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Introduction 

Type 2 diabetes 

Diabetes mellitus (DM) is a disease characterized by chronically elevated blood 
glucose levels. International Diabetes Federation (IDF) estimates that over 425 
million people worldwide have diabetes (http://www.diabetesatlas.org/key-
messages.html). According to IDF only half of these cases are diagnosed. Diabetes 
is associated with a number of complications such as cardiovascular disease, 
blindness, kidney failure, and lower limb amputation, some of which are associated 
with increased mortality (1). 

According to the World Health Organization (WHO), diabetes may be diagnosed 
using one of the following measurements: by fasting plasma glucose levels ≥ 7 
mmol/l (126 mg/dl), by a plasma glucose concentration ≥ 11.1 mmol/l (200 mg/dl) 
2 h after 75g oral glucose load or hemoglobin A1c (HbA1c) of above 6.5% (48 
mmol/mol). HbA1c is a glycosylated form of hemoglobin that represents the 
average blood glucose levels during the last eight to twelve weeks (2). 

There are two major types of diabetes, Type 1 Diabetes (T1D) and Type 2 Diabetes 
(T2D). In T1D autoimmune mechanisms destroy pancreatic beta-cells leading to 
absolute insulin deficiency. It is often diagnosed in children and adults younger than 
35 years (3). T2D is a multifactorial, polygenic disease characterized by a 
combination of insulin resistance and dysregulated insulin secretion. Insulin 
resistant people often firstly hypersecrete insulin in order to compensate for the 
increased insulin demand. As the disease progresses, the beta-cells fail to 
compensate and T2D develops. Other types of diabetes include the maturity onset 
diabetes of the young (MODY), latent autoimmune diabetes in adults (LADA), 
gestational diabetes and other subtypes (3). 

Risk factors for type 2 diabetes 

T2D is often linked to higher age and increased body mass index (BMI) (3). As 
many as 80% of people with T2D are overweight or obese (4). Other risk factors 
include low physical activity, energy rich diets, smoking, ethnicity, family history 
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of T2D, history of gestational diabetes mellitus, impaired intrauterine environment 
and different drug treatments (5–10).  

An impaired intrauterine environment can be reflected by a low birth weight (LBW), 
which has been linked to certain phenotypic differences in adulthood compared to 
individuals born with a normal birth weight (NBW). These differences include 
reduced insulin secretion (11), higher abdominal fat mass (12) and reduced lean 
body mass (13). Together these differences may lead to an increased risk of 
developing T2D (14). 

The strong genetic contribution to T2D was established through twin and family-
based studies (15,16). Twin studies indicate higher concordance of T2D in 
monozygotic twins (~60-70%) compared to dizygotic twins (~20-40%) (9,17). Over 
120 loci associated with susceptibility to T2D were identified by genome wide 
association studies (GWAS) in the past decade (18). However only a small 
proportion of heritability of T2D is explained by the identified single nucleotide 
polymorphisms (SNPs) (3). Epigenetics is one of the possible explanations for the 
missing heritability.  

Obesity and adipose tissue 

The prevalence of obesity is increasing worldwide and obesity is now considered to 
be global epidemic. According to WHO, a person with BMI in the range between 
25 and 30 is considered overweight. A person with BMI over 30 is considered obese. 
Overweight and obesity are some of the strongest risk factors for T2D development. 

The adipose tissue is one of the main organs regulating the whole-body energy 
homeostasis by controlling lipid storage and release. It consists of adipocytes that 
store energy in the form of triacylglycerol (TAG), endothelial cells, fibroblasts and 
macrophages. During large weight gain, adipose tissue expansion may result in 
dysfunctional adipocytes with impaired lipid metabolism, lipid uptake into other 
tissues, immune cell infiltration and subsequent low-grade inflammation. As a 
consequence, local and peripheral insulin resistance, hyperglycemia and T2D may 
develop (19). 

Several studies indicate that insulin resistance may originate in the adipose tissue 
and this may later induce insulin resistance in skeletal muscle and liver before the 
development of obesity and T2D (20,21). Excessive energy intake has negative 
effects on the whole-body insulin sensitivity independently from body weight 
changes. It was shown in both healthy lean (22–24) and obese diabetic individuals 
(25). Additionally, short- and long-term overfeeding has been shown to have effects 
on gene expression in adipose tissue (26–29).  
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Food fat composition 

Dietary fatty acids can be divided into 4 categories: saturated (SFA), 
monounsaturated, polyunsaturated (PUFA) and trans fats. The physiological effects 
of each fatty acid type have been subject of numerous published studies. For 
instance, a diet high in vegetable n-6 PUFAs decreased abdominal fat content and 
peripheral insulin resistance compared with a diet high in SFAs (30). SFAs have 
been shown to correlate positively (31,32) and PUFAs have been shown to correlate 
negatively (32) with the liver fat accumulation. At the same time excessive liver fat 
has been strongly associated with metabolic disorders and T2D (33,34). Some 
studies indicate that replacing SFAs with PUFAs may reduce risk of a coronary 
artery disease (CAD) events (35,36) as well as risk of developing diabetes (37). 

In two of the studies presented in this thesis we investigated the effects of general 
high-fat overfeeding and overfeeding with a specific fatty acid type on adipose 
tissue transcriptomics and epigenomics.  

In study 2, a cohort of young men was exposed to both a control and a high-fat 
overfeeding (HFO) diet separated by a 6-8-week wash-out period. The control diet 
was calculated based on the individual energy requirement with 35% of the energy 
coming from fat, 50% from carbohydrates, and 15% from protein. The HFO diet, 
on the other hand, was calculated with 50% total energy more than the control diet 
and 60% of the energy came from fat, 32.5% from carbohydrates, and 7.5% from 
protein. The fat proportion of the diets was 1/3 monounsaturated, 1/3 
polyunsaturated and 1/3 saturated fatty acids. The control diet was 3 days long and 
had average calorie intake of 2,818 ± 239 Cal. The HFO diet was 5 days long and 
had average calorie intake of 4,228 ± 334 Cal (24).  

In study 1, a cohort of healthy young individuals was exposed to a 7-week 
randomized dietary intervention. The participants maintained their habitual diet and 
were given muffins containing either PUFA or SFA in a randomized fashion thus 
making the diet high in fat and calories. The amount was individually adjusted to 
achieve a 3% weight gain during this period. The muffins provided 51% of energy 
from fat, 5% from protein and the remaining 44% from carbohydrates. PUFAs came 
from sunflower oil and SFAs came from refined palm oil (38).  

Epigenetics and DNA methylation 

An epigenetic trait is a stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence (39). Epigenetic changes play 
an important role in a number of biological processes such as cell differentiation, 
development, regulation of cell specific gene expression, imprinting, inactivation of 
the X-chromosomes in females and genomic stability (40).  
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DNA methylation is an epigenetic modification that occurs when a methyl group is 
added to a cytosine base of a DNA molecule (41). In differentiated mammalian cells 
DNA methylation mainly occurs in so-called CpG sites, sequence of a cytosine 
followed by a guanine. DNA methyl transferases (DNMTs) regulate DNA 
methylation. DNMT1 is mainly responsible for DNA methylation maintenance 
during replication and de novo methylation is regulated by DNMT3A and 3B 
(42,43). Demethylation can be either passive, when DNA methylation marks are not 
reproduced during replication, or active when the methyl group is removed by the 
enzymes involved in DNA repair. Alternatively, active demethylation can occur 
with TET (ten-eleven translocation) enzymes converting 5-methylcytosine to 5-
hydroxymethylcytosine and subsequently to formylcytosine and carboxylcytosine 
(44,45).  

The human genome contains approximately 29 million CpG sites (46) and 70% to 
80% of those are methylated (47). Their distribution across the genome is not even 
and there are regions where CpG sites occur at a higher frequency. These regions 
are called CpG islands and usually they tend to have lower methylation levels and 
often are found in promoter regions. One of the definitions of a CpG island states 
that it is a genomic region longer than 500bp with C and G content not less than 
55% and the observed/expected ratio of CpG sites of 0.65 or more (48). About 70% 
of human genes have CpG islands in their promoter regions and higher DNA 
methylation of these CpG islands has been correlated with lower gene transcription 
(40,47).  

Bioinformatics of DNA methylation 

Bisulfite treatment of DNA is a common technique used to determine its pattern of 
methylation. The treatment converts cytosine to uracil by deamination while leaving 
5-methylcytosine intact. After polymerase chain reaction (PCR), uracil is converted 
to thymine (49) (Figure 1). This process allows to discriminate between methylated 
and unmethylated cytosines using microarray or sequencing technologies. 

 
Figure 1.  
Bisulfite treatment of DNA. 
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In the studies included in this thesis we used a microarray solution from Illumina 
(San Diego, CA, USA), Illumina Infinium HumanMethylation450 BeadChip 
(Illumina 450k array) (50) that was the most comprehensive method available at the 
time. Illumina 450k array is a 12-sample microarray chip that includes 482,421 
oligonucleotide probes designed to measure DNA methylation of CpG sites across 
the genome, 3,091 probes measure methylation in non-CpG locations and 65 control 
SNPs. The array covers 21,231 out of 21,474 UCSC RefSeq genes and 96% of 
UCSC CpG islands (50). DNA methylation is traditionally measured as a proportion 
between the number of cells methylated at a certain genomic position and the total 
number of analyzed cells. This proportion is referred to as beta-value and can also 
be represented as percentage. While very intuitive and useful this measure has 
certain issues. Du et al. (51) have shown that it exhibits heteroscedastic properties 
in hyper- and hypomethylated regions of the overall distribution (Figure 2). In other 
words, variance depends on mean value and, in this case, it was smaller when the 
mean value was closer to 0 or 1. This represents a problem since many statistical 
analyses such as linear models or ANOVA, assume homoscedasticity of the 
analyzed data (52). Alternatively, DNA methylation can be measured as M-value 
that is defined as the log2 ratio of the intensities of methylated probe versus 

unmethylated probe: . The relationship between beta-values and M-values 

is a logistic function: =	 . According to Du et al. (51) this 

transformation effectively resolves the heteroscedasticity problem (Figure 3).  

 
Figure 2.  
The mean and standard deviation relations of technical replicates. Beta-values. As published in (51). 
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Figure 3.  
The mean and standard deviation relations of technical replicates. M-values. As published in (51). 

Another challenge associated with analyzing Illumina 450k array data is that the 
array utilizes two types of probes with two different assay chemistries (50). Infinium 
type I probes cover 135,501 sites and use two bead types for methylated and 
unmethylated states of a target site. Infinium type II probes cover 350,076 sites and 
have one bead type corresponding to both DNA methylation states based on single 
base extension (50). It was shown that the distribution of DNA methylation values 
differs between probe types and that type II probes typically have a much lower 
dynamic range compared to type I probes (53).  It makes it impossible to compare 
type I and type II probes which leads to several problems. First, it introduces a type 
I enrichment bias meaning it is more likely to detect differentially methylated type 
I probes than type II probes due to the higher dynamic range of type I probes. Then 
it makes it impossible to use methods looking at differentially methylated regions. 
Beta-mixture quantile dilation (BMIQ) normalization method was proposed to 
correct for the probes bias (54). The method involves, as described in the paper, 
“application of a three-state beta-mixture model to assign probes to methylation 
states, subsequent transformation of probabilities into quantiles and finally a 
methylation-dependent dilation transformation to preserve the monotonicity and 
continuity of the data”. 

Batch effects can be defined as unwanted non-biological differences between 
groups of analyzed samples. The differences can be caused by many factors 
including samples being processed by different people at a different time, using a 
different batch of a reagent or samples being placed on different microarray chips. 
Batch effects make samples from different batches not directly comparable. In our 
studies we have been using ComBat procedure (55) as implemented in the R 
package sva (56). It uses parametric and non-parametric empirical Bayes 
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frameworks and has been shown to work well with small batch sizes (<25 samples) 
(55). 

It has been shown that as many as ~8.5% of Infinium Type I probes and ~5.1% of 
Infinium Type II probes may potentially match multiple genomic locations (57). 
About 14% of the probes target a CpG site with a known SNP (58) meaning that 
differences in measured values may be due to the removal of a CpG site and not to 
actual changes in methylation.  
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Aims 

Study 1 

To determine whether overfeeding with a diet high in PUFA or SFA affected DNA 
methylation in adipose tissue differently in a randomized trial. 

Study 2 

To investigate the effects of high-fat overfeeding on mRNA expression and DNA 
methylation in adipose tissue and to compare these effects between individuals who 
were born with normal (NBW) or low birth weight (LBW). 

Study 3 

By using a cohort of monozygotic twins discordant for T2D we aimed at eliminating 
the genetic component in comparison of the genome-wide DNA methylation and 
expression patterns in adipose tissue between diabetic and non-diabetic individuals. 

Study 4 

Our aim was to investigate whether phenotypic differences between individuals 
born with LBW or NBW can be explained by different RNA expression and DNA 
methylation patterns in both adipose-derived stem cells and mature adipocytes.  
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Materials and methods 

Ethics statement 

All studies were approved by the local ethics committees and written informed 
consent was obtained from all participants. 

Study participants 

Study 1 

31 healthy normal-weight people participated in this study (Lipogain). They were 
aged between 20 and 38 years, had BMI between 18 and 27 kg/m2 and they 
exercised less than 3 hours/week. They had no history of diabetes or liver diseases. 
Participants were instructed to keep their usual diet and exercise levels during the 
study. Adipose tissue biopsies were extracted before and after the dietary 
intervention. Clinical characteristics of the participants of Lipogain cohort before 
and after overfeeding can be found in Table 1. 
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Table 1. Clinical characteristics of the Lipogain cohort (n=31) at baseline and after 7 weeks overfeeding of 
either SFA or PUFA  
Data are presented as means ± SDs. *P<0.05 baseline compared to overfeeding using Wilcoxon’s paired test. 

  SFA group PUFA group 

 Baseline Overfeeding Baseline Overfeeding 

n (male/female) 17 (13/4) 14 (9/5) 

Age (years) 26.94 ± 4.68 27 ± 4.01 

Weight (kg) 68.35 ± 7.33* 70 ± 7.26* 64.12 ± 6.43* 65.76 ± 7.02* 

Weight change (%) 2.44 ± 1.26 2.49 ± 1.53 

BMI (kg/m2) 21.64 ± 2.41* 22.15 ± 2.34* 20.22 ± 1.42* 20.7 ± 1.35* 

Glucose (mmol/l) 4.71 ± 0.42 4.77 ± 0.42 4.65 ± 0.36 4.57 ± 0.28 

Insulin (mU/ l) 5.49 ± 2.7 6.52 ± 2.43 5.45 ± 1.84* 6.33 ± 2.33* 

Cholesterol (mmol/l) 4.35 ± 0.86 4.24 ± 0.69 4.21 ± 0.91 4.39 ± 0.87 

HDL (mmol/l) 1.37 ± 0.32* 1.47 ± 0.33* 1.45 ± 0.43 1.54 ± 0.53 

LDL (mmol/l) 2.41 ± 0.89 2.25 ± 0.69 2.32 ± 0.52 2.36 ± 0.47 

LDL/HDL ratio 1.87 ± 1.02* 1.63 ± 0.68* 1.69 ± 0.46 1.64 ± 0.5 

Triglycerides (mmol/l) 0.71 ± 0.26 0.81 ± 0.4 0.61 ± 0.21 0.56 ± 0.19 

 

Study 2  

40 healthy young men were recruited from the Danish National Birth Registry. 16 
of them had a LBW (<10th percentile) and 24 had a NBW (between 50th and 90th 
percentile). Adipose tissue biopsies were taken after both control and a five-day high 
fat overfeeding (HFO) diet. Clinical characteristics can be found in Table 2.  

Table 2. Clinical characteristics of the 40 young men in the HFO cohort 
Data are presented as means ± SDs. *P<0.01 control diet compared to HFO using Wilcoxon’s paired test. 

 Control diet High-fat overfeeding 

Weight (kg) 78.3 ± 9.3 78.5 ± 9.8 

BMI (kg/m2) 24.0 ± 3.0 24.1 ± 3.1 

Body fat (%) 19.1 ± 7.4 19.0 ± 7.3 

WHR 0.88 ± 0.05 0.89 ± 0.05 

HbA1c (%) 5.2 ± 0.3 5.2 ± 0.2 

HbA1c (mmol/mol) 33 33 

Fasting plasma glucose (mmol/l) 4.8 ± 0.5* 5.1 ± 0.4* 
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Study 3 

14 monozygotic (MZ) twin pairs discordant for T2D were recruited from 
Scandinavian twin registries. Additionally, 120 unrelated individuals with normal 
glucose tolerance (NGT) or T2D were part of the Case-Control cohort 1 and 56 
unrelated individuals with NGT or T2D were part of the Case-Control cohort 2. 
They were matched for age and sex. 10 MZ and 10 same-sex dizygotic (DZ) twin 
pairs (all with NGT) were used for heritability estimates. Clinical characteristics of 
all these cohorts can be found in Table 3. 
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Study 4 

26 healthy young men were recruited through The Danish National Birth Register 
with 13 of them being born with a LBW and 13 with NBW. They had no family 
history of diabetes, BMI < 30 kg/m2 and their physical activity levels were below 
10h/week. Abdominal subcutaneous adipose biopsies were obtained from the 
individuals after an overnight fast. Adipose precursor cells were isolated from the 
subcutaneous biopsies. Clinical characteristics can be found in Table 4. 

Table 4. Clinical characteristics of adipose-derived stem cells (ADSC) donors  

Data are presented as means ± SDs. *P<0.05 LBW compared to NBW. 

 LBW (n = 13) NBW (n = 13) 

Birthweight (kg)  2.7 ± 0.1* 3.7 ± 0.2* 

Age (years)  22.4 ± 1.7  23.2 ± 1.6  

Weight (kg)  73.9 ± 7.3* 80.8 ± 5.4* 

Height (cm)  178.0 ± 4.1  182.5 ± 6.9  

BMI (kg/m2)  23.3 ± 2.2  24.3 ± 2.0  

WHR 0.90 ± 0.1  0.86 ± 0.1  

Total fat mass (kg) 13.2 ± 4.0  13.1 ± 2.8  

Trunk fat mass (%) 16.6 ± 4.7  15.4 ± 3.5  

Lean body mass (kg)  58.5 ± 4.5* 64.4 ± 4.4* 

Fasting insulin (pmol/l)  28.8 ± 17.4  37.3 ± 20.5  

Fasting glucose (mmol/l)  4.9 ± 0.4  5.1 ± 0.2  

HbA1c (%) 5.2 ± 0.3  5.1 ± 0.2  

HbA1c (mmol/mol) 32.8 ± 3.1 32.2 ± 2.5 

 

DNA methylation 

DNA extraction and bisulfite conversion 

Genomic DNA was extracted from adipose tissue specimens using either QiAamp 
DNA Mini kit or DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany). DNA 
(500 ng) was treated with bisulfite using the EZ DNA Methylation kit (Zymo 
Research, Orange, CA). 
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Illumina 450k BeadChip array 

DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip 
array (Illumina, San Diego, CA, USA). With some variation the following 
procedure was used to analyze the data in these studies. Raw methylation data was 
exported from GenomeStudio software (Illumina) as intensity values that 
correspond to the number of methylated and unmethylated cells. The data was later 
processed using R (59)  and Lumi (51,60–62) and Methylumi (63) packages. 
Intensity values were used to calculate M-values (logit function of percentage of 
methylation) (51) that were used for further analysis. Probes that targeted SNPs (58), 
non CpG-sites and cross-reactive probes (57) were removed. Low quality probes 
that are characterized by a detection p-value (provided by GenomeStudio) higher 
than 0.01 were also removed. Average signal of 614 negative control probes was 
subtracted from the signal of all remaining probes to remove the background noise. 
The data was quantile normalized to correct for the intra-array variation. Beta-
mixture quantile (BMIQ) normalization was used to correct for probe design bias in 
Illumina 450k array (54). The data was batch corrected using ComBat (55).  

Gene expression 

Affymetrix GeneChip Human Gene ST Array chip 

In the studies 1-3 mRNA expression was analyzed using Affymetrix GeneChip 
Human Gene ST arrays (Affymetrix, Santa Clara, CA, USA) following the 
Affymetrix protocol. R software (59) and the Oligo package (64) were used to 
process the data. The data was quantile normalized and then batch corrected using 
ComBat (55). 

Illumina HumanHT-12 v4 Expression BeadChip 

In the study 4 Illumina HumanHT-12 v4 Expression BeadChip arrays (Illumina, San 
Diego, CA, USA) were used to analyze mRNA expression. The data was processed 
using R (59) and Lumi package (51,60–62). The data was background corrected and 
quantile normalized. ComBat (55) was used for batch correction. 
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Statistical and bioinformatic analysis 

Statistical and analysis tools 

All statistical analyses were done using R software (59). Groups were compared 
using either Mann-Whitney U test or Wilcoxon signed-rank test using base R 
functionality. Linear regression models were used to study associations between 
DNA methylation or mRNA expression and multiple variables such as age, BMI 
and others.  

Benjamini-Hochberg FDR (65) was used to correct for multiple testing. 
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Results 

Study 1 

7 weeks of excessive SFA or PUFA intake affected DNA methylation in adipose 
tissue differently. 

We started with studying the effects of fat overfeeding on DNA methylation in 
adipose tissue without separating the two diets (n=31). We identified 1444 genes 
that significantly (q < 0.05) changed (>1%) mean DNA methylation of the CpG sites 
annotated to them after 7 weeks overfeeding. Only 2 of these genes showed a 
decrease, while the majority of genes showed increased methylation in response to 
fat overfeeding.  

We then analyzed individual CpG sites and found that 4933 of them changed in 
response to the overfeeding diet with 4795 of them increasing methylation. We 
tested whether the genes annotated to those 4795 sites were related to any biological 
pathways using WebGestalt tool kit (http://bioinfo.vanderbilt.edu/webgestalt). The 
genes that were annotated to these sites were significantly enriched in 6 KEGG 
pathways including pathways in cancer, cell cycle, and protein processing in the 
endoplasmic reticulum. 

Analysis of gene expression (n=31) showed that 1117 transcripts significantly 
changed after the 7-week diet (q < 0.05). We performed pathway analysis of 776 
upregulated and 341 downregulated transcripts separately. Genes that are involved 
in carbohydrate metabolism (i.e., citrate cycle, pyruvate metabolism, starch and 
sucrose metabolism, and glycolysis and gluconeogenesis), lipid metabolism (i.e., 
biosynthesis of unsaturated fatty acids (FAs), glycerolipid metabolism, and FA 
metabolism), and oxidative phosphorylation were among the most significant 
KEGG pathways of genes that were upregulated by overfeeding. 

We then compared the SFA and PUFA groups after 7 weeks of the dietary 
intervention. We found 22 genes that differed > 1% between the groups in mean 
DNA methylation of the CpG sites annotated to them (q < 0.05). 4 of them were 
higher in the SFA group and 18 were higher in the PUFA group. Genes that differed 
the most in the mean DNA methylation degree between the groups were CYP2E1, 
C6orf138 and DEFB115. We also identified 4875 individual CpG sites that differed 
in methylation between the two diet groups (q < 0.05).  
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Then we separated the groups (SFA with n=17 and PUFA with n=14) and compared 
DNA methylation and gene expression before vs after the intervention. We found 
that SFA overfeeding only increased the mean methylation of 125 genes by >1% (q 
< 0.05), while PUFA overfeeding changed the mean methylation of 1797 genes by 
>1% (1795 genes increased, and 2 genes decreased) (q < 0.05) including FTO, IL6 
and POMC. Mean methylation of 38 genes was affected by both diets.  

We identified 22 genes which expression was altered by the SFA diet (q < 0.05) but 
there were no significant changes found in response to the PUFA overfeeding.  
 

 
 
Figure 4.  
Study design and workflow of the analysis of gene expression and DNA methylation data in study 1. Numbers 
represent results with q < 0.05 unless otherwise specified. CpG, Cytosine-phosphate-guanine; down reg, 
downregulated; up, upregulated. 

Study 2  

Young men with LBW were found to have epigenetic variation in adipose tissue that 
may influence insulin resistance and risk of T2D. 5 days of high-fat overfeeding 
influenced gene expression and, to some extent, DNA methylation in adipose tissue. 

We compared adipose tissue from LBW and NBW men after the control diet and 
after the high-fat overfeeding (HFO) diet. We found 13 CpG sites that were 
differentially methylated between LBW and NBW after the control diet and 40 CpG 
sites after HFO. These sites were annotated to genes that have previously been 
associated with T2D including ACAT1, CPLX1, FADS2, GPRC5B, HCCA2 and 
IGF2R. 5 of the 13 CpG sites that were different in LBW vs NBW men after the 
control diet were also differentially methylated after HFO (p < 0.05). Also 9 of the 
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40 CpG sites that were significantly different between birthweight groups during 
HFO were also differentially methylated during the control diet. No difference was 
found in the same comparisons for gene expression. 

We next combined LBW and NBW groups to investigate the effects of fat 
overfeeding. 3276 genes were found to be differentially expressed (q < 0.05) in 
adipose tissue between the control and high fat diets. 59% of significantly different 
transcripts were upregulated and 41% were downregulated. Genes with the most 
pronounced increase included ELOVL6, FADS2, NNAT and DGAT2 and genes with 
the most pronounced decrease included SLC27A2 and CIDEA.  

We used WebGestalt to test if the genes with altered expression in response to HFO 
could be linked to any biological pathways. Significantly upregulated transcripts 
were mapped to 40 KEGG pathways that predominantly related to metabolism. 
Oxidative phosphorylation, citrate cycle and pyruvate metabolism were the most 
significant KEGG pathways among transcripts that were upregulated by HFO. 
Many genes involved in the fatty acid metabolism, glycolysis/gluconeogenesis and 
biosynthesis of unsaturated fatty acids pathways were also upregulated by HFO. 
TGF-beta signaling was the only significantly enriched KEGG pathway among 
transcripts that were downregulated by HFO. Additionally, we found that many 
genes in the insulin signaling pathway were either upregulated (27 genes) or 
downregulated (16 genes). 

Study 3  

Gene expression patterns in adipose tissue varied between diabetic and non-
diabetic monozygotic twins. DNA methylation differences were modest between MZ 
twins discordant for T2D, but they were pronounced in adipose tissue of T2D case-
control cohort of unrelated subjects.  

We compared gene expression in diabetic and NGT twins in the Discordant Twin 
Cohort and found that 197 genes were differentially expressed (q < 0.15). 116 of 
these were upregulated and 81 genes were downregulated in diabetic twins. The 
expression differences of these genes ranged from 5% to 43%.  

We selected six genes to be replicated in an independent cohort (case-control cohort 
1). The genes were selected based on their known functions related to fat 
metabolism (ELOVL6 and FADS1), glucose metabolism (GYS2) and inflammation 
(SPP1 [OPN], CCL18, and IL1RN). All six genes were replicated using Real-Time 
PCR and showed different expression between unrelated patients with diabetes and 
non-diabetic subjects. We further looked at the relation between the expression of 
these genes and obesity in the NGT part of the cohort. We found that the expression 
of ELOVL6 and GYS2 was significantly lower and the expression of SPP1 and 
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IL1RN was significantly higher in obese versus non-obese NGT individuals. The 
expression levels of the 6 genes correlated significantly with BMI and/or glucose 
levels in the NGT individuals supporting that their expression is regulated already 
before the disease develops. 

We did not find any CpG site to be significantly differentially methylated between 
diabetic and NGT twins in the Discordant Twin Cohort after controlling for multiple 
testing (FDR). However, when we analyzed a bigger T2D case-control cohort of 
unrelated individuals matched for age and sex (case-control cohort 2), 15,627 CpG 
sites annotated to 7,046 unique genes were differentially methylated between the 
diabetic vs non-diabetic subjects with q < 0.15. These data suggest that genetic 
components in the twins may control the methylation pattern. Furthermore, 1,410 
CpG sites were also differentially methylated in the same direction in the discordant 
twins based on P < 0.05 as the ones found in the case-control cohort 2. 

Study 4  

DNA methylation and RNA expression patterns were different between adipose-
derived stem cells from individuals with LBW and NBW. 

506 genes were differentially expressed (q<0.05) in ADSC between LBW and NBW 
groups. 281 of those were upregulated and 225 were downregulated in LBW. These 
include CCNT2 downregulated in LBW and STAT2 upregulated in LBW. However, 
no genes were found to be differentially expressed between the birth weight groups 
after the differentiation. 

Principal component analysis suggested a correlation between global DNA 
methylation levels and birth weight in ADSCs but not in differentiated adipocytes. 
No individual CpG sites were identified as differentially methylated when 
comparing LBW and NBW in ADSCs or after differentiation.  
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Discussion 

Several technologies are available for studying DNA methylation. Methods such as 
pyrosequencing are used for analyzing DNA methylation of specific genes or 
regions. Microarrays such as Illumina 450k or more recent Illumina 
MethylationEPIC 850k allow interrogating hundreds of thousands CpG sites at the 
same time. They cover 2-3% of all CpG sites in the human genome but these sites 
are strategically chosen to cover a large number of CpG islands, known gene bodies 
and promoter regions. Whole-genome bisulfite sequencing (WGBS) is the 
technology that allows studying of DNA methylation across all the genome.  

Illumina 450k was chosen for the studies in this thesis as the most comprehensive 
and cost-effective solution available at the time. There were certain challenges 
associated with analysis of the Illumina 450k data some of which are specific for 
this chip and some are applied to analysis of microarray data in general. 

In the analyses of microarray data, it is possible to characterize the variation in the 
data as either related to biological differences or as technical variation. While it is 
desirable to detect these biological differences, technical variation may make it 
harder to do. Technical variation may be due to differences in sample preparation, 
production of the arrays and so on. It can be differences between samples or groups 
of samples (in this case referred to as batch effect).  

Various normalization methods were proposed to deal with technical variation on 
the individual sample level (66). Quantile normalization remains one of widely used 
such methods (60). In short, the method consists in sorting the data for each sample 
from highest to lowest value, then substituting the values with a mean value across 
all the samples for that particular rank. So that the highest value for all the samples 
becomes the mean of the highest values, then the same for the second highest and 
so on. It effectively makes the distribution of probe intensities for each array 
identical.  

Quantile normalization aims at making possible direct comparisons between the 
samples, but it does not take into consideration batch effects. This may or may not 
represent a problem depending on type of analysis that needs to be done. In case of 
microarray data one of the biggest sources of batch effect is placement at different 
microarray chips. In case of pairwise comparisons it is possible to place the samples 
from the same pairs at the same chip in which case batch effect does not affect the 
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outcome of the statistical analysis. However, statistical analyses such as linear 
models require to take batch effects into consideration. First and a very important 
step is to assure even distribution of the samples across the batches based on the 
variables of interest in order to avoid correlation between batch effects and a 
variable of interest (67,68). Several methods exist for batch correction such as 
surrogate variable analysis (sva) (69,70) and ComBat (55). sva is based on 
identifying and estimating surrogate variables for unknown sources of variation 
while ComBat directly removes known batch effects using an empirical Bayes 
approach. sva may be preferable in case there is a number of potential unknown 
confounders while ComBat may be more appropriate in case there are known batch 
variables and the studied biological groups are known to be heterogeneous (56).  

There were certain challenges associated specifically with the analysis of Illumina 
450k data.  

Soon after the array was available it became apparent that due to different chemistry 
the distributions of DNA methylation values produced by type I and type II probes 
of the array were very different and higher dynamic range of type I probes created 
a type I enrichment bias. This eventually led to developing of within-sample 
normalization methods such as BMIQ normalization designed to adjust the 
statistical distribution of type II probes into a statistical distribution of type I probes.  

A significant number of probes was found to be cross-reactive meaning that the 
measured values could not be unequivocally matched to a specific genomic location. 
Some probes were targeting CpG sites with known SNPs. All these probes have to 
be excluded from the analyses since the measurements can be due to the factors 
unrelated to the variables of interest.  

In statistics type I error is defined as the rejection of a true null hypothesis, when 
type II error is defined as not rejecting a false null hypothesis. In other words, type 
I error can be labeled as “false positive”, while type II error as “false negative”. 
Finding a cut-off to define statistical significance is a trade-off between type I and 
type II errors. Study of genomics data often means that thousands of tests are done 
simultaneously. In case of one test a result is said to be statistically significant if it 
is very unlikely to have occurred given the null hypothesis. But increasing the 
number of tests done simultaneously, drives up the probability of getting a 
significant result just by chance. Several methods were proposed to address this 
issue.  

Familywise error rate (FWER) is the probability of making at least one Type I error. 
Bonferroni correction is one of procedures implementing it and it is widely used to 
correct for multiple testing. However, by controlling the probability of at least one 
Type I error Bonferroni correction can be conservative, can be prone to producing 
“false negatives” thus reducing the statistical power (71).  
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With advancement of high-throughput technologies alternative methods for 
correction for multiple testing were proposed. For technological and financial 
reasons, it is common that thousands of variables (e.g. genes or CpG sites) are tested 
with relatively small samples sizes. In this case the number of type II errors 
produced by FWER became less acceptable. Alternative methods such as false 
discovery rate (FDR) instead of controlling the probability of at least one Type I 
error control the expected proportion of “false positives” (65). One of the 
assumptions of FDR is about p-values being independent or weakly dependent. It 
has been shown (72) that in human genome exist differentially methylated regions 
(DMR) meaning that that assumption may not always be correct when studying 
DNA methylation in humans. As described by J. Storey in his article (73) taking 
into consideration possible dependencies between p-values may be an area of 
improvement for the correction for multiple testing in the future. 

As discussed in (74) epigenetics might in part mediate gene–environment inter- 
actions which play role in development of common and complex diseases. In 
particular it has been hypothesized that DNA methylation might be one of the 
mechanisms that link risk factors for T2D such as diet and impaired intrauterine 
environment to cellular functions in tissues such as adipose tissue. In the studies, 
included in this thesis, we looked at the relation between genome-wide methylation 
patterns in adipose tissue and these risk factors. Studies 1 and 2 provide insights into 
the impact of high-fat diets on the epigenome, while study 4 looks into correlations 
between impaired intrauterine environment and epigenetic differences in stem cells 
derived from adipose tissue of grown adults. Study 3 aimed at eliminating as many 
confounding factors (such as genetics, age, sex) as possible by studying epigenome 
in monozygotic twins discordant for T2D. It is possible that the lack of success in 
trying to identify significant differences in methylation between the twins after FDR 
is due to the small sample size as we analyzed only 14 twin pairs across 
approximately 450,000 CpG sites. About a hundred of CpG sites had the lowest 
possible p-value given the sample size and were not significant after FDR. Another 
reason could be that genetics is a strong component that control DNA methylation 
more than disease (75,76). It is also possible that the sample size in the stem cell 
study was too small and the study underpowered for detection of altered 
methylation. Future genome-wide epigenetic studies should hence aim to be 
performed in large human cohorts in order to increase the statistical power. 
However, one cannot rule out that there are no differences in methylation between 
the two birthweight groups, without increasing the sample size.   
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Summary and general conclusion 

Type 2 diabetes is a common metabolic disease and its prevalence is increasing 
worldwide. Adipose tissue plays an important role in metabolic processes. 
Environmental factors may affect metabolic phenotypes and epigenetics may 
mediate this influence. We used Illumina 450k microarrays to study correlations 
between epigenetic patterns in human adipose tissue and environmental factors such 
as high-fat diets, impaired intrauterine environment and low birth weight as well as 
with type 2 diabetes. 

In study 1 we investigated whether the DNA methylation pattern in human adipose 
tissue is affected differently by a 7-week exposure to a diet high in either 
polyunsaturated fatty acids or saturated fatty acids. We found differences in 
methylation related to general fat overfeeding as well as between the two dietary 
groups. 

In study 2 we studied the effect of 5 days of overfeeding with a high fat diet on DNA 
methylation in adipose tissue compared to a control diet. The participants were 
either born with a normal or low birth weight and it allowed also to compare the 
effects of the diets on these two groups separately. There were differences in 
methylation between subjects born with a low compared with normal birth weight. 

In study 3 we used adipose tissue of a cohort of 14 monozygotic twin pairs 
discordant for type 2 diabetes in order to eliminate most of known confounding 
factors in comparing DNA methylation patterns as well as a case-control cohort for 
T2D. We found numerous differences in methylation in adipose tissue from subjects 
with T2D compared with controls, while less differences were found in the 
discordant twins. 

In study 4 we compared DNA methylation in adipose-derived stem and 
differentiated cells in subjects born with a low or normal birth weight. We found 
differences in gene expression in adipose-derived stem cells between LBW and 
NBW groups but did not identify differences in methylation patterns possibly due 
to lack of statistical power. 

Overall, these studies contribute to a better understanding of the influence of 
environmental factors and type 2 diabetes on DNA methylation in human adipose 
tissue.  
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