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Abstract 

 
Non-dimensional variables are very useful as they reduce the number of variables when analyzing 
physical phenomenon. In this paper, the solutions to the frequency equation of multilink flexible robots 
with elastic constraints is analyzed in a compact form using the dimensional analysis. First, dimensionless 
governing differential equation of motion is presented. Second, dimensionless boundary conditions are 
obtained. Third, the dimensionless frequency equation and the orthogonality conditions among the mode 
shapes are derived. Fourth, some degenerate cases are developed and compared against some existing 
models. Finally, dimensionless wave numbers are plotted for various joint stiffness ratio to show the 
influence of various dimensionless parameters on the natural vibrational behavior of the planar multilink 
flexible robots. 
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1. Introduction 
Most studies dealing with the vibrational behavior of planar multilink flexible robots have considered the base of 
each link as clamped to the actuator gearhead shaft. Such approaches however failed to consider the relative 
displacement between link and actuator shaft. Beards (1995) observed that actual connections have always some 
degree of flexibility. Moreover, few previous published studies focus on the dimensional analysis of the multilink 
flexible robots. However, dimensionless analysis reduces the number of relevant variables needed to describe a 
physical phenomenon (Volker, Bernhard & Hassan, 2017). Han, Benaroya and Wei (1999) investigated the 
dynamics of transversely vibrating beams using dimensionless quantities. The aim of this paper is to conduct a 
dimensional analysis of natural vibrations of planar multilink flexible robots with elastic constraints focusing on the 
dimensionless wave numbers. 

2. Equation of motion and boundary conditions 
Consider a planar multilink flexible robot with link i connected to the shaft of the gearhead of the ith actuator. The 
link- shaft connection can be modelled as either clamped or elastic. Figure 1 represents the traditional clamped 
model against the elastic constraint model.  
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Figure 1. Traditional clamped and elastic constraint models of planar multilink flexible robots. 

The governing differential equation of motion of Euler Bernoulli beam is given by  

 

 

 
 

(1) 

where  is the link i transverse deflection at abscissa  and time ,  is the area moment of inertia of link i 
about the neutral axis,  is the modulus of elasticity of link i and is the linear density of link i. 

The length scales are non- dimensionalized by the length of the beam as follows 

 
 

 
 

 
 

(2) 

The time scale is non- dimensionalized by τ as follows 

 
 

 
 
 

(3) 

Substituting (2) and (3) into (1), the dimensionless governing equation of motion of Euler Bernoulli beam is given 
by 

 

 
 

(4) 

The boundary conditions for planar multilink flexible robot with rotational constraint is given by  

  (5) 
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where  is the spring rotational stiffness for joint i,  is the actual moment of inertia at the distal end of link i, 
 is the actual mass at the distal end of link i and  is the contribution of masses non-collocated at the distal 

end of link i. 

The dimensionless stiffness of joint i (Koi) is defined in terms of the rotational spring stiffness and link i flexural 
rigidity as follows (McGuire, 1995) 
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The dimensionless actual moment of inertia at the distal end of link i is given by 

 

 
 

(10) 

The dimensionless contribution of masses non-collocated at the distal end of link i is given by 

 

 
 

(11) 

The dimensionless actual mass at the distal end of link i defined as follows 

 

 
 

(12) 

The dimensionless boundary conditions for planar multilink flexible robot with rotational constraint are defined in 
terms of dimensionless parameters as follows: 
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The general solution of the dimensionless governing differential equation (4) can be expressed as follows: 

  
 

(17) 

Substituting (17) into (4) results in the following two separate differential equations: 
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The solution to differential equation (18) can be written as follows: 

 +  
 

                  (20) 

where    

   is the dimensionless wave number                                                                                                 (21) 

 

3. General Frequency equation and Orthogonality Conditions 
The general frequency equation is derived by writing a set of homogeneous equations in three unknown 
constants ,  and , and setting to zero the determinant of the coefficient matrix.  

Substituting (20) into (17), and then in (13) yields 

  
 

(22) 

Plugging (22) into (20) gives 

  
 

(23) 

Substituting (23) into (17), and then in (14) through (16) yields a set of three homogeneous equations 
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where 

   

   

   

   

   

   

   



   

   

Setting to zero the determinant of the coefficients matrix in (24) yields 

 

 

 

 
 

(25) 

 

Let consider  and  two distinct mode shapes of link i. Then both must satisfy equation (18), therefore 

 (26) 

 

 (27) 

Multiplying both sides of equations (26) by  and integrating the left hand side by part and applying the 
boundary conditions yields 

 

 

(28) 

 

Likewise, multiplying both sides of equations (27) by  and integrating the left hand side by part and 

applying the boundary conditions yields 

 

 

(29) 

 

Substituting (29) into (28) results in 

 

 

 

(30) 

 

If  and the term in the main parenthesis is equal to an arbitrary constant  



If  and the term in the main parenthesis is equal to zero  Therefore, equation (30) can be 

written as follows 

         (31) 

where  

Equation (31) is the expression of the orthogonality conditions among the mode shapes. Unlike the simplified 
equation proposed by Theodore and Ghosal (1995), equation (31) further supports the idea of De Luca and Siciliano 
(1991) who suggested that accurate and complete orthogonality conditions for flexibible multilink robots should 
incorporate  ,  and . 
 

4. Degenerate Cases 
a. Rigid connection at each link base ( , equation (25) reduces to 

 

 

 
(32) 

 

It can be observed that equation (32) is similar to that derived by Theodore and Ghosal (1995), which is a 
dimensionless form of the frequency equation for the clamped-mass solution derived by De Luca and Siciliano 
(1991), Subudhi and Morris (2002), and Tekweme and Nel (2016). 

 

b. Hinged beam structure with , equation (25) becomes 
 

 } =  0 (33) 

 
Equation (33) is a dimensionless version of the frequency equation derived by Beards (1995) and Goulos, Pachidis 
& Pilidis (2014). 
 
5. Numerical Results 
In this section, the values of dimensionless wave numbers versus dimensionless joint stiffness are plotted. The 
parameters whose effects on the dimensional wave numbers are investigated are ,  and . 
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Figure 2. First dimensionless wave number of link 1 versus joint 1 stiffness (  and  ) 
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Figure 3. Second dimensionless wave number of link 1 versus joint 1 stiffness (  and  ) 
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Figure 4. First dimensionless wave number of link 2 versus joint 2 stiffness (  ) 
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Figure 5. Second dimensionless wave number of link 2 versus joint 2 stiffness (  ) 
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Figure 6. First dimensionless wave number of link 1 versus the joint 1 stiffness (  and  ) 
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Figure 7. Second dimensionless wave number of link 1 versus joint 1 stiffness (  and  ) 
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Figure 8. First dimensionless wave number of link 2 versus joint 2 stiffness ( ) 
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Figure 9. Second dimensionless wave number of link 2 versus joint 2 stiffness ( ) 
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Figure 10 First dimensionless wave number of link 1 versus joint 1 stiffness (  and  ) 
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Figure 11 Second dimensionless wave number of link 1 versus joint 1 stiffness (  and   
 



Figure 2 shows the effect of the actual mass at the distal end of link 1 on the fundamental wave number of link 1 
( ). It can be observed that for a specific joint stiffness value, when the actual mass at the distal end of link 1 
increases from 2 to 4.5, the wave number decreases. When the joint stiffness is small enough, the effect of actual 
mass at the distal end of link 1 is not significant. However, the effect of the actual mass on the wave number 
becomes more significant when the joint stiffness increases. 
The effect of the actual mass at the distal end of link 1 on the second wave number of link 1 ( ) is illustrated in 
Figure 3. It can be observed that when the actual mass decreases from 4.5 to 2, the  curve undergoes a parallel 
upward shift up to transition, where there is a steeping twist shift, after which the slope drops to zero. As can be seen 
from Figures 2 and 3, when the joint stiffness varies from 1 to 10000,  is almost doubled while  does not 
change much. Therefore,  is more affected than  when the joint stiffness changes. This finding is in 
agreement with Rao and Mirza (1989) who observed that the higher mode frequencies are less sensitive to rotational 
spring constant changes than the lower mode frequencies. 
Figure 4 reveals the effect of the payload on the fundamental wave number of link 2 ( . There are a number of 

similarities between Figures 2 and 4. The effect of the payload on  is similar to the one of the mass at the distal 
end of link 1 on . 
The effect of the payload on the second dimensionless wave number ( ) is plotted in Figure 5. When both the 
actual mass at the distal end and the dimensionless stiffness increase, the  curve undergoes a parallel downward 
shift, which implies that the second wave number of link 2 on all joint stiffness values drop by the same amount. 
Figure 6 shows the effect of the actual moment of inertia on . When the actual moment at the distal end of link 1 
changes from 0.4 to 1.3, the  curve is not significantly affected by the dimensionless stiffness up to transition, 
where there is a steeping twist shift, followed by a region where the slope drops to zero. 
The effect of the actual moment of inertia on  is revealed in Figure 7. When the actual moment of inertia 
decreases from 1.3 to 0.96, the  curve moves upward without losing its shape. However, as the actual moment 
drops to 0.4 the curve slightly loses its shape in the region of high joint stiffness. 
Figure 8 indicates that when the actual moment of inertia increases from 0.0028 to 0.01, there are no significant 
changes in the  curve. Therefore,  is not significantly affected when the actual moment of inertia at the end 
of link 2 increases from 0.0028 to 0.01. 
From Figure 9, it is clear that when the actual moment at the end of link 2 changes from 0.0028 to 0.01, the  
curve moves downward with a slight change of shape in the region of higher joint stiffness. 
Figure 10 shows that when the contribution of masses non-collocated at the distal end of link 1 decreases from 3 to 
0.5, the  curve undergoes a steeping twist shift, which implies that the first wave number of link 1 that is less 
sensitive in the region of low joint stiffness, becomes more sensitive in the region of high joint stiffness. 
As shown in Figure 11, when the contribution of masses of distal link increases from 0.5 to 1.149, the  curve 
shifts upward without losing its shape, which implies that the second wave numbers of link 1 on all joint stiffness 
values increase by the same amount. However, as the contribution of masses of distal link reaches 3, the  curve 
undergoes a parallel upward shift up to transition, where there is a steeping twist shift, after which the slope drops to 
zero. 
 

Conclusion 
In this paper, a dimensional analysis for planar multilink robot was performed. For this purpose, some physical 
dimensionless parameters and variables were defined to express the system physical parameters in a compact form. 
The general dimensionless frequency equation and boundary conditions were developed. Some degenerate cases 
were derived and compared against the existing models. The general frequency equation was solved for various 
dimensionless stiffness values and the results discussed. The results show that the first and second wave numbers 
decrease when the actual mass and moment at the distal end of flexible links increase. However, when the 
contribution of mass of distal link is increased, the first wave number decreases while the second wave number 
increases. The findings from this analysis contribute towards enhancing our understanding of the effects of different 
physical parameters on the natural vibrations of planar multilink flexible robots.  
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