponds to an isolated atom with infinity distance to the next neighbour
(Hummel 2011).
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Figure 1.1: Right-hand side of Eq. (1.3) plotted against k0a for P = 3π/2. The marked regions
are regions of k0a for which k can be calculated. So this is called an allowed region. Note that the
forbidden regions become narrower as the value of k0a becomes larger.

Note that in Eq. (1.3) the relationship between E and k is given because on the right-hand
side of Eq. (1.3) k0 is related to E via k2

0 = 2m|E|
~2 . Solving this relation and plotting

the electron density of states (Fig. 1.2) shows the existence of forbidden zones, where the
density for electron states is 0. The zones between are called bands. When filling up the
allowed states, according to Pauli’s exclusion principle, until all available electrons are
accommodated, the Fermi energy εF defines the energy of the topmost filled level in the
ground state (T = 0K) of the system (Kittel 2005). The valence band is defined as the
closest band which is filled with electrons at T = 0K. In contrast to that the conduction
band is the lowest energy level with no electrons. The band gap is the difference between
the lowest point of the conduction band (conduction band edge) and the highest point of
the valence band (valence band edge, see Fig. 1.3). When the temperature increases it is
possible that electrons from the valence band are excited to the conduction band and the
material is electrically conductive (Kittel 2005). The probability that an energy state will
be occupied in thermal equilibrium is given by the Fermi-Dirac distribution. It is worth
noting that when an energy gap between the valence and conduction band exists, the Fermi
level must be exactly in the middle of the gap when T = 0K (Swendsen 2012). With
this definition a distinction between different electrical properties is possible (Enderlein &
Horing 1997):

1. Insulator: In terms of the above written context, an insulator is a material with a
large high band gap (> 3.5 eV) and the Fermi level lies in the band gap.

2. Semiconductor: The Fermi level also lies in the band gap but is near enough to the
valence and conduction band to get thermally populated by electrons.

3. Conductor: The Fermi level lies within the conduction band.
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Figure 1.2: Electron density of states for the Kronig-Penney model. Note the values of 0 for D(E).
The used input values are: V = 5 eV, a = 1.5 E-10m, b = 5 E-10m and m = 9.1 E-31 kg.

When an electron gets excited into the conduction band it is leaving behind an unoccupied
state. Instead of dealing with electrons in the valence band, it is easier dealing with missing
electrons in an almost full valence band. These missing electrons are called holes and are
quasi particles. Holes in the valence band behave like freely mobile positive charge carriers
(Enderlein & Horing 1997). This concept will be important when describing different effects
in semiconductors or insulators.

Since we are dealing with a natural material, the perfect crystal lattice is just an
oversimplification of the real crystal lattice. Figure 1.3 summarises the findings from the
ideal crystal: For T = 0K (subfig. (a)) all electrons are in the valance band with the
maximum energy EV . The next band is the conduction band with energy EC . EF is the
Fermi level and exactly in the middle of EV and EC . The difference EG = EC − EV is
the band gap energy. If the temperature is higher than 0K, some electrons are able to
reach the conduction band and they leave behind a hole in the valence band (subfig. (b)).
Note that thermally overcoming EG is not possible for insulators. The example describes a
semiconductor, e.g., Si or Ge.

1.2.2 Energy levels in real crystals

In an ideal crystal an electron in the conduction band can move freely throughout the
whole crystal because every positive ion offers a position of exactly equal energy. The same
is true for a hole in the valence band. But any irregularity in the lattice (see Ch. 1.3) will
lead to a modification of the perfect crystal lattice (Mott & Gurney 1940). The effect of
impurities in a crystal lattice can be enormous: 1 boron atom to 105 silicon atoms increases
the conductivity of pure silicon at room temperature by a factor of 103 (Kittel 2005).
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Figure 1.3: Subfigure(a) shows the energy band of an ideal semiconductor for T = 0K. All
electrons occupy the valence band with energy EV . The band gap between EV and EC (energy of
the conduction band) divides the valence from the conduction band. Increasing the temperature
leads to a redistribution of electrons according to the Fermi-Dirac distribution and some electrons
are able to reach the conduction band. Figures modified and redrawn after Enderlein & Horing
(1997).

Introducing impurities in a crystal lattice can be followed by the appearance of local levels
in the band gap (doping). The reason is a change in the potential energy given in Eq. (1.1).
The potential energy V (r) changes to V (r) + V ′(r). The second term differs from zero in
a particular volume close to the defect. Nevertheless, this again is an oversimplification
because impurities are distributed chaotically in space in natural materials (Gribkovskii
1998).

Depended on the impurity, new energy levels above or below the Fermi level will be
created. Continuing the example from the beginning of the section, doping silicon with
boron (group III element) will lead to a new energy level in the forbidden zone just above
the valence band. Due to the fact that boron has three valence electrons, the boron in the
silicon lattice can catch an additional electron. This in turn means that a hole is migrating
in the valence band because the holes move in the opposite direction of the electrons. This
kind of dopants is called acceptors.

Bringing a group V element into the silicon crystal lattice will lead to the opposite effect:
Four outer electrons of, e.g. phosphorus, combine with the silicon atoms and the remaining
electron can move throughout the crystal lattice. This kind of dopants is called donors
and they give rise to new energy bands near the conduction band (Bräunlich et al. 1979;
Enderlein & Horing 1997; Kittel 2005). Figure 1.4 summarises these concepts. In contrast
to the ideal crystal from Fig. 1.3 now energy levels in the forbidden zone appear and act as
traps for electrons and/or holes. These traps can hold electrons and holes for a fairly long
time, even geological times. This is very important for geological applications and will be
discussed later. The causes for lattice defects are manifold and will be explained in detail
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Figure 1.4: Schematic energy band model for a crystal lattice with impurities. EV is the energy
of the valence band, EC the energy of the conduction band, ED the energy of the donors and EA

the energy of the acceptors.

for quartz in Sec. 1.3.

1.3 Defects in quartz

Silica (SiO2) in crystalline and non-crystalline (amorphous) form makes up 12.6 wt% of
the Earth’s crust and hence is the second-most abundant mineral after feldspar (Götze
2012b; Preusser et al. 2009). Quartz is the most prominent phase of SiO2 and exists in
two different forms: α- (low temperature) and β- (high temperature) quartz. Under surface
conditions (∼ 20 ◦C and 105 kPa) α-quartz is the stable form. When heating above 573 ◦C
α-quartz transforms to β-quartz.

The basic structure of α-quartz is built from SiO4 tetrahedra which are linked by sharing
each of their corners (Preusser et al. 2009). α-quartz has no centre of symmetry and together
with its anisotropy it gives rise to the piezoelectric effect. Anisotropy is just one cause
which can destroy the perfect crystal lattice. When the extension of the defect is limited
to a few interatomic distances, it is treated as zero-dimensional defect and is called point
defect (Benz & Neumann 2014). Further the distinction between intrinsic and extrinsic
is used. Extrinsic defects are incorporations of foreign ions in the lattice and interstitial
positions. Intrinsic defects are displaced atoms, and/or defects associated with silicon or
oxygen vacancies (Götze 2012b). In summary more than 20 different types of point defects
have been detected in quartz during the last few decades (Götze 2012a). Figure 1.5 gives
an overview about the most common point defects in quartz. The [AlO4]0 centre is the
most common trace-element related defect centre in quartz. This centre is the result of
the substitution of Si4+ by Al3+ and an electron hole is created. Other types of defects in
quartz are small interstitial ions (Li, Na, H) that can move along the c-axis channels, e.g.,
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1 Synopsis

Li+ in Fig. 1.5 (Preusser et al. 2009). These interstitial ions form the diamagnetic centre
[AlO4/M+]0. M is a placeholder for different interstitials, e.g., Li+, Na+, H+.
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1.3 Defects in quartz

Figure 1.5: Schema of most common point defects (from Götze (2012b)).

It was shown that gamma- or X-ray irradiation can cause the transformation from
[AlO4/M+]0 to [AlO4]0 and forms smoky quartz (Götze 2012b). Other types of defects are
connected to vacancies either of oxygen or silicon. Many more defects are known but will be
not described here in detail. As mentioned in Sec. 1.2.2, every defect causes a disturbance
of the potential energy of a perfect crystal lattice and local levels in the band gap are
formed. Different defects are connected to specific energy levels in the band gap which can
emit light during excitation with a stimulus (see Sec. 1.4). Table 1.1 gives an overview
of luminescence emissions bands in quartz and the related defects. Several defects can be
attributed to oxygen and silicon vacancies, e.g., the so-called neutral O vacancy, which is
the removal of an O atom. At this defect a hole can be trapped and an E′ centre arises. In
Sec. 1.5.3 the specific emission during radiofluorescence are described in more detail.

A detailed overview of quartz defects can be found in the works by Götze (2009, 2012a,b),
Krbetschek et al. (1997), Marfunin & Schiffer (1979), and Preusser et al. (2009), and
references therein.
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EMISSION [nm] EMISSION [eV] SUGGESTED ACTIVATOR
175 7.3 Intrinsic emission of pure SiO2

290 4.28 Oxygen vacancy (E′ centre)
330 – 340 3.75 – 3.6 Oxygen vacancy (E′ centre)

[AlO4/Li+] centre
[TiO4/Li+] centre

380 – 390 3.2 – 3.1 [AlO4/M+] centre (M+ = Li+,Na+,H+)
[H3O4]0 hole centre

450 2.8 E′ centre with self-trapped exciton
500 2.45 Extrinsic emission

Interstitial impurity cations (Li+, Na+, H+)
[AlO4]0, [GeO4/M+]0 centre

580 2.1 Oxygen vacancy (E′ centre)
620 – 650 1.97 – 1.91 Non-bridging oxygen hole centres

with several precursors
705 1.7 Substitutional Fe3+

1280 0.97 Interstitial molecular O

Table 1.1: Luminescence emission bands in quartz and related defects. Modified after Götze (2012a)
and Krbetschek et al. (1997).

1.4 Describing luminescence phenomena

Chen & McKeever (1997) give a definition of luminescence:

Luminescence is the emission of light from a material following the initial
absorption of energy from an external source.

The initial excitation can occur by a variety of sources and so different names for different
luminescence phenomena exist (Chen & McKeever 1997; McKeever 1988; Nasdala et al.
2004; Sunta 2014), e.g.,

• Photoluminescence: Excited by the absorption of light
• Cathodoluminescence: Excited by the absorption of energy from an electron beam
• Radioluminescence: Excited by the absorption of nuclear energy (α-, β-, γ- or X-rays)
• Electroluminescence: Excited by the absorption of electrical energy
• Chemiluminescence: Excited by the absorption of chemical energy
• Bioluminescence: Excited by the absorption of biochemical energy
• Triboluminescence: Excited by the absorption of mechanical energy
• Sonoluminescence: Excited by the absorption of sound waves

The perhaps most famous luminescence phenomenon is thermoluminescence (TL) but
heating is not the main energy source of the emitted light. The initial excitation is typically
given by irradiation with ionising radiation. Therefore, the term thermally stimulated
luminescence (TSL) would be more appropriate but for historical reasons the term TL
is more popular (Chen & McKeever 1997). For OSL (optically stimulated luminescence)
the term is more appropriate because here the initial excitation is also the irradiation
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with ionising radiation. Due to the historical development of the quantitative description
of luminescence, the following section introduces the development of the mathematical
description of luminescence for TL. This is done by showing the development of luminescence
models in general. In Sec. 1.5 a detailed look at RF is given.

1.4.1 Mathematical description of luminescence

In this section equations for describing the thermoluminescence phenomena mathematically
will be presented. Therefore the findings from Sec. 1.2 are continued and further simplified
to describe them mathematically.

One helpful definition is the differentiation between electron trap, hole trap and recombi-
nation centre. For that reason an important definition is given by Bräunlich et al. (1979):
demarcation levels. Demarcation level EDn is the energy for electrons at which the electron
has equal probability of being thermally released into the conduction band or recombining
with a free hole. The same concept can be used for holes and EDp can be defined as the
energy level at which the thermal release of a hole is equal to the recombination with
an electron. All energy levels between EDn and EC are called electron traps. Hole traps
are defined as the energy states between EDp and EV . All states between EDn and EDp

are recombination centres for electrons and holes (see Fig. 1.6). This does not imply that
no electrons can transit into a hole trap, or a hole into an electron trap because this
nomenclature is just based on probabilities. It can be summarised that the energy levels for
recombination centres are located in the middle of the forbidden zone. It is further pointed
out, that a recombination centre at low temperatures can become a trapping centre at
higher temperatures (Yukihara & McKeever 2011). Further assumptions and simplifications
are (following Chen & McKeever (1997)):

• All transitions into or out of localized states are going via the valence (for holes) or
conduction band (for electrons). So no direct transfer (tunnelling) of charge between
electron trap and recombination centre is allowed.

• All transitions of electrons from the conduction band into electron traps are non-
radiative, emitting phonons. The same is true for holes from the valence band to hole
traps.

• Transitions of free electrons from the conduction band to trapped holes in recombina-
tion centres or from free holes to trapped electrons in electron traps are radiative and
hence emitting photons.

• A freed charge can not distinguish between its primary trap and all other traps of
the same type.
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Figure 1.6: Schematic energy band model with demarcation levels and definition of electron trap,
hole trap and recombination centre. Filled dots illustrate electrons and open dots holes.

Following the historical development of luminescence models, starting with a very simple
one-trap-one-recombination-centre (OTOR, also called general one trap (GOT)) model
(see Fig. 1.7; arrows indicate allowed transitions), will lead to ordinary first-order coupled
differential equations (1.4) to (1.7).

dnc
dt

= p · n − nc · (N − n) ·An − nc ·m ·B (1.4)

dnv
dt

= 0 (1.5)

dn

dt
= − p · n + nc · (N − n) ·An (1.6)

dm

dt
= −nc ·B ·m (1.7)

The intensity of the simulated signal is equal to −dm
dt . N is the total concentration of

traps and n(t) the concentration of filled traps at time t. nc(t) (nv(t)) is the concentration
of electrons (holes) in the conduction (valence) band. Parameter An is the probability of an
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Figure 1.7: Schematic energy band of the OTOR model with one electron trap and one recombi-
nation centre. The corresponding values for recombination centre and electron trap are given as
well as the allowed transitions (arrows).

electron in the conduction band captured by an electron trap and Am for being captured by
a trapped hole in the recombination centre. Parameter m(t) describes the concentration of
filled traps at time t and B is the probability of an electron in the conduction band captured
by a hole centre. The probability of being thermally or optically freed is summarised in the
parameter p and has to be specified by the stimulation type.

Due to the fact that TL was the phenomenon analysed in depth in the last decades, the
next passage will follow the historical development of the solution of Eqs. (1.4) to (1.7). One
major assumption made to derive an analytical solution is the so called quasi-equilibrium
approach. This assumption ensures that all excited charge carriers (electrons or holes) relax
instantly into their traps or recombination centres. The mathematical expression is given in
Eq. (1.8). More details can be found in Chen & McKeever (1997) and Sunta (2014).

dnc
dt
� dn

dt
and nc � n (1.8)

Randall & Wilkins (1945) were the first publishing an analytical solution of the OTOR
model with the assumptions made before and with the restriction of no retrapping (An = 0,
first-order kinetics). In case of TL p can be replaced with s · exp

(
− E
kBT

)
and one yields

Eq. (1.9).

ITL = n · s · exp

(
−E
kBT

)
(1.9)
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E is the thermal trap depth of the electron trap, s the frequency factor (a constant
describing the attempts to escape per second; usually in the range 109 to 1016 s−1), kB is
Boltzmann’s constant and T the absolute temperature. Temperature T is connected to
time t via the heating rate β = dT

dt . Solving Eq. (1.4) to (1.7) with the above mentioned
approximations leads to the well-known Randall-Wilkins first-order expression for ITL:

ITL = n0s exp

(
−E
kBT

)
exp

−sβ
T∫

T0

exp

(
−E
kBΘ

)
dΘ

 (1.10)

, where n0 is the initial value of n at t = 0 and Θ is a dummy variable representing the
temperature. T0 is the temperature at the beginning of the heating run, and T = T0 + β · t
(Chen & McKeever 1997; Randall & Wilkins 1945; Sunta 2014). With Eq. (1.10) it was
possible to describe several phenomena of the TL glow curve. Due to the fact that TL glow
curves are not the main focus of this thesis, the reader is referred to literature given in this
section.

In 1948 Garlick & Gibson presented solutions for the case of allowed retrapping, An/B =

1. Analysing this expression, along with N � n and n = m, yields:

ITL =
n2

0

N
s exp

(
−E
kBT

)1 +
n0s

βN

T∫
T0

exp

(
−E
kBΘ

)
dΘ

−2

(1.11)

Due to ITL ∝ n2
0 this kinetics is called second-order kinetics. Nevertheless, for both cases,

first-order or second-order kinetics, special combinations of parameters have to be considered.
May & Partridge (1964) published a solution of Eqs. (1.4) to (1.7) with no restrictions
for the trapping to retrapping ratio, called general-order kinetics. This solution can be
written as shown in Eq. (1.12). Note that this solution is just valid for b 6= 1 and Eq. (1.11)
(second-order kinetics) can be derived with b = 2. Figure 1.8 shows the solutions of Eqs.
(1.10), (1.11), and (1.12) with the same parameters: N = n0 = 1 E+17 cm−3, s = 1
E+13 s−1, β = 1K s−1 and E = 1 eV. For the general-order kinetics, b = 1.5 was used.

ITL = nb0N
1−bs exp

(
−E
kBT

)1 +
s(b− 1) (n0/N)b−1

β

T∫
T0

exp

(
−E
kBΘ

)
dΘ

−
b

b−1

(1.12)

With the increase in computational power in the 70’s it was possible to solve the coupled
ODEs (1.4) to (1.7) numerically. Kelly et al. (1971) concluded from their numerical solutions,
that the quasi-equilibrium condition (Eq. (1.8)) is valid for only a part of all physically
meaningful parameters. They calculated an exact solution and obtained a wide range of
possible TL peaks shapes and intensities.
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Figure 1.8: Comparison of different kinetic orders for the analytical solution in the case of TL.
Used parameters: N = n0 = 1 E+17 cm−3, s = 1 E+13 s−1, β = 1K s−1 and E = 1 eV. For the
general-order kinetics, b = 1.5 was used.

Note that until now all given references used dnv
dt = 0, which means that no hole transition

is allowed. Furthermore, just one electron trap and one hole trap were included in the
models. It is also possible to free electrons from the electron traps by optical stimulation
and so parameter p in Eq. (1.6) is defined as p = σ · Φ, where σ is the photoionisation
cross-section and Φ the incident photon flux (Yukihara & McKeever 2011). Simulating
irradiation processes (creation of electron-hole pairs), another parameter R is necessary,
which describes the number of created electrons and holes per cm3 per s. Combining all
these points will lead to a system of coupled differential equations with q electron traps
and r centres (hole- and recombination centres), see Eqs. (1.13) to (1.16). Counting index i
corresponds to electron traps and index j to hole centres. Examples can be found in Fig. 2.1
(ten electron traps, four centres) or Fig. 4.1 (one electron trap, two centres).

dni
dt

= nc · (Ni − ni) ·Ai − ni · σ · Φ − ni · si · exp

(
−Ei
kB · T

)
(1.13)

dnj
dt

= nv · (Nj − nj) ·Aj − nj · sj · exp

(
−Ej
kB · T

)
− nc · nj ·Bj (1.14)

dnc
dt

= R −
q∑
i=1

(
dni
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (1.15)
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dnv
dt

= R −
q+r∑

j= q+1

(
dnj
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (1.16)

Note that Eqs. (1.13) to (1.16) are in principle the same equations as Eqs. (1.4) to (1.7) but
with an arbitrary number of electron and hole traps and simultaneous optical and thermal
stimulated release of electrons. In contrast to models with no allowed hole transitions, the
luminescence signal can no longer be described by the change of concentration of holes in
time. The signal intensity is now defined as nc · nj · Bj , where index j corresponds to a
luminescence centre (see Sec. 1.6.
Nevertheless, not all recombined electron-hole pairs in luminescence centres give raise to
the luminescence signal. There are radiative and non-radiative transitions with probabilities
ΓR and ΓNR, respectively. This leads to the definition of an efficiency factor η (Yukihara &
McKeever 2011):

η =
ΓR

ΓR + ΓNR
(1.17)

A strong temperature dependency was found affecting the luminescence signal, called
thermal quenching (Gurney & Mott 1939; Wintle 1975). And so Eq. (1.17) modifies to:

η(T ) =

(
1 + K · exp

(
−W
kB · T

))−1

(1.18)

K is a dimensionless constant and W is the activation energy and both values depend on
the measured luminescence centre and hence the emission band. In Sec. 1.5 a more detailed
derivation of Eq. (1.18) is given. Finally, the efficiency corrected signal can be calculated
via Eq. (1.19).

L = η(T ) · nc · nj ·Bj (1.19)

Not all parameters mentioned in Eqs. (1.13) to (1.16) are necessary in every single simulation
step, because the excitation is different. The following list gives an overview of different
excitation stimuli and their corresponding parameter values:

• Irradiation: R 6= 0

• Illumination: Φ 6= 0

• Thermal stimulation: β = dT
dt 6= 0

In principle it is possible to simulate different excitation stimuli simultaneously, e.g.,
illumination and heating or irradiation and heating.

Solving coupled ordinary differential equations led to an enormous knowledge explaining
several phenomena, e.g., (list not exhaustive):
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• TL phenomena: Bailey (2001), Chen & Fogel (1993), Chen et al. (2011, 2012), Chen
& Pagonis (2013), and Pagonis et al. (2009b, 2011)

• OSL phenomena: Bailey (2001), Chen et al. (2009), Chruścińska (2009), Chruścińska
& Przegiętka (2011), Chruścińska et al. (2017), Jain et al. (2015), Kijek & Chruścińska
(2017), and Pagonis et al. (2007b, 2009b)

• Sensitivity changes: Adamiec et al. (2004), Bailey (2001), Chen et al. (1994), Chen &
Leung (1999), Chen & Pagonis (2015), Kitis et al. (2006), Pagonis & Carty (2004),
Pagonis et al. (2008b), and Subedi et al. (2010)

• Radioluminescence: Bailey (2001, 2002), Pagonis et al. (2009a), and Trautmann (2000)

A detailed overview presenting different luminescence simulations in great detail can
be found in Chen & Pagonis (2011). Describing luminescence effects with the energy
band model has been quite successful over the last few decades, especially since Bailey
presented his comprehensive luminescence model for quartz in 2001. The parameters were
very successful in describing a huge variety of effects and several cited publications used
the parameters from Bailey (2001) or slightly modifications. Nevertheless, a problem with
the energy band model is the large number of free parameters because no unique solution
exists (Yukihara & McKeever 2011). An acceptable fit of different measurement data (e.g.,
thermal activation, OSL behaviour, high dose experiments) with numerical simulations can
lead to the conclusion that the theory is consistent with experiments. “But this should not
be mistaken as proof” (Bräunlich et al. 1979).

1.4.2 Alternative luminescence descriptions

There exist other approaches than the energy band model to describe luminescence produc-
tion. One of them is the defect pair model, proposed by Itoh et al. (2001, 2002). As already
mentioned in Sec. 1.3, natural quartz inherits impurities. Different studies have shown
that distinct impurities give rise to distinct TL peaks or OSL (Guzzo et al. (2009, 2017),
Martini et al. (2009, 2012b), McKeever et al. (1985b), Petrov & Bailiff (1995), and Vaccaro
et al. (2017)). Itoh et al. (2001) combined these findings from literature and created a new
description of luminescence. The most striking difference to the energy band model is the
use of defect pairs rather than trapped electrons and holes. They successfully described
the 110 ◦C and 325 ◦C peak and the OSL in quartz and they also explained the shift in
wavelength of luminescence emissions between room temperature and 325 ◦C. A recent
publication by Williams & Spooner (2018) also included the 160 ◦C and 220 ◦C TL peak
and extended the existing model. Nevertheless, as already mentioned by Chen & McKeever
(1997), this model can just explain first order behaviour, which is true for the 110 ◦C and
325 ◦C TL peak in quartz, but not found for the 375 ◦C TL peak (Preusser et al. 2009).
A detailed overview of TL and OSL behaviour linked to specific defects and a detailed
description of the defect pair model is given in Preusser et al. (2009).
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Another alternative approach is the use of Monte-Carlo simulations instead of solving
ODEs numerically. Some authors mentioned that the energy band model is not able to
simulate spatial correlations between traps and recombination centres (Mandowski &
Światek 1992, 1994). In the approach by Kulkarni (1994) and Mandowski & Światek (1992)
just one of the three allowed transitions (I) freeing an electron to the conduction band,
(II) trapping of an electron or (III) recombination are allowed in a specific time step.
Monte-Carlo simulations are performed with the total population of carriers simultaneously
and the goal is to find the transition with the lowest time. This is the only transition which
is executed in this time step (Pagonis et al. 2014). The advantage of the Monte-Carlo
approach is that even small cluster sizes can be calculated, where the traditional energy
band model fails. Monte-Carlo simulations consider clusters of traps as separate systems and
then the continuous differential equations are not valid. Pagonis et al. (2014) gave examples
of the difference between Monte-Carlo and ODE solutions in TL and OSL simulations.

1.5 Quartz radiofluorescence

1.5.1 Definition

The emission of light after stimulation has a characteristic lifetime τC . When τC is < 10−8 s
the process is called fluorescence, otherwise phosphorescence (McKeever 1988). It is worth
noting that even the fast emission of light with τC < 10−8 s is orders of magnitude greater
than the lattice vibration (∼ 10−15 – 10−14 s, Nasdala et al. (2004)). In literature there is
no clear distinction between radioluminescence (RL) and radiofluorescence (RF). Nasdala
et al. (2004) pointed out that “radioluminescence is the generic term for the generation of
luminescence light upon excitation with corpuscular radiation”. Recent literature uses the
term radioluminescence mostly describing a bombardment with X-rays (Boggs & Krinsley
2006; Rendell & Clarke 1997). Lehman (1963) used the term radiofluorescence as one of
the first authors and explicitly pointed to the fact that this term describes luminescence
emitted during irradiation. The term radiofluorescence is widely used in feldspar dating
in the infrared (IR-RF; Buylaert et al. (2012), Erfurt & Krbetschek (2003a), Frouin et al.
(2015), and Kreutzer et al. (2017)) but was also named IR radioluminescence (IR-RL) at
the beginning of the development of this technique (Erfurt & Krbetschek 2003b; Krbetschek
& Trautmann 2000; Trautmann et al. 1999). In the following the term radiofluorescence is
used as synonym for radioluminescence.

1.5.2 Process of luminescence production

Section 1.4.1 described the mathematical basics for luminescence but did not explain the
emission and absorption spectra or thermal quenching (Eq. (1.18)). For this purpose the
configurational coordinate diagram was introduced, see Fig. 1.9. It shows the potential energy
curves (parabola) of the luminescence centre as a function of the relative distance r of the
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nucleus to the equilibrium position. The equilibrium position is the electron in the ground
state. r0 is the equilibrium position of the centre ground state and r1 the position of the
centre in the excited state. Horizontal lines (n,m = 0, 1, 2) represent the vibrational states
of the harmonic oscillator (Yukihara & McKeever 2011). Transitions between ground and
excited state are indicated by vertical arrows Ea and Ee because the electronic transition is
much faster than the crystal relaxation (Franck-Condon principle, Mott & Gurney (1940)).
Note also that the parabola in Fig 1.9 intersect. This will be important explaining thermal
quenching.
In the configurational coordinate diagram an electron from the conduction band is trapped
in an excited state of the recombination centre, e.g., m = 2. The electron transits non-
radiative into the ground state m = 0 of the excited state by emitting phonons. Due to the
fact that energy loss via phonon absorption is not possible any more, the electron undergoes
a radiative transition to an excited state of the ground state n = 2 with energy Ee. From
there, again a non-radiative (phonon emitting) transition is possible until the energy state
n = 0 is reached. Absorbing energy Ea can excite the electron back to a vibrational state
of the excited state and the process described can start again. The difference between the
absorption energy Ea and the emission energy Ee is called Stokes shift (Krbetschek et al.
1997; Nasdala et al. 2004; Yukihara & McKeever 2011).

Within this framework the explanation for thermal quenching (Sec. 1.4.1) is the following:
With increasing temperature the probability that an electron reaches higher vibrational
states m increases. When the electron gains sufficient energy to reach the crossing point of
the parabola, the system can relax to the ground state of by non-radiative transition via
phonon emission along the parabola (Yukihara & McKeever 2011). Assuming the probability
of non-radiative transition given by ΓNR = Γ0 · exp

(
−W
kBT

)
, where W is related to the

energy required for the system to reach the crossing point in Fig. 1.9, Eq. (1.17) from
Sec. 1.4 changes to the same equation as given in Eq. (1.18):

η(T ) =
ΓR

ΓR + Γ0 · exp
(
−W
kB ·T

) =
1

1 + K · exp
(
−W
kB ·T

) (1.20)

The nomenclature is the same as given in Sec. 1.4 but now with an explanation for W
and K = Γ0/ΓR.

It is also possible that an electron in the excited state will gain further energy by photon
absorption and escapes to the conduction band. This phenomenon is called thermally
assisted excitation (Nasdala et al. 2004) and is considered in numerical simulations by
modifying σ (photoionisation cross-section, see Sec. 1.4.1):

σ = σ0 exp

(
−Eth

kBT

)
(1.21)
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Figure 1.9: Configurational coordinate diagram with radiative and non-radiative transitions.
Explanation see text in Ch. 1.5.2. Modified from Nasdala et al. (2004).

σ0 is the photo-eviction constant at T = ∞ and Eth is the thermal assistance energy [eV]
(Bailey 2001). A more detailed explanation of the configurational coordinate diagram be
found in Gaft et al. (2015).

1.5.3 RF emissions of quartz

The previous sections showed that the energy (and thus the wavelength) of the emitted
photon is strongly connected to luminescence centres. Radiofluorescence spectra of quartz
were investigated quite extensive in the past. A comprehensive overview of studies, sample
types and excitation emissions is given in Schmidt et al. (2015: Tab. 1). The main emissions
of RF will be explained briefly in the following.

Three main emissions are known to be present in quartz: TL, OSL, and RF have common
emissions in the red (∼ 620 nm), in the blue (∼ 470 nm), and in the UV (∼ 340 – 380 nm).
With RF it is possible to excite nearly all luminescence centres and with this technique it
was possible to detect that the UV and blue emissions are composite (Martini et al. 2012b).
The blue emission splits into an emission at 490 nm (A band) and 440 nm (B band) and
the UV emission in 360 nm (C band) and 330 nm (D band). In a more recent study by
Fasoli & Martini (2016) another emission band at 315 nm (M band) in quartz annealed
at 1,000 ◦C for 10min was detected. The X band was found just in RF spectra but not in
TL spectra and the interpretation is that the X band is not participating at all in the TL
recombination of the 110 ◦C TL peak (Fasoli & Martini 2016). Table 1.2 summarises all
these observed bands with their peak energy E [eV], corresponding wavelength λmax [nm]
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1.5 Quartz radiofluorescence

and the full width at half maximum (FWHM) [eV].

Band E [eV] ∼ λmax [nm] FWHM [eV]

O 1.92 635 0.39

A 2.51 490 0.46

B 2.79 440 0.46

X 3.06 395 0.89

C 3.42 360 0.58

M 3.73 330 0.45

D 3.93 315 0.49

Table 1.2: Spectral parameters of the emission bands resulting from Gaussian deconvolution of
RF spectra. The nomenclature is adopted from Fasoli & Martini (2016).

The behaviour of the A band (2.51 eV) is dominated by an increase during prolonged
irradiation and dominates the RF as well as the TL emission. Heating quartz to 500 ◦C
induced a strong UV emission in the C band. The effect is even more intense applying a
dose of a few hundred Gray before annealing, very similar to the pre-dose effect (Fasoli
& Martini 2016; Zimmerman 1971). The C band (3.42 eV) is the most important band in
the simulations presented in this thesis because the parameters presented in Bailey (2001)
are adjusted to this emission but for TL and OSL. The other reason why the C band is so
important for simulations is the fact that many publications suppose the recombination
centre responsible for this emission is the same for TL and OSL (Chen & Li 2000; Franklin
et al. 1995; Krbetschek et al. 1997; Martini et al. 2009, 2012a; Schilles et al. 2001; Shimizu
et al. 2006; Stoneham & Stokes 1991). The M band (3.73 eV) appears when the quartz
sample was annealed to 1,000 ◦C and is not relevant for most of the natural quartzes. This
emission band could be an explanation for the shift of the UV peak with temperature
(Rendell et al. 1994).

Figure 1.10 shows an example of a deconvolved spectrum of sample BT586, which was
annealed to 500 ◦C for 10min and measured afterwards (more details see Ch. 5). The figure
shows the first measurement after the thermal treatment and the C band is the dominant
emission band in the spectra.
Fasoli & Martini (2016) connected the C band to the element Aluminium (Al) because

the investigated smoky quartz is known to contain more Al than synthetic quartzes and the
smoky quartz shows a much more enhanced C band than the synthetic one. This matches
with the findings of other authors, see Table 1.1. Nevertheless, also following Fasoli &
Martini (2016) it is not possible to find a straightforward correlation between a specific
emission band and an extrinsic impurity concentration.
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Figure 1.10: Deconvolution into Gaussian components of the RF emission spectra for quartz
sample BT586 after annealing to 500 ◦C for 10min.

1.6 The Bailey (2001) model

In 2001 Bailey published a comprehensive quartz model which summarised the findings
from decades of quartz luminescence modelling. Furthermore, Bailey (2001) also conducted
measurements to identify further model parameters and included these results in the model,
e.g., the optical activation following dose quenching. The presented model parameters are
able to reproduce a wide variety of quartz luminescence phenomena and measurement
protocols.

1.6.1 Description of the model

The main components of the Bailey (2001) model will be described here. The model was
developed representing the major elements of the electronic system of natural (sedimentary)
quartz. One of the main restrictions of the model is the significance just for the 380 nm
emission band, which is the main emission band of quartz TL/OSL. Although the model
was not developed for RF, Bailey showed some simulated RF signals but did not compare
them with experimental data (Bailey 2001: Sec. 3.4.4).
Five electron traps were included in the Bailey (2001) model and all of the traps are

thermally connected to the conduction band. In contrast to that, not all implemented
electron traps allow photo-excitation. The first electron trap, level 1, is responsible for the
110 ◦C TL peak. This TL peak can be found ubiquitously in sedimentary quartz samples
and a recent publication by Vaccaro et al. (2017) clearly connected this electron trap to the
element Germanium Ge. Some publications also connected this trap to photo-stimulated
luminescence and so the trap is also optically sensitive (σ 6= 0, see Sec. 1.4.1). Level 2 is an
electron trap connected to the 230 ◦C TL peak and is a medium-stable trap. It is included
because different number of peaks are known in the temperature range from 100 – 300 ◦C
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1.6 The Bailey (2001) model

TL. Since no photo-eviction is known from this trap, σ = 0 is suggested. Levels 3 and 4 are
implemented to mimic the OSL medium and fast component of quartz (Bailey et al. 1997).
Many models suggest a deep electron trap responsible for many luminescence phenomena,
e.g., TL peak shapes or supralinear growth. Although this kind of trap is often called
thermally disconnected, it has a finite value for parameter E and s (see Sec. 1.4.1).

The model suggested by Bailey (2001) possesses four different recombination centres. As
defined in Sec. 1.4.1 and Fig. 1.6. This model just included recombination centres and no
hole traps as defined in the previous sections. Luminescence models with hole traps can
be found by, e.g., Chen & Pagonis (2004), Figel & Goedicke (1999), Oniya (2015), and
Pagonis et al. (2003). Two so called R-centres (reservoir centre, levels 6 and 7) play an
important role by explaining dose quenching (see Sec. 6) and the well-known pre-dose effect
(see Sec. 3) because these levels are thermally unstable. In contrast to that, level 8 and 9
are thermally very stable and called L-centre (luminescence centre) and K-centre (killer
centre), respectively. Level 8 is called luminescence centre because it is responsible for the
simulated luminescence signal which appears due to the recombination of an electron from
the conduction band with a trapped hole in this centre. This mechanism tries to mimic
the behaviour of the main OSL and TL emission around 380 nm. Level 9, the killer centre,
represents all recombination centres other than R-centres that are either non-radiative or
outside the UV region. So the model is theoretically able to simulate the behaviour of the
C band (see Sec. 1.5.3). All recombination centres are thermally connected to the valence
band but a photo-excitation of holes out of the centres is not implemented in the original
model of Bailey (2001). Figure 1.11 shows the schematic energy band diagram for the model
by Bailey (2001).

1.6.2 Simulating the geological sample history

In order to simulate the geological history of a quartz sample several different approaches
exist. It is impossible to simulate geological time, irradiation periods, and daylight exposure
exactly fitting to a measured sample. Therefore, simplifications are unavoidable. In the
earliest version of the Bailey (2001) model geological dose rates of 1Gy s−1 were used, which
are far away from realistic dose rates in nature. Thus, Bailey (2001) used raised temperature
irradiation as a simplification of lower dose rates. With increasing computational power
it was possible in 2004 to simulate much more realistic natural dose rates of 1Gy ka−1.
Nevertheless, many authors use different sample histories fitting best to the expected results.
Table 1.3 shows two different sample histories from Bailey (2001) and Bailey (2002). A
comprehensive comparison of more published approaches is given in Ch. 2, Table 2.6.
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Figure 1.11: Schematic energy band model by Bailey (2001).

MODEL SAMPLE HISTORY

Bailey 2001

crystallisation → 1 kGy using 1Gy s−1 at 20 ◦C (geological dose)

→ heat to 350 ◦C (geological time)

→ illuminate at 200 ◦C for 100 s (repeated daylight exposure)

→ 20Gy using 0.01Gy s−1 at 220 ◦C (burial dose)

Bailey 2002

crystallisation → 2 kGy using 200Gy s−1 at 250 ◦C (geological dose)

→ illuminate at 250 ◦C for 5 ks (repeated daylight exposure)

→ 10Gy using 0.01Gy s−1 at 220 ◦C (burial dose)

Table 1.3: Comparison of two different sample histories from Bailey (2001) and Bailey (2002).

1.6.3 The impact of the Bailey (2001) model

Since the publication of the Bailey (2001) model many authors used these parameters (or
ones with small modifications) to describe further luminescence phenomena, e.g., Adamiec
et al. (2004, 2006), Bailey (2002, 2004), Chen & Pagonis (2011), Chruścińska (2010),
Friedrich et al. (2016, 2017a,c, 2018a,b), Kijek & Chruścińska (2016, 2017), Kitis et al.
(2006), and Pagonis et al. (2007a,b, 2008a,b, 2009b, 2010).

Most of the authors mentioned changed the values of different parameters, but some
others also changed the number of electron traps or recombination centres. In the following
some examples of modifications of the original model proposed by Bailey (2001) are given:
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1.6 The Bailey (2001) model

• Bailey (2004) himself added three optical active electron traps to describe the slow
component of the OSL signal more precise than in the initial model in 2001.

• Adamiec et al. (2004, 2006), and Adamiec (2005) added a third R-centre to describe
the high temperature sensitivity increase in thermal activation characteristics (TAC).

• Pagonis et al. (2008a, 2009b, 2011) added two additional electron traps to successfully
simulate TT-OSL (thermally transferred OSL) and BT-OSL (basic transfer OSL).

• In this thesis it is shown that the suggestion already made by Bailey (2001) to
implement also the photo-excitation of recombination centres was realised successfully
(Ch. 7).

1.6.4 Problems with current luminescence models simulating RF

Although the model parameters presented by Bailey (2001) are able to simulate a lot of
known luminescence phenomena, there are problems concerning RF simulations. Worthwhile
emphasising is that RF simulations were also presented in the origin publication in 2001
but not compared to experimental results. In Bailey (2002) the author presented a RL-SAR
(radioluminescence corrected SAR) method where the RL signal is used as sensitivity
correction. Within the presented model the simulations show consistent results but an
experimental proof has been missing. One of the reasons for that can be the non availability
of luminescence readers able to detect RF and OSL sequentially during that time. Meanwhile
there exist luminescence readers as the Freiberg Instruments Lexsyg research (Richter et al.
2013) or an attachment for Risø machines (Lapp et al. 2012) which fulfil these requirements.
Nevertheless, the proposed correction method by Bailey (2002) was never used as a standard
procedure and measurements did not confirm the theoretical findings (pers. communication
with Sebastian Kreutzer).

One of the main criticism towards the publication by Bailey (2001, 2002) is the missing
comparison to experimental RF data, e.g., given by Krbetschek et al. (1997), Krbetschek
& Trautmann (2000), and McKeever et al. (1983). An example is the measurement of RF
signals after different preheat temperatures, as shown in McKeever et al. (1983). Therein an
enhancement of the initial RF signal is expected for temperatures around 400 ◦C. Figure 1.12
shows the attempt to simulate this phenomenon with different parameters provided by Bailey
(2001), Friedrich et al. (2017a), and Pagonis et al. (2007a, 2008a). The expected result can
not be reproduced using the models by Bailey (2001) and Pagonis et al. (2007a). A better
performance is reached with Pagonis et al. (2008a) and more realistic results are obtained
by model parameters developed through this thesis, see Ch. 3. Ch. 2 to Ch. 7 show the way
of conducting fundamental RF experiments and implementing models and new parameter
sets describing the experiments as precise as possible.
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Figure 1.12: The effect of different preheat temperatures on the RF signal simulated with model
parameter suggested by Bailey (2001), Friedrich et al. (2017a), and Pagonis et al. (2007a, 2008a),
respectively.

1.7 Results

1.7.1 Improving numerical quartz models

The publications presented in Ch. 2 to Ch. 7 extend the existing numerical quartz models
by a crucial step: simulating the luminescence signal during irradiation processes. This step
is important, because the simulation of the sample history over millions of years under
these conditions is crucial for the simulation. Comparing the signal during irradiation
(radiofluorescence, see Sec. 1.5) with the outcome of the numerical simulations gives an
approximation if the suggested parameters are able to fit the experimental data. In the past
numerical models were tested to fit OSL and TL signals and sometimes to hypothetical
RF signals (Bailey 2001, 2002), see Sec. 1.6.4. All presented parameter sets in this thesis
were tested for different quartz signals and known quartz luminescence phenomena, e.g.,
thermal-activation curves, preheat-plateau tests, OSL behaviour and for the first time with
experimentally-obtained RF signals. So the presented models and parameters represent
more comprehensive values for numerical quartz models than given in the past.

The key to achieve this accordance between experiments and simulations was to enhance
the concentration of the reservoir centres (R-centres). The effects on the OSL and TL
signals are minimal because the electron traps are not affected by this modification. The
idea behind this modification was the strong connection to the pre-dose phenomena (see
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Ch. 2 and further investigations in Sec. 5.5). Some very fundamental effects known from
quartz UV-RF were successfully modelled and explained within the energy band model, e.g.,
sensitivity changes during the irradiation-preheating cycles (Ch. 3) or competition between
energy levels (Ch. 4). Furthermore, more complex simulations are executable with improved
numerical quartz models. As shown in Ch. 6 the first numerical solutions of irradiating and
heating/cooling the crystal simultaneously were possible and mimic real experiments in a
good manner. Also the effect of different dose rates was modelled successfully and confirm
the suggested luminescence mechanism even for dose rates varying one order of magnitude
(Ch. 5). In addition to that, long known quartz phenomena as the UV-reversal effect (Ch. 7)
were simulated successfully by adding a time rate of eviction of holes from the L-centre. All
improvements on numerical models go hand in hand with experimental results.
Important to note is that all published quartz parameters are just changed minimally

to obtain maximal accordance with other experiments. This is important because other
successfully modelled TL and/or OSL phenomena are just minimally affected by these
changes because the changes are mostly related to recombination centres. To quantify the
impact of changes of different model parameters, the method of sensitivity analysis was
introduced in luminescence modelling. With this method the impact of small changes to
one parameter on the outcome of the simulations can be expressed numerically. Hence, it is
possible to compare different parameter impacts. The results can be summarised as follows:
For TL simulations, the critical parameters are the trap depth E, and the frequency factor
s, see Sec. 1.4.1. The method can be applied to several luminescence signals, e.g., OSL,
LM-OSL, and RF and is fully implemented in the software package presented in Sec. 1.7.2.
The benefit from this kind of analysis is the knowledge of parameters worth using for
inverse modelling. This technique was used to fit model parameters to real experiments. For
that purpose it is necessary to know parameters which influence the simulated signal most.
These parameters are fitted to experimental data and the results for inverse modelling of
luminescence signals are given in Sec. 8.3. Using model predictions and explanations is just
meaningful when the model is able to reproduce as much as possible known phenomena.
So fitting the model parameters to these results is very important to gain more precise
predictions.

Summing up, the published quartz parameter sets are able to mimic a wide range of known
quartz luminescence signals and phenomena and mark a progress in quartz luminescence
simulations. The consistency between simulated and empirical data is strong but this does
not indicate that the model is correct. It just means that the model is self-consistent.

1.7.2 Technical investigations and developments

One of the main investigations of this thesis is the development of the freely-available,
open-source software package RLumModel written in R (Friedrich et al. 2016, 2017b;
R Core Team 2017). The first study presented in Ch. 2 describes in detail the usage
of the software package. The software has been designed for simplicity to guarantee an
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ease-of-use without deep knowledge of programming or mathematical understanding of
ODE solving. Usually just one function with two arguments is needed. The function is
named model_LuminescenceSignals(). The argument model sets automatically the
parameters from different important quartz models given in literature, e.g., model =

“Bailey2001” loads the parameters given in Bailey (2001). The second argument is
sequence and a list of commands can be created by (a) the Risø Sequence Editor, (b) a
built-in SAR sequence generator or (c) self-explanatory keywords. The core of the package
is the system of ODEs (see Sec. 1.4.1) and the algorithms to solve this system for different
initial conditions and parameters. The user of the package does not have to know anything
about this system or the solving algorithms, all is automatically calculated in the back-end
of the package via C++ to guarantee a fast computation even for huge parameters or for
simulated geological times. To visualise the findings, the infrastructure of the R-package
Luminescence is used (Kreutzer et al. 2012, 2018). The following code shows a typical
example of the usage:

1 sequence <- list(

2 IRR = c(temp = 20, dose = 10, dose_rate = 1),

3 TL = c(temp_begin = 20, temp_end = 400, heating_rate = 5))

4

5 model.output <- model_LuminescenceSignals(

6 model = "Bailey2001",

7 sequence = sequence)

This code can be read as follows: At a temperature of 20 ◦C a dose of 10Gy is applied
with a dose rate of 1Gy s−1 followed by a TL measurement from 20 ◦C to 400 ◦C with
a heating rate of 5 ◦C s−1. This results in a TL curve like the one published in Bailey
(2001: Figure 1). It is also possible to plot the change over time for the concentration of
charge carriers. This is one of the big advantages of simulations and they offer a deep look in
the behaviour of energy levels. For an overview of the possibilities of the R-package see the
vignettes (a long-form guide for a specific package) in the software itself. The possibility to
use custom defined parameter sets is another advantage because it offers the user freedom
to investigate their own parameter sets or even use the software package to simulate other
materials connected to the energy band model, e.g., Al2O3. This is also shown in many
examples in the vignettes.
The software package is the base for the published numerical solutions in Ch. 3, 5, 6,

and 7. The package is published on CRAN (Comprehensive R Archive Network1) and
was downloaded more than 10,000 times since February 2016. The package is maintained
continuously and examples are given in the manual, the vignettes, the homepage2 and in
the appendices of published manuscripts (see App. A).

With the R-package RLumModel it is also possible to create sensitivity analyses to find
the parameters with the highest impact on the outcome of the simulations. This is the base

1https://cran.r-project.org/package=RLumModel
2http://r-lum.github.io/RLumModel
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of the inverse modelling approach where it is possible to calculate model parameters from
real measurement data.
During the project also other software applications were developed: rxylib and rxylib

Shiny. rxylib is able to read different x-y data formats from scientific measurement devices,
e.g., powder diffraction or spectroscopy data. The browser application rxylib Shiny is able
to read these data within a browser and further analyse the data, e.g., fit them to different
functions. It is also possible to save the results as high-resolution images on the hard disk.
The programs are free software and the source code and can be found on github.com3.

1.7.3 Methodological investigations

Due to the fact that little methodological data about quartz RF had been published at
the begin of the project, the first studies included fundamental investigations. So the
results presented in Ch. 3 show the behaviour of the UV-RF signal for different annealing
temperatures ranging from 50 to 700 ◦C. Two different quartz samples show similar behaviour
concerning the initial signal intensity and signal dynamics. Both samples show a strong
increase in UV-RF intensity after 350 ◦C and have the highest UV-RF intensity after a
550 ◦C annealing treatment. At even higher temperatures the initial intensity is decreasing
very fast.

After these first results, further investigations towards the strong increase after preheating
were carried out. In Ch. 4 the behaviour of the UV-RF signal (C band at 3.42 eV) after a
10min preheat to 500 ◦C for three different quartz samples was investigated. The C band
shows a variety of signal dynamics without any pretreatment. Two quartz samples show an
increasing signal during UV-RF measurement, while one sample has a decreasing intensity.
Nevertheless, after a preheat to 500 ◦C for 10min all samples show a strong decreasing
signal during measurement. From a three-energy-level model analytical solutions for the
RF signal versus time (or dose) were derived. These functions fit both conditions (no
treatment and thermal treatment) for all samples in a good manner. Qualitatively, the two
component fitting function can be seen as a superposition of two processes: (I) filling of the
luminescence centre with holes (building up the signal) and (II) recombination of electrons
with these holes (decaying function). The results from this study are not restricted to the
C band and can also be transferred to other emission bands (see Sec. 1.8).
The publication in Ch. 5 investigated the effect of different dose rates on two different

quartzes from different geological origin after a preheat to 500 ◦C for 10min. The main
observations for the C band are summarised as follows:

• The higher the dose rate, the higher the signal intensity,
• the higher the dose rate, the higher the intensity difference between the first and the

last measurement,
• the decay time of the C band during irradiation is sample dependent.

3https://github.com/R-Lum/rxylib and https://github.com/JohannesFriedrich/rxylibShiny
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Again, the results from the previous study (Ch. 4) were used to fit the signals for different
dose rates and a good agreement was obtained. Another result of these study was that
the UV-RF signal of quartz can be used determine absorbed doses. The reason is the
independency of RF signal characteristics on the dose rate. To establish this method
more experimental evidence is needed but the main idea is given in this study. Further
experimental results can be found in Sec. 8.2.
The study presented in Ch. 6 investigates thermal- and dose quenching effects on three

different quartz samples and provides a simple method to determine quenching parameters:
After preventing sensitivity changes by cycles of irradiation and heating, the sample will be
heated up to 500 ◦C and cooled down while irradiating with ionising radiation (measure the
RF signal). Fitting the temperature against intensity curve will directly give the quenching
parameters.

Furthermore, the effect of far UV illumination on the UV-RF signal was investigated in
Ch. 7 on three quartz samples. The results show that the UV light reduces the intensity of
the UV-RF signal as expected. By applying different times of UV illumination a time rate
of optical excitation of holes from the L-centre can be calculated. In addition to that, the
pre-dose and the UV-reversal effect can be observed more directly because an obligatory
test dose response for the 110 ◦C TL peak is void by using RF.
Table 1.4 shows a summary of used quartz samples in different chapters in this the-

sis. Further information about the samples, geological background and their preparation
procedure are given in the particular chapters.

CHAPTER
SAMPLE 3 4 5 6 7 8

BT586 X X X X X X

BT1195 X X

Hyaline X X

Smoky quartz X

FB X X X X

BT1248 X X

Table 1.4: Summary of all investigated quartz samples in the thesis. Chapters 3 to 7 are pub-
lished/submitted manuscripts, Ch. 8 contains unpublished results.

1.7.4 Awards

During the project two major student awards were won. In 2016 the award for the best
student poster at the UK LED meeting in Liverpool was won. The title of the poster was
“Finding appropriate model parameters for luminescence simulations: inverse modelling and
model fitting with Markov-Chain Monte-Carlo methods in RLumModel”. The findings and
results of the poster and further developments since the presentation are summarised in
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Sec. 8.3.
With the talk about “Radiofluorescence as detection tool for quenching processes in

quartz luminescence” the best oral presentation for fundamentals (Martin Aitken Prize)
was gained at the International Conference on Luminescence and Electron Spin Resonance
Dating in September 2017. The publication to this talk can be found in Ch. 6.

1.8 Research outlook

The results obtained in this thesis show the possibility to use quartz RF and luminescence
simulations in a wide range of topics. The following sections will present possible further
ways of developing both numerical simulations and methods concerning RF.

1.8.1 Numerical simulations

The presented inverse modelling approach (Sec. 8.3) can be used to create sample dependent
parameters useful for further simulations and predictions for specific quartz samples.
Therefore a pre-defined measurement sequence covering as many as possible luminescence
signals (TL, OSL, LM-OSL, and RF) could be executed and then inversely fitted to existing
quartz models. This approach can save measurement time because time-consuming or
complex measurements can first be simulated and analysed virtually. Furthermore, the
inverse modelling technique can be extracted to other fields than luminescence because
many free available software packages exist which help users to create customised inverse
modelling approaches.

Until now no spatial relationship between electron traps, hole centres, and recombination
centres is included in the most common used Bailey (2001) model. Nevertheless, the
development of Monte-Carlo methods for luminescence tries to take spatial relationship as
well as localised transitions into account. The models developed by Mandowski & Światek
(1992, 1994, 1996, 1998, 2000) and Mandowski (2002, 2005, 2006) show the effects of using
small clusters with less charge carriers, e.g., peaks that could not be attributed to any real
trap level in a solid (Mandowski & Światek 1997). A model which combines both (localised
and non-localised) transitions could explain more luminescence phenomena.

1.8.2 Methods

The findings from Ch. 4 encourage using the fitting function found for the C band also for
other bands. This is possible because the function can be applied to conditions where two
competitive processes with exponential characteristics are involved. Own tests confirmed
this idea but due to the interest on the C band no other bands were investigated in detail
in the publications.
Due to the strong annealing dependency of the UV-RF signal, investigated in Ch. 3,

the signal could be used as indicator for thermal treatment of quartz in the past (without
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irradiating subsequent to the thermal treatment. Otherwise the C band will decrease during
irradiation (Fasoli & Martini 2016; Friedrich et al. 2016) and no prediction of former heating
can be made). When an annealed and an un-annealed sample of a batch is available, with
the systematic pre-heating experiments presented in Ch. 3 a first limitation of the annealing
temperature could be made by comparing the C band intensity of the annealed sample
with the constructed C band intensity vs. annealing temperature curve, see Fig. 3.3.

Chapter 7 showed that is possible (in the framework of the energy band model) to transfer
holes from L-centres to R-centres by illuminating quartz with far UV light. The effect can be
reversed by annealing the quartz sample after illumination. Thus, the thesis showed different
ways to manipulate the distribution of holes. These methods can be used to bring quartz
samples in specific conditions to further analyse the electronic system in quartz. RF offers
the possibility to investigate already known phenomena in more detail, as shown in Ch. 6
and 7. Another long known effect in quartz is thermal quenching. The investigations in Ch. 6
showed the first comprehensive analysis of thermal quenching parameters measured directly
with UV-RF. The approach used can be extended to spectrometric measurements with
subsequent deconvolution of the spectra into Gaussian components. So different emission
bands at once can be analysed. The advantage of using spectrometric measurements is
the more precise detection of single bands because in our approach it is not possible to
distinguish different emissions within the detected wavelength region.
Concerning a dating application the initial findings from Ch. 5 and the experimental

proofs in Sec. 8.2 give evidence that quartz UV-RF is capable to recover absorbed doses.
The major drawback is that used quartz samples had to be heated up to ∼500 ◦C before
dose application. Hence, determining natural absorbed doses is limited to a small fraction
of materials, e.g., ceramics. Nevertheless, this method can be used for, e.g., calibrating
radiating sources. Before irradiating with a calibrated source, the samples had to be annealed
to ∼ 500 ◦C to guarantee a decreasing C band in the UV-RF signal. When the UV-RF signal
is detected with a photomultiplier, as executed in Sec. 8.2, acceptable results are obtained.
Further investigations are needed to establish the presented UV-RF dose determination.

1.9 Discussion and conclusion

1.9.1 Quartz RF measurements

The experimental investigations in this thesis are of fundamental nature and cover the
behaviour after different annealing temperatures, signal stability tests (Ch. 3). Furthermore,
dose rate effects (Ch. 5), observations of quenching (Ch. 6), and UV-reversal effects (Ch. 7)
were systematically analysed. In addition to that a fitting function for RF signal dynamics
was derived and successfully applied in several studies (Ch. 4, Ch. 5). All studies, except
the ones presented in Ch. 4 and Ch. 5, were executed with a Freiberg Instruments lexsyg
research reader (Richter et al. 2013). The experimental results from studies in Ch. 4 and
Ch. 5 were recorded with a home-made apparatus in Milan, Italy, at the Dipartimento
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di Scienza dei Materiali at the University of Milano-Bicocca. The advantage of spectra
measurements are that single bands can be deconvolved into Gaussian components and
hypothesis can be tested more precisely than using a photomultiplier. In a photomultiplier
the distinction between single emission bands in the recorded wavelength range is almost
impossible. Nevertheless, due to the strong C band enhancement after annealing to ∼ 500 ◦C
it will be ensured that the main component recorded with a photomultiplier is indeed the
C band. For this thesis it is important that the C band is recorded because the model
parameter presented are optimised for that emission band. It is important to bear in mind
that investigating other RF emission bands can be more difficult.
In all studies different quartz samples with different pre treatment (e.g., annealed to

700 ◦C, bleached in the solar light simulator) were used to obtain possible differences in
the UV-RF signal. Nevertheless, no significant differences between these samples during
the studies were obtained. Just minimal changes in the decay of the C band or the level
of intensity after long irradiation had been observed. So the differences between quartz
samples can be modelled by changing the parameters in the simulation, see Sec. 1.1.2 and
1.9.2.

By applying an analysis technique used for feldspar dating to UV-RF a new way of
using quartz UV-RF for dosimetric applications was found. Due to the huge amount of
available data points and the high signal intensity a high accuracy is reached (Sec. 8.2).
If the impact of different factors in the measurement protocol (Table 8.1, e.g., preheat
temperature, length of preheat, length of measuring the natural signal) are investigated in
more detail, more precise results as presented until know could be reached (achievement 5
in Sec. 1.1.2).

1.9.2 Quartz RF simulations

In this thesis systematic comparisons between RF measurements and simulations are
presented and showed that RF phenomena are reproducible within the energy band model.
The main modification was the adjustment of the concentration of the thermal unstable
reservoir centres (R-centre, see Sec. 1.6). The idea came up because the experimental
results from Ch. 3 are very similar to the known pre-dose effect (Bailiff 1994). In the first
publications presented on Ch. 3 the concentration of the R1 centre was enhanced by a
factor 10 to reach concordance with experimental results. Again, in Ch. 5 the concentration
of the R1 centre was enhanced by a factor of ∼ 33 compared to the original value by Bailey
(2001). Note that in both chapters the signals to match were obtained by different quartz
samples.
Nevertheless, the concentration of the R-centres seem to have huge impact on the RF

signal in the numerical simulations. Figure 1.13 illustrates these findings by taking the
models presented in Ch. 5 and change the concentration of the R1 centre systematically by
5 orders of magnitude. The simulated sequence was the same for all parameter sets and
the effect on the simulated RF signal is enormous. Note the huge doses on the x-axis. The
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signal dynamic is completely changing for different values of the R1 concentration. For
high values (factor 1 E+01 and 1 E+02, or in absolute values: 1 E+11 and 1 E+12 cm−3,
respectively) the RF signals show nearly the same results and do not change their signal
dynamic towards higher intensities for very long irradiation times. Furthermore, the TL and
OSL signal were also investigated with the same parameters as the RF signals in Fig. 1.13.
Figure 1.14 shows these (normalised) signals and no obvious differences in both signals are
detected. The signal intensities changed but normalising the results show no difference in
the signal dynamics, except small changes above 300 ◦C.
These findings confirm the idea that the RF signal dynamic is very sensitive to concen-

tration changes in the recombination centres while TL and OSL are not affected that much.
This is also the reason why any other phenomena (110 ◦C TL peak change with different
heating rates, OSL with varying reading temperature, etc.), investigated in Ch. A, do not
change.

Furthermore, the thesis shows in Sec. 8.4 that not just the energy band model is able to
give meaningful results for RF simulations but also the Monte-Carlo method. Until now the
results are in accordance with ODE solutions which indicate that the concept of performing
these kind of simulations seems to be acceptable. Nevertheless, the simulations performed
with Monte-Carlo methods for TL and OSL on a very small number of charge carriers
(Pagonis & Chen 2015) were not realised until now. This needs further investigations and
other concepts then presented here.
In summary, it can be concluded that the energy band model is able to describe many

experimentally obtained RF results well. Therefore some modifications on already published
data sets are needed, especially on the concentration of reservoir centres. It has been
shown that a change in the reservoir centres concentration has a huge impact on RF,
but not on TL or OSL signals. With these results the aim reproducing RF results with
existing models was reached (Sec. 1.1.2). Furthermore, the thesis presents an advanced
method of calculating proper model parameters by using the inverse modelling approach, see
Sec. 8.3. Hence, the aim from Sec. 1.1.2 of finding a way to vary input parameters to easily
reproduce luminescence behaviour of different quartz samples was reached as well. The
users of the software package RLumModel can use the complete benefit of these technique
to automatically calculate proper model parameters fitting their measured samples. Besides
this feature the actual intention of creating this kind of open-source software was to enable
a wide range of people the opportunity of using luminescence modelling without background
knowledge of solving ODEs or the physical processes behind it (aim 4 in Sec. 1.1.2).
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Figure 1.13: RF simulations for different values of the concentration of the R1 centre. The reference
data set was the one presented in Ch. 5.
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Figure 1.14: Numerical simulations with different values of the concentration of the R1 centre for
(a) TL and (b) OSL. No differences in the signal dynamics are visible in the normalised signal.
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Abstract

Kinetic models of quartz luminescence have gained an important role for predicting experi-
mental results and for understanding charge transfers in (natural) quartz.
Here we present and discuss the new R-package ’RLumModel’, offering an easy-to-use
tool for simulating quartz luminescence signals (TL, OSL, LM-OSL and RF) based on five
integrated and published parameter sets. Simulation commands can be created (a) using
the Risø Sequence Editor, (b) a built-in SAR sequence generator or (c) self-explanatory
keywords for customised sequences. Results can be analysed seamlessly using the R-package
’Luminescence’ along with a visualisation of concentrations of electrons and holes in every
trap/centre as well as in the valence and conduction band during all stages of the simulation.
Examples of simulated luminescence phenomena and dating protocols are given, and the
presented code snippets are available in the supplementary material. Package and source
code are provided under the General Public License (GPL-3) conditions.
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2.1 Introduction

Combining theoretical concepts with numerical modelling is an important way in elucidating
so far unexplained luminescence behaviour. On the basis of discovered causal mechanisms
and model predictions, systematic experimental errors while developing new methods may
be avoided. Revealing the mechanisms of charge flow in quartz thus contributes to higher
accuracy and precision of luminescence-based dosimetry. More generally, robust model
predictions pave the way for hypothesis-driven and directed research, instead of conducting
blindly a vast number of non-directed experiments. While experimental results are important
to verify or falsify a model’s validity, the model itself helps in finding appropriate experiments
with its predictions. It is thus an interconnected process between experimental validation
and theoretical guidance that puts forward the understanding of luminescence production
in quartz.

A proper understanding of luminescence production and its mathematical approximation
is a challenge since the early 1930s (e.g., Urbach 1930). It was not until 1945 that Randall
& Wilkins (1945) assumed first-order kinetics and used a differential equation to describe
the thermoluminescence (TL) process. Three years later, Garlick & Gibson (1948) presented
a differential equation for TL assuming second-order kinetics and studied the properties of
its solution.

Accounting for the transition between trapped state, conduction band and recombination
centre, Halperin & Braner (1960) were the first who suggested a single TL peak based
on three coupled first-order differential equations. These equations could not be solved
analytically, and simplifying assumptions were needed to solve the equations for certain
conditions. However, numerical solutions are required to solve these equations for more
complicated cases, which can be done nowadays with affordable computation power. More
recently, the theory of TL has been extensively studied and mathematically described by
e.g., Chen & McKeever (1997) and McKeever et al. (1997) (cf. for a more detailed summary
of the historical development of luminescence models in Chen & Pagonis 2011: Ch. 1.3).

Consequently, during last the 15 years, a vast number of simulations for TL and OSL
phenomena based on solving differential equations numerically was published by Adamiec
et al. (2004), Adamiec (2005), Chen & Pagonis (2004), Chen et al. (2009, 2011), Chen &
Pagonis (2013, 2014), Chruścińska (2009, 2010), Kitis et al. (2006), and Pagonis et al. (2003,
2007, 2008a, 2010, 2011) .

In 2001, Bailey published a comprehensive quartz model, which is able to reproduce a
variety of known luminescence phenomena of quartz. In the following years, more specific
problems (e.g., TT-OSL by Pagonis et al. (2008a)) were analysed by applying this model
with modified parameters (Bailey 2002, 2004; Pagonis et al. 2007, 2008a). In an ideal
case, these specific adjustments should at the same time not restrict the model’s general
applicability (McKeever & Chen 1997), which appears to be partly not the case for all
models (see discussion in Section 2.4.2).
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2.1 Introduction

Modern computers easily solve coupled differential equations (see next section for details),
but the user usually has to adapt a specific programming language. Writing code for
efficiently solving a set of differential equations and implementing all model parameters
requires enormous effort and is time-consuming. Furthermore, code used for modelling was
often written in only commercially available programming frameworks, e.g., MathematicaTM

(Chen & Pagonis 2011; Pagonis et al. 2006) or MATLABTM (Chruścińska 2013).

The statistical programming language R offers an alternative, open source and free
software environment for statistical computing and graphics with the possibility to install
add-ons (called ’packages’) for different purposes and problems (R Development Core Team
2016).

Here we present an easy-to-use approach for modelling luminescence signals bundled in a
new R-package called ’RLumModel’. Few commands are sufficient to simulate TL/OSL/RF
curves and adapt these simulations to own needs. This contribution is based on unpublished
work (Friedrich 2014) and the original code was translated from MATLABTM (Friedrich
2014) to R and extended to account for more recent developments.

The package ’RLumModel’ uses the R-package ’deSolve’ (Soetaert et al. 2012) for
solving differential equations in R and further refers to the analysis tools in the R-package
’Luminescence’ (Dietze et al. 2013; Fuchs et al. 2015; Kreutzer et al. 2012). In contrast to
the recently presented work by Peng & Pagonis (2016), no special programming skills are
needed to create own simulations and to produce graphical output, and the full integration
as R-package offers all benefits of this statistical environment (e.g., documentation, complex
modification of objects, straightforward graphical output, automatic code validation).

The focus of the presented work lies on the direct transfer of known luminescence scenarios
in nature and in the laboratory to the here presented tool, e.g., easy implementation of
a SAR sequence as generated by the Risø Sequence Editor. The user does neither require
a deep understanding of R coding nor of solving ordinary differential equations (ODEs).
Choosing a sequence and running it with one of the implemented luminescence models
directly results in a graphical output.

Further details of the implementation in the package ’RLumModel’ are presented below
(Sec. 2.4), and a variety of quartz luminescence phenomena is simulated using simple code
lines. Additional working scripts as well as all here presented R code are given with the
supplementary material. Note: Throughout this manuscript, R code snippets are typed
in monospace letters. To further distinguish between functions originating from other
packages than ’RLumModel’, these functions are indicated by the package name followed
by a doubled double dot (::), e.g., Luminescence::plot_RLum() refers to a function
called plot_RLum() from the R-package ’Luminescence’.
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2.2 Methods

2.2.1 Description of implemented luminescence models

All models presented here are based on the energy-band-model for quartz (see Fig. 2.1), which
is popular for quartz luminescence simulations. Bailey (2001) published a comprehensive
quartz model, which is able to reproduce several TL/OSL phenomena. The original model
underwent a lot of modifications since its first publication and the summary of all models
implemented in ’RLumModel’ is given in Figure 2.1. Note that not every model contains all
energy levels shown there and that all models are restricted to the UV emission of quartz.
As this contribution is not a review of the individual models, the reader is referred to
primary literature (Bailey 2001, 2002, 2004; Pagonis et al. 2007, 2008a) for more detailed
information. Table 2.1 shows the implemented electron traps/hole centres for every model
by name and level-number in ’RLumModel’. If there is a change between numbering the
levels in ’RLumModel’ and the particular publication, the original level number is given in
italics.

CONDUCTION BAND

VALENCE BAND

110 °C 

TL 230 °C 

TL
OSL

F OSL
M OSL

S1

OSL
S2

OSL
S3

Deep

TT-OSL BT-OSL

R
1
-centre

R
2
-centre

K-centreL-centre

Figure 2.1: Comprehensive energy-band-model for quartz, for details see Table 2.1.

All these models are based upon a system of coupled differential equations describing
charge transitions within the system. The number of differential equations that needs to
be solved depends on the number of electron traps (q) and hole centres (r).The following
differential equations (2.1)-(2.4) are to be solved in a quartz luminescence simulation. A
description of the used abbreviations is given in Table 2.2.

dni
dt

= nc · (Ni − ni) ·Ai − ni · P · σ0i · e−Ethi
/(kB ·T ) − ni · si · e−Ei/(kB ·T ) (2.1)

dnj
dt

= nv · (Nj − nj) ·Aj − nj · sj · e−Ej/(kB ·T ) − nc · nj ·Bj (2.2)
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LEVEL Bailey Bailey Bailey Pagonis et al. Pagonis et al.
2001 2002 2004 2007 2008b

110 ◦C TL 1 1 1 1 1
230 ◦C TL 2 2 2 2 2
OSLF 3 3 3 3 3
OSLM 4 4 4 4 4
OSLS1 5 5
OSLS2 6 6
OSLS3 7 7
Deep 5 8 8 5 5
TT-OSL 6 10
BT-OSL 7 11
R1-centre 6 9 11 9 12 6 8 6
R2-centre 7 10 12 10 11 7 9 7
K-centre 8 9 11 10 11 10 8 9 10 9
L-centre 9 8 12 9 12 9 9 8 11 8
NAME IN ’Bailey2001’ ’Bailey2002’ ’Bailey2004’ ’Pagonis2007’ ’Pagonis2008’RLumModel

Table 2.1: Summary of quartz luminescence traps/centres (levels) in different luminescence models
and their numbering. If there is a change in numbering of levels between ’RLumModel’ and the
particular publication, the original level number is given in italics. The dashed line shows the border
between electron traps and hole centres.

dnc
dt

= R −
q∑
i=1

(
dni
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (2.3)

dnv
dt

= R −
q+r∑

j= q+1

(
dnj
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (2.4)

Note that Bailey (2001, 2002, 2004) published a different equation for the change in
population of holes with time for the valence band, which is not correct in terms of charge
neutrality, see Eq. (2.5), which is equal to Eq. (2.4).

dnv
dt

=
dnc
dt

+

q∑
i=1

(
dni
dt

)
−

q+r∑
j= q+1

(
dnj
dt

)

= R−
q+r∑

j= q+1

(
dnj
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (2.5)

Equation (2.4) is taken from Pagonis et al. (2007, 2008a) and also applied for simulations
using the models by Bailey (2001, 2002, 2004). The main differences between models are
the number and concentration of electron traps (q and Ni), the used pair-production rate
R, the values for the photoionisation cross section σ and the photon flux P , respectively
(see Table 2.3).
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ABBREVIATION DESCRIPTION UNIT
nc Concentration of electrons in the conduction band cm−3

nv Concentration of holes in the valence band cm−3

Ni Concentration of electron traps cm−3

ni Concentration of trapped electrons cm−3

si Frequency factor s−1

Ei Electron trap depth below the conduction band eV
Nj Concentration of hole centres cm−3

nj Concentration of trapped holes in centres cm−3

sj Frequency factor for hole centres s−1

Ej Hole depth above the valence band eV
Ai Conduction band to electron trap transition probability cm3 s−1

Aj Valence band to hole centre transition probability cm3 s−1

Bj Conduction band to hole centre transition probability cm3 s−1

P Stimulation photon flux see discussion below
σ0i Photo eviction constant or

photoionisation cross section, respectively see discussion below
Ethi Thermal assistance energy eV
kB Boltzmann constant eVK−1

T Absolute temperature K
R Ionisation rate (pair production rate) cm−3 s−1

t Time s

Table 2.2: Description of the abbreviations used in the differential equations.

Bailey (2002, 2004) used absolute photon flux values in units of
(
cm2 · s

)−1 for parameter
P and photoionisation cross section values in units of cm2 for parameter σ0i. It must be
considered that σ itself depends on the wavelength λ of the stimulation light, so that
σ = σ(λ) (Singarayer & Bailey 2004) and that

P =
Pd

h · c
· λ,

where h is Planck’s constant, c the speed of light, Pd is the power density and λ the
wavelength of the stimulation light.

All other models (Bailey 2001; Pagonis et al. 2007, 2008a) use the rate of optical excitation
of electrons from OSL traps to conduction band (s−1), also called ’photo-eviction constant’
(Pagonis et al. 2007), which is the product of the P and σ. Therefore P is dimensionless
in these models. R (not to be mixed up with R, the name of the programming language)
describes the number of produced electron-hole pairs per second and per cm3 and is arbitrary
(see footnote 4 in Bailey 2001), but the given values in Table 2.3 describe an effective dose
rate equivalent to 1Gy s−1.
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2.2 Methods

Model by author
’Bailey2001’ ’Bailey2002’ ’Bailey2004’ ’Pagonis2007’ ’Pagonis2008’

Number of electron traps 5 8 8 5 7
Number of hole centres 4 4 4 4 4
Use of σ PEC OCS OCS PEC PEC
R value 5 E+07 3 E+10 2.5 E+10 5 E+07 5 E+07

Table 2.3: Differences in implemented quartz luminescence models. ’PEC’ means photo eviction
constant and ’OCS’ optical cross section, see main text.

Luminescence results from recombination of conduction band electrons with trapped
holes in luminescence centres (L-centre) and hence the luminescence signal L is defined as:

L = nc · nL-centre ·BL-centre · η(T ) (2.6)

nL−centre is the concentration of hole-populated luminescence centres without specific level
numbering in the energy-band-model, because in this work the number of the luminescence
centres is different depending on the individual model (see Table 2.1). The same applies
to BL−centre. In Eq. (2.6), η(T ) is the luminescence efficiency factor (Bailey 2001; Wintle
1975), as known from thermal quenching, and can be calculated via

η(T ) =
1

1 +K · e−
W

kB ·T
. (2.7)

K is a dimensionless constant with the value 2.8 E+7 andW is the activation energy with
0.64 eV. These values are only valid for the UV-emission in quartz. For further information,
the reader is referred to Wintle (1975) and Bailey (2001: footnote 5).

2.2.2 Software and integration

All presented quartz models were re-coded from the literature using the statistical program-
ming language R (R Development Core Team 2016) and bundled in an own R-package
’RLumModel’ available under general public licence conditions (GPL-3) on CRAN1. The
package itself depends on the R-package ’Luminescence’ (Dietze et al. 2013, 2016; Fuchs
et al. 2015; Kreutzer et al. 2012; R Luminescence Development Team 2016), from which
it inherits the infrastructure, object structure and functionality. On the opposite, the R-
package ’Luminescence’ (upcoming versions ≥ 0.6.0) contains the R-package ’RLumModel’
and comprises a function termed model_LuminescenceSignals(), which is identical
in grammar and functionality to the function of the same name in the ’RLumModel’
package. This structure was chosen to account for two requirements: (1) maximum coding
flexibility and (2) seamless and straightforward integration of modelling in the R-package

1https://cran.r-project.org/package=RLumModel

53



2 Solving Ordinary Differential Equations to Understand Luminescence: ’RLumModel’, an
Advanced Research Tool for Simulating Luminescence in Quartz Using R

’Luminescence’. Therefore, the package ’RLumModel’ is of much lighter weight, easy to
maintain and can have independent release and development cycles. On the other hand,
for users familiar with the existing R-package ’Luminescence’ the here presented work will
appear as an additional feature that can be directly accessed. By definition, both packages
are fully compatible, i.e., objects produced by ’RLumModel’ can be directly processed in
the R-package ’Luminescence’ for further analysis. This is possible because the output value
from ’RLumModel’ is of class RLum.Analysis and thus directly usable by functions from
the R-package ’Luminescence’. This functionality will be demonstrated in the examples
given below.

All presented simulations were carried out on a standard PC with Intel i7TM and 16GB
memory on Windows 7TM. For solving the coupled differential equations, ’RLumModel’ uses
the ODE solver lsoda (part of the R-package ’deSolve’, Soetaert et al. (2012)), because it
processes initial value problems for stiff or non-stiff systems of first-order ordinary differential
equations very fast by switching automatically between stiff and non-stiff problems. A
comparison between two different ODE solvers from the package ’deSolve’ (lsoda and ode)
results in a computation time of 7.7 s for ode and 5.7 s for lsoda on the used system when
simulating a TL curve including sample history with identical output (not shown here).
Furthermore, as parameter values - relating to the number of electron and hole centres - vary
among models, a different configuration also requires a new system of differential equations
to be implemented in the code (Peng & Pagonis 2016). With ’RLumModel’, the number
of coupled differential equations will automatically be adjusted, because of an identifying
feature for electron traps and hole centres: An algorithm identifies if Bj = 0 (electron trap,
see Section 2.2.1) or Bj 6= 0 (hole trap). For users, it is thus possible to change the available
sets or construct own parameter sets with arbitrary numbers of electron traps and hole
centres without the need to take care about coding the right syntax of the ODEs, without
changing the complete code and without advanced knowledge of R coding.

Additionally, the R-package ’RLumModel’ includes software tests to increase the stability
of the package. These tests were written using the R-package ’testthat’ (Wickham 2011)
and are automatically run when building the package before publishing it on CRAN. This
ensures a high reliability of the provided R code.

2.3 Creating data with ’RLumModel’

The main function for simulating luminescence signals is called
model_LuminescenceSignals() and requires information on the parameter set to
choose, a sequence to be run and further optional parameters to adjust the model out-
put. Figure 2.2 shows the general workflow. The single processes to obtain results from
’RLumModel’ and the arguments of the model_LuminescenceSignals() function will
be described in detail in this section.
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Figure 2.2: Flow chart of exemplary data processing in ’RLumModel’.
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2.3.1 Selecting a quartz luminescence model in ’RLumModel’

The first argument required for the function model_LuminescenceSignals() is the
name of a quartz luminescence model to be used, respectively the used parameter set in
this quartz luminescence model. All currently implemented quartz luminescence models
were described in Sec. 2.2.1. The command to select a set of parameters from a specific
model in ’RLumModel’ is a character string with the name of the author and the year (cf.
Table 2.1), e.g.,

1 model <- "Bailey2004"

The corresponding parameter set will be loaded automatically with the function call.

2.3.2 Creating sequences in ’RLumModel’

The second argument in the model_LuminescenceSignals() function is the sequence
to be simulated. There are three different ways of creating a sequence. The first one is to
use the popular and freely available Risø Sequence Editor version 4.362 to build a personal
sequence and to save it as a SEQ-file (*.seq). Files created by the Sequence Editor can be
imported directly using the path of the SEQ-file. The package comes along with an example
SEQ-file in the package folder in ’extdata’. Thus, a potential sequence is created with

1 sequence <- system.file(

2 "extdata",

3 "example_SAR_cycle.SEQ",

4 package = "RLumModel")

or wherever the SEQ-file is stored. While in the Sequence Editor irradiation is commonly
defined in seconds, performing the simulation requires a dose transformation to gray.
Therefore, the function model_LuminescenceSignals() offers a special argument
called lab.dose_rate, representing the dose rate of the irradiation unit in the laboratory.
By default, this dose rate is 1Gy s−1, but can be modified, e.g.,

1 lab.dose_rate <- 0.105

The second way of creating a sequence is by referring to a list with keywords and a
certain order of code numbers or named values, which are given in Table 2.4. With these
keywords, it is possible to create quickly an R object of type list, which can be read by
the model_LuminescenceSignals() function. Example:

1 sequence <- list(

2 IRR = c(temp = 20, dose = 10, dose_rate = 1),

3 TL = c(temp_begin = 20, temp_end = 400, heating_rate = 5))

2http://www.nutech.dtu.dk/english/Products-and-Services/Dosimetry/Radiation-Measurement-
Instruments/TL_OSL_reader/Software; 2016-04-11
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This sequence describes an irradiation simulation at 20 ◦C with a dose of 10Gy and a
dose rate of 1Gy s−1, which is followed by a TL simulation from 20 ◦C to 400 ◦C with a
heating rate of 5 ◦C s−1. Note that it is important that for each sequence keyword like ’IRR’
or ’TL’ either the vector has to be named or the correct order of arguments is requested,
see ’sub-arguments’ in Table 2.4. Henceforth only the ordered way of typing arguments is
used. Thus the above mentioned code is equivalent to the following one:

1 sequence <- list(

2 IRR = c(20, 10, 1),

3 TL = c(20, 400, 5))

ARGUMENTS DESCRIPTION SUB-ARGUMENTS
TL Thermally stimulated luminescence ’temp_begin’, ’temp_end’, ’heating_rate’
OSL Optically stimulated luminescence ’temp’, ’duration’, ’optical_power’
ILL Illumination ’temp’, ’duration’, ’optical_power’
LM_OSL Linear modulated OSL ’temp’, ’duration’, optional: ’start_power’, ’end_power’
RF Radiofluorescence ’temp’, ’dose’, ’dose_rate’
IRR Irradiation ’temp’, ’dose’, ’dose_rate’
CH Cutheat ’temp’, optional: ’duration’, ’heating_rate’
PH Preheat ’temp’, ’duration’, optional: ’heating_rate’
PAUSE Pause ’temp’, ’duration’

Table 2.4: Keywords for creating a sequence in ’RLumModel’. Note that 100% optical power
equals to 20mW cm−2 (Bailey 2001). Values > 100% are allowed.

However, creating a SAR or dose-recovery-test (DRT) sequence with the Risø Sequence
Editor or with keywords is time-consuming, because it contains a lot of individual sequence
steps (preheat, optical stimulation, irradiation, . . .). Therefore, a third way was implemented
in ’RLumModel’ to create a SAR sequence after Murray & Wintle (2000) applying the
(required) keywords RegDose, TestDose, PH, CH and OSL_temp. In addition to these
keywords, the user is able to set more detailed parameters for the SAR sequence, see
Table 2.5:

1 sequence <- list(

2 RegDose = c(0, 10, 20, 50, 90, 0, 10),

3 TestDose = 5,

4 PH = 240,

5 CH = 200,

6 OSL_temp = 125)

To simulate a DRT, the user has to add the keyword Irr_2recover and a value in the
list of instructions. This will create a sequence for a DRT with the value of Irr_2recover
as the dose to recover (given dose). When choosing this kind of sequence generation, an
illumination at 125 ◦C for 70 s is simulated to reset the ’natural’ signal defined by the
sample history (see Sec. 2.3.3). Here the period of 70 s was chosen to sufficiently deplete the
natural signals; with regard to the implemented models, after 70 s < 1% of initial intensity
remains. An example is given in Sec. 2.4.2.

57



2 Solving Ordinary Differential Equations to Understand Luminescence: ’RLumModel’, an
Advanced Research Tool for Simulating Luminescence in Quartz Using R

ABBREVIATION DESCRIPTION EXAMPLE
ARGUMENTS

RegDose Dose points of the regenerative cycles [Gy] c(0, 80, 140, 260, 320, 0, 80)
TestDose Test dose for the SAR cycles [Gy] 50
PH Temperature of the preheat [ ◦C] 240
CH Temperature of the cutheat [ ◦C] 200
OSL_temp Temperature of OSL read out [ ◦C] 125
OSL_duration Duration of OSL read out [s] default: 40
Irr_temp Temperature of irradiation [ ◦C] default: 20
PH_duration Duration of the preheat [s] default: 10
dose_rate Dose rate of the laboratory irradiation source [Gy s−1] default: 1
optical_power Percentage of the full illumination power [%] default: 90
Irr_2recover Dose to be recovered in a dose-recovery-test [Gy] 20

Table 2.5: Keywords for creating a SAR sequence with ’RLumModel’. The keyword
Irr_2recover is only necessary for creating a DRT sequence. Note that 100% optical power
equals to 20mW cm−2 (Bailey 2001). Values > 100% are allowed.

For all sequences, temperature differences between sequence steps are automatically
simulated with a heating or cooling step in between. Also, after irradiating the sample, it is
automatically kept at irradiation temperature for further 5 s to allow the system to relax
prior to the next step (Bailey 2001).

2.3.3 Deep control of sample history

All models apply different so-called ’sample histories’ to simulate the geological past of
natural sedimentary quartz grains, starting with crystallisation, meaning that all traps are
empty. Usually, simplified sequences consisting of irradiation, bleaching and heating aim at
mimicking sedimentary cycles in geological timescales, and due to increased computation
power in the last decade it was possible to simulate very small irradiation dose rates
over geological timescales with acceptable computation times (Bailey 2004). In contrast
to the usage of very low natural dose rates, Bailey (2001) suggested the simulation of
irradiation at higher temperatures, because high dose rate irradiation at 220 ◦C was found
to adequately mimic the observation of low/zero populations in both shallow electron and
hole trapping centres. Measurements of natural quartz samples appear to confirm this
assumption (Bailey 2001). Nevertheless, each model uses a unique sample history simulation.
Table 2.6 summarises published sample histories (Bailey 2001, 2002, 2004; Pagonis et al.
2007, 2008a).

Using a luminescence model to simulate measurements in the laboratory asks for an
already completed sample history. The user of the model_LuminescenceSignals()
function has the choice of simulating a sample history within the created sequence or not.
All sample histories of the five luminescence models were run and the results are stored
within the package. When choosing the function argument simulate_sample_history
= FALSE (the default) the stored results of ni, nj , nc, nv at the end of the sample history are
recalled for further calculations. Thus, the written sequence is directly used for simulating a
measurement in the laboratory of a sample with mimicked geological history. In contrast to
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MODEL SAMPLE HISTORY

Bailey 2001

crystallisation → 1000Gy using 1Gy s−1 at 20 ◦C (geological dose)
→ heat to 350 ◦C (geological time)
→ illuminate at 200 ◦C for 100 s (repeated daylight exposure)
→ 20Gy using 0.01Gy s−1 at 220 ◦C (burial dose)

Bailey 2002
crystallisation → 2 kGy using 200Gy s−1 at 250 ◦C (geological dose)
→ illuminate at 250 ◦C for 5 ks (repeated daylight exposure)
→ 10Gy using 0.01Gy s−1 at 220 ◦C (burial dose)

Bailey 2004
crystallisation → 50Ma using 1Gy ka−1 at 20 ◦C (geological dose)
→ 10 cycles of 10 ka irradiation using 1Gy ka−1 at 20 ◦C + 6000 s illumination
→ ’palaeodose’ using 1Gy ka−1 at 20 ◦C (burial dose)

Pagonis 2007 same as Bailey 2001

Pagonis 2008

crystallisation → 1000Gy using 1Gy s−1 at 20 ◦C (geological dose)
→ heat to 350 ◦C (geological time)
→ illuminate at 200 ◦C for 100 s (repeated daylight exposure)
→ 200Gy using 0.01Gy s−1 at 220 ◦C (burial dose)

Table 2.6: Summary of sample histories for models implemented in ’RLumModel’.

that, the user can choose simulate_sample_history = TRUE and create a customised
sample history by writing a new sequence. Note that in Bailey (2004) the palaeodose was
variable, but is set to 20Gy in the model_LuminescenceSignals() function. If another
palaeodose is desired, the user is invited to write an adjusted sample history sequence, as
described in Sec. 2.3.2 and simulate_sample_history = TRUE.

2.4 Working examples

In this section, detailed examples for simulating quartz luminescence signals with different
stimulation modes (TL, OSL, and RF) are presented. All code lines can be easily modified
by the user to obtain customised results.

2.4.1 Simulating general TL/OSL/RF phenomena

2.4.1.1 Simulating a TL curve and shift of TL peak with varying heating rate

First of all, a sequence is needed, which produces a TL signal after the sample has received
a dose:

1 sequence <- list(

2 IRR = c(20, 10, 1),

3 TL = c(20, 400, 5))

Here, at a temperature of 20 ◦C a dose of 10Gy was applied with a dose rate of 1Gy s−1

followed by a TL measurement from 20 ◦C to 400 ◦C with a heating rate of 5 ◦C s−1.
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Running this sequence with the model_LuminescenceSignals() function produces
a model output:

1 model.output <- model_LuminescenceSignals(

2 model = "Bailey2001",

3 sequence = sequence)

This results in a TL curve like the one published in Bailey (2001: Fig. 1), see Fig. 2.3. In
a further step, known TL phenomena like the shift of the TL peak with varying heating
rate are simulated (Fig. 2.4). For this purpose, a loop over a TL simulation changes the
heating rate in each run. The code for this simulation is shown in the supplementary
material (Sec. A.1), code example 2.4.1.1. With the modelling tool ’RLumModel’ it is also
possible to plot the temporal evolution of electron and hole concentrations in traps/centres
and the delocalised bands (ni, nj , nc, nv) in the course of TL, CW-OSL, LM-OSL, and RF
simulations. Therefore, the model output of model_LuminescenceSignals() is directly
transferred to the function Luminescence::plot_RLum() as argument object. The
argument subset can be used to limit the object to be analysed.
The following code returns ni, nj , nc and nv as a function of T , as resulting from a TL

simulation. Note the brackets “(TL)”, which ensure that the concentrations and not the TL
curve will be plotted here:

1 plot_RLum(

2 object = model.output,

3 subset = list(

4 recordType = "(TL)"))

The function Luminescence::plot_RLum() fully supports all common R plot ar-
guments, e.g., col or type (R Development Core Team 2016) and special ’Lumines-
cence’ arguments like norm = TRUE to normalise to the highest value (R Luminescence
Development Team 2016). An overview of all records can be obtained with the func-
tion Luminescence::structure_RLum(). To obtain the electron concentration in the
110 ◦C TL trap, addressing this level is possible with the following code:

1 plot_RLum(

2 object = model.output,

3 subset = list(

4 recordType = "conc. level 1 (TL)"))

The resulting plot is shown in Fig. 2.5 and, as expected, the concentration of electrons
decreases abruptly at a temperature of ∼ 100 ◦C. A further example of this function is
given in Sec. 2.4.1.5.
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Figure 2.3: TL curve simulation after
’Bailey2001’.
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Figure 2.4: Shift of TL peaks with vary-
ing heating rates using parameters from
’Bailey2001’.

2.4.1.2 Simulating thermal activation characteristics (TACs)

Another frequently simulated phenomenon is the sensitisation of quartz TL by β- or γ-
irradiation followed by activation at high temperatures (annealing; Adamiec et al. 2004;
Pagonis et al. 2003, 2008b; Zimmerman 1971), termed as thermal activation characteristics
(TACs). For a simulation sequence, the reader is referred to Pagonis et al. (2008b: Table 1).
To simulate this phenomenon with the model_LuminescenceSignals() function, a
loop causing a stepwise increase of the activation temperature is needed. The resulting
intensity of the 110 ◦C TL peak can be plotted against the activation temperature, see
Fig. 2.6, which shows TAC for the model parameters of ’Pagonis2007’. TACs can be
created from every other model presented here by changing the name of the model in the
model_LuminescenceSignals() function. The complete running example is given in
the supplementary material(Sec. A.1), code example 2.4.1.2.

2.4.1.3 Simulating dependency of the OSL signal on the illumination power density

The function model_LuminescenceSignals() is also capable of simulating OSL phe-
nomena. Figure 2.7 shows the dependency of the OSL signal on the power density of
illumination (P , see Table 2.2) for the model ’Bailey2004’. Here, a loop over different power
densities was used, as to see in the code example 2.4.1.3 in the supplementary material
(Sec. A.1). The inset in Fig. 2.7 demonstrates the linear relationship between normalised
OSL (normalised to unity at the count-rate measured using the maximum power) and
illumination power density in the range 0 – 200mW cm−2. This simulation followed Bailey
(2001: Fig. 14), but with the parameter set from ’Bailey2004’.
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in the 110 ◦C TL trap while simulating TL after
’Bailey2001’.
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Figure 2.6: Simulated thermal activation cha-
racteristics (TAC) of the 110 ◦C TL signal for
the model and parameter set by ’Pagonis2007’.
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Figure 2.7: Dependency of the OSL signal on the illumination power density for the parameter
set ’Bailey2004’. The inset shows the linearity of the initial 0.1 s of the OSL signal with increasing
illumination power density.
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Figure 2.8: Temperature dependence of the OSL signal as simulated with the ’Bailey2001’ model
for different measurement temperatures. The inset plots the integrated OSL (0 – 60 s) against
measurement temperature.

2.4.1.4 Temperature dependence of the OSL signal

Another known OSL observation is the thermal dependency of the quartz OSL signal shape
and intensity and the associated phenomena of thermal quenching and thermally assisted
detrapping (McKeever et al. 1997; Spooner 1994). The simulation by Bailey (2001) can be
reproduced (see Sec. A.1, code example 2.4.1.4) and the results are shown in Fig. 2.8 and
are in good accordance with experimental results (McKeever et al. 1997). Flexible data
handling allows, for instance, plotting the integrated OSL signal against OSL stimulation
temperature (inset of Fig. 2.8). This phenomenon is known as ’thermal quenching’ and is
typical for quartz (Huntley et al. 1996; Spooner 1994; Wintle 1975).

2.4.1.5 Simulating quartz radiofluorescence (RF)

Radiofluorescence occurs while ionizing radiation due to the recombination of conduction
band electrons with trapped holes (Schmidt et al. 2015). Hence Eqs. (2.1) – (2.4) describe
theoretically the mechanism of radiofluorescence. Bailey (2001: Sec. 3.4.4) published a
simulation of radiofluorescence of quartz and he suggested that the form of the RF curve is
strongly linked to the population of one of the reservoir centres. He showed this by plotting
the hole concentration of the reservoir centre R1 along with the shape of the RF curve
(Bailey 2001: Fig. 12). With the package ’RLumModel’, it is easy to reproduce the results
with the following code:
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Figure 2.9: RF simulation and concentration of holes in the reservoir centre R1 (inset) as resulting
from the ’Bailey2001’ model (Bailey 2001: Fig. 12).

1 sequence = list(RF = c(20, 100, 1))

2

3 model.output <- model_LuminescenceSignals(

4 model = "Bailey2001",

5 sequence = sequence,

6 norm = TRUE)

This code describes an RF simulation at 20 ◦C with a dose of 100Gy and a dose rate
of 1Gy s−1. The extra argument norm = TRUE normalises the data to the highest value.
The function plot_RLum yields the hole concentration in the reservoir centre R1 (level 6,
see Table 2.1) as a function of dose. These few lines of code result in Fig. 2.9:

1 plot_RLum(

2 object = model.output,

3 subset = list(recordType = "conc. level 6 (RF)"))

2.4.2 Simulating and analysing SAR measurements

The focus of this work is the simulation of luminescence signals used for retrospective
dosimetry, especially in the course of SAR measurements. The SAR protocol according to
Murray & Wintle (2000) aims at determining the radiation dose received by a sample since
its last sunlight exposure or heating above 350 ◦C, known as equivalent dose De. How to
write a sequence for a SAR/DRT simulation was mentioned in Sec. 2.3.2. This section gives
some detailed examples and shows the implementation in the R-package ’Luminescence’. In
the following, a complete SAR measurement is simulated, including a preheat-plateau-test
(PHPT) and a DRT. The combined PHPT and DRT will yield the appropriate preheat
temperature at which a certain dose is best reproducible. For the whole simulation in this
section, the model ’Pagonis2008’ is chosen, implying a burial dose of 200Gy (Table 2.6).
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Figure 2.10: Resetting of the natural signal with the model ’Pagonis2008’ in the DRT sequence.

For simulating a DRT, it is necessary to define a sequence with the keyword Irr_2recover,
as mentioned in Sec. 2.3.2. As can be seen in Fig. 2.10, the natural OSL signal is completely
erased with this sequence.

It should be mentioned that a simulation of a combined PHPT and DRT may be very
time-consuming, because for every preheat temperature a complete SAR cycle has to be
run. A typical DRT sequence featuring various PH temperatures in ’RLumModel’ is listed
below. Note that in such a DRT simulation a loop over different preheat temperatures has
to be written, utilising characteristic parameters from the literature. The test dose is set to
10% and the regeneration dose points to 40%, 70%, 130%, 160%, 0% and 40% of the
recovery dose. The data created by ’RLumModel’ can be directly passed to the functions
Luminescence::analyse_SAR.CWOSL() and Luminescence::plot_DRTResults()
for routine analyses and plotting.

1 ##set PH temperatures

2 PH_temp <- seq(from = 160, to = 300, by = 20)

3

4 ##set regeneration doses

5 RegDose = c(0, 80, 140, 260, 320, 0, 80)

6

7 ##loop over PH temperatures

8 DRT.output <- lapply(1:length(PH_temp), function(x){

9

10 sequence <- list(
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11 RegDose = RegDose,

12 TestDose = 20,

13 PH = PH_temp[x],

14 CH = PH_temp[x],

15 OSL_temp = 125,

16 Irr_2recover = 200)

17

18 model.output <- model_LuminescenceSignals(

19 sequence = sequence,

20 model = "Pagonis2008",

21 plot = FALSE,

22 verbose = FALSE)

23

24 results <- analyse_SAR.CWOSL(

25 object = model.output,

26 signal.integral.min = 1,

27 signal.integral.max = 7,

28 background.integral.min = 301,

29 background.integral.max = 401,

30 fit.method = "EXP",

31 dose.points = RegDose,

32 plot = FALSE)

33

34 temp <- get_RLum(results)

35 out <- data.frame(

36 De = temp$De,

37 De.error = temp$De.Error)

38

39 return(out)

40 })

41

42 ##output as data.frame for plot_DRTResults

43 DRT.result <- as.data.frame(do.call(rbind,DRT.output))

44

45 ##plot DRT.results

46 plot_DRTResults(

47 DRT.result,

48 preheat = PH_temp,

49 given.dose = 200)

In the code above in line 32, plot = FALSE was chosen, because a single OSL plot is not
necessary to analyse a SAR sequence. To calculate aDe from the produced RLum.Analysis
object model.output, the function Luminescence::analyse_SAR.CWOSL() is suit-
able. After specifying a number of evaluation parameters (signal and background integration
interval, dose points and fit function for the dose response curve) and the analysis pro-
cess, the reduced data are stored in an RLum.Results object, here termed results. A
background integration interval from 301 to 401 translates to the signal from 30 s to 40 s,
because a channel has the default width of 0.1 s. Accordingly, the signal integral ranges from
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Figure 2.11: DRT results for the model ’Pagonis2008’. Every data point is the result of a De

estimation with a specific preheat temperature, see main text. The errors of the De values are so
small, that they do not appear in this plot.

0.1 s to 0.7 s. This results in a plot with three parts. Part one includes all OSL and - if the
preheat was a TL measurement - all TL curves, giving an optical summary of the simulated
data and the chosen integral limits (not shown here). Part two shows the dose response
curve and the calculated De, the De distribution following a Monte-Carlo simulation for
estimating the standard error, and the evolution of the test dose response throughout
the SAR sequence (Fig. 2.12). Part three illustrates the rejection criteria (recycling ratio,
recuperation and standard error of the De, not shown here). The performance of the DRT
for a given dose of 200Gy with the above mentioned parameters is shown in Fig. 2.11.
The given dose of 200Gy is always underestimated but the limits of 10% deviation from
the recovery dose, a preheat and cutheat temperature of 220 ◦C was adopted for the SAR
measurement.

For determining a De from ’natural’ signals, generally the same code as described here
applies (just without Irr_2recover). An executable example of a SAR cycle is given in
the supplementary material (Sec. A.1), code example 2.4.2b. Figure 2.12 shows the dose
response curve for the ’Pagonis2008’ model with a burial dose of 200Gy (see Table 2.6).
The model ’Pagonis2008’ returns a De of 122.7± 0.31Gy for a burial dose of 200Gy after
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simulating the SAR protocol. This implies a significant dose underestimation of this SAR
sequence, although the most appropriate preheat temperature was chosen. Higher test
doses yielded a better DRT but do not result in a proper De estimation. It is striking
that the sensitivity changes as indicated by the test dose response for every SAR cycle are
substantial (Fig. 2.12). It implies that this model is successful in simulating TT-OSL, but
not in accurately measuring a burial dose with the SAR protocol for the pre-defined sample
history.
To show the reproducibility of a burial dose from one of the implemented models with

’RLumModel’, the model ’Bailey2001’ was chosen. Here, a DRT was simulated in the same
way as in the example mentioned above. Applying a preheat temperature of 240 ◦C, a
cutheat temperature of 200 ◦C and a test dose of 2Gy, a SAR sequence was simulated,
giving a De of 18.72± 9× 10−3 Gy. The accuracy of this model to reproduce a burial dose
of 20Gy using the SAR protocol is thus better than 10%. Sensitivity changes as deduced
from the test dose response are much lower than for the ’Pagonis2008’ model.

A cross-check of the results of the SAR protocol for different models with different burial
doses was simulated. Therefore the sample history of model ’Bailey2001’ was changed
to a burial dose of 200Gy and then a combined PHPT and DRT and subsequently a
SAR protocol are simulated. The DRT results in very good behaviour in terms of dose
recovery, but the SAR protocol shows a De of 57.02 Gy ± 0.02 Gy. In contrast to that,
the ’Pagonis2008’ model, simulated with a burial dose of 20 Gy and the best preheat
temperature according to the PHPT, shows a De of 18.52± 0.02 Gy and thus an acceptable
result in terms of obtaining the correct burial dose (data not shown here).

2.5 Discussion and conclusions

The new R-package ’RLumModel’ was presented, enabling an efficient and user-friendly
simulation of quartz luminescence signals based on the energy-band-model. To date, the
package includes five models reported in the literature to simulate specific quartz lumines-
cence phenomena (Bailey 2001, 2002, 2004; Pagonis et al. 2007, 2008a). Several options are
provided to create a sequence to be simulated: (I) with the Risø Sequence Editor (version
4.36) and direct use of the *.SEQ file as function input, (II) with a list of keywords for the
step to be simulated (e.g., IRR, TL, . . .) and a named or sorted vector, (III) with SAR and
DRT templates. Once a model is chosen and a sequence created, only one function call is
necessary to obtain simulation results. ’RLumModel’ automatically loads the R-package
’Luminescence’ to evaluate the model output.

It was shown that several TL, OSL, and RF phenomena from published literature can
be easily reproduced, demonstrating the suitability of this new model tool. The function
Luminescence::plot_RLum() allows tracing the charge population of each trapping
site and the delocalised bands throughout all stages of the simulation as well as plotting TL,
OSL, and RF curves from the simulations. The quartz luminescence models implemented
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in ’RLumModel’ are adopted without any quality test for their validity. With ’RLumModel’
it is now possible to compare different luminescence models and show their strengths and
weaknesses for different research questions. The calculations of the simulations may be
not as fast as in other publications like ’KMS’ (Peng & Pagonis 2016) but ’RLumModel’
offers maximum flexibility, e.g., in creating own parameter sets without deep R-coding
and in analysing the results with existing routines like the R-package ’Luminescence’ (R
Luminescence Development Team 2016).

It should be noted that in addition to the modelling approach making use of differential
equations derived from the energy-band-model, there exist other, so far less popular, concepts
of quartz luminescence. Itoh et al. (2002) presented a model based on defect pairs rather
then trapped electrons and holes, which can, e.g., explain the 110 ◦C and 325 ◦C TL peak
in quartz. By contrast, Mandowski & Światek (1992, 1998, 2000) published a luminescence
model for TL based on Monte-Carlo calculations, which are common in statistical physics.
According to that, Pagonis et al. (2014) presented a simplified Monte-Carlo method for TL
and LM-OSL simulations.
The here presented work cannot replace own experimental work that may lead to a

better understanding of quartz luminescence phenomena. However, simulations are capable
of supporting a proper experimental design, making them more efficient and potentially
less time-consuming. Therefore, hypotheses driven experimental work can be more clearly
defined and tested.
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models originally implemented in MathematicaTM to R (KMS: Kinetic Model Simulations,
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different development stages, the type and focus of the integration, it was decided to proceed
separately. Herewith we state that our R coding was carried out independently, mostly in
summer 2015. None of the R code published on GitHubTM for the ’KMS’ was used.
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Abstract

Modelling (natural) quartz luminescence (TL/OSL) phenomena appears to be quite common
nowadays. The corresponding simulations are capable of giving valuable insights into the
charge transport system. By contrast, simulating radiofluorescence (RF) of quartz has
rather been neglected in the past. Here we present and discuss (1) the RF signals of natural
quartz measured in the UV band and (2) simulations of these experiments executed using a
three-energy-level model to explain the experimentally obtained results.
Two natural quartz samples were investigated at room temperature (RT) following

different preheat procedures: (a) consecutively increasing preheat temperatures from 50 ◦C
to 700 ◦C and (b) repeating a 500 ◦C preheat with subsequent UV-RF measurement at
RT for eleven times. Based on the measurement and modelling results, we finally confirm
theoretically the dependency of the UV-RF signal of quartz on the burial dose.
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3.1 Introduction

Numerical simulations pave the way for a better understanding of luminescence phenomena,
such as thermally stimulated and optically stimulated luminescence (TL, OSL) of various
dosimeters (e.g., Chen & McKeever 1997; Chen & Pagonis 2004, 2011; Chruścińska 2009;
Oniya 2015; Pagonis et al. 2003, 2014; Subedi et al. 2010). By contrast, simulating radiolu-
minescence/radiofluorescence (henceforth radiofluorescence: RF) of natural quartz appears
to have been neglected in the past.

RF is the luminescence emitted during exposure to ionizing radiation and for quartz
believed to result from direct recombination of electrons with holes captured in recombination
centres (cf. for a review: Schmidt et al. 2015). While quartz RF spectra are reported in
the literature (e.g., Fujita & Hashimoto 2006; Martini et al. 2012a,b; Pagonis et al. 2014;
Shimizu et al. 2006) simulation studies for a specific emission wavelength are missing so far.
One recent study on simulating RF was published by Pagonis et al. (2009), but it is limited
to Al2O3:C.

While the comprehensive quartz model developed by Bailey (2001) is capable of success-
fully simulating common TL and OSL luminescence phenomena (such as dose response,
dose quenching, phototransfer, thermal activation) for the UV band, it fails for simulating
experimentally obtained quartz RF signals. The results obtained by Bailey (2001: Sec. 3.4.4.)
suggest that the shape of the simulated RF is correlated to the population of the so called
reservoir centres. In more recent publications a link between the pre-dose effect (Zimmerman
1971a) and the RF behaviour is mentioned (Fasoli & Martini 2016; Martini et al. 2012a).
The successful simulation of pre-dose effects on TL signals was published by, e.g., Adamiec
(2005), Itoh et al. (2001), and Pagonis & Carty (2004) but not the effect of different preheat
treatments on the RF signal.

This study is separated into two parts. The first part presents experimental results ob-
tained by measuring quartz RF in the UV band (UV-RF) for different preheat temperatures
as well as repeated cycles of heating and subsequent UV-RF measurement for a preheat
temperature of 500 ◦C for two natural quartz samples. In the second part the empirical
results are complemented by numerical simulations, i.e., three parameters from the original
model (Bailey 2001) are adapted and modified to reproduce the signal dynamics seen in
the experiments. To allow an understanding of the charge transport during heating and
UV-RF, a simplified one-trap-two-centres model was developed.

Our numerical simulations demonstrate the potential of quartz UV-RF as a method
of retrospective dosimetry, which so far has been almost neglected. While the study by
Marazuev et al. (1995) appears to successfully demonstrate its general applicability, an
elaborated explanation to understand the physical background of the obtained results is
still missing. To the best of our knowledge, the RF signal dynamics in the UV and the
burial dose estimation for natural quartz samples using RF signals have not been simulated
and presented in the literature before.
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3.2 Material and methods

3.2.1 Quartz samples

Two natural quartz samples were chosen for the measurements: (1) the quartz fraction of
sample BT586 was extracted from a colluvial sample originating from the Trebgast valley in
the north-west of Bayreuth (Germany) (Kolb et al. 2016). For this sample a palaeodose of
∼ 24 Gy was obtained. (2) a second quartz sample (BT1195) was extracted from the quartz
ridge ’Pfahl’ (Bavarian Forest, Germany), which is one of the largest hydrothermal quartz
veins in Germany. This sample was extracted under daylight conditions and subsequently
gently crushed with a steel mortar with frequent sieving in between. Subsequent chemical
treatments followed routine preparation procedures for luminescence dating samples (e.g.
Preusser et al. 2008). These are: HCl (30%), H2O2 (30%), density separation using sodium-
polytungstate, HF (40% for 60 min). In contrast to BT586 the sample BT1195 was bleached
in a home made solar simulator (2 h with a Osram Duluxstar lamp). For both samples the
used grain size fraction is 90–200µm. Two different pretreatments (natural and bleached)
were used to investigate differences in the RF behaviour concerning these pretreatments.

3.2.2 Measurement conditions

RF measurements were carried out on a Freiberg Instruments lexsyg research reader (Richter
et al. 2013) at the luminescence laboratory in Bayreuth. The reader is equipped with a
90Sr/90Y β-source (∼ 3.6Gy min−1), calibrated for coarse grain quartz on stainless steel
cups. The β-source is specifically designed for RF measurements (Richter et al. 2012).
Luminescence was detected through a Chroma BP 365/50 EX interference filter in front of
a Hamamatsu H7360-02 photomultiplier tube allowing for a detection of the UV-RF signal
between 315 nm and 415 nm. All measurements were performed in a nitrogen atmosphere.
If not reported otherwise, preheating of the samples was performed with a constant heating
rate of 5K s−1. The channel time for the RF measurements was set to 1 s. The experimental
data presented in this study are the arithmetic mean of two aliquots for each measurement.
Reproducibility of RF signals using different aliquots was better than 5%. Further details
on the UV-RF experiments are given in the text below.

3.2.3 Data analysis

Data analyses were carried out using the statistical programming environment R (R
Development Core Team 2016) and the R-package ’Luminescence’ (Kreutzer et al. 2012,
2016). For simulating the UV-RF signals the R-package ’RLumModel’ (Friedrich et al.
2016a,b) was used. The code for the simulations presented here can be found in the
supplementary material, Sec. A.2. Simulation results were cross-checked with Mathematica™
and MATLAB™.
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3.3 Quartz UV-RF measurements

3.3.1 Preheat experiments

Martini et al. (2012a, 2014) reported that samples annealed at temperatures between
400 ◦C and 600 ◦C are showing an enhancement in the UV-RF intensity. To determine and
better understand the correlation between preheat temperature and UV-RF signal intensity,
UV-RF measurements were carried out for 10,000 s at room temperature (∼ 20 ◦C) after
preheating the samples to temperatures ranging from 50 ◦C to 700 ◦C using increments of
50 ◦C. The total absorbed dose after 10,000 s was ∼ 600Gy.

We expected a successive increase of the initial RF signal, triggered by the pre-dose effect,
as described in Zimmerman (1971a) and Marazuev et al. (1995). A study by Krbetschek &
Trautmann (2000) showed that high temperature annealing of quartz up to 700 ◦C can lead
to a UV-RF signal characterized by an exponential increase followed by a linear decrease.
This behaviour was not observed in any of the studies by Martini et al. (2014), although
they used even higher temperatures (than reported by Krbetschek & Trautmann (2000), up
to 1100 ◦C). In these studies no exponential increase at the begin of the measurement was
observed, just an decrease of the UV-RF signal directly after starting the measurement.

Figure 3.1 (a) shows the UV-RF signals for sample BT586 after different preheat temper-
atures normalized to the last data point. For preheat temperatures from 50 ◦C to 350 ◦C
no substantial differences within the signal shapes are visible and for the sake of clarity
only the UV-RF curve for 50 ◦C is shown. The changes in these temperature interval are
limited to a small decrease of the UV-RF signal in the first seconds followed by a stable
signal until the end of the measurements.
In the range from 400 ◦C to 550 ◦C an increase by a factor of ∼ 1.2 (400 ◦C) to ∼ 2.6

(550 ◦C) of the initial UV-RF signal was observed. From 600 ◦C to 700 ◦C the signal dynamics
decreased by a factor of 2 (600 ◦C) down to 1 (700 ◦C). For the RF signal at 700 ◦C the
maximum signal intensity is not observed at the very beginning of the measurements, but
the signal builds up in the first channels (up to 3,000 s) and then decreases. A similar
behaviour was described by Krbetschek & Trautmann (2000) for a quartz sample, after
annealing it for 3 hours at 700 ◦C followed by γ-irradiation.

Figure 3.1 (b) shows all measured data, but on a logarithmic x-axis and not normalized.
The strong increase in the first channel is caused by the opening of the shutter of the
β-source. This takes up to ∼ 0.5 s and thus, the first channel comprises less counts than the
following ones. Note the very high signal intensities and the behaviour of the RF signal at
700 ◦C. Figure 3.3 shows the initial signal of the RF curves from Figs. 3.1 and 3.2 normalized
to the highest signal at 550 ◦C. Here all measured preheat temperatures are used and no
differences are observed for preheat temperatures from 100 ◦C to 250 ◦C. For both samples
a strong peak at 550 ◦C is observable. The sharp increase and decrease at lower and higher
temperatures, respectively, indicate a change in the RF signal behaviour. The term ’initial
signal’ is used as the difference between the second and the last data point measured. A
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similar behaviour to that of sample BT586 was observed for sample BT1195 (see Fig. 3.2
(a)). However, both samples show a slightly different behaviour as the signals with a preheat
temperature from 50 ◦C to 250 ◦C first increase and at temperatures from 350 ◦C to 650 ◦C
the decrease is getting steeper the higher the temperatures become. Such a rapid change
in the signal dynamics is not observed for sample BT586 and the decrease of the signal is
faster than for BT586. The differences between 650 ◦C and 700 ◦C are much smaller than
for BT586. Figure 3.2 (b) shows that the signal intensities are lower by a factor ∼ 3 (for
550 ◦C) in contrast to sample BT586.
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Figure 3.1: (a) UV-RF signal for sample BT586 for different preheat temperatures (hold for
120 s) prior to the RF measurements. For each temperature a new aliquot was used. The values
are normalized to the last data point of each measurement and the total absorbed dose is 600Gy
during each RF measurement. For the sake of clarity the UV-RF curves for preheat temperatures
from 100 ◦C to 250 ◦C were removed, because no change was observed. (b) The same data as (a)
but with absolute values and a logarithmic x-axis.
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Figure 3.2: (a) UV-RF signal for sample BT1195 for different preheat temperatures (holding for
120 s). The values are normalized to the last data point of each measurement. The total absorbed
dose was 600Gy during each RF measurement. For the sake of clarity the UV-RF curves for preheat
temperatures from 100 ◦C to 250 ◦C were removed, because no change was observed. (b) The same
data as (a) but with absolute values and a logarithmic x-axis.
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Figure 3.3: Initial UV-RF signal for different preheat temperatures (holding for 120 s) for samples
BT586 and BT1195 normalized to the initial signal at 550 ◦C.

3.3.2 Signal stability tests

To test the UV-RF signal stability for repeated measurement cycles, a second experiment
was designed measuring the RF signal 11 times with a constant preheat of 500 ◦C (5K s−1,
holding time 120 s) prior to each signal readout. A similar measurement was performed by
Martini et al. (2012a: Fig. 4) and they observed an enhancement of the 3.44 eV (360 nm)
band after each cycle. In contrast to Martini et al. (2012a) we did not measure a spectrum,
but measured only the UV wavelength region (see section 3.2.2). Figure 3.4 (a) shows the
results of these measurements, again normalized to the last data point. The first two cycles
show different slopes than the other ones. For cycles 3 to 11 the slope of the curves is not
changing, only the signal intensity increases. Subfigure (b) shows the same data as in the
main figure, but on a logarithmic x-axis and with absolute count values for the RF signal.
Here the successive increase of the initial signal by a factor of ∼ 3 over 11 cycles is observed
as well as similar curve shapes. Analogue UV-RF signal behaviour was found for sample
BT1195 (not shown here). Our results are in accordance with the results by Martini et al.
(2012a) and show an increase of the initial signal intensity.
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Figure 3.4: (a) UV-RF signals for sample BT586 for 11 cycles for a preheat at 500 ◦C for 120 s
between each cycle. The total absorbed dose was 600Gy for each RF cycle. The curves are normalized
to the last data point. (b) The same data as (a) but with absolute values and a logarithmic x-axis.

3.4 Quartz UV-RF simulations

3.4.1 Defining the model

In a first simulation attempt to reproduce the obtained experimental results, the compre-
hensive quartz model developed by Bailey (2001) was used with minor modifications (see
Table 3.2), since it is successful in simulating several TL and OSL phenomena in quartz.
These modifications were necessary in order to simulate the RF curves obtained from our
experiments.

Figure 3.5 shows the energy-band diagram the model is based on. To better understand
the modifications applied later, the main aspects of the model by Bailey (2001) are listed
briefly; for a detailed explanation of the levels, the reader is referred to Bailey (2001):

• Level 1 represents the 110 ◦C TL shallow electron trap, which gives rise to a TL peak
at ∼ 100 ◦C when measured with a heating rate of 5K s−1,

• level 2 represents a generic 230 ◦C TL level, as found in many sedimentary quartz
samples. Photo-excitation of charge from this level is not allowed,

• levels 3 and 4 are usually termed ’fast’ and ’medium’ OSL components (e.g., Bailey
et al. 1997) and yield TL peaks at ∼ 330 ◦C as well as give rise to the OSL emission
used for dating,

• level 5 is a deep, thermally disconnected electron trap. This was proposed in order to
explain several TL and OSL phenomena based on competition between energy levels,

• levels 6 – 9 are hole trapping centres acting as recombination centres for optically
or thermally released electrons or for electrons which recombine directly after they
reached the conduction band. Levels 6 and 7 are defined as thermally unstable,
non-radiative recombination centres, similar to the hole reservoirs first introduced
by Zimmerman (1971a,b) in order to explain the pre-dose sensitization phenomenon
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3 Quartz radiofluorescence: a modelling approach

in quartz. Level 8 is a thermally stable, radiative recombination centre termed the
’luminescence’ (L) centre. Level 9 is defined as a thermally stable, non-radiative
recombination centre termed ’killer’ (K) centre. Holes can be thermally transferred
from the two hole reservoirs (levels 6 and 7, R1 and R2) into the luminescence centre
and the killer centre via the valence band.

Pagonis et al. (2008) stated that the levels 1, 6, 7, and 8 play a fundamental role for the
pre-dose phenomenon, while we will argue in Sec. 3.4.3 that levels 5, 6, and 8 are vital for
reproducing the UV-RF experimental results shown in Sec. 3.3 with the chosen model of
Bailey (2001).
The following differential Eqs. (3.1) to (3.4) describe the charge flow in quartz in the

context of luminescence production and are to be solved in this study. The total number
of equations that need to be solved depends on the number of electron traps (q) and hole
centres (r). For the case of the complete Bailey (2001) model q = 5 and r = 4. In Sec. 3.4.3
we use a simplified model with q = 1 and r = 2.

dni
dt

= nc · (Ni − ni) ·Ai − ni · P · σ0i · e−Ethi
/(kB ·T ) − ni · si · e−Ei/(kB ·T ) (3.1)

dnj
dt

= nv · (Nj − nj) ·Aj − nj · sj · e−Ej/(kB ·T ) − nc · nj ·Bj (3.2)

dnc
dt

= R−
q∑
i=1

(
dni
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (3.3)

dnv
dt

= R−
q+r∑

j= q+1

(
dnj
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (3.4)

A short description of the used abbreviations is given in Table 3.1 and in detail in Bailey
(2001).

Table 3.3 shows in schematic form the steps simulated for the experiments shown in
Sec. 3.2. After each excitation stage in the simulations a relaxation period is introduced in
which the temperature of the sample is kept constant at 20 ◦C for 60 s after the excitation
has stopped (R = 0), and the concentrations of nc and nv decay to negligible values. When
the temperature of the next simulation step is not the same as in the current step, the
numerical solution simulates a cooling or heating period with a constant rate of β = 5K s−1.

Bailey (2001) originally administered the burial dose at an elevated temperature of 220 ◦C
and used a very high dose rate of 0.01Gy s−1 (step 7 in Table 3.3).
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3.4 Quartz UV-RF simulations

ABBREVIATION DESCRIPTION UNIT
nc Concentration of electrons in the conduction band cm−3

nv Concentration of holes in the valence band cm−3

Ni Concentration of electron traps cm−3

ni Concentration of trapped electrons cm−3

si Frequency factor for electron traps s−1

Ei Electron trap depth below the conduction band eV
Nj Concentration of hole centres cm−3

nj Concentration of trapped holes in centres cm−3

sj Frequency factor for hole centres s−1

Ej Hole depth above the valence band eV
Ai Conduction band to electron trap transition probability cm3 s−1

Aj Valence band to hole centre transition probability cm3 s−1

Bj Conduction band to hole centre transition probability cm3 s−1

P Stimulation photon flux
σ0i Photo eviction constant s−1

Ethi Thermal assistance energy eV
kB Boltzmann constant eVK−1

T Absolute temperature K
R Ionisation rate (pair production rate) cm−3 s−1

t Time s

Table 3.1: Description of the abbreviations used in the differential equations.

LEVELS N [cm−3] E [eV] s [s−1] A [cm3 s−1] B [cm3 s−1] σ0 [s−1] Eth [eV]
1 110 ◦C TL 1.5 E+07 0.97 5 E+12 1 E-08 - 0.75 0.1
2 230 ◦C TL 1 E+07 1.55 5 E+14 1 E-08 - - -
3 OSLF 1 E+09 1.7 5 E+13 1 E-09 - 6 0.1
4 OSLM 2.5 E+08 1.72 5 E+14 5 E-10 - 4.5 0.13
5 Deep 5 E+10 2 1.95 1 E+10 1 E-10 - - -
6 R1-centre 3 E+08 3 E+09 1.43 1.8 5 E+13 5 E-07 5 E-09 - -
7 R2-centre 1 E+10 1.75 5 E+14 1 E-09 5 E-10 - -
8 L-centre 1 E+11 5 1 E+13 1 E-09 1 E-10 - -
9 K-centre 5 E+09 5 1 E+13 1 E-10 1 E-10 - -

Table 3.2: The Qtz-A1 parameters of Bailey (2001) are shown together with their modified values
used in the simulations presented in this study (bold values).

1 Geological dose irradiation of 1,000Gy at 1Gy s−1 at 20 ◦C
2 Relaxation stage - 60 s at 20 ◦C
3 Geological time - heat from 20 ◦C to 350 ◦C at 5 ◦C s−1

4 Relaxation for geological time, 60 s at 20 ◦C
5 Illuminate for 100 s at 200 ◦C - repeated daylight exposures over long time
6 Relaxation stage - 60 s at 20 ◦C
7 Burial dose - 50Gy at 20 ◦C at 10−11 Gy s−1

8 Relaxation stage - 60 s at 20 ◦C
9 Preheat to temperatures from 50 ◦C to 500 ◦C (in 50 ◦C increments) for 120 s
10 Radiofluorescence for 10,000 s at 20 ◦C at 0.006Gy s−1

Table 3.3: The simulation steps for the UV-RF simulation. For each new preheat temperature
a new (simulated) aliquot was used. The line after step 8 indicates the end of the sample history.
Steps 9 and 10 represent the simulated measurements in the laboratory.
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Figure 3.5: Schematic diagram of the comprehensive Bailey (2001) model for quartz.

In the modified step 7 above, we used a much lower dose rate of 10−11 Gy s−1 for the
burial dose. This dose rate is closer to the typical environmental dose rate values, and an
irradiation temperature of 20 ◦C (Pagonis et al. 2011). Step 1 in Table 3.3 is simulated
with a dose rate of 1Gy s−1 in order to reduce computation times. Step 2 (’geological
time’) is used to empty shallow electron traps and hole centres. Thus, thermally unstable
traps and centres are minimally populated after step 3. This conditions are supported by
measurements of natural quartz samples (for details see Bailey 2001: Sec. 2.5).

It is well known for quartz that thermal transfer can take place from the hole reservoirs
(level 6 and 7 in Table 3.2) into the L-centre (level 8 in Table 3.2), causing sensitivity
changes in general and specifically the pre-dose effect (Zimmerman 1971a,b).
As discussed in Bailey (2001), the ionization rate R depends on the exact experimental

conditions, namely the strength of the irradiation source and the irradiation geometry. The
choice of the R value in the Bailey (2001) model is arbitrary; hence we adjusted this value
so that the simulated RF results are similar to our experimental RF data.

For the simulations shown here we used the same ionization rate as Bailey (2001), except
for step 10 of the simulation sequence (Table 3.3), where we employed a dose rate of
0.006Gy s−1, which is an order of magnitude smaller than the experimental dose rate.
With such a dose rate, we obtained good accordance between UV-RF experiments and
simulations, so that our modelling approach for the first time quantitatively reproduces
UV-RF of natural quartz samples.

3.4.2 Matching experimental results and simulations

Figure 3.6 (a) shows the result of the RF simulations for different preheat treatments (see
Table 3.3, step 9). The signals decrease over the observation time, but, as in the experimental
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Figure 3.6: (a) Simulation of the sequence presented in Table 3.3 with the parameters from
Table 3.2. The RF signal is normalized to the last signal value at 10,000 s. Subfigure (b) shows the
simulated initial RF signal from the main figure. The values on the y-axis are normalized to the
highest value of all initial signals.

data, for low temperatures signal dynamics are very weak. At a preheat temperature of
300 ◦C a change in the decay curve shape is observable. For preheat temperatures from
550 – 700 ◦C the signal intensity decreases again.

Besides the signal intensity, the most striking observation is the change in the decaying
UV-RF signal. This effect can be related to a changing proportion of holes in the R-centres
and L-centre. With higher preheat temperatures the concentration in the L-centre increases,
see Fig. 3.9. The decay of the UV-RF signal can be linked with a decreasing competition
between the recombination centres and the L-centre. This observation and a detailed
explanation of this effect will be presented elsewhere.
This seems to qualitatively reproduce the experimental results from Figs. 3.1 and 3.2:

Figure 3.6 (b) shows that the simulated initial RF signal does not change for low temper-
atures and at temperatures about 300 ◦C a massive increase of the signal occurs until a
maximum value is reached at 400 ◦C. The higher the preheat temperatures are from now
on the smaller is the initial signal intensity. Thus this simulation enables to reproduce
qualitatively the signal dynamics and the signal height of the measured RF signal. However,
the accordance is not quantitatively perfect for both natural samples.
To quantitatively simulate experimental RF signals, a more accurate determination of

the model parameters (Table 3.2) is necessary, which is, however, not part of this study.
Nevertheless, the behaviour of sample BT586 for a preheat temperature of 700 ◦C was not
reproducible by our numerical simulations.
The second set of experiments was the successive preheat and RF measurement for 11

cycles, see Fig. 3.4 (a). The simulation for this sequence is shown in Fig. 3.7 and, as in the
experiments with natural samples, a continuous growth of the initial signal intensity was
observed from cycle to cycle. Note that before the first UV-RF measurement a preheat
to 500 ◦C was performed. Otherwise, the signal for the first cycle would not decrease over
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Figure 3.7: Simulation of the experimental results from Fig 3.4. Following the sample history, a
preheat to 500 ◦C and a subsequent RF step were simulated, see steps 9 and 10 in Table 3.3.

time. In contrast to the experimental data, the signal for cycle 1 has the same curvature as
all other cycles and so only the signal height is changing for each new cycle.

3.4.3 Further simulation results

In order to understand the charge movements of the UV-RF signal with different preheat
temperatures, we simplified the used quartz model down to three-energy-levels, which
produces approximately the same results as the complete model, but is easier to interpret.

For this purpose the deep electron trap, the R1-centre and the L-centre were chosen.
Figures 3.8 (a) and (b) show the same simulations as Figs. 3.6 and 3.7 but with only
three energy levels and the results appear to be in very good accordance with the results
obtained for the comprehensive Bailey (2001) model. Signal intensities from this simplified
three-energy-level model are ∼ 30% higher than compared to the complete parameter set
in the original model, which can be explained by the absence of competing traps in which
electrons can be captured. Thus, the probability of a direct recombination with the L-centre
is higher and consequently a higher signal intensity is observed. The curve shape after
normalizing to the last value of the RF signal is in very good agreement with Fig. 3.6,
justifying the application of the simplified model for further analyses.

In the following we used the simplified three-energy-level model. To better understand
the dynamics of the charge flows in the system, a closer look at the numerical solutions is
necessary. For this we investigated the concentrations of the deep trap and the two hole
centres at the beginning of the RF step (see Table 3.3, step 10).
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Figure 3.8: (a) Same simulation as for Figs. 3.6 and 3.7 (b) but using the simplified model with
energy levels 5, 6, and 8 only (see Table 3.2).

Figure 3.9 shows the concentration of electrons in the deep trap and holes in the R-
and L-centre for the simplified model as a function of the preheat temperature after the
preheat step and hence before the beginning of the RF simulation. The concentrations are
normalized to the total amount of electrons in the system. The results of Fig. 3.9 strongly
indicate that the model successfully describes the pre-dose activation process, which is
believed to result from holes transferring from the R- into the L-centre during the heating
of the sample in the temperature range 300 – 400 ◦C (Zimmerman 1971a). If the preheat
temperature increases, the concentration of holes in the L-centre is increased, while the
corresponding concentration of holes in the hole reservoir R decreases by the same total
amount. The results of Fig. 3.9 also show that an activation temperature in the region
of 300 – 400 ◦C is sufficiently high to transfer all holes from the hole reservoir R into the
luminescence centre L. In contrast to the simulations by Pagonis et al. (2008: Fig. 2b), the
concentration of electrons does not remain constant during even higher temperatures, but
decreases and so does the number of holes in the L-centre. This is possible because the
temperatures are high enough to release electrons from the deep electron trap and charge
neutrality forces the number of available holes to decrease; consequently the intensity of the
luminescence signal decreases. This mechanism may explain the measured and simulated
initial RF signal in Figs. 3.3 and 3.6 and it is capable of explaining why the decrease of the
UV-RF signal is much weaker at temperatures above 550 ◦C.

Furthermore we investigated the behaviour for the initial UV-RF signal for different
burial doses (see step 7 in Table 3.3). Figure 3.10 (a) shows the initial signal for different
preheat temperatures from 50 ◦C to 500 ◦C and for different simulated burial doses in step
7 in the sample history of the quartz sample (see Table 3.3). The higher the simulated
burial dose, the higher are the initial signals as well as the peak at 400 ◦C. A detailed view
is provided by Fig. 3.10 (b): The initial RF signal at a preheat temperature of 450 ◦C is
plotted against the simulated burial dose and an increasing dose-response curve can be
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Figure 3.9: The concentration of electrons in the deep trap and holes in the R-centre and the
L-centre after the preheat step (step 9 in Table 3.3) for the simplified three-energy-level model. The
values are normalized to the total amount of electrons.

extracted from the simulated data. Note that Fig. 3.10 (a) only provides 6 different burial
doses. Figure 3.10 (b) shows the numerical solution for burial doses from 0 Gy to 10,000
Gy using increments of 500 Gy.
In summary, the results of these simulations show that the initial signal of the quartz

UV-RF depends on the burial dose. A multiple aliquot additive dose (MAAD) protocol with
convenient preheat temperatures might be used for this purpose. Marazuev et al. (1995)
first used this technique to determine the equivalent dose of quartz extracted from bricks
in Chernobyl, but they used X-ray excitation. In their experiments, they focused on the
difference between the initial signal and the signal after a certain time, the final kinetic
equilibrium, and they used a preheat of 510 ◦C for 10 minutes. In contrast to our simulation
findings, they observed a linearity in their dose-response curve for very low doses only.
Nevertheless, our results indicate that with the UV-RF technique a determination of the
equivalent dose in quartz is possible and needs to be (re-)investigated in a separate study.
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Figure 3.10: Simulations for different burial doses for step 7 in the sample history (see step 7
in Table 3.3). (a) shows initial RF signals for different preheat temperatures and for 6 different
burial doses. (b) is a detailed view on the initial RF signal at 450 ◦C. The initial signal was plotted
against the simulated burial dose.

3.5 Discussion

’Modeling is important for the purpose of determining if suggested mechanisms can indeed
produce the effects observed in the practice’ (McKeever & Chen 1997). The presented model
and the interpretation of the results show indeed the accordance of model predictions and
experimental results. Nevertheless it is important to test the model to determine ’what is
possible with the model, and what is not possible’ (McKeever & Chen 1997). We have run
several tests with the parameter set presented in Table 3.2 (TL peaks shift with different
heating rates, thermal activation characteristics, dose-recovery tests, OSL behaviour; see
supplementary material in Sec. A.2) and all investigated phenomena produced meaningful
results.
Nevertheless, simulated results should always be handled with care, as they describe

a phenomenological point of view. To use the dependency of the initial signal height
on the burial dose as a dating method one important requirement is the zeroing of the
luminescence signal. From Fig. 3.10 one can deduce that a non zero signal of the initial
RF signal for a preheat temperature of 450 ◦C is obtained in simulations for a burial dose
equal to zero. The growth of the initial RF signal with the burial dose is a result of the
dose dependence of the hole concentration in the luminescence centres (see Fig. 3.5). The
concentration of this centre, however, is growing also before the zeroing event and optical
bleaching is not sufficient to reduce it down to zero. Figure 3.9 shows that this is in principle
possible when heating a sample to very high temperatures. This is in accordance with the
published literature for determining an equivalent dose with quartz UV-RF, because they
used bricks to determine the radiation dose related to the Chernobyl accident (Marazuev
et al. 1995). When burning these bricks all electron traps and hole centres were emptied
and the requirement of a complete zeroing the signal was fulfilled.
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Nevertheless, Marazuev et al. (1995) also determined equivalent doses for natural quartzes
but they also mentioned that this UV-RF approach will work for small doses only. Investi-
gating this in detail is not part of this contribution.
As described in Schmidt et al. (2015), RF offers new insights into the recombination

centres, due to the fact that quartz RF signals are believed to correspond to the direct
recombination of electrons from the conduction band. Schmidt et al. (2015) argue that
the RF technique provides information primarily on the recombination centres involved.
Our results seem to confirm these ideas, since the increase of the initial RF signal appears
to be a consequence of the movement from reservoir centres to luminescence centres. In
addition, our preheat experiments and simulations indicate that the deep traps play a
fundamental role in the description of quartz RF signals. At high temperatures the deep
traps get emptied and so does the concentration of holes in the luminescence centres (see
Fig. 3.9).
It should also be noted that the rapid change in the initial RF height occurs after the

transition from α- to β- quartz at a temperature of 573 ◦C (at normal pressure). Due to the
fact that all RF measurements were performed at RT and the samples were cooled down
from the preheat temperatures to RT in nitrogen atmosphere, a transition back from β-
to α-quartz appears to be likely. This transition is not part of the simulations but in the
simulations this behaviour is indicated by emptying the deep electron traps.

3.6 Conclusions

A systematic investigation of UV-RF signals on two samples quartz samples (BT586 and
BT1196) after preheat temperatures ranging from 50 ◦C to 700 ◦C was presented. For both
samples the behaviour was similar: for low temperatures no differences in the UV-RF signal
dynamics and in the initial signal height was observed. For preheat temperatures > 400 ◦C a
significant rise in the initial height was noticeable as well as a decreasing signal. The initial
signal was increasing until a peak was reached at a preheat of 550 ◦C. From this temperature
on, the signal intensity was decreasing rapidly. For sample BT586 a change in the signal
dynamics was detected for very high preheat temperatures: the signal is not decreasing
during the complete stimulation time but builds up until 3,000 s and then decreases. Note
that BT1195 was completely bleached before the measurements and BT586 still carries its
natural dose. Nevertheless, both samples show a very similar behaviour.
Another preheat experiment showed that the initial RF signals are rising, if repeated

cycles of preheating to 500 ◦C for 120 s and subsequent RF measurements were executed.
These dynamics are similar to what is already known as the ’pre-dose’ effect in quartz. This
observation was similar for both samples.

In order to simulate these experimental results, a slightly modified Bailey (2001) model
was used successfully. The different initial signal intensities and dynamics of the UV-RF
signal could be simulated with good accordance between numerical and experimental results.
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3.7 Acknowledgements

In addition to the successful simulation of the experimental data, we used a simplified
model with three energy levels to obtain further insights. A theoretical explanation of
the observed decrease of the initial signal height for high preheat temperatures is given,
because the deep electron traps are emptied and the available concentration of holes in the
luminescence centre L is decreasing and so are the signal intensities. Simulations additionally
showed that the height of the RF signal depends on the burial dose of the sample. Brik
et al. (1994) and Marazuev et al. (1995) reported this and used this fact to determine the
burial dose. However, further experiments and studies are needed to establish this pre-dose
method.
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Abstract

An analytical solution for the behaviour of quartz radiofluorescence (RF) in the UV-band
is described based on a kinetic model involving one (deep) electron trap and two kinds
of recombination centres. This model has been previously used to provide a qualitative
description of quartz UV-RF. The derived numerical solution of differential equations
describing charge transport in quartz can successfully reproduce experimental data. Here,
this set of differential equations is solved analytically by assuming a dynamic balance
during the RF stimulation. The analytical results are compared with numerical solutions
and experimentally derived data. With the analytical solutions a better understanding of
common natural quartz UV-RF behaviour is provided, and several experimentally observed
phenomena can now be explained. Furthermore, the comparison of two different kinetic
models shows that the characteristic decay of the UV-RF signal in preheated quartz is
attributed to an increasing competition of radiative and non-radiative centres during RF.
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4.1 Introduction

In the last years publications showed radiofluorescence (RF) spectra of natural and synthetic
quartz (e.g., Chithambo & Niyonzima (2017), Krbetschek & Trautmann (2000), Martini
et al. (2012, 2014), Poolton et al. (2001), and Schilles et al. (2001)). One of the main
spectral components in all (natural) quartz samples is the UV emission around 360 nm,
also called C band (Fasoli & Martini 2016; Martini et al. 2014). Krbetschek & Trautmann
(2000) analysed the RF signal characteristics for many materials and the results for quartz
suggested, that many different signal dynamics can be measured in the UV band: a constant
signal, a linearly or exponentially decreasing and/or increasing signal or even an exponential
increase with a linear decrease subsequently (see Krbetschek & Trautmann (2000: Fig. 1)).

Further quartz RF experiments showed a systematic pattern of the initial signal and the
change of the signal dynamics, however, an explanation was still missing (Friedrich et al.
2017). This work investigates the behaviour of quartz UV-RF signals in a theoretical manner.
Analytical solutions of coupled ordinary differential equations (ODEs) are presented and
three special cases are discussed in detail as well as a comparison between numerical and
analytical solutions of these ODEs.

Numerical and analytical solutions should be capable of reproducing the so far known
phenomena of quartz RF. These are on the one hand the change in the initial signal
intensity and on the other hand the change of the (initial) slope of RF signals after different
preheat temperatures. Especially the wide variation of signal dynamics is still not sufficiently
explained.

The analytical solutions help to obtain a better understanding of the behaviour of
quartz UV-RF. The comparison between these solutions and experimental data of known
luminescence phenomena in quartz, such as the pre-dose effect (Zimmerman 1971), contribute
to decipher the basic principles of quartz UV-RF.

4.2 Description of the model

We showed previously (e.g., Friedrich et al. (2017)) that it is possible to simulate UV-RF
phenomena with a three-energy-level model by solving the corresponding ODEs. The model
consists of a deep electron trap and two recombination centres L, which is radiative, and R,
a non-radiative competitor, also called reservoir centre. The charge transitions in the model
during an RF measurement are indicated in Fig. 4.1.

The following set of coupled differential equations describes the charge transport in
quartz:

dn

dt
= An · (N − n) · nc (4.1)
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CONDUCTION BAND

VALENCE BAND

deep e-trap

R-centre

L-centre R

N, n
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M1, m1

M2, m2

B1

B2
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Figure 4.1: Energy-band-scheme of the three-level model employed to simulate RF at room
temperature. The arrows indicate the allowed transitions of electrons/holes during RF. All indices
with 1 indicate the parameters belonging to the R-centre and 2 those belonging to the L-centre. A
detailed description of the parameters is given in table 4.1.

dm1

dt
= Am1 · (M1 −m1) · nv −B1 ·m1 · nc (4.2)

dm2

dt
= Am2 · (M2 −m2) · nv −B2 ·m2 · nc (4.3)

dnc
dt

= R−An · (N − n) · nc −B1 ·m1 · nc −B2 ·m2 · nc (4.4)

dnv
dt

= R−Am1 · (M1 −m1) · nv −Am2 · (M2 −m2) · nv, (4.5)

where M1 (cm−3 ) is the concentration of non-radiative hole centres with instantaneous
occupancy of m1 (cm−3), M2 (cm−3) is the concentration of radiative hole centres with
instantaneous occupancy of m2 (cm−3), N (cm−3) is the concentration of the electron
trapping state with instantaneous occupancy of n (cm−3 ). nc and nv are the concentrations
(cm−3) of the electrons and holes in the conduction band (CB) and valence band (VB),
respectively. R (cm−3 s−1) is the rate of production of electron-hole pairs, which is pro-
portional to the excitation dose rate, Am1 and Am2 (cm3 s−1) are the trapping probability
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coefficients of free holes into centres 1 and 2, respectively. B1 and B2 (cm3 s−1) are the
recombination probability coefficients for free electrons with holes in centres 1 and 2, and An
(cm3 s−1) is the retrapping probability coefficient of free electrons into the active trapping
state N.

The RF signal intensity obtained from the recombination of electrons from the conduction
band into the recombination centre (L-centre) is given by:

I(t) = B2 ·m2 · nc (4.6)

4.3 Derivation of the analytical expressions

As common in kinetic models, an assumption about the charge flow during the measurement
has to be made: After a very short transitional period, a dynamic balance is established
between the irradiation process creating pairs of electrons and holes on the one hand, and
the relaxation process of electrons and holes into the various energy levels on the other
hand. So we can assume that during this dynamic balance the concentrations of electrons
in the CB and of holes in the VB change very slowly, so that assumption (4.7) holds.

dnv
dt

=
dnc
dt

= 0 (4.7)

The concentrations at the beginning of the RF measurement are:

m1(0) = m10

m2(0) = m20

n(0) = n0 = m10 +m20 (4.8)

The last line in Eq. (4.8) results from charge neutrality. With these assumptions and
Eq. (4.4) we obtain the following expression for the initial concentration of electrons of the
conduction band:

nc =
R

An · (N − n) +B1 ·m1 +B2 ·m2

→ nc0 =
R

An · (N − n0) +B1 ·m10 +B2 ·m20

(4.9)

The derivation of the expression for nv0 is obtained in a similar manner:

nv =
R

Am1 · (M1 −m1) +Am2 · (M2 −m2)

→ nv0 =
R

Am1 · (M1 −m10) +Am2 · (M2 −m20)
(4.10)
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4.4 Comparison of analytical expressions and numerical results

Our goal is to obtain an analytical solution for the initial RF signal and the slope of the
RF signal at the start of excitation. We derived a Taylor series at t = 0 with the first two
terms being C1 and C2:

I(t) = C1 + C2 · t+O(t2) = I(0) +
dI

dt

∣∣∣∣
t=0

· t+O(t2) (4.11)

For the calculation of C1 Eqs. (4.7) – (4.9) are used:

C1 = I(0) = B2 ·m20 · nc0

= B2 ·m20 ·
R

An · (N − n0) +B1 ·m10 +B2 ·m20

(4.12)

Hence Eq. (4.12) describes the initial RF intensity (intensity at t ∼ 0). This is similar to
the results calculated by Pagonis et al. (2009: Eq. 15) and has the same consequence: the
initial signal intensity is directly proportional to the production-rate R of electron-hole
pairs. This was already shown experimentally with Al2O3:C in Aznar (2005: Fig. 3.9 a).
The derivation of the slope of C2 is more complex and will be described in detail in

Appendix 4.A.1. The result is Eq. (4.13):

C2 =
B2 ·R2

(An · (N − n0) +B1 ·m10 +B2 ·m20)2

·
(
m20 ·

An · (N − n0)(An −B2) +m10 · (B2
1 −B2 ·B1)

An · (N − n0) +B2 ·m20

+
An · (N − n0) ·Am2 · (M2 −m20)−B1 ·Am1 · (M1 −m10) ·m20

Am1 · (M1 −m10) +Am2 · (M2 −m20)

)
(4.13)

Equation (4.13) indicates another experimentally observed phenomenon: The slope of the
RF signal is proportional to the square of the electron-hole production rate R. Again, these
results are similar to those reported by Aznar (2005: Fig 3.9 b) for Al2O3:C.

Note that all the experimental results cited so far were derived from Al2O3:C as phosphor.
The energy-band-model is identical to the one for quartz, but with different parameters.
Therefore, a general comparison appears possible.

4.4 Comparison of analytical expressions and numerical
results

A comparison between analytical and numerical solutions of the initial signal (C1), the slope
of the signal (C2), and the concentrations of levels n,m1 and m2 is given below for different
cases. The parameters for the calculations are similar to the ones by Bailey (2001) (levels
5, 6, and 8), except that the concentrations of the electron trap (N ), the non-radiative
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PARAMETER VALUE UNIT DESCRIPTION
An 1 E-10 cm3 s−1 Conduction band to electron trap transition probability
B1 5 E-09 cm3 s−1 Conduction band to R-centre transition probability
B2 1 E-10 cm3 s−1 Conduction band to L-centre transition probability
Am1 5 E-07 cm3 s−1 Valence band to R-centre transition probability
Am2 1 E-09 cm3 s−1 Valence band to L-centre transition probability
M1 1 E+11 cm−3 Concentration of R-centre
M2 1 E+11 cm−3 Concentration of L-centre
N 1 E+11 cm−3 Concentration of electron trap
R 3 E+05 cm−3 s−1 Ionisation rate (pair production rate)

Table 4.1: Used parameters for the comparison between analytical and numerical solutions.

(M1), and the radiative centre (M2) are equal. This was done in order to compare different
filling levels of the traps and centres, respectively. Otherwise it could not be ensured that
one of the traps/centres is completely filled, due to charge neutrality. The parameter R
is equivalent to 0.01Gy s−1. Note that these parameters were not chosen to describe RF
signals quantitatively, but to compare analytical and numerical results (see Sec. 4.4.1 and
4.4.2) and to explore the general behaviour of RF signals (see Sec. 4.5). All used parameters
are listed in Table 4.1.
The numerical solutions were calculated by solving Eqs. (4.1) – (4.5) with different

starting conditions for the deep electron trap, the R- and the L-centre. All calculations
were performed in R (R Core Team 2017) with the R-package ’deSolve’ (Soetaert et al.
2012). The code is part of the supplementary material (see Sec. A.3).

4.4.1 Case I: empty R-centre (m1 = 0)

This case describes the initial condition when all holes are located in the L-centre and the
same amount of electrons is stored in the deep electron trap, due to charge neutrality. This
case can occur after annealing a sample to temperatures high enough to empty the R-centre
completely.
Equations (4.12) and (4.13) simplify to:

C1 = B2 ·m20 ·
R

An · (N − n0) +B2 ·m20

(4.14)

C2 =
B2 ·R2

(An · (N − n0) +B2 ·m20)2
·
(
m20 ·An · (N − n0)(An −B2)

An · (N − n0) +B2 ·m20

+
An · (N − n0) ·Am2 · (M2 −m20)−B1 ·Am1 ·M1 ·m20

Am2 · (M2 −m20) +Am1 ·M1

)
(4.15)

The concentration of holes in the R- and L-centre as well as for the electrons in the deep
trap are derived in Appendix 4.A.2. The behaviour of these solutions will be investigated
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Figure 4.2: Different UV-RF curves when solving Eqs. (4.1) – (4.5) numerically. Eleven different
starting concentrations of the L-centre were calculated. Note that the initial RF signal and the
slope are further analysed in Figs. 4.3 and 4.4.

for different degrees of filling of the L-centre at the beginning of the simulations. The degree
of filling ranges from 1 cm−3 to 1 E+11 cm−3.

Figure 4.2 shows the results when solving Eqs. (4.1) – (4.5) numerically for eleven different
starting conditions (filling levels) for the L-centre. Figure 4.3 displays the dependency of
the initial RF signal on the filling of the L-centre at the beginning of the calculations for
the same data as plotted in Fig. 4.2. The first result is that the derived analytical solution
matches the numerical solutions. Furthermore a linear dependency is identifiable between
the filling of the L-centre and the height of the initial RF signal. Note that the same
amount of electrons is in the deep electron trap as holes in the L-centre. So the linearity of
the initial signal is an interplay between the increasing probability of a conduction band
electron to recombine (because of the filling of the electron trap) and the availability of
holes to recombine. The linear relationship is not obvious. Figure 4.4 shows the dependency
of the slope of the UV-RF signal on the filling of the L-centre. Again an excellent match
between analytical and numerical solutions is recognisable. The results of analysing the
three-energy-level models show that the slope of the RF signal is linearly related to the
filling of the L-centre.

4.4.2 Case II: empty R-centre and empty electron trap (m10 = 0, n0 = 0)

The second case describes the possibility of a completely vacant situation and thus a quartz
sample just after mineralization or (in a wider sense) a very young sample. It is obvious
that the initial signal is zero, because no holes to recombine are available in the L-centre.
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Figure 4.3: The analytically and numerically derived solutions for the initial RF signal for different
degrees of filling of the L-centre.
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Figure 4.4: Slope of the RF signal against the filling of the L-centre.
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Using Eqs. (4.12) and (4.13) and the initial conditions m1 = 0, n0 = 0 results in:

C1 = 0 (4.16)

C2 = R2 · B2 ·Am2 ·M2

Am1 ·M1 +Am2 ·M2
> 0

(4.17)

The numerical solution of this case is exactly the same and a plot as in Figs. 4.3 and 4.4 is
not necessary, because no change in the filling of the L-centre is possible. This case indicates,
that the slope of the RF signal can also be positive.

4.4.3 Case III: Random distribution of holes

To simulate an arbitrary filling of the L- and R-centre at the start of the simulation, 100,000
different combinations of L- and R-centre concentrations were calculated. The sum of holes
in the R- and L-centre was limited to 1 E+11 cm−3, the maximum concentration of electrons
in the deep trap (see Sec. 4.4). The goal of this approach was to gain a better understanding
of the behaviour of the RF signal for random distributions of charge carriers. Figure 4.5
illustrates the result of the analytical calculations for the initial RF signal in a 3D plot.
The special cases from Secs. 4.4.1 and 4.4.2 are shown therein.

The basic conclusion is that the initial RF signal is the higher the larger the occupancy
of the L-centre and the less the concentration of holes in the R-centre is at the beginning
of a simulation. As expected, different combinations of starting concentrations lead to a
continuous distribution of the height of the RF signal.

Figure 4.6 shows the slope of the RF signal at the beginning of a simulation for the same
starting concentrations as in Fig. 4.5. The special cases described in Secs. 4.4.1 and 4.4.2
are also included in this figure. The general trend shows a sharp decline of the RF signal
(steep negative slope) when the initial concentration of holes in the L-centre is very high
and the concentration of holes in the R-centre is small. Further analysis of the data showed
that ∼ 14% of all calculated combinations of starting conditions lead to a positive slope
signal and ∼ 86% to a negative slope. However, in most cases the negative slope is small.
Hence, short simulation times will lead to a (visibly) stable signal, see histogram in Fig. 4.7.
So for measurements of 10,000 s, (e.g., performed in Friedrich et al. (2017)), a very small
change in the RF signal is expected when measuring without any (thermal) pre-treatment.
From literature it is well known that a preheat influences the UV-RF signal dynamics
dramatically, similar to the pre-dose effect (Zimmerman 1971). A detailed overview for
effects of the preheat to UV-RF signals can be found in Friedrich et al. (2017) and Martini
et al. (2012, 2014).
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Figure 4.5: 3D plot of the initial RF signal for an arbitrary distribution of holes in the L- and
R-centre. 100,000 different combinations of L- and R-centre concentrations were calculated.

Figure 4.6: 3D plot of the initial RF signal slope for an arbitrary distribution of holes in the
L- and R-centre. 100,000 different combinations of L- and R-centre concentrations were calculated.
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Figure 4.7: Histogram of the slope of the initial RF signal from -0.1 to the maximum value. About
14% of all combinations lead to a positive slope signal.

4.5 Comparison with experimental results

4.5.1 Materials and methods

For our experiments we used three different types of natural quartz: a sediment quartz
(BT586), a colourless (Hyaline) and a smoky quartz. These samples were already part of
other studies, see Fasoli & Martini (2016), Friedrich et al. (2017), Martini et al. (2014), and
Vaccaro et al. (2017). The crystals were crushed, grinded (colourless and smoky quartz),
and sieved to select grains of 90 – 200µm in diameter. Subsequent chemical treatments for
BT586 followed routine preparation procedures for luminescence dating samples, described
in Preusser et al. (2008) and especially for BT586 in Friedrich et al. (2017). The RF
measurements were carried out at room temperature (RT) using a home-made apparatus
featuring, as detection system, a back illuminated UV-enhanced charge coupled device
(CCD) (Jobin-Yvon Spectrum One 3000) coupled to a spectrograph operating in the 200 –
1100 nm range (Jobin-Yvon Triax 180). RF excitation was obtained by X-ray irradiation,
through a Be window, using a Philips 2274 X-ray tube, with Tungsten target and operated
at 20 kV. During each measurement, lasting 30 s, the sample was given a dose of 6± 1Gy,
where the uncertainty is related to the dose calibration rather than to its repeatability that
was quite good (1%).

King et al. (2011) fitted cathodoluminescence curves (intensity against dose) with a
power law approach without giving a physical explanation for the used formula. Based on
our analytical solutions we advocate another approach, described in the following: From
Eq. (4.30) it is known that the concentration of holes in the L-centre (in the framework of
a completely empty R-centre) is a composite of two components: (1) The diffusion of holes
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into the L-centre (saturating exponential) and (2) the loss of holes due to recombination
(exponential decay). Therefore the following function is used to fit UV-RF signals after a
strong preheat to 500 ◦C for 10min:

I(t) =

build up︷ ︸︸ ︷
A ·
(

1− exp

(
− t

C

))
+

decay︷ ︸︸ ︷
B · exp

(
− t

C

)
= A + B̄ · exp

(
− t

C

)
, (4.18)

where B̄ is another constant with B̄ = B − A. From a series of publications it is known
that a preheat to 500 ◦C leads to a strong decay of RF in the UV region at the start of
the measurement. We normalise the UV-RF signal (I(0) = 1), rename B̄ to B and use
Eq. (4.18):

I(0) = A + B · exp

(
0

C

)
= 1

⇒ A + B = 1

⇔ B = 1 − A (4.19)

Using Eq. (4.19) in Eq. (4.18):

I(t) = A + (1 − A) · exp

(
− t

C

)
= A ·

(
1 − exp

(
− t

C

))
︸ ︷︷ ︸

saturating function

+ exp

(
− t

C

)
︸ ︷︷ ︸

decaying function

(4.20)

Time t can be substituted by dose D via a known dose rate Ḋ:

D = Ḋ · t

⇒ I(D) = A ·
(

1 − exp

(
−D
C

))
+ exp

(
−D
C

)
(4.21)

The more general function from Eq. (4.18) with three parameters is used for fitting UV-RF
signals from samples lacking any thermal pre-treatments.

4.5.2 Measurements in the UV

Figure 4.8 shows the results of the spectra measurements in the C band. The signal means
from 360 ± 10 nm were used to calculate the signal dynamics in the C band. Note that also
the X band can superpose to the C band, especially for un-annealed samples. Nevertheless,
spectra from all quartz samples show no contribution from the X band to the C band. A
detailed overview over emission bands is given by Fasoli & Martini (2016). Figures 4.8
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4.5 Comparison with experimental results

(a), (c), and (e) show the C band from untreated quartz samples BT586, Hyaline and
the smoky quartz, respectively. In contrast Figs. 4.8 (b), (d), and (f) show the C band
dynamics for the samples BT586, Hyaline and the smoky quartz after a preheat to 500 ◦C
for 10min, respectively. As mentioned in Sec. 4.5.1 the signals from all preheated samples
(Fig. (b), (d), and (f)) were fitted with Eq. (4.21) with a good agreement between the fit
and the experimental data. Also plotted in Fig. 4.8 are the components (see Eq. (4.21)).
Component 1 describes the saturating part and component 2 the decaying part of the fitting
function. The fitting function used for the untreated samples, except BT 586 (Subfig. (a)),
was Eq. (4.18) with three fitting parameters. Component 1 describes the constant part
with parameter A and component 2 equals B · exp

(
− t
C

)
. Although Subfig. (a) presents an

untreated sample the fitting with Eq. (4.18) failed. But because of the decreasing part of
the curve Eq. (4.21) fits very well. Note that using Eq. (4.18) in Subfig. (c) and (e) leads
to a value of A ≈ 1 since the data asymptotically approach this value at the end of the
measurement. When substituting A = 1, we also get a fitting function with two parameters.

4.5.3 Interpretation

The experimental data support the theoretical findings from Sec. 4.3: A change in the
concentration of holes in the R- and L-centre leads to a different behaviour of the signal
dynamics. Due to the preheat to 500 ◦C the concentration of holes in the R-centre decreases
and accordingly the concentration of holes in the L-centre increases (Zimmerman 1971).
The result from this is that all three samples show a strong signal decay in the C band after
the preheat. In contrast to that the untreated samples exhibit an increasing signal during
RF measurements (Subfig (c) and (e)) or a slightly decreasing signal (Subfig. (a)). This is
in accordance with the analytical findings that a random distribution of holes between the
L- and R-centre leads to a diversity of signal dynamics, see Fig. 4.7.
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(a) BT586 without pre-treatment
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(b) BT586 after 500 ◦C PH
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(c) Smoky quartz without pre-treatment
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(d) Smoky quartz after 500 ◦C PH
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(e) Hyaline without pre-treatment
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(f) Hyaline quartz after 500 ◦C PH

Figure 4.8: (a), (c), and (e) show the UV-RF signal dynamics in the C band for untreated quartz
samples. (b), (d), and (f) show the UV-RF signal dynamics in the C band for preheated quartz
samples (500 ◦C). All signals from preheated samples as well as the signal from untreated sample
BT586 were fitted with Eq. (4.21). Data displayed in Subfig. (c) and (e) were fitted using Eq. (4.18),
where parameter B is negative.108
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4.6 Discussion

Bailey (2001) already mentioned the difference between the model by Zimmerman (1971)
and the one presented by himself: In Bailey (2001) the recombination of electrons and holes
within the R-centre is allowed and hence the R-centre is in competition with the L-centre
for free electrons in the conduction band. During RF/irradiation R electron-hole pairs are
produced and R free electrons are available in the conduction band. When assuming that a
recombination within the R-centres is not allowed and we consider case I from Sec. 4.4.1
(empty R-centre at the beginning of the simulation) then a constant UV-RF signal with the
signal intensity of R is the result of the simulations, see Fig. 4.9. All electrons available in
the conduction band have to recombine in the L-centre. Figure 4.10 shows the concentration
of holes in the R-centre during RF simulation. When using the model by Zimmerman
(1971) this number grows linearly and the concentration of holes in the R-centre after
10,000 s of irradiation is 3 E+05 · 1 E+04 = 3 E+09 holes. In contrast, the concentration
of holes in the R-centre is smaller in the model by Bailey (2001). Holes can be removed
due to recombination with electrons in the R-centre. As irradiation time progresses in the
simulation, the competition between R- and L-centre is becoming bigger. This results in
a decreasing RF curve (see Fig. 4.9). Comparing this to experimental data, the model by
Bailey (2001) appears to be more appropriate for simulating RF phenomena. But note that
neither the model by Bailey (2001) nor the one by Zimmerman (1971) were developed to
simulate RF.
Furthermore, the comparison of different models shows that the most important fact

of UV-RF simulation is the competition for electrons between the recombination centres
(R- and L-centres). That is one of the reasons why simulating experimental UV-RF results
with an OTOR (One-Trap-One-Recombination centre) model has to fail.

Although the analytical expressions derived in this study are helpful to understand the
basics of quartz UV-RF, there is no mathematical description of the UV-RF curve as
known from OSL (Chen & McKeever 1997; Chen & Leung 2003). With the approach of
linearisation (Eq. (4.11)) we are not able to describe the behaviour for long simulation times.
We know from experimental results that the slopes of the UV-RF curves after preheating
are not constant and after long irradiation an equilibrium is reached (Brik et al. 1994;
Friedrich et al. 2017; Marazuev et al. 1995; Shimizu et al. 2006).

The results suggest that different RF behaviour of thermally un-treated quartz can be an
indicator for diverse charge distributions. The reason could be a different geological origin
or sample history for the quartz grains. To confirm this, further investigations are needed,
especially in combination with other analysis methods like inductively coupled plasma mass
spectrometry (ICP-MS) or scanning electron microscope (SEM).
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Figure 4.9: Comparison of the model by Bailey (2001) and Zimmerman (1971) for a simulated
UV-RF signal. The starting condition was m10 = n0 = M1, see case I in Sec. 4.4.1.
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Figure 4.10: Comparison between the model by Bailey (2001) and Zimmerman (1971) for the
concentration of holes in the R-centre for the same simulation as shown in Fig. 4.9. The starting
condition was m10 = n0 = M1, see case I in Sec. 4.4.1.
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4.7 Conclusion

We investigated the dynamics of the quartz UV-RF signal from a theoretical point of view
and compared these results to experimentally obtained data. A three-energy-level model
was used to derive analytical solutions of the initial signal intensity and the slope of the RF
signal at the beginning of the simulation.

By comparing the analytical solutions with numerical solutions and the experimental
results, it is possible to explain some basic principles of quartz UV-RF. Our derived
analytical solutions for the initial signal and the slope of the RF signal in quartz are in
excellent agreement with the numerical solutions. The results obtained show that the change
in the signal shape is dependent on the filling of the L- and R-centre at the beginning of
the measurement or simulation. Preheat experiments confirm this behaviour: Increasing
the concentration of holes in the L-centre by thermally depleting the R-centre leads to
higher and steeper initial signals. Heating to even higher temperatures causes decreased
and flatter initial RF signals. At high temperatures the deep electron trap is emptied and
so the concentration of holes in the L-centre decreases due to recombination. Referring to
Figs. 4.3 and 4.4, this leads to a shift on the x-axis to the left along the trajectory indicated
by the plotted data points. Consequently, a smaller RF intensity and a flatter RF signal is
expected. This was confirmed experimentally (Friedrich et al. 2017).

When measuring the C band of quartz without any thermal pre-treatment, we can expect
a variety of signal dynamics during the measurement. This variety can occur due to different
conditions of quartz formation and associated variations in relative abundance of defect
concentrations or diverse thermal, mechanical or chemical treatments prior to RF analysis.

The main fact responsible for the observation of decaying UV-RF signals with time/dose
is the increasing competition for electrons between the L-centre and other recombination
centres. This shows a comparison between different kinetic quartz models.

Furthermore we presented a mathematical description of the UV-RF signal in quartz
and fitted experimental results with a two-component function. For preheated samples we
obtained a very good agreement between experimental data and the fit. The application of
the derived two-component formula describing the RF signal shape is not restricted to the
UV emission, but may be extended to other emission bands in the future.
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4.A Appendix

4.A.1 Derivation of the coefficient C2

C2 =
d(B2 ·m2 · nc)

dt

∣∣∣∣
t=0

= B2 ·
[
nc ·

dm2

dt
+m2 ·

d

dt

(
R

An · (N − n) +B2 ·m2 +B1 ·m1

)]∣∣∣∣
t=0

= B2 ·

[
nc ·

dm2

dt
+m2 ·R ·

An
dn
dt −B2 · dm2

dt −B1 · dm1
dt

(An · (N − n) +B2 ·m2 +B1 ·m1)2

]∣∣∣∣∣
t=0

= B2 ·
[
nc ·

dm2

dt
+
n2
c ·m2

R
·
(
An

dn

dt
−B2 ·

dm2

dt
−B1 ·

dm1

dt

)]∣∣∣∣
t=0

(4.22)

order dm2
dt

C2 =
B2 · nc
R

·
[
(R − m2 · nc ·B2) · dm2

dt
+ nc ·m2 ·

(
An

dn

dt
−B1 ·

dm1

dt

)]∣∣∣∣
t=0

(4.23)

Use Eqs. (4.1), (4.2) and (4.3) and order:

C2 =
B2 · nc
R

· [(R − m2 · nc ·B2) · (Am2 · (M2 −m2) · nv −B2 ·m2 · nc)

+ nc ·m2 ·
(
A2
n · (N − n) · nc −B1 ·Am1 · (M1 −m1) · nv +B2

1 ·m1 · nc
)]∣∣

t=0

(4.24)

C2 =
B2 · nc0
R

· [(R − m20 · nc0 ·B2) · (Am2 · (M2 −m20) · nv0 −B2 ·m20 · nc0)

+ nc0 ·m20 ·
(
A2
n · (N − n0) · nc0 −B1 ·Am1 · (M1 −m10) · nv0 +B2

1 ·m10 · nc0
)]

(4.25)

Use Eq. (4.9): R − m20 · nc0 ·B2 = nc0 · (An · (N − n0) +B1 ·m10)

C2 =
B2 · n2

c0

R
· [(An · (N − n0) +B1 ·m10) · (Am2 · (M2 −m20) · nv0 −B2 ·m20 · nc0)

+ m20 ·
(
A2
n · (N − n0) · nc0 −B1 ·Am1 ·M1 · nv0 +B2

1 ·m10 · nc0
)]

(4.26)
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Collect terms involving nc0 and nv0 and substitute with Eqs. (4.9) and (4.10).

C2 =
B2 · n2

c0

R
·
[
nc0 ·m20 ·

(
A2
n · (N − n0) +B2

1 ·m10 −B2 · (An · (N − n0) +B1 ·m10)
)

+ nv0 · ((An · (N − n0) +B1 ·m10) ·Am2 · (M2 −m20)−B1 ·Am1 · (M1 −m10) ·m20)]

(4.27)

C2 =
B2 ·R2

(An · (N − n0) +B2 ·m20 +B1 ·m10)2

·
(
m20 ·

An · (N − n0)(An −B2) +m10 · (B2
1 −B2 ·B1)

An · (N − n0) +B2 ·m20

+
An · (N − n0) ·Am2 · (M2 −m20)−B1 ·Am1 · (M1 −m10) ·m20

Am2 · (M2 −m20) +Am1 · (M1 −m10)

)
(4.28)

4.A.2 Derivation of the concentration of holes in the R- and L-centre (for
m10 = 0)

Using Eqs. (4.9) and (4.10) and m10 = 0

4.A.2.1 Concentration of holes in the L-centre

dm2

dt
= Am2 · (M2 −m2) · nv −B2 ·m2 · nc (4.29)

=
Am2 · (M2 −m2) ·R

Am2 · (M2 −m20) +Am1 ·M1
− B2 ·m2 ·R
An · (N − n0) +B2 ·m20

Solving this differential equation with boundary condition m2(0) = m20 :

m2 =
B2 ·m20 ·

(
Am2 ·M2 +Am1 ·M1 · e−D·t·R

)
+Am2 ·An · (N − n0) ·

(
M2 ·

(
1− e−D·t·R

)
+m20

)
B2 · (Am2 ·M2 +Am1 ·M1) +Am2 ·An · (N − n0)

(4.30)

with

D =
B2 · (Am2 ·M2 +Am1 ·M1) +Am2 ·An · (N − n0)

(Am2 · (M2 −m20) +Am1 ·M1) · (B2 ·m20 +An · (N − n0))
(4.31)

For t→ 0: m2 → m20

For t→∞: m2 → finite value (depending on parameters)
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4.A.2.2 Concentration of holes in the R-centre

The analytical function for m1, the concentration of holes in the R-centre. It is solved in
the same manner as Eq. (4.30)

m1 =
Am1 ·M1 · (1− e−E·t·R) · (An · (N − n0) +B2 ·m20)

B1 · (Am2 · (M2 −m20) +Am1 ·M1) +Am1 · (B2 ·m20 +An · (N − n0))

(4.32)

with

E =
B1 · (Am2 · (M2 −m20) +Am1 ·M1) +Am1 · (B2 ·m20 +An · (N − n0))

(Am2 · (M2 −m20) +Am1 ·M1) · (B2 ·m20 +An · (N − n0))
(4.33)

It is obvious that for t→ 0 m1 → 0

For t→∞: m1 → finite value (depending on parameters)
m1 is a saturating exponential growth curve.

4.A.2.3 Concentration of electrons in the deep trap

From Eq. (4.1) we obtain the following analytical expression for the concentration of electrons
in the deep trap. The electron concentration in the deep trap increases continuously with
irradiation time during RF and has a saturating exponential form.

n = N − (N − n0) · e−An·F ·t (4.34)

with

F =
R

An · (N − n0) +B2 ·m20

(4.35)

For t→ 0: n→ n0

For t→∞: n→ N
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Abstract

The general behaviour of the main UV emission during radiofluorescence (RF) in natural
quartz with dose rates ranging from 10 – 500mGy s−1 is analysed. RF emission spectra
were recorded and deconvolved to extract information on the C band, which is often the
main emission of quartz annealed at a temperature close to 500 ◦C. Our results confirmed
theoretical findings, e.g., the direct proportionality of the initial RF signal of the C band
with dose rate and the direct proportionality of the initial slope with the squared dose rate.
Furthermore, numerical simulations employing a three-energy-level model and experimental
data are in agreement. A first concept of using quartz UV-RF for dosimetric application is
given based on the findings that different absorbed doses resulting from different dose rates
match well into a single UV-RF decay curve.
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5.1 Introduction

Thermoluminescence (TL) and optically stimulated luminescence (OSL) are well established
methods to determine the energy dose absorbed by natural minerals, such as quartz and
feldspar. A key aspect in the accuracy of luminescence dating is the reproducibility of
natural processes in the laboratory. However, typical dose rates applied in the laboratory
differ by several orders of magnitude from the dose rate in nature. The effect of different
dose rates on TL signals of quartz were investigated in different studies: Groom et al. (1978)
reported a decrease of TL up to a factor of 5 with increased dose rate in powdered samples
of Brazilian crystalline quartz when irradiated with a 60Co source at dose rates ranging from
1.4mGy s−1 to 3.3Gy s−1. An opposite effect of higher TL response in quartz for larger dose
rates was reported in Kvasnička (1979, 1983) using dose rates of 0.02mGy s−1 to 20mGy
s−1. Chen & McKeever (1997) pointed out that this discrepancy may be well described by
the different (but overlapping) dose rate ranges. For a detailed overview of TL response to
different dose rates see Chen & McKeever (1997: Sec. 4.6). Besides the experimental results,
numerical models exist which help to understand the effect of different dose rates. McKeever
et al. (1980) demonstrated numerically that an OTOR (one-trap-one-recombination centre)
model is able to show a dose rate dependence of luminescence intensity, as well as does the
model presented by Chen et al. (1981). Kijek & Chruścińska (2016, 2017) also investigated
the difference between OSL dose response curves in the laboratory and in nature, where
the dose rates differ by about ten orders of magnitude. They conclude that the difference
between the growth curves is highly dependent on the filling of a deep electron trap.

This work investigates the dependence of the UV radiofluorescence (RF) signal of quartz
on different dose rates. Radiofluorescence is the luminescence emitted during exposure to
ionising radiation and for quartz believed to result from direct recombination of electrons
with holes captured in recombination centres (cf. Schmidt et al. (2015) for a review).
Therefore, RF allows direct insight into the charge redistribution during the irradiation
process. As a result of the signal origin mentioned above, the number of generated free
electrons in the quartz crystal should be proportional to the dose rate, and the initial RF
intensity itself is related to the electron concentration in the conduction band (Friedrich
et al. 2017c). These theoretical findings lead to the following hypotheses:

• The initial RF signal is directly proportional to the dose rate,
• the RF signal slope is directly proportional to the squared dose rate.

In this work we test these hypotheses through measurements on natural quartz for different
dose rates. Furthermore, we present simulations of the measurements and compare them
with experimentally obtained results.
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5.2 Materials and methods

5.2.1 Quartz samples

Two different types of quartz were analysed in our investigation: a natural sedimentary
quartz (BT586; Friedrich et al. (2017a,c)) and a coastal dune quartz (FB; Kreutzer et al.
(2017a) and Schmidt et al. (2018)). Both samples were already part of different studies.
Grains of 90 – 200µm in diameter were used. Both samples were annealed at 500 ◦C in
the muffle oven: BT586 for 10min and FB for 30min, see Kreutzer et al. (2017a). For
each measurement a new aliquot with the same amount of grains was used allowing a
quantitative comparison of the results.

5.2.2 Measurement conditions

The RF measurements were carried out at room temperature (RT) using a home-made
apparatus featuring, as detection system, a back illuminated UV-enhanced charge coupled
device (CCD) (Jobin - Yvon Spectrum One 3000) coupled to a spectrograph operating in the
200 – 1100 nm range (Jobin - Yvon Triax 180). RF excitation was obtained by X-irradiation,
through a Be window, using a Philips 2274 X-ray tube with Tungsten target and operated
at 32 kV (0.6 – 29.6mA). During each of the 41 consecutive measurements, everyone lasting
30 s, the samples were irradiated with dose rates ranging from 10 – 500mGy s−1. Due to a
software issue a delay of 4 s between each spectra recording was monitored which leads to
an effective measurement time of 34 s. Hence doses from 13.6 – 680Gy were absorbed. All
the RF spectra were corrected for the spectral response of the detection systems.

5.2.3 Data analysis

Data analyses were carried out using the software OriginPro9 and the statistical software
R with a Levenberg-Marquardt algorithm (Marquardt 1963) for deconvolution of spectra
into Gaussian components (R Core Team 2017). For simulating the UV-RF signals the R-
package ’RLumModel’ (Friedrich et al. 2016, 2017b) was used. The code for the simulations
presented here can be found in the supplementary material, see Sec. A.4.

5.3 Results

Fasoli & Martini (2016) reported seven bands when deconvolving quartz RF spectra into
Gaussian components. The recorded spectra in this paper were fitted with six Gaussian
components, called the O, A, B, X, C and D band, without the M band being present in
the spectra. The M band appears only when quartz samples are annealed at temperatures
higher than 700 ◦C (Fasoli & Martini 2016). The values for the energy E [eV] and the full
width at half maximum [eV] (FWHM) of individual, fitted emission bands are summarised
in Table 5.1 and are the same as in Fasoli & Martini (2016: Table 1). Figure 1.10 shows

119



5 On the dose rate dependence of radiofluorescence signals of natural quartz

the results of of these numerical fits, showing six Gaussian components for quartz sample
BT586 and a dose rate of 100mGy s−1. Deconvolving the spectra indicated that the X
band is not detectable in most of our recorded spectra and so we used the peak integral
from 3.37 – 3.47 eV (see Fig. 1.10) to monitor the C band intensity changes, because there
is no contribution from the X band despite the overlap.

BAND E [eV] ∼ λmax [nm] FWHM [eV]
O 1.92 635 0.39
A 2.51 490 0.46
B 2.79 440 0.46
X 3.06 395 0.89
C 3.42 360 0.58
M 3.73 330 0.45
D 3.93 315 0.49

Table 5.1: Spectral parameters of the emission bands resulting from Gaussian deconvolution of
the spectra.

5.3.1 Effect of different dose rates on the C band (3.42 eV)

The effect of different dose rates on the C band, which is the dominant band when annealing
quartz at 500 ◦C (Friedrich et al. 2017a; Martini et al. 2012), was investigated in detail.
Figure 5.1 shows the change of RF intensity in the C band with dose for (a) BT586 and (b)
FB when using different dose rates. Some basic observations can be summarised as follows:

• The higher the dose rate, the higher the signal intensity,
• the higher the dose rate, the higher the intensity difference between the first and the

last measurement,
• the C band in sample FB decreases much faster than in BT586.

Normalising the data to the first data point results in Fig. 5.2. A similar pattern is
observed for both quartz samples: The higher the dose rate, the steeper is the slope of the
signal obtained. The intensity of the C band of BT586 drops down to ∼ 20% of the initial
intensity and for FB to ∼ 12% for the highest dose rate of 500mGy s−1. This minimum
level is reached faster for sample FB than for sample BT586.
Nevertheless, when translating the time axis into a dose axis, the curves for sample FB

overlap very well, see Fig. 5.3. That nearly all nine measured curves fit into one common
curve was not necessarily expected since the dose rate differs more than one order of
magnitude. The same behaviour was observed for sample BT586 (not shown here).
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(a) Results for BT586
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(b) Results for FB

Figure 5.1: RF intensity versus time for the C band (3.37 – 3.47 eV) for different dose rates.
Subfigure (a) shows the results for BT586 and (b) for FB.
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5 On the dose rate dependence of radiofluorescence signals of natural quartz

5.3.2 Analysis

We analyse the results described in Sec. 5.3.1 for the initial signal (first data point) and the
initial slope of the curves (first data point minus second data point). For Al2O3:C and a
three-energy-level model for quartz it was already shown theoretically that the initial signal
and the dose rate are linearly related, as well as is the case for the slope of the curve and the
squared dose rate (Friedrich et al. 2017c; Pagonis et al. 2009). For quartz an experimental
test for this behaviour is given in the next subsections.

5.3.2.1 Initial signal

The initial signal is defined as the intensity of the C band in the first of the 41 measurement
cycles. Figure 5.4 shows the initial signal against the dose rate for both quartz samples,
BT586 and FB, respectively. A linear fit (Fig. 5.4) confirms direct proportionality with
R2 = 0.988 (BT586) and R2 = 0.993 (FB). Note that the fit to the dataset of initial signal
versus dose rate cannot be perfect since every measurement was started before opening the
shutter of the source manually resulting in a short lag between the start of the irradiation
and the beginning of the RF spectrum acquisition. Thus, the values presented in the y-axis
in Fig. 5.4 are systematically underestimated by ∼ 5%. Nevertheless, the linear dependence
of the initial signal on the dose rate is obvious for both quartz samples.

5.3.2.2 Signal dynamics

We further analyse the initial slope of the RF signal. ’Initial slope’ is here defined as the
absolute difference between the counts of the first two measurements. Since the difference
on the time axis is always constant, we omit it in the calculation of the so called ’slope’.
As derived for Al2O3:C in Pagonis et al. (2009) and shown experimentally for Al2O3:C
in Aznar (2005), the initial slope is proportional to the square of the dose rate for this
phosphor. For quartz this was shown theoretically by Friedrich et al. (2017c). Figure 5.5
displays the dependence of the initial slope on the squared dose rate for the two quartz
samples. The fits obtained here are better than the ones for the initial signal in Sec. 5.3.2.1
with R2 of 0.997 and 0.999 for BT586 and FB, respectively. The theoretical findings are,
therefore, verified experimentally.

122



5.3 Results

●
● ●

● ● ● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ●

● ●
●

●
●

● ● ●
● ●

● ● ●
● ●

● ● ● ●
● ● ●

●
●

●
●

●
● ● ●

● ● ●
● ●

● ● ● ● ●
● ●

● ● ●
● ●

●
● ●

● ● ●
● ● ●

● ● ● ●
● ● ● ● ●

● ● ●
● ● ●

●
●

●
● ●

●
●

●
●

●
●

● ●
● ●

●
● ● ●

● ●
● ●

● ● ●
● ● ● ●

● ●
●

● ● ● ●
● ● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
● ● ● ●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.25

0.50

0.75

1.00

0 5 10 15 20
Time [min]

N
or

m
al

is
ed

 R
F

 in
te

ns
ity

Dose rate
[mGy/s]

●

●

●

●

●

●

●

●

●

10
20
25
50
100
200
300
400
500

(a) Results for BT586
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(b) Results for FB

Figure 5.2: Same data as in Fig. 5.1 normalised to the first data point. Subfigure (a) shows the
results for BT586 and (b) for FB.
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Figure 5.3: Translation of the data from Fig. 5.2 (b) to a dose-axis. The measurement time was
∼ 23min, so doses from 13.6 – 680Gy were applied.
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Figure 5.4: First data point of Fig. 5.1 versus dose rate for quartz samples BT586 and FB. The
grey shaded area is the 95% confidence level interval.
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5.4 Simulations

Figure 5.5: Initial slope (second data point minus first data point) of the UV-RF signal plotted
against the square of dose rate for quartz samples BT586 (R2 = 0.997) and FB (R2 = 0.999).
The grey shaded area is the 95% confidence level interval.

5.4 Simulations

In order to understand the charge transfer during the measurements with different dose
rates, we performed numerical simulations using the R-package ’RLumModel’ (Friedrich
et al. 2016, 2017b). The code is part of the supplementary material in Sec A.4. The model
is designed for describing the UV-RF signal and capable of mimicking the behaviour of the
C band.

5.4.1 Defining the model

A three-energy-level model was used to mimic the experimental results. A detailed overview
of the model can be found in Friedrich et al. (2017c).
The following differential equations (5.1) – (5.4) describe the charge flow in quartz in

the context of luminescence production. The total number of equations that need to be
solved depends on the number of electron traps (q) and hole centres (r). For the case of the
three-energy-level model q = 1 and r = 2.
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ABBREVIATION DESCRIPTION UNIT
nc Concentration of electrons in the conduction band cm−3

nv Concentration of holes in the valence band cm−3

Ni Concentration of electron traps cm−3

ni Concentration of trapped electrons cm−3

si Frequency factor for electron traps s−1

Ei Electron trap depth below the conduction band eV
Nj Concentration of hole centres cm−3

nj Concentration of trapped holes in centres cm−3

sj Frequency factor for hole centres s−1

Ej Hole trap depth above the valence band eV
Ai Conduction band to electron trap transition probability cm3 s−1

Aj Valence band to hole centre transition probability cm3 s−1

Bj Conduction band to hole centre transition probability cm3 s−1

kB Boltzmann constant eVK−1

T Absolute temperature K
R Ionisation rate (pair production rate) cm−3 s−1

t Time s

Table 5.2: Description of the abbreviations used in the differential equations (5.1) – (5.4).

LEVELS N [cm−3] E [eV] s [s−1] A [cm3 s−1] B [cm3 s−1]
1 Deep 5 E+10 1.95 1 E+10 1 E-10 -
2 R-centre 1 E+10 1.75 5 E+13 5 E-07 5 E-09
3 L-centre 1 E+11 5 1 E+13 1 E-09 5 E-10

Table 5.3: Simulation parameters

dni
dt

= nc · (Ni − ni) ·Ai − ni · si · e−Ei/(kB ·T ) (5.1)

dnj
dt

= nv · (Nj − nj) ·Aj − nj · sj · e−Ej/(kB ·T ) − nc · nj ·Bj (5.2)

dnc
dt

= R−
q∑
i=1

(
dni
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (5.3)

dnv
dt

= R−
q+r∑

j= q+1

(
dnj
dt

)
−

q+r∑
j= q+1

(nc · nj ·Bj) (5.4)

A short description of the used abbreviations is given in Table 5.2 and in detail in Bailey
(2001). For the three energy levels used here no photosensitive traps were implemented and
thus no corresponding terms are existing in Eqs. (5.1) – (5.4).
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1 Geological dose irradiation of 1,000Gy at 1Gy s−1 at 20 ◦C
2 Relaxation stage - 60 s at 20 ◦C
3 Geological time - heat from 20 ◦C to 350 ◦C at 5 ◦C s−1

4 Relaxation for geological time, 60 s at 20 ◦C
5 Burial dose - 20Gy at 20 ◦C at 10−11 Gy s−1

6 Relaxation stage - 60 s at 20 ◦C
7 Preheat to 500 ◦C for 10min
8 Radiofluorescence for 23min at 20 ◦C at different dose rates

Table 5.4: Single steps for the simulations. Steps 7 and 8 represent the simulated measurements
in the laboratory.

Table 5.4 lists the simulation steps for the experiments shown in Sec. 5.3. After each
excitation stage in the simulations a relaxation period is introduced in which the temperature
of the sample is kept constant at 20 ◦C for 60 s after the excitation has stopped (R = 0) and
the concentrations of nc and nv decay to negligible values. When the temperature of the
next simulation step is not the same as in the current step, the numerical solution simulates
a cooling or heating period with a constant rate of β = 5K s−1. As pair production rate R,
a value of 6.3 E+07 cm−3 s−1 was used.

5.4.2 Matching experimental results and simulations

Figures 5.6 and 5.7 show the results from the numerical simulations. The parameters listed
in Table 5.3 were used to reproduce the experimental results obtained for the FB quartz
(see Figs. 5.1 (b), 5.2 (b), 5.4 (red line) and 5.5 (red line)). Note that the absolute values
of Fig. 5.7 (a) are not meaningful, because the numerical simulation only qualitatively
describes the behaviour of the C band. Matching the absolute values is possible if the
parameters in Table 5.3 are downscaled. Nevertheless, when normalising to the first data
point the order of the signals is the same in both, the results of the experiments and
the simulations. The simulations suggest that the three-energy-level model is sufficient to
describe the experimental findings. One indicator is the decrease of the C band down to
∼ 12% of the initial intensity, which is similar to the experiments, see Fig. 5.2 (b). Another
indicator is the curve shape which is also similar to the experimental results.
We also performed an analysis of the initial signal intensity and the initial slope of the

RF signal. The results are shown in Fig. 5.7 and closely resemble the experimental data
from Sec. 5.3.2. In summary, the results from the numerical solutions are confirmed by the
experimental data.
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Figure 5.6: Simulation of the experimental results from Figs. 5.1 and 5.2. The simulation parameters
were adjusted to fit the results of sample FB. Subfigure (a) shows the absolute values of the simulation
and (b) is normalised to the first data point.
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Figure 5.7: Simulation of the experimental results from Fig. 5.5. Subfigure (a) shows the change
of the initial signal with dose rate and subfig. (b) the change of the initial slope with the squared
dose rate. The grey shaded area is the 95% confidence level interval.
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5.5 Discussion

5.5.1 Curve fitting

Friedrich et al. (2017c) derived an analytical expression for the UV-RF signal dynamics
after high temperature annealing (∼ 500 ◦C), see Eq. (4.20). This formula describes the
luminescence intensity I as a function of time t with two parameters, A and C.

I(t) = A ·
(

1 − exp

(
− t

C

))
+ exp

(
− t

C

)
(5.5)

Friedrich et al. (2017c) successfully used this function to fit their data acquired with one
single dose rate. We also fitted the data presented in Sec. 5.3 to Eq. (5.5) and further
analysed parameter C. From Friedrich et al. (2017c) it is known that the concentration of
holes in the L-centre (in the framework of a completely empty R-centre) is a composite of
two components: (1) The diffusion of holes into the L-centre (saturating exponential) and
(2) the loss of holes due to recombination (exponential decay). The parameter C therefore
can be handled as a ’lifetime’ of the C band during irradiation. The term C−1 is the decay
parameter and in this case the recombinations per second. Hence the expression C−1 should
be depended on the dose rate (parameter R in the model) because the higher the dose rate
the higher the probability of recombinations.
Figure 5.8 (a) shows the experimental data from sample BT586 (dots) as well as fits to

Eq. (5.5) (lines). A good agreement between experiments and fits was found for sample
BT586, as well as for sample FB (not shown here). From these fits the parameter C is
extracted and the decay rate C−1 is plotted against the dose rate, see Fig. 5.8 (b). Except
for low dose rates, a linear relation was found between the decay rate C−1 and the dose
rate. The fits in Fig. 5.8 (a) and the linearity in subfig. (b) match well for sample BT586
but not for sample FB. One reason for this could be the less accurate fitting of the decaying
UV-RF curves for sample FB compared to BT586.
Nevertheless, both samples indicate a linear relationship between the dose rate and

the decay rate of the UV-RF signal. This is in concordance with the results obtained in
Sec. 5.3.2. Note that in Sec. 5.3.2 the initial signal and the slope of the first two signal
points were used to analyse the data. In contrast to that, we used the fit of the complete
UV-RF signal here.
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LEVELS N [cm−3] E [eV] s [s−1] A [cm3 s−1] B [cm3 s−1] σ0 [s−1] Eth [eV]
1 110 ◦C TL 1.5 E+07 0.97 5 E+12 1 E-08 - 0.75 0.1
2 230 ◦C TL 1 E+07 1.55 5 E+14 1 E-08 - - -
3 OSLF 1 E+09 1.7 5 E+13 1 E-09 - 6 0.1
4 OSLM 2.5 E+08 1.72 5 E+14 5 E-10 - 4.5 0.13
5 Deep 5 E+10 1.95 1 E+10 1 E-10 - - -
6 R1-centre 1 E+10 1.8 5 E+13 5 E-07 5 E-09 - -
7 R2-centre 1 E+10 1.75 5 E+14 1 E-09 5 E-10 - -
8 L-centre 1 E+11 5 1 E+13 1 E-09 5 E-10 - -
9 K-centre 5 E+09 5 1 E+13 1 E-10 1 E-10 - -

Table 5.5: Model parameters used for simulating the data shown in Fig. 5.9. The parameters for
the deep electron trap, R1-centre and L-centre are identical to the ones presented in Table 5.3.

5.5.2 Expanded numerical model

The numerical model presented in Sec. 5.4.1 is a three-energy-level model with a limited
explanatory power. We now present a comprehensive quartz model which describes more
than the effects outlined in Sec. 5.3.1, e.g., the 110 ◦C TL peak or OSL behaviour. Therefore,
we merge the parameters presented in Table 5.3 and the ones published in Friedrich et
al. (2017a: Table 2). Table 5.5 shows the used parameters (nomenclature as in Bailey
(2001)) for the comprehensive model. The pair production rate is the same as used for the
three-energy-level model, 6.3 E+07 cm−3 s−1.

Figure 5.9 shows the same simulation as presented in Sec. 5.4.2 for the three-energy-level
model. No obvious differences can be found in the simulation results between Figs. 5.6 and
5.9. This supports again the fact that the R1 and L-centre play the most important role when
simulating UV-RF signals (Friedrich et al. 2017a,c). Several tests with the comprehensive
parameter set (TL peak shift with different heating rates, thermal activation characteristics,
dose-recovery tests, OSL behaviour; see supplementary material in Sec. A.4) were performed
and all investigated phenomena produced meaningful results. This parameter set is included
in version 0.2.3 of the R-package ’RLumModel’ (Friedrich et al. 2016, 2017b).

5.5.3 Potential for an application?

An application using the here presented findings could be the determination of absorbed
doses. Figure 5.3 shows that sections of RF decay curves recorded with different dose
rates overlap, hence proving - within the range of dose rates used in our experiments -
the independency of RF signal characteristics on dose rate. This is a basic requirement
for accurate dating. Similar to the IR-RF dating approach for K-feldspar developed by
Erfurt & Krbetschek (2003) and Krbetschek et al. (2000) and recent applications of this
method (e.g., Frouin et al. (2015, 2017)) the UV-RF signal of quartz could be exploited
to determine an unknown dose when the quartz was heated before (e.g., ceramics, heated
lithics, volcanic or volcanically heated rocks).
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(a) Experimental data and corresponding fits for sample BT586
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Figure 5.8: Analysis of the UV-RF signals of sample BT586 using Eq. (5.5). Subfigure (a) shows
the experimental data (dots) and fits to Eq. (5.5) (lines). Subfigure (b) shows the plot of the fitting
parameter C−1 (decay rate) against the dose rate for both used samples. The grey shaded area is
the 95% confidence level interval.
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Figure 5.9: Simulation of the experimental results from Fig 5.5 with model parameters presented
in Table 5.5. The results are similar to the ones obtained with the three-energy-level model given in
Table 5.3 and Fig. 5.6.

The basic idea of this method is that the natural signal is horizontally translated onto
the regenerated dose axis until it overlaps the regenerated signal. The length of the sliding
along the x-axis is taken as the equivalent dose (Buylaert et al. 2012; Frouin et al. 2015).

To test this hypothesis we executed numerical simulations and first measurements. The
numerical solutions indicate a good dose recovery when using the protocol presented in
Table 5.6. In this example an unknown dose of 1 ks (60Gy) was successfully recovered
by our approach, see Fig. 5.10. To reset the signal a preheat to 500 ◦C was executed
and subsequently the regenerated curve was measured. We now explain the measurement
protocol in detail (see Table 5.6):

Step 1) is necessary to avoid sensitivity changes during UV-RF measurements/simulations
(Friedrich et al. 2017a).

Step 2) gives a dose of 1 ks which has to be recovered by the protocol.
In step 3) a so called ’laboratory’ signal (RFlab) is simulated. This signal will be shifted

onto the x-axis towards the regenerated curve (see next step). This signal can be interpreted
as additive dose on the laboratory dose RFlab.
Step 4) describes a regenerative cycle: First a preheat to 500 ◦C to reset the UV-RF

signal and subsequently the measurement of the RFreg signal is executed. Note that the
RFreg signal also starts at 0 ks but is superimposed by the RFdose signal.
Now the RFlab signal is shifted along the x-axis until congruence with the regenerated

curve RFreg is reached (red arrow). The dashed vertical line in Fig. 5.10 at 1 ks indicates
the calculated equivalent dose and the best match between RFlab and RFreg. This is the
dose which was applied before in RFlab.
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STEP DESCRIPTION EXPLANATION
1 Preheat to 500 ◦C for 120 s and RF at RT for 2 ks (5 times) Signal stabilisation
2 Preheat to 500 ◦C for 120 s and RF at RT for 1 ks (RFdose) Irradiation
3 RF for 1 ks (RFlab) ’Natural’ signal
4 Preheat to 500 ◦C for 120 s and RF at RT for 10 ks (RFreg) Regeneration

Table 5.6: Protocol for dose recovery with UV-RF.
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Figure 5.10: Simulations of the protocol given in Table 5.6. Curve RFlab is shifted along the x-axis
until congruence with the regenerated curve RFreg is reached. In that way, the dose given in RFdose

can be determined. Note that RFdose and RFreg are on top of each other because after step 1 in
Table 5.6 no sensitivity changes are expected.

For a detailed explanation of the shifting mechanism, see Frouin et al. (2017: Fig. 1)
and for calculation details see the function analyse_IRSAR.RF() in the R-package
’Luminescence’ (Kreutzer et al. 2012, 2017b). First measurements are promising regarding
the recovery of RFdose and further results will be presented in Sec. 8.2.

5.6 Conclusion

We investigated the dose rate dependence for UV-RF signals of natural quartz. Dose rates
ranging from 10 – 500mGy s−1 were used to detect the UV-RF signal from 3.37 – 3.47 eV
(C band). We observed:

1. Both natural quartz samples (two sedimentary quartz samples from different ori-
gin (geology, evolution, depositional environment), BT586 and FB) show a similar
behaviour.

2. The higher the dose rate, the higher is the RF signal intensity in the C band.
3. The measured signal intensity of the C band grows linearly with the dose rate.
4. The measured initial slope of the C band grows linearly with squared dose rate.
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5.7 Acknowledgements

5. All experiments support theoretically derived results.
6. Fitting experimental results to theoretically derived functions showed that the decay

rate of the UV-RF curves is linearly dependent on the dose rate.
7. Our numerical simulations are capable of mimicking the experimental results. We

showed that UV-RF signal production appears to be mainly an interplay between R-
and L-centres. The three-energy-level model as well as the comprehensive model are
able to reproduce the experimental results.

8. Numerical solutions and first measurements showed that it is possible to recover an
absorbed dose of 60Gy using quartz UV-RF.
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Abstract

Thermal quenching is a well-known phenomenon in quartz, which describes the decrease in
luminescence efficiency (light output) with sample temperature. In the present work, the
UV radiofluorescence (RF) signals of three different quartz samples during cooling from
500 ◦C to room temperature were monitored and analysed. Resulting thermal quenching
parameters W (activation energy) and K (constant) agree with published values, except for
one sample. Another quenching process in quartz is the reduction of luminescence sensitivity
following irradiation (dose quenching), mainly known for TL and OSL of old samples with
large palaeodoses. Here, the intensity of the 110 ◦C TL peak and the OSL signal were
used to monitor the dose quenching effect. UV-OSL and UV-TL signals are analysed and
found to be very similar. The UV-RF recorded during irradiation in between repeated
cycles of TL and OSL measurements differs at high doses from a continuously recorded
reference signal. Furthermore, numerical simulations are presented to decipher the charge
transport processes in quartz. In summary, thermal quenching simulations are capable of
mimicking experimental findings and confirm that UV-RF is a valuable tool to determine
thermal quenching parameters. Dose quenching simulations differ from experimental results
in the high dose range but help to understand the basic principle of dose quenching: charge
competition of different centres.
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6.1 Introduction

The mineral quartz has been studied intensively for thermoluminescence (TL) and optically
stimulated luminescence (OSL) in dosimetry and dating applications. In this respect, it is of
paramount importance to understand the response of luminescence signals to variables such
as the absorbed dose or the temperature before and during measurement. For instance, the
effect of thermal quenching in quartz is known latest since the observation by Wintle (1975)
and has become subject to several publications during the last decades (e.g., McKeever
& Chen (1997), Nanjundaswamy et al. (2002), Petrov & Bailiff (1997), Schilles et al.
(2001), and Subedi et al. (2011)). It describes the decrease of luminescence production
efficiency with rising sample temperature (Aitken 1985; Wintle 1975), and the Mott-Seitz
mechanism can be used to illustrate this quenching process: An electron in the excited
state of the luminescence centre can undergo either a radiative transition to the ground
state or a thermally stimulated, but non-radiative transition, while the probability for
the non-radiative pathway increases with temperature (Bøtter-Jensen et al. 2003; Pagonis
et al. 2010). The luminescence efficiency I(T ) as a function of sample temperature can be
quantified in the form of Eq. (6.1) (Gurney & Mott 1939; Wintle 1975).

I(T ) =
1

1 + K · exp
(
−W
kB ·T

) (6.1)

In Eq. (6.1), W [eV] is the activation energy for the quenching process, K is a constant, kB
is the Boltzmann constant [eV K−1] and T is the absolute temperature [K]. Quartz is well
known to exhibit thermal quenching of the luminescence responsible for the so-called 325 ◦C
UV-TL peak (Wintle 1975). Emission spectra indicate that the OSL emission, detected
in the UV, is produced by the same type of recombination centre as the 325 ◦C UV-TL
peak (Franklin et al. 1995; Spooner 1994). Wintle (1975) performed RF measurements to
determine the thermal quenching activation energy W in quartz. Therefore, the sample was
heated at a constant rate from room temperature (RT) to ∼ 380 ◦C during RF detection
centred at 465 nm. As mentioned by Poolton et al. (2001), this can produce an overlay of
TL and RF signals, which is not the same linear combination of TL and RF (if measured
separately) at all temperatures, since the deep traps have longer filling times than the
shallow traps. Own measurements confirmed this effect, hampering the determination of the
quenching energy. To circumvent this limitation, Levy (1991), Petrov & Bailiff (1997), and
Poolton et al. (2001) suggested measuring RF while cooling the sample, e.g., from 500 ◦C
to RT. This approach has the advantage that TL traps (leading to peaks in the range
20 – 500 ◦C) do not contribute to the RF signal. Poolton et al. (2001) successfully determined
quenching energies for quartz in that way and obtained results comparable with the values
determined by Wintle (1975) and Schilles et al. (2001), the latter obtained by spectrally
resolved TL. The phenomenon of thermal quenching was simulated by Pagonis et al. (2010)
by solving ordinary differential equations (ODEs) describing the Mott-Seitz effect.
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6.2 Materials and methods

Another quenching effect in quartz is so-called ’dose quenching’. This term describes the
reduction of luminescence efficiency following irradiation (Bailey 2001, 2004). Other names
for this effect are ’radiation quenching’ (Huntley et al. 1996) or ’R-fading’ (Shlukov et al.
1993). Shlukov et al. (1993) reported a decrease of their dose-response curve (for the TL
peak at 300 ◦C) at the initial stage (0 – 2,500Gy) instead of a growth for a quartz sample
in natural dose saturation. For larger doses (> 2,500Gy), the dose-response curve increases
again. They also mentioned that the higher the initially absorbed dose, the higher is the
effect of dose quenching. Similar observations were made for OSL by Godfrey-Smith (1991)
and Huntley et al. (1996) for old samples (natural radiation dose ∼ 600Gy).
The nature of the TL, OSL, and RF UV-emissions of quartz were widely investigated

(e.g., Fasoli & Martini (2016), Itoh et al. (2002), and Martini et al. (2009, 2012)). The reader
is referred to these publications for an overview of the role of different ions for luminescence
production.

To better understand quenching processes in quartz, we performed UV-RF measurements
on three different quartz samples. The RF signal of quartz provides the unique opportunity
to directly observe changes in luminescence efficiency either simultaneous to temperature
change (thermal quenching) or incrementally during repeated additive irradiation (dose
quenching). We show that RF measurements are a means to determine thermal quenching
parameters in an easy-to-apply procedure. We also demonstrate that dose quenching
processes are tightly coupled to changes in UV-RF signals. Furthermore, dose quenching
simulations were performed to present a possible mechanism for dose quenching in quartz;
they suggest that charge competition between centres is the main reason for this effect, in
agreement with the findings of Bailey (2001, 2004).

6.2 Materials and methods

6.2.1 Quartz samples

Three natural quartz samples were chosen for the measurements: (1) The quartz fraction
was extracted from a colluvial sample originating from the Trebgast valley in the north-west
of Bayreuth, Germany (lab code BT586; Kolb et al. (2016)). (2) A second sample (lab code
BT1195) was extracted from the quartz ridge ’Pfahl’ (Bavarian Forest, Germany), which
is one of the largest hydrothermal quartz veins in Germany. This sample was prepared
under daylight conditions and gently crushed with a steel mortar with frequent sieving in
between. (3) The third sample was extracted from Oligocene coastal dune sand from the
Fontainebleau Sand Formation (France; batch FB with used subsamples FB1A and FB2A)
and annealed at 490 ◦C for 30min, for details see Kreutzer et al. (2017b)). For thermal
quenching measurements sample FB1A, and for dose quenching measurements FB2A was
used. Subsequent chemical treatments for samples BT586 and BT1195 followed routine
preparation procedures for quartz luminescence dating samples to enrich the quartz fraction
(e.g., Preusser et al. (2008)). These are: HCl (30%), H2O2 (30%), density separation
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using sodium-polytungstate, HF (40% for 60min). While sample BT586 was not exposed
to daylight, BT1195 was bleached in a home-made solar simulator (2 h with an Osram
Duluxstar lamp). For BT586 and BT1195 the used grain size fraction is 90 – 200µm, for
FB 150 – 250µm.

UV-RF studies were already published for sample BT586 (Friedrich et al. 2017a,c, 2018)
and for BT1195 (Friedrich et al. 2017a). A detailed kinetic analysis of the 110 ◦C TL peak
for sample FB is presented by Schmidt et al. (2018).

6.2.2 Measurement conditions

All measurements were carried out on Freiberg Instruments lexsyg research readers (Richter
et al. 2013) at the luminescence laboratories in Bayreuth (thermal quenching experiments)
and Bordeaux (dose quenching experiments). For thermal quenching measurements six
aliquots per sample and for radiation quenching, two aliquots per sample were measured.

6.2.2.1 Setup for thermal quenching measurements

The reader in Bayreuth is equipped with a 90Sr/90Y β-source (∼ 3.3Gy min−1, calibrated for
coarse grain quartz on stainless steel cups) and specifically designed for RF measurements
(Richter et al. 2012). Luminescence was recorded through a Delta BP 365/50 EX interference
filter (5 mm) in front of a Hamamatsu H7360-02 photomultiplier tube allowing detection of
the UV-RF signal between 315 nm and 415 nm. The channel time for the RF measurements
was set to 1 s throughout all measurements. Further details on the UV-RF experiments are
given in the text below.

6.2.2.2 Setup for dose quenching measurements

For dose quenching measurements in Bordeaux the lexsyg research was equipped with a
Hoya U340 glass filter (2.5mm) in conjunction with a Semrock BrightLine HC 340/26
(5mm) in front of a Hamamatsu H7360-02 photomultiplier tube. The OSL signal was
stimulated using blue LEDs (458 nm, 26mW cm−2) for 40 s and recorded at 125 ◦C. TL
signals were recorded through a Schott-KG 3 glass filter (3mm) in conjunction with a
Delta BP 365/50 EX interference filter (5mm). During TL measurements, the samples were
heated from RT to 160 ◦C with 2K s−1. The channel time for all OSL or TL measurements
was 0.1 s. For RF measurements in Bordeaux, the setup was similar to that used in Bayreuth
(Sec. 6.2.1). If not reported otherwise, preheating the samples was performed with a heating
rate of 5K s−1.

6.2.3 Data analysis

Data analysis was carried out using the R-package ’Luminescence’ (Kreutzer et al. 2012,
2017a; R Core Team 2017). For simulating the UV-RF signals, the R-package ’RLumModel’
(Friedrich et al. 2016, 2017b) was used.
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6.3 Measurements

6.3 Measurements

6.3.1 Thermal quenching

For determining the thermal quenching activation energy of the quartz samples in the UV,
the sequence as follows was used:

1. Stabilisation: 5 cycles of preheating to 500 ◦C with 5 K s−1 and irradiation with
120Gy

2. Preheat to 500 ◦C for 120 s
3. Detection of RF during cooling from 500 ◦C to RT with 1K s−1.

A stabilisation step was performed to omit a sensitivity change during the main measure-
ment in step 3. It is known from previous UV-RF studies that RF sensitivity changes in the
course of repeated cycles of preheating and irradiation (Friedrich et al. 2017a; Martini et al.
2012). In step 3, the same cooling ramp as mentioned in Poolton et al. (2001) of 1K s−1

was used. For all UV-RF curves, the signal normalised to the first data point was plotted
against temperature after subtraction of steady emission, as suggested in Wintle (1975).
The lexsyg research reader records the real temperature of the thermocouple. Thus it is
possible to fit Eq. (6.1) to actual temperature data instead of using a nominal, extrapolated
or recalculated temperature scale. Equation (6.1) was fitted to the measured data where K
was chosen such that

K = exp

(
W

kB · T1/2

)
, (6.2)

where T1/2 is the temperature at which the UV-RF curve reaches half of its initial intensity
(Wintle 1975). Figure 6.1 shows the result of the UV-RF measurements and the corresponding
fit using Eq. (6.1) for sample BT1195. Note that the UV-RF curve was detected during
cooling, but Fig. 6.1 shows the x-axis in increasing order; T1/2 is ∼ 150 ◦C. The observation
of Fig. 6.1 is: The higher the measurement temperature, the lower is the UV-RF intensity,
following Eq. (6.1). Table 6.1 summarises the results of all three samples. The quenching
energies W and constants K for samples BT1195 and FB1A are in the range 0.63 – 0.66 eV
and 3 – 9 E+07, respectively. These results are in agreement with published values (Poolton
et al. 2001; Schilles et al. 2001; Wintle 1975); for a comprehensive comparison see Table 1 in
Subedi et al. (2011)). Sample BT586 shows smaller values than expected:W = 0.51±0.02 eV
and K = 2± 2 E+06. Poolton et al. (2001) and Schilles et al. (2001) used annealed quartz
for their experiments. For comparison, we annealed sample BT586 for 10min at 500 ◦C
in the muffle oven and the results for W and K slightly changed: W = 0.55 ± 0.01 eV,
K = 5.3± E+06. In addition to that, we also evaluated thermal quenching parameters for
sample BT586 without any stabilisation of the UV-RF signal (step 1 in our sequence) and
obtain significant lower values: W = 0.44± 0.03 eV, K = 3±2 E+05. Further discussion
of the results is given in Sec. 6.5.1.
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Figure 6.1: Normalised UV-RF curve during cooling from 500 ◦C to RT with 1K s−1 for sample
BT1195. Also included is the fit to Eq. (6.1) (green).

BT586 BT1195 FB1A
W [eV] 0.51 ± 0.02 0.63 ± 0.03 0.66 ± 0.02
K 2 ± 2 E+06 3 ± 2 E+07 9 ± 4 E+07
T1/2[

◦C] 144 ± 1 155 ± 1 149 ± 1

Table 6.1: Summary of arithmetic average of W , K and T1/2 derived from fitting of Eq. (6.1)
and (6.2) to the experimentally obtained RF curves. The given uncertainty range (1σ standard
deviation) reflects the variety of different aliquots.
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Figure 6.2: (a) UV-RF curves (b) UV-TL
curves from quartz sample FB2A. For graphical
reasons only nine out of 100 measured curves are
shown. The sequence with which these results
were obtained, is described in detail in Sec. 6.3.2
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Figure 6.3: (a) UV-RF curves (b) OSL curves
from quartz sample BT1195. For graphical rea-
sons only nine out of 100 measured curves are
shown.

6.3.2 Dose quenching

In this study, two different methods were used to observe dose quenching in quartz: (1)
Indirectly via the 110 ◦C UV-TL peak and the initial OSL signal and (2) directly by
measuring the UV-RF signal. Hence, the following sequence was applied:

1. Preheat to 500 ◦C with 5K s−1 for 120 s
2. Measure RF for 100 s (∼ 6Gy) at RT
3. Measure TL to 160 ◦C with 2K s−1 or OSL at 125 ◦C for 40 s
4. Repeat steps 2. and 3. 100 times

Step 1 was necessary for two reasons: (1) For enhancing the sensitivity of the TL and
OSL signal and (2) for measuring a decreasing RF curve (Friedrich et al. 2017a,c). Step
2 serves as a direct indicator of dose quenching, whereas step 3 represents the indirect
indicators, i.e. TL and OSL measurements. Steps 2 and 3 were repeated 100 times until an
accumulated dose of ∼ 600Gy was absorbed. Furthermore, a single RF curve was recorded
for 10,000 s (also ∼ 600Gy) for comparison with the discontinuous RF measurement when
recording TL or OSL in between.
Figure 6.2 shows the results when using the 110 ◦C TL peak as an indicator of dose
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6 Radiofluorescence as a Detection Tool for Quartz Luminescence Quenching Processes

quenching for sample FB2A, while Fig. 6.3 analogously displays OSL curves for sample
BT1195. For both approaches we observed the following similarities:

• A decreasing UV-RF signal (as expected after sequence step 1; Friedrich et al. (2017a,c)
and Martini et al. (2012); see subfigures (a)).

• The behaviour of the indicator signals (TL in Fig. 6.2 (b), OSL in Fig. 6.3 (b)) is
similar: From the first to the twelfth measurement, a decrease in signal intensity was
observed. For subsequent measurements, the differences become small and can hardly
be discriminated in the plot.

Figures 6.4 and 6.5 provide further insight into the signal characteristics. The behaviour
for all 100 UV-RF and UV-TL signals during the sequence is shown in Fig. 6.4 for samples
(a) BT1195 and (b) FB2A. The signal ’RFinitial’ is always the second channel of each UV-RF
measurement since the first channel is affected by the opening of the shutter in front of the
β-source. ’RFref ’ is the reference UV-RF measurement without TL or OSL measurements
in between. ’TLmax’ is the integrated signal including ± 5 channels from the maximum
TL signal and ’OSLmax’ is the first second of the OSL signal. To compare RF, TL, and
OSL signal dynamics across the 100 measurement cycles, all results were normalised to the
first measurement. All three quartz samples (BT586 not shown here) reveal similar relative
signal changes.

• The RFinitial signal decreases until ∼ 150Gy and shows a small but steady increase
until the end of the measurement.

• The RFref signal decreases during the entire measurement. Note that RFref and
RFinitial are not superimposable and the decrease of the reference signal is steeper
than that for the RFinitial signal.

• TLmax and OSLmax decrease until a cumulative dose of ∼ 100Gy and ∼ 100 – 200Gy,
respectively, and then show an increase during further measurement cycles, but do
not retain the initial signal intensity.

The reason for the decreasing and afterwards increasing TL and OSL signals will be
explained, supported by numerical simulations, in Sec. 6.4.2.
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Figure 6.4: Combined signals for quartz sample (a) BT1195 and (b) FB2A for dose quenching
measurements with the 110 ◦C TL peak as quenching indicator. In each graph, the second RF
channel, the integrated (± 5 channels from maximum) TL signal and the RF reference signal are
plotted against dose.
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Figure 6.5: Combined signals for quartz (a) BT1195 and (b) FB2A for dose quenching measure-
ments with the initial OSL signal as quenching indicator. In each graph, the second RF channel,
the integrated (first second) OSL signal and the RF reference signal are plotted against dose.
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6.4 Simulations

6.4.1 Defining the model

The model used for numerical simulations is the same as presented in detail in (Friedrich
et al. 2017a) and is implemented in the R-package ’RLumModel’ version 0.2.3 (Friedrich
et al. 2016, 2017b). Since version 0.2.0, it is possible to simulate the process of sample
irradiation during heating or cooling. The input parameters for W and K in the simulations
were set to 0.64 eV and 2.8 E+07, respectively. For both thermal and dose quenching, the
same model parameters were used and the sequences for the simulations are identical to
those described in the experimental part in Sec. 6.3.1 and 6.3.2. Note that in Friedrich et al.
(2017a) a dose rate for RF simulations lower by a factor of 10 was assumed in every RF
step. This was equalised by multiplying the time by a factor of 10. In that way, the total
absorbed dose was the same as in the experiments.

6.4.2 Matching experimental results and simulations

6.4.2.1 Thermal quenching

Figure 6.6 shows the result of the simulation for RF during cooling from 400 ◦C to RT with
1K s−1. The qualitative behaviour of the simulated UV-RF curve is very similar to the
experimental data presented in Fig. 6.1. When fitting the data in the same way as described
in Sec. 6.3.1, we obtain values of W = 0.67 eV and K = 5.82 E+07, which are very close
to the input parameters of the model, W = 0.64 eV and K = 2.80 E+07. This agreement
indicates that the UV-RF recorded during sample cooling seems to be an appropriate means
for accurately determining the thermal quenching parameters in quartz.

6.4.2.2 Dose quenching

Numerical solutions allow an insight into the change of charge concentration at distinct
energy levels over time. Figure 6.7 (a) shows the numerical results for UV-RF simulations,
and comparison with experimental data shown in Figs. 6.2 (a) and 6.3 (a) demonstrates
similar change in signal intensity over measurement cycles, e.g., a decreasing signal for the
first RF measurement. The qualitative behaviour of the simulated TL signal in Fig. 6.7 (b)
is also comparable to the measured TL signals in Fig. 6.2 (b). A striking difference, however,
is the behaviour of the signals RFinitial and RFref . In the simulations, almost no discrepancy
between these signals is observed, while our experiments (see Figs. 6.4 and 6.5) clearly show
deviations for cumulative doses exceeding ∼ 50Gy. Figures 6.8 (a) and (b) reveal good
agreement between numerical simulations and experimental data for the OSL experiments.
In this case, in contrast to Fig. 6.7 (c), the signal for RFref and RFinitial are diverging
for higher doses. However, in the experiments described in Sec. 6.3.2, the RFref signal is
below the RFinitialsignal. This is not the case for the numerical simulations and needs further
investigations to see whether this is just a particular case for the used parameter set or
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Figure 6.6: Simulated UV-RF curve during cooling from 400 ◦C to RT with 1K s−1. The used
parameter set is the same as that presented in (Friedrich et al. 2017a). Used parameters for W and
K were 0.64 eV and 2.8 E+07, respectively. The fit returns values in the same range as the inserted
parameter values (W = 0.67 eV, K = 5.82 E+07).
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Figure 6.7: Simulated dose quenching experiment with the 110 ◦C TL peak as indicator. Subfigure
(a) shows the simulated RF curves, (b) the simulated 110 ◦C TL peak and (c) the combined signals
including a reference RF signal, as described in Sec. 6.3.2.

a general behaviour of the selected model. Nevertheless, as a first attempt and without
modifying any parameters from the parameter set of Friedrich et al. (2017a) an acceptable
agreement between experiments and simulations is obtained. Further investigations to
determine the differences between simulations and experiments are required, but beyond
the scope of this study.

To explain the similar behaviour of TL and OSL signals during the experimental sequence,
we investigated the charge concentrations in related traps and centres by looking specifically
at three different energy levels in the simulations: The reservoir centre R, the luminescence
centre L and the 110 ◦C TL trap or the OSL fast component trap. For more details of the
energy levels and their comprehensive description, see Bailey (2001). Figure 6.9 shows the
normalised (to the highest point of each signal) charge concentrations in these traps and
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Figure 6.8: Simulated dose quenching experiment with OSL as indicator. Subfigure (a) shows the
simulated RF curves, (b) the simulated OSL decay curve and (c) the combined signals including a
reference RF signal, as described in Sec. 6.3.2.
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Figure 6.9: Charge concentrations in different energy levels normalised to the highest value of
each concentration. Beyond ∼ 150Gy, the hole concentration in the L-centre begins to increase
what is the reason for the increasing luminescence signals.

centres for the sequence making use of the 110 ◦C TL peak as quenching indicator. The
case for OSL was not shown here since we observed only minimal differences between OSL
simulations and the data displayed in Fig. 6.9. Thus, the following description should be
valid for both the OSL fast component trap and the 110 ◦C TL trap.

At the beginning of the simulation, the R-centre is empty due to the preheat to 500 ◦C,
while the L-centre hosts the highest concentration of holes. Note that a normalised concen-
tration of 1 does not imply that the trap/centre is completely filled, it indicates only the
highest filling level during the simulation. From cycle to cycle, the concentration of electrons
in the OSL fast component trap or the 110 ◦C TL trap decreases because the competition
between R-centre and OSL fast component trap or 110 ◦C TL trap for capturing electrons
during irradiation increases. At the same time, the concentration of holes in the R-centre
increases as well, while the concentration of holes in the L-centre remains nearly constant.
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Holes produced in the valence band prefer to occupy the R-centre since initially it is empty
and in the model the R-centre has a higher probability to capture a hole than the L-centre
(Friedrich et al. 2017a). This competition holds until ∼ 150Gy. Beyond ∼ 150Gy, the
concentration of holes in the R-centre and of electrons in the TL trap remains largely
constant. From there on, holes created during irradiation move preferentially into the
L-centre as the R-centre is not able to absorb more holes. This inflexion point marks the
dose where the TL and OSL signals in Figs. 6.4 and 6.5 increase again, driven by a higher
number of holes captured in the L-centre. To conclude, the TL and OSL signal behaviour
can be described by a two-step process:

1. Decrease of the signal intensities due to low charge concentration in the associated
electron trap,

2. increase of the signal intensities after the R-centre is saturated with holes and,
consequently, the concentration of holes in the L-centre increases gradually.

6.5 Discussion

6.5.1 Thermal quenching

Our results for thermal quenching parameters W and K, except for sample BT586, are
in agreement with other published values for quartz, e.g., Poolton et al. (2001), Schilles
et al. (2001), Subedi et al. (2011), and Wintle (1975). Sample BT586 is known to exhibit
a very slowly decaying UV-RF signal (see Fig. 1 in Friedrich et al. (2017a)) in contrast
to BT1195 (Fig. 2 in Friedrich et al. (2017a)). This particular characteristic could be an
indicator why this quartz behaves differently from all others. Many publications concerning
thermal quenching in quartz used annealed samples for their research (Poolton et al. 2001;
Schilles et al. 2001). Subedi et al. (2011) investigated the impact of preheating quartz before
determining thermal quenching parameters and reported no change in thermal quenching
parameters. Annealing quartz sample BT586 to 500 ◦C for 10min in the muffle oven shows a
slightly different result: This procedure increases the thermal quenching parameters W and
K by ∼ 8% and decreases the inter-aliquot scatter (smaller errors forW and K). We further
investigated the effect of stabilising the UV-RF signal before determining thermal quenching
parameters. The results for the thermal quenching parameters are significantly smaller
compared to those measured after cycles of preheating and irradiating. This observation
supports the idea that stabilising the signal is important to determine thermal quenching
parameters properly. Whereas Petrov & Bailiff (1997) and Poolton et al. (2001) determined
thermal quenching parameters by cooling the sample, Wintle (1975) heated her sample
during RF measurement. One reason why the approach by Wintle (1975) was working
could be the low dose rate of the used β-source (0.1Gy min−1). The RF measurements
done by Poolton et al. (2001) and the present study were performed with a dose rate of
4.5Gy min−1 and 3.3Gy min−1, respectively. However, further investigations are required
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to better understand this behaviour. Nevertheless, the approach using UV-RF to determine
thermal quenching parameters is very promising and easy to perform. The fitting is more
robust due to a larger number of data points compared to measuring thermal quenching by
use of TL or OSL curves.

6.5.2 Dose quenching

The phenomenon of dose quenching has not been given a lot of attention in the last decades,
although known and corrected for in pre-dose dating (Aitken 1985). In OSL, the effect
was observed when measuring old samples which are probably in-field saturation (Huntley
et al. 1996). For our experiments, we decided to include a preheat to 500 ◦C for 2min
before measurements because we assume that this has nearly the same effect as a long
storage of the mineral, concerning the centres: The R-centres are thermally unstable over
long time scales and hence are occupied by holes only to a small fraction (Bailey 2001).
The same effect can be mimicked by a preheat. With this assumption, the dose-response
curves for TL and OSL were analysed and compared to known phenomena in literature.
The dose-response curves for saturated quartz samples in Shlukov et al. (1993) and Huntley
et al. (1996) for TL and OSL, respectively, showed a decrease in luminescence intensity after
a laboratory dose was given. Shlukov et al. (1993) also reported increasing dose response
after ∼ 2.5 kGy and named this effect ’dose pit’ (Fig. 4 in their publication). This effect
was not reported explicitly for OSL by Huntley et al. (1996). However, studying Fig. 8 in
Huntley et al. (1996) in detail, an increasing signal after ∼ 400Gy is observable. A common
observation by Shlukov et al. (1993) and Huntley et al. (1996) was that the greater the
initial charge (or: the older the sample), the greater the effect of dose quenching. This is in
accordance with the explanation given in Sec. 6.4.2.2: The older the sample the higher the
probability to get less populated R-centres and the greater the effect of observing a more
intense luminescence signal in the first measurement than for subsequent measurements
because there is no competition between R- and L-centres in the first measurement.

6.5.3 Limitation of our study

To support our interpretations, we performed simulations based on energy-band models.
Such models are of phenomenological nature and usually do not consider the nature of
lattice defects (traps and centres), which are bound to their geological origin and history
(cf. Preusser et al. (2009) for an overview). In the future, it might be worthwhile to link our
observations to luminescence characteristics found for specific lattice defects.
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6.6 Conclusions

This study investigated the use of UV-RF signals as an indicator of thermal and dose
quenching processes in natural quartz. Three such samples with different pre-treatments
were analysed to draw general conclusions for quenching processes in quartz luminescence.
Furthermore, we presented numerical studies to explain the experimentally obtained results.

In the case of thermal quenching, we presented measurements which combined cooling a
sample from 500 ◦C to RT with recording the UV-RF signal, from which the quenching
parameters W and K can be calculated directly. Our results for two out of three quartz
samples (FB1A and BT1195) with W and K ranging from 0.63 eV to 0.66 eV and from 3
to 9 E+07, respectively, and are in accordance with published values (for the UV region),
except for sample BT586. Here we obtained W = 0.51± 0.02 eV and K = 2± 2 E+06.
Further investigations concerning the effect of pre-treatment before determining thermal
quenching parameters yielded that cycles of annealing and irradiation are important to
obtain robust values for W and K. Numerical simulations lead to a good match between
modelled data and experiments. The main advantages of the here presented UV-RF method
are:

• Direct observation of centre-driven processes leading to thermal quenching, without
interference from electron traps,

• rapid measurements with an easy-to-apply sequence,
• robust fitting due to a large amount of recorded data points.

We observed dose quenching in two different ways: We used the 110 ◦C TL peak and the
initial OSL signal as indirect indicator for quenching with increasing dose and compared
these signals with measured RF signals (direct indicator) for a sequence of 100 consecutive
cycles, each consisting of RF (6Gy) and subsequent OSL/TL measurement. Both signals
(TL and OSL) show a similar behaviour for all quartz samples: after a strong reduction of
the signals until ∼ 150Gy, the signals increased until the end of the measurements (600Gy).
This supports the idea that the 110 ◦C TL signal and OSL share the same recombination
centres (Bailey et al. 1997; Chen et al. 2000; Franklin et al. 1995; Martini et al. 2009).
The increasing TL/OSL signals beyond ∼ 150Gy can be explained by saturated R-centres
and hence an increasing hole population in the L-centre and consequently a higher signal
intensity.

Unexpected was the behaviour of the signal RFref measured without any TL or OSL
measurements in between the cycles, in contrast to the RFinitial signal. Both signals
behave differently for high doses in the sense that the RFinitial signal shows a higher
intensity than the continuously measured RFref signal. This effect was not observed in
the numerical simulations. An explanation may be a kind of recuperation effect between
two RF measurements (pers. communication with M. Fasoli) but this effect needs further
investigations.
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Abstract

The pre-dose effect is one of the most well-known phenomena in quartz luminescence. It
refers to an increase in dose sensitivity subsequent to radiation pre-exposure and annealing.
A theoretical description of this phenomenon exists since the 1970s and is widely used in
recent luminescence models. However, also the opposite effect has been described, the less
known ’UV-reversal’ effect which reduces the luminescence sensitivity due to illuminating
the sample with far UV light. Both effects were detected with thermoluminescence (TL)
following a small test dose and observing the effect indirectly using the response of the
110 ◦C peak. We here present a more direct measurement of both phenomena via UV-
Radiofluorescence (UV-RF), which is the luminescence emitted during irradiation. Therefore,
the need of a TL measurement is obsolete. Furthermore, we were able to calculate a time
rate of eviction of holes from the luminescence centre and implement this value into existing
models to obtain a more comprehensive description of quartz luminescence. Numerical
simulations are in good agreement with experimental data.
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Radiofluorescence

7.1 Introduction

Understanding charge transfer in quartz is of interest for a wide ranges of topics, especially
for luminescence dating and dosimetry. During the last few decades different models were
developed to explain luminescence production in minerals, starting with Halperin & Braner
(1960) who were the first attempting to describe a single thermoluminescence (TL) peak
based on three coupled first-order differential equations. These equations describe the
transfer of electrons during heating. It has been known for a long time that irradiating
and annealing quartz leads to dose-dependent sensitivity changes, also known as pre-dose
effect. Zimmerman (1971) published an interpretation for this phenomenon which has
commonly been accepted and implemented in more recent models (e.g., Bailey (2001), Chen
& Leung (1999), Friedrich et al. (2017a), and Pagonis et al. (2008)). The basic energy level
scheme given by Zimmerman (1971) includes one electron trapping state (T) and two hole
states: reservoir (R) and luminescence (L) centres. During the excitation by β-radiation or
γ-rays, electrons are raised from the valence to the conduction band, and can be localised
in the trapping state T. Defect electrons (holes) can be captured by the R- or L-centre.
Annealing to high temperatures (> 500 ◦C) sensitises quartz by redistributing holes from
non-luminescent centres (R-centre) to luminescence centres (L-centre) within the crystal
lattice. The findings by Zimmerman (1971) suggested that this effect can be reversed by
illuminating the sample with far UV light (UVC, 240 nm).
Zimmerman’s experiments are summed up here: She pre-dosed quartz samples and

measured the UV-TL sensitivity. After bleaching with UV light the samples were rapidly
heated to different temperatures and the TL sensitivity being determined after each heating.
The TL sensitivity after the UV bleaching was compared to the sensitivity before and the
results showed that heating to 150 ◦C or 500 ◦C resulted in 40% and 95% of the prior
TL sensitivity, respectively. From these findings Zimmerman (1971) suggested that the
effect of UV bleaching is primarily the opposite of the effect of heating (UV-reversal effect).
We can thus ascertain that all results were obtained indirectly via TL measurements. The
aim of this study is to show the UV-reversal effect more directly via radiofluorescence
measurements in the UV (UV-RF). Previous studies showed basic characteristics of UV-RF
signals (Friedrich et al. 2017c):

• A decreasing UV-RF signal over time is expected when almost all of the holes are
located in the L-centre (e.g., after strong annealing). The more holes are localised in
the L-centre, the higher is the UV-RF intensity (linear relationship).

• No signal dynamics over time is expected when no significant amount of charge
carriers is located either in the R- or the L-centre.

• In theory, an increasing signal over time is expected when most of the holes are
located in the R-centre.
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• Realising the last condition is difficult because heating transports holes most probably
in the L-centre while during irradiation both centres are being filled. Nevertheless,
numerical solutions in Friedrich et al. (2017c) showed that an increasing UV-RF signal
will be expected when almost all holes are located in the R-centre.

The main idea behind this study is to confirm the model developed by Zimmerman (1971)
more directly with UV-RF signals instead of TL signals after giving test doses (Zimmerman
1971). The hypotheses for our experiments are:

• We expect a less intense UV-RF signal after short UV bleaching times. According to
the model by Zimmerman (1971) the concentration of holes in the R-centre is now
higher than in the L-centre. Combining with the findings by Friedrich et al. (2017c)
this should lead to a less intense UV-RF signal.

• After very long UV bleaching times a very low concentration of holes in the L-centre
and a high concentration in the R-centre is expected. Consequently, we expect an
increasing UV-RF signal after UV bleaching.

• Annealing the samples to different temperatures after UV bleaching will partly restore
the hole distribution from before UV bleaching and thus a similar UV-RF signal
dynamics than prior UV bleaching is expected.

7.2 Material and methods

7.2.1 Quartz samples

We analysed three different quartz samples: (I) a natural sedimentary quartz (BT1248), (II)
quartz extracted from a colluvial sample originating from the Trebgast valley in the north-
west of Bayreuth, Germany (BT586; Kolb et al. (2016)) and (III) a coastal dune quartz
(FB1A; Kreutzer et al. (2017a) and Schmidt et al. (2018)). Sample FB1A was annealed
at 500 ◦C in the muffle oven for 30min, see Kreutzer et al. (2017a). Sample BT1248 was
annealed at 700 ◦C for 60min. The crystals were sieved to separate grains of 90 – 200µm
in diameter. Subsequent chemical treatments followed routine preparation procedures for
luminescence dating samples, described in Preusser et al. (2008) and especially for BT586
in Friedrich et al. (2017a) and for FB1A in Kreutzer et al. (2017a). For each measurement a
new aliquot with the same amount of grains was used, allowing a quantitative comparison of
the results. Figure 7.1 shows the emission spectra of two investigated quartz samples after
annealing the samples to 500 ◦C for 10min and recording the RF spectra with a dose rate
of 12Gy min−1. Note that this is the dose rate for Fig. 7.1 and not for the measurements
presented elsewhere in the study. The measurement conditions for recording the spectra are
the same as given in Friedrich et al. (2017c). In all samples a strong C band is apparent,
which decreases with measurement time (Fasoli & Martini 2016). The detection window of
the used photomultiplier (see Sec. 7.2.2) is covering the main emission peak at ∼ 3.42 eV.
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Figure 7.1: Radiofluorescence spectra measurements for two quartz samples. Different line types
indicate different times/doses during the measurement (solid line: ∼ 7Gy, dotted: ∼ 143Gy, dashed:
∼ 279Gy). A decreasing C band (peak maximum at ∼ 3.42 eV) is apparent in the two investigated
samples. Vertical dotted lines mark the detection window, limited by the used filter, see Sec. 7.2.2.

7.2.2 Measurement conditions

All measurements were carried out on a Freiberg Instruments lexsyg research reader (Richter
et al. 2013) at the luminescence laboratory in Bayreuth. The reader is equipped with a
90Sr/90Y β-source (∼ 3.6Gy min−1), calibrated for coarse grain quartz on stainless steel
cups. The β-source is specifically designed for RF measurements (Richter et al. 2012).
Luminescence was detected through a Chroma BP 365/50 EX interference filter in front
of a Hamamatsu H7360-02 photomultiplier tube allowing for a detection of the UV-RF
signal between 315 nm and 415 nm (3.94 eV and 2.99 eV, respectively, see Fig. 7.1). All
measurements were performed in a nitrogen atmosphere. The channel time for the RF
measurements was set to 1 s. Further details on the UV-RF experiments are given in the
text below. The UV-LEDs used for the bleaching experiments were produced by Seoul
Viosys (product name CUD7GF1B) and emit light with a peak wavelength of 275 nm, a
spectrum half width of 11 nm and an optical output power of 11.5mW. The LEDs were
mounted in a distance of 5 cm to the sample.

7.2.3 Data analysis

Data analyses were carried out using the statistical programming environment R (R Core
Team 2017) and the R-package ’Luminescence’ (Kreutzer et al. 2012, 2017b). For simulating
the UV-RF signals in Sec. 7.4.2 and for the comprehensive quartz model, the R-packages
’deSolve’ (Soetaert et al. 2012) and ’RLumModel’ (Friedrich et al. 2016, 2017b) were used.
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7.3 Quartz UV-RF measurements

7.3.1 Varying UV-bleaching times

In a first attempt, we varied the duration of the UV bleaching and measured the effect on
the UV-RF signal. Table 7.1 shows the measurement protocol: In step 1 a stabilisation was
performed to prevent sensitivity changes (Friedrich et al. 2017a). Step 2 is the reference
UV-RF measurement at room temperature (RT) before the UV bleaching (step 3). Finally,
RF is measured again after bleaching to detect changes caused by bleaching (step 4). We
varied the bleaching time in step 3 from 2min to 120min.

Step Description

1 Irradiate for 2 ks and anneal to 500 ◦C for 2min (5x)

2 Radiofluorescence for 2 ks at RT

3 UV bleach for different times

4 Radiofluorescence for 2 ks at RT

Table 7.1: Measurement protocol for varying bleaching times. All annealing steps were performed
with 5K s−1. For detailed information, see text.

Figure 7.2 shows results for every quartz sample. Subfigure (a) shows sample BT1248
after 10min UV bleaching, (b) BT586 after 40min and (c) FB1A after 120min. Different
line types indicate different measured aliquots. Note that there is a gap in time between the
red and the blue lines, which is indicated with the vertical line after 2,000 s. This marks
the bleaching event. The second RF measurement (step 4 in Table 7.1) was shifted to a
start time of 2,000 s to see the effect of UV bleaching. Figure 7.3 shows in detail the change
in the RF signal dynamics after different UV bleaching times for sample BT1248. All other
samples show a similar behaviour (not shown here). The UV-RF signals are normalised
to the last signal value at 2,000 s. A strong time dependency is evident, e.g., for bleaching
times > 20min the curve shape changes completely from a decreasing to an increasing
signal.

The ratio of the last channel of measurement step 2 to the first channel of step 4 is taken
as indicator of the UV bleaching effect. Figures 7.2 and 7.3 already indicate that the effect of
UV bleaching will be more intense after longer illumination times. A comprehensive analysis
of all used samples is given in Fig. 7.4. Different dot colours indicate different samples. For
every bleaching time two aliquots were measured per sample. The lines indicate a fit over
dots belonging to one colour. The used fitting equation was:

y = A · exp(−B · t) + C (7.1)

This equation describes an exponentially decaying function with time. Parameter A is a
scaling factor, B [s−1] acts as a decay parameter and C is the residual component. The
detailed estimation of the parameters is shown in Table 7.2.
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(c) FB1A 120 min

Figure 7.2: Typical results of different UV bleaching times for all measured quartz samples.
Subfigure (a) BT1248 after 10min UV bleaching, (b) BT586 after 40min and (c) FB1A after
120min. The vertical line indicates the bleaching event and different line types indicate different
measured aliquots.

164



7.3 Quartz UV-RF measurements

0.7

0.9

1.1

1.3

0 500 1000 1500 2000
Time [s]

N
or

m
al

is
ed

 R
F

 s
ig

na
l

Bleaching time [min] 2 4 8 10 20 40 60 120

Figure 7.3: Normalised (to the last data point) UV-RF curves of sample BT1248 after different
UV bleaching times ranging from 2min to 120min. Different line types indicate different measured
aliquots.
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Figure 7.4: RF ratio of the last channel before UV bleaching and first channel after UV bleaching
for all measured samples. The dots represent the mean value and the error bars the std. error for
all measured aliquots. The lines indicate a fit according to Eq. (7.1).

BT586 BT1248 FB1A
A 0.85 ± 0.04 0.76 ± 0.02 0.80 ± 0.05
B [s−1] 0.050 ± 0.006 0.047 ± 0.004 0.040 ± 0.007
C 0.09 ± 0.03 0.19 ± 0.02 0.23 ± 0.04

Table 7.2: Estimation of fitted parameters in Fig. 7.4 with std. error from fitting procedure.
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STEP DESCRIPTION
1 Anneal to 500 ◦C for 2min (5x)
2 Radiofluorescence for 2 ks at RT
3 UV bleach for 10min
4 Anneal to different temperatures from 200 ◦C to 500 ◦C
5 Radiofluorescence for 2 ks at RT

Table 7.3: Measurement protocol detecting the UV-reversal effect.

Table 7.2 identifies that the most sensitive parameter B is (within errors) identical for
all three samples. Parameters A and C are also comparable between all samples. Therefore,
we conclude that the UV bleaching characteristics of different quartz samples from different
geological origins are similar. These results will be used in Sec. 7.4 to simulate the UV
bleaching effect.

7.3.2 Detecting the UV-reversal effect

The UV-reversal effect was measured with the protocol given in Table 7.3: Step 1 and 2
correspond to step 1 and 2 in Table 7.1. The UV-bleaching was fixed to 10min. The next
step is the annealing to different temperatures and with step 5 the change in sensitivity
caused by step 4 by measuring UV-RF was detected.

Figure 7.5 contains representative examples for different annealing temperatures: Subfigure
(a) shows sample FB1A before (left side, red) and after (right side, blue) UV bleach and
annealing to 300 ◦C. Different line types indicate different aliquots. The two horizontal lines
show the UV-RF signal prior to UV bleach and annealing. In subfigure (b) an annealing
temperature of 500 ◦C is shown. Again, the horizontal lines indicate the primary UV-RF
signal. One aliquot (solid line) shows an almost complete recovery of the UV-RF signal. A
complete overview of all measured samples is given in Fig. 7.6 and a possible interpretation
of this analysis is:

• Temperatures < 300 ◦C are not able to recover the primary UV-RF signal completely.
• Samples BT1248 and FB1A show higher signal intensities than the primary UV-RF

signal for annealing temperatures of 350 ◦C and 400 ◦C.
• An annealing temperature of 500 ◦C is able to recover the primary UV-RF intensity,

even with higher intensities than the primary UV-RF signal.
• All three measured quartz samples behave similarly.
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Figure 7.5: Experimental results for sample FB1A before (red lines) and after (blue lines) UV
bleach and annealing to (a) 300 ◦C and (b) 500 ◦C. This corresponds to step 2 (red lines) and 5
(blue lines) in Table 7.3. Different line types indicate different measured aliquots. Horizontal lines
mark the initial signal intensity of step 2 and indicate if an annealing temperature is capable of
fully recovering this intensity.
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Figure 7.6: Recuperation of the primary RF signal (before UV bleaching) after UV bleaching
and annealing to different temperatures. The line indicates the mean of the two measured aliquots
(filled dots). Crosses are average values of the all measured aliquots.

7.4 Quartz UV-RF simulations

7.4.1 Defining the model

The simulation of the UV-reversal effect was already performed by Pagonis et al. (2006) but
for TL measurements and without determining a parameter for the time rate of eviction of
holes from the L-centre. In this study, this parameter as well as RF simulations were used
to reproduce the experiments described above. It was previously shown that it is possible to
simulate UV-RF phenomena with a three-energy-level model by solving the corresponding
differential equations (e.g., Friedrich et al. (2017a,c)). The model consists of a deep electron
trap and two recombination centres: The L-centre, which is radiative, and the R-centre, a
non-radiative competitor, also called reservoir centre. In contrast to former publications we
included a term in the equation for the L-centre (Eq. (7.4)) which describes the reduction
of the hole centre concentration in time due to UV bleaching. Note that this term also
changes the equation for the dnv

dt (Eq. (7.6)).

The following set of coupled differential equations describes the charge transport in
quartz:

dn

dt
= An · (N − n) · nc (7.2)

dm1

dt
= Am1 · (M1 −m1) · nv −B1 ·m1 · nc (7.3)
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dm2

dt
= Am2 · (M2 −m2) · nv −B2 ·m2 · nc −m2 · θm2 · P (7.4)

dnc
dt

= R−An · (N − n) · nc −B1 ·m1 · nc −B2 ·m2 · nc (7.5)

dnv
dt

= R−Am1 · (M1 −m1) · nv −Am2 · (M2 −m2) · nv +m2 · θm2 · P (7.6)

where M1 (cm−3) is the concentration of non-radiative hole centres with instantaneous
occupancy of m1 (cm−3), M2 (cm−3) is the concentration of radiative hole centres with
instantaneous occupancy of m2 (cm−3), N (cm−3) is the concentration of the electron
trapping state with instantaneous occupancy of n (cm−3 ). nc and nv are the concentrations
(cm−3) of the electrons and holes in the conduction band (CB) and valence band (VB),
respectively. R (cm−3 s−1) is the rate of production of electron-hole pairs, which is pro-
portional to the excitation dose rate, Am1 and Am2 (cm3 s−1) are the trapping probability
coefficients of free holes into centres 1 and 2, respectively. B1 and B2 (cm3 s−1) are the
recombination probability coefficients for free electrons with holes in centres 1 and 2, and An
(cm3 s−1) is the retrapping probability coefficient of free electrons into the active trapping
state N . θm2 is the time rate of eviction of holes in the L-centre. Parameter P is a scaling
value for the power density of the UV lamp. We choose a value of P = 0.014 to obtain the
best agreement with our experiments. Note that the last two parameters described are the
analogue to the bleaching terms of electron traps published in former quartz models (Bailey
2001, 2002; Friedrich et al. 2017a; Pagonis et al. 2008). The RF signal intensity obtained
from the recombination of electrons from the conduction band into the recombination centre
(L-centre) is given by:

I(t) = B2 ·m2 · nc (7.7)

7.4.2 Matching experimental results and simulations

The parameters for the calculations are similar to the ones by Friedrich et al. (2017a) (levels
5, 7, and 8). The parameter R is equivalent to 0.01Gy s−1 and the simulated sequences are
steps 2 to 4 in Table 7.1. Note that with Eq. (7.2) – (7.6) it is only possible to simulate the
RF and UV bleaching steps, not any heating. Therefore, we assumed that after step 1 in
Table 7.1 all holes are migrated towards the L-centre. Hence, the concentration of electrons
in the deep electron trap N and the concentration of holes in the L-centre are identical
because of charge neutrality. We set n0 = m20 = 1 E+09 and m10 = 0.
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PARAMETER VALUE UNIT DESCRIPTION
An 1 E-10 cm3 s−1 Conduction band to electron trap transition probability
B1 5 E-09 cm3 s−1 Conduction band to R-centre transition probability
B2 5 E-10 cm3 s−1 Conduction band to L-centre transition probability
Am1 5 E-07 cm3 s−1 Valence band to R-centre transition probability
Am2 1 E-09 cm3 s−1 Valence band to L-centre transition probability
M1 1 E+10 cm−3 Concentration of R-centre
M2 1 E+11 cm−3 Concentration of L-centre
N 5 E+10 cm−3 Concentration of electron trap
R 3 E+05 cm−3 s−1 Ionisation rate (pair production rate)
P 0.0140 Scaling value for the power density of the UV lamp
θm2 0.046 s−1 Time rate of eviction of holes from the L-centre

Table 7.4: Used parameters for the comparison between analytical and numerical solutions. No
heating steps were included in this simulation.

Table 7.4 shows the used parameters. It is important that during RF simulation P = 0

and R 6= 0 and during UV bleaching simulation P 6= 0 and R = 0.
Figure 7.7 shows the effect of the UV bleaching in the numerical model presented above.

As in the experimental part (Sec. 7.3.1) the duration of the UV bleach was varied from
2min to 120min. The black line in Fig. 7.7 shows the RF before UV bleach (step 2 in
Table 7.1) and the vertical line at 2,000 s indicates the UV bleaching step. Note that Fig. 7.7
is a summary of different runs of the models, each with another bleaching time. The colour
at the right hand side of the plot indicates different bleaching times, identical to those
used in the experiments. It can be noted that the behaviour is very similar to that seen in
Fig. 7.3:

• There is a clear loss in signal intensity after the UV bleaching step
• Bleaching times > 20min change the dynamics of the RF signal

Figure 7.8 shows the same analysis as Fig. 7.4 but for numerical simulations. All calcula-
tions were executed in the same way as for thee experimental data. Fitting of the curve
obtained from Fig. 7.8 was executed. Parameter B is comparable with the experiments from
Sec. 7.3.1. It is striking that parameter C is almost 0. This indicates that the bleaching is
so effective that no charge remains in the L-centre after long UV bleaching times, which
is contradictory to our findings from Sec. 7.3.1. The values for the fitted parameters are:
A = 0.98± 0.01, B [s−1] = 0.0434± 0.0008 and C = 0.01± 0.01.

7.4.3 Simulations with a more comprehensive model

The numerical model presented in Sec. 7.4.1 is a three-energy-level model with a limited
explanatory power. We now present a comprehensive quartz model which describes more
than the effects outlined in Sec. 7.3, e.g., the 110 ◦C TL peak or OSL behaviour. Therefore,
we merge the parameters presented in Table 7.4 and the ones published in Friedrich et al.
(2017a: Table 2) while omitting the R2-centre because it behaves similar to the R1-centre.
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Figure 7.7: Simulation of different UV bleaching times ranging from 2min to 120min. The vertical
line at 2,000 s marks the bleaching event.
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Figure 7.8: RF ratio calculated from Fig. 7.7. See Fig. 7.4 for the experimental analysis.
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LEVELS N [cm−3] E [eV] s [s−1] A [cm3 s−1] B [cm3 s−1] σ0 [s−1] Eth [eV] θ

1 110 ◦C TL 1.5 E+07 0.97 5 E+12 1 E-08 - 0.75 0.1 -
2 230 ◦C TL 1 E+07 1.55 5 E+14 1 E-08 - - - -
3 OSLF 1 E+09 1.7 5 E+13 1 E-09 - 6 0.1 -
4 OSLM 2.5 E+08 1.72 5 E+14 5 E-10 - 4.5 0.13 -
5 Deep 5 E+10 1.95 1 E+10 1 E-10 - - - -
6 R-centre 1 E+10 2 5 E+13 5 E-07 5 E-09 - - -
7 L-centre 1 E+11 5 1 E+13 1 E-09 5 E-10 - - 0.046
8 K-centre 5 E+09 5 1 E+13 1 E-10 1 E-10 - - -

Table 7.5: Model parameters used for simulating the data shown in Figs. 7.9 and 7.10. The
parameters for the deep electron trap, R- and L-centre are identical to the ones presented in
Table 7.4.

1 Geological dose irradiation of 1,000Gy at 1Gy s−1 at 20 ◦C
2 Relaxation stage - 60 s at 20 ◦C
3 Geological time - heat from 20 ◦C to 350 ◦C at 5 ◦C s−1

4 Relaxation for geological time, 60 s at 20 ◦C
5 Illuminate for 100 s at 200 ◦C - repeated daylight exposures over long time
6 Relaxation stage - 60 s at 20 ◦C
7 Burial dose - 50Gy at 20 ◦C at 10−11 Gy s−1

8 Relaxation stage - 60 s at 20 ◦C
9 Preheat to 500 ◦C for 120 s
10 Radiofluorescence for 2 ks at 20 ◦C with R = 3e5

11 UV bleach at 20 ◦C for different times
12 Radiofluorescence for 2 ks at 20 ◦C with R = 3e5

Table 7.6: The simulation steps for the UV-RF simulation with the comprehensive model. Steps 9
to 12 represent the simulated measurements in the laboratory and are comparable with steps 1 to 4
in Table 7.1.

Table 7.5 shows the used parameters (nomenclature identical to Bailey (2001)) for the
comprehensive model. Now we are able to simulate also heating events and the complete
used sequence is listed in Table 7.6.
Figure 7.9 summarises the results of the UV-bleaching with the full quartz model.

Subfigure 7.9 (a) is qualitatively comparable with Fig. 7.7. The signal intensity is different
because more traps are available and able to capture electrons, resulting in a reduced
recombination rate. This finding is in accordance with Friedrich et al. (2017a). In contrast
to that, subfigure 7.9 (b) is quantitatively comparable with Fig. 7.8. This confirms that
the suggested mechanism of bleaching the L-centre is able to explain the experimental
observations.
We further analysed the behaviour of different optical power densities P , see Sec. 7.4.1.

Figure 7.10 shows different values of P against calculations of parameter B (decay parameter
of curves for different bleaching times, see Fig. 7.4). A linear fit describes the behaviour in
a very good manner. An experimental proof is still pending but lies beyond the scope of
this study.
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(a) Simulation of different UV-bleaching times with the comprehensive model.
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(b) RF ratio of last channel before UV bleaching and first channel after UV
bleaching for comprehensive model. The line indicates a fit according to Eq. (7.1).

Figure 7.9: Results of the numerical simulations with the comprehensive quartz model.
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Figure 7.10: Results of the simulation of different values of parameter P , the power density of
the UV light against the calculated decay parameter B. The line indicates an linear fit through all
points and suggests a direct linearity.

7.5 Discussion

One major limitation of our approach is that the UV bleaching is supposed to have just
an effect on the L-centre and not on other centres or traps. The UV bleaching produces
electron hole pairs in the valence band and the holes can (with different probabilities)
occupy any R- or L-centre, if the assumption of delocalised transitions holds. Nevertheless,
we think it is valid to use this as a first concept of the proposed mechanism.

Another limitation is that the proposed models have only one L-centre for the UV
emission. However, recent publications by Martini et al. (2014) and Fasoli & Martini (2016)
show that the UV emission is a composite of different emissions. With our photomultiplier
measurements it is not possible to distinguish between different emissions, because we
record the wavelength range from 315 nm to 415 nm. Spectra measurements with subsequent
deconvolution into Gaussian components would give a deeper insight into charge redistri-
bution after UV bleaching. The measurements presented here are a continuation of the
measurements done decades before by Zimmerman (1971) and furthermore first attempts
towards a more complete picture of the charge transfer in quartz using UV-RF.
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7.6 Conclusions

Our contribution presents a more direct view on the UV-reversal phenomenon, first observed
by Zimmerman (1971). In contrast to the original publication we do not use TL measurements
to interpret the effect of UV bleaching but UV-RF signals instead, enabling a more direct
analysis. This is possible because in the last years the knowledge about signal dynamics of
UV-RF increased and this measurement technique is widely available in modern luminescence
readers (Lapp et al. 2012; Richter et al. 2012).

We performed UV bleaching experiments with LEDs of 275 nm emission wavelength and
re-evaluated the UV-reversal effect in quartz. The advantage of UV-RF measurements is
the direct view into involved luminescence centres. For instance, a reduction of available
holes in the recombination centre is connected directly to a less intense UV-RF signal.
Theoretical predictions of the UV-RF signal from previous publications were confirmed
experimentally. We further executed numerical simulations to see if the proposed mechanism
of hole redistribution during UV bleaching is also supported in existing quartz models.
Therefore we used the results from our experiments, calculated a time rate of eviction of
holes from the L-centre and used this as input for our numerical analysis. The numerical
solutions are comparable with the experiments and confirm the proposed charge transport
during UV bleaching.
We also analysed the recovery of the effect by heating the quartz sample to different

temperatures after the UV bleaching and again confirmed the results by Zimmerman (1971)
with our UV-RF measurements. Temperatures from 300 ◦C to 500 ◦C are able to recover
the signal intensity before UV bleaching. Further numerical simulations showed the direct
proportionality between the power of the UV bleaching and the calculated decay parameter.
Our approach can be considered as a starting point to obtain a wavelength-dependent

description of photoexcitation of holes trapped in hole centres. More research concerned
with other emission-bands is also recommended. This will help to better understand charge
transfer in quartz. During the last few decades the main focus was on electron traps and
their behaviour during heating or illumination. To obtain deeper insights into charge carrier
transport in quartz it is essential to also understand the behaviour of luminescence centres.
Radiofluorescence is a mighty tool for that purpose.
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8 Further results

In this section previously unpublished results are presented. The first two subsections handle
experimental data covering further quartz UV-RF measurements. Section 8.1 investigates
the behaviour of different storage times to the UV-RF signal. The next chapter gives
an experimental proof of the presented dose determination method given in Sec. 5.5.3.
Sections 8.3 and 8.4 present additional modelling results: Section 8.3 presents a method to
calculate model parameters from experimental data and Sec. 8.4 investigates the first RF
simulations with the Monte-Carlo method.

8.1 Recuperation of the UV-RF signal after storing at RT

For using the quartz UV-RF signal for determining absorbed doses it has to be ensured
that the signal is not fading. First results showed that the UV-RF signal is able to recover
absorbed doses, see Ch. 5. This section contains tests on the signal stability over time. The
following measurement sequence was applied:

1. Preheat to 500 ◦C with 5K s−1 for 120 s
2. Measure RF for 2,000 s (∼ 120Gy) at RT
3. Pause for different times
4. Measure RF for 2,000 s (∼ 120Gy) at RT

The pause times in step 3 range from 10 s to 30 d. All pause times ≤ 1 d were measured
with a sequence inheriting a pause step. All other measurements were carried out in a
two-stage process: Steps 1) and 2) given above were measured and afterwards the aliquot was
stored in the sample wheel of the measurement device. After the pause time, a new sequence
with step 4) was applied to these aliquots. Subfigures 8.2 a) and b) show the results for two
aliquots with a waiting time of 10min and 30 d, respectively. The second RF measurement
(step 4) was shifted to a start time of 2,000 s to see the effect of the storage. The vertical
line indicates the waiting event and different line types indicate different measured aliquots.
A summary of all carried out storage experiments is given in Fig. 8.3. The ratio (after
background subtraction) of the first channel of step 4 to the last channel of measurement
step 2 is taken as indicator of the storage time. The value on the y-axis (recuperation) in
Fig. 8.3 is then calculated via 1 − ratio. Hence, a value of 0% indicates that the signal
before and after the waiting time is identical (0% recuperation). Figure 8.1 shows the same
data as presented in Fig. 8.2 (b) but just for one aliquot and with a normalised y-axis. A
fitting of the RF curve before storage was executed, identical to the procedure given in
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Figure 8.1: Result for sample FB1A for 30 d waiting with normalised y-axis and just one aliquot.
The black line indicates the fit for the RF curve before storage but extended to the complete x-axis.

Ch. 4 and 5. The fitting parameters were calculated, and the fitting curve calculated but
for the complete x-axis from 0 to 4,000 s. The results show that the first channels of the RF
curve after storage show a higher intensity, but the tail of the curves overlap with the fitted
curve.
The results from Fig. 8.3 suggest that even after 30 d storage the recuperation of the

quartz UV-RF signal is still increasing. In the framework of the energy band model, a
possible interpretation could be the migration of holes from the R- to L-centres due to
a thermal release of holes at room temperature. In contrast to that is the finding, that
released holes are preferable moving into R-centres than L-centres (see parameters A6 and
A8 in the model published by Bailey (2001)). Following this line of argumentation, most
freed holes are getting re-trapped into the R-centre. Further measurements with different
quartz samples and different absorbed doses in measurement step 2) are necessary to obtain
a consistent model for this kind of recuperation effect.
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Figure 8.2: Result for sample FB1A for 10min (a) and 30 d (b) waiting, respectively. The vertical
line indicates the waiting event and different line types indicate different measured aliquots.
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Figure 8.3: All measured storage times of sample BT1248 and FB1A against the recuperated
UV-RF signal. The grey shaded area is the 95% confidence level interval.

8.2 Determining absorbed doses with UV-RF

The basic idea for using the UV-RF signal for dose determinaiton is given in Ch. 5. A detailed
measurement protocol and further measurements will be given here. Two observations were
important developing the idea of using UV-RF as dose determination:

• The UV-RF signal can be reset by preheating to 500 ◦C (see Ch. 3)
• The independency of the UV-RF signal characteristics on dose rate (see Ch. 5)

8.2.1 Measurement protocol

The basic idea of the method is that a quartz sample received a dose (in nature or in
laboratory). After sample preparation in the laboratory, the natural signal is recorded by
an RF measurement at room temperature. Afterwards, a preheat to 500 ◦C is executed to
reset the UV-RF signal. The last step is to record the regenerated signal. To calculate an
equivalent dose, the natural signal is horizontally translated onto the regenerated dose axis
until it overlaps the regenerated signal. The length of the sliding along the x-axis is taken as
the equivalent dose. This technique is used in IR-RF dating, e.g., Buylaert et al. (2012) and
Frouin et al. (2015). Note the necessity that the quartz was heated before (e.g., ceramics,
heated lithics, volcanic or volcanically heated rocks). Otherwise a decreasing UV-RF signal
can not be guaranteed and the method may fail.
To test the basic idea of the technique, the measurement sequence in Table 8.1 was

applied to different quartz samples. Note that the natural absorbed dose was mimicked in
these experiments in order to know the exact absorbed dose. The dose rate of the source
was ∼ 0.06Gy s−1, so 1 ks irradiation is ∼ 60Gy.
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8.2 Determining absorbed doses with UV-RF

STEP DESCRIPTION EXPLANATION

1 Preheat to 500 ◦C for 120 s and RF at RT for 2 ks (5 times) Signal stabilisation

2 Preheat to 500 ◦C for 120 s

3 RF at RT for different time (RFdose) Mimic natural irradiation

4 Pause (1 h at maintenance position)

5 RF for 2 ks (RFlab) Natural signal

6 Preheat to 500 ◦C for 120 s Signal reset

7 RF at RT for 10 ks (RFreg) Regenerated signal

Table 8.1: Protocol for dose recovery with UV-RF.

To calculate the equivalent dose the R-function analyse_IRSAR.RF() from the R-
package Luminescence was used (Kreutzer et al. 2012, 2018). The function calculates the
best fit by searching for the minimum of the squared residuals. It is also possible to set a
vertical sliding range which compensates for sensitivity changes during the measurement
steps and also to set the minimum and maximum channel range for the natural signal. This
is important, because the study from Sec. 8.1 showed that the tail of the RFlab fits into the
virtual extension of the RFdose curve. Hence, the hope is to obtain better results choosing
the end of the RFlab curve for the fitting procedure. Figure 8.4 visualises the described
method for quartz sample FB1A, given a dose of 1 ks (RFdose). Afterwards, the signal RFlab

was recorded, which is the analogue to the natural signal in IR-RF dose determination. The
signal RFreg is recorded after annealing the sample to 500 ◦C for 120 s (step 6 in Table 8.1).
It is important to notice, that the dose absorbed through the signal RFdose is the dose to
recover. In Fig. 8.4 the signal RFlab was shifted 1 ks to the right. In a more real application
the RFdose signal is unknown but for a first test this signal can be interpreted as an artificial
dose, similar to a dose-recovery test in the OSL technique. Calculating the equivalent dose
with analyse_IRSAR.RF() results in Fig. 8.5. As can be guessed from Fig. 8.4, a x-axis
shift of 1 ks will not perfect fit the regenerated curve and the calculated equivalent dose De

of 930 ± 2 s confirms this finding. Further experiments with this technique were conducted
and several parameters changed:

• Changing the given dose to recover (RFdose)
• Considering the channel range of the RFlab signal to calculate the De

• Test different quartz samples
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Figure 8.4: Example of the used dose determination technique. For explanations see text.
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Figure 8.5: Procedure of curve shifting of RFlab onto the RFreg signal. The given dose of 1 ks was
underestimated because the best fit results in 930 ± 2 s.
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8.2.2 Dose recovery tests

For testing the measurement protocol proposed above four different quartz samples were
taken: (a) BT586, (b) FB1A, (c) BT1248, and (d) Hyaline. All these quartzes were already
investigated in former studies, see Table 1.4.

Five aliquots per given dose were used and the measurement protocol was the one given
in Table 8.1. Figure 8.6 gives an overview about the results obtained from these experiments
an the results can be summarised as follows:

• The error calculated with analyse_IRSAR.RF() is very small due to the huge
amount of data points available. The error is never greater than ± 8 s.

• All quartz samples behave very differently and hence individual summaries are given:
• BT586

– Using the complete channel range always yields the highest mean value and the
highest scatter.

– Calculating De with a channel range from 500 – 1,999 always results in the
lowest values.

– Absorbed doses of 1,000 s and 2,000 s are recovered in a good manner by removing
the first 499 channels.

– Smaller doses (< 5,000 s) show better results than bigger doses, but this depends
on the channel range used.

• FB1A

– The given dose is always underestimated, except for one outlier at 5000 s.

– No clear trend between different used channel ranges is observable.

• BT1248

– Doses up to 2,500 s can be recovered with less then 5% deviation.

– Doses higher than 2,500 s are systematically underestimated.

– The channel range from 500 – 999 has the highest scatter in all measurements.

• Hyaline

– The inter-aliquot scatter is low in this sample.

– Doses up to 1,000 s are overestimated and higher doses are underestimated.

– No clear trend concerning the channel ranges is observable.

These results show that the presented protocol is able to recover absorbed doses in quartz
using UV-RF. Of course there are many factors influencing the results and these factors
have to be analysed in future studies. One point to consider for more accurate results is the
more precise determination of the best channel range to use. Another one is the length of
the annealing after the RFlab signal. In this study 120 s were used but further tests have to
show what the best annealing time for every sample is.
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Brik et al. (1994) and Marazuev et al. (1995) also published a method determining
absorbed doses with UV-RF but their main idea was to use the signal intensity at the
begin of the UV-RF decay. They successfully recovered doses in the range of 1 – 10Gy from
natural quartz with UV-RF. Nevertheless, further investigations were never published. They
performed an extrapolation to obtain the absorbed dose, similar to the pre-dose technique
(Bailiff 1994). Own measurements were not able to verify the findings by Marazuev et al.
(1995). The linearity for small doses was confirmed but the extrapolated doses were far off
compared with single-aliquot regenerative-dose (SAR) measurements. Nevertheless, our
simulations in Ch. 3 also showed the dependency of absorbed dose to the initial signal in
quartz UV-RF.

With the new approach presented here no interpolation is needed and the accuracy of the
sliding technique is much higher. Furthermore, we used one aliquot to calculate a De and
sensitivity changes are compensated with the vertical sliding option within the R-function
analyse_IRSAR.RF().
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Figure 8.6: Boxplot of a dose-recovery-test with UV-RF for quartz sample (a) BT586, (b) FB1A,
(c) BT1248, and (d) Hyaline. For every measurement 5 aliquots were used. Different colours identify
different used channel ranges to calculate the equivalent dose De.
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8.3 Inverse modelling

Models, such as quartz luminescence models, depend on constant parameters, many of
which are poorly known and cannot be measured. Thus, one essential step in the process
of model development is model calibration, during which these parameters are estimated
by fitting the model to experimental data. The process of fitting a model to experimental
data is known as inverse modelling (Soetaert & Petzoldt 2010). Many model equations
are generally non-linear and so parameter estimation constitutes a non-linear optimization
problem. The aim of the inverse modelling approach is to find parameters minimising a
measure of badness of fit.

Inverse modelling is wide spread in hydrological modelling (see, e.g., Franssen et al. 2009)
but was (to the best knowledge of the author) less used in luminescence modelling, except,
e.g., in Adamiec et al. (2004, 2006). Knowing the most sensitive parameters of a model is
of crucial importance for adjusting the model parameters. Hence, in this section (I) the
influence of different parameters on luminescence signals (Sec. 8.3.1) and (II) the results by
fitting these parameters to experimental data are investigated (Sec. 8.3.2).

8.3.1 Sensitivity analysis of quartz luminescence simulations

Saltelli et al. (2004) give a definition of sensitivity analysis:

The study of how uncertainty in the output of a model (numerical or otherwise)
can be apportioned to different sources of uncertainty in the model input.

Different kinds of sensitivity analysis exist: a global sensitivity analysis and a local
sensitivity analysis, which are explained in the following subsections and they will be helpful
to estimate parameters most influencing the model output.

8.3.1.1 Global sensitivity analysis

In global sensitivity analysis certain parameters are changed over a large range and the
effect on certain model output variables assessed (Soetaert & Petzoldt 2010). In the case
of luminescence models the model output variable normally belongs to the luminescence
signal or the concentrations of certain energy levels. Global sensitivity analysis is a tool for
obtaining an insight into the behaviour of the differential equations for varying different
parameters of the model.

Figure 8.7 shows a global sensitivity analysis for parameter E over a range from 0.87 eV
to 1.07 eV. 50 runs of the model were executed, each run with a different value for E. So
with only varying the trap depth parameter E a wide range of different TL curves can be
expected.
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Figure 8.7: Global sensitivity analysis of a TL signal for E in the range between ± 0.1 eV around
its nominal value of 0.97 eV. Marked are the TL curves belonging to the smallest and highest value
of E (green: 0.87 eV; red: 1.07 eV).

8.3.1.2 Local sensitivity analysis

In local sensitivity, the effect of a parameter value in a very small region near its nominal
value is estimated (Soetaert & Petzoldt 2010). In this context a perturbation of +1 E-08
is used. The dimensionless value sensitivity of model output to a specific parameter is
calculated via

∂ y

∂Θ
· wΘ

wy
(8.1)

In term (8.1) y is an output variable (e.g. TL signal), Θ is the parameter to be investigated,
wy is the scaling of variable y and wΘ is the scaling of parameter Θ, usually equal to the
parameter value (Soetaert & Petzoldt 2010). Equation 8.1 defines the sensitivity as the
(weighted) local gradient in the direction of the parameter. An explanation for a sensitivity
analysis of a simulated TL signal to parameter E is given in Fig. 8.8. Here a perturbation of
+ 0.005 eV was chosen to illustrate a sensitivity analysis. The TL peak for E = 0.975 eV is
shifted towards higher temperatures. But this implies that for the same value on the x-axis,
e.g., 100 ◦C, the TL signal intensity is decreasing. In contrast to that, for temperatures
higher than the intersection of both signals an increase in TL intensity takes place. With
this kind of analysis it is possible to identify parameters that influence the output value
most. These parameters have a higher absolute sensitivity value. As it makes no sense
to fine-tune parameters that have little effect, this ranking serves to choose candidate
parameters for model fitting (Soetaert & Petzoldt 2010). Figure 8.9 shows a sensitivity
analysis of two parameters, E and s. Other parameter have been ignored because they do
not have a high impact to the simulated TL curve compared to E and s.
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Figure 8.8: Explanation of a TL sensitivity analysis. Two simulated TL peaks with values of 0.970
and 0.975 eV for E, respectively.
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Figure 8.9: Sensitivity analysis of a TL simulation with parameters by Bailey (2001) for the 110 ◦C
TL peak. The higher the absolute value at the y-axis, the higher the influence to the model output.
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Figure 8.10: Sensitivity analysis of a OSL simulation with parameters by Bailey (2001) for the
optical active traps level 3 and 4 and the corresponding parameters for thermal assistance energy
Eth and photoionisation cross-section σ, see Ch. 1.4 and 1.6.

8.3.2 Finding appropriate model parameters

After finding parameters with most influence on luminescence signals with sensitivity analy-
sis, the inverse modelling method can be executed with these parameters. For demonstrating
the inverse modelling technique an open access dataset published by Schmidt et al. (2018) 1

was used to fit the model parameters published by Bailey (2001) to these experimental
data. The data set FB_Mastersequence_150.BIN was used and the applied sequence was
a TL measurement with a heating rate of 1 K s−1 subsequent to irradiating 1 Gy at room
temperature. This sequence was simulated and the TL measurement was fitted to the
model parameters E and s for level 1, the energy level corresponding to the 110 ◦C TL
peak. Figure 8.11 shows three different signals: (I) The experimental data (red), (II) the
simulation with the new calculated parameters for E and s (green), and (III) the simulation
with the original parameters by Bailey (2001) (blue). In Table 8.2 the new parameters
used to simulate the results from Fig. 8.11 are listed. All other parameters in the model by
Bailey (2001) were kept constant and just E1 and s1 have been changed. The results indeed
indicate a better accordance than the standard parameters by Bailey (2001). However, it is
possible that multiple combinations of E and s lead to the same TL curve. Nevertheless,
further peak shape calculations were performed to obtain also values for E and s. The
R-package tgcd (Peng et al. 2016) is able to automatically calculate glow curve parameters
from an general-order empirical expression of Eq. (1.12) (see also Pagonis et al. (2006)).

1https://ecl.earthchem.org/view.php?id=1095
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Figure 8.11: Result of the inverse modelling method for the 110 ◦C TL peak. Three different
signals are shown: (I) The experimental data (red), (II) the simulation with the new calculated
parameters for E and s (green, see Table 8.2), and (III) the simulation with the original parameters
by Bailey (2001) (blue).

The results are comparable with the values obtained by the inverse modelling technique
(Table 8.2). To further test the inverse modelling technique experimentally obtained OSL
signals were fitted to OSL related parameters. The experimental OSL data has been taken
from the R-package Luminescence, example data set CWOSL.SAR.Data and it is the
natural signal of the SAR measurement given in these example data set (Kreutzer et al.
2018).

Parameters Eth3 and σ3 (corresponding to the OSLfast component) have most influence
on the simulated OSL signals (Fig. 8.10). The results of the inverse modelling technique are
shown in Table 8.2 and indicate a significant higher value of the photoionisation cross-section
σ. This was expected because the experimental data show a much faster decay of the OSL
signal than the initial parameters by Bailey (2001). The new parameters are able to mimic
this behaviour in a good manner, see Fig. 8.12.

STIMULATION PARAMETER OLD VALUE NEW VALUE TGCD PACKAGE

TL E1 [eV] 0.97 0.85 0.85

TL s1 [s−1] 5.0 E+12 7.1 E+10 6.2 E+10

OSL Eth3 [eV] 0.10 0.03 -?

OSL σ3 [s−1] 6.0 13.0 -?

Table 8.2: Change of parameter values before and after inverse modelling for TL and OSL
simulations. The corresponding TL and OSL curves are given in Figs. 8.11 and 8.12. ?: The tgcd
package is able to calculate glow curve parameters from TL, but not from OSL curves.
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Figure 8.12: Result of the inverse modelling method for a natural OSL curve. Three different
signals are shown: (I) The experimental data (red), (II) the simulation with the new calculated
parameters for E and s (green, see Table 8.2), and (III) the simulation with the original parameters
by Bailey (2001) (blue).

8.3.3 Software and integration

All presented analysis tools (global and local sensitivity, parameter determination with
inverse modelling) are integrated in the R-package RLumModel, version 0.3.0. The core
of the analyses is the R-package FME (Soetaert & Petzoldt 2010), which provides all
necessary functions performing these analyses and is automatically loaded when starting
RLumModel. In the following some examples demonstrate the usage of the package RLum-
Model to calculate the local sensitivity analysis presented in Fig. 8.9. For an introduction
to RLumModel see Ch. 2.

1 library("RLumModel")

2

3 sequence <- list(

4 IRR = c(20, 10, 1),

5 TL = c(0, 180, 5))

6

7 model <- "Bailey2001"

8

9 parms <- extract_parameters2FME(model = model)

10

11 func_FME <- fit_RLumModel2data(

12 sequence = sequence,

13 model = model,

14 seq.step2fit = 2,

15 norm = FALSE)

16
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17 local_sens <- FME::sensFun(func = func_FME,

18 parms = parms,

19 senspar = c("E1", "s1"))

20

21 plot(local_sens)

The code above simulates the given sequence from line 3 to 5: This sequence describes
an irradiation at 20 ◦C with a dose of 10Gy and a dose rate of 1Gy s−1, which is followed
by TL simulation from 0 ◦C to 180 ◦C with a heating rate of 5 ◦C s−1. Line 11 is the most
important part of the analysis because a function named func_FME() is created which
is compatible with functions provided by FME, e.g., FME::sensFun() in line 17. The
argument seq.step2fit in line 14 is needed to submit that the second sequence step
from the sequence will be analysed: the TL readout. Function FME::sensFun() is able to
calculate the local sensitivity for parameters given in the argument senspar. In the case
presented above the parameters E and s for the first energy level (the 110 ◦C TL peak) are
needed. Note that further parameters can be submitted here, e.g., senspar = c("E1",

"s1", "A1") for analysing the impact of the conduction band to electron trap probability
of level 1 to the TL signal. Further examples are given in the help files of the R-package.

8.3.4 Conclusion

The method of inverse modelling is known in many different research areas but was not used
in luminescence modelling until now. The advantage of this method is that experimental
data can be used to calibrate luminescence models and find the most appropriate set
of parameters for most of the measurements done in luminescence. Once found these
parameters, the process of forward modelling can be started: using the model for forecasting
and hypothesis testing.

With respect to luminescence modelling the advantage of this method is that in contrast
to other parameter estimation methods, the kinetic order of the process plays no role. Due
to the fact that the range of used electron traps and recombination centres can be set by
the user, the retrapping is calculated by the interaction of the system via ODEs and is not
fixed. Nevertheless, already Bräunlich et al. (1979) mentioned:

... it is extremely difficult to correlate by curve fitting alone, theory and ex-
periment with any degree of confidence. Any measured and well-resolved glow
peak that may reasonably be expected to be due to a single type of traps can
be fitted with a solution of the single trap model by appropriately adjusting
several out of a set of many model parameters.

So although the calculated parameters by inverse modelling and other techniques are
comparable, different sets of parameters can lead to the same result. It is possible that non
(physical) meaningful parameters are also solutions to the equations calculated by different
methods because they mathematically solve the corresponding equations. A lot of care
must be taken interpreting the results of fitting methods of physical problems.
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8.4 Monte-Carlo simulations of RF

Monte-Carlo methods play an import role in statistical physics and during recent years
their successful adaptation to luminescence phenomena like TL and OSL were performed by
Mandowski & Światek (1992, 1994, 1996, 1998), Mandowski (2002), Pagonis et al. (2014),
Pagonis & Chen (2015), and Pagonis & Kulp (2017). The necessity of using Monte-Carlo
methods in luminescence description is due to the existence of electron-hole pairs trapped
close to each other and the assumption of a uniform spatial distribution of electron traps
and centres does not hold (Chen et al. 2011). This is especially expected in materials with
polycrystalline and low-dimensional structures, as well as in materials which underwent
high dose irradiations and hence a creation of groups of defects (Chen et al. 2011; Pagonis
et al. 2014).

All publications concerning luminescence and Monte-Carlo methods describe TL and/or
OSL signals but no RF phenomena. The difference between these stimulation types is the
availability of electrons and holes within the system. In TL/OSL simulations the existing
number of electrons and holes stays stable or decreases with time, depending on whether
a recombination occurs or not. In contrast to that, during RF the number of electrons
and holes in the system can increase (capturing of electrons and holes in traps and holes,
respectively), stay stable (recombination of electron and hole) or decreases (no electron-hole
pair created, but a recombination occurred). These different mechanisms support the fact
that other algorithms and approaches are needed to describe RF with the Monte-Carlo
approach than published for TL or OSL until now.

8.4.1 Basics of Monte-Carlo simulations

For a general introduction in Monte-Carlo simulations see standard textbooks of statistical
physics, e.g., Landau & Binder (2014). For an introduction into TL/OSL simulations using
Monte-Carlo methods see Kulkarni (1994), Mandowski & Światek (1992), and Pagonis
et al. (2014). When simulating RF, a constant number of electron-hole-pairs are created
during each time step. Each electron has a certain probability to either (I) get trapped in
an electron trap, (II) recombine radiative with a L-centre or (III) recombine non-radiative
with a R- or K-centre. Each hole created can move to all existing hole centres (R-, K- and
L-centres). When considering the model presented in Fig. 4.1 with one electron trap, one
R-centre and one L-centre and using the abbreviations mentioned in Ch. 4.2, the probability
for each of the processes mentioned above is:

1. Electron recombining non-radiative with R-centre:

p1e =
B1 ·m1

B1 ·m1 +B2 ·m2 +A1 · (N − n)
(8.2)
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2. Electron recombining radiative with L-centre

p2e =
B2 ·m2

B1 ·m1 +B2 ·m2 +A1 · (N − n)
(8.3)

3. Electron gets trapped in an electron trap:

p3e =
A1 · (N − n)

B1 ·m1 +B2 ·m2 +A1 · (N − n)
(8.4)

Analogous the probabilities for holes moving into R- or L-centres:

1. Trapping in R-centre:

p1h =
(M1 −m1) ·Am1

(M1 −m1) ·Am1 + (M2 −m2) ·Am2

(8.5)

2. Trapping in L-centre

p2h =
(M2 −m2) ·Am2

(M1 −m1) ·Am1 + (M2 −m2) ·Am2

(8.6)

Assuming that the concentrations at t = 0 are n0, m10 , and m20 , during each timestep
the following calculations are performed in Monte-Carlo simulation:

1. R electrons can be trapped or recombine, respectively.
2. For each of the R electrons p1e , p2e , and p3e are calculated

• Choose a random number re between 0 and 1

• If re < p1e : recombination in R-centre (no signal): m1 → m1 − 1

• If p1e < re < p1e + p2e : recombination in L-centre (signal): m2 → m2 − 1

• If p1e + p2e < re: Trapping in electron trap (no signal): n→ n+ 1

3. For each of the R created holes calculate p1h and p2h

• Choose a random number rh between 0 and 1

• If rh < p1h : Trapping of hole in R-centre: m1 → m1 + 1

• Else: Trapping of hole in L-centre: m2 → m2 + 1

4. Go to the next timestep and repeat steps 1 – 4 until expected simulation time is
reached.

Note that in Eq. (8.2) – (8.6) no concentration of the conduction or valence band appears.
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The probability of trapping/recombination into the i-th trap is, in general:

pie/h =
αi · Vi

m∑
j=1

αj · Vj
(8.7)

αi is the trapping/recombination coefficient of the i-th trap and Vi is the density of
vacancies (Kulkarni 1994). So the system of electron traps and hole centres can be expanded
to any need. In the following the case of one electron trap and two recombination centres
will be discussed in detail.

The process described above can now happen in separate systems, called clusters. Every
cluster consists of a system of charge carriers, in the example above one electron trap,
one R- and one L-centre, see Fig. 8.13. During the simulation the state in the cluster can
change, according to the schema given above. The number of clusters is variable but the
higher the number, the lower the statistical error (Pagonis et al. 2014). Figure 8.13 shows
the situation for a cluster, where three electron-hole pairs are available. The electrons are
captured in the only available electron trap (4 available, 3 filled) and the holes are located
in R-centres (3 available, 2 filled) and L-centres (3 available, 1 filled).

Filled electron trap

Empty electron trap

Filled R-centre

Empty R-centre

Filled L-centre

Empty L-centre

Figure 8.13: Example state of a cluster in the Monte-Carlo simulation of RF.
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8.4.2 Performing Monte-Carlo simulations

Following Kulkarni (1994) and Mandowski & Światek (1994), the following relation must
be established:

χn, χm1, χm2, χN, χM1, χM2, χR→ n,m1,m2, N,M1,M2, R (8.8)

A1/χ,Am1/χ,Am2/χ,B1/χ,B2/χ→ A1, Am1 , Am2 , B1, B2 (8.9)

χ stands for a constant having the dimension of a volume, see Mandowski & Światek
(1994). n,m1,m2, N,M1,M2 have the meanings of absolute numbers of traps/centres and
A1, Am1 , Am2 , B1, B2 are the trapping and recombination probabilities in hole centres
and the electron trap, respectively. The dashed parameters are used in the Monte-Carlo
simulations. In contrast to earlier simulations of luminescence phenomena with Monte-Carlo
methods, the electron-hole production-rate R also has to be changed by a factor χ. From
a physical point of view R has to be an integer number, because in a single cluster only
an integer number of electron and holes can be available. The following Monte-Carlo
simulations were conducted with the parameters in Table 8.3 and the maximum value for χ
is 1

3 E-05. The initial values for the energy levels are: m10 = 0, m20 =5 E+10 and n0 =5
E+10 to mimic an annealed quartz sample where all holes are located in the L-centre (M2).
The RF signal is calculated by electrons recombining into this energy level.

PARAMETER VALUE UNIT

An 1 E-10 s−1

B1 5 E-09 s−1

B2 1 E-10 s−1

Am1 5 E-07 s−1

Am2 1 E-09 s−1

M1 3 E+09

M2 1 E+11

N 5 E+10

R 3 E+05 s−1

Table 8.3: Used parameters for the Monte-Carlo simulation of quartz UV-RF.

Figure 8.14 (a) shows three different cases for χ: 1
3 E-03, 1

3 E-04, and 1
3 E-05. This

corresponds to a total number of simulated electron-hole pairs per second from 100, 10 and
1, respectively. The number of calculated clusters was 100, 1,000, and 10,000, respectively.
So the total number of simulated electron-hole pairs keeps constant. The coloured lines
indicate the average signal of all simulated clusters and the grey area indicates the minimum
and maximum RF signal from all clusters per timestep. Subfigure (b) shows the sum of
all signals simulated in all clusters for every value of χ. The y-axis is the same for all
simulated cases of 100, 1,000, and 10,000 clusters. The cumulated signal for all analysed
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Figure 8.14: Results of Monte-Carlo simulations for different numbers of clusters. Subfigure a)
shows the behaviour for a different number of clusters. The total number of simulated electron-hole
creations was the same for all calculations. Subfigure b) shows the total number of RF signal as
sum of all clusters.

cases is comparable and shows minimal difference coming from the stochastic nature of the
simulations.

To further test the performance of the Monte-Carlo approach the experimental results
from Ch. 5 were tried to simulate. So again Monte-Carlo simulations for the parameters
in Table 8.3 were conducted and the value for the electron-hole production-rate (or: dose
rate) was kept variable from 30 – 30,000 s−1. The expectation is that the same as already
mentioned in Ch. 5: The signal intensity of the simulated RF signal grows linearly with
the dose rate. Furthermore, the initial slope should be steeper the higher the dose rate.
Figure 8.15 shows the results for four different electron-hole production rates, 30, 300,
3,000, and 30,000 s−1. The results show indeed that the initial signal is linear dependent
on the dose rate. Furthermore, Fig. 8.16 shows the same signals as given in Fig. 8.15 but
normalised to the first data point and confirm the expectation that the decay of the RF
signal is steeper, the higher the dose rate is.

8.4.3 Comparison with other numerical methods

From Ch. 3 to Ch. 7 it is known that numerical solutions of ODEs are able to reproduce RF
phenomena in quartz. In this section a comparison between ODE and Monte-Carlo results is
given. The former sections showed that the numerical solution of coupled ordinary differential
equations can also lead to meaningful results. The same equations as given in Sec. 4.2,
Eqs. (4.1) – (4.5), are solved with the parameters given in Table 8.3 for different values of
R (electron-hole production rate). The results are calculated with the R-package deSolve
(Soetaert et al. 2012) and are given in Fig. 8.16 as black lines. A very good agreement with
the Monte-Carlo approach is reached, show that both methods are comparable. Nevertheless,
the Monte-Carlo method is much more time consuming in calculation than the ODE method
although the calculations can be done on different processors in parallel.
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Figure 8.15: Average signal of 100 clusters with parameters from Table 8.3 and four different
pair-production rates.
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Figure 8.16: Same data as in Fig. 8.15 but normalised to the first data point. The black lines
indicate the solutions solving the system of ODEs numerically, see Ch. 8.4.3.
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8.4 Monte-Carlo simulations of RF

8.4.4 Discussion

The presented calculation method by using the statistical Monte-Carlo method is able to
give the same results as using numerically methods solving sets of ODEs, see Fig. 8.16.
Nevertheless, the number of carriers in one cluster is large and so the accordance between
the solutions of both methods is not surprising. In order to achieve similar results as
presented in Pagonis et al. (2014) the number of charge carriers in one cluster has to be
very small. Pagonis et al. (2014) showed that for a big number of charge carriers (e.g., 100)
no difference between the ODE and Monte-Carlo method exists. Only after reducing the
number of charge carriers down to 20 significant changes between both methods occur and
they become more divergent for even smaller numbers of charge carriers (see Pagonis et al.
(2014: Fig.4)). Similar conclusions were made before by Mandowski & Światek (1998). The
implementation of the reduction of charge carriers to RF is not straightforward and the here
presented results are just a starting point. The problem is that in TL/OSL Monte-Carlo
simulations the number of charge carriers keeps constant (no signal) or decreases (signal).
In RF simulations the situation is different because in each time step new electrons and
holes are created and so the number of charge carrier in one cluster changes permanently.
So, another design of clusters than presented in former Monte-Carlo TL/OSL studies has
to be applied to reach the goal of reducing the cluster since further more.
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Figure 8.17: Results of the simulation of IR-RF with the model suggested by Trautmann et al.
(1999) for different initial fillings of the IR-RF trap. The black lines indicate the ODE solutions
which are in agreement with the Monte-Carlo results.

The idea of using Monte-Carlo methods in luminescence modelling in the past years was
mainly applied to feldspar models, e.g. Pagonis & Chen (2015), Pagonis & Kulp (2017), and
Pagonis et al. (2017). To further test the presented algorithm for Monte-Carlo simulations
calculating RF signals, the model for infrared radiofluorescence (IR-RF) in feldspar published
by Trautmann et al. (1999) was used. In contrast to quartz RF, it is suggested that the
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8 Further results

PARAMETER VALUE UNIT
An 1 E-16 s−1

B1 1 E-16 s−1

B2 1 E-16 s−1

Am1 2 E-16 s−1

Am2 2 E-16 s−1

Amn 5 E-16 s−1

M1 5 E+17
M2 1 E+18
N 5 E+17
R 5 E+12 s−1

Table 8.4: Used parameters for the Monte-Carlo simulation of feldspar IR-RF. In contrast to
Table 8.3 the new parameter Amn

describes the probability of a hole transport into the IR-RF trap.

IR-RF signal is generated when electrons migrate from the conduction band into the electron
trap. Nevertheless, Trautmann et al. (1999) also used a three-energy-level model to simulate
IR-RF signals, which is very similar to the one presented for quartz UV-RF in this section.
Just small changes in the ODE equations (due to an allowed transition of holes into the
electron trap) as well as small adjustments on the parameters are needed, see Table 8.4.
The used value of χ was 1 E-10 and in order to reduce the computation time just 8 clusters
were simulated. Figure 8.17 shows the results for two different simulation methods: The
coloured curves show the average signal from the Monte-Carlo methods for 8 clusters while
the black lines indicate the solutions of numerically solving the ODEs given in Trautmann
et al. (1999). As expected, the signal does not show strong signal dynamic for simulated
IR-RF because the IR-RF trap is 30% filled before starting the simulation (Trautmann
et al. 1999). The strongest decay in the simulated IR-RF signal is reached if the IR-RF
trap is completely empty. And again, the ODE and the Monte-Carlo solutions match well.

The presented approach is just a starting point and shows the potential that Monte-Carlo
simulations are able to simulate UV-RF signals in quartz and IR-RF signals in feldspar
properly. In the future more complex scenarios of designing clusters are possible, e.g.,
exchange of charge carriers between different clusters.
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Solving Ordinary Differential Equations to Understand
Luminescence: ’RLumModel’, an Advanced Research
Tool for Simulating Luminescence in Quartz Using R

(supplementary material)
Johannes Friedrich, Sebastian Kreutzer, Christoph Schmidt

Introduction

This supplementary material is part of the article Friedrich et al. (2016) and contains additional R-coding
examples and code completions.

R-Code by examples

Code example 2.4.1.1

##set heating rate
heating.rate <- seq(from = 2, to = 10, by = 2)

##model signals
##"verbose = FALSE" for no terminal output
## "TL$" for exact matching TL and not (TL)
model.output <- lapply(
1:length(heating.rate), function(x){
sequence <- list(
IRR = c(20, 10, 1),
TL = c(20, 400, heating.rate[x]))

TL_data <- model_LuminescenceSignals(
sequence = sequence,
model = "Bailey2001",
plot = FALSE,
verbose = FALSE)

return(get_RLum(TL_data, recordType = "TL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)

##plot results
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plot_RLum(
object = model.output.merged,
xlab = "Temperature [\u00B0C]",
ylab = "TL signal [a.u.]",
main = "TL signal with different heating rates",
legend.text = paste(heating.rate, "K/s"),
combine = TRUE)
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Code example 2.4.1.2

##set temperature
act.temp <- seq(from = 80, to = 600, by = 20)

##loop over temperature
model.output <- vapply(X = act.temp, FUN = function(x) {

##set sequence, note: sequence includes sample history
sequence <- list(

IRR = c(20, 1, 1e-11),
IRR = c(20, 10, 1),
PH = c(x, 1),
IRR = c(20, 0.1, 1),
TL = c(20, 150, 5)
)

##run simulation
temp <- model_LuminescenceSignals(

sequence = sequence,
model = "Pagonis2007",
simulate_sample_history = TRUE,
plot = FALSE,
verbose = FALSE
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)

## "TL$" for exact matching TL and not (TL)
TL_curve <- get_RLum(temp, recordType = "TL$")

##return max value in TL curve
return(max(get_RLum(TL_curve)[,2]))

}, FUN.VALUE = 1)

##plot resutls
plot(

act.temp[-(1:3)],
model.output[-(1:3)],
type = "b",
xlab = "Temperature [\u00B0C]",
ylab = "TL [a.u.]"
)
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Code example 2.4.1.3

##set optical power [%]
optical_power <- seq(0, 100, 20)

##loop over power
model.output <- lapply(optical_power, function(x){

##set sequence
sequence <- list(

IRR = c(20, 50, 1),
PH = c(220, 10, 5),
OSL = c(125, 50, x))
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data <- model_LuminescenceSignals(
sequence = sequence,
model = "Bailey2004",
plot = FALSE,
verbose = FALSE)

##"OSL$" for exact matching TL and not (OSL)
return(get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)

##plot results
plot_RLum(

object = model.output.merged,
xlab = "Illumination time [s]",
ylab = "OSL signal [a.u]",
legend.text = paste("Optical power ", 20 * optical_power / 100," mW/cm^2"),
combine = TRUE
)
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Code example 2.4.1.4

##set OSL temperature
OSL.temp <- c(20,80,160,200,240)

##loop over temperature
model.output <- lapply(OSL.temp, function(x){

##set sequence
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sequence <- list(OSL = c(x, 60, 100))

data <- model_LuminescenceSignals(
sequence = sequence,
model = "Bailey2001",
plot = FALSE,
verbose = FALSE
)

##"OSL$" for exact matching TL and not (OSL)
return(get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)

##plot results
plot_RLum(

object = model.output.merged,
xlab = "Illumination time [s]",
ylab = "OSL [a.u.]",
main = "OSL signal for different temperatures",
legend.text = paste("OSL measurement temperature ",OSL.temp, "\u00B0C"),
combine = TRUE,
cex = 1.2)
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Code example 2.4.2a

##set PH temperatures
PH_temp <- seq(from = 160, to = 300, by = 20)

##set RegDose
RegDose = c(0, 80, 140, 260, 320, 0, 80)
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##loop over PH temperatures
DRT.output <- lapply(1:length(PH_temp), function(x){

sequence <- list(
RegDose = RegDose,
TestDose = 20,
PH = PH_temp[x],
CH = PH_temp[x],
OSL_temp = 125,
Irr_2recover = 200
)

model.output <- model_LuminescenceSignals(
sequence = sequence,
model = "Pagonis2008",
plot = FALSE,
verbose = FALSE

)

results <- analyse_SAR.CWOSL(object = model.output,
signal.integral.min = 1,
signal.integral.max = 7,
background.integral.min = 301,
background.integral.max = 401,
fit.method = "EXP",
dose.points = RegDose,
plot = FALSE)

temp <- get_RLum(results)
out <- data.frame(De = temp$De, De.error = temp$De.Error)
return(out)

})

## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 179.08 | D01 = 101.52
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 179.54 | D01 = 101.44
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 180.52 | D01 = 101.34
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 181.15 | D01 = 101.36
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 180.21 | D01 = 101.78
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 180.86 | D01 = 102.75
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 174.91 | D01 = 107.31
## [plot_GrowthCurve()] Fit: EXP (interpolation) | De = 166.34 | D01 = 130.93

##output as data.frame for plot_DRTResults
DRT.result <- as.data.frame(do.call(rbind,DRT.output))

##plot DRT.results
plot_DRTResults(DRT.result, preheat = PH_temp, given.dose = 200)
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Code example 2.4.2b

##set RegDose
RegDose = c(0, 80, 140, 260, 320, 0, 80)

##set sequence
sequence <- list(

RegDose = RegDose,
TestDose = 20,
PH = 180,
CH = 180,
OSL_temp = 125
)

##model
model.output <- model_LuminescenceSignals(

sequence = sequence,
model = "Pagonis2008",
plot = FALSE,
verbose = FALSE
)

##analyse SAR sequence and plot only the resulting growth curve
results <- analyse_SAR.CWOSL(

model.output,
signal.integral.min = 1,
signal.integral.max = 7,
background.integral.min = 301,
background.integral.max = 401,
fit.method = "EXP",
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dose.points = RegDose,
verbose = FALSE,
plot.single = c(6)
)
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Quartz radiofluorescence: a modelling approach
(supplementary material)

Johannes Friedrich, Vasilis Pagonis, Reuven Chen, Sebastian Kreutzer, Christoph Schmidt

Introduction

This supplementary material is part of the article Friedrich et al. and contains additional R-coding examples
and code completions.

R-Code by examples

Code example 1: TL signal with different heating rates

##set heating rate
heating.rate <- seq(from = 2, to = 10, by = 2)

##model signals
##"verbose = FALSE" for no terminal output
## "TL$" for exact matching TL and not (TL)
model.output <- lapply(
1:length(heating.rate), function(x){

sequence <- list(
IRR = c(20, 10, 1),
TL = c(20, 400, heating.rate[x]))

TL_data <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2017",
plot = FALSE,
verbose = FALSE)

return(get_RLum(TL_data, recordType = "TL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)
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Code example 2: TAC

##set temperature
act.temp <- seq(from = 80, to = 600, by = 20)

##loop over temperature
model.output <- vapply(X = act.temp, FUN = function(x) {

##set sequence, note: sequence includes sample history
sequence <- list(

IRR = c(20, 1, 1e-11),
IRR = c(20, 10, 1),
PH = c(x, 1),
IRR = c(20, 0.1, 1),
TL = c(20, 150, 5)
)

##run simulation
temp <- model_LuminescenceSignals(

sequence = sequence,
model = "Friedrich2017",
simulate_sample_history = TRUE,
plot = FALSE,
verbose = FALSE
)
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## "TL$" for exact matching TL and not (TL)
TL_curve <- get_RLum(temp, recordType = "TL$")

##return max value in TL curve
return(max(get_RLum(TL_curve)[,2]))

}, FUN.VALUE = 1)
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Code example 3: OSL signal for different optical powers

##set optical power [%]
optical_power <- c(0,20,40,60,80,100)

##loop over power
model.output <- lapply(optical_power, function(x){

##set sequence
sequence <- list(

IRR = c(20, 50, 1),
PH = c(220, 10, 5),
OSL = c(125, 50, x))

data <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2017",
plot = FALSE,
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verbose = FALSE)

##"OSL$" for exact matching TL and not (OSL)
return(get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)
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Code example 4: OSL signal for different reading temperatures

##set OSL temperature
OSL.temp <- c(20, 80, 160, 200, 240)

##loop over temperature
model.output <- lapply(OSL.temp, function(x){

##set sequence
sequence <- list(

OSL = c(x, 60, 100)
)

data <- model_LuminescenceSignals(
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sequence = sequence,
model = "Friedrich2017",
plot = FALSE,
verbose = FALSE
)

##"OSL$" for exact matching TL and not (OSL)
return(get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)

##plot results
plot_RLum(

object = model.output.merged,
xlab = "Illumination time [s]",
ylab = "OSL [a.u.]",
main = "OSL signal for different reading temperatures",
legend.text = paste("OSL measurement temperature ",OSL.temp, "\u00B0C"),
combine = TRUE,
cex = 1.2)
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Code example 5: DRT

##set PH temperatures
PH_temp <- seq(from = 160, to = 300, by = 20)

##set RegDose
RegDose = c(0, 20, 35, 65, 80, 0, 20)

##loop over PH temperatures
DRT.output <- lapply(1:length(PH_temp), function(x){

sequence <- list(
RegDose = RegDose,
TestDose = 5,
PH = PH_temp[x],
CH = PH_temp[x],
OSL_temp = 125,
Irr_2recover = 50
)

model.output <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2017",
plot = FALSE,
verbose = FALSE

)

results <- analyse_SAR.CWOSL(object = model.output,
signal.integral.min = 1,
signal.integral.max = 7,
background.integral.min = 301,
background.integral.max = 401,
fit.method = "EXP",
dose.points = RegDose,
plot = FALSE)

temp <- get_RLum(results)
out <- data.frame(De = temp$De, De.error = temp$De.Error)
return(out)

})

##output as data.frame for plot_DRTResults
DRT.result <- as.data.frame(do.call(rbind,DRT.output))

##plot DRT.results
plot_DRTResults(DRT.result, preheat = PH_temp, given.dose = 50)
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Code example 6: SAR protocol

##set RegDose
RegDose = c(0, 20, 35, 65, 80, 0, 20)

##set sequence
sequence <- list(

RegDose = RegDose,
TestDose = 5,
PH = 200,
CH = 220,
OSL_temp = 125
)

##model
model.output <- model_LuminescenceSignals(

sequence = sequence,
model = "Friedrich2017",
plot = FALSE,
verbose = FALSE
)

##analyse SAR sequence and plot only the resulting growth curve
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results <- analyse_SAR.CWOSL(
model.output,
signal.integral.min = 1,
signal.integral.max = 7,
background.integral.min = 301,
background.integral.max = 401,
fit.method = "EXP",
dose.points = RegDose,
verbose = FALSE,
plot.single = c(6)
)
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The basic principles of quartz radiofluorescence
dynamics in the UV - analytical, numerical and
experimental results (supplementary material)
Johannes Friedrich, Mauro Fasoli, Sebastian Kreutzer, Christoph Schmidt

Introduction

This supplementary material is part of the article Friedrich et al. (submitted) and contains additional
R-coding examples and code completions.

All calculations presented here were executed with R version 3.4.0 and the R-package ‘deSolve’ version 1.14.

Case I: empty R-centre

Set parameters

times <- 0:10000

filling <- 10^seq(10, 11, 0.1)

parameters <- c(
Am1 = 5e-7,
Am2 = 1e-9,
An = 1e-10,
B1 = 5e-9,
B2 = 1e-10,
N = 1e11,
M1 = 1e11,
M2 = 1e11,
R = 3e5)

RF_ODE <- function(t, state, parameters) {
with(as.list(c(state, parameters)),{

dn <- An*(N-n)*nc

dm1 <- Am1*(M1-m1)*nv - B1*m1*nc
dm2 <- Am2*(M2-m2)*nv - B2*m2*nc

dnc <- R - nc*(An*(N-n) + B1*m1 + B2*m2)

dnv <- R - Am2*(M2-m2)*nv - Am1*(M1-m1)*nv

# return the rate of change

A Supplementary material of publications

226



list(c(dn, dm1, dm2, dnc, dnv), signal = m2*B2*nc)
})

}

Solve ODEs for different starting values

RF_list <- sapply(filling, function(x){

state <- c(n = x,
m1 = 0,
m2 = x,
nc = 0,
nv = 0)

result <- deSolve::ode(
y = state,
times = times,
func = RF_ODE,
parms = parameters,
rtol = 1e-10,
atol = 1e-10)

return(result[,"signal"])

})

RF_list <- as.data.frame(RF_list)
colnames(RF_list) <- round(100 * filling/1e11,2)
RF_list$time <- times

Plot results

library(reshape2)
library(ggplot2)

RF_ggplot <- reshape2::melt(RF_list, id.vars = "time")

ggplot(RF_ggplot, aes(x = time, y = value, colour = variable)) +
geom_line(aes(colour = variable), size = 1.5) +

scale_colour_discrete(name ="L-centre filling [%]") +
xlab("Time [s]") +

ylab(expression(bold("RF signal [a.u.]"))) +
theme(axis.text = element_text(size = 14),

axis.title = element_text(size = 14, face = "bold"))
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Set parameters

state <- c(n = 1e11,
m1 = 0,
m2 = 1e11,
nc = 0,
nv = 0)

RF_ODE_Zimmerman <- function(t, state, parameters) {
with(as.list(c(state, parameters)),{

dn <- An*(N-n)*nc

dm1 <- Am1*(M1-m1)*nv
dm2 <- Am2*(M2-m2)*nv - B2*m2*nc

dnc <- R - nc*(An*(N-n) + B2*m2)

dnv <- R - Am2*(M2-m2)*nv - Am1*(M1-m1)*nv

# return the rate of change
list(c(dn, dm1, dm2, dnc, dnv), signal = m2*B2*nc)

})
}
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Solve ODEs

result_Bailey <- deSolve::ode(
y = state,
times = times,
func = RF_ODE,
parms = parameters,
rtol = 1e-10,
atol = 1e-10)

result_Zimmerman <- deSolve::ode(
y = state,
times = times,
func = RF_ODE_Zimmerman,
parms = parameters,
rtol = 1e-10,
atol = 1e-10)

Plot results

Plot RF signal

RF_signal <- as.data.frame(cbind(time = times,
Zimmerman = result_Zimmerman[,"signal"],
Bailey = result_Bailey[,"signal"]))

colnames(RF_signal) <- c("time", "Zimmerman (1971)", "Bailey (2001)")

RF_signal <- reshape2::melt(RF_signal, id.vars = "time")

ggplot(RF_signal, aes(x = time, y = value, colour = variable)) +
geom_line(aes(colour = variable), size = 1.5) +

scale_colour_discrete(name = "Model") +
xlab("Time [s]") +

ylab(expression(bold("RF signal [a.u.]"))) +
theme(axis.text = element_text(size = 14),

axis.title = element_text(size = 14, face = "bold"))
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Plot concentration of R-centre

conc_m1 <- as.data.frame(cbind(time = times,
Zimmerman = result_Zimmerman[,"m1"],
Bailey = result_Bailey[,"m1"]))

colnames(conc_m1) <- c("time", "Zimmerman (1971)", "Bailey (2001)")

conc_m1 <- reshape2::melt(conc_m1, id.vars = "time")

ggplot(conc_m1, aes(x = time, y = value, colour = variable)) +
geom_line(aes(colour = variable), size = 1.5) +

scale_colour_discrete(name = "Model") +
xlab("Time [s]") +

ylab(expression(bold("RF signal [a.u.]"))) +
theme(axis.text = element_text(size = 14),

axis.title = element_text(size = 14, face = "bold"))
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On the dose-rate dependence of radiofluorescence signals
of natural quartz (supplementary material)

Johannes Friedrich, Mauro Fasoli, Sebastian Kreutzer, Christoph Schmidt

Introduction

This supplementary material is part of the article Friedrich et al. (submitted) and contains additional
R-coding examples and code completions.

All calculations presented here were executed with R version 3.4.3 and the R-package ‘RLumModel’ version
0.2.3.
library(RLumModel)

Use three-energy-level model

Set parameters

own_parameters <- list(
N = c(5e10, 1e10, 1e11),
E = c(1.95, 1.75, 5),
s = c(1e10, 5e13, 1e13),
A = c(1e-10, 5e-7, 1e-9),
B = c(0, 5e-9, 5e-10),
Th = c(0),
E_th = c(0),
K = 2.8e7,
W = 0.64,
R = 6.3e7,
model = "customized"

)

dose_rate <- c(10, 20, 25, 50, 100, 200, 300, 400, 500)

Simulate RF signals

model.output <- lapply(
dose_rate/1000, function(x){

sequence <- list(
IRR = c(20, 1000, 1),
PAUSE = c(20, 60),
PH = c(350, 5),
PAUSE = c(20, 60),
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IRR = c(20, 20, 1e-11),
PAUSE = c(20, 60),
# end sample history, begin laboratory

TL = c(20, 500, 10),
PAUSE = c(500, 600),
RF = c(20, 40*34*x, x)

)

RF_data <- model_LuminescenceSignals(
model = "customized",
sequence = sequence,
own_parameters = own_parameters,
plot = FALSE,
verbose = FALSE

)

return(get_RLum(RF_data, recordType = c("RF$"), drop = FALSE))

})

RF_data <- merge_RLum(model.output)

Plot results

plot(RF_data,
combine = T,
legend.text = paste0(dose_rate, " mGy/s"),
legend.pos = "outside")

grid()
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plot(RF_data,
combine = T,
norm = T,
legend.text = paste0(dose_rate, " mGy/s"),
legend.pos = "outside")

grid()
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Use Friedrich2018 model

Simulate RF signals

Define sequence

dose_rate <- c(10, 20, 25, 50, 100, 200, 300, 400, 500)

model.output <- lapply(
dose_rate/1000, function(x){

sequence <- list(
TL = c(20, 500, 10),
PAUSE = c(500, 600),
RF = c(20, 40*34*x, x)

)

RF_data <- model_LuminescenceSignals(
model = "Friedrich2018",
sequence = sequence,
plot = FALSE,
verbose = FALSE

)
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return(get_RLum(RF_data, recordType = c("RF$"), drop = FALSE))

})

RF_data <- merge_RLum(model.output)

Results

plot(RF_data,
combine = T,
legend.text = paste0(dose_rate, " mGy/s"),
legend.pos = "outside")

grid()
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plot(RF_data,
combine = T,
norm = T,
legend.text = paste0(dose_rate, " mGy/s"),
legend.pos = "outside")

grid()
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Common quartz phenomena

TL signal with different heating rates

##set heating rate
heating.rate <- seq(from = 2, to = 10, by = 2)

##model signals
##"verbose = FALSE" for no terminal output
## "TL$" for exact matching TL and not (TL)
model.output <- lapply(
1:length(heating.rate), function(x){

sequence <- list(
IRR = c(20, 10, 1),
TL = c(20, 400, heating.rate[x]))

TL_data <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2018",
plot = FALSE,
verbose = FALSE)

return(get_RLum(TL_data, recordType = "TL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)
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##set temperature
act.temp <- seq(from = 80, to = 600, by = 20)

##loop over temperature
model.output <- vapply(X = act.temp, FUN = function(x) {

##set sequence, note: sequence includes sample history
sequence <- list(

IRR = c(20, 1, 1e-11),
IRR = c(20, 10, 1),
PH = c(x, 1),
IRR = c(20, 0.1, 1),
TL = c(20, 150, 5)
)

##run simulation
temp <- model_LuminescenceSignals(

sequence = sequence,
model = "Friedrich2018",
simulate_sample_history = TRUE,
plot = FALSE,
verbose = FALSE
)

## "TL$" for exact matching TL and not (TL)
TL_curve <- get_RLum(temp, recordType = "TL$")

##return max value in TL curve
return(max(get_RLum(TL_curve)[,2]))
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}, FUN.VALUE = 1)
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OSL signal for different optical powers

##set optical power [%]
optical_power <- c(0,20,40,60,80,100)

##loop over power
model.output <- lapply(optical_power, function(x){

##set sequence
sequence <- list(

IRR = c(20, 50, 1),
PH = c(220, 10, 5),
OSL = c(125, 50, x))

data <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2018",
plot = FALSE,
verbose = FALSE)

##"OSL$" for exact matching TL and not (OSL)
return(get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)
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OSL signal for different reading temperatures

##set OSL temperature
OSL.temp <- c(20, 80, 160, 200, 240)

##loop over temperature
model.output <- lapply(OSL.temp, function(x){

##set sequence
sequence <- list(

OSL = c(x, 60, 100)
)

data <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2018",
plot = FALSE,
verbose = FALSE
)

##"OSL$" for exact matching TL and not (OSL)
return(get_RLum(data, recordType = "OSL$", drop = FALSE))

})

##merge output
model.output.merged <- merge_RLum(model.output)

##plot results
plot_RLum(

object = model.output.merged,
xlab = "Illumination time [s]",
ylab = "OSL [a.u.]",
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main = "OSL signal for different reading temperatures",
legend.text = paste(OSL.temp, "\u00B0C"),
combine = TRUE,
cex = 1.2)
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##set PH temperatures
PH_temp <- seq(from = 160, to = 300, by = 20)

##set RegDose
RegDose = c(0, 8, 15, 26, 32, 0, 8)

##loop over PH temperatures
DRT.output <- lapply(1:length(PH_temp), function(x){

sequence <- list(
RegDose = RegDose,
TestDose = 2,
PH = PH_temp[x],
CH = PH_temp[x],
OSL_temp = 125,
Irr_2recover = 20
)
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model.output <- model_LuminescenceSignals(
sequence = sequence,
model = "Friedrich2018",
plot = FALSE,
verbose = FALSE

)

results <- analyse_SAR.CWOSL(object = model.output,
signal.integral.min = 1,
signal.integral.max = 7,
background.integral.min = 301,
background.integral.max = 401,
fit.method = "EXP",
dose.points = RegDose,
plot = FALSE)

temp <- get_RLum(results)
out <- data.frame(De = temp$De, De.error = temp$De.Error)
return(out)

})

##output as data.frame for plot_DRTResults
DRT.result <- as.data.frame(do.call(rbind, DRT.output))

##plot DRT.results
plot_DRTResults(DRT.result, preheat = PH_temp, given.dose = 20)
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SAR protocol

##set RegDose
RegDose = c(0, 8, 15, 26, 32, 0, 8)

##set sequence
sequence <- list(

RegDose = RegDose,
TestDose = 2,
PH = 220,
CH = 200,
OSL_temp = 125
)

##model
model.output <- model_LuminescenceSignals(

sequence = sequence,
model = "Friedrich2018",
plot = FALSE,
verbose = FALSE
)

##analyse SAR sequence and plot only the resulting growth curve
results <- analyse_SAR.CWOSL(

model.output,
signal.integral.min = 1,
signal.integral.max = 7,
background.integral.min = 301,
background.integral.max = 401,
fit.method = "EXP",
dose.points = RegDose,
verbose = FALSE,
plot.single = c(6)
)
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B Contribution to the manuscripts

B.1 Publication I - Chapter 2

Solving Ordinary Differential Equations to Understand Luminescence:
’RLumModel’, an Advanced Research Tool for Simulating Luminescence in

Quartz Using R
Johannes Friedrich, Sebastian Kreutzer, Christoph Schmidt

Quaternary Geochronology 35, 88 – 100, 2016
https://doi.org/10.1016/j.quageo.2016.05.004

JF SK CS

Measurements ? ? ?

Simulations 90% 10% -

Manuscript preparation 70% 20% 10%

Comments to improve the manuscript - 50% 50%

Review handling 80% 10% 10%
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conducted in the publication.
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B Contribution to the manuscripts

B.2 Publication II - Chapter 3

Quartz radiofluorescence: a modelling approach
Johannes Friedrich, Vasilis Pagonis, Reuven Chen, Sebastian Kreutzer, Christoph Schmidt

Journal of Luminescence 186, 318 – 325, 2017
https://doi.org/10.1016/j.jlumin.2017.02.039

JF VP RC SK CS
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Simulations 80% 10% 10% - -
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B.3 Publication III - Chapter 4

B.3 Publication III - Chapter 4

The basic principles of quartz radiofluorescence dynamics in the UV –
analytical, numerical and experimental results

Johannes Friedrich, Mauro Fasoli, Sebastian Kreutzer, Christoph Schmidt
Journal of Luminescence 192, 940 – 948, 2017

https://doi.org/10.1016/j.jlumin.2017.08.012

JF MF SK CS
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Simulations 100% - - -

Manuscript preparation 80% 5% 5% 10%
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B Contribution to the manuscripts

B.4 Publication IV - Chapter 5

On the dose rate dependence of radiofluorescence signals of natural quartz
Johannes Friedrich, Mauro Fasoli, Sebastian Kreutzer, Christoph Schmidt

Radiation Measurements 111, 19 – 26, 2018
https://doi.org/10.1016/j.radmeas.2018.02.006

JF MF SK CS

Measurements 90% 10% - -

Simulations 100% - - -

Manuscript preparation 90% 5% - 5%

Comments to improve the manuscript - 40% 30% 30%

Review handling 80% 5% 5% 10%
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dose
rate

signal
quartz

band
results

initial

rates modeluvrf

different

bt586

data

numerical

experimental

samples

intensity
sample

first
simulations

sl
op

e

higher
well

presented

spectra

decay

behaviour

using

curve

curves

2017a

m
ea

su
re

m
en

ts

measurement

248



B.5 Publication V - Chapter 6

B.5 Publication V - Chapter 6

Radiofluorescence as a Detection Tool for Quartz Luminescence Quenching
Processes

Johannes Friedrich, Sebastian Kreutzer, Christoph Schmidt
Accepted for publication in Radiation Measurements

https://doi.org/10.1016/j.radmeas.2018.03.008
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B Contribution to the manuscripts

B.6 Publication VI - Chapter 7

Making the Invisible Visible: Observing the UV-reversal Effect in Quartz
using Radiofluorescence
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