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Abstract

This review focuses on the combination of elemedé&téction techniques with liquid-
phase microextraction (LPME), namely, single draproextraction, hollow fiber based
liquid-phase microextraction, dispersive liquiddid microextraction, and related
techniques. General features of different micraetion procedures, historical
overview and automation of LPME are described amtdpgared, along with examples
of new developments and applications presenteceioodstrate its potential for trace
and ultra-trace metal analysis. Furthermore, p@kapplications and an outlook on the
combination of LPME and elemental detection techegyfor inorganic analysis are

presented.
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Abbreviations
[Hmim][PF6]
AA-LLME
APDC
CFME
CVAFS
DES
DI-SDME
DLLME
DSD

EME
ETAAS
ETV-ICP-MS
FAAS

HF
HF-LLLME
HF-LPME
HS-SDME
ICP-MS
ICP-OES
IL

LIBS

LLE

LOD

LPME

ME
MEA-IL-DLLME
MIL

PAN
P-TEA-C
SBME
SDME
SFOD
SM-DLLME
SS
SS-LPME
SUPRA
TEA

THF

TSIL

us
VALLME

1-hexyl-3-methylimidazolium hexafluorbpsphate

Air-assisted liquid-liquid microextraction
Ammonium pyrrolidine dithiocarbamate
Continuous flow microextraction
Cold vapour atomic fluorescence spectrometry
Deep eutectic solvent
Direct immersion single drop microextractio
Dispersive liquid-liquid microextraction
Directly suspended drop
Electromembrane extraction
Electrothermal atomic absorption spectrometry
Electrothermal vaporization inductivelgupled plasma mass spectroscopy
Flame atomic absorption spectrophotometry
Hollow fiber
Hollow fiber liquid-liquid-liquid microextaction
Hollow fiber liquid-phase microextraction
Headspace single drop microextraction
Inductively coupled plasma mass spectrometry
Inductively coupled plasma optical emissipactrometry
lonic liquid
Laser induced breakdown spectrometry
Liquid-liquid extraction
Limit of detection
Liquid-phase microextraction
Microextraction
Magnetic effervescent tablet-assistieamic liquid dispersive liquid-liquid microextraon
Magnetic ionic liquid
1-(2-Pyridylazo)-2-naphthol
Protonated triethylamine carbonate
Solvent bar microextraction
Single drop microextraction
Solidified floating organic drop
Supramolecular-based dispersive liquiddlamicroextraction
Switchable solvent
Switchable solvent-based liquid-phase oeixtraction
Supramolecular solvent
Triethylamine
Tetrahydrofuran
Task-specific ionic liquid
Ultrasound

Vortex assisted liquid liquid microextractio
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1. Introduction

LPME can be defined as a miniaturization of LLEh@que where the volume of the
extractant phase is equal or below 10D [1]. The main advantages of LPME
techniques are low cost, easiness, low sample \@luapidity, extremely low solvent
consumption, high enrichment factor, reduced gdiveraf wastes, and its affordability
to any laboratory. Many of these features convd?ME into an environmentally
friendly sample preparation technique that fitsfgety with the principles of green
analytical chemistry [2].

A variety of LPME approaches have been suggestedhi® preconcentration of
metals, metalloids and organometallics prior toirtlteetermination with elemental
detectors. They can be classified into three maidatities (Figure 1):

-Single drop microextraction (SDME).

-Hollow fiber liquid-phase microextraction (HF-LPNLE

-Dispersive liquid-liquid microextraction (DLLME).

Moreover, several variations have also been inteduor each of these modalities,
which clearly demonstrates its versatility.

LPME is usually combined with different spectronetechniques, including FAAS,
ETAAS, ICP-MS, ICP-OES, among others. The choicetltd# most convenient
detection technique depends, among other thinggherproperties and type of the
analytes, the complexity of sample matrix and tbkume of analyzed solution. It is
also worth noting that improvement of LOD valuesi@d only a result of the extraction
type used for preconcentration of analytes, buteddp heavily on the chosen
measurement technique.

A brief overview of these LPME techniques is praddn the next section.



Single drop
microextraction

Direct immersion, headspace,
continuous and cycle-flow
microextraction and directly
suspended drop

Hollow fiber liquid-phase
microextraction

Two and three phases HF-LPME,
electromembrane and solvent bar
microextraction

Dispersive liquid-liquid
microextraction

Conventional, ultrasound, vortex and
air-assisted, solidified floating organic
drop, magnetic effervescent tablet and
supramolecular, deep eutectic and
switchable-based solvents

56

57  Figure 1. Classification of the LPME modalities.
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2. Description of main LPME techniques

2.1.SDME and related techniques

SDME uses a few microliters of solvent held asnglsi drop on the tip of a syringe.
The droplet can be either disposed to the headspatieectly immersed in the sample,
distinguishing two SDME modalities: headspace SDNHS-SDME) or direct
immersion SDME (DI-SDME) [3]. In HS-SDME, a drop extractant phase is exposed
to the headspace above the sample solution foaadn of volatile and semivolatile
analytes (or analyte derivatives). DI-SDME is based the direct exposure of a
microdroplet of extractant phase to the sampletswiu

The SDME technique suffers from many drawbacksh sagcthe small surface area
of the droplet, instability, ease of dislodgemerdnt the tip of the syringe, droplet

solubility, long times to reach equilibrium, andopa@eproducibility.

2.2. HF-LPME and related techniques

SDME has gained a widespread interest since iteaappce and has obtained an
undoubted relevance as a start point of miniatdrizZeME techniques. However, some
problems commented above, needed to be solved. L offers an interesting
solution for droplet instability by using a porooembrane. In this technique, analytes
are transferred from the sample to the extractalntest present inside the lumen of the
porous HF through its pores, which are also fikdth a solvent immiscible with the
sample. The extractant phase that impregnatesates pf the HF can be the same as
the one present inside the lumen of the HF (twosephaode, HF-LPME), or different
(three phase mode, HF-LLLME) [4].

One major disadvantage of the procedure is thal.PIRE is a relatively slow
process, and the transfer from the sample to theaaant solvent is normally the
limiting step. A solution to improve the transpanechanisms and enhance extraction
efficiency was proposed by introduction of electesnbrane extraction (EME) [5].
Another modality to speed up extraction kineticsthe solvent-bar microextraction
(SBME) [6]. In this SBME, the extractant solventisnfined within a short length of a
HF (sealed at both ends) and it is placed in eestisample solution

The automation of HF-LPME is still the main drawkaand it has limited its
implementation in routine laboratories and appiare [7].

2.3. DLLME and related techniques
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In conventional DLLME, the extraction process isriea out by injecting a mixture
of solvents into a sample placed in a conical tdieen a cloudy solution is formed and
afterwards, phases are separated by centrifuga&imaliquot of the enriched extractant
is finally taken from the bottom of the conical éutor analysis. Two solvents are used
in conventional DLLME to extract target analytesnir the sample solution; extractant
and disperser solvents. The extractant phase neustiniscible and denser than water,
whereas the disperser solvent should be misciltle bath the extractant phase and the
sample [8].

DLLME has gained rapid and widespread recognitadtracting the interest of the
scientific community and even coming to dominateMBEP research publications in
recent years [1]. However, the conventional DLLMEfers from some limitations that
are in continuous revision [9]: (1) harmful orgasmvents are used as extractants (i.e.,
chlorinated solvents); (2) emulsification requir@sdispersant solvent that competes
with the extractant solvent for the analyte, thgredducing extraction efficiency; and,
(3) centrifugation is necessary to separate phesitsr extraction. Numerous
modifications of conventional DLLME have been preed to overcome the above-
mentioned drawbacks of the technique and developesft and easier approaches. One
of the most representative modifications is the leyipent of alternative extractant
solvents such as those less dense than waterpilgteen solvents. Nowadays, the
combined use of green solvents and DLLME has be@mavel area and a hot topic of
research in LPME and analytical chemists have fedus these solvents to developed
green preconcentration methods. LPME procedures kelken on a new perspective
with the use of supramolecular (SUPRA) solvent,pdeatectic solvent (DES), and
switchable solvent (SS) [10].

3. LPME in trace element deter mination: historical overview

The combination of LPME procedures with elementetedtion techniques took
place for the first time in 2003, and as can bendemm Figure 2A, the use of LPME
procedures with elemental detection techniqueselkpsrienced a noteworthy growth,
especially from 2007 to 2013, mainly due to theaduction of DLLME. Then, a
certain stabilization is observed from 2013 up @2 and finally, it can be noticed an
important decreasing from 2015 to 2017.

Figure 2B shows the trend in applications of LPMi&gedures in trace element

analysis. As can be noticed, the DLLME is the npgiular LPME procedure reaching
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nearly 200 publications since 2007. This is dueDtd ME has numerous positive
features, including rapidity, high enrichment facteasy coupling to elemental
detection techniques and relative large volumeaakeptor phase in comparison with
other LPME procedures (i.e., SDME). Finally, SDMEthe second one most used and
HF-LPME the third one.

Figure 2C illustrates the different elemental detectechniques employed with
LPME procedures. It can be seen that ETAAS is thstmpopular technique hyphenated
with LPME procedures [11], being used in 65% of plblications, followed by FAAS,
ICP-OES, and ICP-MS. Other techniques such as L[S 13] and electrochemical
[14, 15] techniques have also been used. The tande easily explained by the fact
that the volume of acceptor phase required for mreasent in ETAAS technique
perfectly matches with the one provided by the LPpHacedure. In this detection
technique, few microliters of acceptor phase aces®ary to complete the analysis and
it is more likely to be successfully combined wWitRME procedures than FAAS, ICP-
MS and ICP-OES, since dilution or higher volumeshef acceptor phase is avoided.

The timeline of the LPME procedures is shown inurég2D. LPME techniques have
undergone important modifications where differemdatlities (i.e., SDME, HF-LPME,
and DLLME), different solvents (i.e., IL, TSIL, MILSUPRA solvent, DES, SS, etc.),
dispersion modes (i.en situ IL, US energy, vortex, air, effervescence, etc.), sampling
mode (i.e., SFOD, DSD, continuous-flow and recyglibow ME, etc.), analytical

detection systems or automated procedures havecoegioyed.
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Figure 2. A: Number of publications regarding tlembination of LPME procedures
with elemental detection techniques. B: Diagram wshg the percentage of
publications using different LPME procedures irc&&lemental analysis from 2003 to
2017. C: Diagram showing the percentage of pulitinat using different elemental
detection systems from 2003 to 2017. Data generfied a search performed in
Scopus database (http://www.scopus.com). D: Tireebh LPME procedures firstly
applied to elemental analysis.
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Regarding different LPME and related procedures,2003, Chamsazt al.
determined, for the first time, arsenic by ETAASngsHS-SDME aftelin situ hydride
generation [16]. Three years later, the HF-LPME wawgloyed for the first time in
elemental analysis for the speciation of Se(IV) &&(VI) in environmental water
samples using ETV-ICP-MS [17]. Next year, in 206 DLLME was successfully
combined to ETAAS for the determination of cadmitmwater samples [18]. In 2008,
Basheest al. [5] proposed to assist the extraction using antetefield (EME) for the
determination of lead from biological fluids andsometics for the first time. Finally, in
2015 another modification of HF-LPME termed solvbat microextraction (SBME)
was used by Pintet al. [6] for determination of Ni in seawater samples.

Relating to extractant solvents, in 2005, a micopdsf IL was used for the first time
to assess the preconcentration of organotin andnorgercurial compounds before
ETAAS and CVAFS detection systems [19]. Modificagoin cation and/or anion
composition in the IL offer a broad range of apgtions. Task-specific ILs (TSILS),
which obtained by tailoring either cationic or amm of the IL structure with suitable
combination of specific metal-chelating functiomgibups, have great potential in the
field of metal preconcentration. TSILs are widebed for heavy metal extraction due to
a complexing agent is not needed [20]. Anotherr@stietng IL modification is to
incorporate a paramagnetic component in eithec#ti®n or anion of the IL structure.
MIL-based DLLME was first used for the extractiohAu and Ag (as thio-Michler's
ketone chelates) from well water and lime ore sasp21]. Jafarvand and Shemirani
[22, 23] developed an alternative DLLME proceduadierl SM-DLLME (Figure 3A).
In the first research work [22], the Co-PAN compleas extracted with coacervates
composed of reversed micelles made from decanaicad dispersed in THF-water
mixture. After the extraction, the coacervate phaas diluted with ethanol and injected
manually into the FAAS. In comparison with convenal DLLME, SM-DLLME uses
decanoic acid, which is a more environmentallynitilg solvent. In the second research
work [23], reversed micelles were formed with tlzange reagents as in the previous
work (decanoic acid, THF-water mixture) in the sagtian and preconcentration of Cd-
APDC complex in combination with FAAS detection.2015, Karimiet al. [24] used a
DES in LPME for the first time. They applied thigthod to the ligandless extraction of
lead and cadmium in edible oils. DESs are compaged mixture of safe, cheap,
renewable and biodegradable organic compoundsatieatapable of associating with

each other through hydrogen bonding and formingrapound that has a melting point
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far below that of either component. A number of BE®e prepared by simply mixing
and heating organic halide salts such as cholirleride (i.e., is a very cheap,
biodegradable and non-toxic quaternary ammoniunt) salh hydrogen bond donors
such as urea, renewable carboxylic acids (e.glicpxdtric, succinic or amino acids) or
renewable polyols (e.g., glycerol, carbohydrat@syvell-known example is the mixture
of choline chloride and urea in a 1:2 mole ratilhe Tmelting point of the eutectic
mixture is 12 °C, far below than the melting pashicholine chloride, 302 °C and urea,
133 °C, allowing the mixture to be used as an antliEmperature solvent [25]. In this
method [24], a DES consisting of choline chloridega and nitric acid was added to an
oil sample. The mixture was vortexed and incubateadwater bath at 50 °C and stirred.
After the extraction was completed, the phases wseparated by centrifugation, and the
concentration of analytes in the DES phase weresaned by ETAAS. In the same
year, Yilmaz and Soylak [26] developed a SS-LPMEhwoe for the quantification of
copper in an aqueous sample solution prior to mampling FAAS determination. SSs
consist of an amine dissolved in water. The nomidorm of a SS has very limited
miscibility with water in the absence of gMut complete miscibility with water in its
ionic form. The change in miscibility is causedlie presence of CGand water, which
produces a water-soluble carbonate salt of theopatéd amine. In this method,
triethylamine (TEA) and protonated triethylaminegbmmate (P-TEA-C) as green and
cheap switchable solvents were used. Firstly, #Hfi&ER-C was added to the aqueous
sample solution including the Cu-PAN complex. ThafaOH solution was injected
into the centrifuge tube and a cloudy solution appé. At this stage, P-TEA-C was
turned into TEA and the Cu-PAN complex was transféinto fine droplets of the TEA
phase. The TEA phase was collected on the surfdcéheo aqueous phase by
centrifugation and finally, the copper concentnatio the TEA phase was measured
with FAAS.

Regarding dispersion modes, in 2009, Baghdadi &edan8ani [27] proposed for the
first time a novel IL-DLLME methodology based oretformation of the extractant
phase for determination of inorganic species viaesathesis reaction between a water-
miscible IL and an ion exchange reagent to formagéewimmiscible IL. In this work,
the water-miscible IL was dissolved into the samlataining the analytes. Then the
ion exchange salt was added, forming immediatetyoady solution. Finally, phases
were separated by centrifugation and the enrichiedsg was analyzed by using

spectrophotometric detection. In the same year,eMal. [28] firstly described the

10
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application of US energy for the determination raice cadmium in water samples. In
this study, FAAS was selected as a determinatioimadeand samples were diluted to a
certain volume before injecting into the detectigystem. About vortex agitation,
Chamsazt al. [29] firstly employed VALLME for the determinatioof trace amounts
of cadmium by FAAS. In this research, the IL 1-He3ymethylimidazolium
hexafluorophosphate ([Hmim][Rl}, was used as an extractant solvent?‘Odas
complexed with APDC, and then extracted into fihedroplets by the assistance of
vortex agitator system. AA-LLME is one of the maostently developed DLLME
methodology, appearing in 2016 for simultaneousrd@nation of ultra-trace of Cu, Pb
and Zn in water samples by ETAAS [30]. In this woitke extractant solvent and the
sample mixture was repeatedly sucked into a ghassge and then injected into a tube
to achieve a cloudy solution resulting from dispersof the extraction solvent into
aqueous solutions. After centrifuging the cloudjuson, the extractant enriched with
the heavy metals were settled down in the bottorthefcentrifuge tube and used for
ETAAS analysis. Among the most recent publicatidesoted to DLLME, a current
work of Wanget al. [31] seems to be very promising (Figure 3B). Théhars applied
this solution to the quantification of Se(lV) and(8l). They proposed a novel, simple
and rapid method based on MEA-IL-DLLME followed BSTAAS determination, for
the analysis of the selenium levels in various faodl beverage samples. In this
procedure, a special magnetic effervescent tabdetaming CQ source (sodium
carbonate and sodium dihydrogenphosphate), ILs @, magnetic nanoparticles
was used to combine extractant dispersion and ntiagotgase separation into a single
step. The proposed method was successfully appieidod and beverage samples
including black tea, milk powder, mushroom, soyhdaammboo shoots, energy drink,

bottled water, carbonated drink and mineral water.
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Figure 3. A: Schematic representation of SM-DLLMREeprinted with permission from
the reference [22]. Copyright (2011) Springer NatuB: Sequential steps during the
MEA-IL-DLLME procedure. Reprinted with permissiorron the reference [32].
Copyright (2016) Elsevier.
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Relating to sampling mode, in 2004, it was repoftedhe first time the continuous-
flow ME combined with ETV-ICP-MS for the determirat of Be, Co, Pd and Cd in
human hair and human urine [33]. Moreover, #ial. made some modification to the
basic continuous-flow ME setup and developed adleay-flow ME system, in which
the waste from the chamber was returned to the Isawgl, allowing a reduction in
sample consumption [33]. On the other hand, after gear of presentation of SFOD
technique for separation of organic substancesfethsbility of performance of SFOD
in combinations with ETAAS for trace monitoring wfetal ions was considered and a
SFOD method for ultra-trace monitoring of lead veasluated [34]. Reddst al. [35]
firstly reported the combination of DSD microextrag in conjunction with ETAAS for
platinum determination from geological and spetb@obile converter samples.

4. Critical comparison of LPME techniques

The choice of the most suitable LMPE procedure deibend on the type of analyte
to be measured, the complexity of the matrix arel cbmpatibility of the elemental
detector with the extractant phase employed. The advantages of LPME procedures
are the extremely low consumption of solvents (dlg.organic and SUPRA solvents,
etc.) and their relative simplicity. By far the glast is SDME, either by direct
immersion or from the headspace, since only onp s&eneeded to perform the
extraction. However, SDME suffers from some bagiawtbacks such as instability,
solubility of the droplet, long extraction time apdor repeatability. Droplet instability,
due to the small contact surface between the drapié needle tip, limits the agitation
rate and consequently, increases the equilibriume.tiThis limitation will directly
deteriorate sensitivity and precision of determore. Extraction time can be shortened
using continuous-flow ME or cycle-flow ME procedsrg¢33]. In HF-LPME, the
equilibration times are even longer than in SDMEgduse the analytes cross the HF
wall exclusively by diffusion, although more vigomo stirring of the sample can be
applied in this technique [17]. An interesting nfadition allowing high stirring rates is
a HF filled with solvent and sealed at both endpeédorm SBME [6]. Another very
promising modification to shorten the extractiomei is the application of electric
potential across the membrane in EME [5]. In DLLMBEg extraction process is very
fast, requiring a much lower extraction time thadbME or HF-LPME and could be

performed simultaneous extractions providing areeant sample throughput.
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HF-LPME is more tedious compared to SDME because¢hefneed to prepare
disposable hollow fibers. However, HF-LPME is quitdequate for complex samples
treatment because the membrane can act as a ptbatrier. On the other hand,
conventional DLLME involves injection of the exttant phase (i.e., denser than water)
together with the disperser solvent in order torfdhe corresponding turbid solution.
Thus, a centrifugation step is mandatory to depthst solvent on the bottom of a
conical tube, from where it is collected by a sganin case of extractant solvents less
dense than water, the organic solvent remainsdrugiper layer after phase separation,
being its collection problematic. One solutionhie tombination of DLLME and SFOD
procedures. In SFOD procedure the floating orgaaleent is solidified in an ice-bath,
separated from the aqueous phase with a micro lapand then melted at room
temperature [34]. Nevertheless, this limits theich®f solvents to those with melting
point near room temperature (between 10 and 30MG)eover, SFOD is perhaps the
procedure that needs more handling steps to bemgudishied. In addition, the extract is
commonly diluted for analysis, decreasing to a dasxtent the enrichment factor
previously achieved. An interesting approach isuke of a magnet to separate a MIL

from the aqueous phase, avoiding the centrifugatiep [21, 36].

5. Automation of LPME techniques

Automation is one of the main challenges of LPMEchteques. Several
developments have been reported towards the autmnat LPME methods, although
their complete implementation in routine analyssstill far to be achieved. The
excellent benefits of this technique, such as snspimple preparation, fast analysis and
small sample and reagents consumption have stiedulatientists to apply this
technology to their research. However, automatibhRME methods surely involves
extra efforts in method optimization and evaluati@s well as additional
instrumentation and analyst training. It is impattéo determine which advantages can
be gained to compensate these difficulties.

The merit of the first combination of the flow iojeon techniques with DLLME
belongs to Anthemidis and loannou [37], describseguential injection DLLME
system for Cu and Pb preconcentration from waterpées and determination using
FAAS. In this work, the stream of disperser andaotant solvents was merged on-line
with the stream of sample (aqueous phase), reguticloudy mixture, which consisted

of fine droplets of the extraction solvent dispdreatirely into the aqueous phase. By
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this continuous process, metal chelating compleva® formed and extracted into the
fine droplets of the extraction solvent. Then, tiyedrophobic droplets of organic phase
(i.e., xylene) were retained into a microcolumnkestcwith PTFE-turnings. Finally, a
portion of 300 pL of isobutylmethylketone was uded quantitative elution of the
analytes, which were transported directly to theutizer of FAAS system. Additional
four research works about the extraction of metallydges (Cd, Ag, Pb, and TIl) using
similar assemblies coupled to either FAAS or ETAASh differences in kind of
extraction solvent, chelating agent, extractioretimnd flow rates have been published
[38-41].

Cerdaet al. introduced an automated in-syringe DLLME for Cuedmination in
water samples using long path-length spectrophdtmneletection [42]. Similar
methodology was later reported for fluorometricedetination of Al in seawater [43].
In both works, selective analyte derivatization yasformed within the syringe using
an automated syringe pump.

Regarding the automation of SDME and related tephes, Penet al. [44] proposed
a semi-automated method combining both sequentjattion analysis and ETAAS
technique for determination of Cr(VI) in waters ngsia home-made microextraction
vial. In this work, the furnace autosampler armldead the performance the SDME
procedure and its injection into the graphite femaA fully automatic SDME coupled
to ETAAS for Cd determination in water samples basn described by Anthemidis
and Adam [45]. The method involved the use of a &donade flow-through extraction
cell coupled on a sequential injection manifoldeTdutomation of in-syringe SDME
hyphenated to ETAAS via a programmable platform d@termination of Hg in
complex matrices has been also reported [46]. Tethod was based on the use of
palladium nitrate solution as sorbent in the dmepich also acts as matrix modifier for
the electrothermal atomization of mercury. The sstration mechanism was based
either on the catalytic decomposition of the hyesidr on the amalgamation of Hg
with the finely dispersed Bdormed on the drop surface.

Another way to achieve partial automation of theMBE is using a chip-based
device. Huet al. [47] fabricated a chip-based LPME device and comiwith ETV-
ICP-MS for the determination of trace Cu, Zn, Cdj, b and Bi in cell and human
serum samples. Inside the chip, the aqueous armahicrghase formed laminar flow and
in the interfacial contact between the aqueous emgdnic phase, the target metal

chelates enter into the organic phase. Then, tiganar phase was collected and
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introduced into the graphite furnace with a micpapie for subsequent ETV-ICP-MS
analysis.

6. Conclusions and per spectives

LPME is a powerful sample preparation technique,ctvhoffers a promising
substitute to LLE. LPME techniques including SDMIE-LPME, and DLLME possess
many benefits such us low cost, simplicity, highigmment efficiency and minimal
solvent consumption. It is fully demonstrated ttieg couple of LPME with elemental
detector techniques would provide excellent anedytiperformance in real world
sample analysis, for instance multi-element anslgbility, wide linear range, and high
sensitivity. Moreover, LPME procedures use a greariety of modalities,
configurations and solvent types, which have bespiayed to counter their limitations
and expands their analytical scope.

In recent years, LPME procedures have made sulst@mbgress in the field of
analytical chemistry, but its potential in metaplgations has yet to be fully exploited.
The observed progress can be attributed to thelaj@went of new modalities and the
improvement of existing ones using advanced mdaseaad configurations. In this
sense, the use of magnetic materials and new actsffor LPME automation are key
milestones in this progress.

In the near future, the utility of LPME procedurase beyond question and their
complete acceptance in routine analytical laboreéd8] depends on their successful
automation and integration with conventional andn-nonventional analytical

instruments.
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Highlights

The combination of liquid-phase microextraction and elemental detectors are reviewed
A general description of main liquid-phase microextraction techniques is included
Historical overview of liquid-phase microextraction in trace element analysis is pointed

out.
A critical comparison of different liquid-phase procedures is discussed.



