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We found two errors in the paper ‘Thermal convection in a thermosensitive colloidal
suspension’ (2010 New J. Phys. 12 053003), which were both originally our mistake.

In table 1, two units are wrong. The solutal expansion β has no unit, while the unit of the
Soret coefficient ST is 1/K. The respective lines in this table should correctly read:

Solutal expansion β 0.0938 ± 0.0004 —

Soret coefficient (ST) (K−1) 0.35 ± 0.03 —
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Abstract. Thermal convection is investigated experimentally in a microgel
suspension that consists of core-shell colloids, which change their size with
temperature. The swelling and shrinking of the particles strongly modify their
volume fraction in the carrier fluid and therefore the viscosity of the suspension.
In this experiment, thermal convection in a Hele–Shaw-like apparatus is
monitored using the shadowgraph technique. When compared to a normal fluid,
the threshold temperature difference is reduced dramatically, which is interpreted
as a manifestation of the Soret effect, i.e. the temperature gradient applied to
the suspension induces an unstable gradient of the colloid concentration. The
wavelength in the nonlinear regime is very different from the one observed
in water. Furthermore, transient oscillations of the patterns are detected in the
nonlinear regime and are investigated as a function of the applied temperature
difference.
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1. Introduction

Colloidal suspensions, such as wall paint, ice cream or sunscreen, cover a wide range of
substances, not only in an industrial but also in our everyday life environment [1]–[3]. Their
significance further extends to a variety of biological systems, such as suspensions of algae in
water, single-cell bacteria or the bloodstream in human bodies. One prominent effect in colloidal
suspensions is thermal diffusion (or the Ludwig–Soret effect), which leads to a partial separation
of the components caused by thermal gradients [4, 5]. This might have played some role in the
formation of life in the so-called ‘hydrothermal vents’ or ‘black smokers’ [6, 7].

The Ludwig–Soret effect influences another important temperature-driven hydrodynamic
effect, namely thermal convection [8, 9]. Here, a macroscopic current is observed when a
fluid layer between two parallel horizontal plates is heated from below and when the applied
temperature difference 1T exceeds a certain critical threshold value. This happens when
the destabilizing buoyancy force overcomes the stabilizing dissipative force. The ratio of the
counteracting forces can be expressed as a dimensionless control parameter describing the
instability, namely the Rayleigh number

R =
αgd3

κν
1T . (1)

Here, α is the thermal expansion coefficient, g the acceleration due to gravity, ν the kinematic
viscosity, κ the thermal diffusivity and d the distance between the plates.

In its simplest case, the Rayleigh–Bénard convection in a pure single-component fluid,
straight parallel convection rolls can be observed at threshold. The instability occurs for critical
values Rc = 1708 of the Rayleigh number and λc = 2.016 d of the wavelength, both being
independent of the material characteristics of the special fluid under consideration. Due to its
simplicity, which nevertheless leads to a large variety of patterns and selection mechanisms
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above the convection threshold, this system has been studied in great detail experimentally and
theoretically in the linear (i.e. near threshold) as well as in the nonlinear (far from threshold)
regime [8], [10]–[13].

If the convecting fluid consists of a mixture of two components (a binary mixture), the
concentration of the components may strongly influence the bifurcation behaviour [14, 15].
Due to the Soret effect, the concentration field is coupled to the temperature field. The strength
of the coupling is described by the Soret coefficient ST, resulting in a second control parameter,
namely the separation ratio

9 =
β

α
STc(1 − c), (2)

where β is the expansion coefficient due to concentration changes and c is the concentration
of the denser component. ST (and thus 9) can have either sign and may have a stabilizing or
a destabilizing effect on the conductive state. For ST > 0, the Soret generated concentration
current enhances the thermally induced density gradient, so that convection sets in for a lower
Rayleigh number compared to a normal fluid (positive Soret effect). For ST < 0, on the other
hand, the thermally induced density gradient is diminished and convection sets in for a higher
Rayleigh number (negative Soret effect). The dynamics of the concentration is driven by an
independent time scale caused by the mass diffusivity D and expressed by the Lewis number
L = D/κ . Hence, the time constant for the development of thermal convection is determined by
the mass diffusion time τD = d2/(π 2 D), which is typically much larger (by a factor of 1/L) than
the thermal diffusion time. For certain fluid parameters, this may lead to temporal oscillations
at the convection threshold, which, combined with the spatial periodicity of the pattern, results
in travelling waves for negative 9. Rayleigh–Bénard convection in binary mixtures, such as salt
water, water–alcohol or 3He–4He, is readily accessible to high-precision experiments and thus
a vast amount of literature is available [12], [14]–[17].

If the material parameters are such that 9/L � 1 (as it is the case in our experiment, see
later), the Soret-driven convection sets in at an (analytically exact) critical Rayleigh number
of Rc = 720 L/9 with an infinite wavelength of λc = ∞ [18]–[21]. Therefore, the appropriate
control parameter for this case is the solutal Rayleigh number

Rs = R
9

L
=

βgd3

Dν
1c (3)

with a concentration difference 1c = STc(1 − c)1T between top and bottom boundaries and a
critical value of Rs,c = 720. Compared to equation (1), the thermal properties of the liquid have
been replaced by the corresponding solutal properties.

Although the current mathematical formalism for convection in binary molecular mixtures
and for convection in colloidal suspensions is identical, the Soret-driven mass current in the
latter case is often called thermophoresis instead of thermal diffusion. The large size of the
particles (≈1 nm–1 µm) leads to even longer diffusion time scales (compared to molecular
mixtures), resulting in very small Lewis numbers of L ≈ 0.0001 compared to L = 0.01–0.1
for molecular mixtures. It was also found that colloids often have a much stronger Soret effect,
so that 9 can be about 2 or 3 orders of magnitude larger than in binary mixtures [22]–[25].
Due to these much longer time scales and often a dramatic reduction in the threshold value,
convection experiments in colloidal suspension are more difficult. A large Soret coefficient in
macromolecular solutions and the resulting decrease of the convection threshold have already
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been reported in 1977 [26, 27]. More recently, colloidal suspensions with large negative
separation ratios have become popular for experimentally studying convection in the strongly
supercritical regime, considering for example the evolution, distribution and stability of spatial
structures [24, 25, 28] or the convective heat transfer [29]. Recent theoretical investigations have
concentrated on developing convection for high Rayleigh numbers [30] and the peculiarities of
the strongly distinct diffusion time scales [31, 32]. A survey of the patterns expected in the
typical parameter range for colloidal suspensions can be found in [33].

In this paper, we report on convection experiments in a thermosensitive colloidal
suspension. The core–shell particles used in this suspension have the intriguing feature that
they change their size with temperature, which in turn leads to a strongly temperature-
dependent viscosity. As a result, we expect a modified convection behaviour, especially for
larger temperature differences. The remainder of the paper is organized as follows. The material
characteristics of the suspension under consideration are described in detail in section 2.1, while
the convection cell and the optical setup are explained in sections 2.2 and 2.3, respectively. In
section 3.1, a qualitative comparison of the convection in our substance with convection in water
is given. The experimental results for the threshold characteristics of the observed patterns are
presented in section 3.2 and again compared with the results for water. The transient oscillation
behaviour of the patterns when changing the temperature difference is presented qualitatively
and quantitatively in section 3.3. In section 4, the various results of this paper, i.e. the reduction
of the critical temperature difference, the wavelength of the convection patterns and the transient
oscillations, are separately discussed and compared with the existing literature. Finally, a short
outlook is given in section 4.4.

2. Description of the experiment

2.1. Material characteristics of the suspension

The thermosensitive colloidal suspension used in this experiment consists of core-shell
nanoparticles in water. The particles have a solid polystyrene core and a grafted network
of poly(N-isopropylacrylamide) (PNIPA), which changes its size with temperature. For low
temperatures, the PNIPA network is swollen, which leads to the formation of hydrogen bonds
between the water molecules and the amide side chains of the network. For higher temperatures,
the PNIPA network undergoes a transition that leads to the expulsion of water molecules and
results in a shrinking of the network [34]–[36]. This is shown schematically in the inset of
figure 1(a).

The mass ratio of the components of the particles is mPS/mPNIPA = 1.059 ± 0.16, where
‘PS’ stands for the polystyrene core and ‘PNIPA’ for the network. Details of the properties
and of the synthesis of the particles can be found in [35, 37]. The radius Rc = 40.55 nm of the
polystyrene core has been determined by directly imaging a frozen sample of particles with a
Zeiss 922 transmission electron microscope [36], while the hydrodynamic radius of the whole
particles has been determined by dynamic light scattering of a dilute suspension with a Peters
ALV 800 goniometer [38]. As reported in [39], the hydrodynamic radius of the investigated
particles can in good approximation be regarded as the average geometrical radius. As shown
in figure 1(a), for temperatures below approximately 27 ◦C, Rh decreases almost linearly with
rising temperatures, while it decreases much more dramatically when the PNIPA network is
collapsed near the transition temperature of about 35 ◦C.
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Figure 1. Illustration of the transition of the core-shell particles. For temperatures
above ≈35 ◦C, the shell network is shrunken to its smallest size, while it swells
for lower temperatures, leading to a larger hydrodynamic radius. Shown as
functions of the temperature T are (a) the hydrodynamic radius Rh, (b) the
resulting volume fraction φeff of the particles in the suspension and (c) the
viscosity η of the suspension, respectively.

For our convection experiments, we use a suspension of particles in water with a mass
concentration of c = 8.71%. Using the values for the hydrodynamic radius Rh from figure 1(a)
and the core radius Rc from above, the effective volume fraction φeff shown in figure 1(b) can
be calculated as [40]

φeff = φc

(
Rh

Rc

)3

. (4)

Here,

φc =
Vc

V
= c

ρc

ρPS

mPS

(mPS + mPNIPA)
(5)

represents the volume fraction of core material in the suspension, which is given by the
density fraction ρPS/ρ = 1.049 ± 0.01 of polystyrene and water, and the core-shell mass ratio
mPS/mPNIPA [39].
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Table 1. The material properties of the investigated colloidal suspension for
a temperature of 25 ◦C. Reference values for water [43, 44] are given where
applicable.

Suspension Water

Mass concentration c (%) 8.7 ± 0.2 –
Volume fraction 8 0.32 ± 0.05 –

Density ρ (103 kg m−3) 1.0053 ± 10−4 0.997 047 ± 10−6

Thermal expansion α (10−4 K−1) 2.9 ± 0.1 2.572 922 ± 3 × 10−6

Solutal expansion β (10−2 K −1) 9.38 ± 0.04 –

Dynamic viscosity η (10−3 Pa s) 6.6 ± 0.6 0.8900 ± 0.0015
η−1 ∂η/∂T (K −1) −0.134 ± 0.002 −0.022 79
η−1 ∂η/∂c 35 ± 3 –

Kinematic viscosity ν (10−6 m2 s−1) 6.5 ± 0.6 0.893 ± 10−3

ν−1 ∂ν/∂T (K −1) −0.133 ± 0.002 −0.022 53
ν−1 ∂ν/∂c 35 ± 3 –

Thermal diffusivity κ (10−7 m2 s−1) 1.36 ± 0.05 1.46 ± 0.03
Mass diffusivity D (10−12 m2 s−1) 6.79 ± 0.03 –
Soret coefficient ST 0.35 ± 0.03 –

Refractive index n 1.350 7 ± 2 × 10−4 1.331 62 ± 2 × 10−5

(632.8 nm) ∂n/∂T (10−4 K−1) −1.3 ± 0.1 −1.055 090
∂n/∂c 0.23 ± 0.01 –

Prandtl number P = ν/κ 48 6.13 ± 0.02
Lewis number L = D/κ 5.0 × 10−5 –
Separation ratio 9 =

β

α
STc(1 − c) 8.8 –

The viscosity of the suspension depends on the applied shear velocity [41, 42]. The
dynamic viscosity is measured with an Anton Paar Physica MCR 301 rotational rheometer at
different shear rates and extrapolated to low shear rates, in order to determine the zero-shear
viscosity η [41]. The result is shown in figure 1(c).

The macroscopic material properties of the suspension are summarized in table 1 for a
temperature of 25 ◦C. The density ρ is measured with an Anton Paar DMA4100 vibrating
tube densitometer and the refractive index n with an automatic Abbe refractometer (Anton
Paar AbbeMat WR, customized to a wavelength of 632.8 nm). Within the achievable accuracy,
the density and refractive index were found to increase linearly with the mass concentration.
The expansion coefficients α = −ρ−1 ∂ρ/∂T and β = ρ−1 ∂ρ/∂c as well as the derivatives
∂n/∂T and ∂n/∂c are determined by fitting a polynomial of second order in the temperature
and first order in the concentration to a series of measurements in the range of T = 0 . . . 30 ◦C
and c = 0 . . . 8.71%. The thermal diffusivity κ of the solution has not been measured, but has
been estimated from the properties of the components using the Hashin–Strikman-bounds for
the thermal conductivity and a mass weighted average of the heat capacities [45]. For our
temperature range, the variation of κ determined with this method lies well within the bounds
given in table 1. The collective mass diffusivity D and the Soret coefficient ST are determined
by a beam deflection technique as presented by [46, 47], using the convection cell described
below but heating from the top to suppress convection. Here, the deflection of a laser beam by
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Figure 2. (a) Photograph of the convection cell. (b) Schematic diagram of the
shadowgraph setup (not to scale).

the concentration gradient inside the cell allows a very sensitive measurement of the parameters
in question. ST is determined from the absolute value of the deflection, while D follows from
the time constant of the measurement. Due to the long time scales of the experiment, we have
done this for one temperature only, i.e. 25 ◦C.

2.2. Convection cell

Figure 2(a) is a photograph of the cell, that has been used for the convection experiments. In
such a geometry, the convection flow is typically two-dimensional with the convection roll axes
being aligned parallel to the shortest dimension (here the y-direction), and the flow is stable up
to large supercritical Rayleigh numbers [48, 49].

The convection cell is made from a copper plate with the dimensions 70 mm × 90 mm ×

1.5 mm. The convection channel has been cut out of the middle of the copper plate and has a
length of l = 68 mm and a height of d = (3.00 ± 0.01) mm. The working fluid can be filled into
the convection channel from left or right via two syringes which have a diameter of 0.6 mm
each. The front and the back of the convection channel are sealed with glass plates. Due to the
glue, the width b of the channel is somewhat larger than the thickness of the copper plate. We
measured b = (1.61 ± 0.03) mm, leading to an aspect ratio of 0 = d/b = 1.863 ± 0.035.

The temperatures at the bottom and top of the channel are measured by two platinum
temperature sensors (JUMO Pt1000). Their resistances are measured by four-wire setups using
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two digital multimeters (Prema 5017). The sensors are attached onto small aluminium discs
that are screwed onto the convection cell. The distances of the two temperature sensors from
the top and bottom of the channel are 15 mm, respectively. The heating of the bottom of the
convection channel is done electrically by 14 power resistors (Vishay RTO20, 10 � each), which
are connected in series. These resistors are mounted to the bottom of the copper plate. The
heating voltage is provided by a power supply (EuroTest LAB/SL-30) and measured using a
digital multimeter (Agilent 34410A/11A). Heat conductive paste has been applied to the back
of the temperature sensors and the power resistors, respectively, to improve the thermal contact
with the copper plate. The accuracy of the temperature difference was measured as ±10 mK.
The thermal diffusion time for the convection cell was found to be approximately 5 min.

As seen in the middle part of figure 2(b), the convection cell is placed inside an isothermal
aluminium box, which is kept at a constant temperature by a water circulation thermostat (Julabo
F33-MW). The top of the convection cell is in thermal contact with this aluminium box. The
bottom of the aluminium box is thermally insulated from the surrounding by a teflon plate. To
further improve the thermal insulation, the box is inside another box made from polystyrene.

2.3. Optical setup

The convection channel can be illuminated from one side and observed from the other side
through two slits at the front and at the back of the box. The shadowgraph method is used for
observing the convection patterns [50, 51]. Figure 2(b) is a schematic drawing of the optical
setup. An optical bench (Spindler and Hoyer) attached to a granite table is used for mounting
the optical components. The point light source consists of an LED (Luxeon LED LXHL-LD3C;
power 3 W, emission wavelength 627 nm) and a pinhole with a diameter of 0.2 mm. The current
for the light source is provided by a power supply (EuroTest LAB/SL-30). A convex lense with a
focal length fL = 250 mm is used to illuminate the convection cell with slightly convergent light.
The shadowgraph images are recorded with a monochrome USB2.0 CCD camera (Lumenera
Lu135) with a macro objective (Micro-NIKKOR 55 mm f /2.8). The objective is focused onto
the virtual focal plane. By using fine adjustment drives, all optical components can be moved in
the x- and the z-direction.

3. Measurements and results

3.1. Qualitative comparison with convection in water

Figure 3 shows shadowgraph images of thermal convection in water (top) and in our
thermosensitive colloidal suspension (bottom), respectively. The image for water was taken
at a slightly supercritical temperature difference of 1T = 11.46 K, while the one for the
suspension is shown for presentation purposes at a strongly supercritical temperature difference
of 1T = 3.17 K. The bright vertical stripes correspond to upward streaming warmer fluid, while
the darker regions or stripes in between correspond to downward streaming colder fluid. Two
adjacent intensity maxima always separate a pair of counter-rotating convection rolls from the
next pair.

One striking feature is the difference in wavelengths between the two images. Obviously,
the wavelength observed in the suspension is significantly shorter than in water. While we
probably measure a value close to the critical one in water, this is not the case for the suspension,
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Figure 3. Shadowgraph images showing the thermal convection patterns in pure
water (top) and in our thermosensitive colloidal suspension (bottom).

where the critical wavelength is expected to be of the order of the length of the convection
channel. This will be discussed in more detail below and in section 4.

3.2. Determination of the threshold

In order to measure the convection threshold, the upper part of the convection cell was held
at a constant temperature of about 25 ◦C by means of the water circulation thermostat, while
the lower part was heated by applying a certain voltage to the electrical heating. The resulting
temperature difference 1T was measured by the temperature sensors and a shadowgraph image
was recorded every minute. From each image, the optical contrast was extracted in the following
way. First, the two-dimensional shadowgraph image is reduced to one line by adding up all
horizontal lines spanning over the whole convection channel. To eliminate inhomogeneities of
the illumination of the convection channel, the resulting line is divided by a zero line, which has
been obtained in the same way but for a temperature difference of zero, i.e. without convection.
This leads to a normalized intensity profile

In(x) =

∑z2
z1

I (x, z)∑z2
z1

I0(x, z)
, (6)

where z1 and z2 label horizontal lines, which are well inside the dark regions below and above
the convection channel in figure 3. The optical contrast σ is obtained by calculating the rms
value of such a line and dividing it by the mean intensity of the line:

σ =
rms(In)

Ī n

(7)

with

rms( f ) =

√∑x2
x1
( f (x) − f̄ )2

(x2 − x1 + 1)
and f̄ =

∑x2
x1

f (x)

(x2 − x1 + 1)
. (8)

When there is no convection in the channel, a contrast of σ = 0 is expected, while it should
depart from 0 as soon as convection sets in. The result of such a measurement series is shown
in figure 4, where the squared optical contrast σ 2 is plotted versus the applied temperature
difference 1T . Starting from a slightly negative value, the applied temperature difference was
increased every 20 h by 0.103 K. For each data point, the optical contrast σ has been averaged
over 5 h after a waiting time of 15 h.
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Figure 4. Squared optical contrast σ 2 of the shadowgraph patterns in the
thermosensitive colloidal suspension as a function of the applied temperature
difference 1T . The dotted horizontal line denotes the noise level of the
shadowgraph signals, while the solid line is a linear fit to the first five data points.

For 1T < 0.2 K, no data points are shown because no convergence of the contrast was
found within the waiting time. This is not surprising, since in the vicinity of the convection
threshold, the time scale for the onset is expected to be determined by the mass diffusion time
τD ≈ 37 h and the relative distance from threshold, ε = (R − Rc)/Rc.

The solid line is a linear fit of the first five data points, while the dotted line represents the
noise level of the shadowgraph signals. If a pitchfork bifurcation is assumed for the instability,
the critical temperature difference for the onset of thermal convection can be estimated from the
intersection of the two lines as 1Tc ≈ (0.07 ± 0.03) K.

It should be noted that the observed pattern does not represent the critical wavelength,
which is theoretically expected to be infinitely long or in our experiment of the order of the
length of the convection channel. However, the neutral curve of the instability is essentially flat
for our material parameters, so that the threshold for the observed wavelength is of the same
order as for the critical one [19]–[21], [33]. In the measurement at 1T ≈ 0.7 K, a change of the
average wavelength from λ = 0.75 d to λ = 0.66 d was observed, resulting in a distinct change
of the optical contrast. Therefore, the last three data points in figure 4 have been excluded from
the evaluation.

For characterizing our apparatus, we performed a reference measurement of the convection
onset in water. We measured a critical temperature difference of 1T w

c = (9.82 ± 0.01) K,
corresponding to a critical Rayleigh number of Rw

c = 6630 ± 150 and a critical wavelength of
λw

c = (1.65 ± 0.02) d.

3.3. Transient oscillations

When changing the temperature difference, we observed a transient oscillation behaviour of
the convection structures. Figure 5 shows a space–time plot of such a thermal convection
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Figure 5. Space–time plot of shadowgraph images averaged over z. The
temperature difference is held constant at 1T = 1.47 K, except that after 3 h
(indicated by the arrow) it has been switched off for 10 min.

experiment. Each horizontal line of the image represents a normalized intensity profile In(x),
calculated according to equation (6) but scaled to maximum contrast for presentation purposes.
The images were recorded in time steps of approximately one minute and the measurement is
shown for 12 h. The bright spots correspond to the warmer upstreaming fluid, while the dark
spots mark the colder downstreaming fluid. For the duration of the experiment, the temperature
difference was held constant at 1T = 1.47 K, except that after 3 h it has been switched off
for 10 min (indicated by the arrow). Before switching off 1T , straight lines can be seen in
figure 5, corresponding to a stationary convection pattern. After switching the temperature
difference on again, the convection patterns exhibit spatial oscillations around their equilibrium
positions. These oscillations slowly decay and vanish after approximately 9 h. Upstreaming and
downstreaming flows oscillate against each other with the same frequency, which in this case is
f ≈ 1.5 mHz. A similar behaviour was found for other temperature differences as well.

Figure 6 shows the frequency f of the transient oscillations as a function of the temperature
difference 1T . The oscillation frequency f was determined by measuring the time τ of two
consecutive oscillation maxima of one convection structure and then averaging over all such
times extracted from one structure. After this has been done for all convection structures in one
image, all individual times are averaged to obtain the oscillation frequency for this particular
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Figure 6. Frequency f of the transient oscillations as a function of the applied
temperature difference 1T .

temperature difference. The error bars in figure 6 simply represent the statistical errors coming
from this procedure. Obviously, the transient oscillation frequency increases with increasing
temperature difference.

4. Discussion and summary

4.1. Reduction of the critical temperature difference

For a pure fluid, the theoretical modeling of a laterally infinitely extended thin cell with
perfectly heat conducting top and bottom boundaries and perfectly insulating front and back
covers yields a critical Rayleigh number of Rc = 3530 ± 80 and a critical wavelength of
λc = (1.963 ± 0.001) d for our aspect ratio of 0 = 1.86 [52]. The complementary calculation for
perfectly heat-conducting front and back covers predicts a convection onset at Rc = 8130 ± 100
with a critical wavelength of λc = (1.51 ± 0.05) d [53]. For insulating covers, the critical
wavelength shows only a weak dependence on the aspect ratio, while for conducting covers,
it decreases noticeably with increasing aspect ratio. The top and bottom copper plates of our
experimental cell may be regarded as perfectly heat conducting; however, the front and back
glass plates have a thermal conductivity that is of the same order as for the liquid. Consequently,
the observed critical Rayleigh number Rw

c = 6630 and critical wavelength λw
c = 1.65 d for the

convection onset of water in our cell are found to lie between the two limiting cases.
Assuming a pure fluid (9 = 0) with otherwise the same material parameters as for our

suspension, especially with the same viscosity, we find that the critical temperature difference
would be about a factor of 5.9 larger than in water (see table 1 and equation (1)). From
our reference measurements for water, we can thus deduct a hypothetical critical temperature
difference of 1T 9=0

c ≈ 58 K in our cell, so that our measurement for the suspension (1Tc ≈

0.07 K) suggests a threshold reduction by a factor of at least 800.
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A reduction of the threshold of convection in a suspension is expected when the material
can be modelled as a binary fluid mixture with a positive separation ratio [14, 15]. Depending on
the parameters of the suspension, this reduction can be quite dramatic as it is obviously the case
in our experiment. This behaviour is reminiscent of former observations, which also showed a
large threshold reduction, but for a negative separation ratio with heating from above [26, 27].

With the material parameters for our suspension (9 = 8.8 and L = 0.000 050, see table 1),
the theory for a thin convection cell with an aspect ratio of 0 = 1.86 yields Rc = 0.0080
and λc = ∞ [52]. Taking into account the correction deducted from the comparison of the
experiment in water with the theory for perfectly insulating front and back covers, and assuming
that this correction holds for our parameters as well, we can estimate Rc ≈ 0.015. This translates
into a critical temperature difference of 1Tc ≈ 0.000 17 K, which is much lower than the
observed value of 0.07 K and also seems beyond the experimental resolution. Thus we have
to conclude that for any positive temperature difference applied to the suspension in our
experiment, convection is always present.

4.2. Wavelength of the convection patterns

For the convection wavelength, we find much shorter values as expected. According to the
theory, the critical wavelength for Soret-driven convection should be of the order of the length
of the convection channel, i.e. a single large convection roll is expected. As already discussed,
however, the neutral curve for such material parameters is extremely flat, so that a very wide
band of wavelengths have approximately the same critical temperature difference. But why do
we reproducibly observe such small wavelengths as shown e.g. in figure 3 and not just random
ones?

As we have qualitatively observed by a particle-tracking method, the convection first
develops in narrow boundary layers near the top and bottom boundaries of the convection
channel. As a consequence, the wavelength of the convection rolls is of the order of the
height of these boundary layers. This feature has been discussed previously and occurs when
the maximum of the developing concentration gradient at the boundaries reaches an unstable
value [25]. A similar effect is also well known from convection in simple fluids with a strongly
temperature-dependent viscosity [54]. When after some time the convection extends over the
whole height of the channel, the wavelength remains the same since it is typically well inside
the neutral curve, i.e. it is stable. The lateral phase diffusion time is much too large for the critical
wavelength to supersede the current one. Also in the well supercritical regime, as observed in
our experiment, the wavelength remains essentially the same.

4.3. Transient oscillations

The mechanism of the observed transient oscillations of the convection pattern remains
unclear. For the moment, we will restrict the discussion to a comparison with other published
observations of oscillatory convection patterns. In simple fluids, several time-dependent patterns
are known that appear as secondary instabilities for higher Rayleigh numbers before the
transition to turbulent flow, both in bulk [11, 55] and in Hele–Shaw geometries [49, 56].
The observed inversely phased oscillation of the up and downstreams qualitatively resembles
the behaviour of a standing oscillatory blob instability [57] or the spatial time evolution of
the temperature field in thin slots [58, 59]. Further, the existence of an oscillatory instability
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has been verified in viscoelastic suspensions with large viscosities and large viscoelastic
relaxation times [60]. Since the gel fraction of our suspension is viscoelastic, some viscoelastic
behaviour can be expected in sufficiently concentrated solutions of gel particles. Rheological
measurements of the suspension indicate viscoelastic time scales of up to 1000 s, which is of
the same order as the turn-over times of the convection rolls as well as the oscillation periods
discussed here. In this frequency regime, however, the elastic properties are so weak that they
are near the resolution limit of the rheometer (Anton Paar Physica MCR 301).

In nearly critical 3He, employed as an example for a compressible fluid, a transient
oscillatory heat transfer during the onset of convection was found [61]. A similar behaviour
can be observed in measurements of the convection onset in materials with a very strong
temperature-dependent viscosity [62]. Transient oscillations in the amplitude of Soret-driven
convection after applying a temperature step have first been observed in a suspension with
a large negative separation ratio heated from above [26, 27]. The same behaviour has also
been reported for a molecular fluid mixture [63], for colloidal suspensions [24, 25] and in
simulations [64]. (This supercritical transient oscillation mode must not be confused with the
well-known oscillatory instability of a binary fluid mixture with negative separation ratio heated
from below [14, 15].)

Both stationary and transient oscillations have been attributed to the repeated formation
and remixing of thermal or concentration boundary layers, respectively [54, 65]. This also
explains the noticeably short oscillation period in the Soret-driven case, since the time scale is
determined by the smaller boundary layer height δ rather than by the cell height d . For the case
of a simple fluid, the scaling behaviour for the typical time corresponding to this mechanism has
been estimated [54, 66]. Using the diffusive propagation of the boundary layer height δ ∝ t1/2

and the scaling of the Rayleigh number R ∝ δ3, a dependency of t ∝ R−2/3 was derived, which
has been confirmed by measurements of oscillating convection in simple fluids [54, 67]. In
Hele–Shaw geometries, the scaling of the Rayleigh number has to be adjusted to the aspect
ratio δ/b of the boundary layer to the cell thickness [56].

Figure 7 shows the oscillation period of the transient oscillations observed in our
experiment in dimensionless form. The solutal Rayleigh number has been calculated according
to equation (3) from the material parameters at the average cell temperature. The oscillation
period Tosc = 1/ f has been scaled with the mass diffusion time τD. From an (error weighted)
least squares fit to the data, we obtain the scaling relation Tosc/τD ∝ R−0.52±0.03

s . The exponent
differs significantly from the scaling discussed above for the simple fluid case but corresponds
well to the dependencies that were found for the above-mentioned transient oscillations in 3He
and in Soret-driven convection [61, 68, 69].

4.4. Outlook

The dramatic decrease of the threshold value as predicted by the theory (a factor of about
400 000) together with the prohibitively large time scales involved limit the experimentally
accessible temperature range to very large values of the (solutal) Rayleigh number. While
this provides an opportunity to investigate a remarkably overcritical regime, it would be
desirable to measure the convection onset with the same accuracy as used from other convection
experiments. In order to improve the situation, we are currently designing a smaller setup with
cell heights of d 6 1 mm, resulting in an increase of the critical temperature difference and a
reduction of the diffusion times by at least an order of magnitude. Moreover, measurements
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data.

with higher precision are planned for the Soret coefficient and for the mass diffusivity in
our suspension. In order to explain the transient oscillations theoretically, we think that a
complete nonlinear model of the colloidal suspension in a two-dimensional geometry is the
most promising route.
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