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Abstract

Background

In an intensive care units, experts in mechanical ventilation are not continuously at patient’s

bedside to adjust ventilation settings and to analyze the impact of these adjustments on gas

exchange. The development of clinical decision support systems analyzing patients’ data in

real time offers an opportunity to fill this gap.

Objective

The objective of this study was to determine whether a machine learning predictive model

could be trained on a set of clinical data and used to predict transcutaneous hemoglobin

oxygen saturation 5 min (5min SpO2) after a ventilator setting change.

Data sources

Data of mechanically ventilated children admitted between May 2015 and April 2017 were

included and extracted from a high-resolution research database. More than 776,727 data

rows were obtained from 610 patients, discretized into 3 class labels (< 84%, 85% to 91%

and c92% to 100%).

Performance metrics of predictive models

Due to data imbalance, four different data balancing processes were applied. Then, two

machine learning models (artificial neural network and Bootstrap aggregation of complex

decision trees) were trained and tested on these four different balanced datasets. The best

model predicted SpO2 with area under the curves < 0.75.
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Conclusion

This single center pilot study using machine learning predictive model resulted in an algo-

rithm with poor accuracy. The comparison of machine learning models showed that bagged

complex trees was a promising approach. However, there is a need to improve these mod-

els before incorporating them into a clinical decision support systems. One potentially solu-

tion for improving predictive model, would be to increase the amount of data available to

limit over-fitting that is potentially one of the cause for poor classification performances for 2

of the three class labels.

Introduction

In case of respiratory failure, mechanical ventilation supports the oxygen (O2) diffusion into

the lungs and the carbon dioxide (CO2) body removal. As an expert in mechanical ventilation

cannot reasonably be expected to be continuously present at the patient’s bedside, specific

medical devices aimed to help in ventilator settings adjustments may help to improve the qual-

ity of care [1]. Such devices are developed using algorithms either based on medical reasoning

that adapt ventilator settings in real time based on patients’ characteristics [2, 3] or based on

physiologic models that simulate cardiorespiratory responses to mechanical ventilation set-

tings modifications [4]. The first ones are not accurate enough to be used widely in clinical

practice, especially in children, and the latter are not validated for this indication. Both algo-

rithms do not learn from ever-growing sets of clinical research data that could potentially

improve their performances. To overcome this drawback, another avenue is the development

of algorithms using artificial intelligence to provide caregivers with support in their decision-

making tasks.

Among the vital parameters, transcutaneous hemoglobin saturation oxygen (SpO2) is mon-

itored continuously at the bedside in intensive care and must be maintained in an adequate

range to insure tissue oxygenation. In mechanically ventilated patients, when SpO2 is low,

either FiO2 or ventilation pressures/volume are increased.

In this retrospective study, we assessed machine learning methods to predict the classifica-

tion (normal, low or critically low) SpO2 of mechanically ventilated children after a ventilator

setting change using a high-resolution research database. Such a modelling will help caregivers

for the prescription of ventilator settings i.e. the caregiver will use the model to predict the

effect of a ventilator setting change on SpO2 and will apply this ventilator modification if satis-

fied of the predicted SpO2.

Materials and methods

This retrospective study was conducted at Sainte-Justine Hospital, Quebec, Canada and

included the data collected prospectively between May 2015 and April 2017 of all the children,

less than 18 years old, admitted to the Pediatric Intensive Care Unit (PICU) and were mechan-

ically ventilated with an endotracheal tube. Patients’ data were excluded if the patient was

hemodynamically unstable defined as 2 or more vasoactive drugs delivered at the same time

(ie., epinephrine, norepinephrine, dopamine or vasopressin) or with an uncorrected cyanotic

heart disease defined by no SpO2 > 97% during all PICU stay. All the respiratory data from

included patients were extracted from the PICU research database [5], after study approval by

the ethics review board (ERB) of Sainte-Justine hospital (ERB study number 2017 1480).
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Prediction problem

The predictive SpO2 class (prognostic class) was the SpO2 5 minutes after a change of a ventila-

tor setting. The delay of 5 min corresponded to the shortest period of time to reach a steady

state after modification of a ventilator setting [6]. SpO2 levels at 5min were classified into three

categories (Table 1). The thresholds were selected according to clinical value: a SpO2 < 92% is

a target to increase oxygenation in mechanically ventilated children [7]. The critical level of

85% SpO2 is used as an alarm of severe hypoxemia in intensive care [8]. The success criteria

for prediction was the ability of the model to predict the SpO2 category, 5min after a ventilator

setting change ie delta in inspired fraction of Oxygen (ΔFiO2), delta in tidal volume, pressure

support or pressure controlled (ΔVt, ΔPS or ΔPC) or delta in Positive end expiratory pressure

set (ΔPEEP). The variables used in the model are detailed in Fig 1. These ventilator parameters

were determined by an item generation-selection methods conducted by three physicians

(PAJ, MS, DB). The resulting items are presented in Fig 1 within their sources, means of

extraction and a schematic of the main components of the study.

Data preparation for model building

The data were extracted from a research database approved by the ethics committee of Sainte-

Justine Hospital (database ERB number 2016–1210, 4061). The data extracted from the research

database needed: (1) to remove erroneous data due to disconnection of the patient from the

ventilator or the monitor, or due to transient interventions such as suctioning; (2) to remove

the rows at which no ventilator setting variables was modified; (3) to adapt data format for clas-

sifier training. The methodology to format the data is described in S1 File. In summary, we first

transformed the data from the linear format into a table, where the clinical variables are the col-

umn labels and the patient codes and storing times are the row labels. Since the readings for the

various variables involved are not all set at the same frequency, the data for the different vari-

ables were aligned along the rows time-steps. Then, only the rows at which at least one of the

setting variables is modified were preserved in the data file. The rows with change in “FiO2 Set-

ting” more than 0.2 were excluded, to remove increase of FiO2 to 1 when suctioning. For each

row, the target variable is added by binning the data of variable “SpO2 in 5 min” into three clas-

ses (Table 1). The binning of the target variable data into three classes allows for better classifica-

tion performance. For all time-steps, SpO2 values were validated and kept in the database if

heart rate (HR) from monitors in each row was within ± 10 bpm the HR from the pulse oxime-

ter. All rows containing HR readings which do not respect this condition were removed.

The number of patients included was 610 mechanically ventilated children and the total

number of rows according to SpO2 classification is specified in Table 1. We randomly distrib-

uted the number of rows between the training and test databases, without considering the

number of patients in each dataset.

Data balancing

The data analysis showed a severe imbalance with most SpO2 at 5min above 92%. This is logi-

cal as caregivers want to maintain SpO2 in normal range during child PICU stay. In such

Table 1. Definition of SpO2 class labels.

SpO2 classification SpO2 range

(%)

Rows number

(n)

1 < 84 17,112

2 85 to 91 29,869

3 92 to 100 729,746

https://doi.org/10.1371/journal.pone.0198921.t001
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condition, the classifier learns the majority class label (class 3) (Table 1) but doesn’t learn the

minority class labels (class 1 and 2) [9]. As, the data balancing process aims to allow the

Fig 1. Schematic description of the items involved and analysis process. EMR: electronic Medical Record, FiO2: inspired fraction of Oxygen, Vt: tidal

volume, PEEP: Positive end expiratory pressure, PS above PEEP: pressure support level Above PEEP, PC above PEEP: pressure control level above PEEP, I:E

Ratio: inspiratory time over expiratory time, Measured RR: respiratory rate measured by the ventilator. 5minSpO2: SpO2 observed 5 min after PEEP, FiO2, tidal

volume, PS above PEEP, PC above PEEP change, ML: machine learning. Heart and pulse rate were only used to validate the database SpO2 value (see below and

S1 File).

https://doi.org/10.1371/journal.pone.0198921.g001
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classifier to learn from all class equally, a combination of down-sampling and up-sampling

techniques were included: to balance the three classes of the data involved, a down-sampling

of the SpO2 class 3 using TOMEK algorithm [10] and an over-sampling of SpO2 class 1 and 2

using Synthetic Minority Oversampling Technique (SMOTE) [11] were performed.

The down-sampling process was made up of the following steps: (1) TOMEK algorithm

was used to detect TOMEK links throughout the whole dataset, for all three classes, and

removed them. TOMEK links are the links between any two observations considered nearest

neighbors, but which belong to different classes [9], (2) points remainders removed are

selected at random.

The creation of synthetic data points by SMOTE can be formulated as follows:

xsyn ¼ xi þ ðxknn � xiÞ � d

In this equation, xsyn represents the synthetic data point. The variables xi and xknn are

respectively the original instance, and the nearest neighbor data point which is randomly

picked among the k nearest neighbors. The random number δ is generated in [0,1] to deter-

mine the position of the created synthetic data point along a straight line joining the original

data point xi and its chosen nearest neighbor xknn.

To study which data balancing method provided the more accurate algorithm, four datasets

were produced via four different balancing procedures, involving different combinations of

data balancing techniques (Table 2).

Predicted SpO2 model construct

To identify the best machine learning classification method, we tested two classification mod-

els: artificial neural network and bagged complex decision trees, on the four balanced training

datasets.

Artificial Neural Network (ANN). Once the data has been pre-processed, a machine

learning predictive model was trained on a sub-set of labeled training data. The model is then

used to predict the target variable values on a testing subset where the class labels are hidden.

We used Artificial Neural Networks (ANN) to make predictions of the SpO2 variable, based

on the values of the other variables of interest. Through the function approximation that the

ANN performs, it is possible to make predictions of SpO2 variable, based on the input data.

The outputs are the probability for each of the 3 class where the sum of their probabilities is 1.

The ANN is learned from training data, using the backpropagation algorithm [12] and is

tested on a test set made of the remaining rows of data to validate the generalization of the

model. The learning algorithm runs through all the rows of data in the training data set and

compares the predicted outputs with the target outputs found in the training data set. The

Table 2. Descriptions of the four balancing procedures. The training/test split was done on the number of data samples.

DATASET 1 DATASET 2 DATASET 3 DATASET 4

Training set: 975,036 samples

Test set: 193,528 samples

Class Balancing: TOMEK applied to

dataset (before dataset has been split into

training & test set) to remove tomek links,

random undersampling applied to class 3

once dataset is split into training and

testing sub-sets, then SMOTE applied to

classes 1 and 2 to make their cardinalities

equal to that of class 3 (325,012).

Training set: 2,293,119

samples

Test set: 201,926 samples

Class Balancing: SMOTE

applied to classes 1 & 2 to

make their cardinalities equal

to that of class 3 (764,373).

Training set: 487,464 samples

Test set: 106,028 samples

Class Balancing: TOMEK applied to

dataset

(before dataset has been split into training

& test set) to remove tomek links, random

undersampling applied to class 3 once

dataset is split into training and testing

sub-sets, then SMOTE applied to classes 1

and 2 to make their cardinalities equal to

that of class 3 (162,488).

Training set: 1,462,503 samples

Test set: 281,028 samples

Class Balancing TOMEK applied to

dataset

(before dataset has been split into training

& test set) to remove tomek links, random

undersampling applied to class 3 once

dataset is split into training and testing

sub-sets, then SMOTE applied to classes 1

and 2 to make their cardinalities equal to

that of class 3 (487,501).

https://doi.org/10.1371/journal.pone.0198921.t002
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weights are adjusted via supervised learning, in a manner to minimize the error of predicted

SpO2 vs target SpO2. The process is repeated until the error is minimized.

The ANN classifier was implemented through cycles of forward propagation followed by

backward propagation through the network’s layers. The backpropagation algorithm is used

for performance optimization. For detailed information see S2 File.

Bootstrap aggregation of complex decision trees. Bootstrap aggregating (acronym: bag-

ging) was proposed by L Breiman in 1994 to improve classification by combining classifica-

tions of randomly generated training sets [13]. Bagging allows for the creation of an

aggregated predictor via the use of multiple training sub-sets taken from the same training set.

Let (Ti) denote the replicate training sub-sets bootstrapped from the training set T. These rep-

licate sub-sets each contain N observations, drawn at random and with replacement from T.

For each of these sub-sets of N observations, a prediction model, or classifier, is created. The

computational model used for bagging was complex decision trees. This means that, for each

bootstrapped sub-set of training data, a complex decision tree is trained and thus a classifier is

created. If i = 1, . . ., n, then n classifiers are created through the bagging process.

A decision tree is a flowchart computational model which can be used for both regression, as

well as classification problems. Paths from the root of the tree to its various leaf nodes go through

decision nodes in which decision rules are applied in a recursive manner, based on values of input

variables. Each path represents an observation (X, y) = (x1, x2, x3, . . ., xn, y), where the label

assigned to the target y is given in the leaf node, at the end of the path i.e. classification [14].

The measure used to build sub-trees was the gini index (see infogain.doc for details). We

tested the BACDT model using 30, 50 and 70 decision trees.

In the aim of maximizing the model’s generalization capability during the training process,

the Bagged Complex Trees’ performance is tested via k-fold cross-validation. A value k = 10,

which is common practice, was used in this study for both the complex decision trees and

ANN. The training using k-fold cross-validation is carried out as described below:

The data-set is first divided into two parts; the training-set and the test-set. The training of

the “Bagged” Complex Trees includes a k-fold cross-validation, which is performed as follows:

• Randomly partition the data-set into k equal-sized subsets (folds).

• For each of the k equal-sized subsets:

� Train/fit the model on the elements contained in the other (k-1) subsets.

� Test the model’s accuracy on the given subset.

• Iterate over the k subsets, until each one has been used once for testing the model’s perfor-

mance during its training.

• The training validation score consists of the average score obtained by validating the model

on all k subsets.

The mathworks Matlab R2016b Machine Learning toolbox was used for the creation of the

ensemble of Bagged complex trees model. The ANN classifiers were implemented using the

Scikit-Learn package within the Python programming language [http://scikit-learn.org].

Classifiers performances assessments

If the model outputted a predicted probability >0.9 for a given class, then the predicted class

was considered positive. We evaluated the performances of the classifiers based on the metrics

including ROC curves, average accuracy, precision (ratio of all correct classifications for class i
to all instances labeled as class label i by the model), recall (ratio of the number of instances

SpO2 prediction in children using machine learning
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classified in class label i to the number of true class i labels) and F score (single measure of clas-

sification performance of the model used), see S2 File for further details [15].

Results

The number of patients included was 610 mechanically ventilated children with a median

duration of ventilation of 33hrs (1st quartile: 6.5hr and 3rd quartile: 116.9 hr), similar to a previ-

ous study [16]. In the 776,727 ventilator settings modifications (Table 1), 98% of the ventilator

settings modifications were FiO2 setting changes. The performances of the two machine learn-

ing classifiers to predict SpO2 at 5 min after a ventilator setting change (ie FiO2, PEEP, Vt/Pres-

sure support or pressure controlled above PEEP) was developed on four different balanced

training datasets and assessed on four different balanced test datasets (see Table 2). In Fig 2

and Table 3, we report the performances of these two classifiers. Using the classification per-

formance metrics, the bagged trees classifier trained on dataset #3 has yielded the best classifi-

cation performance on the test sets (Table 3) and was the predictive model retained. The ROC

curves are shown in Fig 2 with area under the curves below 0.75 for all class.

Impact of hidden layers for ANN and number of complex trees for BACDT

on performance

For the artificial neural network, the variation of the number of hidden layers and number of

neurons per hidden layer did not seem to have a significant effect on the model’s classification

Fig 2. ROC curve for each SpO2 prediction at 5 min following a ventilator setting change of the best predictive

model (bootstrap aggregation of complex decision trees (BACDT) classifiers on Test Dataset 3). Class 1: 5 minSpO2

< 84%, class 2: 5 minSpO2 between 85% and 91%, class 3: 5 minSpO2 between 92% and 100%. AUC: area under the

curve, 95IC: 95% confidence interval.

https://doi.org/10.1371/journal.pone.0198921.g002
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performance (Table 4). As for the Bagged complex trees, the variation of the number of com-

plex trees did not yield significant changes in classification performance (Table 5). The num-

ber of decision trees used in best BACDT model was 50.

Discussion

This single center pilot study using machine learning predictive model resulted in a predictive

model with a poor accuracy (area under the ROC curves < 0.75). The comparison of machine

learning models showed that bagged complex trees was the best approach. However, the

model was of limited value for to predict SpO2 below 92%.

In agreement with previous studies regarding bagging being a better method for medical

data classification, tree Bagging fared better than the artificial neural network [13]. The gap in

performance between the training and testing confusion matrices in the case of bagged trees

model (data not shown) seems to indicate that, although the bagged trees model was capable

of learning very well from the data, there’s still room for improvement in the generalization.

Table 3. Performance of artificial neural networks (ANN) and bootstrap aggregation of complex decision trees (BACDT) classifiers for SpO2 prediction at 5 min

following a ventilator setting change, on test datasets (see Table 2). Avg/total: average accuracy of total classification values. In italics is the performance of the best pre-

dictive model obtained among the eight tested.

Balanced datasets 5minSpO2 class ANN BACDT

Precision Recall F-score Precision Recall F-score

Dataset 1 1 0.12 0.70 0.21 0.80 0.76 0.78

2 0.16 0.43 0.23 0.61 0.56 0.59

3 0.96 0.67 0.79 0.97 0.98 0.97

Avg/total 0.88 0.65 0.73 0.94 0.94 0.94

Dataset 2 1 0.09 0.72 0.16 0.77 0.72 0.74

2 0.09 0.47 0.16 0.57 0.53 0.55

3 0.98 0.70 0.81 0.98 0.99 0.98

Avg/total 0.93 0.69 0.78 0.96 0.97 0.97

Dataset 3 1 0.16 0.68 0.25 0.80 0.76 0.78

2 0.26 0.42 0.33 0.67 0.62 0.65

3 0.92 0.60 0.72 0.95 0.96 0.96

Avg/total 0.80 0.58 0.65 0.91 0.91 0.91

Dataset 4 1 0.09 0.69 0.16 0.80 0.74 0.77

2 0.12 0.47 0.19 0.58 0.54 0.56

3 0.97 0.68 0.80 0.98 0.98 0.98

Avg/total 0.92 0.67 0.76 0.96 0.96 0.96

https://doi.org/10.1371/journal.pone.0198921.t003

Table 4. Absence of impact on performance of the increase of neurons and hidden layers for artificial neural network (ANN). Example of the performance assessed

by the F score on the balanced test dataset 3 (see Table 2).

ANN

Error minimization algorithm Stochastic Gradient-Descent (SGD)

Activation function Logistic Sigmoid

Regularization No

Nb hidden layers (n) 1 2 3

Neurons/hidden layer (n) 10 50 100 10 50 100 10 50 100

F-score 5minSpO2 class 1 0.25 0.25 0.25 0.25 0.25 0.25 0.22 0.22 0.19

5minSpO2 class 2 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32

5minSpO2 class 3 0.72 0.72 0.72 0.72 0.72 0.72 0.69 0.69 0.69

https://doi.org/10.1371/journal.pone.0198921.t004
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The SMOTE algorithm is designed in such a way that should theoretically not affect the gener-

alization of the trained model. However, in cases of extreme data imbalance, as in this study,

the over-sampling of minority class label is also likely to be extreme. This may render the data

space of this class relatively dense with respect to the rest of the data made up of real data

points. This may potentially explain the classification model’s relatively poor generalization for

5minSpO2 class “1” and “2”. Also, since SMOTE generates synthetic data points by interpolating

between existing minority class instances, it can increase the risk of over-fitting when classify-

ing minority class labels, since it may duplicate minority class instances but this needs to be

further investigated.

The strengths of this study include a large clinical database of mechanically ventilated chil-

dren with more 776,727 rows. In a recent similar study in PICU, 200 patients were included

with 1,150 rows [17]. However, the volume of data is clearly insufficient. To use such machine

learning predictive models both for low SpO2 class and for ventilator setting modification such

as PEEP. The pediatric intensive care community needs to combine multicenter high resolu-

tion database to increase the datasets. In addition, children data could be pooled to neonatal

and adult intensive care data, when possible, such as MIMIC III database in specific clinical

analysis[18]. The other strength is the process used to transform the data into a usable format

and to correct a variety of artifacts (see S1 File). In health care, there is a significant interest in

using clinical databases including dynamic and patient-specific information to develop clinical

decision support algorithms. The ubiquitous monitoring of critical care units’ patients has gen-

erated a wealth of data that creates many opportunities in this domain. However, when devel-

oping algorithms, such as transport or finance, data are specifically collected for research

purposes. This is not the case in healthcare where the primary objective of data collection sys-

tems is to document clinical activity, resulting in several issues to address in data collection,

data validation and complex data analysis [19]. As detailed in S1 File, a significant amount of

effort is needed, when data have been successfully archived and retrieved, to transform the

data into a usable format for research.

This study has several limitations. First, the limited row number in low SpO2 levels reduced

the SpO2 classification for machine learning predictive model to three clinically relevant clas-

ses. SpO2 is a continuous variable and the use of three class is probably insufficient [20, 21].

Instead of the classification model, the next step could be to test regression models’ perfor-

mance. Second, SpO2 was predicted at 5min after ventilator setting change, a clinically relevant

delay. However, the delay between ventilator setting change and oxygenation steady state is

not well defined and vary from 1 to 71 minutes according to the parameter set (FiO2, PEEP or

other parameters that change mean airway pressure) and clinical conditions studied [17, 22,

23]. This needs further research and probably more sophisticated clinical decision support sys-

tems using machine learning predictive models should consider these factors. Third, we

excluded hemodynamic unstable patients using a treatment criteria (� 2 vasoactive drugs

infused) because this condition decreases pulse oximeter reliability [24, 25]. The validation

Table 5. Absence of impact on performance of the number of complex trees for bootstrap aggregation of complex

decision trees (BACDT). Example of the performance assessed by the F score on the balanced test dataset 3 (see

Table 2).

BACDT

n = 30 n = 50

F-score 5minSpO2 class 1 0.78 0.78

5minSpO2 class 2 0.65 0.65

5minSpO2 class 3 0.96 0.96

https://doi.org/10.1371/journal.pone.0198921.t005
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and electronic availability of reliable markers of hemodynamic instability in children such as

plethysmographic variability indices could be helpful [26]. Finally, based on the classification

approach taken, we didn’t stratify the number of unique patients whose data were used for

training versus testing, but only the number of instances for train versus test. The median

duration of ventilation in our PICU is 33 hours, the medical conditions are numerous and the

weaning phase where lung condition is almost the same among children represents 50% of the

mechanical ventilation duration [16]. By random, the number of unique patient in the training

and validation dataset is proportional to the whole population and reflects the whole PICU

population studied. If we had determined a given number of patient per training and valida-

tion, we probably should also ned to dispatch the medical condition, the duration of ventila-

tion, the underlying medical conditions. To address this problem, we included in the model

variables that characterize the patient and lung severity at a given time including age, weight

and mean airway pressure (see Fig 1).

Conclusion

This pilot study using machine learning predictive model resulted in an algorithm with poor

accuracy. We have proposed a method to apply supervised machine learning algorithms to

extract knowledge from large amounts of patient mechanical ventilation data. Our method

aimed at predicting the behavior of SpO2, based on ventilator setting changes made by the cli-

nician and other clinical variables. To do that, we have exploited large amounts of data from a

PICU research database and proposed a data formatting process which creates datasets that

can be used for supervised training. The comparison of machine learning models showed the

use of ensembles of bagged complex trees to be a promising approach. As for future work, vari-

ous approaches and methods may be considered, in the aim of improving prediction of SpO2

classification, or level prediction in the case of regression models. One potentially viable solu-

tion for improving predictive models would be to use a greater amount of data. Although this

could not be considered a warrant for better classifier robustness, it will decrease the need of a

data balancing process and may be a relatively simple approach to be considered in future

work. This will require a multicenter pediatric intensive care high resolution databases. For

the moment, the study presents a model that predicts SpO2 using known setting changes made

by the clinician, as well as the other clinical data that the clinicians involved in the study

deemed relevant for SpO2 prediction. However, it is hoped that this predictive model will be

incorporated in a larger Clinical Decision Support System to assist PICU clinicians in making

decisions about required setting changes, based on the range in which SpO2 and other parame-

ters (PaCO2, hemodynamic status, . . .) are to be maintained.

Supporting information
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