
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Construction of Adaptive Multistep Methods for Problems with Discontinuities,
Invariants, and Constraints

Mohammadi, Fatemeh

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Mohammadi, F. (2018). Construction of Adaptive Multistep Methods for Problems with Discontinuities,
Invariants, and Constraints. Lund University, Faculty of Science, Centre for Mathematical Sciences.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3bfc6d50-827f-4ab3-bb8c-8382a66ca793

Construction of Adaptive Multistep Methods
for Problems with

Discontinuities, Invariants, and Constraints

by Fatemeh Mohammadi

Academic thesis which, with due permission of the Faculty of Science at Lund University, will be
publicly defended on Friday, the th of September  at : in lecture hall MH:Gårding
at the Center for Mathematical Sciences, Sölvegatan, Lund, for the degree of Doctor of

Philosophy in Numerical Analysis.

Faculty opponent:
Prof. Ewa B. Weinmüller, Vienna University of Technology, Austria.

D
O
K
U
M
EN

TD
A
TA

BL
A
D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY

Center for Mathematical Sciences
Numerical Analysis
Box 
  Lund, Sweden

Author(s)

Fatemeh Mohammadi

Document name

DOCTORAL DISSERTATION IN MATHEMATICAL SCIENCES

Date of disputation

--
Sponsoring organization

Title and subtitle Construction of Adaptive Multistep Methods for Problems with Discontinuities, Invariants, and
Constraints

Abstract

Adaptive multistep methods have been widely used to solve initial value problems. ese ordinary differential
equations (ODEs) may arise from semi-discretization of time-dependent partial differential equations (PDEs) or
may combine with some algebraic equations to represent a differential algebraic equations (DAEs).

In this thesis we study the initialization of multistep methods and parametrize some well-known classes of
multistep methods to obtain an adaptive formulation of those methods. e thesis is divided into three main
parts; (re-)starting a multistep method, a polynomial formulation of strong stability preserving (SSP) multistep
methods and parametric formulation of β−blocked multistep methods.

Depending on the number of steps, a multistep method requires adequate number of initial values to start the
integration. In the view of first part, we look at the available initialization schemes and introduce two family of
Runge–Kutta methods derived to start multistep methods with low computational cost and accurate initial values.
e proposed starters estimate the error by embedded methods.

e second part concerns the variable step-size β−blocked multistep methods. We use the polynomial for-
mulation of multistep methods applied on ODEs to parametrize β−blocked multistep methods for the solution
of index- Euler-Lagrange DAEs. e performance of the adaptive formulation is verified by some numerical
experiments.

For the last part, we apply a polynomial formulation of multistep methods to formulate SSP multistep methods
that are applied for the solution of semi-discretized hyperbolic PDEs. is formulation allows time adaptivity by
construction.

Key words

Multistep methods, Initialization, Discontinuity, Time adaptivity, Strong stability preserving, Differential algeb-
raic equations, β−blocking

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

-
ISBN

---- (print)
---- (pdf)

Recipient's notes Number of pages


Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date --

Construction of Adaptive Multistep Methods
for Problems with

Discontinuities, Invariants, and Constraints

by Fatemeh Mohammadi

Faculty of Science
Center for Mathematical Sciences

Numerical Analysis

Faculty opponent: Prof. Ewa B. Weinmüller, Vienna University of
Technology, Austria.

Academic thesis which, with due permission of the Faculty of Science at Lund University, will be
publicly defended on Friday, the th of September  at : in lecture hall MH:Gårding
at the Center for Mathematical Sciences, Sölvegatan, Lund, for the degree of Doctor of

Philosophy in Numerical Analysis.

Cover illustration front: e photo illustrates a stairway (multistep) of Persepolis, loc-
ated in Iran, and shows a procession of people bringing tribute to the Achaemenid king (
Copyright belongs to Gitty images).

Numerical Analysis
Center for Mathematical Sciences
Lund University
SE-  Lund
Sweden
http://www.maths.lu.se

Doctoral eses in Mathematical Sciences :
: -

: ---- (print)
: ---- (pdf)
LUNFNA--

© Fatemeh Mohammadi 

Printed in Sweden by Media-Tryck, Lund University, Lund 

Dedicated to my parents
&

my beloved Toheed

vii

‘ Not everything that counts
can be counted and

not everything that’s counted
truly counts ’

William Bruce Cameron

Abstract

Adaptive multistep methods have been widely used to solve initial value problems.
ese ordinary differential equations (ODEs) may arise from semi-discretization of
time-dependent partial differential equations (PDEs) or may combine with some
algebraic equations to represent a differential algebraic equations (DAEs).

In this thesis we study the initialization of multistep methods and parametrize some
well-known classes of multistepmethods to obtain an adaptive formulation of those
methods. e thesis is divided into three main parts; (re-)starting a multistep
method, a polynomial formulation of strong stability preserving (SSP) multistep
methods and parametric formulation of β−blocked multistep methods.

Depending on the number of steps, a multistep method requires adequate number
of initial values to start the integration. In the view of first part, we look at the
available initialization schemes and introduce two family of Runge–Kutta methods
derived to start multistep methods with low computational cost and accurate initial
values. e proposed starters estimate the error by embedded methods.

e second part concerns the variable step-size β−blocked multistep methods. We
use the polynomial formulation of multistep methods applied on ODEs to para-
metrize β−blocked multistep methods for the solution of index- Euler-Lagrange
DAEs. e performance of the adaptive formulation is verified by some numerical
experiments.

For the last part, we apply a polynomial formulation of multistep methods to for-
mulate SSP multistep methods that are applied for the solution of semi-discretized
hyperbolic PDEs. is formulation allows time adaptivity by construction.

i

Acknowledgements

It is a pleasure to thank those who made this thesis possible. It is unbelievable
how time flies. Six years ago I took the multibody dynamics course with Claus
and that became the beginning of the new chapter in my life. I got the honor to
be advised and accompanied by my academic parents, Carmen Arévalo and Claus
Führer during the last five years of my life. I would like to thank my advisors for
their supports, asking insightful questions, and offering invaluable advices. Car-
men you are much more than an advisor for me and our meetings never feel like
meetings. Our meetings feel like friends sharing things such as advice, experiences
and stories.

Also, I owe my deepest gratitude to Gustaf Söderlind for his time, support, and
patience. I would try to keep the logarithmic norm of my future career negative.

As I move through this chapter of my life. I feel so blessed for working in the
numerical analysis group where colleagues care so much for one another. I want to
express my deep appreciation to all my colleagues especially, Azahar, Dara, Tony,
Erik, Christian, Lea, Peter and Julio for the help and support you have offered
during these years. Also I would like to give a special thank to my friend Annika
for her true friendship.

I am eternally grateful and blessed to have been gifted such a wonderful parents,
Bashir and Akram. I have achieved so much and thanks to you, I can look for a
bright future. anks to my siblings, Nasibeh and Hamidreza for showering me
with their love. I also wish to thank my aunt, Zohreh for all her kindness and
emotional support.

Last but not least, I cannot express my unfailing gratitude and love to my dear
husband Toheed for his continuous supports, encouragements and invaluable as-
sistance.

iii

iv

As I close this chapter, I would like to thank all my friends who supported me in
the ups and downs of this journey, especially Najmeh, Masoomeh, Sara, and my
KNTU friends.

Fatemeh Mohammadi
September 

Popular summary

ewide variety of physical phenomena, such as motion of objects, reaction among
chemical substances, electricity flow in a circuit can be described by equations with
quantities that vary along time. e rate at which a quantity is changing with
respect to its independent variable (time), is represented by its derivative. us,
these phenomena aremodeled by equations with differential variables that are called
differential equations.

It is often impossible or cumbersome to find the exact solution of a differential
equation since either there is no analytical solution for the model or the system
is huge. us numerical methods are developed to approximate the solution of
differential equations. Numerical methods made it possible for human beings to
fulfill their dream to travel to other planets by computing the trajectory of space-
ship with the help of computers. Indeed the development in numerical methods
is parallel to the growth in computer technology. On one hand the accuracy of
the numerical solution is of high importance and on the other hand how fast the
solution is calculated.

To uniquely determine the solution of an ordinary differential equation, some out-
side condition is needed, typically an initial value or a boundary value. Some nu-
merical methods, in particular multistep methods, demand several initial values to
start the calculation of the solution. We suggest some techniques to provide ad-
equate number of high accurate initial values with least effort.

Often the numerical methods calculate the solution of differential equations at dis-
crete time points. If these time points are equally spaced we have a fixed step-size
numerical solution and a variable step-size one otherwise. In differential equations,
variable step-sizemethods also called adaptive methods are of significant importance.
e location of the time points has to be selected such that an accurate numerical

v

vi

solution is obtained while keeping the number of points small. Adaptive methods
take smaller step-sizes when needed while they allow for larger step-sizes when the
accuracy is not affected by it.

We present an adaptive form of two classes of multistep methods. e first class is
called β−blocked multistep methods. ese are used for the solution of systems that
contain both differential and non-differential equations. e second class is called
strong stability preserving methods and ose are applied to the solution of models
such as those of sea-waves that experience crashes.

List of Papers

is thesis is based on the following papers, listed in the order of publication.

I. F. Mohammadi, C. Arévalo and C. Führer.
Restarting algorithms for simulation problems with discontinuities
Proceedings of the  International Modelica Conference, March -,
, Lund, Sweden.

II. F. Mohammadi, C. Arévalo and C. Führer.
Runge-Kutta restarters for multistep methods in presence of frequent
discontinuities.
J. Computational and Applied Mathematics,V. : P. -, .

III. F. Mohammadi, C. Arévalo and C. Führer.
Construction of adaptive strong stability preserving multistep methods.
J. SIAM . Numerical methods, Reviewed and re-submitted, June .

IV. Chapter  covers some unpublished results on adaptive β−blocked
methods.

vii

viii

Author’s contribution

I hereby describe my contribution to each of these papers.

Paper I. I implemented the method, and performed the numerical experiments.

Paper II. I developed and analyzed the methods and performed the numerical experi-
ments.

Paper III. I designed, implemented, and analyzed the formulations and carried out the
numerical results.

Chapter . e ideas presented here are of my own design.

Contents

 Introduction 
. esis outline . 

 Multistep methods 
. Order and stability . 
. Adaptive multistep methods 

.. Parametric formulation of multistep methods 
.. Multistep methods of maximal orders 
.. Multistep methods of lower orders 

 Initialization of multistep methods 
. Background . 
. e Nordsieck vector . 
. Event handling . 

.. Detecting and localizing the discontinuity 
. (Re-)Starting a multistep method 

.. Several-step single-stage starter 
.. Winding up states . 
.. Single-step several-stage starters 
.. A fifth order Runge–Kutta starter 

. Initial step-size . 
. Implementation . 

.. LSODAR features . 
.. Code organization . 
.. Numerical experiments 

 Adaptive β−blocked multistep methods 
. Background . 
. Regular and singular β−blocked multistep methods 
. A polynomial formulation for index- DAEs 
. Parametrized β−blocked multistep methods 

 CONTENTS

.. Parametrized regular β−blocked methods 
.. Parametrized singular β−blocked methods 

. Numerical results . 
.. Linear model . 
.. Nonlinear model . 

. Implementation . 

 Parametrized multistep methods of lower orders 
. Strong stability preserving methods 
. Adaptive strong stability preserving multistep methods 
. Implementation . 

 Summary and main results 

Bibliography 

Chapter 

Introduction

Physical phenomena are often modeled by differential equations, but finding their
exact solution is not always possible or desirable, often because of their huge size or
complexity. To overcome this challenge, the first numerical method was introduced
by Euler  years ago. Well-designed numerical methods approximate the solu-
tion of differential equations efficiently and with sufficient accuracy. Nowadays, a
vast variety of numerical methods are at hand, many geared towards a specific ap-
plication or a particular model structure. In order to have an efficient integration,
the particularities of the differential equation have to be considered when choosing
an appropriate numerical method.

Numerical methods are classified according to the memory they need from step to
step in the integration process. One-step methods use information of the solution
at time tn to approximate the solution at time tn+1. us at each step only the
value of previous solutions determines the next solution. Multistep methods are
time-stepping methods that do use information from several previous steps to ap-
proximate the next solution. A method that uses k previously computed solutions
to approximate at a new point is called a k−step method.

Two features of a numerical method are important when choosing a numerical
method: order and stability. Using smaller time steps, that is, a finer discretization,
results in more computational effort. e payoff should be a higher accuracy in
the solution. is leads to the notion of order: higher order methods allow for
larger step-sizes to produce a required accuracy. Furthermore, a numerical method
is called stable if it damps out the small error and perturbations in previous steps as



  Introduction

it approximates the solution of differential equations along an interval.

In the numerical solution of the equations of a mathematical model, both quantity
and quality aspects have to be considered. e quantity aspect is the order of the
numerical method, because it affects its efficiency, and the quality aspect is the
accuracy of the approximation and it is related to the choice of the method in
connection to the structure of the problem.

e step-size, or difference between two time points, hn = tn+1 − tn, plays an
important role in the behavior of a numerical method. In practice, it is highly
desirable to solve a problem by taking step-sizes as large as possible while controlling
the estimated error, in order to obtain a reasonable accuracy for the solution [].
e variation of the step-sizes should be dependent on the dynamics of the model.
is can be illustrated by imagining you are driving on a winding road. In order
to reach your destination safely and on time you need to reduce the speed in the
turns and increase it when the road is straight. Time-adaptive numerical methods
behave this way; the step-size is reduced when the dynamics of the model changes
rapidly and it is increased when the changes are slow.

e subject of this thesis is adaptive linear multistep methods. In particular, we
look at three different aspects, namely, how to restart a method after a discon-
tinuity, how to introduce adaptivity for methods that solve differential equations
with constraints, and how to formulate adaptive methods for differential equations
arising from problems subject to conservation laws.

Industrial models often contain discontinuities because of friction, changes of de-
grees of freedom, impacts, and other physical factors. As a simple model, consider
throwing a ball against a wall, so that it bounces back after hitting the wall. We
can model the trajectory of the ball by equations that express the ball’s position
and velocity with respect to time, together with the position and velocity at the
instant when the ball leaves the thrower’s hands. Because the velocity changes its
sign instantaneously as the ball hits the wall, a discontinuity is introduced. When
a discontinuity is detected during integration, the method must be restarted and
k−1 approximate solution values must be generated in order to initialize the k-step
method. e overall performance of the simulation of models with discontinuities
depends strongly on the restarting method for the integration after a discontinuity
has been detected.

Differential algebraic equations (DAEs) are systems of differential equations com-
bined with algebraic constraints. ese equations arise mainly from modeling elec-

. esis outline 

trical circuits and mechanical systems. For instance, an electrical circuit consists
of differential equations that represent the dynamic of capacitors, resistors and in-
ductors, and nonlinear algebraic equations that impose Kirchhoff laws. Also, the
simulation of mechanical systems is required in robotics, as well as in the design and
simulation of vehicles, including cars and trains. Here force laws are modeled by
differential equations and joints impose algebraic equations. e numerical treat-
ment of DAEs has some challenges that require special consideration. In particu-
lar, numerical methods for these type of problems have stability issues that require
modifications of the standard methods for differential equations.

Another interesting class of ordinary differential equations occur in the solution
of hyperbolic partial differential equations. ese models have some monoton-
icity properties that must be preserved during the numerical integration. Multistep
methods may be used for this purpose at an advantage, but how to construct meth-
ods with varying step-sizes for these problems is still an open question.

is thesis is based on four seminal papers: Schwerin and Bock [], Arévalo and
Söderlind [], Arévalo et al. [] and Hadjimichael et al. [].

In Chapter  we study some (re-)starting methods. Schwerin and Bock introduced
a third order Runge–Kutta (RK) starter to initialize multistep methods in the pres-
ence of frequent discontinuities. However, their methodology did not allow for
higher order RK starters. We present two families of higher order RK restarters
based on [].

e β−blocked multistep methods were developed to solve a particular type of
DAE systems. However, these methods were defined only for fixed step-sizes, and
there was no successful attempt to formulate adaptive β−blocked methods. In
Chapter  we review these methods [] and present a parametric formulation that
make them adaptive.

e adaptive formulation for strong stability preserving (SSP) multistep methods
was first introduced in [], for methods up to order three. In Chapter  we util-
ized the parametric formulation of multistep methods in [], that is adaptive by
construction, to obtain time adaptivity for higher order methods.

. esis outline

e structure of the thesis is as following:

  Introduction

In Chapter , multistep methods and basic ideas behind them are reviewed.
In Chapter , three starting techniques to initialize multistep methods are intro-
duced.
In Chapter , the first adaptive β−blocked multistep methods are constructed by
developing a parametric formulation for these methods.
InChapter , we explain the derivation of an adaptive parametricmethod for strong
stability preserving multistep methods.
In Chapter , conclusions and future aspects of this research are discussed.

Chapter 

Multistep methods

Multistep methods are an important class of numerical methods for solving initial
value problems. While one step methods require the initial value at the previous
time step to compute the value at the next, a k−step method utilizes the k previous
approximated solution values to compute the next value.

Consider the initial value problem

ẏ = f(t, y), y(t0) = y0, t ∈ [t0, tf]. (.)

A numerical method applied to Equation (.) approximates the solution y(t) at
discrete time points, ti,

yi ≈ y(ti), ti = t0 + ih, (.)

where h is the time step. A linear multistep method with constant step-size is
defined by

k∑
i=0

αk−ixn−i = h
k∑

i=0

βk−if(tn−i, yn−i) (.)

where αj and βj are method coefficients. For a k−step method, we need αk ̸= 0
and α0 ̸= 0 or β0 ̸= 0. e multistep method (.) is called implicit if βk ̸= 0
and explicit otherwise.



  Multistep methods

Given the multistep method (.), its generating polynomials are defined as

ρ(ζ) :=
k∑

i=0

αiζ
i (.)

σ(ζ) :=
k∑

i=0

βiζ
i (.)

Using difference operator notation, we can define corresponding operators

ρ = E−kρ(E), σ = E−kσ(E), (.)

where E is the forward shift operator. us the linear multistep method (.) can
be represented by a pair of its generating polynomials (ρ, σ) and

ρxn = hσf(tn, xn). (.)

. Order and stability

Once the local error of a multistep method is defined, we can introduce the concept
of order of consistency for multistep methods. e local residual of a linear mul-
tistep method is obtained by substituting the exact solution y(t) evaluated at dis-
crete times tn−i for i = 0, . . . , k into (.),

ln :=
k∑

i=0

αk−iy(tn−i)− h
k∑

i=0

βk−if(tn−i, y(tn−i)). (.)

A multistep method is said to be of order p, if for sufficiently smooth y(t) we have
ln = O(hp+1). e equivalent conditions for a k−step method to have order p are

k∑
i=0

αi = 0

k∑
i=0

αii
q = q

k∑
i=0

βii
q−1, q = 1, . . . , p. (.)

Conditions (.) are equivalent to requiring that the numerical method is exact for
polynomials of degree p. Furthermore, if the method (ρ, σ) has order p then its

. Adaptive multistep methods 

variable step-size counterpart is consistent of the same order when ln = 0 in (.)
whenever the solution is a polynomial of degree p, that is,

k∑
i=0

αk−iP (tn−i)− h
k∑

i=0

βk−iṖ (tn−i) = 0, ∀P ∈ Πp.

In particular, a method is consistent if p is greater or equal to 1. However, a con-
sistent multistep method is not necessarily convergent. We also need to know that
small changes in the initial values produce bounded changes in the numerical solu-
tion. is concept is called stability. e multistep method is called zero-stable if
the roots of ρ(ζ) lie inside the unit circle and the roots on the unit circle are simple
[].

To have a convergent multistep method, the quantity of interest is the global error
of the solution, defined as

en := y(tn)− yn, (.)
where y(tn) and yn are the exact and the numerical solution at a given time point
tn with h = tn/n. We say a multistep method is convergent if, for exact initial
values,

en → 0 for h → 0. (.)

e local error of a consistent method contributes to its global error and zero-stable
methods assure that by reducing the step-size, the global error decreases also. e
Dahlquist equivalence theorem [] guarantees that a consistent and zero-stable
multistep method is convergent.

For a specific class of differential equations that consists of a set of ordinary differ-
ential equations and algebraic conditions, zero-stability is not enough to ensure a
stable solution. Actually, the presence of algebraic equations impose a condition
on the σ polynomial, namely, σ has to have all its roots inside the unit circle. is
condition on σ is called stability at infinity.

. Adaptive multistep methods

When solving particular systems of differential equations with multistep methods,
varying the step-size will allow for a required precision of approximated values while
avoiding unnecessary computational work.

  Multistep methods

ere are two main approaches to variable step-size multistep methods []. e
first one is based on using equally spaced points with a fixed time step, h, and then
approximating a new solution by polynomial interpolation on a non-uniform grid.
In the second approach methods are adjusted to variable step-sizes by altering the
method’s coefficients at every step.

An adaptive linear multistep method is defined by

k∑
i=0

αn,k−iyn−i = hn

k∑
i=0

βn,k−if(tn−i, yn−i) (.)

where the coefficients αn,k−i and βn,k−i actually depend on the ratios wi =
hi

hi−1
,

i = n− k + 1, . . . , n− 1.

A collocation formulation to construct variable step-size multistepmethods was ini-
tially introduced in []. Arévalo and Söderlind [] refined this approach to obtain
a formulation where specific methods are defined by polynomials and characterized
by a set of fixed parameters. In this formulation each k-step method of maximal
order, i.e, p ≥ k, is represented by a fixed set of parameters. e method uses these
parameters at each step to construct the polynomial that will advance the solution.
In Paper  we proposed an extension of this formulation for methods with p < k,
which include strong stability preserving methods. In Chapter  we present a way
to construct adaptive methods for index- DAEs with β−block stabilization [],
inspired by this formulation of multistep methods.

.. Parametric formulation of multistep methods

e parametric formulation of a k−step method is defined by a polynomial that
interpolates the solution values yn−i and their corresponding vector field values
y′n−i approximated at the time samples tn−k, . . . , tn−1 where y′n−i = f(tn−i, yn−i)
and hn−i = tn+1−i − tn−i. Let Πp denote the space of polynomials of degree p.
e method polynomial Pn ∈ Πp that approximates the solution y(t) for t > tn−1

gives

yn := Pn(tn). (.)

e formulation of parametric multistep methods makes use of the state and de-
rivative slacks, defined as follows.

. Adaptive multistep methods 

Definition  [] Let the sequences {yn−i}ki=0 and {y′n−i}ki=0 be given for a fixed n.
Further, let Pn ∈ Πp with p ≤ k + 1. e state slack sn−i and the derivative slack
s′n−i at tn−i are defined as

sn−i = Pn(tn−i)− yn−i, s′n−i = Ṗn(tn−i)− y′n−i, i = 0, . . . , k. (.)

According to the first Dahlquist barrier [], it is not possible to interpolate all the
state and vector field values so we leave slack on some of them.

ree types of multistep methods are discussed in [], explicit and implicit k−step
of order k and implicit k−step of order k + 1. Each one is defined by a particular
parametrization. ese formulations are used as a basis for the parametrization of
lower order explicit methods and β−blocked methods for DAEs. A parametriza-
tion is introduced for each of them. We only make use of explicit k−step of order
k and implicit k−step of order k + 1 methods.

It was demonstrated in [] that every explicit k-step method of order p can be
defined by yn = Pn(tn), with the polynomial Pn ∈ Πk satisfying the conditions

sn−1 = 0

s′n−1 = 0

sn−i cos θi−1 + hn−is
′
n−i sin θi−1 = 0; i = 2, . . . , k,

(.)

where θi ∈ (−π
2
, π
2
] are the method parameters. e first two conditions are called

structural conditions and make the method explicit. e additional linear combina-
tions of state and derivative slacks are called slack balance conditions, and specify the
particular method. Arévalo et al. [] showed that the following parametric equi-
valence holds between the coefficients of a classical, constant step-size, multistep
formula of maximal order and the method parameters:

tan θi−1 =
βk−i

αk−i

for i = 2, . . . , k. (.)

Further, every implicit k−step method of order p = k + 1 can be defined by
Pn ∈ Πk+1 , satisfying the conditions

s′n = 0

sn−1 = 0

s′n−1 = 0

sn−i cos θi−1 + hn−is
′
n−i sin θi−1 = 0; i = 2, . . . , k,

(.)

  Multistep methods

with yn := Pn(tn), where the first condition causes the implicitness of the method.

Note that for a variable step-size method the parameters θi−1 are constants, even
though the coefficients α and β vary from step to step. us, with conditions (.)
a variable step-size k-stepmethod is defined in terms of constants θ1, . . . , θk−1. e
rest of this chapter is devoted to the extension of this formulation to strong stability
preserving and β−blocked multistep methods. We refer to Paper  and Chapter 
for more details.

It is natural to apply k−step methods with the highest possible consistency order.
e first Dahlquist barrier implies that the maximal convergent order of a k−step
method is at most k + 2 for k even , and k + 1 for k odd. If the method is also
explicit, it cannot attain order greater than k. In this section we introduce two class
of multistep methods that are applied in this thesis.

.. Multistep methods of maximal orders

ere are three families of multistep methods that are commonly used, Adams-
Moultonmethods, Adams-Bashforthmethods and BDF formuals. Further, k−step
Adams-Moultonmethods and BDFs are implicit methods with order of consistency
k + 1 and k respectively, while k−step Adams-Bashforth methods are explicit of
order k. For stiff models, implicit multistep methods, especially BDF methods are
suggested []. is is due to the severe restriction on the step-sizes to fulfill the
numerical stability of the explicit methods. In addition, Adams-Moulton methods
have bounded stability regions, hence they are intended for non-stiff integration.

A particularly interesting family of implicit k−step methods of order k + 1 was
introduced by Söderlind []. ese methods, called difference-corrected BDF
(dcBDF) methods, have ρ = ρBDF and their σ polynomial recovers the first term in
the local truncation error of the BDF methods. e k−step dcBDF discretization
of (.) can be written as

ρBDFyn = h(1− ∇k

k + 1
)f(yn) (.)

where ρBDF is the generating polynomial of the corresponding BDF. us it only
differs from BDF method, generating polynomilas (ρ, 1), by the difference correc-
tion term ∇k

k+1
.

. Adaptive multistep methods 

ρi σij i = 1, . . . , 6 j = 0, . . . , 6

∇ 1 − 1
2∇ − 1

12∇
2 − 1

24∇
3 − 19

720∇
4 − 3

160∇
5 − 863

60480∇
6

1
2∇

2 1 −1
3∇

2 − 1
12∇

3 − 17
360∇

4 − 23
720∇

5 − 143
6048∇

6

1
3∇

3 1 −1
4∇

3 − 3
40∇

4 − 11
240∇

5 − 109
3360∇

6

1
4∇

4 1 − 1
5∇

4 − 1
15∇

5 − 3
70∇

6

1
5∇

5 1 −1
6∇

5 − 5
84∇

6

1
6∇

6 1 −1
7∇

6

Table 2.1: An implicit difference correction method, IDCij is obtained by adding the ρi terms columnwise down to row i and
sum terms up in row i up to column j. The k−step Adams-Moultom methods correspond to IDC1k, The k−step
BDF is IDCk0 and IDCkk are k−step dcBDF methods.

All the mentioned methods in this section belong to the main class of multistep
methods that are known as Implicit Difference Correction (IDC) methods. Table .
[] shows the IDC methods up to order 6. e IDCij methods are defined by
(ρi, σij) where ρi is the generating polynomial of the i−step BDF, and σij is ob-
tained by summing terms up in row i up to column j. e following example
shows how to use Table . to find the formulation of a particular IDCij method.

Example  e IDC method can be written by summing up ρi terms for i =
1, . . . , 3,

ρ3 = ∇+
1

2
∇2 +

1

3
∇3

and summing up σ3j for i = 3 and j = 0, . . . , 4,

σ34 = 1− 1

4
∇3 − 3

40
∇4

us the IDC method is
ρ3yn = hσ34f(yn).

e IDCij methods with j ≥ 1 are implicit methods that are not suitable for stiff
problems due to their restricted stability regions but they are useful in the context
of β−blocked method for DAEs. Further, the β−blocked IDC methods [] are
marked by blue.

  Multistep methods

.. Multistep methods of lower orders

Although k−step methods of maximal order are the most popular multistep meth-
ods, often, in real-world applications, we favor a lower-order k−step method over
a higher-order one if certain stability properties can be guaranteed.

In Section . we first introduce the application of a particular class of explicit
multistep methods called strong stability preserving methods. It is well-known that
these multistep methods with consistency order p ≥ 2 have p < k []. us these
methods are a class of multistep methods of lower order. In Section . we first
look for a polynomial formulation of multistep methods of lower order and then
we show that SSP multistep methods can be described with a similar parametric
formulation.

Chapter 

Initialization of multistep
methods

A numerical method for solving ordinary differential equations may be classified
according to its memory requirement at each step in time. A Runge–Kutta method
needs a single initial value to generate the next approximated solution, but the
initialization of a k-step method requires k starting values. In the present chapter
we are looking for a multistep starter which provides high order starting values with
a minimal number of function evaluations.

We aim to introduce starters that can be used to start and especially to restart a
multistep method after an interruption in the integration process. is interrup-
tion occurs because of the wrong error estimation of discontinuous systems where
their right hand-side is not smooth enough [, ]. ere are two main strategies
to solve discontinuous ODEs. e first one is to ignore the discontinuity and apply
an standard ODEs integration method. If a discontinuity is present in an integra-
tion step, the error estimation that forms the basis of step-size control techniques,
becomes large and the step is rejected. After the step-size rejection, a smaller step-
size is taken by the controller. is requires high computational effort since the
step-size rejection often arise repeatedly until the discontinuity is passed. Further,
the numerical solution efficiency and error estimation are based on the assumption
that the solution and its derivatives are sufficiently differentiable. us if the as-
sumption is not fulfilled the error estimation is not valid. e second approach
is to stop the integration and after localizing the discontinuity, restart it. If the



  Initialization of multistep methods

model experiences frequent discontinuities, minimizing the computational effort
of restarting a multistep method while obtaining efficient initial values becomes of
a significant interest.

. Background

Consider an initial value problem of the form

ẏ = f(t, y), y0 = y(t0), t ∈ [t0, tf], (.)

with a sufficiently differentiable right-hand side function f . An s-stage explicit
Runge–Kutta (RK) method with nodes {ci}si=1, weights {bi}si=1 and coefficients
{aij} with i = 1, . . . , s, j = 1, . . . , i− 1 applied to problem (.) is defined by

Yi = y0 +H
i−1∑
j=1

aijKj,

Ki = f(t0 + ciH,Yi), i = 1, . . . , s, (.)

where H , Yi and Ki are the RK step-size, stage values and the stage derivatives
respectively, and the numerical solution at t0 +H is given by

y1 = y0 +H

s∑
j=1

bjKj. (.)

RK methods are often represented by a Butcher tableau.

c A

bT

Table 3.1: Butcher tableau for (.) with node vector c, weight vector b and coefficient matrix A.

e general form of a linear multistep method [] applied to the differential equa-
tion in (.) is

k∑
i=0

αk−i,nyn+1−i = hn

k∑
i=0

βk−i,nf(tn+1−i, yn+1−i), (.)

where coefficients αk−i and βk−i determine the method. e multistep method
(.) applies a linear combination of past values yn+1−i for i = 1, . . . , k to ap-
proximate the solution at yn+1.

. e Nordsieck vector 

. e Nordsieck vector

Instead of storing several previous solutions of the differential equation (.) with
their state values y or its derivatives ẏ, Nordsieck [] proposed to save them using
the Nordsieck vector with higher degree scaled derivatives,

hj

j!
y(j)(tn),

for j = 0, . . . , p, where p is the order of the integrator.

If we have numerical solution values

(tn, yn), (tn−1, yn−1), . . . , (tn−p, yn−p),

and define the step-sizes hi = ti − ti−1, we can compute the Nordsieck solution
vector by solving the linear system [],


yn
yn−1

yn−2
...

yn−p

 =


1 0 0 · · · 0
1 −1 1 · · · (−1)p

1 −ξ2,n (−ξ2,n)
2 · · · (−ξ2,n)

p

...
...

...
1 −ξp,n (−ξp,n)

2 · · · (−ξp,n)
p




yn

hnẏn
h2
n

2!
ÿn
...

hp
n

p!
y
(p)
n

 ,

where

ξj,n =
tn − tn−j

hn

=
1

hn

j−1∑
i=0

hn−i.

If the step-sizes are equidistant, then we have ξj,n = ξn = j and the transformation
matrix is 

1 0 0 · · · 0
1 −1 1 · · · (−1)p

1 −2 4 · · · (−2)p

...
...

...
1 −p (−p)2 · · · (−p)p

 (.)

us, it is possible to convert a vector of state values at consecutive grid points into
a Nordsieck array and vice versa without loss of accuracy.

  Initialization of multistep methods

In this thesis we are especially interested in the solution of ordinary differential
equations that contain discontinuities in the right-hand side function. It is crucial
to be able to get all the necessary information in order to handle these discontinu-
ities.

. Event handling

Many problems in simulation and control are described by systems of ordinary
differential equations (ODEs) of the form (.) having a right-hand side function
that contains discontinuities in some of its components or higher derivatives.

Ignoring a discontinuity in the right-hand side function or its higher derivatives
may cause a wrong error estimation or a drastic reduction of the step-size and pos-
sibly an order reduction of the method. ere are several ways to handle the dis-
continuities while having an efficient integration over them. Our approach is based
on four steps:

• Detecting the discontinuity

• Localizing the discontinuity

• Passing the discontinuity

• Restarting the integration

.. Detecting and localizing the discontinuity

e conditions under which a discontinuity occurs are governed by a set of algebraic
equations known as the switching function [],

g(t, y(t)) = (g1(t, y(t)), . . . , gν(t, y(t)))
T .

e differential equation in (.) depends on the sign changes of the switching
function and can be rewritten as

ẏ = f(t, y, sign g).

e zeros of the switching function define discontinuities referred to as events in
the simulation literature.

. Event handling 

Example  [] e model
ẋ = |x|

can be formulated by switching functions q(t, x) = x, as

ẋ =

{
x for sign q = 1 (.)

−x for sign q = −1 (.)

It is necessary to rewrite the ODEs with discontinuities as

ẋ = f(t, x, s) with s = sign q

and then solve them numerically.

e detection of the possible presence of a discontinuity is done by checking the
sign of the switching function. If it changes sign then the event needs to be localized
by finding the root of the switching function, i.e. finding the t∗ ∈ [tn, tn+1] such
that

g(t∗, y(t∗)) = 0.

us we need a continuous representation of the state values to determine the po-
sition of the event, not just in the discretization points, but also between them
and with high accuracy. is continuous representation is available for Adams and
BDF methods since they are based on polynomial interpolation. ere are several
algorithms for localizing the discontinuity, and here we take a look at the Illinois
algorithm [], a variant of the secant method that has been used in several ODE
solvers to find the root of the switching function. e Illinois algorithm is an it-
erative procedure in the interval [tn, tn+1] where g(tn) · g(tn+1) < 0, that applies
the secant method to modify one of the end points of the interval. e algorithm
can be described as follows:

Let x0 = tn and x1 = tn+1 where g(x0) · g(x1) < 0. A new value xi+1 for
i = 1, 2, 3 . . . is computed by

xi+1 = xi −
g(xi)(xi − xi−1)

g(xi)− g(xi−1)
.

en g(xi+1) is evaluated and

• if g(xi) · g(xi+1) < 0, then (xi−1, g(xi−1)) is replaced by (xi+1, g(xi+1)).

  Initialization of multistep methods

• if g(xi) · g(xi+1) > 0, then (xi−1, g(xi−1)) is replaced by (xi−1,
g(xi−1)

2
).

e recursion is stopped when a suitable criterion is satisfied, for example, when
|xi+1 − xi| is less than a prescribed tolerance. Figure . illustrates this algorithm.

Figure 3.1: The Illinois algorithm in the interval [tn, tn+1]

After localizing the discontinuity the integrator must be restarted. A one-step
method can be restarted without any difficulty as no past values are needed. For
multistep methods, that depend on several previous values to compute the solution
at the current time step, a restarting scheme must be specified.

. (Re-)Starting a multistep method

ere are three known approaches for initializing multistep methods []. e first
approach makes repeated use of an RK method of the required order to generate
the necessary k past values for the k-step method. e second one uses several
multistep methods of increasing orders. e third one uses a single RK method of
the desired order.

. (Re-)Starting a multistep method 

.. Several-step single-stage starter

In the ’s a common technique to generate the starting values for multistep meth-
ods was to apply an RK step repeatedly. (.) illustrates the idea of applying k− 1
RK steps to start a k-step method.

Figure 3.2: After detecting a discontinuity at t0 the simulation is restarted and k − 1 RK steps of step-size H are taken.

is starter is chosen in such a way that it generates initial values of the same order as
the multistep method used thereafter. However, it needs at least k(k− 1) function
evaluations.

.. Winding up states

Gear [] developed a self-starting scheme that initially uses a one-stepmethod, and
then uses multistepmethods of increasing order until the working order is achieved,
as shown in (.). For example, for a three-step method we need to compute two
points in addition to the initial value before entering the main time-stepping loop.
is scheme starts with low order methods and very small step-sizes in order to gain
accuracy and gradually increases the order and the step-size.

  Initialization of multistep methods

Figure 3.3: Self-starting scheme starting with a one-step method and a small step-size and successively increasing the step-size
and the order of the method.

is self-starting scheme has been implemented in most current multistep ODE
solvers.

.. Single-step several-stage starters

e idea of (re-)starting multistep methods with high order initial values on the
one hand and a minimal number of function evaluations on the other, motivates
the search for a family of explicit RK methods. Starters of different orders can be
constructed, and all apply a single step of an RK method to generate an adequate
number of starting values from the stage values of the method.

We introduced three families of single-step RK starters. e first family, denoted by
F1, was developed by Gear [] and consists of RK starters with an extrapolation
technique that generates Nordsieck solution vectors. e other two families were
developed in []. e second family, denoted byF2, uses the internal stages of an
RK method to approximate the required starting values for the multistep methods.
e last one, denoted by F3, uses the method’s weight vectors to approximate
the solution at distinct fractions of the RK step-size. Both families provide error
estimation for the RK step.

A th order Runge–Kutta starter with high order internal values is presented here.
is starter is not included in Paper .

. (Re-)Starting a multistep method 

Figure 3.4: The accuracy plot of the solution of the linear test equation by 5th order RK starter (.) shows order 5 for internal
stages Y7, Y10, Y12 and the approximated solution y1. Y13 has order 4 and is used for error estimation.

.. A fifth order Runge–Kutta starter

We construct a th order RK starter with the same strategy applied to the th order
RK starter of this family. It is known from [] that we need at least six stages to
obtain a th order RK method. Our starter would have thirteen stages in total to
generate five state values of order 5 and one more of order 4 for error estimation.
e coefficients of th Butcher tableau are the solution of the nonlinear system of all
Runge–Kutta order equations. e elements of A and b were calculated as follows

  Initialization of multistep methods

a21 =
1
20

a31 =
3

160

a32 =
9

160

a41 =
3
40

a42 = − 9
40

a43 =
6
20

a51 = − 11
216

a52 =
5
8

a53 = − 70
108

a54 =
35
108

a61 =
1631

221184

a62 =
175
2048

a63 =
575

55296

a64 =
44275
442368

a65 =
253

16384

a71 =
37

1512

a72 = 0

a73 =
250
2484

a74 =
125
2376

a75 = 0

a76 =
512
7084

a81 =
161343841
5000000

a82 = −197478323
5000000

a83 = −207849921
10000000

a84 =
55574077
2500000

a85 =
454543383
10000000

a86 =
103992363
2000000

a87 = −381650311
4186219

a91 = −69897325
2928599

a92 =
281012770
6692133

a93 =
94696591
11720647

a94 = −−352621205
15003372

a95 = −316213811
4964063

a96 = −335891977
6014773

a97 =
1531407208
12995199

a98 = 0

a10,1 = − 61233167
119633322

a10,2 = 0

a10,3 =
12880742
6250467

a10,4 = −13727525
6430593

a10,5 = −7962931
7810968

a10,6 = −18723895
33225736

a10,7 = 0

a10,8 =
303385

143008499

a10,9 = 0

a11,1 = −899776084
7592411

a11,2 =
104616515
25909789

a11,3 =
151902626
20177663

a11,4 =
224901405
19473086

a11,5 =
1053233659
62474194

a11,6 =
3149087129
204549519

a11,7 =
275362480
17214843

a11,8 =
74188771
3079109

a11,9 =
58704791
27211802

a11,10 =
205250753
9483265

a12,1 =
584323646
57380211

a12,3 = −121871270
3367729

a12,4 =
529441805
13610864

a12,5 =
252783117
13775503

a12,6 =
208565843
19322161

a12,7 = −87
2

a12,8 = 0

a12,9 = − 6714159
175827524

a12,10 =
5
4

a12,11 = 0

a13,1 = − 21793700
146110639

a13,2 = 0

a13,3 =
19145766
113939551

a13,4 =
8434687
36458574

a13,5 =
2012005
39716421

a13,6 =
8409989
57254530

a13,7 =
10739409
94504714

a13,8 = 0

a13,9 = − 3321
86525909

a13,10 = − 30352753
150092385

a13,11 = 0

a13,12 =
70257074
109630355

b1 =
33172492
855554089

b2 = 0

b3 =
3021245
89251943

b4 =
5956469
58978530

b5 =
851373

32201684

b6 =
11559106
149527791

b7 =
11325471
112382620

b8 = 0

b9 = − 12983
235976962

b10 =
17692261
82454251

b11 = 0

b12 =
38892959
120069679

b13 =
11804845
141497517

(.)

. Initial step-size 

and the error coefficients are

e1 =
846370458425881
4503599627370496

e2 = 0

e3 = − 4834476178104325
36028797018963968

e4 = − 4696571107073997
36028797018963968

e5 = − 6981083844601939
288230376151711744

e6 = − 5014032849404753
72057594037927936

e7 = − 463433739290933
36028797018963968

e8 = 0

e9 = − 306889540921203
18446744073709551616

e10 =
3754180563579103
9007199254740992

e11 = 0

e12 = − 5709380784211703
18014398509481984

e13 =
6011615940162847
72057594037927936

(.)

e main objective in Paper  is to implement the multistep starters introduced by
Gear in Hindmarsh’s code LSODAR. We tasted their performance when used to
restart ODE solvers for problems with discontinuities. In Paper  we constructed
other families of (re-)starters and compared their efficiency and performance.

. Initial step-size

e integrator needs an initial step-size to restart after each discontinuity. e
choice of the initial step-size has particular importance when a high order integrator
is applied to the model. Although a bad starting choice for H would be repaired
by the step-size control often, it can generate large error and as a consequence lost
of accuracy and computational effort that cannot be repaired. An algorithm for
computing the initial step-size is introduced in [] and the algorithm of this starter
is represented in Algorithm .

  Initialization of multistep methods

Algorithm : Autostart algorithm used to calculate the initial step-size
Data: f , t0, y0, tf
Result: Initial step-size

• Approximate the Lipschitz constant
L0 = ||f(t0, y0 +∆y)− f(t0, y0)||/∆y,
where ∆y is a small perturbation of y0

• Set H0 = 0.1/L0

• Take a single Euler step forward y1 = y0 +H0f(t0, y0)

• Take a single Euler step backward in time from y1,
ỹ0 = y1 −H0f(t0 + h0, y1)

• Compute a better approximation of the Lipschitz constant
L = ||f(t0, ỹ0)− f(t0, y0)||/||ỹ0 − y0||

• Calculate logarithmic norm
M = (ỹ0 − y0)

T (f(t0, ỹ0)− f(t0, y0))/||ỹ0 − y0||2

• Compute the scaling factor
κ = 1

(ỹ0−y0)
+ 1

H0(L+M/2)

• Set the initial step-size as

H = H0κ(Tol)
1

p+1

2
,

where p is the order of the method

• Define H = min(H, 10−3(tf , t0)),
where tf is the final time of the simulation

. Implementation

In this section we discuss implementation issue of the RK starters. Once a starter
is implemented, it is added to an ODE solver which handles events. ere are
several ODE solver packages with event handling such as the SUNDIALS codes
CVODE and IDA, [] and the FORTRANprogram LSODAR, []. ese codes
are available in Assimulo, a Python wrapper for ODE software, which permits a

. Implementation 

description of the model together with the discontinuity handling in Python and
allows access to a large variety of professional and experimental solvers []. We
have chosen to implement our algorithms in Python, and to incorporate them in
LSODAR.

.. LSODAR features

e choice of LSODAR as a solver for implementing all our RK starters, is based
on the fact that it uses the Nordsieck vector of the solution at each step. is vector
is provided by the F1 family of RK starters.

LSODAR is written in FORTRAN. us it is possible to use FPY, a tool that
makes it possible to call Fortran subroutines and to access Fortran COMMON
blocks from Python.

LSODAR [] is a code for solving explicit ordinary differential equations with the
following features:

• It chooses either an Adams-Moulton method together with fixed-point it-
eration or a BDF method together with Newton iteration depending on a
heuristic stiffness test made at every integration step.

• It is a variable step-size solver, that selects the step-size depending on a local
error estimate and a given error tolerance.

• It is a variable order method, that selects the order by efficiency considera-
tions.

• Given a user defined switching function, it returns the control to the user
once a discontinuity is detected by finding the root of the switching function
within the current time interval (see (..)).

Our goal is to add the RK startersF1,F2, andF3 (see Paper  and Paper ) without
modifying the original code. ese starters are implemented and tested for the
restarting phases after discontinuities. e code for the RK starters is prototyped
in Assimulo [].

  Initialization of multistep methods

.. Code organization

e work flow of LSODAR within Assimulo is depicted in (.).

Figure 3.5: Code organization of LSODAR.

e LSODAR code structure has the following parts:

. e initialization of the integration is done by calculating the initial step-size
and loading the initial value of the problem in the Nordsieck solution vector.

. e solutions are approximated by one of the numerical methods implemen-
ted in LSODAR.

. After completion of each step, the switching functions are checked for the
possible presence of a discontinuity.

. A discontinuity is localized by applying the Illinois algorithm.

. After localization of the discontinuity, the control of the simulation is given
to a user-specified method to handle the event in Assimulo. Finally, the

. Implementation 

integration is reinitialized either by using a classical starter or one of the RK
starters. Classical reinitialization is preformed by restarting from step 1.

. Alternatively, restart by applying an RK starter. is is done by modifying
and updating the Nordsieck solution vector in internal arrays while the other
saved data is kept unchanged.

Our contribution in the code structure is in the reinitialization of the integration
with one of the RK starters at step 6, all other steps are left unaltered.

e data communication between different calls to LSODAR is done by passing
data in two work arrays, RWORK and IWORK, and through a COMMON block
that contains information of the integration procedure. RWORK is an array that
contains real-valued information such as step-sizes and the Nordsieck history array
at the current time. IWORK is an integer array that contains data such as the
current method’s order and the number of function evaluations. e COMMON
block gives global access to variables whose values must be preserved between calls
e.g. methods coefficients.

When LSODAR is used in the classical way it is expected that RWORK, IWORK
and the COMMON block are not modified outside of LSODAR. e way we
implemented the RK starter requires these arrays to be modified according to the
Nordsieck history data obtained from the starter and to possibly alter the method
coefficients in the COMMON block (see Box  in (.)).

.. Numerical experiments

We solved three problems using the RK starters previously described. Our focus was
on the performance of the RK starters. We evaluated the strengths and weaknesses
of each starter in comparison to other starting schemes. Numerical results of two
models, bouncing ball and pendulum are presented in Paper  and Paper .

In the bouncing ball example as well as the pendulum, Using the last step-size is
clearly a good idea as half of the occurred events are not a discontinuity. ey are
just technical stops to activate the switching function. us, taking the old step-size
and order is the best choice.

As a third example we present a woodpecker toy [] gliding down a bar that is
another model of motion with discontinuities. We consider the model [] with

  Initialization of multistep methods

impacts and without friction.

Figure 3.6: The woodpecker toy

e toy consists of a sleeve, a spring and the woodpecker (see (.)). e hole in
the sleeve is slightly larger than the diameter of the bar and leads to the constraints,
which are activated and deactivated under certain geometrical conditions. e bird
is connected to the sleeve by a spring without damping. e sleeve has two degrees
of freedom, its rotation ϕS and its vertical translation z.

e bird has one degree of freedom, the rotation relative to the sleeve, ϕB. Finally
the bird’s beak can hammer the bar and cause an impact. e model can be for-
mulated in three states. e sleeve can fall down freely in State I, so there is no
blocking. In State II the sleeve blocks at lower right and upper left corner thus, the
constraint forces λ1 and λ2 get nonzero value. Finally in State III, the sleeve gets
blocked again at the lower left and upper right corner, so λ1 and λ2 are nonzero.

e initial conditions of the model are,

z = 0, ϕS = 0, ϕB = −0.6, ż = 0, ϕ̇S = 0, ϕ̇B = 0,

and the sleeve is in State I, so it can move down freely.

Starter Classic RK F1 RK F2 RK F3

steps 2943 2906 3011 3065
function evals 6368 6161 6070 5926
event function evals 3795 3740 3887 3966
jacobian evals 57 13 31 17

Table 3.2: Run time statistics for the woodpecker model with relative tolerance set to 10−8 and the initial step equal to the last
successful step before the event.

. Implementation 

e number of detected events for all the starters in Table (.) is 93. e simu-
lation result in Table (.) reveals that the number of function evaluations for RK
starter F1 , F2 and F3 are slightly less than the self-starting scheme of LSODAR.

0.0 0.2 0.4 0.6 0.8 1.0
0.010

0.008

0.006

0.004

0.002

0.000

0.002

H
e

ig
h

t

0.0 0.2 0.4 0.6 0.8 1.0

Tim e

0.8

0.6

0.4

0.2

0.0

0.2

A
n

g
le

 (
ra

d
)

S

B

Figure 3.7: Simulation results of the woodpecker problem [3] for RK starter F2 and self-starting algorithms in LSODAR. The
results are almost identical. The absolute and relative tolerance is set to 10−8 and simulation time is 1 second.

e RK starter F2 often uses order 3 or higher and takes mostly larger step-sizes
compared to the other starters F1 and F3 (see Figure (.) and .).

  Initialization of multistep methods

Figure 3.8: Comparison of the step-size vs. simulation time (in seconds) in logarithmic scale for (a) Classical starter, (b) RK starter
F1, (c) RK starter F2 and (d) RK starter F3. the simulation time is 1s and the initial step-sizes for restarting in (b),
(c) and (d) is taken from the last successful step before the events.

Figure 3.9: Comparison of the order vs. simulation time (in seconds) for (a) Classical starter, (b) RK starter F1 , (c) RK starter
F2 and (d) RK starter F3. the simulation time is 1s and the order for restarting in (b), (c) and (d) is taken from the
last successful order before the events.

Chapter 

Adaptive β−blocked multistep
methods

e theory behind the numerical solution of ODEs is well-understood  years
after the first attempt by Euler in Institutionum calculi integralis [] and now robust
software is available to solve a wide variety of ODEmodels. Many problems in con-
strained mechanical systems and electrical circuits lead to systems of ordinary dif-
ferential equations (ODEs) where the simultaneous solution of algebraic equations
is required each time that the differential part is to be evaluated. eses systems,
that are a combination of differential and algebraic equations are called differential
algebraic equations (DAEs). In a mechanical systems context they are often called
ODEs with constraints.

e early idea of solving DAEs with numerical methods was introduced by Gear
[]. He observed that BDF methods can be applied to solve DAEs. Later, because
of numerical problems in the solution of some mechanical systems modeled by
DAEs [], new methods and techniques were investigated.

In the present chapter, we briefly explain one of these techniques, called β−blocking,
and then we introduce a polynomial formulation of β−blocked multistep meth-
ods. is new formulation allows variable step-size implementation by construc-
tion. e idea of β−blocking multistep methods was first introduced about twenty
years ago and since then, there was no successful attempt to introduce a variable
step-size formulation of β−blocked methods. us our goal is to construct adapt-
ive singular and regular β−blocked multistep methods for the solution of index-



  Adaptive β−blocked multistep methods

Euler-Lagrange differential algebraic equations.

In Section . we first introduce some basic theory on differential algebraic equa-
tions and in Section . we look at the β−blocking technique that makes it possible
to apply integrators other than BDF to solve specified classes of DAEs. Finally in
Section ., we present a technique to construct variable step-size β−blocked mul-
tistep methods based on a parametric formulation.

. Background

A differential algebraic equation in its fully implicit form is

F (t, x, ẋ) = 0 (.)

with ∂F
∂ẋ

singular along the solution. It is difficult to find an encompassing tech-
nique for solving such general problems. e particular structure of a DAE must
be taken into account in order to develop successful methods. ere are several
engineering applications that lead to an autonomous semi-explicit DAEs model of
the form

ẋ = f(x, y)

0 = g(x, y) (.)

where f : Rnx ×Rny → Rnx and g : Rnx ×Rny → Rny . e derivatives of some
variables are not expressed explicitly in DAEs. In fact, derivatives of some of the
dependent variables, denoted here by y, typically do not appear in the (.). Such
variables are usually called algebraic variables while the others, denoted here by x,
are called differential variables.

Several thorough studies have been done in the numerical treatment of DAEs.
Among many others, Runge–Kutta methods are discussed by Petzold [], Hairer
et al. [], Kvaerno [], Small [] and multistep methods are studied by Löts-
tedet et al. [, ], Brenan et al. [],Führer et al. [], Arévalo [], Söderlind
[], März [], Gupta et al. [] and Arnold []. Some of these methods are
implemented in extensively used solvers such as IDA/DASSL (BDF methods) []
and RADAU (implicit Runge–Kutta methods) [].

e differentiation index quantifies the level of difficulty involved in solving a given
DAE. is index measures the minimal number of differentiations required to

. Background 

transform a DAE into an explicit ODE. It is known that DAEs can be difficult
to solve when their index is greater than one [].

Example  [] Consider the following equations

ẋ1 = x3 (.)
ẋ2 = x4 (.)
ẋ3 = −yx1 (.)
ẋ4 = −yx2 − 9.81 (.)
0 = x2

1 + x2
2 − 1 (.)

e differential equations (.), (.), (.) and (.) with constraint (.) form an
index  DAE system. If we replace constraint (.) by its derivative (.) we obtain
the index- DAEs,

ẋ1 = x3

ẋ2 = x4

ẋ3 = −yx1

ẋ4 = −yx2 − 9.81

0 = x1x3 + x2x4 (.)

Also if we replace constraint (.) by its second derivative (.) we obtain the index 
DAEs,

ẋ1 = x3

ẋ2 = x4

ẋ3 = −yx1

ẋ4 = −yx2 − 9.81

0 = x2
3 + x2

4 − y(x2
1 + x2

2)− 9.81x2 (.)

Note that (.) implicitly defines y, and differentiating this expression leads to a differ-
ential equation in y.

us, an obvious remedy to high index DAEs would be to reduce the index of the
model by differentiating the constraints. However, index reduction may cause an
instability of the analytical solution because the constraints may not be fulfilled.
is instability is called drift-off effect. During the numerical integration, roun-
doff and truncation errors will accumulate and grow like a polynomial so that the
solution is no longer on the constraint manifold [].

  Adaptive β−blocked multistep methods

Some remedies were suggested by Baumgarte [] and others [, ] to overcome
this instability due to drift-off effect. Baumgarte proposed stabilizing the problem
by replacing the constraint with a linear combination of all three of them in index
, index- and index- formulations.

Let us define an autonomous DAE system of differential index at least ,

ẋ = f(x, y)

0 = g(x) (.)

where f : Rnx × Rny → Rnx and g : Rnx → Rny .

e Baumgarte stabilization for index- DAEs uses

0 = ġ + γg (.)

instead of constraint in index- form that is ġ(x) = 0. en it is required to find γ
such that the characteristic polynomial x+ γ = 0 has negative roots with negative
real parts in order to have an stable underlying ODE [, ]. Similarly, Baumgarte
stabilized index  DAEs with constraint

0 = g̈ + γ1ġ + γ2g (.)

where γ1 and γ2 have to be determined such that the polynomial x2+γ1x+γ2 = 0
has roots with negative real parts.

We are going to look at the appropriate numerical methods to solve high index
DAEs without changing the problem while the Baumgarte stabilization changes
the model and add some parameters to the DAE model.

Coordinate projection is another technique [, ] that avoids the drift-off effect.
e idea is to project the attained solution back to the constraints manifold after
completing each step. Consider a consistent solution (xn−1, yn−1) of an index-
DAE (.) at time tn−1 and suppose the numerical method advances the solution
of the index reduced system from (xn−1, yn−1) to (x̂n, yn). en the projected
values are defined as the solution of

min
xn

∥x̂n − xn∥2

s.t. g(xn) = 0 (.)

e projected values, (xn, yn) now satisfy the constraint, Figure .. is technique
can be applied to any integration method.

. Background 

Figure 4.1: The solution (x̂n, yn) is projected to (xn, yn) on the constraint manifold.

e equations of motion of a mechanical system in index- Euler-Lagrange form
are

ṗ = v

Mv̇ = f(t, p, v)−G(p)Tλ

0 = g(p) (.)

where p, v are position and velocity variables; λ is a Lagrange multiplier. Further-
more, G(p) = ∂g/∂p and G(p)G(p)T is invertible. System (.) has a semi-
explicit form where the algebraic variables, λ, appear linearly in the equations.

We can rewrite system (.) as an autonomous system in condensed form

ẋ = f(x)−G(x)Tλ

0 = g(x) (.)

where x = [p v] and G(x) = [0 G(p)]. A system of ODEs can always be ini-
tialized by giving initial values at the starting time. However, the initial values for
DAEs such as equations (.) have to satisfy the algebraic and differential equa-
tions simultaneously [, ]. e initial values that satisfy equations (.) are
then called consistent initial values. Furthermore, high index DAEs have hidden
algebraic constraints that affect the choice of initial values for the model. us the
consistent initial values must be calculated before relaxing the constraints by index
reduction.

Example  [] Consider the following DAE

ẋ1 = f1 − x3

ẋ2 = f2 − x1

0 = x2 − f3 (.)

  Adaptive β−blocked multistep methods

e consistent initial value has to satisfy the constraint so that x2(t) = f3(t). is
implies the hidden constraints on x1 and x3.

f2 − x1 = ḟ3

f1 − x3 = f2 − f̈3 (.)

e solution of (.) is given as

x1 = f2 − ḟ3

x2 = f3

x3 = f1 − ḟ2 + f̈3 (.)

us, there is no freedom to choose the initial values.

. Regular and singular β−blocked multistep meth-
ods

It is known from eorem . in [] that the BDF discretization of index-
DAEs (.) is stable while the Adams-Moulton discretization is not []. e
crucial stability issue arises from the roots of the σ polynomial (.), that must
lie inside the unit circle. Arévalo et al. [] suggested to block this instability by
modifying the discretization of the Lagrange multipliers and called the technique
β−blocking. For a linear index- Euler-Lagrange DAE discretized by multistep
methods, the β−blocking technique moves the eigenvalues of its one-step form
of the discretization to the unit disc. is is done by introducing an additional
polynomial τ(ζ) =

∑k
i=0 γiζ

i acting only on algebraic variables,

ρxn = hσ(f(xn)−GT(xn)λn)− hGT(xn)τλn

0 = g(xn). (.)

e stabilizing operator τ is chosen so that σ + τ satisfies the strict root condition
and also τλn = O(hk). By choosing τ = c∇k both objectives may be met. e
free parameter c must be chosen so that the polynomial σ(ζ) + τ(ζ) has all its
roots inside the unit circle. Depending on whether σ + τ is an implicit or an
explicit operator, a β−blocking method is regular or singular. It is shown [] that

. Regular and singular β−blocked multistep methods 

Method AM1 AM2 AM3 dcBDF1 dcBDF2 dcBDF3 dcBDF4 dcBDF5

c 0.5 0.146 0.092 0.5 0.33 0.25 0.2 0.16

Table 4.1: Suggested value for parameter c in τ = c∇k for Adams-Moulton(AM) and dcBDF(IDC) methods.

for k−step Adams-Moulton methods with k ≤ 3, the parameter c that satisfies the
strict root condition may be chosen within an interval. e suggested parameter c
that locates the roots of σ+ τ closest to the origin is shown in Table (.), see [].

Unfortunately, it is not possible to find such an interval for c to β−block k−step
Adams-Moulton methods with k ≥ 4. However, we can choose a particular value
c = βk such that σ + τ becomes of one order less. With c = βk the algebraic
variables are treated by an explicit method and thus this technique is called singular
β−blocking []. Singular β−blocking allows the stabilization of methods such as
Adams-Moulton methods up to k ≤ 6.

e stability of the overall discretization is recovered but the price is a reduced order
of convergence of the algebraic variables []. eorem  gives the convergence result
for β−blocked multistep methods. Later, this theorem will be used to construct
the polynomial formulation of β−blocked maximal order multistep methods.

eorem  [] Consider the index- problem (.) discretized by (.) with starting
values xi − x(ti) = O(hp) and λi − λ(ti) = O(hk) for i = 0, . . . , k − 1, where
p = k or p = k + 1 is the order of the pair (ρ, σ). Furthermore, let τ be chosen
such that σ + τ has roots strictly inside the unit circle and τy(tn) = O(hk) for
any sufficiently smooth function. en the discretization (.) is convergent, i.e. for
tn = nh constant,

xn − x(tn) = O(hp) and λn − λ(tn) = O(hk).

As a result, a k−step Adams-Moulton methods have order p = k+1 in the differ-
ential variables, and p = k in the algebraic ones.

e β−blocked multistep discretization of problem (.) can be written as

h−1ρxn = βk(f(xn)−GT(xn)λn) + σ̃(f(xn)−GT(xn)λn)−GT(xn)τλn

0 = g(xn) (.)

  Adaptive β−blocked multistep methods

where σ̃xn = (σ − βk)xn or

h−1ρxn = βk(f(xn)−GT(xn)(1 + β−1
k τ)λn) + σ̃(f(xn)−GT(xn)λn)

0 = g(xn) (.)

To illustrate the difference between regular and singular β−blocking, we consider
the one step Adams-Moulton method as an example.

Example  e trapezoidal scheme applied on (.) has the form

∇xn =
h

2

(
f(xn)−GT(xn)λn + f(xn−1)−GT(xn−1)λn−1

)
0 = g(xn) (.)

It is obvious that the generating polynomial σ(ζ) = 1
2
(ζ + 1) has a root on the unit

disc. For regular β−blocking with τ = 1
2
∇ we have

∇xn =
h

2

(
f(xn)−GT(xn)λn + f(xn−1)−GT(xn−1)λn−1

)
− h

2
GT(xn)∇λn

0 = g(xn) (.)

We note that given xn−1 and λn−1, we can compute xn and λn simultaneously.

Singular β−blocking makes σ + τ explicit, and thus takes τ = −∇
2
. We get

∇xn =
h

2
(f(xn)−GT(xn)λn−1 + f(xn−1)−GT(xn−1)λn−1)

0 = g(xn) (.)

e effect of singular β−blocking is that the algebraic variable is treated by an explicit
method since there is no λn in system (.). In the first step with a given x0, we solve
the system simultaneously for x1 and λ0 and do the same for the coming steps, that is,
solve for xn and λn−1.

e former stabilizing techniques are only studied for fixed step-size multistep
methods [, , ]. Adaptive β−blocked methods may reduce the computational
efforts in the presence of a good error estimator and controller. As a proof of
concept, we formulate β−blocked methods in a polynomial form that makes such
methods adaptive. Our goal is to represent the variable step-size polynomial for-
mulation of the discretized system (.). us, we start by looking at a polynomial
formulation for DAEs.

. A polynomial formulation for index- DAEs 

. A polynomial formulation for index- DAEs

e new polynomial formulation of multistep methods in Section .. is de-
veloped for solving a system of ODEs []. us, to applying this formulation
to solve DAEs some modification of the slack conditions is needed. In the follow-
ing section, we look for a parametric formulation (see Section ..) of (k, k + 1)
methods suitable for solving index- DAEs.

e straightforward polynomial formulation of a k−step method of order k + 1
applied to (.) is

P ′
n(tn) = f(Pn(tn))−GT(Pn(tn))λn

Pn(tn−1) = xn−1

P ′
n(tn−1) = f(xn−1)−GT(xn−1)λn−1

cos θj−1(Pn(tn−j)− xn−j) + hn−j sin θj−1

(Ṗn(tn−j)− f(xn−j)−GT(xn−j)λn−j) = 0

g(Pn(tn)) = 0 (.)

where j = 2, . . . , k and xn := Pn(tn). e unknowns of the system (.) at each
step are the coefficients of the polynomial Pn, and the Lagrange multiplier λn. e
(k + 1)nx + nλ unknowns that may be determined by solving system (.).

Example  Consider the 1−step Adams-Moulton method of order 2, AM, applied to
(.) with fixed step-size. e AM in parametric form is constructed as a polynomial
Pn ∈ Π2 with

Pn(t) =
at2

h2
+

bt

h
+ c

over [tn−1, tn] that defines xn := Pn(tn) with the following conditions,
P ′
n(tn) = f(Pn(tn))−GT(Pn(tn))λn

Pn(tn−1) = xn−1

P ′
n(tn−1) = f(xn−1)−GT(xn−1)λn−1

g(Pn(tn)) = 0 (.)

By solving system (.) for the unknown coefficients a, b and c we get

c = xn−1 (.)
b = f(xn−1)−GT(xn−1)λn−1 (.)

a =
f(xn)−GT(xn)λn − (f(xn−1)−GT(xn−1)λn−1)

2h
(.)

  Adaptive β−blocked multistep methods

which by substituting these coefficients of polynomial Pn in xn := Pn(tn) we obtain

xn = xn−1 +
h

2
(f(xn)−GT(xn)λn + (f(xn−1)−GT(xn−1) (.)

0 = g(xn) (.)

that is equivalent to the classical formulation of AM for (.).

Adams-Moulton methods are well known zero-stable k−steps method of order k+
1 with formulation (.) when θi = π

2
for i = 1, . . . , k − 2. However their

resulting discretization of index- DAEs is unstable, see Section ..

emain questions are how to parametrize β−blockedmultistepmethods and how
to find a polynomial corresponding to the stabilizer τ .

. Parametrized β−blocked multistep methods

In order to parametrize a k−step method of order k + 1 (see eorem ), we
construct for every interval [tn−1, tn] a pair of polynomials, Pn ∈ Πk+1 and Qn ∈
Πk that interpolate differential and algebraic variables, respectively.

Formulation (.) suggests a modification of the slack condition that interpolates
the vector field value at tn, that is, s′n = 0. Further, the stabilizer τ acts only on
algebraic variables so it is enough to modify the polynomial Qn in order to obtain
this effect. As we now wish to consider τ as a variable step-size operator, we replace
c∇kλn with chk

n−1Q
(k)
n (tn), but note that Q

(k)
n (t) is constant as Qn ∈ Πk.

. Parametrized β−blocked multistep methods 

.. Parametrized regular β−blocked methods

emethod polynomials Pn andQn for problem (.) are constructed by solving
the system

P ′
n(tn) = f(Pn(tn))−GT(Pn(tn))(Qn(tn) + ĉ hk

n−1Q
(k)
n (tn))

Pn(tn−1) = xn−1

P ′
n(tn−1) = f(xn−1)−GT(xn−1)λn−1

Qn(tn−1) = λn−1

cos θj−1(Pn(tn−j)− xn−j) + hn−j sin θj−1

(Ṗn(tn−j)− f(xn−j) +GT(xn−j)λn−j) = 0

Qn(tn−j) = λn−j

g(Pn(tn)) = 0 (.)

for j = 2, . . . , k. e new values are obtained by setting xn := Pn(tn) and
λn := Qn(tn). Note that we have no derivative slack for polynomialQn in formu-
lation (.) since Qn interpolates the algebraic variables.

Obtaining the value of parameter ĉ

In order to solve system (.), we have to determine the value of ĉ. For fixed
step-size regular β−blocking, the value of c was determined so that σ + τ satisfies
the strict root condition (see Table .). for this formulation we take ĉ = cβ−1

k .
We can find an expression for the leading term of the σ polynomial, βk, in terms
of method parameters θj .

Example  Consider a 2−step method of order 3. We can obtain an expression as
a function of θ1 for β2. e order conditions and the parametric equivalence equa-
tion (.) result in the system j = 2, . . . , k.

tan θ1 α0 − β0 = 0

α0 + α1 + 1 = 0

α1 + 2− β0 − β1 − β2 = 0

α1 + 4− 2(β1 + 2β2) = 0

α1 + 8− 3(β1 + 4β2) = 0 (.)

where we get β2 = 5 sin θ1+2 cos θ1
12 sin θ1+5 cos θ1

and thus ĉ = c12 sin θ1+5 cos θ1
5 sin θ1+2 cos θ1

. For AM, c =
0.146 (see Table .) and θ1 = π

2
, therefore ĉ = 0.35.

  Adaptive β−blocked multistep methods

Note that the parameter ĉ is not unique since the value of c may be chosen from an
interval such that σ + τ satisfies the strict root condition.

In general, for all fixed step-size k−step methods of order p = k + 1 the leading
coefficient of σ, namely βk, is obtained by solving a linear system Lv = w where
matrix L consists of 4 sub-matrices

L =

(
A B
C D

)
(.)

of the forms

A(p+1)×(p−2) =


1 1 1 . . . 1
0 1 2 . . . k − 1
...

...
... . . .

...
0 1p 2p . . . (k − 1)p

 , (.)

B(p+1)×(p−1) =



0 0 0 . . . 0
0 −1 −1 . . . −1
0 −2 −2 · 2 . . . −2k
0 −3 −3 · 22 . . . −3k2

...
...

... . . .
...

0 −p −p · 2p−1 . . . −p(k − 1)p−1


, (.)

C(p−2)×(p−2) =


sin θ1 0 0 . . . 0 0
0 sin θ2 0 . . . 0 0
0 0 sin θ3 . . . 0 0
...

...
... . . .

... 0
0 0 0 . . . sin θk−1 0

 , (.)

D(p−2)×(p−1) =


− cos θ1 0 . . . 0 0 0

0 − cos θ2 . . . 0 0 0
...

... . . .
... 0 0

0 0 . . . − cos θk−1 0 0

 , (.)

with a vector of unknowns v = (α0, α1, . . . , αk−1, β0, . . . , βk)
T and right hand-

side vector w = (−1,−k, . . . ,−kp, 0, . . . , 0)T.

We use the parameter c that is derived for fixed step-size formulation such that
σ(ζ) + c∇k(ζ) satisfies the strict root condition. In the variable step-size formu-
lation with smooth changes of step-sizes we have hn

hn−1
≈ 1. us the multistep

. Parametrized β−blocked multistep methods 

coefficients, that are continuously dependent on the step-size ratios are close to the
fixed step-size coefficients. Stability at infinity will be preserved if the change of
step-sizes is small and smooth [].

.. Parametrized singular β−blocked methods

e singular β−blocked multistep methods are parametrized so that the algebraic
variables are treated by an explicit method. is causes some notable differences
with regard to the formulation of regular stabilized methods.

As in the case of parametrized regular β−blocked methods, we construct for every
interval [tn−1, tn] a pair of polynomials, Pn ∈ Πk+1 andQn ∈ Πk that interpolate
differential and algebraic variables, respectively (see eorem ). We take τ =
−βk∇k for the singular β−blocking stabilizer (see Section .). By substituting
this τ in the discretization (.), we get

h−1ρxn = βk(f(xn)−GT(xn)(1−∇k)λn) + σ̃(f(xn)−GT(xn)λn)

0 = g(xn) (.)

e interpolation conditions require that Qn(tn−j) = λn−j for j = 2, . . . , k.
e term (1−∇k)λn in (.) has the latest value λn−1 thus the polynomial Qn

is degenerated to Qn ∈ Πk−1 while the consistency order of algebraic variables
remains the same as for regular β−blocking.

e singular β−blocked method polynomials Pn and Qn for problem (.) are
constructed by solving the system

P ′
n(tn) = f(Pn(tn))−GT(Pn(tn)xn)Qn(tn)

Pn(tn−1) = xn−1

P ′
n(tn−1) = f(xn−1)−GT(xn−1)Qn(tn−1)

cos θj−1(Pn(tn−j)− xn−j) + hn−j sin θj−1

(Ṗn(tn−j)− f(xn−j)−GT(xn−j)λn−j) = 0

Qn(tn−j) = λn−j

g(Pn(tn)) = 0 (.)

for j = 2, . . . , k. e new values are obtained by setting xn := Pn(tn) and
λn−1 := Qn(tn−1).

  Adaptive β−blocked multistep methods

. Numerical results

In this section we investigate the performance of parametric regular and singular
β−blocked multistep methods. We consider two examples and different tests are
carried out.

.. Linear model

Example  Consider the following index- system

ẋ1 = 1− λ

ẋ2 = −x2 + λ

0 = x1 − x2 (.)

with initial values x1(0) = 0, x2(0) = 0, λ(0) = 0.5 and analytic solution x1(t) =

1− e−t/2, x2(t) = 1− e−t/2, λ = 1− e−t/2

2
.

10-3 10-2 10-1 100
10-14

10-12

10-10

10-8

10-6

10-4

10-2

10-3 10-2 10-1 100
10-14

10-12

10-10

10-8

10-6

10-4

10-2

Figure 4.2: Global error versus step-size for regular β−blocked AM1 (□), AM2 (×) and AM3 (◦)

For the first experiment, we want to show that the parametric formulation of β−blocked
multistep methods has the expected consistency order in the fixed step-size case. us,
we solve problem (.) with fixed step-size regular β−blocked AMk methods, taking
h = 1/N with N = 8, 16, 32, 64, 128 and 256. e global error in non-algebraic
variables x1, x2 and algebraic variable λ were measured in L1 norm on the interval
[0, 5] by taking the mean global error over all steps. is norm flattens the minor
fluctuation that often occur when errors are measured at a single point. Figure (.)
shows that the order is at least k + 1, for differential variables and k for algebraic one.

. Numerical results 

In the next test, we apply two adaptive β−blocked multistep methods of order 4, the
3−step dcBDF method and the 3−step AM method to solve problem (.). Although
the step-sizes that are taken by AM method are often larger than the steps taken by
dcBDF method, see Figure ., the global errors of the numerical solution x1, obtained
by AM is around 10−8 while for dcBDf method, it is around 10−7. It is well known
that AM methods have smaller error constant compare to dcBDF methods. e error is
computed at each step for variables x1 (the solution of x1 is equal to x2) and λ by In

0 2 4 6 8 10

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

st
ep

-s
iz

e

0 2 4 6 8 10

t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

st
ep

-s
iz

e

Figure 4.3: The step-size changes versus time of 3−step dcBDF method(left plot) and 3−step AM method (right plot), both of
order 4 applied on model (.).

0 2 4 6 8 10

t

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

E
rr

or

x

0 2 4 6 8 10

t

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

E
rr

or

x

Figure 4.4: Global error of the solution of model (.) that is obtained by 3−step dcBDF method(left plot) and 3−step AM
method (right plot).

the classical approach of controlling the step-sizes, the new step-size is calculated by,

hn = (
Tol

en−1

)
1

p+1hn−1 (.)

  Adaptive β−blocked multistep methods

10 -8 10 -7 10 -6 10 -5 10 -4

Tol

10 -11

10 -10

10 -9

10 -8

10 -7

E
rr

or

Figure 4.5: Changes of mean L1 norm of error in x1 versus tolerance is proportional for adaptive regular β−blocked AM3
applied on model (.).

where Tol is a given tolerance and en−1 is the local error of the current time step and p
is the method’s order. By taking logarithms from Equation (.), we get

log en−1 = log Tol + (p+ 1)log
hn−1

hn

. (.)

If the step-size changes are small then their ratio hn

hn−1
is close to one, so the second term in

(.) becomes negligible. Hence in practice we can observe an error that is proportional
to the tolerance. Figure (.) shows the tolerance proportionality to the global error in
differential variables. e error is measured by taking the mean global error over all
steps.

.. Nonlinear model

Example  (Pendulum) e equation of the pendulum in index- Euler-Lagrange
form [] is

ṗ1 = v1

ṗ2 = v2

v̇1 = −λp1

v̇2 = −λp2 − g

0 = p1v1 + p2v2 (.)

. Implementation 

0 1 2 3 4 5

t

0

0.01

0.02

0.03

0.04

0.05

0.06

s
te

p
-s

iz
e

Figure 4.6: Step-size changes of the pendulum during the simulation exhibit a periodic pattern.

where p1, p2 and v1, v2 are position and velocity variables, respectively. Here we assume
that the mass of the pendulum and its length are one and the gravitational constant is
g = 9.81. Consider the consistent initial values p1(0) = 1, p2(0) = v1(0) =
v2(0) = λ = 0.

e problem was solved by singular β−blocked AM with Tol = 10−3, initial step-
size Tol = 10−3 and simulation time 5s. e step-size changes is illustrated in Figure
(.). e simulation starts with the initial step-size 10−3 and controller increase the
step-sizes gradually until it varies between 0.03 and 0.06. e step-sizes are varying
periodically as the pendulum has the same dynamic at each period. Figure . shows
that the tolerance is proportional to the absolute error of the solution to the pendulum
equations. Although the analytic solution of the pendulum is not known, we know that
the solution is periodic. us we compute the error at a specific time point where the
pendulum completes a full period, tf = 2.367841947461. e error for the state
variables x = (p1, p2, v1, v2) is approximated by ∥x(tf)− xtf∥ where x(tf) is equal
to the initial value and xtf is the numerical solution for the given tolerance.

. Implementation

We implemented our parametric formulation of SSP and β− blocked multistep
methods in the adaptive multistep solver MODES []. We have briefly looked
at MODES in Section .. We have added two functions PolDAEr (regular
β−blocking) and PolDAEs (Singular β−blocking) to MODES so that, for given

  Adaptive β−blocked multistep methods

10 -8 10 -7 10 -6 10 -5 10 -4

Tol

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

A
bs

ol
ut

e
er

ro
r

Figure 4.7: Changes of absolute error versus tolerance is proportional for the solution of pendulum that is obtained by adaptive
singular β−blocked AM4.

parameters θ and c the solution at tn is computed by solving the system of condi-
tions, (.) and (.) for the coefficients ofPn. Furthermore, these two functions
contain an iterative corrector, as is required it in the classical formulation of implicit
methods.

For a given initial step-size, the adequate k initial values for initializing the β−blocked
multistep methods are calculated by lower order β−blocked methods. e local
error at each step is computed by comparing the value of the previous polynomial
Pn−1(tn) and the value of the current onePn(tn), only for the differential variables.
Note that the algebraic variables have one order less than the state variables.

In the integration phase, we apply either PolDAEr with the given parameters θs and
ĉ or PolDAEs with the given parameters θs to compute the coefficients of polyno-
mials Pn and Qn. e other steps are similar to those we explained in Section ..

Chapter 

Parametrized multistep
methods of lower orders

In this section we present a parametric formulation of a general explicit k−step
method of order p where p < k. From now on, we denote a k−step method of
order p by (k, p) method.

Although the stability region of explicit methods is smaller than the implicit meth-
ods, they allow for a direct computation of the solution from the known quantit-
ies. Even though implicit methods can take larger step-sizes due to larger stabil-
ity region, extrapolating to the next step for the system that has changed in that
time step while the numerical solvers information hasn’t, may cause more compu-
tational efforts. Usually explicit methods are combined with the implicit solvers
called predictor-corrector methods to counter this problem. e explicit method is
used to predict the state of the system at the next time step. en the implicit
methods can use the predicted solution to evaluate the derivative and correct the
predicted value.

In the context of SSP methods, explicit multistep methods are especially interesting
because of direct approximation of the solution since applying iterative methods to
solve a large nonlinear system of equations that arises from implicit time discretiz-
ation of hyperbolic models would be expensive.

In order to formulate a general explicit (k, p) method with p < k, we need p + 1
interpolation conditions. ere must be at least one slack present for each non-zero



  Parametrized multistep methods of lower orders

pair (αi, βi), but having one slack condition for each point at tn−i, i = 1, . . . , k,
might result in an overdetermined system. erefore, we consider using linear com-
binations of the slack conditions. In the classical formulation of explicit multistep
methods, a k−step, order p method is defined by its coefficients α1, . . . , αk (α0

is normalized to ), and β1, . . . , βk, and satisfies p + 1 order conditions. We are
looking for a parametric formulation of (k, p)methods that includes methods that
can be obtained by fixing 2k − p − 1 parameters, so that there is a one-to-one
correspondence between the classical coefficients of a method and its parameters in
the polynomial formulation. It is important to notice that the slack sn−k must be
present in the formulation to guarantee the prescribed number of steps.

We extended a fixed step-sizemethodwith given coefficientsα1, . . . , αk, β1, . . . , βk,
in a way to preserve the pattern of zero coefficients. is implies that for any coef-
ficients satisfying αi = 0 or βi = 0, the corresponding state, yn−i, or vector field,
y′n−i, values are not present in the formulation, respectively. us the interpolation
conditions that define Pn cannot include sn−i and s′n−i and we must observe the
following rules:

Procedure : Formulation of explicit methods of order p < k

To define the method polynomial Pn ∈ Πp, use the following rules to set up
the interpolation conditions:

• If (αi, βi) = (0, 0), do not include either sn−i or s′n−i.

• If αi = 0, βi ̸= 0, include only s′n−i = 0.

• If αi ̸= 0, βi = 0, include only sn−i = 0.

• For each αi ̸= 0 and βi ̸= 0, include one of the following:{
sn−i = 0
s′n−i = 0,

(.)

or sn−i + hn−iτis
′
n−i = 0, (.)

or
∑(

λisn−i + hn−iτis
′
n−i

)
+ sn−k + hn−kτks

′
n−k = 0, (.)

so that the total number of conditions adds up to p+ 1.

We may have some freedom in choosing the interpolation conditions that define

. Strong stability preserving methods 

Pn, but the following theorem, proved in Paper , gives formulas that represent
the equivalence relations between the method parameters and the coefficients of a
classical multistep formula.

eorem  For a (k, p) method defined by p+1 slack conditions chosen according to
Procedure , the method parameters can be defined as follows:

τi =
βi

αi

, when (.) is used

τi =
βi

αk

, λi =
αi

αk

, when (.) is used

(.)

Although it is not common to apply (k, p)methods with p < k, an important class
of these methods that are designed to solve specific ODE models is introduced in
Section ..

. Strong stability preserving methods

In the current section we study strong stability preserving (SSP) multistep methods
that are a class of k−step methods with p < k for p ≥ 2.

In solving time-dependent partial differential equations (PDEs),

ut = f(u)x

it is common to discretize the spatial variables x, first to obtain a semi-discrete ODE
model of the form

ut = L(u), u(t0) = u0

where L is a difference operator that arises from semi-discretizations of PDEs.

In fact, some special methods for time dependent hyperbolic PDEs have been de-
veloped to insure stability and avoid spurious oscillations of the numerical solutions
during shocks. ese methods were first developed by Shu and Osher [] as total
variation diminishing (TVD) methods. SSP methods are designed to preserve the
structure of the models and the conservation laws. A standard objective is to con-
struct semi-discretizations of hyperbolic conservation laws so that the total variation
of discrete solutions does not increase in time.

  Parametrized multistep methods of lower orders

ese methods are also known in the literature as contractivity preserving[], or
monotonicity preserving methods[].

For the sake of shock-capturing, the hyperbolicmodels are naturally semi-discretized
by TVD finite difference of finite volume methods []. Unfortunately the order
of these methods is limited to one or two []. us Essentially Non-Oscillatory
(ENO) methods were developed [, ] that minimize the numerical oscillation
around shocks and attain high order accuracy outside the discontinuities. e
WENO scheme [] is a variant of ENOmethods especially suited for the problems
containing both shocks and complicated smooth solution structures, such as com-
pressible turbulence simulations. In this thesis our focus is on the time-stepping
methods and we consider a semi-discretized hyperbolic model.

Gottlieb and Shu [] highlighted the necessity of applying SSP methods to hy-
perbolic PDEs through the following example.

Consider Burgers equation,

ut = (
u2

2
)x (.)

with initial function,

u(x, 0) =

{
1, if x ≤ 0

−0.5, if x > 0 (.)

e model (.) is semi-discretized with a second order upwind spatial discretiz-
ation, Monotone Upstream-centered Schemes for Conservation Laws (MUSCL)
[]. e MUSCL discretization is TVD under some restriction on time steps.
Two second order time integrators are applied to solve the ODE arises from semi-
discretization of Burgers equation.

In Figure ., we can clearly see that the non-TVD result is oscillatory.

Strong stability preservingmethods are a class of ODE solvers that can be one of two
types: one-step ormultistepmethods. An important class of one-step SSPmethods,
Runge–Kutta methods, have been well-studied, see e.g, [, , ]. SSP multistep
methods with uniform step-size are also well-studied in [, , ]. Nevertheless,
there is only one study on variable step-size SSP multistep methods and it is on SSP
explicit multistep methods of orders two and three []. e adaptive SSP explicit
multistep methods of orders at least 3 have a complicated structure in the classical
formulation of linear multistep methods. In [] it is suggested to look for a new
formulation that has a simple structure in order to develop higher order SSP explicit

. Strong stability preserving methods 

Figure 5.1: Second order TVD MUSCL spatial discretization. solution after 500 time steps. Left: TVD time discretization; Right:
non-TVD time discretization [38].

multistep methods. In Paper  we focused our study on a new formulation of
SSP explicit multistep methods supporting variable step-size by construction. e
center part of this study is on the construction of particular explicit (k, p)methods
with p < k and the supplementary issues such as their efficiency or the required
bounds on step-size ratios are not part of this study.

e setting for SSP methods can be summarized as follows.

Let us consider ODEs of the form

ẏ = F (y), y(t0) = y0, t ∈ [t0, tf], (.)

where F : Rm → Rm.

e vector field F is assumed to have the property (.) for a given norm and a
fixed step-size h.

∥y + hF (y)∥ ≤ ∥y∥ for all y and h ≤ h∗. (.)

is implies F (0) = 0, which obviously holds for linear vector fields, but also
for many interesting nonlinear vector fields associated with PDEs. If F is linear
we denote it by L, and (.) can be expressed in terms of the logarithmic norm,
[, , ], as µ[L] ≤ 0, where

µ[L] = limh→0+
∥I + hL∥ − 1

h
. (.)

e condition µ[L] ≤ 0 implies that ∥y(t)∥ is a non-increasing function of t, and
thus y = 0 is a stable solution. For nonlinear vector fields satisfying F (0) = 0,

  Parametrized multistep methods of lower orders

using the operator norm

∥F∥ = sup
∥y∥≠0

∥F (y)∥
∥y∥

,

the corresponding logarithmic norm µ[F] can be readily defined as in (.); this
is a straightforward special application of the general extension of the logarithmic
norm to nonlinear maps, []. us (.) implies µ[F] ≤ 0, and once again ∥y(t)∥
is a non-increasing function of t. Morover, if µ[F] < 0, then ∥y+hF (y)∥ ≤ ∥y∥
in a nonempty interval, 0 < h < h∗, since ∥y+hF (y)∥ is a convex function of h.

e objective is to find methods that reproduce this behavior. A numerical method
whose solution is non-increasing for all vector fields F satisfying (.) for step-sizes
0 < h ≤ c h∗ is said to be strong stability preserving (SSP). Obviously, the explicit
Euler method is SSP with c = 1 and h∗ is determined by Courant-Friedrichs-Lewy
(CFL) condition.

Whether the vector field F satisfies µ[F] < 0 depends on the choice of norm,
but the choice is not restricted to specific norms, such as inner product norms. A
standard objective is to construct semi-discretizations of hyperbolic conservation
laws so that the total variation of discrete solutions does not increase in time [],
where the total variation in space is defined as

∥u∥TV =
m∑
j=1

|uj+1 − uj|, u ∈ Rm.

is is easily seen to be a semi-norm (referred to as the TV norm). If a semi-
discretization satisfiesµ[F] < 0with respect to the TV norm, and the time stepping
method is SSP, the resulting method will overcome deficiencies that may occur in
other methods, such as numerically induced oscillations in space, which are not
present in the exact solutions of conservation laws. us the SSP method will
produce a total variation diminishing (TVD) scheme for time steps h ≤ c h∗.

To investigate linear multistep methods reducing total variation, further definitions
are needed.

Definition  [] Let problem (.) satisfy condition (.). A k-step method given by
formula (.) is an SSP method if there is a constant c such that the method applied
to problem (.) with 0 < h ≤ c h∗ produces a sequence {yi} satisfying

∥yn∥ ≤ max{∥yn−1∥, ∥yn−2∥, . . . , ∥yn−k∥}. (.)

e maximal value of c is called the SSP constant of the method and is denoted by C.

. Strong stability preserving methods 

Figure 5.2: Solutions of Burgers' equation with fixed step-sizes, with initial function (.) and the optimal (3, 2) SSP method.
The solution was captured during the shock at t = 0.23s. (a) A step-size violating the step-size limit produces
overshoot. (b) No oscillations are observed for a smaller step-size.

Remark  [] Consider an explicit method defined by formula (.) with αi ≥

0, βi ≥ 0 for all i, and let γ = min
i

{
αi

βi

∣∣∣∣ βi ̸= 0

}
. If γ > 0, the method is

SSP with C = γ.

We say a (k, p) SSP multistep method is optimal if it gives the largest SSP constant
C. ese methods are of particular interest [, ] so as to allow for largest step-
sizes.

To illustrate the use of SSP methods, we consider the inviscid Burgers’ equation
with periodic boundary conditions

ut + uuy = 0,

u(y, 0) = g(y), y ∈ [0, 1], (.)

using the smooth initial function

g(y) =
1

2
+ sin(2πy). (.)

Furthermore, the model is semi-discretized with the fifth order Weighted Essen-
tially Non Oscillatory (WENO) scheme [, ]. WENO is one of the spatial
discretizations that are often combined with an SSP time integrator to preserve
contractivity properties.

Figure .(a) illustrates the solution of Burgers’ equation with  grid points in
space and the optimal explicit (3, 2) SSP method, and with a fixed step-size that
violates the step-size limit condition h ≤ Ch∗ (see Definition  and Remark ),

  Parametrized multistep methods of lower orders

where the SSP constant of the method is C = 0.5. An undesired oscillation is
visible during the shock formation. On the other hand, Figure .(b) shows that
for a fixed step-size satisfying the step-size limit condition, no spurious oscillations
are observed.

. Adaptive strong stability preservingmultistepmeth-
ods

An aim of Paper  is to develop a variable step-size formulation of SSP methods.
Earlier, we discussed a procedure to formulate explicit (k, p) multistep methods
where p < k. Further, it is known that for k ≥ 2 there is no explicit (k, p) SSP
multistep methods of order p = k with all βi ≥ 0 []. us we can apply similar
polynomial formulation of low order explicit multistep methods, Procedure to
parametrize (k, p) SSP multistep methods. Because for SSP methods, we have
αi = 0 ⇒ βi = 0 (see Remark ), we remove the second rule in Procedure  (If
αi = 0, βi ̸= 0, include only s′n−i = 0). We refer to Paper  for more details.

Consider the pairs of constant step-size coefficients (αi, βi) of an explicit SSPmeth-
ods given by (.). e optimal SSP methods with (k, p) ̸= (6, 3) or (16, 5),
k ≤ 20 satisfy following conditions:

. α1 ̸= 0, β1 ̸= 0, αk ̸= 0.

. If p is even, βk = 0 and there are p pairs of non-zero coefficients.

. If p is odd, βk ̸= 0 and there are p− 1 pairs of non-zero coefficients.

e rules to obtain optimal SSP methods are described in Procedure .

Note that the optimal (6, 3) and (16, 5) methods have p pairs of non-zero coeffi-
cients, although they have the odd orders.

. Adaptive strong stability preserving multistep methods 

Procedure : Formulation of optimal SSP methods

• Take structural conditions at the point t = tn−1.

• Take slack balance conditions at the intermediate points t = tn−j with
αj ̸= 0, 1 < j < k. e method parameters are τj = βj/αj .

• Add the state slack sn−k = 0. If p is odd, also add the derivative slack
s′n−k = 0.
(For the (6, 3) method, take a slack balance condition at tn−6.)

Example  e optimal explicit (8, 5) SSP method is constructed as follows,

sn−1 = 0

s′n−1 = 0

sn−4 + hn−4τ4s
′
n−4 = 0,

sn−5 + hn−5τ5s
′
n−5 = 0,

sn−8 = 0,

s′n−8 = 0.

e coefficients of the optimal variable step-size (,) method are rational functions of
degree  of four different step-size ratios, Ω7,Ω5,Ω4,Ω3, and thus it is very difficult
to find precise bounds that define positivity. e effect of increasing or decreasing the
step-size at a constant rate was studied by considering

hn−i = (1 + ε)hn−i−1 i = 1, . . . , 7,

where ε is a number close to . As for ε = 0 all coefficients are positive, and the
SSP constant is .. By continuity, there is an interval where the step-sizes can vary
while the method remains SSP. If ε > 0 the step-size is increased, and if ε < 0 it is
decreased. All coefficients remain positive in the interval ε ∈ (−0.055, 0.035), that is,
a persistent increase of 3.5% or a decrease of 5.5% may be allowed. As for the variable
SSP coefficient , some calculations turn out to be possible if these simplifications are
made. For instance, when the step-size is repeatedly reduced at a constant rate, the SSP

coefficient is given by a simple formula,
0.1451

Ω5 − Ω4

. For the constant step-size, the SSP

constant is .; with a constant step-size increase of 1%, the SSP coefficient drops to
., and with a constant decrease of 1% it drops to ..

  Parametrized multistep methods of lower orders

Figure 5.3: Structure of MODES.

ese calculations suggest that as long as the step-sizes are varied slowly and smoothly,
the variable step-size extension of an SSP method will remain SSP.

. Implementation

We implemented our SSP formulation in the adaptive multistep solver MODES
[]. First, we briefly look at the structure of MODES. In Figure . the six main
parts of MODES are illustrated.

At the initialization phase, the initial step-size and the k initial values for a k−step
method are provided. To determine the initial step-size Algorithm  is used and to

. Implementation 

calculate adequate number of initial values one of the initialization techniques that
are explained in Chapter  are applied. Further, a predication of the solution at the
first time step is obtained as a remedy to calculate the error estimate.

e coefficients of the polynomial in parametric formulation are computed in in-
tegration step. en we evaluate the polynomial to find the solution value yn =
Pn(tn). is solution has to pass the step-size control phase in order to be saved as
an accepted solution. For each class of methods with k steps and order p there is a
function that computes the coefficients of the method polynomial of degree p by
solving the derived parametric formulation for that class. For instance, a 2−step
explicit multistep method of order 2 is characterized by a second degree polynomial
Pn,

Pn(t) = c2(t− tn−1)
2 + c1(t− tn−1) + c0,

satisfying the slack conditions in (.),
sn−1 = 0

s′n−1 = 0

sn−2 cos θ1 + hn−2s
′
n−2 sin θ1 = 0

(.)

where these three conditions, together with the parameter value θ1, uniquely de-
termine the polynomial coefficients. en the solution at time tn is obtained as
Pn(tn) = c2h

2
n−1 + c1hn−1 + c0.

In the step-size control phase, the error estimation is computed by evaluating the
polynomial method from previous step, Pn−1, to the new one, Pn at time tn. If the
error is less than a supplied tolerance, the step will be accepted otherwise it will be
rejected in the next step of the flow chart .. Several step-size controllers designed
both for general and for more specific needs are implemented in this part.

e last step is the order control of multistep method. Here, the algorithm checks
how large a step can be taken if the order is untouched or increased or decreased.
en a comparison among these three scenarios indicates if the changing order is
favorable or not. In this thesis, we consider methods of fixed order and this step of
flow chart is irrelevant for us.

Finally the integration is terminated when t ≥ tf . We have to be sure that the
integration hits the last time point thus a new solution is calculated at time point
tf .

e implementation in MODES was made by adding a function polElow which,
given themethod parameters λ and τ , computes the solution at tn by solving system

  Parametrized multistep methods of lower orders

for the coefficients of Pn, and then evaluates yn = Pn(tn). We also have the option
of calling some optimal (k, p) SSP methods for p ≤ 5 by name, without giving
their parameters explicitly.

e step-size controllers in MODES provide an estimate of the local error at each
step. By monitoring the error estimation, the controllers increase or decrease the
step-size when the error estimate is below or above the specified tolerance, and in
particular they reduce the step-size when a numerical instability is detected. is
is particularly important for explicit SSP integrators that cannot operate with step-
sizes above their stability limit.

Using an adaptive implementation of these methods eliminates the need of calcu-
lating the SSP constant for each particular method, although care must be taken
to set appropriate bounds for step-size changes. ese bounds will be conservative
and the method will be costlier than when the greedy step-size selection is used, but
on the other hand, the error will be monitored, keeping it below a given tolerance.
Our implementation retains MODES’s step-size controllers and its mechanism for
calculating the starting values of the multistep methods, which are provided by
Runge-Kutta methods. As MODES allows the user to set upper and lower lim-
its on the step-size ratios, it is a particularly suited platform for maintaining these
ratios bounded, as required by SSP methods.

Chapter 

Summary and main results

In the first part of this thesis we studied RK starters for restarting multistep meth-
ods. Two RK starter families equipped with error estimation are constructed and
compared to the classical RK starter developed in ’s. e performance of the
RK starters on restarting the multistep methods after a discontinuity shows their
advantage both for problems with mild discontinuities, e.g., the pendulum and
the bouncing ball, and for problems where the integration is interrupted to do a
re-parametrization. e RK starters utilized the last order and step-size of the in-
tegration before the discontinuity. Some tests were carried out with an autostart
algorithm to determine the initial step-size, because the last attempted step-size can
be too small. e starting order and step-size are not studied in this thesis.

In the second part of the thesis, we parametrized k−step methods of order p < k
and suggested a polynomial formulation for SSP multistep methods that allows
variable step-sizes. Although the suggested adaptive formulation of SSP multistep
methods has a simple structure, it is not easy to compute the restriction on the
step-sizes to guarantee positivity of the method coefficients for methods with order
higher than 3. Further, the step-size controllers in MODES take smooth (small)
step-size changes that enables us to retain the positivity of coefficients by restricting
the allowable changes in step-size ratios.

Finally, we derived a parametric formulation for β−blocked multistep methods
that allows us to construct the first adaptive β−blocked multistep methods solver
for the solution of index- Euler-Lagrange DAE system. ese methods were im-
plemented as a plug-in to MODES and extended it from an adaptive ODE solver



  Bibliography

to adaptive ODE/DAE solver. As a proof of concept, some numerical experiments
were carried out. In our experiments, the β−blocked multistep methods are ini-
tialized by a one step β−blocked method with a small initial step-size given by the
user. Choosing a small enough initial step-size and a starting scheme for initializing
the numerical methods applied on DAEs models remain to be studied.

Bibliography

[] J. Åkesson, M. Gäfvert, and H. Tummescheit. JModelica—an open source
platform for optimization of modelica models. In Proceedings of MATHMOD
 - th Vienna International Conference on Mathematical Modelling, Vi-
enna, Austria, . TU Wien.

[] C. Andersson. Assimulo: A new Python based class for simulation of complex
hybrid DAEs and its integration in JModelica.org. Lund University, .

[] C. Andersson. A software framework for implementation and evaluation of co-
simulation algorithms. PhD thesis, Lund university, .

[] C. Andersson, J. Åkesson, C. Führer, and M. Gäfvert. Import and export
of functional mock-up units in JModelica.org. In th International Modelica
Conference , Dresden, Germany, mar .

[] C. Andersson, C. Führer, and J. Åkesson. Assimulo: A unified framework for
ODE solvers. Mathematics and Computers in Simulation, : – , .

[] C. Arévalo.Matching the structure of DAEs and multistep methods. Ph.D. thesis,
Lund University, .

[] C. Arévalo, C. Führer, and M. Selva. A collocation formulation of multistep
methods for variable step-size extensions. Applied Numerical Mathematics,
(-):–, .

[] C. Arévalo, C. Führer, and G. Söderlind. Stabilized multistep methods for
index  Euler-Lagrange DAEs. BIT Numerical Mathematics, ():–, .



  Bibliography

[] C. Arévalo, C. Führer, and G. Söderlind. β-blocked multistep methods for
Euler-Lagrange DAEs: Linear analysis. ZAMM-Journal of Applied Mathem-
atics and Mechanics/ Zeitschrift für Angewandte Mathematik und Mechanik,
():–, .

[] C. Arévalo, C. Führer, and G. Söderlind. Regular and singular β-blocking of
difference corrected multistep methods for nonstiff index- DAEs. Applied
numerical mathematics, ():–, .

[] C. Arevalo, E. Jonsson-Glans, J. Olander, M. Selva-Soto, and G. Söder-
lind. MODES. http://www.maths.lu.se/staff/carmen-arevalo/
downloads/, .

[] C. Arévalo and P. Lötstedt. Improving the accuracy of BDFmethods for index
 differential-algebraic equations. BIT Numerical Mathematics, ():–
, .

[] C. Arévalo and G. Söderlind. Grid-independent construction of multistep
methods. Journal of Computational Mathematics, ():–, .

[] C. Arévalo, G. Söderlind, E. Jonsson-Glans, J. Olander, and M. Selva-Soto.
MODES: A software platform for adaptive high order multistep methods.
Lund University, Preprints in Mathematical Sciences, :.

[] C. Arévalo, G. Söderlind, and J. López Diaz. Constant coefficient linear mul-
tistep methods with step density control. Journal of computational and applied
mathematics, ():–, .

[] M. Arnold. e stabilization of linear multistep methods for constrained
mechanical systems. Applied numerical mathematics, (-):–, .

[] J. Baumgarte. Stabilization of constraints and integrals ofmotion in dynamical
systems. Computer methods in applied mechanics and engineering, ():–,
.

[] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, et al. e functional
mockup interface for tool independent exchange of simulation models. In
Modelica  Conference, March, pages –, .

[] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-
value problems in differential-algebraic equations, volume . SIAM, .

Bibliography 

[] B. Burgermeister, M. Arnold, and B. Esterl. DAE time integration for real-
time applications in multi-body dynamics. ZAMM-Journal of Applied Math-
ematics and Mechanics/ Zeitschrift für Angewandte Mathematik und Mechanik:
Applied Mathematics and Mechanics, ():–, .

[] J. C. Butcher. On fifth order Runge-Kutta methods. BIT Numerical Math-
ematics, ():–, .

[] S. L. Campbell. Consistent initial conditions for linear time varying singular
systems. Frequency Domain and State Space Methods for Linear Systems, Elsevier
Science (North-Holland), Amsterdam, .

[] S. L. Campbell. A computational method for general higher index nonlinear
singular systems of differential equations. IMACS Transactions on Scientific
Computing, .

[] G.Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, Almqvist & Wiksell, .

[] P. Deuflhard and F. Bornemann. Scientific computing with ordinary differential
equations, volume . Springer Science and Business Media, .

[] L. Dieci and L. Lopez. A survey of numerical methods for IVPs of ODEs
with discontinuous right-hand side. Journal of Computational and Applied
Mathematics, ():–, .

[] M. Dowell and P. Jarratt. A modified regula falsi method for computing the
root of an equation. BIT Numerical Mathematics, ():–, .

[] E. Eich. Convergence results for a coordinate projection method applied to
mechanical systems with algebraic constraints. SIAM Journal on Numerical
Analysis, ():–, .

[] E. Eich-Soellner and C. Führer. Numerical methods in multibody dynamics,
volume . Teubner Stuttgart, .

[] L. Euler. Institutionum calculi integralis. Petropoli: Impensis Academiae Im-
perialis Scientiarum, .

[] C. Führer and B. J. Leimkuhler. Numerical solution of differential-algebraic
equations for constrained mechanical motion. Numerische Mathematik,
():–, .

  Bibliography

[] C. W. Gear. Simultaneous numerical solution of differential-algebraic equa-
tions. IEEE Transactions on Circuit eory, ():–, .

[] C. W. Gear. Runge–Kutta starters for multistep methods. ACM Transactions
on Mathematical Software (TOMS), ():–, .

[] C.W.Gear, B. Leimkuhler, andG. K. Gupta. Automatic integration of Euler-
Lagrange equations with constraints. Journal of Computational and Applied
Mathematics, :–, .

[] C William Gear. Algorithm : DIFSUB for solution of ordinary differen-
tial equations. Communications of the ACM, ():–, .

[] J. B. Goodman and R. J. LeVeque. On the accuracy of stable schemes for d
scalar conservation laws. Mathematics of computation, pages –, .

[] S. Gottlieb, D. I. Ketcheson, and C. Shu. Strong stability preserving Runge-
Kutta and multistep time discretizations. World Scientific, .

[] S. Gottlieb and C. Shu. Total variation diminishing Runge–Kutta schemes.
Mathematics of computation of the AmericanMathematical Society, ():–
, .

[] S. Gottlieb, C. Shu, and E. Tadmor. Strong stability-preserving high-order
time discretization methods. SIAM Review, ():–, .

[] Y. Hadjimichael, D. I. Ketcheson, L. Lóczi, and A. Németh. Strong stability
preserving explicit linear multistep methods with variable step size. SIAM
Journal on Numerical Analysis, ():–, .

[] E. Hairer, C. Lubich, and M. Roche. e numerical solution of differential-
algebraic systems by Runge–Kutta methods, volume . Springer, .

[] E. Hairer, S. P. Norsett, and G.Wanner. Solving ordinary differential equations
I. .

[] E. Hairer and G. Wanner. Radau- An implicit Runge–Kutta code. Report,
Université de Geneve, Dept. de mathématiques, Geneve, .

[] E. Hairer and G.Wanner. Solving ordinary differential equations II: Stiff and
differential-algebraic problems second revised edition, .

Bibliography 

[] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high
order accurate essentially non-oscillatory schemes, III. In Upwind and high-
resolution schemes, pages –. Springer, .

[] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy. Some results
on uniformly high-order accurate essentially nonoscillatory schemes. Applied
Numerical Mathematics, (-):–, .

[] I. Higueras. On strong stability preserving time discretization methods.
Journal of Scientific Computing, ():–, .

[] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In
R. S. Stepleman et al., editor, IMACS Transactions on Scientific Computation,
volume , pages –. .

[] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS: Suite of nonlinear and differ-
ential/algebraic equation solvers. ():–, .

[] W. H. Hundsdorfer, S. J. Ruuth, and R. J. Spiteri. Monotonicity-preserving
linear multistep methods. Centrum voor Wiskunde en Informatica, .

[] S. Ilie, G. Söderlind, and R. M. Corless. Adaptivity and computational com-
plexity in the numerical solution of ODEs. Journal of Complexity, ():–
, .

[] A. Iserles. A first course in the numerical analysis of differential equations. Num-
ber . Cambridge university press, .

[] G. Jiang and C. Shu. Efficient implementation of weighted ENO schemes.
Journal of Computational Physics, ():–, .

[] D. I. Ketcheson. Computation of optimal monotonicity preserving general
linear methods. Mathematics of Computation, ():–, .

[] A. Kværnø. Runge–Kutta methods applied to fully implicit differential-
algebraic equations of index .Mathematics of Computation, ():–,
.

[] R. Lamour, R. März, and R. M. Mattheij. On the stability behaviour of
systems obtained by index-reduction. Journal of Computational and Applied
Mathematics, ():–, .

  Bibliography

[] R. I. Leinea, C. Glockerb, and D. H. van Campena. Nonlinear dynamics
of the woodpecker toy. In ASME  Design Engineering Technical Confer-
ence and Computers and Information in Engineering Conference, Pittsburg, PA,
September - .

[] H. W. Lenferink. Contractivity preserving explicit linear multistep methods.
Numerische Mathematik, ():–, .

[] X. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.
Journal of Computational Physics, ():–, .

[] P. Lötstedt and L. Petzold. Numerical solution of nonlinear differential equa-
tions with algebraic constraints. I. convergence results for backward differen-
tiation formulas. Mathematics of computation, ():–, .

[] S. M. Lozinskii. Error estimate for numerical integration of ordinary dif-
ferential equations. I. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika,
():–, .

[] E. S. Maciel and A. P. Pimenta. Comparison among MUSCL, ENO, and
WENO procedures as applied to reentry flows in D. Computational and
Applied Mathematics Journal, ():–, .

[] R. März. Multistep methods for initial value problems in implicit differential-
algebraic equations. Humboldt-Universität zu Berlin. Sektion Mathematik,
.

[] F. Mohammadi, C. Arévalo, and C. Führer. Runge–Kutta restarters for mul-
tistep methods in presence of frequent discontinuities. Journal of Computa-
tional and Applied Mathematics, :–, .

[] A. Nordsieck. On numerical integration of ordinary differential equations.
Mathematics of Computation, ():–, .

[] L. R. Petzold. A description of DASSL: A differential/algebraic system solve.
Scientific Computing, eds. R.S. Stepleman et al., pages –, .

[] L. R. Petzold. Order results for implicit Runge–Kutta methods applied to dif-
ferential/algebraic systems. SIAM Journal on Numerical Analysis, ():–
, .

Bibliography 

[] L. R. Petzold and A. C. Hindmarsh. LSODAR. Computing and Mathematics
Research Division, I- Lawrence Livermore National Laboratory, Livermore,
CA, , .

[] L. R. Petzold and P. Lötstedt. Numerical solution of nonlinear differential
equations with algebraic constraints II: Practical implications. SIAM Journal
on Scientific and Statistical Computing, ():–, .

[] A. Ralston. Runge-Kutta methods with minimum error bounds. Mathematics
of computation, ():–, .

[] S. J. Ruuth and W. Hundsdorfer. High-order linear multistep methods with
general monotonicity and boundedness properties. Journal of Computational
Physics, ():–, .

[] L. F. Shampine. Conservation laws and the numerical solution of odes. Com-
puters and Mathematics with Applications, (-):–, .

[] C. Shu. Total-variation-diminishing time discretizations. SIAM Journal on
Scientific and Statistical Computing, ():–, .

[] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes. Journal of Computational Physics, :–,
.

[] A. Sjö. Analysis of computational algorithms for linear multistep methods. PhD
thesis, Lund University, .

[] S. J. Small. Runge–Kutta type methods for differential-algebraic equations in
mechanics. e University of Iowa, .

[] G. Söderlind. DASP- A program for the numerical integration of partitioned
stiff ODE: s and differential-algebraic systems. Technical report, KTH Royal
Institute of Technology, .

[] G. Söderlind. A multi-purpose system for the numerical integration of
ODE’s. Applied Mathematics and Computation, :–, .

[] G. Söderlind. e logarithmic norm. History and modern theory. BIT Nu-
merical Mathematics, ():–, .

  Bibliography

[] H. J. Stetter. Asymptotic expansions for the error of discretization algorithms
for non-linear functional equations. Numerische Mathematik, ():–,
.

[] B. Van Leer. Towards the ultimate conservative difference scheme. Journal of
Computational Physics, ():–, .

[] R. von Schwerin and H. G. Bock. A Runge–Kutta starter for a multistep
method for differential-algebraic systems with discontinuous effects. Applied
Numerical Mathematics, ():–, .

Paper 

th international Modelica conference, Lund,


Restarting algorithms for
simulation problems with
discontinuities

Fatemeh Mohammadi Carmen Arévalo Claus Führer

Numerical Analysis, Center for Mathematical Sciences, Lund University,
Sölvegatan , SE- Lund, Sweden

Abstract

Modelica’s language support includes so-called events for describing discontinuities.
Modern integrating environments, like Assimulo, provide elaborate event detection
and event handling methods. In addition, the overall performance of a simulation
of models with discontinuities (hybrid models) depends strongly on the methods
for restarting the integration after an event detection. e present paper reviews two
restarting methods for multistep methods, both based on Runge–Kutta starters,
and presents preliminary first experiments with Assimulo and LSODAR as a proof
of concept, which motivates to apply the technique to hybrid systems described in
Modelica and simulated by JModelica.org/PyFMI and Assimulo [, , ].

Keywords: events, discontinuities, hybrid systems, multistep method, Runge–Kuttamethod,
simulation restart



 Paper 

 Introduction

When dealing with hybrid systems, i.e. dynamic systems with state or time dis-
continuities, much emphasis has been put on the modeling aspect. Attempts to
standardize the formulation of events and algorithms for event detection were in
the focus of development and research, e.g. []. On the other hand, the question of
restarting complex integration methods like multistep methods, with their sophist-
icated internal error and order control algorithms and internal data representations,
did not attract much attention. In this paper we want to take up and review two
early ideas for restarting and to present some experiments using the JModerlica.org
- PyFMI - Assimulo toolchain.

A multistep method is classically started by step-wise increasing the order of the
method, starting with a first order method (implicit Euler method) and leading to
a method having the operational order of the problem at hand. Simulations are
often done for a set of parameterized models for which the operational order and
also good guesses of initial step sizes are available from other simulation runs. us,
a goal for improving the integration performance is to avoid costly starting phases
and directly start the integrator with a method already having the operational order.
To start such a higher order method several internal values are required. Here we
consider two ideas for providing these values. In both cases the starting values are
obtained from the stage values of a single Runge–Kutta step of a specially designed
method. One of them uses state values, while the other is geared to Nordsieck based
multistep methods like LSODAR.

 Runge–Kutta starter with state values

We demonstrate the principle by constructing a Runge–Kutta starter for a third
order multistep method, [].

Furthermore, we construct two error estimates for determining the starting step
of both the Runge–Kutta starter and a class of multistep methods, i.e. Adams
methods.

Such a Runge–Kutta starter has to have an internal stage of order 3 as soon as
possible and all subsequent stages need to be at least of order 3. In addition; the
final result should be of order 4 for the purpose of error estimation. It is well-known

Paper  

that to get third-order accuracy at least three internal stages are necessary, and to
conserve this accuracy for subsequent stages we need to aim for a Runge–Kutta
method with at least six stages, []. We will thus consider a -stage Runge–Kutta
method.

Figure 6.1: Runge--Kutta starter after a discontinuity

For the initial value problem

y′ = f(t, y), y(0) = y0, (.)

an s-stage explicit Runge–Kutta method can be written in the form,

ki :=f(t0 + ciH, gi−1),

gi :=y0 +H

i∑
j=1

aijkj, i = 1, . . . , s,

y1 :=y0 +H

s∑
j=1

bjkj,

(.)

where y1 is the numerical solution at t1 = t0 +H ,H is the Runge–Kutta step size
and ki are stage derivatives.

f may be discontinuous but it is assumed to be piecewise smooth.

In the construction of an order , 6-stage explicit Runge–Kutta method, order

 Paper 

conditions up to order four need to be satisfied. Let

b : = (b1, b2, · · · , bs)T ,
ai : = (ai1, ai2, · · · , aii),
Ci : = diag(c1, · · · , ci),
Ai : = (ajk)

i
j,k=1,

ei : = (1, 1, · · · , 1)T .

(.)

When deriving the stage order conditions, we make use of the fact that in Eq. (.),
the stage values gi and yi have structurally the same form. erefore, we can derive
the order conditions for internal stages in the same way.
e order conditions for a fourth-order Runge–Kutta method are

• order 
bT es = 1.

• order 
bTCses =

1

2
.

• order 
bTC2

s es =
1

3
,

bTAsCses =
1

6
.

• order 

bTC3
s es =

1

4
,

bTCsAsCses =
1

8
,

bTAsC
2
s es =

1

12
,

bTA2
sCses =

1

24
.

(.)

Additionally we require
s∑

j=1

aij = ci. (.)

e remaining order conditions for internal stages i = 4, 5, 6 are

Paper  

• order 
aTi Ciei =

1

2
c2i .

• order 

aTi C
2
i ei =

1

3
c3i ,

aTi AiCiei =
1

6
c3i .

(.)

We want to both obtain third-order accuracy and minimize the truncation error
bound. Raltson [] showed that the third-order Runge-Kutta method which has
the minimal error bound among all third-order Runge–Kutta methods is

k1 =hf(tn, yn),

k2 =hf(tn +
1

2
h, yn +

1

2
k1),

k3 =hf(tn +
3

4
h, yn +

3

4
k2),

yn+1 = yn +
2

9
k1 +

1

3
k2 +

4

9
k3.

(.)

is implies the Butcher tableau for the first four stages is

0 0

1
2
c4

1
2
c4 0

3
4
c4 0 3

4
c4 0

c4
2
9
c4

1
3
c4

4
9
c4

From condition (.) we find

a21 = c2, a31 = (1− θ)c3, a32 = θc3. (.)

 Paper 

We now substitute (.) and (.) in (.) to calculate the values bi for the six stage
Runge–Kutta method.

b2c
3
2 + b3c

3
3 + b4c

3
4 + b5c

3
5 + b6c

3
6 =

1

4
,

b3c3θc3c2 +
1

2
b4c

3
4 +

1

2
b5c

3
5 +

1

2
b6c

3
6 =

1

8
,

b3c3θc
2
2 +

1

3
b4c

3
4 +

1

3
b5c

3
5 +

1

3
b6c

3
6 =

1

12
,

1

6
b4c

3
4 +

1

6
b5c

3
5 +

1

6
b6c

3
6 =

1

24
.

(.)

For the first three stages we require c2 ̸= 0, c3 ̸= 0 and θ ̸= 0, otherwise a third-
order Runge–Kutta method cannot be obtained. So b2 = b3 = 0 and Equations
(.) reduce to a single equation

b4c
3
4 + b5c

3
5 + b6c

3
6 =

1

4
.

We repeat this process for order 2 and 3 conditions, getting

b4c
2
4 + b5c

2
5 + b6c

2
6 =

1

3
,

and
b4c4 + b5c5 + b6c6 =

1

2
.

respectively.

Here we have a system of equations for given c4, c5, c6,

c4 c5 c6
c24 c25 c26
c34 c35 c36

b4
b5
b6

 =

1
2
1
3
1
4

 .

We obtain a Vandermonde type matrix, which has, for distinct c4, c5 and c6, a

Paper  

unique solution:

b1 = 1− b4 − b5 − b6,

b4 =
3− 4c5 − 4c6 + 6c5c6
12c4(c4 − c5)(c4 − c6)

,

b5 =
3− 4c4 − 4c6 + 6c4c6
12c5(c4 − c5)(c5 − c6)

,

b6 =
3− 4c4 − 4c5 + 6c4c5
12c6(c4 − c6)(c5 − c6)

.

In order to obtain an equidistant grid for startingmultistep methods, we can choose

c4 =
1

4
, c5 =

1

2
, c6 =

3

4
,

which gives

b1 = b2 = b3 = 0, b4 =
2

3
, b5 = −1

3
, b6 =

2

3
.

Finally, by solving the equations that guarantee the remaining order conditions, we
obtain the Butcher tableau for the Runge–Kutta starter:

0 0

1
8

1
8

0

3
16

0 3
16

0

1
4

1
18

1
12

1
9

0

1
2

5
12

−1
3

−4
9

1 0

3
4

−1
4

3
4

1 −3
2

3
4

0

0 0 0 2
3

−1
3

2
3

We can apply the explicit Runge–Kutta starter to start k = 3-step Adams methods.
We need k data points (ti, fi), i = n − k + 1, . . . , n to compute the respect-
ive polynomials for either the Adams–Moulton corrector or the Adams–Bashforth
predictor.

 Paper 

 Error estimation and step size control

e error of the numerical solution depends on the function f and on the step size
H . e step size influences the size of the global error increment. us, for a given
tolerance the step size is chosen in such a way that the global error increment meets
a user-supplied tolerance bound.

We use an embedded formula to obtain an error estimate for the Runge–Kutta
starter of the Adams method. e estimation can be done by reusing the available
stages to produce a formula of different order. To do so, we apply stages k4, k5, k6
of the Runge–Kutta method in Section  and obtain ŷ1 by the third-order Adams–
Bashforth method. We generate the difference table

c4 = h k4
▽k5

c5 = 2h k5 ▽2k6
▽k6

c6 = 3h k6

where h = H
4
and H is the Runge–Kutta step size. e third-order Adams–

Bashforth method is

ŷ1 = g6 + h
3∑

i=1

γi−1▽i−1k6 = g6 + h
3∑

i=1

γ⋆
i ki+3, (.)

e latter is the Lagrange form of the Adams–Bashforth method and

γ⋆
1 = γ2 =

5

12
,

γ⋆
2 = −γ1 − 2γ2 = −4

3
,

γ⋆
3 = γ0 + γ1 + γ2 =

23

12
.

As we have

g6 = y0 +H
5∑

j=1

a6jkj, (.)

Paper  

we can rewrite equation (.) as

ŷ1 = y0 +H

6∑
j=1

b̂jkj

us, the error estimate is

y1 − ŷ1 =

y0 +H
6∑

j=1

bjkj −

(
y0 +H

6∑
j=1

b̂jkj

)
=

h

6∑
j=1

êjkj, (.)

giving the following coefficients

j 1 2 3 4 5 6

b̂j −1
4

3
4

1 −67
48

5
12

23
48

êj
1
4

−3
4

−1 99
48

−3
4

3
16

is error estimation is the difference of a third-order predictor and the fourth-
order result of the Runge–Kutta method that is applied to determine the step size
for the Runge–Kutta starter.

We will now develop a second error estimate, to determine a step size for Adams
method. We evaluate the right-hand side function f at the solution value y1 and call
it k7. en we generate the third-order Adams–Moulton corrector using k5, k6, k7,

c5 = h k5
▽k6

c6 = 2h k6 ▽2k7
▽k7

c7 = 3h k7

 Paper 

e third-order approximation by the Adams–Moulton method is

ỹ1 = g6 + h

3∑
i=1

βi−1▽i−1k7 = g6 + h

3∑
i=1

β⋆
i ki+4, (.)

where the latter is the Lagrange form of the Adams–Moulton corrector and

β⋆
1 = β2 = − 1

12
,

β⋆
2 = −β1 − 2β2 =

2

3
,

β⋆
3 = β0 + β1 + β2 =

5

12
.

FromEquation (.) we can rewrite the third-order corrector in Runge–Kutta form

ỹ1 = y0 +H
7∑

j=1

b̃jkj.

resulting in the following table:

j 1 2 3 4 5 6 7

b̃j −1
4

3
4

1 −3
2

35
48

1
6

5
48

ẽj
1
4

−3
4

−1 13
6

−51
48

1
2

− 5
48

e error estimate is used in determining the step size for starting the third-order
Adams-Moulton method.

 Runge–Kutta starter as an extrapolation method

e starting values of a multistep method can also be stored as a differentiation ar-
ray, which constitutes theNordsieck vector of scaled derivatives hiy(i)

i!
, i = 0, . . . , p.

It is possible to convert a vector of state values at consecutive grid points into a

Paper  

Nordsieck array and vice versa without loss of accuracy. Classical multistep codes
like LSODAR are based on Nordsieck formulations.

Based on such aNordsieck formulation an alternative way of constructing a Runge–
Kutta starter was developed by Gear, []. Here, the asymptotic expansion of the
global error of a base method is used to construct a Runge-Kutta method with
higher order stage values.

We use the explicit Euler method as a base method to compute ymi (the super-script
m refers to the corresponding step size, hm = H

m
) for i = 1, . . . ,m, m = p, p −

1, . . . , 1. From these values the terms in the asymptotic expansion, [],

ymi = y(ihm) +

p∑
q=1

eq(ihm)h
q + O(Hp+1). (.)

can successively be eliminated by an extrapolation technique until a method of a
required order is obtained. e resulting method is known to be a Runge–Kutta
method.

We exemplify the approach by aiming for third-order accurate Nordsieck values
and restricting ourselves to autonomous differential equations for simplicity. e
same process can be employed to obtain higher order accuracy.

Let h = H
m
, and integrate the autonomous form of the differential equation (.)

on the interval [y0, y0 +H] with Euler’s method, usingm steps of size H
m
form =

3, 2, 1.

Form = 3

y31 = y0 + hf(y0) = y0 + k1, k1 = hf(y0),
y32 = y31 + hf(y31) = y0 + k1 + k2, k2 = hf(y31),
y33 = y32 + hf(y32) = y0 + k1 + k2 + k3, k3 = hf(y32).

(.)

Form = 2

y21 = y0 +
3

2
hf(y0) = y0 +

3

2
k1,

y22 = y31 +
3

2
hf(y31) = y0 +

3

2
k1 +

3

2
k4, k4 = hf(y21).

(.)

Form = 1

y11 = y0 + 3hf(y0) = y0 + 3k1. (.)

 Paper 

with h = H
3
. We use approxmation formulas for higher derivatives

hk
my

(k)(
H

2
) =

m∑
i=0

diky(ihm) +

p∑
s=k+1

cskh
s
my

s(
H

2
)

+O(Hp+1), m ≥ k

and (.) to obtain, after some algebraic manipulations,

D3
3 = y33 − 3y32 + 3y31 − y0 = h3y(3),

D3
2 = y33 − y32 − y31 + y0 = 2h2y(2) + 2h3e

(2)
1 ,

D2
2 = y22 − 2y21 + y0 = (

3h

2
)2y(2) + (

3h

2
)3e

(2)
1 ,

D3
1 = y32 − y31 = hy(1) + h2e

(1)
1 + h3e

(1)
2 +

h3

24
y(3),

D2
1 = y22 − y0 = 3hy(1) +

9

2
h2e

(1)
1 +

27

4
h3e

(1)
2 +

9

8
h3y(3),

D1
1 = y11 − y0 = 3hy(1) + 9h2e

(1)
1 + 27h3e

(1)
2 +

27

24
h3y(3).

(.)

All derivatives are evaluated at H
2
and O(h4) terms are dropped. Estimates of the

derivatives can be derived at any point within a constant multiple of the intervalH
with the same accuracy. We solve the system (.) to remove the error terms for
hky(k)(H

2
), for k = 1, . . . ,m, to get

h3y(3)(
H

2
) = D3

3 +O(h4),

h2y(2)(
H

2
) =

3

2
D3

2 −
8

9
D2

2 +O(h4),

hy(1)(
H

2
) =

9

2
D3

1 −
4

3
D2

1 +
1

6
D1

1 +
9

8
D3

3 +O(h4).

(.)

e Dm
k can be expressed as combinations of stage values ki. All O(h4) terms are

Paper  

neglected.

D3
3 = k1 − 2k2 + k3,

D3
2 = −k1 + k3,

D2
2 = −3

2
k1 +

3

2
k4,

D3
1 = k2,

D2
1 =

3

2
k1 +

3

2
k4,

D1
1 = 3k1.

(.)

From (.) and (.),

h3y(3)(
H

2
) = k1 − 2k2 + k3 +O(h4),

h2y(2)(
H

2
) = −1

6
k1 +

3

2
k3 −

4

3
k4 +O(h4),

hy(1)(
H

2
) = −3

8
k1 +

9

4
k2 +

9

8
k3 − 2k4 +O(h4),

y(
H

2
) = y0 +

3

16
k1 +

18

8
k2 +

9

16
k3 −

12

8
k4 +O(h4).

(.)

e first element of the Nordsieck vector, y(H
2
), is computed by Taylor expansion.

It follows that

ΓH
2
=



1 0 0 0
3
16

−3
8

−1
6

1

18
8

9
4

0 −2

9
16

9
8

3
2

1

−12
8

−2 −4
3

0


. (.)

If the derivatives are instead computed at the origin, the matrix above becomes

Γ0 =



1 0 0 0
0 1 −5

3
1

0 0 3 −2

0 0 0 1

0 0 −4
3

0


. (.)

 Paper 

ematrixA of coefficientsαi,j in equation (.) is obtained fromEquations (.)
and (.)

A =


0 0 0 0
1 0 0 0
1 1 0 0
3
2

0 0 0

 . (.)

For a fourth-order method we need at least six function evaluations, [], and the
relevant matrices Γ0 and A are

Γ0 =



1 0 0 0 0
0 1 −5

6
4
9

−1
9

0 0 0 0 0

0 0 1
2

−4
9

1
9

0 0 7
3

−19
9

7
9

0 0 −3 10
3

−4
3

0 0 1 −11
9

5
9


,

A =



0 0 0 0 0 0
1 0 0 0 0 0

0 2 0 0 0 0

3
4

0 9
4

0 0 0

1
2

1 1
2

2 0 0

1
12

2 1
4

2
3

2 0


.

e cost of this process in terms of function evaluations is 1 + p(p−1)
2

, since the
interval H is integrated by Euler’s method m times with step size H

m
for m =

p, p−1, . . . , 1. For the first value ofm we have p function evaluations because the
initial value of y′ has to be evaluated once, so for the next value ofm we have p−2
function evaluations, and so on.

We constructed a Nordsieck vector with third-order accuracy. To do this we used
four stages k1, k2, k3, k4 as in (.) and (.) with lower order and an extrapola-
tion technique. It can be shown that there exists no method of the same order with
less stages and thus less function evaluations.

Paper  

 Order tests

To verify that the starter indeed achieves the expected order we consider the har-
monic oscillator

y′′ = −4y, y0 = 1, y′0 = 0.

1
3

Figure 6.2: Both Runge--Kutta starters achieved third-order accuracy when solving the harmonic oscillator problem with the
3-step Adams-Moulton method

 e bouncing ball test example

In this section we demonstrate the method on the example of a bouncing ball with
linear damping d = 0.1:

ẏ1 = y2

ẏ2 = −dy1 + 9.81

e bounces are modeled using a coefficient of restitution was chosen to be c =
0.88 to give the system sufficiently many impacts to be able to make a statement
about the effect of restarting, see Fig. .. e model includes two events, one to
trigger bouncing and a second one which triggers the upper turning point. At the
upper turning point the differential equation and its states remain unaltered, and
only the switch to control the bouncing event becomes activated. At the bouncing
event the velocity ẏ(t−) is altered to ẏ(t+) = −cẏ(t−).

 Paper 

Figure 6.3: A simulation of a bouncing ball (damping: d = 0.1, coefficient of restitution c = 0.88).

In Fig. (.) the step size and order history of both restarting techniques is com-
pared. e classical starting procedure clearly shows a drop in order and step size.
e method recovers quite quickly from the reduced step size as LSODAR allows
exceptionally big step size changes during the initialization phase.

e run statistics, cf. Tab. . show the effect of the Runge–Kutta starter in As-
simulo. e gain in the number of function evaluations for this example is about
58%.

 Conclusions

e aim of this paper is to study the effect of Runge–Kutta restarting techniques on
the performance of the simulation of hybrid systems. Tests were made on a system
with relatively small numbers of discontinuities. e tests give a clear indication
that investigating a more sophisticated restarting procedure like the fourth-order
Runge–Kutta starter presented here has a potential impact on the overall perform-
ance of an simulator.

e flexibility in selecting the order of the restarter as well as doing error control of
the restarter is the topic of future research.

Paper  

0 1 2 3 4 5 6 7 83.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0 Classical restart: Step size

0 1 2 3 4 5 6 7 84.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0Runge-Kutta restart: Step size

0 1 2 3 4 5 6 7 80

1

2

3

4

5 Classical restart: Order

0 1 2 3 4 5 6 7 81.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0 Runge-Kutta restart: Order

Figure 6.4: Comparison of the step size and order history for the two restarting approaches. A logarithmic scale is used for the
step size plot.

Classic starter Runge–Kutta starter
steps 455 129
function evals 1027 428
event function evals 919 538
events 38 37

Table 6.1: Run time statistics for the bouncing ball example with absolute and relative tolerance set to 10−8.

Bibliography

[] J. Åkesson, M. Gäfvert, and H. Tummescheit. JModelica—an open source
platform for optimization of modelica models. In Proceedings of MATHMOD
 - th Vienna International Conference onMathematical Modelling, Vienna,
Austria, . TU Wien.

[] C. Andersson. Assimulo: A new Python based class for simulation of complex
hybrid DAEs and its integration in JModelica.org. Lund University, .

[] C. Andersson, J. Åkesson, C. Führer, and M. Gäfvert. Import and export
of functional mock-up units in JModelica.org. In th International Modelica
Conference , Dresden, Germany, mar .

[] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, et al. e functional
mockup interface for tool independent exchange of simulation models. In
Modelica  Conference, March, pages –, .

[] C. W. Gear. Runge–Kutta starters for multistep methods. ACM Transactions
on Mathematical Software (TOMS), ():–, .

[] A. Ralston. Runge-Kutta methods with minimum error bounds. Mathematics
of computation, ():–, .

[] H. J. Stetter. Asymptotic expansions for the error of discretization algorithms
for non-linear functional equations. Numerische Mathematik, ():–, .

[] R. von Schwerin and H. G. Bock. A Runge–Kutta starter for a multistep
method for differential-algebraic systems with discontinuous effects. Applied
Numerical Mathematics, ():–, .



Paper 

Journal of Computational and Applied Mathematics  () –

Runge–Kutta Restarters for
Multistep Methods in Presence
of Frequent Discontinuities

Fatemeh Mohammadi Carmen Arévalo Claus Führer

Numerical Analysis, Center for Mathematical Sciences, Lund University,
Sölvegatan , SE- Lund, Sweden

Abstract

Differential equations with discontinuities or differential equations coupled to dis-
crete systems require frequent re-initializations of the numerical solution process.
e classical starting process of multistep methods, based on winding-up the order
in the initialization phase, is computationally expensive when frequent discontinu-
ities occur. Instead we propose to use the stage values or weight vectors of these
specially constructed explicit Runge–Kutta methods for starting processes. Two
practical examples demonstrate these methods.

Keywords: Multistep methods, Runge–Kutta methods, Discontinuities, Error estimation



 Paper 

 Introduction

e overall performance of the simulation of models with discontinuities depends
strongly on the methods for restarting the integration after an event detection. Ini-
tialization of k-step methods requires k starting values.

ere are three alternative starting strategies for obtaining the initial values; how-
ever, only two of these starting schemes have been implemented and tested. e
first strategy is to apply a high order Runge–Kutta (RK) method repeatedly to gen-
erate the starting values. is requires several costly evaluations of the equation.
e second one is to approximate the required starting values by applying mul-
tistep methods of successively higher order. e particular methods chosen for the
starting processes can affect the overall order of the algorithm.

In this article we will look at the third alternative for starting multistep methods.
is one provides high order starting values with a minimal number of function
evaluations. Gear [] proposed a starter for multistep methods that is based on the
Nordsieck vector containing the scaled derivatives of the approximated solution
values at a given time point. is scheme needs approximately half the number of
function evaluations of the first method and provides more accurate initial values
than the second scheme. It uses a representation of RKmethods, based on extrapol-
ation techniques. In this paper we take up this idea and present two other families
of the RK starters of order 2 to 4. In addition, we construct an embedded RK error
estimator for the starting step.

We first review the aforementioned schemes for starting multistep methods and
then introduce our two families of RK starters followed by a calculation of the
error estimator for the first step. Finally, we present some numerical results of the
implementation of our starters in amodification of LSODAR [], which is a variant
of the ODE solver LSODE equipped with event detection.

Consider an initial value problem of the form

ẏ = f(t, y), y0 = y(t0), (.)

with a sufficiently smooth function f . An s-stage explicit RK method with nodes
{ci}si=1, weights {b1i}si=1 and coefficients {aij}1≤j<i≤s applied to (.) is defined

Paper  

by

Yi = yn +H
i−1∑
j=1

aijKj,

Ki = f(tn + ciH, Yi), i = 1, · · · , s, (.)

where Yi and Ki are the stage values and the stage derivatives respectively. e
numerical solution at tn +H is approximated by

yn+1 = yn +H

s∑
j=1

b1jKj. (.)

e coefficients of the RK method can be described using a Butcher tableau,

c A

θ1 b1
T

where the stage vector is c = (c1, c2, . . . , cs)
T, the weight vector isb1

T = (b1,1, b1,2, . . . , b1,s),
and the coefficient matrix is A = {aij}. In this paper we will introduce several
weight vectors and define θi :=

∑s
j=1 bij where index i refers to the ith weight

vector. e consistency condition of an RK method gives θ1 = 1, but we intro-
duce the notation here as we will later use weight vectors with θi ̸= 1.

 Several-step single-stage starter

During the ’s a common technique to generate the starting values for multistep
methods was to apply an RK step of order k repeatedly. Figure . illustrates the
idea of applying k − 1 RK steps to start a k-step method.

 Paper 

Figure 6.5: k − 1 RK steps with fixed step size, H, taken to restart the integration after detecting a discontinuity (Event).

is starter is chosen in such a way that it generates initial values of the same order as
the multistep method used thereafter. However, it needs at least k(k− 1) function
evaluations which is far more than other starting schemes for large value of k.

 Winding-up states

Most current multistep ODE solvers, such as LSODAR, DASSL and CVODE,
use a self-starting scheme developed by Gear [] in . e scheme is started by
a one-step method with a small step size, and then the order and the step size are
consecutively increased until the working order and the desired accuracy are reached
(see Figure .). For instance, when a 3-step method is started, two more initial
solution points must be computed in addition to the initial value before entering
the main time-stepping loop.

Figure 6.6: Self-starting scheme beginning with a one-step method and a small step size. Both the order and step size are
successively increased.

Paper  

 Single-step several-stage starter

e idea of (re-)starting multistep methods with highly accurate initial values on
the one hand and a minimal number of function evaluations on the other hand,
motivated us to look for a family of explicit RK methods with embedded error es-
timation. ese RK starters embrace the preferences of the first two alternatives
for starting the multistep methods, i.e., the minimal number of function evalu-
ations of winding-up schemes and the highly accurate initial values of several-step
single-stage starters.

We introduce two families of single-step RK starters. e first family, R1, uses
the internal stages of an RK method to obtain the starting values required by the
multistep method. e second one, R2, uses the method’s weight vectors to ap-
proximate the solution at several points within a single RK step. Both families
provide error estimation for the RK step.

. R1: Runge–Kutta starters with special internal stages

For the purpose of starting a k-step method we can construct RK methods with
internal stage values of order k. For simplicity, these stages are chosen at equidistant
time points. Figure . illustrates one of these starters.

Figure 6.7: A single-step RK starter with equidistant kth order stage values at τi used for starting the k-step method.

To construct this multistep starter we need to solve a nonlinear system of order
conditions, that are derived by comparing the Taylor series of the exact solution to
that of the numerical solution. e order conditions for RK methods up to order
 are shown in Table . [, ].

 Paper 

Order k Order conditions for weight vectors

1
∑s

j=1 bij = θi.

2
∑s

j=1 bijcj =
θ2
i

2 .

3
∑s

j=1 bijc
2
j =

θ3
i

3 ,
∑s

j,k=1 bikakjcj =
θ3
i

6 .

4
∑s

j=1 bijc
3
j =

θ4
i

4 ,
∑s

j,k=1 bijcjajkck =
θ4
i

8 ,∑s
j,k=1 bijajkc

2
k =

θ4
i

12 ,
∑s

j,k,l=1 bijajkaklcl =
θ4
i

24 .

Table 6.2: RK coefficients and kth order weight vectors bi are computed by solving a system of order conditions up to k. To
attain order k at tn +θiH all equations up to and including row k must be satisfied. Index i refers to the ith weight
vector. When i = 1, these conditions reduce to the standard case, as θ1 = 1.

e order conditions for the weight vectors in Table . can be modified to obtain
internal stages of order k. e order conditions on the ith internal stage to attain
order k are given in Table ..

Order k Order conditions for internal stages

1
∑s

j=1 aij = ci.

2
∑s

j=1 aijcj =
c2i
2 .

3
∑s

j=1 aijc
2
j =

c3i
3 ,

∑s
j,k=1 aikakjcj =

c3i
6 .

4
∑s

j=1 aijc
3
j =

c4i
4 ,

∑s
j,k=1 aijcjajkck =

c4i
8 ,∑s

j,k=1 aijajkc
2
k =

c4i
12 ,

∑s
j,k,l=1 aijajkaklcl =

c4i
24 .

Table 6.3: kth order RK coefficients are computed by solving a system of order conditions up to k. Order k is attained for the
approximation at the internal point tn + ciH.

is family of RK starters has an embedded formula that enables error estimation.
For an order k method, an approximate solution of order k − 1 is generated at
tn +H as

ỹn+1 := yn +H
s∑

j=1

aℓjKj,

where the index ℓ refers to the internal stage of order k − 1 and
∑s

j=1 aℓj = 1.

Paper  

e difference,

yn+1 − ỹn+1 = yn +H

s∑
j=1

b1jKj − yn −H

s∑
j=1

aℓjKj (.)

= H
s∑

j=1

(b1j − aℓj)Kj

is then an error estimate of order k − 1 at tn + H . e error, defined by ej =
b1j − aℓj , is denoted by vector e and is included after the last row of the Butcher
tableau.

A nd order Runge–Kutta starter

A nd order RK starter of this family is Heun’s method. Its Butcher tableau is
shown in Table ..

0

1 1

1 1
2

1
2

eT − 1
2

1
2

Table 6.4: Heun's method with error estimation. The error coefficients are given in vector e.

e error estimation is computed by comparing nd and st order yn+1 and ỹn+1 =
Y2, respectively. is corresponds to the second and third rows in the tableau.

A rd order Runge–Kutta starter

In [], Schwerin et al. introduced an RK starter for the -step Adams-Moulton
method. is rd order RK starter has 6 internal stages, but here we present a rd
order RK starter with only 5 internal stages. Approximated values Y4 and Y5 are of
order 3 while yn+1 is th order accurate. e error can be estimated by comparing
ỹn+1 = Y4 with yn+1, th and th rows of Figure ..

 Paper 

0

1
2

1
2

3
4

0 3
4

1 2
9

1
3

4
9

1
2

17
72

1
6

2
9

−1
8

1 1
6

0 0 1
6

2
3

eT − 1
18

−1
3

−4
9

1
6

2
3

10-3 10-2 10-1 100

Step size H

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

1

3

1

4

Y4

Y5

yn+1

Figure 6.8: The order plot of the solution of the pendulum equation, ϕ̈ + g sin(ϕ) = 0, ϕ(0) = 1, ϕ̇(0) = 0, by the 3rd
order RK starter with internal stages Y4 and Y5 of order 3 and yn+1 of order 4. Error coefficients are given in e.

th order Runge–Kutta starter

e conditions that Schwerin et al. imposed did not allow for higher order RK
starters. A premise of their construction is to have an internal stage of order k as
soon as possible and thenmaintain this order for all subsequent stages. By dropping
the last requirement, i.e., by not demanding that all subsequent stages be of order
k, it is possible to construct RK starters of higher orders. e constructed th order
RK starter based on modified premises (see Figure .) has internal stages Y5, Y7

and the result yn+1 of order 4, and internal stage Y6 of order 3.

Paper  

0

1
6

1
6

1
6

0 1
6

1
3

0 0 1
3

1
3

1
18

1
9

1
9

1
18

1 25
10

−3 −3 225
100

225
100

2
3

10
45

− 8
45

− 8
45

− 4
45

13
15

1
45

1 29
1062

83
531

83
531

83
1062

2
531

56
531

251
531

eT −1313
531

1676
531

1676
531

−4613
2124

−4771
2124

56
531

251
531

10-3 10-2 10-1 100

Step size H

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

1

4

1

3

Y5

Y6

Y7

yn+1

Figure 6.9: A 4th order RK starter with three equidistant stages of order 4 and its corresponding order plot of the solution of
the pendulum equation, ϕ̈+ g sin(ϕ) = 0, ϕ(0) = 1, ϕ̇(0) = 0. The 3rd order Y6 is used for error estimation.

e error for the RK step can be estimated by comparing ỹn+1 = Y6 and yn+1,
which are of order 4 and 3 respectively.

. R2: Runge–Kutta starters with distinct weight vectors

We can construct RK starters with at least k − 1 weight vectors of order k. ese
weight vectors allow for approximate solutions at distinct fractions of the first step,
and together with the initial value they can be used to initialize the k-step multistep
method. is family of RK starters also provides an error estimator for the RK step.

 Paper 

e nd order RK starter of this family is identical to the one in the R1 family (see
Table .).

A rd order Runge–Kutta starter

ree initial values are applied to start a 3-step method. us, we need to have two
weight vectors of order 3, denoted by b1 and b2. Furthermore, a weight vector b3

is utilized for error estimation. Solving the nonlinear system of order conditions
with three internal stages leads to two identical weight vectors. us we need at
least four stages to derive a method which produces two additional starting values
as well as an error estimation. is rd order RK starter has the following tableau,

c A

θ1 bT
1

θ2 bT
2

θ3 bT
3

with b1 and b2 of order 3 and b3 of order 2.

We substitute the rd order Ralston method [], an RK method with minimal
truncation error, in the first three stages of the Butcher tableau; b1 is the weight
vector of this method and has order 3. e order conditions of Table . are solved
to attain rd and nd order accurate weight vectors b2 and b3, respectively. We
choose θ2 = 1

2
to simply start with equidistant initial values and θ3 = 1 to estimate

the error. e approximated solutions using b1 and b2 are the two additional
values needed to start the 3-step method (see Figure .)

Paper  

0

1
2

1
2

3
4

0 3
4

1 −19
16

29
16

3
8

1 2
9

1
3

4
9

0

1
2

1
12

13
12

−1 1
3

1 1
3

1
4

1
6

1
4

eT −1
9

1
12

5
18

−1
4

10-4 10-3 10-2 10-1

Step size H

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

1

3

1

2

Figure 6.10: The order plot for the solution of the pendulum equation, ϕ̈+g sin(ϕ) = 0, ϕ(0) = 1, ϕ̇(0) = 0, with the 3rd
order RK starter confirms the 3rd order accuracy for the results obtained from weight vectors b1 and b2. Note
that b3 is of order 2.

th order Runge–Kutta starter

Four state values are needed to start a 4-step method. Considering the initial value
of the problem we need to generate three more values. us the RK method needs
three th order weight vectors at distinct fractions of the RK step size, ciH . For the
purpose of error estimation, the rd order weight vector b4 is added. e Butcher
tableau of a th order RK starter with weight vectors b1, b2 and b3 of order 4, and
b4 of order 3 has the form

c A

θ1 bT
1

θ2 bT
2

θ3 bT
3

eT bT
4

To describe our methodology, we build up this method step by step. e th order
Ralston method (see Table .), that has minimal truncation error, is used for the
first four stages of the RK method.

 Paper 

0

2
5

2
5

3
5 − 3

20
3
4

1 19
44 −15

44
40
44

1
2 − 31

64
185
192

5
64 − 11

192

1 11
72

25
72

25
72

11
72 0

3
5

699
5000

81
200 − 39

200
99

5000
144
625

Table 6.6: The 4th order RK starter with two weight vectors, b1 and b2 of order 4.

0

2
5

2
5

3
5 − 3

20
3
4

1 19
44 − 15

44
40
44

1 11
72

25
72

25
72

11
72

Table 6.5: 4th order Ralston method

Wemay choose θ2 = 3
5
, and obtain an overdetermined system with four unknowns

and seven equations. us we add an extra internal stage (see Table .).

In the next step we are looking for a new weight vector of order 4, b3. It is not
possible to find b3 with just these five stages, so the weight vector of the Ralston
method is moved to the upper part of Table . and it becomes an internal stage
of the method. en, with one more internal stage and the choice of θ3 = 2

5
, the

method in Table . is obtained. Now we have 3 weight vectors of order 4.

Finally, a rd order weight vector b4 with θ4 = 1 is derived to obtain an error
estimation by comparing the solutions of th orderb1 to rd orderb4. emethod
is shown in Figure ..

Paper  

0

2
5

2
5

3
5 − 3

20
3
4

1 19
44 − 15

44
40
44

1
2 −31

64
185
192

5
64 − 11

192

1 11
72

25
72

25
72

11
72 0

3
5

699
5000

81
200 − 39

200
99

5000
144
625 0

2
5

802
5625

68
225 − 67

225 − 143
5625

144
625

6
125

Table 6.7: The 4th order RK starter with two weight vectors, b2, b3 and an internal stage Y6 of order 4.

0

2
5

2
5

3
5

− 3
20

3
4

1 19
44

−15
44

40
44

1
2

−31
64

185
192

5
64

− 11
192

1 11
72

25
72

25
72

11
72

0

3
5

699
5000

81
200

− 39
200

99
5000

144
625

0

2
5

802
5625

68
225

− 67
225

− 143
5625

144
625

6
125

1 9929
78075

871
2082

418
3123

9581
52050

3554
26025

0

eT 1777
69400

− 1777
24984

1777
8328

− 19547
624600

− 3554
26025

0

10-4 10-3 10-2 10-1

Step size H

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

o
r

1

4

1

3

Figure 6.11: The order plot for the solution of the pendulum equation, ϕ̈ + g sin(ϕ) = 0, ϕ(0) = 1, ϕ̇(0) = 0, shows 4th
order accuracy for weight vectors b1,b2 and b3, and 3rd order for b4 from the given Butcher tableau.

 Paper 

Implementation

e RK starter families of Section  have been prototyped in Assimulo, a Python
wrapper for ODE software, to solve the differential equations with solver packages
like ODEPACK or SUNDIALS. Assimulo provides tools for discontinuity hand-
ling and event detection functions, or so-called switching functions, and allows ac-
cess to a large variety of professional and experimental solvers []. We have chosen
to implement our algorithms in Python, and to incorporate them in Assimulo in
order to try them out with LSODAR.

e order of the RK starter is determined by the last successfully attempted order
of the multistep method before the discontinuity is detected. If this value is greater
than 4 then the starting order is set to 4 automatically. e initial step size is taken
as the last successful step size before the discontinuity.

 Numerical experiments

We demonstrate the effect of the two RK starter families on the numerical solution
of two test models that contain frequent discontinuities in their solutions.

. e bouncing ball

e first model is a bouncing ball with linear damping (d = 0.1),

ẏ1 = y2

ẏ2 = −d y2 + 9.81

e bounces are modeled choosing a coefficient of restitution (c = 0.88) in order
to give the system sufficiently many impacts to be able to make a statement about
the effect of restarting (see Figure .). e model includes two events, one to
trigger bouncing and a second one which triggers the upper turning point. At the
upper turning point the differential equation and its states remain unaltered, and
only the switch to control the bouncing event becomes activated. At the bouncing
event the velocity ẏ(t−) is altered to ẏ(t+) = −c ẏ(t−).

In Figure . the step size and order history of the restarting techniques are com-
pared. e winding-up starting procedure clearly shows a drop in order and step

Paper  

0 1 2 3 4 5 6 7 8
Time

8

6

4

2

0

2

4

6

V
el
oc
it
y

Figure 6.12: Simulation of a bouncing ball (damping: d = 0.1, coefficient of restitution: c = 0.88).

size. e method recovers quite quickly from the reduced step size as LSODAR
allows exceptionally large step size changes during the initialization phase.

Table . shows the effect of the RK starters R1 and R2 in LSODAR. e reduc-
tion in the number of function evaluations for this example is more than 60%.

Winding-up RK starter R1 RK starter R2

steps 642 159 140
function evals 1477 449 376
event function evals 1074 590 532

Table 6.8: Run time statistics for the bouncing ball example with absolute and relative tolerances set to 10−8.

All starting schemes detected 38 events.

 Paper 

St
ep

 s
iz

e
(lo

g)
St

ep
 s

iz
e

(lo
g)

St
ep

 s
iz

e
(lo

g)

O
rd

er
O

rd
er

O
rd

er

a)

b)

c)

Figure 6.13: Comparison of the step size and order history for three restarting approaches, a) Winding-up, b) RK starter R1,
and c) RK starter R2 in the simulation of the bouncing ball. A logarithmic scale is used for the step size variable.

2 0 2 4 6 8 10 12 14

-log10(err)

0

500

1000

1500

2000

2500

3000

f−
ca

ll
s

RK- 1

RK- 2

Winding-up

Figure 6.14: Work-precision diagram for the solution of the bouncing ball with winding-up, RK R1 and R2 starters.

In Figure . the precision, log10(err), is compared to the number of function
evaluations for tolerances ranging from 10−4 to 10−14 and it appears that both

Paper  

single-step several-stage starters perform better than the winding-up scheme. e
best method for this model for tighter tolerances is RK starter R1.

. e pendulum

is model is described in the set of examples in Assimulo [] and it demonstrates
a free pendulum that bounces against an object situated at an angle of - degrees.
e impact triggers the discontinuity in the velocity by changing its sign. e initial
value problem that describes the motion of the pendulum is

ϕ̈ = −g sin(ϕ), ϕ(0) =
π

2
, and ϕ̇(0) = 0. (.)

At the impact event, the angular velocity of the pendulum ϕ̇(t−) is altered to
ϕ̇(t+) = −c ϕ̇(t−), where c is the coefficient of restitution (see Figure .).

0 2 4 6 8 10

4

2

0

2

4

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.15: Simulation of the pendulum bounces against an object situated at an angle of −45 degrees for c = 0.9.

e performance of the RK starters is presented in Table . and shows little gain
in comparison to the winding-up scheme.

Starter Winding-up RK R1 RK R2

steps 510 457 448
function evals 1073 1028 985
event function evals 630 574 566

Table 6.9: Run time statistics for the pendulum with tolerance set to 10−7 and the simulation time is 10s.

 Paper 

e number of detected events for all the starters in Table . is 12.

St
ep

 s
iz

e
(lo

g)
St

ep
 s

iz
e

(lo
g)

St
ep

 s
iz

e
(lo

g)

O
rd

er
O

rd
er

O
rd

er

a)

b)

c)

Figure 6.16: Comparison of the step size and order history for the restarting approaches, a) Winding-up, b) RK starter R1, and
c) RK starter R2 in the simulation of the pendulum. A logarithmic scale is used for the step size variable.

In Figure ., the orders and step sizes of winding-up method drop down after
each discontinuity while the RK starters R1 and R2 maintain order 3 with larger
step sizes.

Paper  

2 0 2 4 6 8 10 12 14

-log10(err)

0

500

1000

1500

2000

2500

3000

3500

f−
ca

ll
s

RK- 1

RK- 2

Winding-up

Figure 6.17: Function evaluations versus global error diagram for the solution of the pendulum with Winding-up, RK R1 and
R2 starters. The tolerances range from 10−4 to 10−15.

e RK starter R1 is clearly superior for tolerances lower than 10−7 (see Fig-
ure .).

 Conclusion

We have constructed two families of RK starters and studied the effect of these
starters on the performance of the simulation of systems with discontinuities. e
flexibility in selecting the order of the (re-)starter as well as being able to perform an
error estimation are the main features of these starters. Furthermore, in presence of
frequent discontinuities the performance gain in terms of function evaluations and
accuracy is significant for tighter tolerances compare to the winding-up scheme, as
evidenced by two examples.

Bibliography

[] C. Andersson, C. Führer, and J. Åkesson. Assimulo: A unified framework for
ODE solvers. Mathematics and Computers in Simulation, : – , .

[] J. C. Butcher. On fifth order Runge-Kutta methods. BIT Numerical Mathem-
atics, ():–, .

[] C. W. Gear. Runge–Kutta starters for multistep methods. ACM Transactions
on Mathematical Software (TOMS), ():–, .

[] CWilliam Gear. Algorithm : DIFSUB for solution of ordinary differential
equations. Communications of the ACM, ():–, .

[] L. R. Petzold and A. C. Hindmarsh. LSODAR. Computing and Mathemat-
ics Research Division, I- Lawrence Livermore National Laboratory, Livermore,
CA, , .

[] A. Ralston. Runge-Kutta methods with minimum error bounds. Mathematics
of computation, ():–, .

[] R. von Schwerin and H. G. Bock. A Runge–Kutta starter for a multistep
method for differential-algebraic systems with discontinuous effects. Applied
Numerical Mathematics, ():–, .



Paper 

SIAM Journal of Numerical Analysis, Reviewed and Re-submitted June 

A polynomial formulation of
adaptive strong stability
preserving multistep methods

Fatemeh Mohammadi Carmen Arévalo Claus Führer

Numerical Analysis, Center for Mathematical Sciences, Lund University,
Sölvegatan , SE- Lund, Sweden

Abstract

A new formulation of explicit multistep methods allows variable step-sizes by con-
struction. is formulation can be used to construct time-adaptive SSP multistep
methods of any order for the solution of time dependent PDEs. e new formu-
lation is implemented in a MATLAB package and some numerical examples are
presented.

keywords: adaptive SSP multistep methods, variable step-sizes, strong stability pre-
serving, TVD schemes

e authors are grateful to the anonymous colleagues who with great care produced critical and
detailed reviews and useful suggestions that helped improve the quality of this work, and they also
wish wish to thank G. Söderlind for his invaluable comments and advice.e second author wishes
to thank D. Ketcheson for the invitation to King Abdullah University of Science and Technology
and the fruitful discussions with his team at KAUST during this visit.



 Paper 

 Introduction

Often the numerical solution of partial differential equations (PDEs) requires the
use of ordinary differential equation (ODE) methods as part of the general tech-
nique, in order to solve systems of the form

ut = Lu, u(t0) = u0, (.)

where L is a difference operator that arises from the semi-discretization of PDEs.

In fact, some special methods for time dependent hyperbolic PDEs have been de-
veloped to ensure stability and avoid spurious oscillations of the numerical solutions
during shocks. ese are called strong stability preserving (SSP) methods, and are a
class of ODE solvers that can be one of two types: one-step or multistep methods.

Several thorough studies on strong stability preserving methods and their discretiz-
ations have been published by Gottlieb, Shu, and Tadmor [], Higueras [], Got-
tlieb, Ketcheson, and Shu [], and particularly on SSP multistep methods by Len-
ferink [], and Ruuth and Hundsdorfer []. While SSP one-step methods have
order barriers, SSP multistep methods can have arbitrarily high order. Neverthe-
less, we know of only one study on variable step-size SSP multistep methods, by
Hadjimichael, Ketcheson, Lóczi, and Németh []. ese authors developed ad-
aptive explicit SSP multistep methods of orders two and three, pointing out that
methods of order “at least  seem to have a complicated structure.” ey suggest
looking for a new formulation with a simple structure that may be used for higher
order explicit SSP multistep methods.

e aim of this paper is to develop a methodology that allows for given SSP mul-
tistep methods to be formulated as variable step-size methods. While we review
existing theory for SSP methods in Section , we do not revisit the proofs for op-
timality made in [], but rather use their results whenever possible, and present
a general approach to making such methods adaptive. is approach is open to
various step-size selection criteria, and can be combined with conventional error
control using a tolerance parameter, or a greedy step-size selection scheme employ-
ing the maximal step-size that locally fulfills the SSP condition, as in [].

e order p of explicit k-step SSPmultistep methods with non-negative coefficients
is less than the step number k. e most widely used variable step-size implement-
ations of multistep methods are based on the Nordsieck representation [], which
does not have a straightforward extension to such lower order methods. Arévalo

Paper  

and Söderlind [] introduced a formulation that constructs adaptive k-step meth-
ods that are identified by a fixed set of parameters. ese parametric multistep
methods are described in Section . e computations are advanced by construct-
ing and evaluating a polynomial at each step, where the step-size is chosen so as to
control the local error. e main feature of this formulation is that the methods are
intrinsically adaptive, and so require no extension to variable step-sizes. A complete
technique was developed for explicit and implicit multistep methods of maximal
order, i.e., for p ≥ k. However, due to the specific order conditions associated
with an SSP property for optimal methods with non-negative coefficients, i.e., that
p < k should be allowed, the technique is not directly applicable in the SSP con-
text. In Section  we extend the original formulation to include explicit multistep
methods with p < k. e new approach developed in this paper offers a straight-
forward construction of lower order explicit multistep methods, which are given a
fully adaptive representation. us, each variable step-size k-step method of order
p is completely identified by a set of 2k − p − 1 fixed parameters, where k and p
can be chosen freely. As the formulation of these type of methods is not unique,
in Section  we design specific formulations that can describe adaptive versions of
known fixed step-size SSP methods while maintaining the formulations as simple
as possible.

In Section  we analyze formulations for optimal SSP methods. In general, these
methods have several coefficients equal to zero. We propose a formulation that
preserves each method’s pattern of zero coefficients. ese formulations are im-
plemented in an adaptive ODE code, as explained in Section , and numerical
examples are given in Section .

Because variable step-size methods have coefficients that vary from step to step as a
function of the step-size ratios, it is important to study how the positivity of these
coefficients is affected by each change of step-size. Although this topic is discussed
for some particular examples, its general study is outside the scope of this paper.
Instead, the focus here is on amethodology that permits an easy extension of explicit
fixed step-size multistep formulas to variable step-size formulas. Such an extension
has the property that it reverts to the original formula when the step-size is kept
constant.

 Paper 

 Linear multistep methods and strong stability pre-
servation

We consider ODEs of the form

ẏ = F (y), y(t0) = y0, t ∈ [t0, tf], (.)

where F : Rm → Rm. When an explicit linear multistep method with fixed
step-size h is applied to this problem, a sequence of approximations yn ≈ y(tn) is
computed from the difference equation

yn =
k∑

i=1

(αiyn−i + hβiF (yn−i)), (.)

where k is the step number, and αi and βi are the coefficients of the method.
e method is chosen to suit the properties of the vector field F . In particu-
lar, strong stability preserving methods, also known as total variation diminishing
(TVD) methods [], or contractivity preserving methods [], were developed for
the time integration of semi-discretizations of hyperbolic conservation laws.

e setting for SSP methods is summarized as follows. Consider the autonomous
system (.), where, for a given norm, the vector field F is assumed to have the
property

∥y + hF (y)∥ ≤ ∥y∥ for all y and h ≤ h∗. (.)

is implies F (0) = 0, which obviously holds for linear vector fields, but also
for many interesting nonlinear vector fields associated with PDEs. If F is linear
we denote it by L, and (.) can be expressed in terms of the logarithmic norm,
[, , ], as µ[L] ≤ 0, where

µ[L] = limh→0+
∥I + hL∥ − 1

h
. (.)

e condition µ[L] ≤ 0 implies that ∥y(t)∥ is a non-increasing function of t, and
thus y = 0 is a stable solution. For nonlinear vector fields satisfying F (0) = 0,
using the operator norm

∥F∥ = sup
∥y∥≠0

∥F (y)∥
∥y∥

,

Paper  

the corresponding logarithmic norm µ[F] can be readily defined as in (.); this
is a straightforward special application of the general extension of the logarithmic
norm to nonlinear maps, []. us (.) implies µ[F] ≤ 0, and once again
∥y(t)∥ is a non-increasing function of t. Morover, if µ[F] < 0, then ∥y +
hF (y)∥ ≤ ∥y∥ in a nonempty interval, 0 < h < h∗, since ∥y + hF (y)∥ is a
convex function of h.

e objective is to find methods that reproduce this behavior. A numerical method
whose solution is non-increasing for all vector fields F satisfying (.) for step-
sizes 0 < h ≤ c h∗ is said to be strong stability preserving (SSP). Obviously, the
explicit Euler method is SSP with c = 1.

Whether the vector field F satisfies µ[F] < 0 depends on the choice of norm,
but the choice is not restricted to specific norms, such as inner product norms. A
standard objective is to construct semi-discretizations of hyperbolic conservation
laws so that the total variation of discrete solutions does not increase in time [],
where the total variation in space is defined as

∥u∥TV =
m∑
j=1

|uj+1 − uj|, u ∈ Rm.

is is easily seen to be a semi-norm (referred to as the TV norm). If a semi-
discretization satisfiesµ[F] < 0with respect to the TV norm, and the time stepping
method is SSP, the resulting method will overcome deficiencies that may occur in
other methods, such as numerically induced oscillations in space, which are not
present in the exact solutions of conservation laws. us the SSP method will
produce a total variation diminishing (TVD) scheme for time steps h ≤ c h∗.

To investigate linear multistep methods reducing total variation, further definitions
are needed.

Definition  [] Let problem (.) satisfy condition (.). A k-step method given
by formula (.) is an SSP method if there is a constant c such that the method applied
to problem (.) with 0 < h ≤ c h∗ produces a sequence {yi} satisfying

∥yn∥ ≤ max{∥yn−1∥, ∥yn−2∥, . . . , ∥yn−k∥}. (.)

e maximal value of c is called the SSP constant of the method and is denoted by C.

Remark  [] Consider an explicit method defined by formula (.) with αi ≥

0, βi ≥ 0 for all i, and let γ = min
i

{
αi

βi

∣∣∣∣ βi ̸= 0

}
. If γ > 0, the method is

SSP with C = γ.

 Paper 

Although there are implicit multistepmethods with larger SSP constants, the added
cost of solving the implicit system of equations usually makes explicit methods
computationally more efficient []. For example, the trapezoidal method, of order
, has SSP constant C = 2, while the optimal explicit -step SSP method of order
 has C = 0.5. us, this last method may require four times as many steps per
unit time. However, the cost of solving the implicit system is often far beyond the
cost of the extra steps.

It is known that for k ≥ 2 there is no explicit k-step SSP method of order p = k
with all βi ≥ 0 []. erefore, we will explore methods of order p < k. For brevity,
we will refer to a k-step, order p method as a (k, p) method.

Remark  [] e SSP constant of an explicit (k, p) method with p > 1, αi ≥
0, βi ≥ 0, satisfies

C ≤ k − p

k − 1
.

us, increasing the number of steps allows for larger upper bounds on the SSP
constant.

 Parametric multistep methods

A new formulation for linear multistep methods where each k-step method of max-
imal order is represented by a fixed set of parameters was introduced by Arévalo and
Söderlind []. is formulation supports variable step-sizes by construction, and
has a simple structure, but it is valid only for maximal order, i.e., when p ≥ k.
us an extension to SSP methods is needed.

e parametric formula of a k−step method is defined as a linear combination of
state values, yn−i, where i = 1, . . . , k, and their corresponding vector field values,
y′n−i = F (yn−i). e vectors yn−i represent the approximation of the solution
y(t) to the initial value problem (.) at a sample of times tn−k, . . . , tn−1 with
hn−i = tn+1−i − tn−i. Let Πp denote the space of polynomials of degree p. A
k-step method in parametric form approximates the solution y(t) for t > tn−1 by
constructing a polynomial Pn ∈ Πp and defining

yn = Pn(tn). (.)

Paper  

e formulation of parametric multistep methods makes use of the state and de-
rivative slacks, defined as follows.

Definition  [] Let the sequences {yn−i}ki=0 and {y′n−i}ki=0 be given for a fixed n.
Further, let Pn ∈ Πp with p ≤ k + 1. e state slack sn−i and the derivative slack
s′n−i at tn−i are defined by

sn−i = Pn(tn−i)− yn−i, s′n−i = Ṗn(tn−i)− y′n−i, i = 0, . . . , k. (.)

Further, in [] it was demonstrated that every explicit k-step method of order p can
be defined by yn = Pn(tn), with the polynomial Pn ∈ Πk satisfying the conditions

sn−1 = 0

s′n−1 = 0

sn−i cos θi−1 + hn−is
′
n−i sin θi−1 = 0; i = 2, . . . , k,

(.)

where θi ∈ (−π
2
, π
2
] are the method parameters. e first two conditions are called

structural conditions and specify the explicitness of the method. e additional
linear combinations of state and derivative slacks are called slack balance conditions,
and specify the particular method. Arévalo et al. [] showed that the following
parametric equivalence holds between the coefficients of a classical, constant step-
size, multistep formula of maximal order and the method parameters:

tan θi−1 =
βi

αi

for i = 2, . . . , k. (.)

Note that for a variable step-size method the parameters θi−1 are constants, even
though the coefficients αi, βi vary from step to step. us, with (.) a variable
step-size k-step method is defined in terms of constants θ1, . . . , θk−1.

We need to consider a modified framework for SSP multistep methods. Our goal is
to construct a general parametric formulation for explicit multistep methods that,
while similar to (.), also covers SSP methods for which p < k. For this general
formulation of explicit SSP multistep methods we will also prove an equivalence
similar to (.), which will be seen to be essential to SSP methods.

 Paper 

 Parametric formulations of explicit SSP multistep
methods

Our approach in finding an adaptive formulation for SSP methods is based on
obtaining a general formulation for all explicit k-step methods of a fixed order
p ≤ k − 1.

As a method of order p is defined by polynomials of degree p, the p+1 coefficients
of Pn ∈ Πp must be uniquely determined by p + 1 interpolation conditions. For
an explicit (k, p) SSP method we can construct these conditions as p + 1 slack
conditions. Consider each pair of coefficients (αi, βi) in (.) where either αi =
βi = 0 or αi ̸= 0. Note that for SSP methods, if βi = 0, the value of γ in Remark
 is not influenced by the value of αi. We call a pair (αi, βi) with αi ̸= 0 a non-zero
pair. It is these pairs that determine the value of γ.

For a pair of coefficients satisfying (αi, βi) = (0, 0), the interpolation conditions
that define Pn can not include sn−i or s′n−i, because these slacks contain yn−i and
y′n−i. On the other hand, if αi ̸= 0, the slack sn−i, the only one that contains
the term yn−i, must be present in the interpolation conditions. e derivative
slack s′n−i may or may not be present, depending on the value of βi. us, to
construct the polynomial of a (k, p) SSP method we can select one of the following
alternatives acting at each t = tn−i, for each i ∈ {1, . . . , k} corresponding to a
non-zero pair:

1. sn−i + hn−iτis
′
n−i = 0 (.)

2.

{
sn−i = 0
s′n−i = 0.

e way in which these conditions are chosen for particular methods will be dis-
cussed in Sections  and .

Much of the literature on SSP methods has focused on finding the (k, p) method
with largest SSP constant. Using standard optimization techniques, Lenferink []
obtained all optimal explicit SSP multistep methods up to k = 20 steps and order
p = 7. Ketcheson [] constructed an algorithm for computing the coefficients of
optimal explicit SSPmethods given the number of steps and the order required, and
presented a table of optimal SSP constants up to k = 50 steps and order p = 15.

Table . shows the SSP constants of optimal explicit SSPmultistepmethods up to
k = 7 steps and order p = 5. Note that the optimal SSP constant for a fixed order

Paper  

HHHHHk
p 1 2 3 4 5

1 1.0
2 -
3 - 0.5
4 - 0.667 0.333
5 - 0.75 0.5 0.021
6 - 0.8 0.583 0.165
7 - 0.833 - 0.282 0.038

Table 6.10: SSP constants of optimal explicit multistep methods up to k = 7 steps and order p = 5. No optimal methods of
order 1 can be found for k > 1, nor of order p = 3 for k ≥ 7.

increases as the number of steps increases, so it can pay off to construct methods
of a larger number of steps without increasing the order of accuracy, as long as the
number of non-zero coefficients of the method remains low. is is of particular
interest if the methods are adaptive and the pattern of zero coefficients of the fixed
step-size formula is to be preserved in its variable step-size extension.

Remark  [] ere is no optimal order  SSP method for k > 1. e supremum
of the SSP constants for explicit (k, 1) SSP methods with k > 1 is obtained when
αi = βi = 0 for i = 2, . . . , k, but in that case the method reduces to the -step
method. Also, there is no optimal (k, 3) SSP method for k > 6, and in fact, the same
phenomenon occurs after some value of k for all odd values of p.

Optimal SSP multistep methods were originally defined for constant step-sizes.
Here we adopt the definition introduced by Hadjimichael et al. [] to cover adapt-
ive multistep methods with formula

yn =
k∑

i=1

(αi,nyn−i + hn−1βi,nF (yn−i)). (.)

e step ratios are defined as Ωj = 1
hn−1

∑j−1
i=0 hn−k+i and the SSP coefficient at

step n is Cn = γn, if γn = min
i

{
αi,n

βi,n

∣∣∣∣ βi,n ̸= 0

}
> 0. e SSP condition then

reads
0 ≤ hn−1 ≤ Cnδn (.)

where
δn := min

0≤j≤k−1
h∗(yn−k+j). (.)

 Paper 

Structure Order: p = 2

A


sn−1 = 0

s′n−1 = 0

sn−k + hn−k τk s′n−k = 0

B


sn−1 + hn−1 τ1 s′n−1 = 0

sn−k = 0

s′n−k = 0

C


sn−1 + hn−1 τ1 s′n−1 = 0

sn−i + hn−i τi s
′
n−i = 0

sn−k + hn−k τk s′n−k = 0

i ∈ {2, 3, . . . , k − 1}

Table 6.11: Possible sets of slack conditions to construct optimal k-step SSP methods of order 2.

When the step-size remains constant, it is clear that Cn = C, and in fact, if the
step-sizes are slowly varying, the variable coefficients are slowly varying too and Cn

will remain close toC as long as the patterns of non-zero coefficients of the variable
step-size formula and the constant step-size formula are the same.

e following is an extension of Remark  for the variable step-size case.

Remark  [] e SSP coefficient of an explicit (k, p) method with p > 1, αi ≥
0, βi ≥ 0, requires that Ωk > p and satisfies

Cn ≤ Ωk − p

Ωk − 1
.

ere are many different possible sets of slack conditions that may define SSPmeth-
ods of various orders. In the example below we look for a parametric formulation
of optimal explicit k−step SSP methods of order 2 with k ≥ 3. We restrict our
choices by only considering formulations that include sn−1 and s′n−1, that is, the
last computed values.

Example . e parametric formulation of an explicit (k, 2)method in the interval
[tn−1, tn] is given by a second degree polynomial. In order to find the corresponding
polynomial coefficients three equations in terms of slack conditions are needed.
To render a k-step method, slack conditions for t = tn−k must be part of the
formulation. ere are many different possible sets of slack conditions that may
define k-step methods of order 2.

Paper  

Table . shows some possible different formulations for an optimal (k, 2) SSP
method categorized in one of three different structures. e first two only include
slack conditions for the points at t = tn−k and t = tn−1, and the third one also
includes one of the intermediate points. Here we will analyze what type of method
is described by Structure B. e polynomial of the optimal method must be of the
form

P (t) = A
(t− tn)

2

h2
n−1

+ y′n−1

t− tn
hn−1

+ yn−1 (.)

and satisfy the conditions given in Table .. Using this together with (.), we
get that the non-zero coefficients of the multistep formula are

α1,n =
Ω2

k

Ω2
k + 2(τ1 − 1)Ωk − 2τ1 + 1

(.)

αk,n =
2(τ1 − 1)Ωk − 2τ1 + 1

Ω2
k + 2(τ1 − 1)Ωk − 2τ1 + 1

(.)

β1,n =
τ1Ω

2
k

Ω2
k + 2(τ1 − 1)Ωk − 2τ1 + 1

(.)

βk,n =
Ωk((τ1 − 1)Ωk − 2τ1 + 1)

Ω2
k + 2(τ1 − 1)Ωk − 2τ1 + 1

. (.)

e SSP coefficient is then given by

γn(k) = min

{
1

τ1
,

2(τ1 − 1)Ωk − 2τ1 + 1

Ω2
k + 2(τ1 − 1)Ωk − 2τ1 + 1

}
(.)

as long as the coefficients remain non-negative. As the parameter τ1 is independent
of the step numbern, we can consider the constant step-size case, i.e., whenΩj = j.
en

γ(k) = min

{
1

τ1
,
2(τ1 − 1)k − 2τ1 + 1

k((τ1 − 1)k − 2τ1 + 1)

}
, (.)

and bearing in mind the positivity of the coefficients, we get that for each fixed
value of k the value of τ1 that maximizes γ > 0 is τ1 = (k − 1)/(k − 2) and the
constant of the optimal SSP k-step method of order  is

C(k) =
k − 2

k − 1
. (.)

Nevertheless, we observe that the coefficient βk,n, which agrees with the constant
step-size coefficient βk = 0 when the step-size is kept constant, does not remain

 Paper 

zero in the variable step-size extension, and even becomes negative if Ωk < k. e
implication is that the method would not be SSP if, after k − 1 constant step-
sizes, the step-size is allowed to increase. us, this formulation is ill-fitted for SSP
methods. □

In the next section we derive a formulation for explicit (k, p) methods with p < k
where the pattern of zero coefficients of the fixed step-size formula is retained in
the variable step-size extension.

 A formulation for explicitmultistepmethods of lower
orders

Wehave suggested possible parametric formulations for explicit (k, 2) SSPmethods
using different combinations of slack conditions. In order to formulate a general
explicit (k, p) method with p < k, we need p+ 1 interpolation conditions. ere
must be at least one slack present for each non-zero pair (αi, βi), but having one
slack condition for each point at tn−i, i = 1, . . . , k, might result in an overde-
termined system. erefore, we consider using linear combinations of the slack
conditions. In the classical formulation of explicit multistep methods, a k−step,
order p method is defined by its coefficients α1, . . . , αk (α0 is normalized to ),
and β1, . . . , βk, and p + 1 order conditions. We are looking for a parametric for-
mulation of (k, p) methods that includes methods that can be obtained by fixing
2k − p − 1 parameters, so that there is a one-to-one correspondence between the
classical coefficients of a method and its parameters in the polynomial formulation.
Here we do not assume that the methods are SSP.

We add onemore alternative to the set of conditions given in (.), combining one
or more balance slacks with the condition at the farthest away point, t = tn−k. e
slack sn−k must be present in the formulation to guarantee the prescribed number
of steps. us, to p interpolation conditions for i ∈ {1, . . . , k − 1} chosen from
(.), add one condition,∑(

λisn−i + hn−iτis
′
n−i

)
+ sn−k + hn−kτks

′
n−k = 0, (.)

so that each slack sn−i, s
′
n−i, appears at most once in the formulation. e con-

stants λi and τi in (.) and (.) are the method parameters of this formulation,
where the constants τi correspond to tan θi in (.). As these parameters do not

Paper  

depend on the step-sizes, we can use a fixed step-size formulation of the method
to calculate their values. e following theorem gives the formulas that allow us to
calculate these parameters for a set of given method coefficients.

To extend a fixed step-size method with given coefficients α1, . . . , αk, β1, . . . , βk,
in a way to preserve the pattern of zero coefficients, we observe the following rules:

Procedure : Formulation of explicit methods of order p < k

To define the method polynomial Pn ∈ Πp, use the following rules to set up
the interpolation conditions:

• If (αi, βi) = (0, 0), do not include either sn−i or s′n−i.

• If αi = 0, βi ̸= 0, include only s′n−i = 0.

• For each αi ̸= 0 and βi ̸= 0, include one of the following:{
sn−i = 0
s′n−i = 0,

(.)

or ;sn−i + hn−iτis
′
n−i = 0, (.)

or ;
∑(

λisn−i + hn−iτis
′
n−i

)
+ sn−k + hn−kτks

′
n−k = 0,(.)

so that the total number of conditions adds up to p+ 1.

ere is some freedom in choosing the interpolation conditions, but the following
theorem gives formulas for the method coefficients once the choice has been made.

eorem  For a (k, p) method defined by p+1 slack conditions chosen according to
Procedure , the method parameters can be defined as follows:

τi =
βi

αi

, when (.) is used

τi =
βi

αk

, λi =
αi

αk

, when (.) is used

(.)

Proof  Consider the constant step-size formulation of a method defined as prescribed
in Procedure .

 Paper 

As the method is of order p, and Pn is of degree p, formula (.) is satisfied exactly
when yn−i and y′n−i are replaced by Pn(tn−i) and Ṗn(tn−i) respectively. Inserting the
polynomial into the formula we obtain

Pn(tn) =
k∑

i=1

(αiPn(tn−i) + hβiṖn(tn−i)), (.)

and subtracting (.) from (.) we get

Pn(tn)−yn =
∑(

αisn−i + hβis
′
n−i

)
+
∑(

αisn−i + hβis
′
n−i

)
+αksn−k+hβks

′
n−k,

(.)
where the first sum corresponds to the indexes involved in (.) and the second sum to
those involved in (.). From (.) we get that each term in the first sum satisfies

sn−i + h
βi

αi

s′n−i = 0 (.)

and from (.) we have that∑(
αi

αk

sn−i + h
βi

αk

s′n−i

)
+ sn−k + h

βk

αk

s′n−k = 0. (.)

us we conclude that yn = Pn(tn).

eorem  states the relation between the set of method coefficients in the classical
formulation, αi and βi, and the parameters in the polynomial formulation, τi and
λj . us, given the coefficients in formula (.), one can obtain the method para-
meters fromeorem . It is important to note that the method parameters do not
vary with the step-sizes, so that this relation, obtained for the constant coefficients
of a fixed step-size method, gives the method parameters for the equivalent variable
step-size method in the new formulation.

Example . To construct the variable step-size extension of the -step, order  for-
mula with coefficients α1 = 1/4, α2 = 0, α3 = 1/2, α4 = 1/8, α5 = 1/8, β1 =
1/16, β2 = 565/96, β3 = −253/48, β4 = 199/96, β5 = 1/8, we set up a system
of four equations to calculate the coefficients of the method polynomial Pn ∈ Π3

according to Procedure .

sn−1 + τ1hs
′
n−1 = 0

s′n−2 = 0

sn−3 + τ3h(Ω3 − Ω2)s
′
n−3 = 0

λ4sn−4 + τ4h(Ω2 − Ω1)s
′
n−4 + sn−5 + τ5hΩ1s

′
n−5 = 0

Paper  

From eorem  we have that τ1 = 1/4, τ3 = −253/24, τ4 = 199/12, τ5 =
1, λ4 = 1. e variable step-size method will advance the solution by setting
yn = Pn(tn).

In particular, for SSP methods, for which αi = 0 ⇒ βi = 0, we have a similar
procedure for constructing the interpolation conditions that define the method
polynomial. Note that by construction the pattern of zero coefficients of the fixed
step-size formula is preserved by the variable step-size extension. It is also clear
that if the constant coefficients are positive, the variable step-size coefficients will
remain positive for some change in the step-sizes, which in some cases may have
to be quite small. is would require limiting the allowed step-size ratios in the
method implementation, but as will be seen in the next section, precise bounds of
the step-size ratios may be difficult to calculate.

Procedure : Formulation of explicit formulas for SSP methods

• If (αi, βi) = (0, 0), do not include either sn−i or s′n−i.

• If αi ̸= 0, βi = 0, include only sn−i = 0.

• For each αi ̸= 0 and βi ̸= 0, include one of the following:{
sn−i = 0
s′n−i = 0,

(.)

or ;sn−i + hn−iτis
′
n−i = 0, (.)

or ;
∑(

λisn−i + hn−iτis
′
n−i

)
+ sn−k + hn−kτks

′
n−k = 0,(.)

so that the total number of conditions adds up to p+ 1.

Corollary  e method parameters of a method constructed using Procedure  are

τ̂i =
βi

αi

, when (.) is used

τi =
βi

αk

, λi =
αi

αk

, when (.) is used.

Let γ = min
i

{
1

τ̂i
,
λi

τi

∣∣∣∣ τ̂i ̸= 0, τi ̸= 0

}
. If γ > 0, the SSP constant is C = γ.

 Paper 

Proof  e proof follows from Remark . Note that αk ̸= 0 because for αk = 0
either the method is not a k−step method (if βk = 0), or the value of γ is zero (if
βk ̸= 0).

 Alternative formulations of optimal SSP methods

e method parameters of an optimal k−step SSP formula of order p, represented
here by SSPkp, can be calculated using eorem , thus effectively converting a
fixed step-size method to variable step-size. Its coefficients, αi, βi, i = 1, . . . , k,
can be obtained using Ketcheson’s algorithm []. Alternatively, given the method
parameters λj and τj obtained with Procedure , the coefficients of an SSPkp
method, αi and βi, can be determined by solving the system consisting of the para-
metric relations in Corollary  together with the p+1 order conditions. Note that
λj and τj depend only on the fixed step-size method coefficients αi, βi. It is clear
that the variable step-size formulas are not SSP methods without the appropriate
restriction to the step-size ratios. In this paper the emphasis is in the construction
of the adaptive formulas, but further attention must be given to the step-size ratio
restrictions and the SSP coefficients.

Example . Consider the optimal SSP32 method with constant coefficients α1 =
3
4
, α2 = 0, α3 = 1

4
, β1 = 3

2
and β2 = β3 = 0. is method has τ1 = 2, τ2 =

0, τ3 = 0, and in this case there is no parameter λ, as k = p+ 1.

We can express the adaptive method by a variable step-size formula

yn =
3∑

i=1

(
αi,n(Ω1,Ω2)yn−i + hn−1βi,n(Ω1,Ω2)y

′
n−i

)
. (.)

If we use Procedure  to construct the optimal SSP32 method, the equations that
must be solved to advance the solution are

sn−1 = 0

s′n−1 = 0 (.)
sn−3 = 0,

Paper  

and solving this system and evaluating the method polynomial at t = tn yields

α1,n(Ω1,Ω2) =
Ω2

2 − 1

Ω2
2

,

α2,n(Ω1,Ω2) = 0,

α3,n(Ω1,Ω2) =
1

Ω2
2

,

β1,n(Ω1,Ω2) =
Ω2 + 1

Ω2
2

,

β2,n(Ω1,Ω2) = 0,

β3,n(Ω1,Ω2) = 0.

When all step-sizes are set equal, then Ω1 = 1 and Ω2 = 2, and the coefficients
coincide with the fixed step-size SSP32 method. Note that the pattern of zero
coefficients is preserved. Also, as long as Ω2 > 1, the variable coefficients remain
positive. is result coincides with Hadjimichael et al. []. □

Consider the pairs of constant step-size coefficients (αi, βi) of an explicit SSP
method given by (.). As was discussed previously, each non-zero pair must
have αi ̸= 0. As we could determine from Table  in [], optimal SSP methods
with (k, p) ̸= (6, 3), k ≤ 50, satisfy the following conditions:

. α1 ̸= 0, β1 ̸= 0, αk ̸= 0.

. If p is even, βk = 0 and there are p pairs of non-zero coefficients.

. If p is odd, βk ̸= 0 and there are p− 1 pairs of non-zero coefficients.

e single exception to this rule, the optimal (6, 3) method, has p pairs of non-
zero coefficients. An optimal method can be constructed by choosing p + 1 slack
conditions that depend only on the points corresponding to non-zero coefficients,
to preserve the pattern of zeros of the constant step-size method. is simplified
strategy is described in Procedure .

Example . e optimal explicit (k, 3) SSP methods with k = 4, 5 are constructed
as 

sn−1 = 0,

s′n−1 = 0, (.)
sn−k = 0

s′n−k = 0.

 Paper 

Procedure : Formulation of optimal SSP methods

• Take structural conditions at the point t = tn−1.

• Take slack balance conditions at the intermediate points t = tn−j with
αj ̸= 0, 1 < j < k. e method parameters are τj = βj/αj .

• Add the state slack sn−k = 0. If p is odd, also add the derivative slack
s′n−k = 0. (For the (6, 3) method, take a slack balance condition at tn−6.)

e non-zero variable coefficients of the multistep formula can be derived from
(.) as

α1,n =
(Ωk − 3)Ω2

k

(Ωk − 1)3
(.)

αk,n =
3Ωk − 1

(Ωk − 1)3
(.)

β1,n =
Ω2

k

(Ωk − 1)2
(.)

βk,n =
Ωk

(Ωk − 1)2
. (.)

e SSP coefficient is given by

γk = min

{
Ωk − 3

Ωk − 1
,

3Ωk − 1

(Ωk − 1)Ωk

}
(.)

when the coefficients are positive and γk > 0, that is, whenΩk > 3. It can be easily
shown that γk = Ωk−3

Ωk−1
if 3 < Ωk ≤ 5.828 while γk = 3Ωk−1

(Ωk−1)Ωk
if Ωk ≥ 5.828,

but from Remark  we know that Cn ≤ Ωk − 3

Ωk − 1
, so the method is not optimal if

Ωk ≥ 5.828. ese results agree with those of Hadjimichael et al. []. □

Methods with higher order and a larger number of steps depend, in general, on
several step-size ratios, their variable step-size coefficients are high degree rational
functions of these step-size ratios, and are therefore difficult to study in terms of
their SSP coefficients.

Example . e optimal explicit (8, 5) SSP method has nonzero coefficients α1 =
1360/4363,α4 = 233/2112,α5 = 2323/10831,α8 = 896/2465, β1 = 275/128,

Paper  

β4 = 1044/1373, β5 = 6661/4506 and β8 = 1781/5144. us, we construct
the method as 

sn−1 = 0,

s′n−1 = 0, (.)
sn−4 + hn−4τ4s

′
n−4 = 0,

sn−5 + hn−5τ5s
′
n−5 = 0,

sn−8 = 0,

s′n−8 = 0.

For this method we calculate τ4 = β4/α4 = 2433/353, τ5 = β5/α5 = 2433/353.
e variable-step-size formula preserves the pattern of zeros, and the positivity of
the coefficients is also preserved as long as the step-sizes vary smoothly. Exact cal-
culations of the bounds on the step-size ratios to secure positivity are difficult to
perform. Equally difficult is the calculation of the SSP coefficient, but as it varies
continuously with the step-size ratios, a slowly varying step-size sequence will pro-
duce an SSP coefficient that is close to the constant step-size SSP constant for the
method, C = 353/2433. Although sharp bounds are hard to obtain, we found
that positivity of the variable step-size coefficients for this method can be ensured
for the extreme case when step-sizes are assumed to increase at a constant rate of
3.5%, or decrease at the constant rate of 5.5%. □

In the implementation of these methods, the variable coefficients of the adaptive
method are not explicitly calculated. To advance the solution at each step, (.) is
solved for the method polynomial and the new solution is obtained by evaluating
the polynomial at t = tn. A new step-size hn−1 is selected at each step. is can
be done in different ways. To use the greedy step-size selection of Hadjimichael
et al. [] a complicated stability analysis of the acceptable step-sizes is needed. As
that approach means that each particular method must be analyzed and that these
calculations can be difficult, and because the error cannot be monitored, we take
an alternative approach. Given an error tolerance, we use controllers based on
digital filter theory [], to adapt the step-size to the error tolerance. By a continuity
argument, the method coefficients remain positive when the step-size varies slowly.

 Paper 

 Implementation

We implemented our formulation in the adaptive multistep solver MODES [].
is ODE Matlab toolbox, including the SSP module, is publicly available for
download []. e original package contains the explicit p = k methods and the
implicit p = k and p = k+1methods. e user can choose fixed or variable step-
sizes, and has a choice of several step-size controllers designed both for general and
for more specific needs. For each class of methods with k steps and order p there is
a function that computes the coefficients of the method polynomial of degree p by
solving the derived parametric formulation for that class. For instance, a 2−step
explicit multistep method of order 2 is characterized by a second degree polynomial
Pn,

Pn(t) = c2(t− tn−1)
2 + c1(t− tn−1) + c0,

satisfying the slack conditions in (.),
sn−1 = 0

s′n−1 = 0

sn−2 cos θ1 + hn−2s
′
n−2 sin θ1 = 0

(.)

where these three conditions, together with the parameter value θ1, uniquely de-
termine the polynomial coefficients. en the solution at time tn is obtained as
Pn(tn) = c2h

2
n−1 + c1hn−1 + c0.

e implementation in MODES was made by adding a function polElow which,
given themethod parameters λ and τ , computes the solution at tn by solving system
for the coefficients of Pn, and then evaluates yn = Pn(tn). We also have the
option of calling some optimal (k, p) SSP methods for p ≤ 5 by name, without
giving their parameters explicitly. e step-size controllers in MODES provide an
estimate of the local error at each step. By monitoring the error estimation, the
controllers increase or decrease the step-size when the error estimate is below or
above the specified tolerance, and in particular they reduce the step-size when a
numerical instability is detected. is is particularly important for explicit SSP
integrators that cannot operate with step-sizes above their stability limit. Using
an adaptive implementation of these methods eliminates the need of calculating
the SSP constant for each particular method, although care must be taken to set
appropriate bounds for step-size changes. ese bounds will be conservative and
the method will be costlier than when the greedy step-size selection is used, but
on the other hand, the error will be monitored, keeping it below a given tolerance.

Paper  

Our implementation retains MODES’s step-size controllers and its mechanism for
calculating the starting values of the multistep methods, which are provided by
Runge-Kutta methods. As MODES allows the user to set upper and lower limits
on the step-size ratios, it is a particularly suited platform formaintaining these ratios
bounded, as required by SSP methods.

 Numerical results

In this section we investigate the performance of the parametric SSP methods as
implemented in MODES.

We consider the inviscid Burgers’ equation with periodic boundary conditions

ut + uux = 0,

u(x, 0) = g(x), x ∈ [0, 1], (.)

using the smooth initial function

g(x) =
1

2
+ sin(2πx). (.)

Furthermore, the model is semi-discretized with the fifth order Weighted Essen-
tially Non Oscillatory (WENO) scheme [, ]. WENO is one of the spatial
discretizations that are often combined with an SSP time integrator to preserve
contractivity properties.

e step-size controllers in MODES are designed to obtain a smooth step-size se-
quence. e small change in step-sizes is crucial to guarantee the positivity of time-
dependent SSP multistep coefficients. However, the implementation of an efficient
controller that keeps the step-sizes nearby the SSP coefficient is out of the scope of
this paper.

e problem was solved using the optimal (,) SSP formula described in Section
. Figure (.) shows (a) the ratio h

∆x
and (b) the step-size ratio, hn−1

hn−2
, versus

the simulation time. e implemented error controllers in MODES keep the step-
sizes below the SSP bound (dashed line) during the shock formation and so we
observed no oscillations in the solution. Furthermore, the step-size ratios, hn−1

hn−2
,

remain close to the vicinity of 1. is indicates that step-size change is small at every
step. However a noticeable change in the step-size ratio in Figure (.(b)) occurs

 Paper 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10 -3

10 -2

10 -1

10 0

10 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 6.18: The adaptive optimal (8,5) SSP method as described in Example 5 was used to solve Burgers' equation with an
error tolerance of 10−6, 0.8hn−2 < hn−1 < 1.2hn−2 and 256 spatial discretization points. The plot shows

the ratio h
∆x for the optimal (8, 5) SSP method, and (b) the step-size ratios

hn−1
hn−2

.

when the step-size is controlled immediately after initialization. is suggests that
the choice of initial step-size can be refined.

 Conclusion

e parametric formulation presented in this paper gives a simple structure to ex-
plicit SSP multistep methods of higher orders. With an addendum to the multistep
ODE solver MODES, we have implemented adaptive explicit multistep methods
of any order and any number of steps. For SSP methods, the available step-size
controllers in MODES keep the step-sizes under the stability limit, in particular
during the shock formation. We have proved an equivalence relation between the
coefficients of the classical method formulas and the parameters that define an ex-
plicit k-step, order p method, with p < k.

Although we have observed that with the available controllers SSP methods take
steps within the stability bound, it is best to keep the ratio hn

∆x
near or at the step-

size limit Cnh
∗, in order to take larger step-sizes. It would be useful to construct a

specific controller that keeps the step-sizes as large as possible while requiring the
method to satisfy the non-increasing condition.

e methodology employed in this paper is also suited to the development of ad-
aptive implicit SSP methods. It is possible that adaptivity makes up for some of
the additional computations required to solve the nonlinear systems.

Bibliography

[] Carmen Arevalo, Erik Jonsson-Glans, Josefine Olander, Monica Selva-Soto,
and Gustaf Söderlind. MODES, .

[] Carmen Arévalo and Gustaf Söderlind. Grid-independent construction of
multistep methods. Journal of Computational Mathematics, ():–,
.

[] Carmen Arévalo, Gustaf Söderlind, Erik Jonsson-Glans, Josefine Olander,
and Monica Selva-Soto. MODES: A software platform for adaptive high or-
der multistep methods. Lund University, Preprints in Mathematical Sciences,
:.

[] Germund Dahlquist. Stability and error bounds in the numerical integration of
ordinary differential equations. PhD thesis, Almqvist & Wiksell, .

[] Peter Deuflhard and Folkmar Bornemann. Scientific computing with ordin-
ary differential equations. Springer Texts in Applied Mathematics, .

[] Sigal Gottlieb, David I Ketcheson, and Chi-Wang Shu. Strong stability pre-
serving Runge-Kutta and multistep time discretizations. World Scientific, .

[] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving
high-order time discretization methods. SIAM Review, ():–, .

[] Yiannis Hadjimichael, David I Ketcheson, Lajos Lóczi, and Adrián Németh.
Strong stability preserving explicit linear multistep methods with variable step
size. SIAM Journal on Numerical Analysis, ():–, .

[] InmaculadaHigueras. On strong stability preserving time discretizationmeth-
ods. Journal of Scientific Computing, ():–, .



 Paper 

[] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted
ENO schemes. Journal of Computational Physics, ():–, .

[] David Ketcheson. Computation of optimal monotonicity preserving general
linear methods. Mathematics of Computation, ():–, .

[] Hermanus WJ Lenferink. Contractivity preserving explicit linear multistep
methods. Numerische Mathematik, ():–, .

[] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of Computational Physics, ():–, .

[] Sergei Mikhailovich Lozinskii. Error estimate for numerical integration of
ordinary differential equations. i. Izvestiya Vysshikh Uchebnykh Zavedenii.
Matematika, ():–, .

[] Steven J Ruuth and Willem Hundsdorfer. High-order linear multistep meth-
ods with general monotonicity and boundedness properties. Journal of Com-
putational Physics, ():–, .

[] Chi-Wang Shu and Stanley Osher. Efficient implementation os essentially
non-oscillatory shock-capturing schemes. Journal of Computational Physics,
:–, .

[] Gustaf Söderlind. e logarithmic norm. history and modern theory. BIT
Numerical Mathematics, ():–, .

