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MAGNETICALLY INDUCED FLOW

AND SURFACE STRUCTURES
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The ow �elds as well as the surface structures of magnetic uids can strongly be
inuenced via magnetic forces. Starting with the Hagen{Poiseuille ow in an alternating
�eld, continuing with drop formation and the Faraday instability �nally the normal �eld
instability of a resting uid is addressed. In this way four di�erent levels of interaction
of magnetically induced ow and surface structures are presented.

Introduction. Magnetic uids o�er the unique advantage to inuence or
even control their behavior strongly via an external magnetic �eld. In this way they
have found widespread technical applications, ranging from rotary feed throughs to
loud speakers (see Ref. [1] e.g.). Apart from their technical importance, structure
formation in magnetic uids is entering more and more the focus of basic research
[2]. Depending on the boundary conditions magnetic forces may alter either ow
or surface structures of the uid or both together. In the following we present
four representative examples, illuminating di�erent levels of interaction between
magnetically induced ow and surface structures.

We start with the Hagen{Poiseuille ow in an alternating �eld. Here the
surface is completely determined by the surrounding pipe and the magnetic �eld
may solely change the ow pattern. In section 2 measurements on the rupture of
a liquid bridge of magnetic uid are reported. Now ow- and surface structures
are of equal importance. This is true as well for the twin peak pattern observed
at the Faraday instability of magnetic uids (section 3). Eventually we look at
the normal �eld instability of a resting uid. Here no ow takes place and the
magnetic �eld solely determines the static surface structure.

1. Hagen{Poiseuille ow. In 1969 McTague investigated the viscosity of

a Hagen{Poiseuille ow under inuence of a static magnetic �eld [3]. The external
�eld hinders the free rotation of the magnetic nano particles and thus increases
the viscosity of the ow. A theoretical treatment for the magnetically induced
relative viscosity change �r = ��=� was given by Shliomis [4, 5]. Later, in 1994,
Shliomis and Morozov [6] investigated the additional viscosity generated in a ow
with vorticity due to an alternating, linearly polarized �eld. They postulated a
negative viscosity contribution (�� < 0) for a certain range of the �eld strength
and frequency of the applied magnetic �eld. This `negative viscosity e�ect' can be
understood as a transfer of energy from the magnetic �eld into rotational motion
of the particles.

A �rst observation of the e�ect by means of a concentrated suspension of
Co-ferrite particles was published together with model equations, to be solved
numerically [7]. For a quantitative comparison of experiment and model equa-
tions independent measurements have been conducted with a dilute suspension of
magnetite [8]. Fig. 1 presents the measured values of the reduced viscosity versus

268

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/187153976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 3 6 9 12 15

R
ed

uc
ed

 V
is

co
si

ty
 η

r

Magnetic Field (kA/m)

f (Hz)
1002
3005
6010
9191

14205
22321

Fig. 1. Reduced viscosity as a function of the magnetic �eld for six di�erent driving
frequencies; from [8]. The symbols denote the experimental data, the solid lines the �t

by a model �rst presented in [7].

the magnetic �eld strength together with a �t by the data obtained via integra-
tion of the model equations. A quantitative agreement of both data sets could
only be achieved, when taking into account a frequency dependence of the �tting
parameters, namely the Brownian relaxation time, the e�ective volume fraction,
and the magnetic dipole moment. This diÆculty was not expected and is still
unexplained. Especially for the �tted Brownian relaxation time we have found a
phenomenological scaling which is cum grano salis inversely proportional to the
driving frequency [8].

For weak excitation amplitudes Shliomis and Morozov presented an analytical
description of �r [6]. We have tested this prediction experimentally. A reasonable
�t between experiment and the presented function was only possible when again
taking into account the above mentioned phenomenological scaling of the Brownian
relaxation time with the driving frequency [9]. A thorough understanding of this
scaling is still lacking. A possible ansatz would stress the reversible formation of
aggregates of magnetic particles under the inuence of the magnetic �eld. Due to

their relatively large size these aggregates could dominate the relaxation time of
the uid. Assuming the time for the formation of aggregates to be proportional
to the driving period, the observed frequency scaling is reproduced.

2. Rupture of a magnetic liquid bridge Without the lateral support by
a pipe wall the surface of a liquid column has additional degrees of freedom. The
early stage of the developing instability is described by classical linear stability
analysis �rst conducted by Rayleigh [10]. In the last stage of the surface tension
driven instability drop formation occurs. The surface and ow structures imme-
diately before drop pinch{o� are described by universal scaling functions [11]. We
have investigated whether this scaling laws for standard Newtonian liquids sur-
vive for the case of magnetic liquids subject to an axial magnetic �eld [12]. A
magnetic liquid bridge is suspended in between the pole shoes of two electro mag-
nets. Upon increase of the static magnetic �eld the bridge disintegrates. Fig. 2
displays a sequence of frames before the rupture of the bridge. During the last 3
ms before the rupture the measured neck diameter is found to follow the equation
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Fig. 2. Decay of a liquid bridge of magnetic uid (APG J12 from Ferrouidics) recorded
by means of a high speed CCD{camera. The frames are taken at t=0 ms (a), 2 ms (b),
and 3 ms (c). From [12].

dmin = �0:136 V� (t0� t). Here t0 denotes the time of pinch{o�, V� = �=(��) the
intrinsic velocity, � the surface tension, � the kinematic viscosity, and � the density
of the uid. The factor 0.136 is close to the value 0.142 predicted by Papageorgiou
for the case of a viscosity dominated ow [13] in agreement with the relatively large
viscosity of the investigated magnetic uid. It seems, that immediately before drop
pinch{o� the magnetic forces are of rather low importance.

3. Twin peaks at the Faraday instability. The Faraday instability be-
longs to the most popular experimental con�gurations for the investigation of
parametrically excited instabilities, structure formation and spatio-temporal chaos
[14]. Operating the experiment with magnetic uid instead of the commonly used
water or silicon oil is adding several interesting avors. Firstly, instead of shaking
the container, the instability can also be driven by periodic modulation of the
applied magnetic �eld (see Ref. [15, 16, 17, 18], e.g.). Secondly, di�erent orienta-
tions of the magnetic �eld with respect to the surface layer permit the realization
of various symmetries [19]. Finally, the dispersion relation of magnetic uids can
be tuned by the external magnetic �eld. Especially, the advent of the normal �eld
instability is accompanied by a non{monotonous dispersion relation [20, 15]

!2

D
= gk � �

(�r � 1)2

�r + 1

1

�
H2k2 +

�

�
k3: (1)

Here !D denotes the driving frequency, k the wave number, H the strength of
the external magnetic �eld, �r the relative magnetic permeability, � = �r�0 the
magnetic permeability, and �0 the magnetic �eld constant.

Experimentally, the non-monotonous dispersion relation was investigated by
means of locally excited travelling waves in an annular channel [21], and in a circu-
lar container [22]. Due to the non-monotonousness up to three di�erent wavenum-
bers can be excited with one single driving frequency. Which of the wavenumbers
can actually be realized depends on the viscous dissipation in the bulk and in the
bottom layer of the uid [23]. For surface waves excited in a spatially homogeneous
manner, the competition of the di�erent wavenumbers was predicted to result in
the spontaneous formation of domain structures [24]. This symmetry{breaking
process could be experimentally demonstrated in an annular channel excited by
vertical vibration [25]. In the annulus a domain of standing subharmonic waves
with the wavenumber k1 = 34 and another domain with k2 = 46 evolved. In
addition to the predicted domain formation in space, for di�erent parameters a
domain formation in time could also be detected [25]: A standing wave pattern of
wavenumber k1 collapses spontaneously in the whole annulus, and gives way to a
pattern with wavenumber k2. The latter however is not stable and forms a slowly
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a) b)

Fig. 3. Twin peak pattern in the non{monotonous regime of the dispersion relation.
The time elapsed between picture a) and b) is one driving period.

shrinking domain, which �nally vanishes in favour of k1. This cycle is repeated in
an irregular manner.

Recently, the competition between two di�erent wavenumbers was found to
be solved in a third way [26]. In the non{monotonous regime, for a magnetic �eld
of H = 0:98Hc and a driving frequency !D = 9:615Hz a novel pattern of twin
peaks has been detected. Fig. 3 displays two snapshots taken one driving period
apart. One clearly unveils a subharmonic standing wave. Apparently, instead
of two separated domains, a bi{periodic structure in space has been established.
Both dominant wavenumbers of the twin{peak pattern are found to be situated
on the non{monotonous dispersion curve [26].

4. Measuring the Rosensweig instability Even without parametric ex-
citation a at layer of magnetic uid, subject to a vertical magnetic �eld, is a fas-
cinating object of structure formation. According to Eq. (1) the non{monotonous
dispersion curve touches the !2

D
= 0 { line for a critical magnetic �eld Hc at

the critical wavenumber kc =
p
�g=�. For H > Hc the growth rate of a band

of wavenumbers around kc is getting positive and the liquid forms a stationary
pattern of peaks which is called the normal �eld or Rosensweig instability.

The wavenumber of the emerging pattern, accessible with conventional CCD-
cameras, has been investigated in several experiments. Especially the dependence
of the wavenumber on the magnetic �eld and on the viscosity of the uid was
subject of recent theoretical and experimental e�orts [27]{[31]. For further infor-
mation please see the contribution by A. Lange et al. in this volume.

In contrast, only a few experiments are investigating the order parameter of
the transition, i. e. the height of the liquid crests. This is mainly due to the
diÆculties in measuring a three dimensional pro�le of the instability. The fully
developed crests are much to steep to be measured with the standard optical
shadowgraphy, utilizing the slightly deformed surface as a focusing or defocusing
mirror for a parallel beam of light [32, 22]. Another recently proposed method,
which analyzes the reections of a narrow laser beam in a Faraday experiment
[33], yields only the local surface slope but not the local surface height.

The straight{forward technique, namely the lateral observation of the instabil-
ity, is only possible for zero- or one dimensional systems, i.e. a single Rosensweig
peak [34] or a chain of peaks [35, 25]. This requests a proper matching of the
dimensions of the container to the wave length of the instability. In addition, a
careful design of the container edges is necessary in order to minimize the inuence
of the meniscus on the pro�le of the instability. Despite both e�orts the magnetic
�eld gradient induced by the edges will still distort the true pro�le. Thus, for mea-
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a) b)

Fig. 4. Pro�le of the Rosensweig instability at a magnetic induction of B = 22:95mT
(a) in a hexagonal shaped Teon container of depth of 4 mm. Figure (b) displays a zoom

of the center of the structure.

suring quantitatively the pro�le of the normal �eld instability, an extended layer
of ferrouid is most appropriate. There the region of interest can be selected far
away from the container edges. However, for this extended layers a new detection
technique has to be applied.

We measure the attenuation of x-rays passing the magnetic uid layer in
vertical direction. The transmitting radiation is recorded by means of an x{ray
sensitive photo diode array based on amorphous silicon technology. For details
of the experimental setup see [36]. The intensity of the transmitted radiation
of a narrow, well collimated beam of monochromatic x-rays is found to decrease
exponentially with the layer thickness h(x; y)

I(x; y) = I0 exp(��h(x; y)); (2)

where � denotes the linear attenuation coeÆcient. For measured values of I(x; y); I0
and �, the local height h(x; y) of the layer can then be calculated simply via the
inverse of Eq. (2). For a good resolution one has to match the half-value thickness
h1=2 = 0:69=� to the height of the liquid structures by tuning the wavelength of
the radiation. In preliminary studies we obtained a height resolution better than
50�m. Fig. 4 provides �rst reliefs recorded by this radioscopic method.

To conclude, we have presented recent experimental e�orts for a quantitative
characterization and understanding of ow and surface structures of ferrouids
under inuence of the magnetic �eld.
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