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Abstract

When a stochastic process is given through a stochastic integral or
a stochastic differential equation (SDE), an analytical solution does not
have to exist—and even if there is a closed-form solution, the derivation
of this solution can be very complex. When the solution of the stochastic
process is not needed but only the expected value as a function of time,
the question arises whether it is possible to use the expectation opera-
tor directly on the stochastic integral or on the SDE and to somehow
calculate the expectation of the process as a Riemann integral over the
expectation of the integrands and integrators. In this paper, we show that
if the integrator is linear in expectation, the expectation operator and an
Itō integral can be interchanged. Additionally, we state how this can be
used on SDEs and provide an application from the field of mathematical
finance.
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1 Introduction and Motivation

In this paper, we present a new finding in stochastic calculus, namely, that—
under specific conditions—it is allowed to interchange an expectation operator
E and a stochastic integral, actually an Itō integral X • Zt =

∫ t
0
Xs−dZs. In

case the integrator is a Brownian motion, this result is easy to show. How-
ever, when we allow all semimartingales as integrators Z (cf. the theorem of
Bichteler-Dellacherie: the set of “good integrators” is exactly the set of semi-
martingales) the result is not trivial. Since both the expectation operator as
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well as the Itō integral are integrals, the result is a kind of stochastic Fubini-type
theorem, although different to the stochastic Fubini or Fubini-type theorems in
the literature [2, 3, 4, 5, 6] and Thm. IV.64, Thm. IV.65 in [7]. In some of
these papers/results different probability spaces for the expectation and for the
stochastic process are used. In others the measure is time dependent and the
integration is performed in time over that measure. That means, the assump-
tions for these stochastic Fubini-theorems are very different to those in the work
at hand.

Our result was inspired by the analysis of trading rules [8], to which we
will come back in the example, Section 4. There are market models, e.g., the
Cox-Ingersoll-Ross model, with price processes modeled via stochastic differen-
tial equations (SDEs) that cannot be solved analytically. However, often an
analytical solution of an SDE describing a price process or the gain function of
a trading rule is not needed at all since the expected value of the solution as
a function of time is enough for applications. In this paper it is shown that it
is allowed to swap the expectation operator and the Itō integral under specific
conditions: loosely spoken, the integrator has to be “linear in expectation.”
With this, we then apply the expectation operator on both sides of an SDE to
get a deterministic ordinary differential equation (ODE) for the expectation of
the solution.

2 The Setting: Adapted, Cádlág Integrand and
Semimartingale Integrator

Let (Ω,F ,F,P) be a complete and filtered probability space that fulfills the
usual hypotheses (cf. part I., p. 3 of [7]) where F := (Ft)t∈[0,T ] is a filtration
and T > 0 is the model’s time horizon. We denote the space of all adapted,
càdlàg processes with D and the space of all adapted, càglàd processes with L.
Furthermore, we define D0 := {Y ∈ D | Y0 = 0} and L0 := {Y ∈ L | Y0 = 0}.
We need some basic definitions and lemmas to set up the stochastic Itō integral
in the form it is used in the main part of this paper, Section 3, and how it is
common in the field of stochastic analysis (cf. [7]).

Definition 2.1 (up Convergence). Let (Hn)n∈N be a sequence of stochastic
processes and H be a stochastic process. We say that Hn converges uniformly
in probability (up) to H if sup

t∈[0,T ]

|Hn,t −Ht| → 0 for n→∞ in probability.

Definition 2.2 (Simple Predictable Process). A process H is called simple
predictable if it can be written as

Ht(ω) =
∑

i=1,...,n

Zi−1(ω)IKTi−1,TiK(ω, t)

with n ∈ N, (Ti)i=1,...,n stopping times with 0 = T0 ≤ T1 ≤ . . . ≤ Tn = T , and
Zi FTi

-measurable random variables (i = 0, . . . , n) with |Zi| < ∞. With S we
denote the set of all simple predictable processes.
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Definition 2.3 (Stochastic Integral for Simple Predictable Processes). Let H
be a simple predictable process and X ∈ D. We define the stochastic integral
of H over X as the linear function H •X : S → D, H 7→

∫ t
0
HsdXs with

H •Xt :=
∑

i=1,...,n

Zi−1(XTi∧t −XTi−1∧t).

Lemma 2.4. The closure of S with respect to a metric dup induced by the up
convergence, called Sup, i.e.,

Yn → Y up, n→∞⇔: dup(Yn, Y )→ 0, n→∞,

equals L0.

A proof can be found in [9] Thm. 3.55. In this setting, the integral H •X is
defined for all H ∈ L0 and all semimartingales X:

Definition 2.5 (Stochastic Integral on Sup). Let X be a semimartingale, H ∈
Sup = L0, and (Hn)n∈N ⊂ S be a sequence with Hn → H up. The stochastic
integral of H over X is lim

n→∞
(Hn •X) =: H •X

(
=
∫
HtdXt

)
.

This definition is well defined (see [9] Bem. 3.53). Next, we recapitulate some
findings concerning random grids before stating our new findings in Section 3.

Definition 2.6 (Random Grid Tends to Identity). Let (σn)n∈N be a sequence
of random grids given through σn = (Tn0 , T

n
1 , . . . , T

n
kn

) with 0 = Tn0 ≤ Tn1 ≤
. . . ≤ Tnkn = T stopping times, kn ∈ N. We say that (σn)n∈N tends to identity if

‖σn‖ = max
i=1,...,kn

|Tni − Tni−1| → 0 a.s., n→∞.

Let Y be a stochastic process and σ = (T0, T1, . . . , Tk) be a random grid. Via

Y (σ)(ω, t) =
∑

i=1,...,k

YTi−1
(ω, t)IKTi−1,TiK(ω, t)

we define the simple predictable process Y (σ). And for an integrator X we
define the integral

Y (σ) •X :=
∑

i=1,...,k

YTi−1(XTi−1 −XTi).

Lemma 2.7. If X is a semimartingale, Y is an element of D0 or L0, and
(σn)n∈N is a sequence of random grids tending to identity, it holds Y (σn) •X →
Y− •X up, n→∞.

This lemma is proven in [7] Thm. II.21. Note that Y− = (Yt−)t is the process
Y made left-continuous. Analogously, we define H+ = (Ht+)t as the process H
made right-continuous. Now, we recapitulated everything needed for our new
stochastic Fubini-type theorem.
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3 The stochastic Fubini-type Theorem

The main contribution of this work is the next theorem: It states that it is
allowed to interchange the two integrals of interest, namely the Itō integral and
E if the “integrator is linear in expectation.”

Theorem 3.1. Let Z be a semimartingale with E[Zt −Zs] = ζ(t− s) ∀0 ≤ s ≤
t ≤ T and ζ ∈ R. Further let X ∈ D0 be integrable (i.e., E[|Xt|] < ∞ ∀t) and

Zt −Zs independent of Xs for all 0 ≤ s ≤ t ≤ T . Let Yt = X •Zt =
∫ t
0
Xs−dZs

be integrable, too, and E[Xt] continuous. Then it holds that

E[Yt] =

∫ t

0

E[Xs]ζds.

Proof. If X ∈ D0 it follows that X− ∈ L0. We define a sequence of random grids
through σn = (0, Tn ,

2T
n , . . . , T ), cf. Def. 2.6. Note that (σn)n tends to identity

and that all σn are deterministic. We define the sequence of simple predictable
processes Xn via

Xn(ω, t) =
∑

i=1,...,2n

X (i−1)T
2n

(ω, t)I] (i−1)T
2n , iT2n ](t).

With Lemma 2.7 it follows that Xn • Z → X • Z up.
We choose a subsequence of Xn s.t. the convergence Xn • Z → X • Z is

uniformly in time and a.s. in ω (which is possible since the limit is in proba-
bility). Additionally, we set all Xn(ω) ≡ 0 where either the convergence does
not hold (because it is just a.s.) or where the distance (as the supremum over
t) between (Xn • Z)(ω) and (X • Z)(ω) is ≥ 1. We rename this new sequence
to Xn and note that nothing changes concerning the convergence, besides that
the convergence is dominated by the integrable function |Yt|+ 1 (a).

The convergence Xn → X is pointwise in t for a.a. ω. For each t (and a.a.
ω), we can find an n∗ so that |Xn

t (ω)−Xt(ω)| < 1 for all n ≥ n∗. That means,
we can treat the convergence like it was bounded (with boundary |Xt|+ 1) (e).

Furthermore, we define for all Xn a sequence Xn,m (m ≥ n) of representa-
tions via

Xn,m(ω, t) =
∑

i=1,...,2n

∑
j=1,...,2m−n

X (i−1)T
2n

(ω, t)I] (i−1)T
2n +

(j−1)T
2m ,

(i−1)T
2n + jT

2m ](t).

Note that Xn,n = Xn and that all Xn,m are just representations of Xn for all
m ≥ n (i.e., all Xn,m and Xn are exactly the same function; convergences are
monotonous) (b). It holds that Xu and Xn

u are independent of Zw − Zv for all
0 ≤ u ≤ v ≤ w ≤ T (c). For shortening the notation, we insert a subscript
t at the end of the formulae instead of subscript ∧t in each random variable.
Further, note that E[Xt] is bounded on [0, T ], thus, for a sequence that converges
to E[Xt] this convergence can assumed to be bounded (with the same argument
as above) (d).
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This leads to:

E[Yt] =E[X • Zt]

=E
[

lim
n→∞

Xn • Zt
]

(a)
= lim

n→∞
E[Xn • Zt]

= lim
n→∞

E
[

lim
m≥n, m→∞

Xn,m • Zt
]

(b)
= lim
n→∞

lim
m≥n, m→∞

E[Xn,m • Zt]

= lim
n→∞

lim
m≥n, m→∞

E

 ∑
j=1,...,2m

Xn
(j−1)T

2m

(
Z jT

2m
− Z (j−1)T

2m

)
t

(c)
= lim
n→∞

lim
m≥n, m→∞

 ∑
j=1,...,2m

E
[
Xn

(j−1)T
2m

]
E
[
Z jT

2m
− Z (j−1)T

2m

]
t

= lim
n→∞

 lim
m≥n, m→∞

∑
j=1,...,2m

E
[
Xn

(j−1)T
2m

]
· ζ

2m


t

= lim
n→∞

∫ t

0

E[Xn
s ]ζds

(d)
=

∫ t

0

lim
n→∞

E[Xn
s ]ζds

(e)
=

∫ t

0

E
[

lim
n→∞

Xn
s

]
ζds

=

∫ t

0

E[Xs]ζds

Next, we present an alternative proof, which is more constructive and does
not use Lemma 2.7.

Proof. Since Xt− is predictable we find a sequence of simple predictable pro-
cesses (Hn

t )t so that Hn → X, n → ∞, up and Hn • Z → X • Z, n → ∞, up.
In the next step we choose a subsequence so that Hn → X is uniformly in time
and a.s. in ω (which is possible since the limit is in probability). Note that the
limit for the integral is still up. For shortening the notation, we rename it to
Hn again.

Now, Hn
t is of the form Hn

t (ω) =
∑

i=1,...,kn

Mn
i−1(ω)IKTn

i−1,T
n
i K(ω, t) with kn ∈

N, (Tni )i=1,...,kn stopping times with 0 = Tn0 ≤ Tn1 ≤ . . . ≤ Tnkn = T and Mn
i

FTn
i

-measurable random variables (i = 0, . . . , kn − 1) with |Mn
i | <∞.
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We note that we can replace Mn
i−1 by XTn

i−1
. This is true since Mn

i−1 =

Hn
Tn
i−1+

and on the interval KTni−1, Tni K the distance between Hn and X goes to

zero (for a.a. ω and n→∞) and the distance between XTn
i−1

and Hn
Tn
i−1+

goes

to zero (for a.a. ω and n → ∞). For clear, XTn
i

are FTn
i

-measurable random

variables (i = 0, . . . , kn − 1) with
∣∣XTn

i

∣∣ <∞.
As a consequence, the new sequence of processes with XTn

i−1
instead of Mn

i−1
is a sequence of simple predictable processes and still converges uniformly in time
and a.s. in ω to Xt− and still Hn •Z → X •Z, n→∞, up holds (with another
rename for Hn).

Now we choose another subsequence (of that subsequence) so that the latter
limit is a.s. in ω, too. And we set all Hn(ω) ≡ 0 if the distances (as the
supremum over t) between Hn(ω) and X(ω) or between (Hn • Z)(ω) and (X •
Z)(ω) is ≥ 1. And we set Hn ≡ 0 for all ω where Hn does not converge to X
or where Hn • Z does not converge to X • Z. These definitions do not change
anything on the convergences, save that the convergences are dominated now.

Since Hn •Z converges uniformly in t to Y a.s. and Y is integrable, we can
use the dominated convergence theorem (e.g., with boundary |Yt|+ 1) to obtain
limn→∞ E[(Hn •Z)t] = E[Yt]. Now we have to calculate E[(Hn •Z)t]. For each
Hn
t , which is a simple predictable process, we define a sequence (Hn,m)m of

simple predictable processes via Hn,m =
∑
j=1,...,2m Hn

(j−1)T
2m

I( (j−1)T
2m , jT

2m ] (m ≥
0).

With ϑn,m−i (ω) we denote the largest point of the grid { 0
2m ,

T
2m , . . . , T} with

ϑn,m−i (ω) ≤ Tni (ω) and with ϑn,m+
i (ω) we denote the smallest point of the grid

{ 0
2m ,

T
2m , . . . , T} with ϑn,m+

i (ω) ≥ Tni (ω). Without loss of generality, we choose
m big enough s.t. all jumps (that are not at the same point of time) of Hn(ω)
are separated by the dyadic grid (ω-by-ω). It holds, since Z is càdlàg:

sup
t∈[0,T ]

|(Hn,m • Z)(ω)t − (Hn • Z)(ω)t)|

≤ sup
t∈[0,T ]

 ∑
i=1,...,nk

∣∣∣(Hn
ϑn,m+
i

(ω)−Hn
ϑn,m−
i

(ω)
)(

Zϑn,m+
i

− ZTn
i

)∣∣∣

t

→ 0, m→∞

For all ω, Hn,m • Z converges to Hn • Z (m → ∞), especially there exists
an m∗ so that the distance is smaller than 1 for all m ≥ m∗ (for all t). That
means, again, we can use the dominated convergence theorem (with boundary
|Hn • Zt|+ 1) to get

E [(Hn • Z)t] =E
[(

lim
m→∞

Hn,m
)
• Zt

]
=E

[
lim
m→∞

(Hn,m • Z)t

]
= lim
m→∞

E [Hn,m • Zt]
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= lim
m→∞

E

 ∑
j=1,...,2m

Hn
(j−1)T

2m

(
Z (j−1)T

2m
− Z jT

2m

)
t


= lim
m→∞

 ∑
j=1,...,2m

E
[
Hn

(j−1)T
2m

]
E
[
Z (j−1)T

2m
− Z jT

2m

]
t

= lim
m→∞

 ∑
j=1,...,2m

E
[
Hn

(j−1)T
2m

]
ζ

1

2m


t

=

∫ t

0

E [Hn
s ] ζds.

Here, we used that X is independent of the increments of Z and thus Hn are
also independent. Putting these results together and using a third and a fourth
time the dominated convergence theorem (but these times for X with boundary
|Xt|+ 1 and for E[X] which is bounded on [0, T ]) completes the proof:

E[Yt] = lim
n→∞

E[(Hn • Z)t]

= lim
n→∞

∫ t

0

E[Hn
s ]ζds

=

∫ t

0

lim
n→∞

E[Hn
s ]ζds

=

∫ t

0

E
[

lim
n→∞

Hn
s

]
ζds

=

∫ t

0

E[Xs]ζds

(since X is càglàd).

Now, we apply this theorem to SDEs.

Theorem 3.2. Let Z be a d-dimensional vector of semimartingales with stochas-
tically independent and stationary increments, which implies that there are
ζj ∈ R s.t. E[Zjt −Zjs ] = ζj(t−s), and Zi0 = 0 ∀i = 1, . . . , d. Let F ij : Dn → D be
linear operators (i = 1, . . . , n, j = 1, . . . , d). Let J ∈ Dn be a vector of processes
with E[Jt] = δt ∈ Rn. We define

Xi
t = J it +

∑
j=1,...,d

t∫
0

F ij (X)s−dZ
j
s .

Let all Zj be independent of each other. If Xt is an integrable process, it holds
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with E[Xi
t ] = ξit that

ξit = δit +
∑

j=1,...,d

t∫
0

F ij (ξs)ζ
jdt,

which is an ordinary differential equation (ODE).

Proof. First, note that if F ij : Dn → D are linear operators (i = 1, . . . , n, j =

1, . . . , d), F ij are functional Lipschitz. Note that E[Zjt − Zjs ] = ζj(t − s) is

justified since Z has stationary increments. We note that Xi
t is independent of

the increments Zjt+h − Z
j
t (due to the SDE and the independent increments of

Z). Further, note that ξi is continuous since Z has stationary increments and
due to the construction of the SDE (otherwise supt∈[0,T ]|ξit| = ∞). So we can
apply the expectation operator on both sides of the SDE and use Thm. 3.1.

Theorem 3.2 is very helpful in the case of SDEs (which fulfill the conditions of
the theorem) that cannot be solved analytically (or only with very high effort).
When we are interested only in the expectation of the solution, we do not need
to solve the SDE, instead we can apply the theorem.

Before coming to the next section, we mention that there exist several
stochastic Fubini theorems or Fubini-type theorems in the literature, e.g., the
works of [2, 3, 4, 5, 6] and Thm. IV.64, Thm. IV.65 [7]. To the best of the au-
thor’s knowledge these settings are different to our assumptions. For example,
the authors of these papers use different probability spaces for the expecta-
tion and for the stochastic process or the measure is time dependent and the
integration is performed in time over that measure.

4 Example: Linear Long Feedback Trading on
Merton’s Jump Diffusion Model

In this section we show a useful application of the results shown above, i.e.
Thm. 3.1 and Thm. 3.2. The example provided in this section is from the field
of mathematical finance, also known as stochastic finance. We investigate the
performance of an asset trader (who is identified with his or her trading strat-
egy). The trading strategy tells the trader how much money should be invested
in a specific asset at time t. (This is related to portfolio selection, however, we
investigate a one asset market with a risk-less bond.) The market, i.e. the price,
is exogenously given and not influenced by the trader. One question that arises
is how much gain (or loss) a trader can expect. In our example, we analyze a
so-called feedback-based trading rule, i.e., we assume that the trader calculates
the amount to be invested solely via his or her own gain. The price model under
investigation in this section is Merton’s jump diffusion model. This model has
a known analytical solution and even the expected gain of the trading strategy
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under analysis is known. We chose this model to show that our results are in
line with the literature. As we will show, we do neither need a solution for
the price model nor for the trader’s investment to calculate the expected gain
(which is different to the literature). That means, our method can also be used
when the price model does not have a known solution or even when the price
model is not solvable—as long as the conditions of Thm. 3.1 are fulfilled.

Let us have a look at a linear long feedback trading rule L, where a trader
in every point in time t invests, i.e., holds the net asset position,

ILt = I∗0 +KgLt

of a specific asset. That means, the trader invests some initial investment I∗0 > 0
plus 0 < K times his or her own gain gLt at time t. When we denote the price
process of the asset with pt and assume this process to be a semimartingale, i.e.
esp. cádlág, we can calculate the traders gain (or loss) at time t via

gLt :=

∫ t

0

(
IL

p

)
t−
dpt.

For further information about linear feedback trading see [1, 8, 10].
When we assume the price to be governed by Merton’s jump diffusion model

(see [8, 11]), which is given via the SDE

dpt = (µ− λκ)ptdt+ σptdWt + ptdNt,

there are several ways to calculate the expected feedback trading gain. Note
that we use the purely formal d-notation to shorten the integral notation of the
SDE. That does not mean that we deal with “real differential equations;” as
long as there are stochastic parts in the differential equations we always have
to translate them into integral equations.

Before coming to the target of this section, the calculation of the expected
feedback trading gain, we further explain Merton’s price model. The “jump-
less” trend is given through the parameter µ > −1 though the trend part of the
SDE is µ− λκ and the volatility of the diffusion part via σ > 0, where Wt is a
standard Brownian motion (also known as Wiener process). So far, the model
is similar to a geometric Brownian motion. However, additionally, there is the
jump-part modeled via the Poisson-driven process Nt with jump intensity λ > 0
(i.e., the time interval between two consecutive jumps is Exp(λ)-distributed
and the number of jumps N(t) up to time t is Poi(λt)-distributed), i.i.d. jumps
(Yi − 1)i∈N ≥ −1 and expected jump height κ := E[Y1 − 1] > −1. When the
start price is p0 > 0 the SDE can be solved:

pt = p0 · exp

((
µ− σ2

2

)
t+ σWt

)N(t)∏
k=1

Yi,

see [11]. In the limits λ → 0 or Y1 → δ1 the model converges to a geometric
Brownian motion with trend µ > −1 and volatility σ > 0. Note that the

9



conditions “> −1” are not always needed for mathematical reasons but rather
for economical reasons to avoid negative prices. More detailed information about
this market model can be found in [8].

When calculating the gain of the linear long feedback trading rule in Merton’s
model, we can work directly with the SDEs. The integral equation describing
the trading strategy can be written as the SDE:

dILt = KdgLt ,

and the integral equation describing the gain as

dgLt = ILt
dpt
pt
.

Putting in the price process dpt
pt

= (µ − λκ)dt + σdWt + dNt leads to an SDE

for the investment IL:

dILt = KILt (µ− λκ)dt+KILt σdWt +KILt dNt,

which again is a process described by Merton’s jump diffusion model. However,
the trend is K(µ−λκ), the volatility is Kσ, and the jumps are specified through
the intensity λ and the i.i.d. jumps Xi − 1 = K(Yi − 1) with expected jump
height Kκ.

To calculate the expected gain E[gLt ] we have at least three possibilities: For
the first and the second possibility we can solve the SDE for the investment an
get the stochastic process ILt (see [11]). Using the converted formula for the

trading rule gLt =
ILt −I

∗
0

K leads to the gain/loss process. Next, the expected
gain E[gLt ] can be calculated: First, directly via the theorem of Fubini-Tonelli
as done in [8] or, second, by use of an extension of Wald’s lemma as done in [1]
Sections 4.2 and 9.1.1 (cf. [12]).

The third possibility is to use our Theorem 3.2 on the SDE governing the
investment ILt . The advantage of latter way is that no SDE has to be solved,
neither for the price process pt nor for the investment ILt .

We have to note that E[t − s] = 1 · (t − s), E[Wt −Ws] = 0 · (t − s), and
E[Nt −Ns] = λκ · (t− s) ∀T ≥ t > s ≥ 0 as well as that the initial investment
I∗0 is not stochastic. Shortened and purely formal one could write E[dt] = dt,
E[dWt] = 0, and E[dNt] = λκdt. It follows:

dE[ILt ] = K(µ− λκ) · 1 · E[ILt ] +Kσ · 0 · E[ILt ] + 1 ·Kλκ · E[ILt ] = KµE[ILt ],

which is an ODE with solution E[ILt ] = I∗0e
Kµt. Via E[gLt ] =

E[ILt ]−I∗0
K it follows

E[gLt ] =
I∗0
K

(
eKµt − 1

)
,

which is in line with the first and the second possibility [1, 8].
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Since this section is to show an application of our stochastic Fubini-type
theorem, we do not discuss market requirements in detail. For that and for
economics interpretations of this result the reader may consult [8, 10]. Note
that third method, which uses Thm. 3.2, is also possible for market models
where no analytical solution is known or even for models that are not solvable.

5 Conclusion

In this work, we showed that under specific assumptions—i.a., that the inte-
grator is linear in expectation—it is allowed to swap an expectation operator
and an Itō integral, i.e., the expectation as a function of time of a stochastic
process that is given via a stochastic integral can be calculated via a Riemann
integral of the expectations of the integrand and the integrator. The result that
it is allowed to interchange the expectation operator, which is an integral, and
an Itō integral is a stochastic Fubini-type theorem. It is extended to stochastic
differential equations (SDEs) and an application from the field of mathematical
finance is provided.
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