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Summary 
 

For the past three years, university researchers (University of Queensland and 

University of New England), kangaroo managers (Queensland, New South Wales, 

South Australia and the Commonwealth) and Packer Tanning have been collaborating 

on a research project aimed at improving kangaroo management. The project has three 

broad aims: 

 

• Predict kangaroo numbers using rainfall or satellite imagery and other 

environmental data 

• Indirectly monitor kangaroo numbers and harvest rate using harvest statistics 

(e.g. sex ratio, carcass weight, catch-per-unit-effort) 

• Optimise survey methods, frequency and design 

 

The work has involved collating over 20 years of data in three states on kangaroo 

density from aerial surveys, harvest offtake, satellite imagery (greenness index or 

NDVI) and rainfall.  Such a long time series of data covering vast areas has enabled 

models to be developed that should lead to improved kangaroo management.  These 

models can be used to predict future kangaroo numbers, which should enable the 

frequency and intensity of expensive aerial surveys to be reduced.  Better prediction 

of kangaroo distribution within management zones should also help quota and tag 

allocation.  Rainfall and pasture conditions obviously influence changes in kangaroo 

numbers, but the relationships needed to be quantified.  The sex ratio and average 

weight of carcasses vary regionally, for a variety of reasons.  Most usefully for 

managers, these statistics track kangaroo density or harvest rate in some cases.  Both 

harvest statistics and satellite imagery have the advantage of being regularly updated 

and a high spatial resolution, both shortcomings of broad-scale aerial survey. 

 

Aerials surveys have been conducted annually in the eastern states, which may not be 

the most efficient survey frequency.  The optimal frequency can be identified by 

considering the risks of the population dropping to low density or rising to high 

density.  These risks can be considered as costs to the kangaroo industry, graziers and 

to conservation, which must then be balanced.  Risk can be reduced by increasing 

survey frequency or intensity, which is a cost to management, or reducing harvest 

rate, which is a cost to industry.  In more arid, uncertain environments, regular 

surveys are required. However, in many of these areas, harvests are low and a reduced 

harvest rate is unlikely to be a cost to industry. 

 

The data also suggest a greater influence of movement on red kangaroo population 

dynamics than previously thought, with large areas experiencing rates of increase 

much higher than possible through birth and survival alone.  This suggests movement 

needs to be considered when forecasting kangaroo density even at a regional (>10,000 

km
2
) scale.   

 

Funding has come from these collaborating groups and the Australian Research 

Council, which is particularly supportive of research collaboration between industry 

and universities.  The Murray Darling Basin Commission also supported some aspects 

of this work. 
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Specific project outcomes 
 

1. Our modelling of the temporal dynamics of kangaroo populations has identified 

several important determinants of population fluctuations.  These include appropriate 

rainfall and NDVI periods, species and regional variation, harvesting and the strength 

of density dependence.  These results are of both applied and theoretical importance.  

Managers will be able to make better predictions of population size allowing more 

sensitive quota setting, using either rainfall or NDVI and population trends in 

adjoining regions. 

 

2. By using a risk assessment and decision theory frameworks, we have been able to 

explore optimal monitoring strategies for kangaroo managers.  These will be 

influenced by the harvest strategy, environmental variability and the structure of the 

model describing population behaviour. A specific application of this was determining 

appropriate management of kangaroo populations during the recent drought. 

 

3. We have described the fine-scale spatial patterns of kangaroo density in South 

Australia and their variation over time.  Maps of interpolated density and associated 

local rates of increase suggest a greater influence of movement on red kangaroo 

dynamics than previously thought. 

 

4. Simple stratification of wallaroo surveys in Queensland using harvest data has 

substantially improved the accuracy and precision of the wallaroo population 

estimate. Stratification (regionalisation) of population estimates for all species has 

improved both the accuracy and precision of the statewide population estimates and 

allowed more appropriate quota setting. 

 

5. We are currently finalising analyses examining environmental determinants of 

kangaroo distribution in South Australia, Queensland and New South Wales.  We 

have identified shifts in the distribution of all species and found NDVI to be useful in 

detecting local shifts in the distribution of kangaroos.  We hope to use habitat models 

to derive small-scale abundance estimates (by integrating under a fitted spatial density 

surface) and to determine unbiased broad-scale estimates from non-random surveys.  

A reassessment of the distribution of western grey kangaroos in Queensland has also 

been possible using ground surveys. 

 

6. We have been able to identify those harvest statistics that appear sensitive to 

changes in kangaroo density and harvest rate.  There is considerable regional variation 

in both the statistics themselves and the relationships with density and harvest rate.  

This will provide managers with a clearer picture of how these statistics can be used. 

 

7. As an extension of our initial aims, we have been able to identify the potential 

effects of harvesting on kangaroo genetics.  This work has highlighted the importance 

of migration in ameliorating any impact. 

 

8. Further extensions include assessment of bias in helicopter surveys of kangaroo 

populations, design and conduct of surveys in southeastern New South Wales, 

analysis of the relationship between body size and age at sexual maturity in red 

kangaroos, effects of drought on the demography of an unharvested red kangaroo 

population, geographic variation in red kangaroo body size, age structure and harvest 
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selectivity and determinants of female reproductive success and offspring sex ratio in 

kangaroos.  The latter four pieces of work are yet to be finalised. 
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1. General introduction 
 

1.1 Overview 
 

This report details the findings of a research project aimed at improving kangaroo 

management in the eastern states of Australia. The project has three broad aims: 

 

• Predict kangaroo distribution and abundance using rainfall or satellite imagery and other 

environmental data 

• Indirectly monitor kangaroo density and harvest rate using harvest statistics (e.g. sex 

ratio, carcass weight, catch-per-unit-effort) 

• Optimise survey methods, frequency and design 

  

The need for better information about the distribution and abundance of kangaroos 

arises partly because kangaroo harvest quotas are currently set annually, each 

December, on the basis of surveys conducted the preceding winter or earlier, and so 

the population estimates are somewhat out of date.  These surveys, usually aerial 

surveys, are expensive, large-scale operations and there is an urgent need to develop 

supplementary techniques, which are both cost effective and able to monitor 

population changes in a timelier manner.  Our study explored two approaches.  The 

first was to combine extensive survey data on population size with rainfall, remotely 

sensed estimates of pasture condition (available Australia-wide on a monthly basis) 

and other environmental variables (soil, vegetation and rainfall).  The second was to 

examine the relationship between the aerial survey data (i.e. direct monitoring) with 

the harvest data, which are collected routinely (available on a monthly basis), as an 

indication of population density or harvest rate (i.e. to explore indirect monitoring). 

 

These approaches need to be considered in the broader framework of a harvest 

strategy.  This is described in detail in Section 2, providing an introduction to the 

following sections.  Quite clearly, an appropriate monitoring program for kangaroos 

will depend on the harvest strategy, which in turn will be determined by the 

management objective.  For example, harvesting a constant proportion of animals 

each year requires annual population estimates.  However, an alternative strategy of 

harvesting only above a threshold density requires only population estimates relative 

to that threshold.  If the population is well above the threshold, then less frequent 

surveys with lower precision, result in a cost saving to management, may be 

acceptable.  This framework is examined further in Sections 5 and 6. 

 

This report is structured around a series of papers, each a separate section, that are 

either published or submitted for publication.  Other sections are either not destined 

for publication or are in a less advanced state of preparation.  Analyses are 

nevertheless sufficient to allow a preliminary presentation of results.  There is also 

additional work that was too incomplete for presentation and this has been identified 

in the final section. 
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1.2 Collaborators and funding 
 

The project was funded by the Australian Research Council as part of its Strategic 

Partnerships with Industry (now Linkage) program, which involves cash and in-kind 

contributions from each of the industry partners.  Some aspects of the work were 

further supported by funding from the Murray Darling Basin Commission (Sections 

15 and 16) and New South Wales Department of Conservation (formerly New South 

Wales National Parks and Wildlife Service) (Sections 5 and 8). 

 

The collaborating organisations and personnel were: 

 

University of Queensland (Tony Pople, Norbert Menke, Hugh Possingham, Gordon 

Grigg, Stuart Phinn, Clive McAlpine, Cindy Hauser) 

Department of Environment and Heritage (Barry Baker, Cindy Steensby, Peter 

Hemphill, Alex Baumber) 

New South Wales Department of Conservation (Joshua Gilroy, Nicole Payne) 

Queensland Parks and Wildlife Service (Geoff Lundie-Jenkins, Sally Egan, Murray 

Evans) 

South Australian Department for Environment and Heritage (Lisa Farroway, Peter 

Alexander) 

University of New England (Stuart Cairns) 

Packer Tanning (Lindsay Packer) 

 

Other collaborators have been identified in each section as co-authors and assistance 

from various people has been acknowledged at the end of these sections.  In 

particular, Niclas Jonzen and Brigitte Tenhumberg made major contributions to the 

overall project. 

 

 

1.3 Datasets 

 

The aerial survey and harvest data used in this report are summarised in Tables 1.1 

and 1.2.  Details on the methods of the surveys and correction factors used to make 

density estimates temporally and in some cases spatially comparable are given in 

Section 12.  Changes to the Queensland survey area and in the calculation of 

population estimates are given in Section 3.  Organisation of the harvest data is 

described in Sections 9 and 13 along with location of the management regions in New 

South Wales and South Australia.  A large component of the project was collating 

these datasets, which in some cases included entering data from survey data sheets.  

The datasets are stored as Microsoft Access or Excel files, copies of which are held by 

each of the relevant state agencies and by The Ecology Centre at The University of 

Queensland.  Environmental datasets used in the study are described in the relevant 

sections. 

 

While the datasets are extensive, survey data were not available for spatial analysis at 

a fine scale in all years (Table 1.1).  For example, in New South Wales, raw data prior 

to 1993 had been lost in a fire.  Nevertheless, for these years, data at a broader scale 

were available for analysis. 
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Table 1.1. Data on kangaroo density used in this study.  Scale refers to the resolution of data available 

for analysis.  HLT, helicopter line transect; WP, western plains; PZ pastoral zone; KMZ, kangaroo 

management zone; SCB, soil conservation board; Region, areas based approximately on biogeographic 

boundaries within the core area (see Section 9). 

 

State Area Year(s) Platform Scale 

Qld Core 1980,1984-1992 Fixed-wing 2 km
2
 

 Core 2001 Fixed-wing 1 km
2
 

 Core 1991 HLT 5 blocks 

 Core 1992-1994 HLT 9 blocks 

 Core 1995-2001 HLT 10 blocks 

 >Core 2002-2003 HLT 19 blocks 

 Core 1980,1984-2003 Fixed-wing, HLT Region 

     

NSW WP 1975-1976 Fixed-wing 1:250,000 map sheets 

 WP 1977-1983 Fixed-wing Monitor blocks 

 WP 1984-2003 Fixed-wing 1
o
 blocks, KMZ 

 WP 1993-2000 Fixed-wing 2 km
2
 

 WP 2001-2003 Fixed-wing 1 km
2
 

     

SA PZ 1978-2003 Fixed-wing 2 km
2
, SCB 

 

Harvest data required editing, presumably due to transcription errors during data entry 

(e.g. implausible weights or nightly harvest).  The problem was not with the total 

harvest for the state, but for the total harvest and associated statistics at finer scales 

such as a region or property.  This unreliability cautions against the use of harvest 

statistics in management without some scrutiny.  For harvest statistics such as carcass 

weight and catch-per-unit-effort (CPUE), many errors were readily detected as 

outliers following plots of the data.  The problem is likely to be most pronounced at a 

fine scale (e.g. property).  On a broader scale, small errors are likely to be 

overshadowed by the sheer volume of data.  The approach taken in this project was to 

remove or correct obvious errors, but to generally accept that the harvest data were 

imperfect.  This would introduce some noise in the relationships between harvest 

statistics and population size, harvest rate and the environment.  However, it is 

unlikely that the quality of the data could be greatly improved.  The question was 

whether these harvest data, in their present form, could be useful to management. 

 

Species have been recorded separately in the harvest for some time, but some 

adjustment was required for earlier years.  In New South Wales, all species were 

combined in the harvest records for 1975-1981.  The two grey kangaroo species were 

not distinguished in the harvest in New South Wales until 1987.  The species 

composition of the harvest for these early years was therefore based on the 

composition for 1988-2001.  The kangaroo management zone (KMZ) harvest in New 

South Wales for 1975-1991 was unavailable.  These were estimated by apportioning 

the State harvest based on the fraction in each KMZ in 1992.  In Queensland, regional 

harvests were not available in prior to 1986.  Again, these were estimated by 

apportioning the State harvest based on the fraction in each region in 1986.  They 

were also unavailable for 1987, so the State harvest was apportioned by the average of 

the fractions in each region in 1986 and 1988.  In South Australia, the combined, 

recorded soil conservation board (SCB) harvest for 1980-1988 underestimated the 
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total reported harvest for the State.  The latter was known to be more accurate as it is 

based on dealer returns, whereas the SCB harvest is based on shooter returns, many of 

which had either not been received or not entered.  The SCB harvest was therefore 

adjusted by correction factors of 1.1-3.6 for those years, which assumes a constant 

bias among SCBs.  There were only harvest totals for the State in 1978 and 1979 in 

South Australia.  Again, the SCB harvest was estimated assuming a similar proportion 

of the State harvest taken in SCBs in 1978 and 1979 as was taken in 1980. 

 
Table 1.2.  Harvest statistics used in this study. Scale refers to the resolution of data available for 

analysis.  SR, sex ratio; H, harvest; WT weight; SS, skin size; CPUE, catch-per-unit-effort.  KMZ, 

kangaroo management zone; SCB, soil conservation board. 

 

State Area Year(s) Statistics Spatial scale Temporal scale 

Qld Harvest 

zone 

1975-2003 H Harvest zone Annual 

 Harvest 

zone 

1986, 1988-

1990 

H Grid square 

(½
o
 block) 

Annual 

 Harvest 

zone 

1991-2003 H, SR, WT, 

SS, CPUE 

Grid square 

(½
o
 block) 

Month 

      

NSW Harvest 

zone 

1975-2003 H Harvest zone Annual 

 Harvest 

zone 

1992 H KMZ Annual 

 Harvest 

zone 

1993-2004 H, SR, WT KMZ Month 

 Harvest 

zone 

1997-2004 CPUE KMZ 3 months 

      

SA Harvest 

zone 

1975-2003 H Harvest zone Annual 

 Harvest 

zone 

1980-2002 H, SR, WT, 

CPUE 

Property, SCB Month 
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Section 2 

 

Pople, A. (2004) Population monitoring for kangaroo management. Australian 

Mammalogy, 26, 37-44. 
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3. Regional management in Queensland 
 
3.1 Harvest management 1975-2002 

 
In Queensland, commercial harvest quotas for kangaroos have been set for a single, large 
zone (Fig 3.1).  This has allowed some areas to be harvested at much higher rates than 
others (Pople 1996).  This is despite the claims of Kirkpatrick and Amos (1985) that 
licensing of shooters and restrictions on the numbers of dealer sites in regions ensures an 
even spread of the harvest.  The problem is exacerbated by the method of estimating 
population size in the commercial harvest zone.  Aerial surveys have been conducted 
regularly in a core area of ~500,000 km2 within this region (Fig. 3.2; see Section 1, Table 
1.1; Caughley and Grigg 1982).  However, outside this area within the commercial harvest 
zone (~400,000 km2), surveys have been infrequent.  Some areas were surveyed by air in 
1980-1982 and 1984, and ground surveys were conducted in eastern areas over 1988-1992 
(Southwell et al. 1997).  Density has therefore at best been extrapolated from these 
surveys in line with fluctuations in the core area and at worst determined from a guess at 
the kangaroo density outside the core area relative to that inside the core area. 
 
The concentration of the statewide harvest in the core area is shown Figure 3.2.  When 
compared with estimates of population size, this translates into areas of harvest rates well 
in excess of the 15% (eastern grey kangaroos) or 20% (red kangaroos) set by the quota 
throughout the core area (Fig. 3.3).  There will invariably be spatial variation in harvest 
rate, but the overharvest in Figure 3.3 is in large areas.  Furthermore, Figure 3.3 shows 
average harvest rates, which hides the fact that there can be a considerable overharvest in 
years when the quota is met.  This has been seen even at a regional level (see Section 12, 
Fig. 12.x) where harvests have exceeded 15% for eastern grey kangaroos and 20% for red 
kangaroos over a number of years.  In defence of the management agency, quotas are not 
the only regulatory mechanism used in the harvest.  Shires can be closed to harvesting and 
harvest statistics have been used to monitor the status of the population (Anon. 1984; 
Queensland National Parks and Wildlife Service 1989; Queensland Parks and Wildlife 
Service 2003). 
 
 
3.2 Harvest management since 2003 

 
The obvious solution to the problem of regional overharvest is to apply regional quotas, 
which were implemented in Queensland in 2003.  Three regions were identified using a 
combination of the previous core area and administrative (shire) boundaries (Fig. 3.4).  As 
a result, the core area was enlarged.  It is likely that this will be extended to five regions 
(Fig. 3.5).  Ideally, the quotas should reflect the level of uncertainty in the population 
estimates and more generally the risk associated with harvesting for each region.  These 
concerns are examined in Section 5.  Queensland Parks and Wildlife Service (QPWS) 
have addressed this by surveying more regularly in the new western and eastern zones and 
harvesting at a lower rate in these zones than in the central zone.  Furthermore, in the 
southwestern area of the central zone, where there is no surveying, a density estimate of 
zero is assumed for all species.
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Fig. 3.1.  Zone (brown) in which commercial harvesting of kangaroos has been allowed in Queensland.  
Harvesting is excluded in other areas within this zone such as National Parks and State Forests. 
 

Fig. 3.2.  Core area where aerial surveys have been conducted in Queensland in 1980, 1984-present.  
Outside this area, densities have been interpolated from infrequent surveys or guessed. 
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Fig. 3.3.  Average annual harvest of all species in grid squares (½o blocks) Queensland 1986-2001. 
 

Fig. 3.4. Average harvest rate of (a) red and (b) eastern grey kangaroos in grid squares in the core area (Fig. 
3.2) of Queensland for 1986-1992, 2001. 
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Fig. 3.5.  Three commercial harvest zones used in Queensland since 2003.  Harvesting is not permitted in the 
green zone along the coast and on Cape York Peninsula. 
 

Fig. 3.6.  Proposed five commercial harvest zones for Queensland.  Harvesting would not be permitted in the 
light green zone along the coast and on Cape York Peninsula. 
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4. Estimating wallaroo numbers in Queensland 
 
4.1 Simple estimates of population size 

 
It is well known that wallaroo density is often markedly underestimated by fixed-wing 
surveys (see Section 2) and so quotas are not set on these data.  This has been particularly 
problematic in Queensland where there is a substantial wallaroo harvest relative to the 
other states.  The use of helicopter surveys has enabled wallaroo numbers to be estimated, 
although this is still recognised as an underestimate (Clancy et al. 1997).  The pattern of 
distribution of wallaroos in Queensland is strongly clumped, with moderate densities only 
found in an area between Charleville and Winton, with particularly high densities in the 
Blackall district.  It is not surprising then, that population estimates calculated as an 
average of 10 survey blocks (Fig. 4.1) has poor precision (Table 4.1). An additional 6 
survey blocks were flown in an enlarged core area in 2002 (Fig. 4.2; see Section 3, Fig. 
3.5), which improved precision (i.e. reduced the 95% confidence interval) and reduced the 
point estimate of density for wallaroos (Table 4.1).  However, the confidence intervals are 
still broad because of the high variation amongst blocks and the relatively small sample 
size. 
 
Table 4.1. Density estimates and 95% C.I. for wallaroos in the core area (Fig. 4.1) of Queensland in 2002.  
Estimates were calculated from 10 or 16 survey blocks or stratifying the 16 survey blocks by harvest density 
(Fig. 4.3). 

 

Stratification Survey blocks Density (km-2) 95% C.I. 

None 10 11.4 0-23 
None 16 8.8 3-14 

By harvest 16 3.1 2-4 

 
 
4.2 Stratified estimates of population size 

 
An alternative estimate of wallaroo density can be obtained by using the historical 
wallaroo harvest to stratify the core area.  Six strata, including a zero harvest, were 
identified (Fig. 4.3).  Stratification should almost improve precision with the main 
requirement that the area of each stratum is known (McCallum 2000).  The resulting 
estimate is shown in Table 4.1 and, as expected, has a much tighter confidence interval.  
What is particularly noteworthy is the much lower population estimate.  The conclusion is 
that the survey blocks represent a biased sample for estimating wallaroo density.  The 
implications for management are shown in Table 4.2 with a greatly reduced quota.  A 
quota based on the original 10 survey blocks with no stratification would have represented 
over half of the revised population estimate. 
 
Despite these previous problems in estimating wallaroo numbers, a number of factors have 
ensured the sustainability of the harvest and the population.  Firstly, wallaroo numbers in 
Queensland are likely to be underestimated by a factor of 2-3 (Clancy et al. 1997).  
However, comparisons of ground and helicopter counts in the more open habitat of the 
Barrier Ranges of New South Wales suggests slightly less bias (S. C. Cairns and J. Gilroy 
unpublished data).  Line transect double counting from helicopters will hopefully provide 
a better quantification of the bias in estimating wallaroo density (see Sections 2 and 7).  
The second factor is that the wallaroo harvest is >98% male in Queensland because 
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females are generally below the minimum weight set by dealers (see Section 13).  Finally, 
there are large areas which are harvest refuges for wallaroos, including hilly areas and 
areas of dense vegetation which shooters cannot access, and areas remote from dealer sites 
where it is uneconomic to harvest (Hacker et al. 2003). 
 
Table 4.2.  Estimates of wallaroo population size in 2002 in the core area (Fig. 4.1) of Queensland. 
Estimates were calculated from 10 survey blocks or stratifying the 16 survey blocks by harvest density (Fig. 
4.3). 

 

Stratification Population size Quota (15%) 

None 5.7 million 860,000 
By harvest 1.6 million 235,000 

 
 

Fig. 4.1.  Blocks (dark green) surveyed by helicopters in Queensland since 1992 to estimate kangaroo 
numbers in the core area (dark grey). 
 



26 

Fig. 4.2.  Blocks (dark green) surveyed by helicopters in Queensland since 1992 to estimate kangaroo 
numbers in the core area (dark grey) and additional blocks (light green) surveyed since 2002. 
 

Fig. 4.3.  Average wallaroo harvest in Queensland, 1986-2002. 
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4.3 Other species and spatial modelling 

 
A similar approach could be taken in estimating red kangaroo and eastern grey kangaroo 
abundance.  Indeed, QPWS are using historical harvest data to stratify the new western 
and eastern zones for these species (see Section 3, Fig. 3.5).  Within the central zone, the 
advantages of stratification for these species are likely to be less spectacular than for 
wallaroos because their density is far more uniform yielding a lower variation between 
survey blocks and the survey blocks return similar density estimates to those from fixed-
wing surveys (see Section 11; A. R. Pople unpublished data).  Using kangaroo densities 
from the fixed-wing surveys averaged over 1980-1992 in grid squares (i.e. ½o blocks), the 
additional survey blocks (Fig. 4.2) were located to minimise the overall bias between the 
average block density and the density from all grid squares (A. R. Pople unpublished 
data).  There should nevertheless be concern with using a small sample size of blocks 
which were not randomly located.  Spatial modelling is one way of accounting for this 
problem and is discussed briefly in Section 2.  Some analyses have been done for 
estimating kangaroo density in Queensland and South Australia and preliminary results 
are summarised in Section 17. 
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5. Survey frequency and precision 
 
5.1 Introduction 

 
This section draws heavily on two reports produced for New South Wales Department of 
Conservation on harvest management of kangaroos during drought (Pople 2003) and 
monitoring kangaroo populations in southeastern New South Wales (Pople et al. 2003). 
 
In wildlife management, the appropriate survey frequency and precision has generally 
been considered with the aim of detecting trends (Caughley 1979; Harris 1986; Gerrodette 
1987).  In kangaroo management, harvest regulation is primarily through quotas that are 
set as proportions of absolute estimates of population size (see Section 2).  Trends are of 
secondary importance.  This strategy has been well studied and is considered relatively 
safe and efficient for a fluctuating population (Caughley 1987; Engen et al. 1997; McLeod 
and Pople 1998).  However, the strategy requires a regular estimate of abundance on 
which to set a quota.  Imprecision in population estimates and infrequent estimates will 
risk applying a quota that is either too high or too low (Pople 2003).  By not harvesting at 
the desired rate (e.g. 15%), costs are incurred to the kangaroo industry through reduced 
and more variable yield, to graziers through increased competition with sheep and damage 
to crops and there is a social cost if kangaroos are reduced below some arbitrarily low 
density (i.e. quasiextinction).  These costs must be balanced against the cost of more 
intensive and frequent surveys (i.e. there is a trade-off).  Alternative harvest strategies can 
also be considered in order to reduce the risk of over- or underharvest.  These include 
harvesting at a different, and even variable, rate, regulating effort or incorporating spatial 
reserves. 
 
Kangaroo managers set annual quotas for a calendar year that represent a percentage (e.g. 
15%) of the population estimated annually (in most areas) by aerial survey in the winter of 
the previous year.  Even if the quotas are taken, the actual rates of harvest will differ from 
15%, because populations will rarely remain stable.  There is therefore some risk of over- 
or underharvest.  If the population halves over 12 months, the actual harvest rate over the 
year becomes roughly 21% instead of the desired (set by quota) rate of 15%.  If the 
decline is 80% (see below), the annual harvest rate is likely to be around 34%.  A doubling 
of the population will result in a harvest rate of roughly 11%.  These actual rates are 
approximate because they assume constant geometric growth and decline in the 
population. 
 
Overharvesting may result in reduced long-term yields if harvest rates are much greater 
than the maximum sustainable yield (MSY).  Underharvesting results in higher average 
population densities that may result in unacceptable grazing impacts.  It may also result in 
reduced long-term yields if harvest rates are well below the MSY. 
 
In most years, this risk of over- or underharvest is likely to be small, because year-to-year 
fluctuations are relatively small.  On a broad scale, increase in the population will be 
constrained physiologically by the reproductive capacity of females, and modified by sex 
ratio and age structure.  The maximum rate of increase, even in a male-biased population 
with few juveniles, will fall short of doubling.  However, the rate of decline can be more 
pronounced as it is unconstrained by an animal’s physiology.  In the drought of 1982-83, 
kangaroos declined by approximately 40% over 12 months in the sheep rangelands of 
eastern Australia (Caughley et al. 1985).  However, most of this decline occurred over a 
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shorter period of perhaps 4 months (Robertson 1986), when possibly the more vulnerable 
individuals died.  Had this period of decline been maintained, the decline over 12 months 
would have been 80%. 
 
These risks will be exacerbated by uncertainty in population size, which is measured by 
the standard error or confidence interval of the population estimate.  For example, 
population size may be overestimated through chance (sampling error) alone, resulting in 
an effective harvest rate higher than the desired 15%.  This potential overharvest will be 
compounded if the population then declines. 
 
Changes in population size (i.e. rate of increase) of kangaroos are closely linked to pasture 
biomass that is driven largely by rainfall in arid areas.  Because there is an upper limit to a 
population’s rate of increase, the difference between desired and actual harvest rate is 
potentially greater during drought than during times of plenty.  Moreover, quotas are more 
likely to be taken during drought because animals are more accessible, graziers are more 
active in having animals culled and the kangaroo industry will have a relatively greater 
capacity to take animals as a result of previous higher population densities. 
 
The discussion above ignores how harvesting affects a population depending on whether it 
is increasing or decreasing.   Harvest mortality can be additional to natural mortality or 
compensatory (Anderson and Burnham 1976).   The latter results from some animals 
being harvested that would have died anyway.  For a fluctuating population of herbivores, 
mortality will tend to be additive during population increases when pasture is abundant, 
but tend to be compensatory during declines in drought (Pople 1996).  Harvesting will 
therefore have a greater effect on a population’s rate of increase when it is increasing than 
during drought.  Harvesting is unlikely to be completely compensatory or completely 
additive as there will be potential survivors of drought that may be harvested and there is 
invariably natural mortality even when food is abundant.  The relevance of compensatory 
mortality to this discussion is that, while the disparity between desired and actual harvest 
rates is greatest during declines, the overall impact of harvesting is less during declines. 
 
Using a risk assessment framework, this section attempts to identify the appropriate 
survey frequency and precision for kangaroo harvest management in two locations 
spanning a broad range of annual rainfall. 
 
 
5.2 Methods 

 
There is considerable uncertainty in the future dynamics of kangaroo populations.  There 
is uncertainty in the environment (process uncertainty), in the response of kangaroos to the 
environment and harvesting (model uncertainty) and also in the density of kangaroos 
estimated from aerial survey (observation uncertainty).  Therefore, simulation modelling 
was used to assess risk (Burgman et al. 1993) in harvest management of kangaroo 
populations and included all three forms of uncertainty.  Scenarios covering the following 
factors were examined: 
 

1. Two alternative population models 
2. An arid and more mesic environment 
3. Harvest rates ranging from 0-20% 
4. Threshold and proportional harvest strategies 
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5. Survey frequency varying from 1-5 years 
6. Precision of population estimates, which determine harvest offtake, varying over 

coefficients of variation (CV=SE/mean × 100) of 0-200%. 
 
The additional risk posed to the population through harvesting can be couched in terms of 
probability of quasiextinction (i.e. population falling below an unacceptably low density), 
minimum, average and variation in population density, time spent below particular 
threshold densities, average and variation in harvest offtake, or average pasture biomass. 
 
Two models describing the dynamics of kangaroo populations in arid areas were 
considered: an interactive model described by Caughley (1987) and a ratio dependent 
model developed by McCarthy (1996).  In the interactive model, rainfall drives pasture 
biomass, which in turn determines the rate of increase of the kangaroo population.  There 
are two negative feedback loops.  The first is pasture biomass reducing pasture growth.  
The second is kangaroo density reducing kangaroo rate of increase by reducing the 
available biomass by eating it.  The ratio dependent model is much simpler, with kangaroo 
rate of increase a function of the ratio of rainfall to population size. 
 
Both models are based on data for red kangaroos, so extrapolation of the results to the two 
species of grey kangaroos and common wallaroos needs to be made cautiously.  In 
particular, the two grey kangaroo species have lower maximum rates of increase than red 
kangaroos and perhaps higher rates of decline in drought in arid regions (Robertson 1986; 
Bayliss 1987).  However, the qualitative differences between the species’ dynamics are 
slight, suggesting the qualitative results from the modelling should apply to all four 
species in an arid environment.  Management agencies accommodate species’ differences 
in lower quotas for grey kangaroos as a percentage of the population. 
 
Contrasting the results of the two models addresses just one form of model uncertainty.  A 
range of parameters for each model can also be considered.  This was not done here for 
two reasons.  Firstly, overall model structure was considered a greater influence.  
Secondly, for the interactive model, the maximum rate of decline was parameterised from 
a four-month period observed in the 1982-3 drought (Caughley 1987).  Whether this rate 
of decline could be maintained over a longer period is presently unknown, but a model 
allowing this should provide conservative estimates of risk (i.e. tend to overestimate risk). 
 
Both the interactive and ratio dependent models require rainfall as the main input variable, 
which was introduced into the model seasonally (i.e. three monthly).  Rainfall was taken 
from Menindee Post Office in western New South Wales (annual mean = 244 mm, SD = 
106 mm) where Caughley’s (1987) interactive model was parameterised.  McCarthy’s 
(1996) model was based on the South Australian Pastoral Zone, so Menindee rainfall 
needed to be rescaled. 
 
Although the interactive model was developed for an arid-zone population of red 
kangaroos, it can yield results relevant to eastern grey kangaroos in a more mesic 
environment.  Firstly, predictions of such entities as harvest rates for maximised yield, 
average population size and harvest yield were not sought; rather the objective of the 
modelling was to compare management scenarios.  It is the qualitative rather than the 
quantitative results of the modelling that are of relevance.  Nevertheless, the modelled 
population needed to show similar dynamics and a similar response to harvesting to an 
eastern grey kangaroo population in the east of the sheep rangelands.  The population 
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fluctuations in Caughley’s (1987) interactive model therefore required dampening by 
reducing the standard deviation in seasonal rainfall by 37% so that it was equivalent to 
that around Yass (annual mean rainfall = 652 mm) in southeastern New South Wales.  
Altering the standard deviation in rainfall and not the mean avoided the ‘paradox of 
enrichment’, which would have increased the mean kangaroo density and amplitude of 
fluctuations in kangaroo density (Crawley 1983). 
 
For the interactive model, the kangaroo population was harvested and pasture grew and 
was grazed down in weekly time steps.  Sheep competed with the kangaroo population, 
consuming 1.5 times the pasture that the kangaroos ate.  For the ratio dependent model, 
the time step was three months.  In both models, instantaneous harvest rates were 
converted to isolated rates of harvesting (Caughley 1977), appropriate to the time step, to 
simulate harvesting spread evenly throughout each year.  Harvest offtake for each three 
months was determined from a population estimate in the previous year.  Harvest offtake 
was therefore the same for each three months of the year, despite population size changing 
at each three monthly time step.  Population estimates were drawn from a lognormal 
distribution with a standard deviation dependent upon the survey precision (standard 
deviation/mean).  Survey precision varied from 0 to 2 (i.e. 0-200%), but was set at 0.2 
unless otherwise stated. 
 
The initial population size was 10 kangaroos km-2 (0.1 kangaroos ha-1).  For each scenario 
(i.e. combinations of factors in 1-6 above), the average of 1,000 simulations is reported.  
Population models were run in Excel with the add-in POPTOOLS (Greg Hood CSIRO 
2002, http://www.dwe.csiro.au/vbc/poptools/index.htm). 
 
 
5.3 Results 

 
5.3.1 Differences between population models 

 
The two models of population dynamics displayed quite different population behaviour 
despite fitting data from the South Australian Pastoral Zone reasonably well (McCarthy 
1996, Pople et al. unpublished).  The interactive model generated greater amplitude in 
population size over time than the ratio dependent model, resulting from weaker density 
dependence.  In the ratio dependent model, the population would recover relatively rapidly 
from declines in drought and population eruptions were similarly tempered. 
 
Furthermore, the ratio dependent model predicted smaller declines during drought (Pople 
2003).  This disparity is the result of different rainfall periods ultimately driving 
population rate of change of kangaroos in the two models.  For the interactive model, 
kangaroos essentially respond to rainfall without any lag.  In the ratio dependent model, 
there is a 12-month lag in the response.  A 12-month lag may be appropriate where 
enhanced juvenile survival is not detected immediately by aerial survey, but it is 
implausible during drought where there is substantial adult mortality that would be (and 
has been) detected immediately by aerial survey (see Section 9).  A final difference 
between the two models is that the ratio dependent model generates little effect of 
harvesting over the range of 0-20% on population decline (Pople 2003), again resulting 
from its stronger density dependence.  The differences between the models are clearly 
seen in the yield curves (Fig. 5.1), with the ratio dependent model indicating much higher 
sustainable harvests than the interactive model and a highly implausible MSY of >30%. 
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Fig. 5.1. Yield curves based on the ratio dependent model (solid line) and the interactive model (dotted line) 
of red kangaroo dynamics where the population is harvested annually at constant rates ranging 0-25% over 
100 years. Lines represent the average of 1,000 simulations. 

 Fig. 5.2.  Yield curves for Menindee (solid line) and Yass (dashed line) based on simulations over 100 years 
of a red kangaroo population harvested annually at constant rates ranging 0-25%.  Lines represent the 
average of 1,000 simulations. 

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25

Harvest rate (%)

A
v

e
ra

g
e

 a
n

n
u

a
l 

h
a

rv
e

s
t 

k
m

-2

Yass

Menindee

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60

Harvest rate (%)

M
e

a
n

 s
e

a
s

o
n

a
l 
h

a
rv

e
s

t 
k

m
-2

Ratio

Interactive



Monitoring for harvest management of kangaroos 33 

Overall these differences result in a lower risk of overharvest in the ratio dependent 
model, particularly during drought.  Therefore a more conservative risk assessment was 
undertaken solely with the more realistic interactive model. 
 
5.3.2 Contrasting environments 

 
Not surprisingly, average yield at Yass was higher than at Menindee and the maximum 
sustained yield is pushed slightly to the right (~13% for Menindee and ~15% for Yass, 
Fig. 5.2).  These yield curves and the associated population dynamics appear plausible for 
both environments, although the fluctuations in kangaroo numbers in more mesic 
environments have been poorly described.  Modelled average density over 100 years is 
higher at Yass and declines non-linearly with harvest rate (Fig. 5.3).  It obviously follows 
that the probability of the population falling below some low density increases with 
increasing harvest rate (Pople 2003).  Though not shown, risk does not increase linearly 
with harvest rate, with risk accelerating from 10-15% and decelerating from 15-20%, 
which coincides with the MSY for these models of 10-15% (Fig. 5.2).  The effect of 
varying survey frequency, precision and harvest strategy was compared across these two 
environments, which are roughly at either end of a continuum in aridity across the area 
where kangaroos are commercially harvested in Australia (Pople and Grigg 1998). 
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Fig. 5.3.  Average kangaroo densities for Menindee (solid line) and Yass (dashed line) based on simulations 
over 100 years of a red kangaroo population harvested annually at constant rates ranging 0-40%.  Lines 
represent the average of 1,000 simulations. 
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5.3.3 Survey frequency and harvest strategy 

 
As expected, the risk of quasiextinction is lower at Yass (Fig. 5.4) than at Menindee (Fig. 
5.5).  Reducing survey frequency not surprisingly increases the probability of 
quasiextinction.  Although the increase does not appear dramatic, a five-year survey 
frequency at Yass returns a risk of ~10% of the population falling below 2 kangaroos km-2 
and ~20% for a threshold of 5 kangaroos km-2.  The equivalent risks for an annual survey 
frequency are <1% and 10%, respectively. 
 
An alternative to the probability of quasiextinction shown in Figures 4 and 5 is the time 
(e.g. number of months) spent below particular thresholds.  The pattern is similar (Pople 
2003), but allows an acceptable threshold to be identified in different terms.  For example, 
it may not be cost-effective for harvesters to operate at densities below ~3 kangaroos km-2.  
The risk curve can then be used to identify the likely period of time when harvesting will 
not be possible.  Alternatively, harvesters may simply want to avoid densities below a 
particular threshold and there may be some socio-political cost of dropping below some 
density, in which case Figures 4 and 5 are appropriate. 
 
If the harvest rate is reduced to 10%, then the risk of quasiextinction is greatly reduced 
(Figs 6 and 7).  It is only at the lower threshold of ~3 kangaroos km-2 that reducing survey 
frequency with a 10% harvest becomes riskier than a 15% harvest with annual surveys.  
Even then, it is only when surveys are as infrequent as every five years.  On average, 
reducing the harvest rate from 15% to 10% results in an increase in average population 
density of 30-50% and a reduction in average harvest offtake of 1-13% (Figs 2 and 3). 
 
Reducing survey frequency results in only a slight increase in population and harvest 
variability and has little effect on average harvest offtake and population density.  At 
Menindee, harvest coefficient of variation (i.e. SD/mean) increases in a sigmoidal fashion 
from 0.41 to 0.55 as survey frequency is increased from 1 to 5 years.  Quasiextinction is 
likely to be of principal concern to the kangaroo industry as well as landholders and 
conservationists, because harvesting is unlikely to be commercially viable below some 
threshold density.  Hacker et al. (2003) suggest that this is around 5 kangaroos km-2.  
However, in practice there are regions where harvesting occurs at densities as low as 2-3 
kangaroos km-2, such as in the northwest of the South Australian Pastoral zone (Cairns and 
Grigg 1993).  Incorporating a threshold density in the model below which no harvesting 
occurs will increase harvest variability.  The latter increases exponentially as the threshold 
is raised (Pople 2003). 
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Fig. 5.4.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a survey frequency of 
1-5 years for Yass. 
 

Fig. 5.5.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a survey frequency of 
1-5 years for Menindee. 
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Fig. 5.6.  Probability of quasiextinction over 20 years from a harvest rate of 10% with a survey frequency of 
1-5 years for Yass.  The risk for a 15% harvest with an annual survey frequency (Fig. 5.4) is shown as a 
dashed line. 
 

 
Fig. 5.7.  Probability of quasiextinction over 20 years from a harvest rate of 10% with a survey frequency of 
1-5 years for Menindee.  The risk for a 15% harvest with an annual survey frequency (Fig. 5.5) is shown as a 
dashed line. 
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These simulations assume that quotas remain constant between surveys.  There are a 
number of examples from kangaroo management where quotas have been adjusted 
between infrequent (> 1 year interval) surveys.  In the northern tablelands of New South 
Wales, quotas have been adjusted for changes in kangaroo numbers in adjoining 
management zones and for recent rainfall (Gilroy 1999).  Quotas have been similarly 
adjusted in Western Australia where the harvest area was surveyed triennially, but now 
there are three survey areas with a different area surveyed each year (Pople and Grigg 
1998).  The risks of overharvest described by these simulations are therefore worst-case 
scenarios.  A simple rule was incorporated into the simulations whereby a survey was 
undertaken at set frequency (three or five years) unless rainfall in the previous year had 

been ≥ 50% below average, in which case the population was surveyed.  This made little 
difference to quasiextinction risk compared to annual surveys at Yass, but there was some 
reduction in risk for the 5-year survey program at Menindee (Figs 8 and 9).  This 

presumably reflects the greater likelihood of rainfall ≥ 50% below average. 
 
5.3.4 Survey precision 

 

Pople (2003) found that precision of ≤ 50% had little effect on the probability of 
quasiextinction under harvesting.  Here, a broader range of possible precisions and 
drawing population size from a lognormal rather than a normal distribution identifies 
when there is a substantial risk (Figs 10 and 11).  Above 50%, precision increases the 
probability of quasiextinction dramatically.  Interestingly, there is an interaction between 
survey precision and frequency (Figs 12 and 13).  Reducing survey frequency from every 
one to every five years when precision is 50% has a much greater impact on 
quasiextinction risk than if precision is only 20%. 
 
With poorer precision population size becomes more variable, but not greatly (Fig. 5.14).  
Harvest variation increases much more markedly with worsening precision (Fig. 5.14).  
Interestingly, the lines for the two locations converge at extremely poor precision (i.e. high 
CV=SE/mean), as the latter becomes an increasingly greater influence on harvest and 
population variation than rainfall variation. 
 
5.3.5 Trade-off between survey frequency and cost 

 
The appropriate survey frequency will depend on the costs of the surveys and the costs of 
compromising the harvest strategy through not always knowing population size.  
Imprecision can also incur costs, but this only seems a problem in this case when precision 
is > 50% (Figs 10 and 11).  To make costs comparable, the potential gains and losses 
incurred by the kangaroo industry, graziers, conservationists and any other stakeholders 
from adopting various monitoring programs need to be put onto the same scale.  This 
would require detailed exploration and so is not determined here.  Instead, a simple 
estimate of survey cost is contrasted with quasiextinction risk for increasing survey 
frequency.  This should provide a first approximation of the appropriate survey frequency 
and the nature of the trade-off.  
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Fig. 5.8.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a survey frequency of 
3 or 5 years (solid lines) and annual if rainfall is <50% of the long-term mean (dotted lines) for Yass. 
 

Fig. 5.9.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a survey frequency of 
3 or 5 years (solid lines) and annual if rainfall is <50% of the long-term mean (dotted lines) for Menindee. 
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Fig. 5.10.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a precision 
(CV=SE/mean) of 0-2 for Yass. 
 

 
Fig. 5.11.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a precision 
(CV=SE/mean) of 0-2 for Menindee.
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Fig. 5.12.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a precision 
(CV=SE/mean) of 0-2 for Yass. 
 

Fig. 5.13.  Probability of quasiextinction over 20 years from a harvest rate of 15% with a precision 
(CV=SE/mean) of 0-2 for Menindee.
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Fig. 5.14.  Coefficient of variation (SD/mean) of population density and harvest offtake over 20 years for 
Yass (dashed line) and Menindee (solid line) for precisions (CV=SE/mean) varying between 0 and 2. 
 

Fig. 5.15. Probability of quasiextinction (solid line) and survey cost over five years (dotted line) for survey 
frequencies of 1-5 years for Yass (open circles) and Menindee (solid squares).
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There are fixed costs associated with conducting aerial surveys that do not change if 
surveys are conducted less frequently.  These include labour costs and can be assumed to 
be $50,000 per annum.  The variable costs primarily comprise aircraft running costs and 
are assumed to be $50,000 per survey.  The total five-year survey cost (fixed + variable × 
no. of surveys) is shown in Figure 5.15.  This shows the ever-diminishing savings from 
reducing survey frequency.  Quasiextinction risk from Figures 4 and 5 is also shown in 
Figure 5.14, but only for a threshold density of 2 kangaroos km-2.  Risk of quasiextinction 
increases dramatically beyond a survey frequency of every four years.  The actual 
probability should be interpreted cautiously as it is dependent on the model structure and 
parameters and these have not been assessed for this population.  Furthermore, the 
acceptable level of risk is a value judgement. 
 
 
5.4 Discussion 
 

There are a number of management recommendations that are reasonably clear from this 
risk assessment.  Firstly, in more mesic environments, a survey frequency of three years 
with a precision of 20% appears to increase the risk of overharvest only slightly, while 
substantially reducing survey costs.  Whether the increase in risk is acceptable is a 
decision for management in consultation with stakeholders.  Secondly, in arid 
environments, harvesting near the MSY (e.g. 15% for the interactive model) ideally 
requires annual estimates of population size with a precision of < 50%.  In some regions, 
such as northwest South Australia and northwest Queensland, harvest rates are low (see 
Section 12), questioning the need for annual surveys.  Figure 5.7 suggests that reducing 
the quota to 10% would largely offset the risks resulting in surveying less frequently. 
 
The MSYs for these models do not necessarily translate to appropriate harvest rates to set 
as quotas.  The harvest is strongly male-biased which shifts the MSY to a higher rate 
(Hacker et al. 2003).  The relevant point from the modelling is that a reduction in harvest 
rate has a greater influence on risk than changing survey frequency, at least given the 
model structure and range of parameters examined here. 
 
The insensitivity of risk to changes in precision at CVs < 50% is surprising, particularly 
given the problem encountered for wallaroos in Queensland presented in Section 4.  
However, the latter problem was one of an unrepresentative (i.e. biased) sample rather 
than poor precision, although the problem was highlighted by broad confidence intervals.  
The simulation modelling here assumes no bias in the population estimates.  A single 
simulation run may use a biased estimate drawn from a lognormal distribution, but on 
average there is no systematic bias. 
 
In addition to lower harvest rates, other harvest strategies could be employed to offset the 
risks associated with reduced survey frequency.  It is well recognised that imposing a 
threshold density below which there is no harvest will reduce the probability of 
quasiextinction and optimise harvest offtake if coupled with increasing harvest rates above 
the threshold (Engen et al. 1997; Milner-Gulland et al. 2001).  The problem is that the 
temporal variation in harvest offtake increases with the density at which the threshold is 
set, and this was modelled for kangaroos by Pople (2003). This is also discussed in 
Section 8, where a low threshold is recommended.  Although it is effectively in force 
presently because of economic constraints, it would guard against an increase in the value 
of kangaroo products allowing shooters to operate at lower densities. 
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Abstract: 

 
We often need to estimate the size of wild populations to determine the appropriate 
management action, for example to set a harvest quota.  Monitoring is usually planned 
under the assumption that it must be carried out at fixed intervals in time, typically 
annually before the harvest quota is set. However, monitoring can be very expensive and 
we should weigh the cost of monitoring against the improvement it makes in decision-
making. A less costly alternative to monitoring annually is to estimate population size 
using a population model and information from previous surveys. In this paper, the 
problem of monitoring frequency is posed within a decision theory framework.  We 
discover that a monitoring regime that varies according to the state of the system can out-
perform fixed interval monitoring.  This idea is illustrated using data for a red kangaroo 
population in South Australia.  Whether or not one should monitor in a given year is 
dependent on the estimated population density in the previous year, the uncertainty in that 
population estimate, and past rainfall.  In particular, monitoring is important when the 
estimated population density in the previous year is very uncertain.  This may occur if 
monitoring has not taken place for several years, or if rainfall has been above average.  
Monitoring is also important when previous information suggests that the population is 
near critical thresholds in population abundance.  However monitoring is less important 
when management can have little impact on the population. 
 
Keywords: monitoring, decision theory, optimization, harvesting, red kangaroo, 
rangelands 
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Introduction 

 
Wildlife management requires periodic monitoring to ensure informed decision making 
(Walters 1986, Possingham et al. 2001).  Monitoring wildlife populations for 
management has two functions (Yoccoz et al. 2001). First, it is essential for 
circumstances where decisions are determined by the estimated size (and more generally 
state) of the population - state-dependent decision making (Pollock et al. 2002). Second, 
it provides an understanding of system dynamics, which can be used in future decision 
making (Walters and Hilborn 1978). 
 
Previous authors concerned with how we should monitor have focused on trend detection 
(e.g. Kendall et al. 1992, Eggeman et al. 1997, Forcada 2000, Tyre et al. 2003), 
recognizing the relationship between power, effect size and sample size in space and 
time.  Some studies have devised monitoring procedures that maximize power to detect 
trends (Taylor and Gerrodette 1993, Hayward et al. 2002, Pollock et al. 2002).  However 
to determine the optimal monitoring strategy we need to know what power or accuracy is 
necessary to make good management decisions.  Di Stefano (2003) argues that acceptable 
Type I and Type II errors should be set by considering their relative costs.  Yet it is only 
recently that authors (Yokomizo, Yamashita and Iwasa 2003, Field et al. 2004) have 
explicitly considered the costs and outcomes of monitoring as part of management.  
While decision theory tools are often used in the fields of harvesting, conservation and 
control (Shea et al. 1998), there has been little optimization of monitoring using decision 
theory.   
 
Yokomizo, Haccou and Iwasa (2003, 2004) are the first authors to combine monitoring 
and management within a single decision theory framework.  For a declining population, 
they identified the monitoring and conservation effort that minimized the total cost of 
monitoring, conservation effort and extinction risk.  They found that if prior information 
is highly uncertain or indicates that the population is small, then more effort should be 
spent on monitoring.  The optimal conservation effort is large when the population 
estimate after monitoring is small, but effort is relatively independent of the uncertainty 
around the estimate.  Results were more complex over a time horizon of more than one 
period. 
 
When management is framed within decision theory, the traditional approach is to use the 
same monitoring effort before each management decision is made.  Yokomizo, Haccou 
and Iwasa (2003, 2004) challenge this practice by integrating the costs of monitoring in 
the optimization.  If we are confident about our understanding of system dynamics, then 
we might be able to use our system model and previous data to make a reasonable 
prediction of the system state before monitoring even takes place.  If monitoring is a 
costly procedure then we must determine whether the extra information it provides 
outweighs this expense.  How much better is the state-dependent decision we make when 
we compare our observed state to our model-based prediction? 
 
In this paper we investigate the optimal monitoring of a harvested population.  We 
integrate the costs and likely outcomes of monitoring within the framework of decision 
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theory.  Our focus is the management of commercially harvested red kangaroo 
(Macropus rufus) populations in South Australia, but there are broader applications to all 
wildlife populations.  In our model population fluctuations are caused by variable rainfall 
and its effect on food availability (Caughley 1987).  While quotas are currently set using 
a population estimate derived from an expensive survey, it may be preferable in some 
circumstances to use freely available rainfall data and a model-based prediction of 
population size to set the harvest quota.  We expect there to be a trade off between the 
reduced cost of using a modeled prediction for the harvest decision and the increased risk 
of making a bad harvest decision. 
 
 
Problem Definition 
 

Here we provide some background information on management of the red kangaroo in 
Australia with a particular emphasis on devising an integrated measure of the “value” of 
different kangaroo densities to society.  We will also describe the components of the 
problem formulation, including the population model. 
 
(a) Background to case study 

In South Australia, aerial surveys of the pastoral zone (~240 000 km2) are conducted 
annually by the state government conservation agency to estimate the abundance of three 
kangaroo species.  In this paper we use density, harvest and rainfall data for just one of 
the species, the red kangaroo, for the North-east Pastoral Kangaroo Management Region 
(~31 000 km2) from 1978 to 2002 (Grigg et al. 1999, Jonzén et al. 2004).  Similar surveys 
are conducted in other Australian states.  Vast areas are surveyed incurring considerable 
costs.  In South Australia, population estimates are used by the conservation agency to set 
regional quotas for commercial harvest throughout the state in the following year.  In the 
last decade, annual harvest in the region has ranged between 12% and 22% of the 
estimated population in the previous survey.   
 
Various stakeholders have different interests in kangaroo management.  There is a desire 
for commercially viable harvests, control of kangaroo density to reduce grazing pressure, 
and maintenance of populations at levels consistent with social and cultural values (Pople 
and McLeod 2000, Grigg and Pople 2001).  Kangaroos have historically been harvested 
for their skins, which produce fine-grade, valuable leather.  More recently, their value has 
increased with an expansion of markets for kangaroo meat for human consumption in 
addition to lower value pet meat.  Kangaroos also compete with domestic livestock, 
particularly sheep, damage crops and hamper the rehabilitation of degraded vegetation 
communities.  Finally, kangaroos are an iconic group of species in Australia and 
conservation concerns are frequently raised, forcing management agencies to demonstrate 
population viability.  To integrate these stakeholder values we pose a utility function that 
expresses the relative desirability of a range of kangaroo densities. 
 
The current management procedure involves monitoring with the same effort each year, 
providing an estimate with relatively constant precision and cost.  A survey of the 
pastoral zone of South Australia costs about AUD$50,000 and the resulting population 
estimate for the North-East Pastoral region has a coefficient of variation of around 20%. 
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We contrast the existing strategy of an annual survey with an alternative strategy where 
we set the quota using an estimate of density from a model and previous data.  In this 
situation the harvest decision would be made in the face of greater uncertainty, which 
increases the risk of setting an inappropriate harvest quota.  For example, we might 
incorrectly predict that the population is of moderate size when it is actually low.  The 
moderate quota that is set will cause over-harvest, a lower average population size in the 
long term and hence a potential negative impact on public perception and kangaroo 
industry profitability.  If we incorrectly predict that the population is of moderate size 
when it is actually high, then too many kangaroos may survive after harvest, leading to 
over-grazing. Our task is to weigh the risk and consequence of making such mistakes 
against the cost of monitoring. 
 
(b) The population model 

Previous models for population dynamics of kangaroos have generally included density-
dependence and an environmental variable.  The environmental variable is most 
commonly rainfall, a surrogate for food supply, over some previous period (Cairns and 
Grigg 1993, McCarthy 1996, Bayliss 1985a, Bayliss1985b) although pasture biomass has 
been modeled directly (Caughley 1987) .  Jonzén et al. (2004) use a time series model 
that includes the effect of harvest and sheep population size.  We use a similar approach 
and assume that red kangaroo density changes from year to year according to a Ricker-
type function with intrinsic growth rate a, effect of density dependence b, effect of 
rainfall c, and process error εt:  
 

(1)  ( ) ( )1 expt t t t t tN N C a bN cR ε+ = − + + +  

 
where Nt is the red kangaroo population density at the beginning of year t.  The harvest 
removed from the population during year t is expressed as a density by the term Ct.  All 
reproduction and natural mortality is assumed to occur after harvest.  The process errors 
{εt, t = 0, 1, ...} are independent and identically distributed normal random variables with 
mean zero and variance υ2.  The rainfall term Rt is the total rain falling during year t-1. 
 
To fit this model to available data for the North-East Pastoral Kangaroo Management 
Region, we standardized annual rainfall using the mean and variance of the 102-year time 
series.  Relevant rainfall data were matched to density estimates and harvest data for the 
region from 1978 to 2002.  We obtained parameter estimates a = 0.5316, b = -0.0377, c = 
0.2264 and υ2 = 0.0507 for equation (1) by assuming that there was no observation error 
in the data and using the least squares method (Jonzén et al. 2004). 
 
We assume that the harvest Ct taken in year t is exactly the quota that is set.  The annual 
harvest quota is set as a constant proportion of the point estimate for density at the 
beginning of the year, and we use the expected density for this point estimate.  If harvest 
fraction h is used to set the quota, then the total harvest is  
 

( )t tC h N= E . 
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We use a fixed harvest fraction of h = 20%.  This is currently the maximum harvest 
fraction set for red kangaroos in South Australia (SADEH 2002).  Thus the estimation of 
density in year t affects the harvest taken, which in turn affects future density through 
equation (1).  The expected density E(Nt), and the uncertainty of this value as a point 
estimate, will depend on whether or not we conducted a survey before setting the harvest 
quota. 
 
(c) The objective and the utility function 

The identification of an appropriate objective for a given management problem can be an 
enormous task in itself.  It is a subjective decision that should be made by managers and 
other stakeholders under the guidance of social scientists.  Below we describe a simple 
relationship between overall utility, the expected value of which we attempt to maximize, 
and kangaroo density.  While defining a utility function and hence objective is important, 
this is not the central focus of this paper.  Our choice is primarily to illustrate the method. 
 
Some densities are considered more desirable than others. Low densities put the 
population at risk of local extinction, reduces yield and longer-term viability for 
harvesters and may lead to reduced visual amenity for tourists, while high densities cause 
over-grazing. Thus we have created a utility function that is very low as the population 
approaches local extinction, positive for densities of 5 to 20 individuals per square 
kilometer, and decreasing as density increases above 20 individuals per square kilometer. 
We use the utility function 
 

(2)  ( ) NU N e Nβα γ δ−= − − + ,  N ≥ 0, 

 
with 
 

α = 120, β = 0.4, γ = 1, δ = 20, 
 
where U(N) is the “desirability” of kangaroo density N, and density N is measured in 
individuals per square kilometer.  The utility does not need to be measured in monetary 
units, it simply reflects the relative integrated community desirability of different 
densities. 
 
The utility function U(N) is plotted in Figure 1.  Local extinction (N = 0) is considered 
very undesirable and the utility of low densities decays exponentially as population 
density increases (the first term in equation (2)).  As density increases utility decreases 
linearly as a response to increasing damage and over-grazing caused by kangaroos (the 
second term in equation (2)).  The parameter values were chosen so that extinction was 
considered much more undesirable than any realistic level of property damage. Densities 
between 5 and 20 individuals/km2 are most desirable. 
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Figure 1.  The relative utility, U(N), of density N; as in equation (2) with α = 120, β = 0.4, γ = 1, 

δ = 20. 

 

 

(d) The process of data collection and decision-making 

Consider the decision that we must make at the beginning of year t.  Regardless of 
whether or not we choose to conduct a survey, we must set a quota for the harvest to be 
taken during year t.  This harvest will affect the population density at the beginning of 
year t+1.  Our utility function U(N) will give the value of this population density.  The 
objective is to maximize the combined utility of the population density at the beginning 
of year t+1 and the survey decision at the beginning of year t.  In making the survey 
decision we use equation (1) and relevant previous data.  We need total rainfall during 
year t-2 and an estimate for density in year t-1 to predict kangaroo density in year t in the 
absence of a survey.  Then we need rainfall during year t-1 to predict kangaroo density in 
year t+1, and hence calculate the expected utility. 
 
We assume that rainfall data are obtained without cost or observation error.  Each year 
we describe our estimation of the population by a lognormal distribution with parameters 
µ and σ.  Therefore the probability density function for population density N is 
 

( )
( )

2

22

ln1
exp

22
N

n
f n

n

µ

σπσ

 −
= − 

  
. 

 
The mean and variance of this probability density function is 
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( )
2 2

t
N e

µ σ+=E , 
2 22( ) 2var( )

t
N e e

µ σ µ σ+ += − . 

 
We use distribution parameters µt-1 and σt-1, and rainfall data Rt-1 and Rt as state variables 
when making a state-dependent monitoring decision for the beginning of year t.  
Parameters µt-1 and σt-1 provide a distribution of plausible values for last year's density  
Nt-1.  Rainfall data Rt-1 and Rt can be combined with equation (1) to find plausible values 
for this year's density Nt, next year's density Nt+1 and ultimately the utility U(Nt+1).  The 
complete process of data collection and decision making is shown in Figure 2. 
 
Assume that we have the required state variables µt-1, σt-1, Rt-1, Rt to make the optimal 
monitoring decision.  Let D be a Boolean variable that indicates the monitoring decision 
made, where D=1 indicates that a survey is to be carried out and D=0 indicates that a 
harvest quota is set using a model-based prediction and previous data.  Then the value of 
the best decision F(µt-1, σt-1, Rt-1, Rt), is  
 

( ) { }1 1 1 0 1, , , max ,t t t tF R R V Vµ σ− − − =  

 
where 
 

(3)  ( )0 1 | 0
t

V U N D+= =  E  

(4)  ( )1 1 | 1
t

V U N D S+= = −  E . 

 
The variable V0 is the value of deciding not to conduct a survey.  It is just the expected 
utility of the population density in one year’s time if our quota is set using a model-based 
prediction of kangaroo density.  The variable V1 is the value of deciding to conduct a 
survey.  It is the expected utility of the population density in one year’s time under the 
assumption that a survey is conducted, with a cost, S, for the survey.  This represents the 
expense associated with obtaining a precise population estimate.  To obtain the maximum 
value F we choose the larger of V0 and V1. 
 
Note that the expected utility of the population density at the beginning of year t+1 
depends on the monitoring decision made at the beginning of year t.  Choosing not to 
conduct precise surveys makes our density prediction increasingly uncertain each year, 
and hence affects the expected utility of the decision. 
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Figure 2.The process of data collection and optimization to make a survey decision for the 
beginning of year t.  Note that to describe the distribution of the population in year t-1, we use the 
expected value E(Nt-1) and coefficient of variance CV(Nt-1), not the parameters µt-1 and σt-1.
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(e) Expected value of not conducting a survey 

Equation (3) gives the value of deciding not to conduct a survey this year: 
 

( )0 1 | 0
t

V U N D+= =  E . 

 
That is, we wish to find the expected utility of next year's kangaroo density under the 
decision that we do not conduct a survey of kangaroos this year. If we have a probability 
distribution for population density next year under this decision Pr(Nt+1=n | D=0) then 
 

0 1
0

( ) Pr( | 0)
t

V U n N n D dn
∞

+= = =∫ . 

 
We can use equation (1) and rainfall Rt to find a distribution for next year's kangaroo 
density conditional on current density Pr(Nt+1=n | Nt=m).  This is useful if we have a 
probability distribution for current population density under the decision that a survey is 
not conducted Pr(Nt=m | D=0). Then 
 

0 1
0 0

( ) Pr( | ) Pr( | 0)
t t t

V U n N n N m N m D dmdn
∞ ∞

+= = = = =∫ ∫ . 

 
Since we know last year's density comes from a lognormal(µt-1, σt-1) distribution, then we 
can use equation (1) and rainfall Rt-1 to find the probability distribution for the current 
population density conditional on the population density last year Pr(Nt=m | Nt-1=l). So 
the expected utility next year if a survey is not carried out is 
 

(5) 0 1 1 1
0 0 0

( ) Pr( | ) Pr( | ) Pr( )
t t t t t

V U n N n N m N m N l N l dldmdn
∞ ∞ ∞

+ − −= = = = = =∫ ∫ ∫  

 
The probability distributions used in equation (5) are described in the Appendix. 
 
The triple integral (5) is efficiently approximated by simulation. For each combination of 
state variables µt-1, σt-1, Rt-1, and Rt we first draw a large number K of lognormal(µt-1, σt-1) 
random variables to approximate our distribution for last year's density Nt-1.  Then we 
draw K Normal(0, υ2) random variables to represent process error εt-1.  These are 
combined in equation (1) with rainfall Rt-1 to approximate the distribution for current 
density Nt.  The harvest over year t-1 is 
 

2

1 1 1 1

1
( ) exp

2
t t t tC h N h µ σ− − − −

 
= = + 

 
E . 

 
Similarly we draw another K Normal(0, υ2) random variables to represent εt, combine 
them with current density Nt and rainfall Rt to approximate a distribution for next year's 
density Nt+1.  Harvest over year t is the fraction h of the mean of all K values for Nt.  For 
each of the K random variables we have for Nt+1 we find U(Nt+1).  The mean of these 
utilities is an approximation for V0. 
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(f) Expected value of conducting a survey 

Equation (4) gives the expected value of conducting a survey this year: 
 

( )1 1 | 1
t

V U N D S+= = −  E . 

 
We can use the same argument as in the previous section to show that 
 

1 1
0 0 0

ˆ ˆˆ ˆ ˆ( ) Pr( | ) Pr( | 1)
t t t

V U n N n N m N m D dmdn S
∞ ∞ ∞

+= = = = = −∫ ∫ ∫ , 

 
where we have added hats to the distribution for current density Nt.  These indicate that 
the distributions are derived from observation of the actual system, not from a predictive 
model. 
 
Now we find plausible current densities from the survey.  We do not yet know the 
outcome of the survey but we can say something about its precision.  We assume that all 
surveys have a coefficient of variation of 20%, which is comparable to the precision of 
surveys conducted from 1978 to 2002 (Grigg et al. 1999, Jonzén et al. 2004). That is, 
 

( )
( ) 0.2

( )
t

t

t

N
N

N
= =

SD
CV

E
 

 
where CV denotes coefficient of variation, SD denotes standard deviation and E denotes 
expected value.  Since we describe likely values for Nt by a lognormal probability 
distribution with parameters µt and σt, then the above equation can be solved in terms of 
these parameters to find that σt

2 = ln 1.04. 
 
However, we still do not know the outcome of µt for the survey.  If we assume that we 

know the true current density Nt, then the mean density ˆ
t

N  we observe will come from a 

lognormal distribution with E( ˆ
t

N ) = Nt and CV( ˆ
t

N ) = 0.2.  Hence the probability of 

getting an estimated density of m̂  animals given we carry out a survey is 
 

0

ˆ ˆˆ ˆPr( | 1) Pr( | ) Pr( )
t t t t

N m D N m N m N m dm
∞

= = = = = =∫ . 

 
As in the previous section we can find a distribution for likely current density through 
modeling using 
 

1 1
0

Pr( ) Pr( | ) Pr( )
t t t t

N m N m N l N l dl
∞

− −= = = = =∫ . 

 
The actual probability distributions are included in the Appendix. 
 
We again use simulation to approximate this integral.  For each combination of state 
variables µt-1, σt-1, Rt-1, and Rt we use the same method outlined for expected utility when 
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a survey is not conducted, to obtain K random variables that describe the distribution for 
current density.  For each of these K random variables Nt we draw a lognormal random 
variable with mean Nt and coefficient of variation 0.2. This gives us a distribution for 

likely survey estimates ˆ
t

N .  Then we draw K Normal(0, υ2) random variables to represent 

εt, combine them with current estimate ˆ
t

N  and rainfall Rt to approximate a distribution 

for next year's density Nt+1. This sets the harvest ˆ
t t

C hN= .  For each of the K random 

variables we have for Nt+1 we find U(Nt+1). The mean of these utilities is an 
approximation for E[U(Nt+1) | D=1]. 
 
 
Results 

 
Here we first investigate the expected utility of each decision approximated by simulation 
with K = 10000.  It is assumed that the last two years of rainfall have been average (Rt-1 = 
Rt = 0) and we calculate expected utility E[U(Nt+1) | D=0] or E[U(Nt+1) | D=1] over a 
variety of distributions for last year's density by varying µt-1 and σt-1.  The Central Limit 
Theorem was used to find the standard error of simulations. Then we compare the utility 
of these decisions in the optimization under a broader range of rainfall information.  
 
(a) Expected utility without a survey 

Without a survey, expected utility generally increased as the expected density last year 
increased, until expected density reached 30 individuals/km2 (Figure 3).  The most 
dramatic increase occurred as expected density increased from 0 to 5 individuals/km2, 
and then expected utility was somewhat steady for expected densities above 10 
individuals/km2.  Expected utility was improved as last year's estimate became more 
accurate (coefficient of variation decreased). 
 
Expected utility was explored under a variety of rainfall scenarios not shown here.  
Rainfall did not have a large effect on expected utility, although expected utility was 
slightly higher if rainfall was high.  Each of the rainfall state variables Rt-1 and Rt had the 
same effect. 
 
(b) Expected utility when a survey is conducted 

With a survey, expected utility had a similar response to last year's density estimate as it 
did when a survey was not conducted (Figure 4).  It increased markedly as expected 
density increased from 0 to 5 individuals/km2, and then was somewhat steady for 
expected densities above 10 individuals/km2.  Expected utility was improved as last 
year's estimate became more accurate, but the effect was not as strong as for expected 
utility when a survey is not conducted. 
 
Again the two rainfall state variables Rt-1 and Rt had similar effects.  High rainfall 
produced higher expected utility.  The effect of uncertainty in last year's estimate was 
reduced under high rainfall. 
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Figure 3.  Estimated E[U(Nt+1) | D=0] (solid lines) as a function of E(Nt-1) with 95% confidence 
intervals on the estimations (dotted lines).  Expected utilities are estimated using simulation with 
K=10000 and rainfall data are assumed to be Rt-1 = 0, Rt = 0.  Each solid line depicts different 
levels of uncertainty CV(Nt-1) (labeled). 
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Figure 4.  Estimated E[U(Nt+1) | D=1] (solid lines) as a function of E(Nt-1) with 95% confidence 
intervals on the estimations (dotted lines).  Expected utilities are estimated using simulation with 
K=10000 and rainfall data are assumed to be Rt-1 = 0, Rt = 0.  Each solid line depicts different 
levels of uncertainty CV(Nt-1) (labeled). 
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(c) Optimal survey decision 
In order to calculate V1 and determine the optimal state-dependent survey decision, we 
have a cost, S, of carrying out a survey of the population at the beginning of year t.  To 
accurately determine the trade-off between the cost of monitoring and expected utility we 
would have to transform the two in to one single currency.  While we know the cost of a 
survey, it is very difficult to translate the utility of a particular kangaroo density into a 
monetary value.  Consequently we investigated the difference between the expected 
utilities under each decision, ie. E[U(Nt+1) | D=1] -E[U(Nt+1) | D=0]. This indicates the 
improvement to management that conducting a survey will make over the use of a model-
based prediction.  It is the maximum utility, S, we would be willing to pay to conduct a 
survey. 
 
Figures 5, 6 and 7 show the difference between expected utilities under three 
combinations of recent rainfall.  Other combinations of rainfall information Rt-1 and Rt 
were also considered but are not shown here.  It was found that higher rainfall increased 
the acceptable survey cost S and that both rainfall state variables are equally important. 
 

We found that the expected utility using modeling E[U(Nt+1) | D=0] is always less than 
the expected utility when a survey is conducted E[U(Nt+1) | D=1] (see Figures 5-7, where 
the plot is always nonnegative).  The difference between these expected utilities increases 
as uncertainty in last year's estimate increases. The difference is not so great if the 
population was thought to be at a low density last year, especially when rainfall has been 
low. At higher rainfall levels we are most likely to pay for a survey when last year's 
density estimate was around 5 individuals/km2. 
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Figure 5.  The maximum cost S for which conducting a survey is the optimal decision (solid 
lines).  Expected utilities are estimated using simulation with K=10000 and dotted lines indicate 
95% confidence intervals on the estimation.  Rainfall data are assumed to be Rt-1 = -2, Rt = -2.  
Each solid line depicts different levels of CV(Nt-1) (labeled on right). 
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Figure 6.  The maximum cost S for which conducting a survey is the optimal decision (solid 
lines).  Expected utilities are estimated using simulation with K=10000 and dotted lines indicate 
95% confidence intervals on the estimation.  Rainfall data are assumed to be Rt-1 = 0, Rt = 0.  
Each solid line depicts different levels of CV(Nt-1) (labeled on right). 
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Figure 7.  The maximum cost S for which conducting a survey is the optimal decision (solid 
lines).  Expected utilities are estimated using simulation with K=10000 and dotted lines indicate 
95% confidence intervals on the estimation.  Rainfall data are assumed to be Rt-1 =2, Rt = 2.  Each 
solid line depicts different levels of CV(Nt-1) (labeled on right). 
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Discussion 

We have demonstrated that the costs and likely outcomes of monitoring can be integrated 
into the framework of decision theory for population management.  In this way we see 
that it may not be optimal to use the same monitoring effort before each decision.  Rather, 
the level of monitoring effort to be used depends on the current state of the system. 
 
For the management of a red kangaroo population in South Australia, rainfall data and a 
past estimate of population density are used to determine the value of conducting a 
survey.  Our results show that if there is no cost attached to conducting a survey then it is 
always better than using modeling to set harvest quotas. This is a sensible result since we 
would expect that collecting further data and reducing uncertainty about population 
density would improve management decisions, where the utility function is non-linear. 
 
Expected utility, whether or not a survey is conducted, decreases dramatically as the 
estimated density last year decreases below five individuals/km2 (Figures 3 and 4).  Even 
if monitoring does improve management somewhat, it is unlikely that the population will 
increase to a higher more desirable density next year and so the population will still be at 
a density with low utility.  In contrast, utility does not decrease significantly when density 
last year was estimated to be very high, suggesting the population is likely to be in a state 
of high utility even if monitoring does not take place.  This is a consequence of the utility 
function, which describes low densities as much more undesirable than high densities.  It 
may also arise from the density dependent term in equation (1), which ensures that the 
population is likely to decrease if it is large. 
 
As we would expect, increasing uncertainty in last year's population density estimate 
increases the value of conducting a survey now.  As the number of years between 
subsequent surveys increases, so does the uncertainty in population estimates obtained by 
modeling.  This result indicates that eventually we must carry out a survey to reduce the 
uncertainty brought about by modeling year after year.  This will reduce the chance of an 
inappropriate harvest quota. 
 
If last year’s density estimate is small (eg. below 3 individuals/km2), then surveys are 
generally less valuable than if the estimate is large.  This is particularly apparent when 
rainfall has been very low.  While this appears counter-intuitive, it seems that in these 
circumstances the density is at a very undesirable level (see utility function in Figure 1) 
and management, good or bad, struggles to have a positive impact on the utility (Richards 
et al. 1999, Yokomizo et al. 2004). 
 
The value of conducting a survey is larger when rainfall has been high.  We believe this 
is a consequence of the structure of the population model in equation (1).  The rainfall 
variable creates exponential growth and there is lognormal process error.  In combination, 
these terms indicate that above average rainfall creates a highly uncertain increase in 
population density.  Thus monitoring to reduce this uncertainty will improve 
management. 
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The most significant limitation of this study is that calculations are made under the 
assumption that equation (1) gives a true description of population dynamics.  In this way 
we assume that modeling (skipping surveys) will give the best possible density estimate, 
even though the process error in equation (1) will cause uncertainty to increase from year 
to year.  Hence our results may underestimate the value of conducting surveys.  An 
interesting extension would be to relax this assumption by considering multiple models.  
Multiple hypotheses of population dynamics would allow full utilization of the second 
function of monitoring: understanding of system dynamics to improve future 
management.  We expect that monitoring would become more valuable when the 
population is in a state that maximizes the difference between hypotheses. 
 
We have discussed the reduced value of monitoring when management has little impact.  
For this red kangaroo population, a different harvest strategy might have a greater impact 
at very low densities.  For example, taking 20% of the population estimate only when the 
population estimate is above 3 individuals/km2 and allowing no harvest for population 
estimates below 3 individuals/km2 may improve management.  Ultimately the 
optimization of harvest in conjunction with monitoring is required to maximize the 
impact of management.  Under this scenario it may be that monitoring is still of little 
value when population density is low and we should take conservative management 
action regardless of what a survey could tell us (Field et al. 2004). In a similar vein, our 
results do not specifically indicate an optimal survey frequency to be carried out in the 
long term.  Simulation of a kangaroo population subject to survey decisions over a longer 
time frame may indicate the appropriate survey frequency. 
 
In summary, monitoring is more valuable as the previous population estimate approaches 
population thresholds where the utility of population density is changing rapidly.  In this 
example, it is at a density of five individuals/km2, when the population becomes 
undesirably small.  However monitoring is less valuable when management will have 
little impact on the population.  This is the case for this kangaroo population as density 
declines below three individuals/km2.  The value of monitoring increases as the 
uncertainty around a previous population estimate increases.  Environmental variables 
(such as rainfall, in this study) may indicate that the current state of the population is 
particularly uncertain, also increasing the value of monitoring.  Further work on different 
species is needed to determine if these broader insights have general applicability. 
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Equations for V0 

Equation (5) is more fully described as: 
 

 

[ ]

1

1

0 1
0

1
0

(0) Pr( 0) ( ) ( )

( ) Pr( 0) Pr( 0, 0) ( ) ( ) ,

t

t

t N

n

t t t N

V U N U n f n dn

N N N e n f n dn
βα δ α γ δ

+

+

∞

+

∞
−

+

= = +

= − + = + > = + − − +

∫

∫
 

 
where 
 

(6)  
( )1

2

1

20
11

ln1
Pr( 0) exp ,

22

tC
t

t

tt

l
N dl

l

µ

σπσ

− −

−−

 −
= =  

  
∫  

 

[ ]1
0

Pr( 0, 0) 1 Pr( 0) ( ) ,
t

t

C

t t t N
N N N f m dm+> = = − = ∫  

 

[ ]
1

2

2

ln ln( )1
( ) ( )exp ,

22t t
t

t t

N N
C

n m C a bm cR
f n f m dm

n υπν+

∞  − − − − − 
= − 

  
∫  

 

(7)  
( ) [ ]

1

22

1 11

2 2

1 1

ln ln( )ln1 1
( ) exp ,

2 2 2t
t

t tt

N
C

t t

m l C a bl cRl
f m dl

m l

µ

πσ ν σ υ−

∞
− −−

− −

 − − − − −− 
= − − 

  
∫  

 



20 
SUBMITTED FOR PUBLICATION: DO NOT CITE WITHOUT AUTHOR’S PERMISSION 

( )
2

1

22
11

1 2

11

ln
exp ,

22 t

tt
t t

C
tt

ll Che
C a bl cR dl

l

υ µ

σπσ −

∞
−−

−

−−

 −−
= + + − 

  
∫  

 

(8)  2

1 1 1

1
exp .

2
t t tC h µ σ− − −

 
= + 

 
 

 
 
Equations for V1 
The variable V1 is more fully described as: 
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where Pr(Nt = 0) is given in equation (6), 
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and fNt(m), Ct-1 are given in equations (7), (8), respectively. 
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Introduction 

 

Since the mid-1980s, management of the commercial harvest of kangaroos (Macropus 

spp.) in Australia has relied on annual quotas set as a percentage of an estimate of 

population size (Pople and Grigg 1998).  Because most harvesting occurs over the vast, 

relatively open, arid and semi-arid regions of Australia, population estimates have been 

determined primarily using aerial surveys e.g. (Caughley and Grigg 1981).  Aerial 

surveys have traditionally used fixed-wing aircraft (e.g. Cessna) and strip transects 

(Caughley et al. 1976), but there has been an increasing use of helicopters and line 

transects (Clancy et al. 1997; Southwell and Sheppard 2000).  In Queensland, where 

roughly 50% of the Australian kangaroo harvest is taken, kangaroo population size is 

determined almost solely from helicopter surveys (Lundie-Jenkins et al. 1999).  Direct 

comparison of population estimates from helicopter surveys with those from fixed-wing 

surveys has also allowed correction for visibility bias inherent in the latter (Pople et al. 

1998a; Pople et al. 1998b). 

 

Bias in estimates of population size can lead to over or underharvesting, and so there has 

been considerable research effort in estimating kangaroo population size accurately 

(Pople 2004).  However, bias in helicopter surveys using line transect methods, while 

recognised (Clancy et al. 1997), has been neither well quantified nor assessed over the 

range of habitats that helicopter surveys are conducted.  (Clancy et al. 1997) found that 

estimates of red kangaroo (M. rufus) and eastern grey kangaroo (M. giganteus) density 

determined by helicopter surveys were similar to those determined from walked line 

transect surveys in two locations in Queensland.  However, helicopter surveys 

underestimated the density of common wallaroos (M. robustus) by a factor of 2-3.  

Furthermore, walked line transect surveys are likely to return underestimates of kangaroo 

population size (Southwell 1994). 

 

An alternative means of assessing bias in helicopter surveys is to use mark-recapture 

methods in combination with line transect sampling (Borchers et al. 1998).   This 

involves at least two observers counting along the same transect and identifying animals 

that are seen by only the first observer, only the second observer or both observers.  Such 

‘double counting’ in strip transects has a history of use in aerial survey of Australian 

aquatic (Marsh and Sinclair 1989) and terrestrial (Bayliss and Yeomans 1989; Pople et al. 

1998c) fauna including kangaroos (Choquenot 1995).  However, if key assumptions are 

violated, particularly if capture probability is heterogeneous, then density estimates can 

be biased (Caughley and Grice 1982).  Similarly, accurate density estimation from line 
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transect sampling relies on assumptions being met, particularly animals on the line not 

being missed.  The combination of mark-recapture and line transect methods is new and 

promises density estimation with minimal bias. 

 

This study assessed the feasibility of line transect double counting in helicopter surveys 

of kangaroo populations and aimed to quantify bias in population estimates for three 

species of kangaroos at two locations in Queensland.  An assessment of variability in bias 

amongst observers was also made.  This was considered the first step to the longer-term 

goal of assessing bias on a broader scale, over time and with a greater range of observers. 

 

 

Methods 

 

Study area 

 

The study was conducted in two survey blocks of approximately 10 000 km
2
 centred on 

the southern Queensland towns of Roma, in the brigalow belt bioregion, and Charleville, 

in the mulga lands bioregion (Environment Australia 2000; Fig. 1). The Roma block is a 

mixture of tussock grasslands mostly sown to cereal crops, and Eucalyptus, Casuarina 

and conifer open grassy woodlands.  Eastern grey kangaroos are abundant in the Roma 

district, whereas red kangaroos and common wallaroos occur at relatively low densities.  

The Charleville block is dominated by low Acacia and Eucalyptus woodlands with a 

lower stratum of tall shrubs and tussock grasses. Large areas of the original vegetation 

around Charleville and much of the mulga lands have been 'pulled' with tractors and 

chains, but not cleared, leaving areas of fallen timber and regenerating vegetation.  All 

three species of macropod are common in the Charleville district.  Sheep grazing is the 

principal form of land use in both blocks, with cereal crops being grown around Roma. 

 

Helicopter line transect surveys 

 

Double counting was conducted during the annual aerial survey of 10 blocks in 2000.  A 

full description of this method is given by (Clancy et al. 1997).  Briefly, a helicopter 

(Robinson R44) with the doors removed was flown at a ground speed of 93 km h
-1

 (50 

kts), 61 m (200 ft) above the ground. Two observers (GM and GLJ) occupying the rear 

seats counted clusters of kangaroos seen on either side of the aircraft. The sightings of 

individual kangaroos were placed into 25-m distance classes up to 125 m perpendicular to 

the transect line, measured from directly below the observer. Sightings were recorded 

into micro-cassette recorders. The distance classes were delineated on aluminium poles 

extending perpendicularly from either side of the helicopter. The observers counted in 

five-minute units with a 30 s break between them. 
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Fig. 2.  Location of the survey blocks within the core survey area (dark grey; see Section 3) of Queensland. 

 

In order to conduct a double count, a third observer (AP) counted kangaroos from the 

front left-hand seat next to the pilot.  This observer used a separate pole extending out 

from the helicopter to delineate distance classes.  Counts of both left-hand observers were 

recorded independently in continuous time into a dual-channel tape recorder.  Following 

the survey, tapes were replayed and sightings identified as being made either by the front 

observer only, the rear observer only or both observers.  All three observers had >100 h 

experience helicopter surveys of kangaroos using line transect sampling. 

 

Eight parallel east-west transects, 80 km long and 10 km apart, were flown across each 

survey block. The exact distances were determined by a global positioning receiver. 

Surveys were conducted within the three hours after sunrise and the two hours before 

sunset in late May 2000.  Rear seat observers swapped positions after each survey 

session, which usually involved two transect lines.  This enabled a comparison of bias 

amongst the three observers. 

 

Data analysis 

 

In line transect sampling, 

aPa

n
D

ˆ
ˆ

=  

where D̂  is an estimator of density and aP̂ is the probability of detection in the surveyed 

area a.  In strip transect sampling, transects have a fixed width 2w and length L, so 
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a=2wL.  There is a complete census of the strip, so 0.1ˆ
=aP .  In line transect sampling, if 

0.1ˆ
=aP , then the distances to all objects recorded (100% are detected) will be uniformly 

distributed in the strip.  If 0.1ˆ
<aP , then some objects will not be detected, with fewer 

objects detected with increasing distance away from the line. 

 

The four assumptions of line transect sampling, roughly in order of importance, are 

(Buckland et al. 1993): 

 

1. Objects on the line are detected with certainty 

2. Objects are detected at their initial location 

3. Measurements are exact or placed in the correct distance interval 

4. There is a shoulder in detectability 

 

Line transect surveys must be designed and conducted so that these assumptions are met, 

otherwise estimates of density can be biased.  A detection function g(x) is modelled to 

distance data, where g(x) is the probability of detecting an object, given that it is at a 

distance x from the randomly (or systematically) placed line.  Because of assumption 1, 

g(0)=1.  g(x) (and therefore Pa) will vary across a range of conditions, including habitat, 

temperature, observer and the platform  from which the method is being used (e.g. 

vehicle, aircraft, on foot).  If g(0)≠1, but can be estimated, density can be calculated as: 

)0(ˆ
ˆ

gPa

n
D

a

=  

Missed objects on the line will be the result of perception bias, where objects are 

available for detection but are missed, or availability bias, where some objects simply 

cannot be detected.  Perception bias can be minimised using a variety of techniques, 

including going slower, or g(0) can be estimated using mark-recapture as in this study.  

Availability bias is likely with surveys of marine mammals and burrowing animals.  g(0) 

can be estimated for these animals using radio transmitters. 

 

Data were analysed using the approach of Borchers et al. (1998).  Separate analyses were 

conducted for each front and rear observer pair in each survey block, and separately for 

each kangaroo species. 

 

 

Results and Discussion 

 

Sightings were categorised as being made by both observers when they were near 

simultaneous, of the same species and the same cluster size.  However, because 

kangaroos were often moving and observers recorded sightings at slightly different times, 

some joint sightings were placed in different distance classes by each observer (13% of 

all macropod sightings at Charleville, 9% at Roma).  Kangaroos form small, but loose 

aggregations and so some joint sightings were also recorded as different cluster sizes by 

the two observers (7% of all sightings at Charleville, 10% at Roma).  Misidentification is 

also possible, particularly when there are mixed species groups, and so some joint 
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sightings were recorded as different species (5% of all sightings at Charleville, 2% at 

Roma).  To be consistent, if near-simultaneous sightings by both observers were in 

adjoining distance classes they were categorised as being the same cluster.  However, if 

the cluster size differed by more than one, then the sighting was not considered a joint 

sighting.  If different species were recorded near simultaneously by the two observers in 

the same distance class and within one of the same cluster size, then the sighting was also 

considered a joint sighting.  In all cases, the front observer’s values for joint sightings 

were used in the analysis.  This treatment of these errors is conservative, leading to an 

overestimate of sighting probability on the line and therefore an underestimate of density. 

 

Examples of the estimated detection functions are shown in Figure 1.  Not surprisingly, 

there is an ever steepening drop in detectability over distance with declining group size 

and this varies with observer.  Estimates of g(0) are given in Table 1 and identify a 

negative bias in density estimates of up to 30%.  Of concern is the variation among 

observers and between blocks.  While detection curves are expected to vary with habitat 

and observer (Buckland et al. 1993), it had been hoped that line transect methods would 

reduce the variability in bias that is a concern for fixed-wing surveys (Clancy et al. 1997; 

Clancy 1999; Pople 1999).  Future assessments of line transect surveys of kangaroos 

using a helicopter in a range of habitats and using a range of observers will reveal the 

extent of the variation in bias, which is clearly possible using double counting. 

 

 
Table 1.  Estimates of g(0) (i.e. detection probability on the transect line) for eastern grey kangaroos and 

red kangaroos.  Estimates for Charleville B are shown in italics because they are compromised by a small 

sample size (n = 62 clusters). 

 

Block Observer 1 Observer 2 

Eastern grey kangaroos  

Roma A 0.82 0.84 

Roma B 0.69 0.92 

Charleville A 0.97 0.78 

Charleville B 0.81 0.94 

   

Red kangaroos  

Charleville A 0.90 0.72 

Charleville B 0.73 0.75 
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(a) 

(b) 
 

Fig. 2.  Detection probabilities g(x) for different cluster sizes (1-15, right-hand y-axis) of eastern grey 

kangaroos at Roma A, recorded by (a) Observer 1 and (b) Observer 2. 
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Abstract 
 
To provide an estimate of kangaroo numbers for harvest management, a survey 
was designed for an area of 29,500 km2 encompassing the agricultural and 
grazing lands of the Braidwood, Cooma, Goulburn, Gundagai and Yass Rural 
Lands Protection Board (RLPB) districts in southeast New South Wales.  An 
aerial survey was considered more efficient than ground survey because of the 
size of the area and the need for regular monitoring.  The relatively high relief 
and dense tree cover meant that a helicopter was the most suitable aerial survey 
platform.  Tree cover and landscape relief was used to stratify the five RLPB 
districts into areas of probable high, medium and low kangaroo density.  Based 
upon two levels of stratification of the area, RLPB district and density within 
RLPB district, and information drawn from helicopter surveys conducted in the 
northern tablelands of New South Wales, a survey comprising 900 km of transect 
line was attempted in winter 2003 with a target precision of 20%.  Bad weather 
restricted the survey to 735 km.  The survey returned an estimate of 286,600 
±32,300 eastern grey kangaroos for the whole of the proposed southeast New 
South Wales kangaroo management zone. In 2004, a trial harvest of slightly less 
than 15% of this estimate was taken. Success of the trial will be determined by 
the impact of harvesting on the population, landholder and industry participation, 
and the ability to monitor population size, harvest offtake and compliance with 
regulations. 
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Introduction 
 
For commercial harvesting of kangaroos to occur in a region, Australian state and 
federal government conservation agencies require populations to be monitored 
(Pople and Grigg 1998).  Monitoring is a critical component of wildlife 
management, allowing evaluation of management activities and providing 
information on which managers act.  Monitoring of kangaroo populations, usually 
by aerial survey, allows managers throughout Australia to regulate the harvest by 
quotas that are set as proportions of population estimates (Pople 2004).  It also 
provides a public confidence that the harvest is sustainable (McCallum 1999). 
 
Until recently, commercial harvesting of kangaroos in New South Wales (NSW) 
was restricted to the inland sheep-wheat belt, the western pastoral areas and the 
northern tablelands.  Except for parts of the northern tablelands, no commercial 
harvesting of kangaroos occurs east of the Great Dividing Range in NSW, nor in 
the central and southern tablelands.  Following an expression of interest, mainly 
from sheep and cattle graziers, a trial commercial harvest began in the southeast 
of the state in 2004.  A new area for commercial harvesting had not been opened 
in NSW since the 1980s and debate continues over the commercial use of 
kangaroos (Pople and Grigg 1998; Wilson 1999; Croft 2004).  Negotiations for 
the trial harvest were therefore protracted.  Landholders in this area cull 
kangaroos on pest destruction (shoot-and-let-lie, SLL) licences, but recognise 
that this is both an inefficient means of pest control and wasteful; a situation that 
could be redressed through the introduction of commercial harvesting.  A further 
advantage of introducing commercial harvesting is that animals are likely to be 
killed more humanely by qualified field processors than if killed by landholders 
under SLL licences, and this can be policed to a far greater extent than a non-
commercial cull (RSPCA 2002).  Whether a commercial harvest can satisfy 
graziers’ needs for reductions in kangaroo grazing pressure will depend on a 
number of factors including shooter access, potential supply of kangaroos within 
the region compared to elsewhere, and prices paid to shooters for carcasses.  
The broader question of the extent to which kangaroo numbers need to be 
reduced to ameliorate their impact, perceived or actual (Pople and McLeod 
2000), is not examined here. 
  
In NSW, aerial surveys are conducted annually by fixed-wing aircraft in the 
western plains where most harvesting occurs.  In the northern tablelands and the 
Barrier Ranges north of Broken Hill, surveys are less frequent for a number of 
reasons.  Firstly, the rugged terrain or heavy vegetation cover requires surveys to 
be undertaken by helicopter (Southwell and Sheppard 2000) or by ground counts 
(Southwell et al. 1995), which are costlier than surveys by fixed-wing aircraft. 
This increased uncertainty in population size can be offset in the Barrier Ranges 
by a less intensive harvest and in the more mesic environment of the northern 
tablelands by a kangaroo population whose dynamics are likely to be less labile 
(Pople et al. 2003) 
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For harvest management, a population estimate initially provides an indication of 
whether or not harvesting is commercially viable and worth the administrative 
costs in the long term.  If harvesting is viable, an estimate allows quotas to be set 
as a proportion of population size.  Population size needs to be estimated 
efficiently, in terms of cost and time, and with a precision (i.e. confidence interval) 
sufficient to keep the risk of over- or underharvest to an acceptable level.  A 
survey will also indicate the distribution of kangaroos, allowing spatial allocation 
of quotas or harvesting effort. 
 
In wildlife management, the appropriate survey frequency and precision has 
generally been considered with the aim of detecting trends (Caughley 1979; 
Harris 1986; Gerrodette 1987).  In kangaroo management, harvest regulation is 
primarily through quotas that are set as proportions of absolute estimates of 
population size.  Trends are of secondary importance.  Imprecision in population 
estimates and infrequent estimates will risk applying a quota that is either too 
high or too low (Pople 2003).  By not harvesting at the desired rate (e.g. 15%), 
costs are incurred to the kangaroo industry through reduced and more variable 
yield, and to graziers through increased competition with sheep and damage to 
crops.  Juxtaposed to this is a social cost if kangaroos are reduced below some 
arbitrarily low density (i.e. quasiextinction).  These costs need to be balanced 
against the cost of more intensive and frequent surveys (i.e. there is a trade-off).  
Alternative harvest strategies can also be considered in order to reduce the risk 
of over- or underharvest.  These include harvesting at a different, and even 
variable, rate, regulating effort or incorporating spatial reserves. 
 
This paper describes the monitoring program that has recently been established 
for eastern grey kangaroo (Macropus giganteus) populations in the southeast of 
NSW, specifically in the five Rural Lands Protection Board (RLPB) districts 
shown in Figure 1, and the resulting estimates of abundance and distribution 
from the initial survey.  This area comprises rugged terrain and heavily timbered 
areas, making aerial survey difficult.  Pople et al. (2003) modelled the risk of 
overharvest for a kangaroo population in this region under a range of survey 
precisions and frequency.  The assessment suggested that a survey frequency of 
three years with a precision (i.e. standard error/mean) of 20% would increase the 
risk of overharvest only slightly over annual surveys with no error, while 
substantially reducing survey costs.  Whether the increase in risk is acceptable is 
a decision for management to make in consultation with stakeholders.  
Nevertheless, this provided a target precision for this survey. 
 
[Figure 1] 
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Methods 
 
Survey feasibility 
 
The accuracy and repeatability of aerial surveys diminishes in areas of high relief 
or heavy forest cover because of low and variable visibility (Southwell 1989; 
Clancy et al. 1997; Pople 1999; Southwell and Sheppard 2000).  Safety may also 
be compromised in particularly rugged terrain.  Areas of high relief or dense tree 
cover occur throughout the study area, but are mainly within National Parks or 
State Forests.  Forest cover, land use and areas of high relief within the five 
RLPB districts that comprise the study area are shown in Figure 1.  A large 
proportion (28%, Table 1) of the area is in National Park, particularly Kosciuszko 
National Park, and State Forest; areas from which commercial harvesting of 
kangaroos is precluded.  In particular, there is dense tree cover in the 
northwestern area of Kosciuszko National Park and the adjoining and nearby 
State Forests east of Tumut, and in National Park and State Forest at the eastern 
edge of Braidwood RLPB district.  Areas of high relief also occur on the eastern 
slopes of the Great Dividing Range, south from the Snowy River within 
Kosciuszko National Park in the southwest of the Cooma RLPB district. 
 
[Table 1] 
 
The composition of the study area as shown in Figure 1 is quantified in Table 1.  
The three density strata are described below.    A small area of relatively high 
relief (>500 m) occurs within the area outside National Parks and State Forests.  
High relief areas are generally associated with dense tree cover and the 
combination means kangaroo density is likely to be low in these areas and 
harvesting is unlikely to be feasible.  This area is also unlikely to be suitable for 
aerial survey and so was excluded from the overall survey area; effectively 
assuming a density of zero in areas of high relief.  The impact of this small 
deletion would be slight. 
 
The survey area shown in Figure 1 ranges from low, moderately timbered ranges 
bordering mostly open plains in the southeast, including the Cooma and 
Braidwood RLPB districts and around Tumut and southwest of Yass, to rolling 
hills of scattered woodland in the north and west.  Although, the northern and 
western parts of the study area could be surveyed by fixed-wing aircraft, 
correction factors would need to be developed for this and the remaining part of 
the area is unsuitable for this survey method.  A helicopter offers a number of 
advantages over fixed-wing aircraft as a platform for surveying the types of 
landscape found in the study area.  It provides greater visibility and can fly lower 
and slower, which is particularly advantageous in rugged terrain and in areas with 
dense tree cover.  The greater manoeuvrability of a helicopter allows surveys to 
be designed with shorter and more closely spaced transect lines, which is an 
advantage in heterogeneous landscapes.  A helicopter also provides an 
appropriate platform for line transect sampling (Clancy et al. 1997), more so than 
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a fixed-wing aircraft (Pople et al. 1998b), potentially allowing survey-specific 
correction for variations in visibility bias.  The survey was therefore conducted by 
a helicopter using line transect sampling. 
 
Survey design 

Objective 
 
The overall objective of designing the survey was to estimate population size in 
the study area from a representative sample.  Precision can be greatly improved 
by stratifying sampling.  As a rule-of-thumb, sampling effort should be allocated in 
proportion to the size of the population in each stratum (Thompson 1992).  For 
this, some indication is required of the relative distribution of kangaroos amongst 
strata in the study area as well as knowing the area of strata.  Ideally, strata 
should be some mappable component of the environment such as vegetation 
cover or soil type.  However, arbitrary strata can be defined so long as they can 
be mapped, their areas are known and they are defined before a survey is 
conducted.  Post-sampling stratification is possible, but it must obviously be 
based on information independent of the survey and it is likely to be well short of 
optimal. 
 

Stratification and allocation of survey effort 
 
Ground assessment of the study area was made in February 2003.  This involved 
field inspection of the major environments in the study area and discussions with 
NSW Department of Environment and Conservation (DEC) staff and with RLPB 
rangers and graziers.  These discussions identified likely areas of relatively high 
kangaroo density within the study area and likely factors determining kangaroo 
distribution and abundance (Pople 1989; Southwell et al. 1999), which could be 
used as a basis for stratification.  The concentration of tags issued under SLL 
licences was also used as an indicator of kangaroo distribution. 
 
Ground assessment of the study area supported the recognised associations 
between eastern grey kangaroos and partly cleared forest (cf. predominantly 
open or predominantly closed areas) and areas of greater pasture productivity 
(Hill 1981a, 1981b; Scott-Kemmis 1979).  Three strata were identified and these 
are shown in Figure 2 and their areas given in Table 1.  Relatively high kangaroo 
densities were predicted in the Gundagai and Yass RLPB districts and the areas 
of these were mapped by graziers and RLPB staff.  Relatively moderate densities 
were expected in partly timbered areas outside this stratum.  A buffer of 3 km 
was placed around wooded (open forest and woodland) areas (Fig. 1) to capture 
the grazing distribution of eastern grey kangaroos around wooded areas (Hill 
1982; Taylor 1985) and to provide contiguous areas that could be surveyed from 
the air using transects.  The remaining open areas comprised a low-density 
stratum.  For the total survey area, 24% was high-density stratum, 59% was 
medium-density stratum and the remaining 17% was low-density stratum (Table 
1). 
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[Figure 2] 
 
Survey effort using line transects is measured by total line length.  If 100 km of 
transect is adequate to survey a species’ population in a small area, then 100 km 
will be adequate over a larger area, assuming similar dispersion and random 
sampling of transects (Buckland et al. 1993).  Increasing line length will improve 
precision.  The line length required for a target precision, in this case 20%, can 
be determined from a pilot study or drawn from surveys previously conducted in a 
similar environment. 
 
The total line length desired for this survey was determined in two ways.  Firstly, 
it was constrained by cost.  In the northern tablelands of NSW, 1,480 km of 
systematically-placed transects were surveyed in 2001 and 2002 in three zones 
covering an area of 48,000 km2 (Cairns 2003).  The survey area in southeastern 
NSW is smaller and so a total line length of ~900 km would be in proportion to 
area.  However, randomly placed transects (proposed here, see below) are likely 
to be costlier to survey than parallel transects in blocks because of increased 
ferry distance between lines.  The second method for determining the appropriate 
line length involved using the precision of the survey in the northern tablelands as 
a guide.  The relevant equation is (Buckland et al. 1993): 
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where, cv(DNT) and LNT are the respective precision and line length of the 
northern tablelands survey, and cv(DST) and LST are the corresponding values for 
the proposed southern tablelands survey here.  In the northern tablelands, 
cv(DNT)=12% for LNT=1480 km (Cairns 2003).  In the southern tablelands, if 
cv(DST)=20%, then LST = 510 km.  The precision of the northern tablelands 
survey was based on variability among transects in nine blocks of 3-6 parallel 
transects of 30-50 km each separated by 10 km.  Precision is likely to have been 
poorer if transects were placed throughout the survey area.  However, 
stratification is likely to improve precision, so a line length of ~500 km may be 
sufficient to achieve a precision of 20% and more than adequate to achieve 60-
80 sightings, which is considered a minimum number for distance sampling 
(Buckland et al. 1993). 
 
If the study area is administered as more than one zone, then each zone will 
require 500 km of survey line to achieve a precision of 20%.  If 900 km is 
surveyed, then there is likely to be the option of breaking the area into two zones.  
A total line length of 900 km was therefore used to design the survey here. 
 
Transects were located within strata by randomly selecting intersection points in 
a 10 km × 10 km grid placed over the study area.  The selected point formed the 
midpoint of a 30 km east-west transect.  If the transect extended beyond a 
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stratum in one direction it was truncated and extended in the other direction.  If it 
could not fit into the stratum on a gridline, the remainder of the line was placed on 
the neighbouring gridline to the north or south.  A transect length of 30 km 
ensured >20 replicate lines over the study area for adequate precision and a 
representative sample. 
 
Allocation of line length to strata was based on ‘rough’ estimates of the relative 
densities in each stratum.  In the northern tablelands, surveys recorded areas of 
low (~1 kangaroo km-2), medium (~5 kangaroos km-2) and high (~10 kangaroos 
km-2) density of eastern grey kangaroos (Cairns 2003).  These were used as 
estimates of density in the strata here.  The required line length in each density 
stratum in each RLPB district was determined by allocating the 900 km in 
proportion to estimated population size (Tables 2 and 3).  Each RLPB district was 
also considered as a single stratum, because of environmental differences and to 
ensure good coverage in case they are used as administrative units.  Only short 
line lengths were required in the low-density stratum, so these were usually just 
an extension of a line in an adjoining stratum to reduce ferry time between 
transects.  This may introduce some bias and underestimate variance because 
edge habitat may be oversampled.  However, the problem was likely to be only 
slight because density should be low in this stratum and the medium density 
stratum included a liberal buffer around wooded areas.  The resulting survey 
design comprising 34 transects is shown in Figure 2. 
 
[Table 2] 
[Table 3] 
 
Survey methods 
 
The survey was conducted in August 2003 using a helicopter (Robinson R44) 
with the two rear doors removed, flown along each transect line at a ground 

speed of 93 km h-1 (50 kts) and at a height of 61 m (200 ft) above the ground.  
Navigation was by a global positioning system (GPS) receiver.   Observers 
occupying the two rear seats of the helicopter counted the kangaroos seen on 
either side of the aircraft.  Sightings of kangaroos were recorded into the 0-20 m, 
20-40 m, 40-70 m, 70-100 m and 100-150 m distance classes, perpendicular to 
the transect line.  Interval width increased with distance to reflect the greater 
importance of accurate measurements near the transect line, particularly to 
model the shoulder in the detection function (Buckland et al. 1993). The distance 
classes were delineated on aluminium booms extending from either side of the 
helicopter. The seating of the observers was allocated randomly for each survey 
session. All surveys were conducted within either two hours after sunrise or two 
hours before sunset.   
 
On the longer transects (>20 km), observers counted in 5-min time blocks with a 
30-s break between each block, otherwise observers counted continuously. 
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Sightings of clusters (groups of one or more) of eastern grey kangaroos in the 
different distance classes were recorded into micro-cassette recorders. 
 
Data analysis 
 
Distance data were analysed using the computer program DISTANCE 3.5 
(Thomas et al. 1998) following the guidelines of Buckland et al. (1993).  An 
estimate of the density of kangaroos is calculated as: 
 

a
PwL

n
D

ˆ2

ˆ =  

 
where n is the number of clusters sighted, L is transect length, w is the truncation 
distance (i.e. 150 m) and Pa is the detection probability within a strip of area a = 
2wL.  The relationship between number of sightings and perpendicular distance 
from the transect line is used to model the decline in detection probability away 
from the transect line, and thereby estimate Pa. 
 
Six detection function models were considered in the analysis: a uniform key 
function, plus either a cosine or simple polynomial series expansion; a 
half-normal key function, plus either a cosine or Hermite polynomial series 
expansion; and a hazard-rate key function, plus either a cosine or simple 
polynomial series expansion.  The most parsimonious model and number of 
adjustment terms in the series expansion were selected using Akaike’s 
Information Criterion (AIC).  Detection functions with marked spikes at zero 
distance were rejected.  Densities of kangaroos were calculated as densities of 
clusters multiplied by mean cluster size.  Average cluster size was adjusted 
downwards for the decline in probability of seeing smaller clusters with distance 
from the transect line.  This was done by regressing loge(observed cluster size) 
against detection probability and then estimating average cluster size when 
detection probability is certain (i.e. on the transect line)(Buckland et al. 1993).  
Variance formulae for density estimates are given by Buckland et al. (1993).  
Post-stratification by observer, seating position within the aircraft and side-of-
aircraft was also assessed, but only if numbers of clusters within any strata were 
>40.  Side-of-aircraft differences were expected because of the difficulty in 
sighting animals when looking towards the sun (i.e. from the northern side of 
aircraft) (Pople et al. 1998a).  The two rear seats give slightly different views of 
the transect and this may influence sightability.  AIC was used to compare the 
more complex models of separate detection functions for each stratum with a 
model of a detection function pooled across strata. 
 
Results 
 
Four of the 34 transects could not be flown because of bad weather.  These were 
the southern three lines in the Braidwood RLPB district and the line directly 
northeast of Goulburn.  Based on similar habitat (Sahukar et al. 2003), Goulburn 
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and Braidwood RLPB districts were therefore analysed as a single stratum.  
Unfortunately, the sections of transect lines in the low density stratum were not 
identified during the survey, so these data had to be pooled with data for the 
medium density stratum in each RLPB district.  Density in this stratum would 
therefore have been underestimated slightly.  For an overall estimate of 
abundance, the density in the low-density stratum in each RLPB district was 
conservatively assumed to be zero. 
 
There were sightings of 709 clusters of eastern grey kangaroos made along 
735.4 km of transect line.  Average cluster size ranged 1.69-3.16 individuals 
among strata, while maximum cluster size ranged 12-14 among strata.  
Estimates of detection probability, density, total numbers and precision are 
shown for all strata and the entire study area in Table 4.  To simplify calculations, 
the small high-density area in the Goulburn-Braidwood RLPB district was 
subsumed into the Yass RLPB district.  Among density strata and RLPB districts, 
four different models were used as detection functions and three different types 
of post-stratification were employed.  Detection probability also varied 
significantly across strata (range: 0.31-0.62).  These results highlight the 
advantage of survey and strata-specific modelling, rather than relying on 
predetermined models and correction factors. 
 
[Table 4] 
 
Examples of fitted detection curves are given in Figures 3 and 4.  The steeper 
detection curve and lower detection probability on the northern side of the 
helicopter was apparent at Cooma (Fig. 3).  However, the opposite occurred 
along the Goulburn-Braidwood transect lines (Table 4).  In the Yass high-density 
stratum, observer DB had a flatter detection curve than did SC (Fig. 4).   There 
was a spike in sightings for DB at 20-40 m, suggesting greater viewing effort 
away from the centreline and therefore missing animals near the line.  If detection 
probability on the transect line is <1, then density estimates will be negatively 
biased.  However, the spike may simply have been a function of modest sample 
size (n=59).  It is worth noting that differences in detection functions between 
strata do not necessarily translate into different Pa.  Further, selection of one 
post-stratification model (e.g. side-of-aircraft) does not necessarily mean there 
were no effects for other post-stratification factors (e.g. observer, seating); rather 
they were overshadowed.  However, in all analyses, the model of a detection 
function pooled across strata (i.e. no post-stratification) was second to the 
selected model according to AIC. 
 
[Figure 3] 
[Figure 4] 
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Discussion 
 
To determine a continent-wide estimate of kangaroo numbers in the early 1980s, 
(Caughley et al. 1983) suggested a density of 5 eastern grey kangaroos km-2 for 
an unsurveyed area of 800,000 km2 encompassing the eastern highlands.  Since 
then Southwell et al. (1997) estimated macropod density in the northern two-
thirds of this region using walked line transect surveys over 1987-92, returning a 
remarkably similar overall estimate of 5.3 eastern grey kangaroos km-2.  The 
survey reported here covers a largely unsurveyed portion of the eastern 
highlands.  Comparisons between regions are difficult because of temporal 
variation in density and spatial variation in environmental factors driving changes 
in numbers.  Ideally, comparisons should be made using average densities from 
decade-long time series that reflect the amplitude of density fluctuations in a 
region.  Nevertheless, densities of eastern grey kangaroos in this study area are 
comparable to those recorded in recent helicopter surveys in the Glen Innes 
(8.11 kangaroos km-2) and Armidale (10.23 kangaroos km-2) kangaroo 
management zones (Cairns 2004). 
 
Commercial harvesting in the study area was approved on a trial basis for the 
period 2004-2007.  In addition to the ability to monitor population size, harvest 
offtake and compliance with regulations, the success of the trial will be 
determined by the impact of harvesting on the eastern grey kangaroo population 
as well as by landholder and industry participation (Department of Environment 
and Conservation 2004).  A negative impact on the population would be manifest 
as a marked decline in numbers unexplained by environmental factors such as 
drought or disease.  It would suggest an inability of the management system to 
monitor numbers, regulate the harvest or set sustainable quotas.  Landholder 
participation can be measured as the extent to which the non-commercial take of 
kangaroos is reduced.  Industry participation can be measured by the proportion 
of the available quota that is harvested. 
 
In 2004, NSW DEC set a harvest quota for the study area of 44,000 eastern grey 
kangaroos, representing 15% of the population estimate of 286,600 ±32,300. The 
area was administered as a single kangaroo management zone.  Harvesting 
began in March 2004 and the quota was fully allocated by September.  It is 
anticipated that 80-90% of the quota will actually be taken.    
 
Shoot-and-let-lie licences were considered to be only a rough guide to kangaroo 
distribution and abundance.  There were 42,216 tags issued under SLL licences 
in 2003 for an area larger than the five RLPB districts comprising this new 
kangaroo management zone.  However, compared with previous years this was 
unusually high, probably because of continuing dry conditions following the 2002-
2003 drought.  During 2004, the number of tags issued under SLL licences had 
declined by only 31% (Department of Environment and Conservation 2004).  The 
fact the non-commercial take had not been further reduced following the 
introduction of commercial harvesting may be due to an increased demand for 
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culling during continued dry conditions in 2004 and a lack of understanding by 
many landholders with the procedures associated with commercial harvesting.  
The previous non-commercial and 2004 commercial harvest in southeast NSW 
compares with a commercial take of 30-65,000 eastern grey kangaroos each 
year (1998-2003) in the Armidale and Glenn Innes zones (NSW DEC, 
unpublished data), encompassing a larger area of ~34,000 km2 in similar terrain 
and vegetation and where there is a history of commercial harvesting. 
 
Whether commercial harvesting remains viable in southeast NSW will depend on 
a number of factors.  Quotas will decline if the population declines to a new 
‘equilibrium’ or average density under harvesting.  However, there may be little or 
no decline if harvesting simply replaces culling under SLL licences.  In the short 
term, there is likely be an increase in abundance as the population makes an 
expected recovery from the drought; an increase which a proportional harvest 
should not inhibit.   
 
Management recommendations 
 
Harvest strategies other than constant proportional quotas could be employed 
including limiting harvest effort by restricting the number of shooters.  Given that 
almost 30% of the area is in National Park or State Forest where harvesting and 
culling under SLLs are not permitted, and given that the terrain and vegetation 
will limit shooter access to other areas, there is a considerable safety net to 
guard against overharvesting.  It is now well known that such spatial refuges can 
minimise the risk of overexploitation (Hall 1998; Lauck et al. 1998).  To be 
effective, protected areas need to contain source populations that can repopulate 
areas depleted through harvesting.  In the short term (i.e. <5 years), harvested 
areas adjoining National Parks and State Forests are likely to have their 
populations bolstered in this way.  However, migration to areas remote from 
refuges will only occur over the longer term, perhaps >10 years.  A further 
qualifying point is that overall kangaroo densities within these refuges are likely to 
be lower than in the surrounding areas.  The higher densities will be on the 
margins of refuges, where forested areas abut open grazing lands.  In short, 
spatial refuges in the zone should ensure regional persistence and will reduce 
the risk of overharvesting in the vicinity of a refuge, but be less effective with 
distance from a refuge. 
 
A further safety net would be a threshold population density below which there is 
no harvesting.  In theory, when there is uncertainty about a population’s size and 
dynamics, harvest offtake can be maximised and low probability of 
quasiextinction achieved by imposing a threshold density and allowing higher 
rates of harvest above the threshold (Engen et al. 1997; Milner-Gulland et al. 
2001).  The problem is that the temporal variation in harvest offtake increases 
with the density at which the threshold is set.  This has been discussed for 
kangaroos by Pople (2003) who considered that, given that the kangaroo industry 
is unlikely to operate at densities below 2-5 kangaroos km-2, imposing a threshold 
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around this density would ensure that this in fact occurs.  This would guard 
against an increase in the value of kangaroo products allowing shooters to 
operate at lower densities.  It would also increase public confidence that the 
harvest is sustainable, because it would not be relying on the industry’s decision 
to cease harvesting being determined by market forces. 
 
A second survey for the southeast NSW management zone has been scheduled 
for 2006 (Department of Environment and Conservation 2004), for which survey 
effort should be reallocated according to the results of the 2003 survey.  Some 
survey effort should be redirected from the Yass and Gundagai RLPB districts, 
where population sizes predicted prior to survey were overestimates, to the 
Cooma RLPB district, where the predicted population size was an underestimate 
(Table 2).  The difference in density between the high and medium density strata 
in the Gundagai and Yass RLPB districts was smaller than expected, so effort in 
the high-density strata could be reduced.  A suggested reallocation is given in 
Table 5, assuming 900 km is to be flown because survey cost is fixed.  A shorter 
survey is also possible, given the goal of an overall precision of 20%.  One 
caveat is that, while the allocation of effort in Table 5 is roughly optimal for a 
density estimate for the entire study area, it will not be optimal if sub areas (e.g. 
RLPB districts) are administered separately and each requires a precision of 
20%.   For example, Cooma has achieved the target with the present allocation, 
but Gundagai and Yass would likely have precision >20% with less effort.  A 
further consideration is to conduct helicopter line transect surveys as double 
counts (Borchers et al. 1998), which would allow adjustment for bias due to 
incomplete sighting of kangaroos on the transect line. 
 
[Table 5] 
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Table 1.  Areas (km2) of five Rural Lands Protection Board (RLPB) districts 
proposed for commercial harvesting.  Harvesting is precluded from National 
Parks (NPs) and State Forests (SFs) and there are some areas of high relief 
outside NPs and SFs that are unsuitable for aerial survey.  The remaining area is 
divided into three strata representing areas of likely high, medium and low 
kangaroo density. 
 

 Braidwood Cooma Goulburn Gundagai Yass TOTAL 

       

RLPB district area 5,980 11,375 6,426 9,507 6,305 39,594 

       

High relief outside 
NPs and SFs 262 431 35 174 146 1,048 

       

High density 130 0 56 3,691 3,067 6,945 

Medium density 3,832 5,981 4,520 1,723 1,451 17,507 

Low density 286 1,291 1,396 959 1,097 5,029 

       

Survey area 4,248 7,271 5,973 6,373 5,615 29,481 

 
Table 2.  Predicted abundance of eastern grey kangaroos in five Rural Lands 
Protection Board districts in the southern tablelands of NSW.  These are 
calculated from densities in three strata shown in Figure 2 and their areas (see 
Table 1).  Densities are extrapolations from surveys in the northern tablelands of 
NSW (Cairns 2003). 
 

Abundance ‘guess’ Strata 
density 'guess' km

-2
 Braidwood Cooma Goulburn Gundagai Yass TOTAL 

        

(High density) 10 1,300 0 565 36,911 30,669 69,445 

(Medium density) 5 19,160 29,903 22,602 8,616 7,256 87,537 

(Low density) 1 286 1,291 1,396 959 1,097 5,029 

        

Survey area 20,746 31,194 24,563 46,486 39,023 162,011 
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Table 3.  Allocation of survey line length (km) according to predicted abundance 
(see Table 2) in each stratum in each Rural Lands Protection Board district. 
 

Strata Braidwood Cooma Goulburn Gundagai Yass TOTAL 

       

High density 7 0 3 205 170 386 

Medium density 106 166 126 48 40 486 

Low density 2 7 8 5 6 28 

       

Survey area 115 173 136 258 217 900 
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Table 4.  Estimates of eastern grey kangaroo density (D ± s.e.) and numbers (N 

± s.e.) in each Rural Lands Protection Board (RLPB) district.  Estimates for the 
Goulburn and Braidwood districts have been combined.  Included are the 
numbers of sightings (n), the detection function models, detection probabilities 

(Pa ± s.e.), and coefficients of variation (CV%) determined for each density 
stratum following post-stratification on the basis of side-of-aircraft (N=north or 
S=south), seating (LHS=left hand side or RHS=right hand side) or observer (DB 
or SC) or none.  The density estimate for the entire study area includes the low-
density stratum within each RLPB district.  HzC, hazard-rate with cosine series; 
UC, uniform with cosine series; UP, uniform with polynomial series; HNC, half-
normal with cosine series. 
 

RLPB 
district 

Density 
stratum 

 
n 

 
Model 

 
Pa 

 
D 

 
N 

 
CV% 

Cooma Medium       
 N   89 HzC 0.38 ±0.07 
 S   81 UC 0.51 ±0.03 

15.97 95,505 18.2 

        
Goulburn- Medium       
Braidwood N   65 UC 0.55 ±0.04 
 S   50 HzC 0.31 ±0.16 

9.39 78,459 33.2 

        
Gundagai Medium   65 HNH 0.48 ±0.05 10.16 17,502 35.1 

 High       
 LHS 113 HzC 0.46 ±0.06 
 RHS   79 UP 0.62 ±0.04 

12.21 45,050 24.0 

     11.55 62,552 19.9 
        
Yass Medium 44 HNC 0.46 ±0.06   8.54 12,388 33.7 

 High       
 DB 59 UC 0.60 ±0.06 
 SC 61 HNC 0.44 ±0.04 

11.60 37,737 26.2 

     10.66 50,125 21.4 
        

TOTAL     9.72 286,641 12.3 
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Table 5.  Reallocation of survey line length (km) according to estimated 
abundance (see Table 4) in each stratum in each Rural Lands Protection Board 
district.  The areas of high density in the Goulburn and Braidwood RLPB districts 
have been included in the Yass RLPB district.  A density of 2 kangaroo km-2 is 
assumed in the low-density stratum 
 

Strata Braidwood Cooma Goulburn Gundagai Yass TOTAL 

       

High density - - - 137 114 251 

Medium density 109 290 129 53 38 618 

Low density 2 8 8 6 7 31 

       

Survey area 111 298 137 196 159 900 
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Figure captions 
 
Fig. 1.  The study area in southeastern New South Wales, which surrounds the 
Australian Capital Territory (ACT).  CR, Crookwell; GO, Goulburn; YA, Yass; CT, 
Cootamundra; TU, Tumut; CM, Cooma.  Areas of high relief and open forest or 
woodland were determined from the relief coverage (Geoscience Australia 2001), 
which is © Commonwealth of Australia (Geoscience Australia) 2001, and landuse 
coverage (Bureau of Rural Sciences 2001), © Commonwealth of Australia 
(National Land and Water Resources Audit) 2001. 
 
Fig. 2.  Design for the survey of kangaroos in the study area in southeastern New 
South Wales.  The survey area is restricted to areas outside National Parks and 
State Forests and areas without high relief, which are shown in Figure 1.  The 
survey area is divided into three strata according to expected kangaroo density 
and transects were placed randomly.  CR, Crookwell; GO, Goulburn; YA, Yass; 
CT, Cootamundra; TU, Tumut; CM, Cooma 
 
Fig. 3.  Histogram of perpendicular distances and fitted detection function for 
eastern grey kangaroos in the Cooma Rural Lands Protection Board district in 
2003 for the (a) northern (n=89) and (b) southern (n=81) side of the helicopter. 
 
Fig. 4.  Histogram of perpendicular distances and fitted detection function for 
eastern grey kangaroos in the high density strata of the Yass Rural Lands 
Protection Board district in 2003 for (a) observer DB (n=59) and (b) observer SC 
(n=61). 
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Figure 1
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Figure 2 
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Figure 3a 

Figure 3b 
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Figure 4a 

 
Figure 4b 
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9. Predicting kangaroo population dynamics from rainfall and satellite 

imagery 
 

9.1 Introduction 

 

The dynamics of kangaroo populations appear to be considered well understood, with the 

numerical response of populations to a variable, rainfall-driven food supply providing an 

often text book example (Caughley and Sinclair 1994; Bayliss and Choquenot 2002; Sibly 

and Hone 2002; Sinclair and Krebs 2002).  It falls within the mechanistic paradigm 

described by Krebs (1995, 2002) and has been used to contrast that approach with that of 

the density paradigm with its emphasis on density and equilibria rather than interactions 

with resources (Caughley and Sinclair 1994). 

 

This understanding has largely been through the application of aerial survey to monitoring 

kangaroo numbers in semi-arid and arid regions.  Recent analyses of some of these survey 

data, particularly longer time series, suggest that the dynamics of some kangaroo 

populations do not fall so neatly into the mechanistic paradigm (McCarthy 1996; Jonzen et 

al. 2005; see Section 10).  Cairns et al. (2000) also found the dynamics of western grey 

kangaroos in South Australia could not be as well predicted as populations in western 

New South Wales.  It is worth noting that while populations of four species have been 

surveyed throughout semi-arid and arid Australia, our understanding has largely come 

from surveys of red and western grey kangaroos in western New South Wales and 

northern South Australia (e.g. Caughley et al. 1984; Bayliss 1985a, b, 1987; Caughley 

1987; Cairns and Grigg 1993).  Data from elsewhere in these species’ ranges, particularly 

more mesic areas and northern Australia, and on eastern grey kangaroos and common 

wallaroos have had limited assessment. 

 

Ideally, numerical response models for kangaroos should be based directly on food supply 

such as pasture biomass (Bayliss 1987).  However, this has rarely been available and 

rainfall has been used as a surrogate.  Early assessments indicated recent rainfall was a 

useful predictor of rate of increase in red and western grey kangaroo populations (Bayliss 

1985a; Cairns and Grigg 1993), but more recent investigations with a longer time series 

showed rainfall with a greater lag gave a stronger correlation with rate of increase 

(McCarthy 1996). An alternative is to use satellite imagery which has the advantage of 

being directly related to the pasture response (Hobbs 1995) and being recorded throughout 

remote, arid areas where rainfall recording stations are sparsely located and rainfall can be 

patchy. 

 

This section explores the possible determinants of rate of increase of four species of 

kangaroo throughout the sheep rangelands of eastern Australia.  There are now time series 

of data extending back over 20 years across a range of environments and include a wide 

range of harvest rates, which is an influence that has previously been largely ignored. 

 

9.2 Methods 

 

9.2.1 Study area, survey and harvest data 

 

The study area covered over 1.2 million km
2
 of eastern Australia (Fig. 9.1) encompassing 

the South Australian pastoral zone (SAPZ), the western plains of New South Wales and 
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Fig. 9.1.  The survey area within the sheep rangelands of eastern Australia.  This area has been broken up 

into regions in which kangaroo harvests are managed in New South Wales (NSW, kangaroo management 

zones, KMZ) and South Australia (SA, soil conservation boards).  Biogeographic boundaries (Environment 

Australia 2000) adjusted to coincide with ½
o
 latitude and longitude lines, are shown in the Queensland 

(QLD) survey area.  Unlabelled regions in southern SA had estimates of density that were considered too 

imprecise for analysis here.  Similarly, unlabelled regions in eastern NSW were not examined because they 

lack long-term aerial survey data.  Salt lakes dissect the study area in South Australia.  K, Kingoonya; M, 

Marree; NF, North Flinders Ranges; NP, Northeast Pastoral;  ED, Eastern Districts; G, Gawler; BB, 

Brigalow Belt; ML, Mulga Lands; MGD, Mitchell Grass Downs. 
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the sheep rangelands of Queensland.  Aerial surveys are described in detail in Section 12. 

In South Australia, kangaroos are managed in soil conservation boards (SCBs).  Six SCBs 

within the SAPZ have been extensively surveyed since 1978 and data were available up to 

2003.  To simplify analyses and to be consistent with the analyses of Jonzen et al. (2005) 

(see Section 10), these SCBs were pooled into three regions based on similar average 

rainfall: northwest (Kingoonya and Marree), northeast (North Flinders Ranges and 

Northeast Pastoral) and south (Eastern Districts and Gawler).  In New South Wales, 

kangaroos are managed in kangaroo management zones (KMZs) for which survey data 

were available for 1984-2003.  During 1975-1984, annual aerial surveys were conducted 

in parts of KMZ 2, 6, 8 and 10, but density estimates had to be extrapolated from monitor 

block (1977-1983) and map sheet (1975-6) densities.  In Queensland, kangaroos have been 

managed without any regional division until 2003 (see Section 3).  Annual aerial surveys 

have been conducted across a core area (roughly equivalent to the central zone, see 

Section 3) since 1984 and data were available up to 2003.  This area was broken up into 

three regions broadly coinciding with biogeographic boundaries (Environment Australia 

2000): mulga lands, Mitchell grass downs and brigalow belt.  Since 1991, surveys have 

been conducted by helicopter in blocks (Fig. 9.2) and these provided obvious units for 

analysis, albeit for a shorter period.  Helicopter surveys provided the only data on wallaroo 

population dynamics. 

 

Collation of harvest data within each State is described in Section 1. 

 

9.2.2 Satellite imagery 

 

The Normalised Difference Vegetation Index (NDVI) is a measure of green vegetation 

derived from satellite multispectral image data (Tucker et al. 1985; Lillesand et al. 2004) 

using an advanced very high-resolution radiometer.  The NDVI is calculated as the 

difference in the near infrared (channel 2) and visible red (channel 1) parts of the 

electromagnetic spectrum. Green vegetation strongly reflects near-infrared radiation but 

absorbs visible red light, thereby responding to changes in herbage biomass and quality 

(i.e. greenness).  A number of studies have found a strong relationship between plant 

production and NDVI (e.g. Paruelo et al. 1997) including in the Australian rangelands 

(Hobbs 1995).  Absolute values of NDVI and their variability at any location will also be 

influenced by vegetation composition and structure, topography and soil type, 

confounding spatial comparisons.  This can partly be addressed by using the difference 

between the maximum and minimum NDVI (NDVI flush) within an annual growth cycle, 

providing an index of pasture production although it includes growth in perennial plants 

(Cridland et al. 1995).  The problem can be dealt with further by standardising values at 

each location over a time series.  Monthly NDVI images for the period July 1981 to July 

2003 at a 1-km
2
 resolution were obtained for the SAPZ from the Federal Department of 

Environment and Heritage.  These were composite images representing the maximum 

NDVI for each month, thereby reducing contamination with cloud cover. 

 

For each month, NDVI and NDVI flush values were averaged across pixels within each 

SCB. These values were then averaged over the three- (May-July) and six-month 

(February-July) period prior to each survey. Values were standardised for each SCB over 

the study period were used in analysis, allowing possible pooling of SCBs whose 

kangaroo populations respond similarly to NDVI. 
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Fig. 9.2.  Helicopter survey blocks (green) used monitor kangaroo populations in the core survey area (dark 

grey) in Queensland since 1992. J, Julia Creek; Wt, Winton; L, Longreach; Wd, Windorah; Bk, Blackall; 

Cv, Charleville; H, Hungerford; Bo, Bollon; R, Roma; Wm, Westmar. 

 

 

 

Fig. 9.3.  Three rainfall periods used in analysis relative to estimates of density (D) determined by aerial 

survey.  From left to right, the rainfalls are 12 months rain lagged 12 months (labelled), 12 months rain 

lagged 6 months and 6 months rain with no lag.  The lag is from the second of two estimates of density 

which are used to calculate exponential rate of increase. 
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Some assessment of the ability of NDVI to monitor kangaroo food supply in the study 

area was possible.  Photosites had been established throughout two properties, Bulgunnia 

(~3,100 km
2
, n = 21) in Kingoonya SCB and Mulyungarie (~3,500 km

2
, n = 22) in 

Northeast pastoral SCB.  These were photographed in autumn and spring of each year 

since late 1992 (S. Cairns unpublished data).  From a 1.5 m post, the base of another post 

10 m south was photographed using low ASA colour slide film with the camera shutter set 

to f16 to maximise depth of field.  The resulting series of photographs were digitised then 

ranked using the method of Noble (1977).  This involves the subjective comparison of the 

pasture biomass (i.e. grasses, forbs and subshrubs) in each photo with all others in the 

series.  For each property, the ranks of all photosites were averaged for each time period.  

The resultant trends were then compared with the NDVI averaged across each property 

and correlated with NDVI recorded for the same month as the photographs. 

 

9.2.3 Rainfall 

 

Monthly rainfall data were obtained for stations in the study area (Figs 9.1 and 9.2) from 

the Bureau of Meteorology.  Monthly rainfall surfaces were then calculated using inverse 

distance weighting.  For each region (Figs 9.1 and 9.2), rainfall was determined for the six 

months and 12 months prior to the second of two consecutive surveys and for 12 months 

prior to the second survey with a 12 months lag (Fig. 9.3).  These periods have previously 

been found to correlate best with kangaroo rates of increase in northern South Australia 

(Cairns and Grigg 1993), in western New South Wales (Bayliss 1987) and the entire 

SAPZ (McCarthy 1996), respectively.  Rainfall was collated for the 12 months and 24 

months prior to the second survey to provide additional candidate periods for predicting 

rate of increase.  In Queensland, rainfall has a summer peak, becoming strongly seasonal 

further north.  Six months rainfall over the summer wet season (October-March), the 

winter dry season (April-September) and the summer wet season lagged 12 months prior 

to the second survey were therefore collated as possible determinants of kangaroo rates of 

increase.  As with NDVI, rainfall was standardised for each region using long-term (~100 

year) average and standard deviation. 

 

9.2.4 Analysis 

 

Annual rate of increase of kangaroos was calculated as r = ln(Dt+1/ Dt), where Dt and Dt+1 

are estimates of population size for consecutive surveys (Fig. 9.3).  The instantaneous 

harvest rate hr between consecutive aerial surveys was calculated as (see Section 10): 
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where h is the harvest offtake between surveys.  This accounts for the fact that harvesting 

is essentially continuous through time but the regression model treats it as a single event.  

It therefore must be calculated as an isolated rate equivalent to the instantaneous rate 

(Caughley 1977).  The net rate of increase adjusted for harvest rate was calculated as: 

 

nra = r + hr (2) 
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This assumes the coefficient for hr is unity.  Equation 2 assumes that harvest mortality is 

additional to natural mortality rather than compensatory to some extent (see Sections 5 

and 10).  An alternative formulation is: 

 

rhr = hr × exp[-exp(-a × [rain - d])] (3) 

 

where rhr is the realised harvest rate, a is a parameter that could be determined using non-

linear regression or assumed a particular value, d is a parameter determining the point of 

inflexion and rain is the interval of rainfall best predicting nra.  This sigmoidal function 

(Fig. 9.4) was used to portray decreasing compensation (i.e. harvest mortality increasingly 

additive) with increasing rates of increase, which would be predicted for a population 

extrinsically regulated by food supply. 

 

Plots of rate of increase (nra) against rainfall were first scrutinised for outliers and time 

traces examined for evidence of the ‘hysteresis’ reported by (Bayliss and Choquenot 2002) 

whereby populations recovering from drought respond differently to food supply.  Bayliss 

and Choquenot (2002) reported relatively low rates of increase during recovery from 

drought whereas Cairns and Grigg (1993) reported the converse; the latter expected from 

an altered population sex and age structure.  Correlations between annual rates of increase 

(nr) and candidate rainfall periods and NDVI were then examined.  These correlations 

were then used to propose likely regression models of the form: 

 

r = explanatory variables – harvest rate - Dt (4) 

 

where harvest rate was hr or rhr with coefficients of unity.  Explanatory variables 

included one or two periods of rainfall, curvilinear terms, interactions and piecewise 

regression models (Crawley 2002).  The latter involved including a recent rainfall term 

only when it was below a certain amount.  The rationale is that survival of juveniles 

determines fluctuations in kangaroo numbers, as it does for large mammals in general 

(Gaillard et al. 1998).  This is determined by rainfall with a substantial lag as juveniles are 

not readily detected from the air (Bayliss 1985b; McCarthy 1996).  However, adult 

mortality can be substantial during drought (Robertson 1986) and immediately influence 

population change (Caughley et al. 1985), hence the requirement for a recent rainfall term.  

The threshold point below which to include recent rainfall was determined by plotting the 

deviance for models with a threshold at successively lower periods of rainfall (Crawley 

2002). 

 

Models were compared using Akaike weights from Akaike’s information criterion (AIC) 

(Burnham and Anderson 1998) and the best model according to Akaike weights 

reanalysed assuming partial compensatory mortality (rhr), then Akaike weights 

recalculated. Finally, the previous year’s density, standardised over the region’s time 

series, was included as an additional term in the best rainfall or NDVI model.  Models 

with negative coefficients for rainfall or NDVI and positive coefficients for density were 

considered implausible and were ignored. 
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Fig. 9.4.  The relationship between realised harvest rate between two density estimates (Dt and Dt+1 in Fig. 

9.3) and standardised 12 months rainfall with a 12 months lag (see Fig. 9.3) when harvest mortality is 

partially compensatory rather than additional to natural mortality, according to equation 3 with a = 3 and 

instantaneous harvest rate is 0.2.  The solid line is more strongly compensatory (d = 0 in equation 3) than the 

dashed line (d = -1.5). 

 

The geographic patterns in the determinants of kangaroo rate of increase were assessed in 

a number of ways.  The ability of rainfall alone to predict rate of increase can be measured 

by the adjusted coefficient of determination (R
2
), which was plotted against average 

annual rainfall for each region or block.  Where no rainfall model was selected, the 

minimum R
2
 for that species (always < 0) was used.  The value of R

2
 will vary with the 

length of the time series, so the comparisons are only valid within States.  To enable this, 

the New South Wales data were examined only from 1984.  To increase the number of 

sample points, the South Australian data were analysed for all six SCBs (Fig. 9.1).  The 

strength of density dependence can be measured by the partial regression coefficient for 

the lagged density term.  Where the model with density was not an improvement over a 

model with rainfall alone, a coefficient of zero was used.  This coefficient can similarly be 

plotted against average annual rainfall for each region or block.  Density dependence will 

be overestimated in the regression analysis because past density is included in both 

response and explanatory variables and there is unaccounted measurement error (Burgman 

et al. 1993; McCarthy 1996; Fig. 9.5).  However, the interest here is not in the absolute 

value, but in the comparison among areas.  Finally, Section 5 used a model assuming 

reduced kangaroo population variation in more mesic areas to compare harvest strategies 

and survey frequency.  The basic premise of this model could be assessed by plotting the 

coefficient of variation (SD/mean) of kangaroo density against average annual rainfall for 

each region or block. 

 

9.2.5 Simulation 

 

Using Caughley’s (1987) interactive model (see Section 5), an expected pattern of 

correlation between rate of increase adjusted for harvest rate (nra) and rainfall and past 

density was determined under harvesting and uncertainty.  An unstructured red kangaroo 

population was simulated over 100 years using a weekly time step.  Briefly, kangaroo rate 

of increase is determined by pasture biomass which in turn is determined by recent 

rainfall, past pasture biomass and the density of kangaroos consuming the pasture.  

Seasonal rainfall was drawn from a lognormal distribution using the mean and standard 
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deviation from Menindee Post Office in western New South Wales.  The population was 

harvested at an annual instantaneous rate of 5-20% drawn from a uniform distribution.  To 

mimic current management practice in setting quotas, the annual harvest was calculated as 

a percentage of the previous winter’s population estimate.  That density estimate was 

drawn from a lognormal distribution with a mean being the modelled population density 

(= ’true’ density) and a standard deviation ranging 0-0.6 × density.  Rate of increase was 

also determined from these density estimates.  For each level of precision in the density 

estimate, 1,000 iterations were performed, each providing correlations between the rate of 

increase (nra) of kangaroos and various rainfall intervals and past density. 

 

The same exercise was performed using the coefficient of variation of rainfall for Yass in 

southeastern New South Wales, to mimic the dynamics of a kangaroo population in a 

more mesic environment (see Section 5).  The model was also run for the Northeast 

Pastoral SCB in northern South Australia (Fig. 9.1) over 1975-2003.  This allowed 

assessment of the likely correlations for the actual study period.  Here, the model used 

rainfall for the Northeast Pastoral SCB, rescaled to Menindee’s mean.  The model was fit 

using least squares to the actual aerial survey, harvest and livestock data (see Section 10) 

by adjusting the proportion of the pasture consumed by sheep; a parameter in Caughley’s 

(1987) model. 

 

Finally, a single run of the model for Menindee produced a dataset of density, pasture 

biomass, annual rainfall, harvest offtake and rate of increase.  A harvested and 

unharvested run using the same 100-year rainfall were examined. These data were 

analysed to compare the two ways of incorporating harvest rate into linear regression 

models predicting rate of increase (additive or partially compensatory) using Akaike 

weights and to estimate parameters a and d in equation 3 using non-linear least squares 

regression. 

 

9.3 Results 

 

9.3.1 Simulation 

 

Simulations using Menindee rainfall showed the expected high correlation between rate of 

increase and pasture biomass.  Calendar year rainfall (12.6 in Fig. 9.5) was identified as 

the best rainfall period predicting of rate of increase, although 12 months rainfall with lags 

of 0-12 months had similarly strong correlations (Fig. 9.5).  As uncertainty in estimating 

density increased, the correlation between rainfall and rate of increase declined.  In 

contrast, the negative correlation with the previous year’s density became stronger, 

surpassing rainfall in the strength of the correlation coefficient around a precision 

(SE/mean) of 0.2.  By the time precision had increased to 0.4, >5% of simulations 

recorded correlations < 0 for all rainfall periods examined.  At a precision of 0.4, 12 

months rainfall with a 12 months lag was the best predictor of nra in 21% of simulations, 

up from 0.2% when density was certain. 

 

For the simulations at Yass, correlations with rate of increase and density, pasture biomass 

and rainfall showed an identical pattern to Menindee, but were about 10% stronger when 

there was no uncertainty in population size.  However, under uncertainty the correlation 

with rainfall was lower at Yass than Menindee whereas the correlation with density 

remained stronger.  Given this model, R
2
 was expected to decline with increasing average 

annual rainfall while the strength of density dependence was expected to increase. 
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Fig. 9.5.  Relationship between absolute value of the correlation coefficient between kangaroo rate of 

increase (adjusted for harvest rate) and pasture biomass and periods of rainfall, and precision of density 

estimates based on 1,000 simulations of a harvested red kangaroo population at Menindee in western New 

South Wales.  Rainfall is coded as x,y where x is the interval of rainfall in months and y is the lag in months 

from the second of two consecutive aerial surveys (Fig. 9.3). 

 

 
Fig.9.6.  Caughley’s (1987) interactive model (solid blue line) fitted to red kangaroo density estimated by 

aerial survey (solid black line) in Northeast Pastoral SCB (see Fig. 9.1).  Kangaroo rate of increase is 

modelled as a function of pasture biomass (dashed black line), which in turn is a function of rainfall and 

grazing by kangaroos and livestock (converted to dry sheep equivalents, dse; solid red line).  Both modelled 

and actual populations were harvested.  The modelled population was reinitialised in 1993. 
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The fit of Caughley’s (1987) model to data for Northeast Pastoral SCB was remarkably 

good (Fig. 9.6).  However, the model needed to be reinitialised in 1993 when the 

population declined sharply whereas the model increased markedly on the back of high 

pasture biomass.  The fit was poorer following 1993 than for 1978-1992, suggesting a 

change in pasture state.  In contrast to the 100-year simulations using random rainfall, the 

correlations between rate of increase were strongest with 12 months rainfall immediately 

prior to the second survey (i.e. 12.0 cf. 12.6).  Density had a weaker correlation with rate 

of increase than most rainfall periods and, again in contrast to the 100-year simulations 

using random rainfall, this correlation declined with poorer precision (i.e. increasing 

SE/mean) so that it was always weaker than most rainfall periods. 

 

Fitting equation 3 to the data resulted in an implausible negative value for a.  It was 

therefore fixed at 3 and parameter d fixed at 0.  For a harvested population, the regression 

of r against rainfall and harvest rate, has a similar slope but higher intercept compared 

with the regression of r against rainfall without harvest rate.  The regression using rhr has 

a steeper slope.   Using rhr (partial compensatory mortality) returns a slope and intercept 

closer to those for the numerical response of an unharvested population (i.e. r against 

rainfall) than hr (additive mortality), but it is a poorer fit to the data than using hr 

according to R
2
, and had less support according to AIC.  Nevertheless, incorporating 

harvest rate (hr or rhr) improved models according to AIC.  Finally, it is worth noting that 

the previous year’s density is a significant term in regression models predicting r when 

rainfall is used as an explanatory variable but not when pasture biomass is included. 

 

9.3.2 South Australia 

 

Photosites and NDVI 

 

The relationship between the photosite ranks and NDVI are shown in Figure 9.7.  There is 

a broad concordance between the two time series on each property and Spearman’s rank 

correlation is significant in both cases (Bulgunnia, rs = 0.71, P < 0.01; Mulyungarie, rs = 

0.44, P < 0.05). 

 

Kangaroo rate of increase 

 

Correlations between kangaroo rate of increase and rainfall are shown in Table 9.1, 

highlighting the importance of 12 months rainfall with a 12 months lag for bothy species.  

These are consistent with the correlations for red kangaroos reported by McCarthy (1996) 

for the entire SAPZ, but with a shorter time series.  Non-significant correlations were 

found for both species in regions where they occur at relatively low density (see Section 

12). 

 

Correlograms for NDVI and NDVI flush (Figs 9.8 and 9.9) show a similar pattern to 

rainfall.  A lag of 8-12 months generally provided the strongest correlation with kangaroo 

rate of increase, which matches the best association with rainfall.  Correlations were again 

strongest in regions where densities were highest, with the exception of a spike in the 

correlogram for western grey kangaroos in the northwest region.  Correlations with NDVI 

flush were generally similar to those with unaltered NDVI and the 6 months interval was 

marginally better than 12 months.  Most notably, NDVI only provided better correlations 

with rate of increase in the northwest region, where the correlation for western greys was 
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more than doubled.  Given these results, only rainfall was considered in subsequent 

regression models. 

 

(a) 

(b) 
 

Fig. 9.7.  Average (± s.e.) ranks for photosites (solid circles and line) over 1992-2002 on (a) Bulgunnia and 

(b) Mulyungarie in Kingoonya and Northeast SCBs, respectively.  Also shown is the monthly NDVI (dotted 

line) over the same period averaged across each property. 
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Table 9.1.  Correlations between red and western grey kangaroo rate of increase, adjusted for harvest rate 

(see text), and candidate periods of standardised rainfall in three regions in the South Australian pastoral 

zone.  Data cover the period 1978-2003.  Rainfall is coded as x,y where x is the interval of rainfall in months 

and y is the lag in months from the second of two consecutive aerial surveys (Fig. 9.3).  The strongest 

positive correlation for each set of region and species is shown in bold.   Significant positive correlations (P 

< 0.05) are italicised. 

 

Rainfall Northeast Northwest South 

Red kangaroos 

6,0 0.16 0.07 -0.09 

12,0 -0.03 0.03 0.02 

12,6 0.17 0.13 0.08 

12,12 0.57 0.29 0.00 

24,0 0.40 0.22 -0.04 

    

Western grey kangaroos 

6,0 0.04 -0.08 -0.06 

12,0 0.01 -0.37 0.07 

12,6 0.08 -0.26 0.11 

12,12 0.17 0.17 0.46 

24,0 0.13 -0.21 0.32 

 
 

Table 9.2.  Regressions models used to assess the influence of two rainfall periods and past density on 

kangaroo rate of increase in South Australia and New South Wales.  Models 1-9 assume harvest mortality is 

additional to natural mortality, whereas model 10 assumes it is compensatory to an extent dependent on the 

past rainfall (see text).  Rainfall is coded as x,y[<b] where x is the interval of rainfall in months and y is the 

lag in months from the second of two consecutive aerial surveys (Fig. 9.3) and b is the threshold below 

which to include the rainfall term in a piecewise regression.  The time lag for density was 12 months. 

 

Model  Model 

1 12,0 

2 12,12 

3 12,12 + 12,12
2
 

4 12,0 + 12,12 

5 12,0 + 12,12 + 12,0 × 12,12 

6 12,0[<b] + 12,12 

7 12,0[<b] + 12,12 + 12,12
2
 

8 12,0[<b] + 12,12 + 12,0[<b] × 12,12 

9 12,0[<b] + 12,12 + 12,0[<b] × 12,12 + 12,12
2
 

10 Best model(1-9) with compensatory mortality 

11 Best model(1-10) - lagged density 
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(a) 

(b) 

(c) 
 

Fig. 9.8.  Correlations between exponential rate of increase of red kangaroos, adjusted for harvest rate (see 

text), and NDVI flush averaged over 6 months (solid line and circles) and NDVI averaged over 6 (dotted 

line and open circles) and 12 (dashed line and solid squares) months with increasing lags from the second of 

two consecutive aerial surveys (Fig. 9.3) in the (a) northeast, (b) northwest and (c) south pairs of SCBs in 

the South Australian pastoral zone. 
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(a) 

(b) 

(c) 
 

Fig. 9.9.  Correlations between exponential rate of increase of western grey kangaroos, adjusted for harvest 

rate (see text), and NDVI flush averaged over 6 months (solid line and circles) and NDVI averaged over 6 

(dotted line and open circles) and 12 (dashed line and solid squares) months with increasing lags from the 

second of two consecutive aerial surveys (Fig. 9.2) in the (a) northeast, (b) northwest and (c) south pairs of 

SCBs in the South Australian pastoral zone. 
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Analysis of covariance did not identify any differences in the response to rainfall (i.e. 

coefficient for the rainfall term) between SCBs within regions according to AIC.  Nine 

candidate models (Table 9.2) were fitted to the data for each species in each region, 

initially assuming harvest mortality was additive.  In the regions where each species are 

relatively abundant, the piecewise regression model using both recent and lagged rainfall 

had most support according to Akaike weights (Table 9.3).  The threshold rainfall for 

including recent rainfall was always well below average.  There was some support for a 

curvilinear term and an interaction between the two rainfall terms.  In the lower density 

regions for both species, simpler models with a single rainfall term were preferred.  

Including harvest mortality as partially compensatory was only supported in the northwest 

for the low density population of western grey kangaroos.  The explanatory power of the 

best models (i.e. R
2
) was always greatest in the regions where species were at higher 

densities.  Including lagged density in the models invariably improved the fit and support. 

 

For each region, time traces of rates of increase against the rainfall term with the strongest 

correlation gave no evidence of different responses to rainfall depending on the time 

period (e.g. pre-drought vs post-drought). 

 

9.3.3 New South Wales 

 

Across the three species, the majority of the eight management zones also recorded 

strongest correlations between kangaroo rate of increase with 12 months rainfall with a 12 

months lag (Table 9.4).  There were species’ differences, with weaker, non-significant 

correlations for western grey kangaroos.  For red and eastern grey kangaroos, significant 

correlations tended to be in the higher density zones. 

 

The same nine regression models used for South Australia (Table 9.2) were fitted to the 

management zone data.  A piecewise regression model had the most support in over half 

the cases (Table 9.5) with recent rainfall only included during particularly dry periods (i.e. 

b generally << 0).  Lagged density improved models in all cases.  There was a poor fit 

according to R
2 

for reds in the low density KMZs 10 and 11.  For eastern greys the fit was 

poor in KMZs 4 and 6, where density is relatively moderate.  The fit was poor for western 

greys in KMZs 4 and 6, where density is relatively high, and KMZ 10, where density is 

low. 

 

Time traces again provided little support to differing responses to rainfall among time 

periods.
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 Table 9.3.  Akaike weights for models 1-10 in Table 9.2 predicting rate of increase (adjusted for harvest 

rate) in red and western grey kangaroos in three regions in the South Australian pastoral zone.  Parameter b 

for models 6-9, estimated by minimising deviance, and adjusted R
2
 for the best of models 1-9 and model 11, 

are also shown.  The model with greatest weight is shown in bold. 

 

Model Northeast Northwest South 

Red kangaroos 

1 0.00 0.00 0.22 

2 0.02 0.00 0.21 

3 0.01 0.00 0.08 

4 0.01 0.00 0.08 

5 0.01 0.00 0.03 

6 0.32 0.42 0.15 

7 0.23 0.24 0.06 

8 0.16 0.16 0.08 

9 0.17 0.09 0.03 

10 0.07 0.07 0.06 

    

b -0.50 -0.85 -0.60 
Adj. R

2
 (1-10) 0.44 0.28 0.01 

Adj. R
2
 (11) 0.65 0.54 0.24 

    

Western grey kangaroos 

1 0.11  0.00 

2 0.22 0.41 0.01 

3 0.14 0.15 0.00 

4 0.08  0.00 

5 0.10  0.01 

6 0.08  0.42 

7 0.05  0.17 

8 0.05  0.17 

9 0.03  0.07 

10 0.14 0.44 0.14 

    

b -0.45 -0.40 -0.90 
Adj. R

2
 (1-9) 0.11 0.00 0.32 

Adj. R
2
 (11) 0.17 0.15 0.32 
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Table 9.4.  Correlations between red, eastern grey and western grey kangaroo rate of increase, adjusted for harvest rate (see text), and candidate periods of standardised 

rainfall in eight kangaroo management zones in New South Wales.  Rainfall is coded as x,y where x is the interval of rainfall in months and y is the lag in months from the 

second of two consecutive aerial surveys (Fig. 9.3).  KMZs 1, 4, 7 and 11 were surveyed annually over 1984-2003, whereas KMZs 2, 6, 8 and 10 were surveyed annually over 

the longer period of 1976-2003.  The strongest positive correlation for each set of zone and species is shown in bold.   Significant correlations (P < 0.05) are italicised. 

 

Rainfall KMZ 1 KMZ 2 KMZ 4 KMZ 6 KMZ 7 KMZ 8 KMZ 10 KMZ 11 

Red kangaroos 

12,0 0.16 -0.02 -0.12 -0.25 0.38 0.02 -0.08 0.10 

12,6 0.43 0.41 0.22 -0.11 0.44 0.14 0.00 0.09 

12,12 0.49 0.54 0.49 0.31 0.33 0.48 0.07 0.18 

24,0 0.45 0.41 0.25 0.03 0.42 0.33 0.00 0.18 

         

Eastern grey kangaroos 

12,0 0.18 -0.09 -0.13 -0.04 0.16 -0.12 0.11 0.05 

12,6 0.43 0.21 0.20 0.31 0.54 0.15 0.26 0.26 

12,12 0.44 0.38 0.30 0.25 0.43 0.59 0.32 0.21 

24,0 0.43 0.22 0.11 0.14 0.34 0.31 0.28 0.15 

         

Western grey kangaroos 

12,0 0.23 -0.01 -0.19 0.18 0.37  0.20 -0.14 

12,6 0.29 0.24 0.10 0.36 0.45  0.11 -0.13 

12,12 0.30 0.37 0.15 0.12 0.32  0.04 -0.08 

24,0 0.36 0.28 -0.03 0.20 0.40  0.15 -0.17 
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Table 9.5.  Akaike weights for models (Table 9.2) predicting rate of increase (adjusted for harvest rate) in red and eastern and western grey kangaroos in eight kangaroo 

management zones in New South Wales.  Parameter b for models 6-9, estimated by minimising deviance, and adjusted R
2
 for the best of models 1-9 and model 11, are also 

shown.  The model with greatest weight is shown in bold. 

 

Rainfall KMZ 1 KMZ 2 KMZ 4 KMZ 6 KMZ 7 KMZ 8 KMZ 10 KMZ 11 

Red kangaroos 

1 0.02 0.00 0.02 0.05 0.00 0.00  0.16 

2 0.17 0.01 0.20 0.08 0.00 0.15 0.40 0.20 

3 0.09 0.00 0.07 0.06 0.00 0.07 0.22 0.10 

4 0.09 0.00 0.11 0.10 0.00 0.07  0.08 

5 0.08 0.00 0.07 0.08 0.00 0.05  0.03 

6 0.12 0.30 0.21 0.20 0.26 0.21  0.09 

7 0.05 0.19 0.08 0.11 0.13 0.08  0.05 

8 0.12 0.14 0.08 0.08 0.26 0.11  0.03 

9 0.15 0.12 0.03 0.04 0.13 0.04  0.02 

10 0.11 0.23 0.15 0.21 0.20 0.20 0.38 0.24 

         

b -0.25 -0.65 -0.30 -0.70 -0.85 -0.90 -0.45 0.00 

Ad.j R
2 (1-9) 0.22 0.48 0.26 0.18 0.48 0.26 -0.03 -0.04 

Adj. R
2
 (11) 0.30 0.50 0.48 0.29 0.53 0.48 0.39 0.56 

         

Eastern grey kangaroos 

1 0.00 0.00 0.09 0.10 0.00  0.03 0.04 

2 0.01 0.00 0.19 0.22 0.02 0.34 0.11 0.06 

3 0.01 0.00 0.07 0.13 0.01 0.13 0.04 0.03 

4 0.01 0.00 0.09 0.09 0.01  0.04 0.02 

5 0.00 0.00 0.04 0.05 0.01  0.06 0.02 

6 0.31 0.31 0.18 0.10 0.25 0.20 0.23 0.21 

7 0.23 0.18 0.07 0.06 0.11 0.07 0.09 0.08 

8 0.12 0.12 0.07 0.07 0.25 0.09 0.09 0.21 

9 0.11 0.07 0.02 0.06 0.11 0.03 0.03 0.08 

10 0.20 0.32 0.18 0.13 0.22 0.14 0.26 0.23 

         

b -0.35 -0.70 -0.55 -0.20 -0.85 -0.90 -0.70 -0.85 

Adj. R
2 (1-9) 0.43 0.40 0.04 0.05 0.38 0.34 0.16 0.20 

Adj. R
2
 (11) 0.57 0.44 0.33 0.10 0.56 0.40 0.37 0.63 
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Table 9.5 cont. 

 
Rainfall KMZ 1 KMZ 2 KMZ 4 KMZ 6 KMZ 7 KMZ 8 KMZ 10 KMZ 11 

1 0.02 0.00  0.18 0.00  0.25  

2 0.03 0.00 0.35 0.14 0.00  0.15  

3 0.01 0.00 0.14 0.05 0.00  0.06  

4 0.02 0.00  0.08 0.00  0.09  

5 0.02 0.00  0.04 0.00  0.04  

6 0.29 0.32 0.16 0.20 0.28  0.07  

7 0.21 0.13 0.06 0.08 0.10  0.03  

8 0.18 0.12 0.06 0.08 0.28  0.05  

9 0.08 0.05 0.02 0.03 0.10  0.02  

10 0.13 0.38 0.21 0.13 0.23  0.26  
         

b -0.20 -0.70 -0.30 -0.20 -0.85  -0.70  

Adj. R
2
 (1-9) 0.32 0.40 -0.02 0.05 0.70  -0.02  

Adj. R
2
 (11) 0.40 0.48 0.03 0.07 0.73  0.07 0.11 



9.3.4 Queensland 

 

The three regions within the core area yielded a significant correlation between rate of 

increase and rainfall only for eastern grey kangaroos in the brigalow belt (Table 9.6).  

Calendar year rainfall and summer rainfall had the best associations with rates of increase 

and, notably, 12 months rainfall with a 12 months lag had a weak association in all cases.  

These weak associations were also a feature in the shorter time series for the helicopter 

survey blocks (Table 9.7), with only three of 28 time series having significant correlations 

between rate of increase and rainfall.  Associations were particularly weak or negative for 

the northern blocks in the Mitchell grass downs.  Furthermore, there were no intervals of 

rainfall that consistently gave the strongest correlations.  In the Blackall and Charleville 

survey blocks, harvest rates were particularly high (> 50%) in some years during the study 

period (see Section 13) and may have been responsible for producing numerous negative 

correlations between rate of increase adjusted for harvest rate (nra) and rainfall.  

Correlations with simply the unadjusted rate of increase r are shown in Table 9.8 and 

identify a more plausible pattern. 

 

Given the weak and varied relationship with rainfall, a new set of nine candidate models 

was proposed, covering a broader range of rainfall intervals but involving only simpler 

linear relationships without interactions (Table 9.9).  The two species had poor 

relationships in the Mitchell grass downs, moderate R
2
 in the mulga lands and a reasonable 

relationship for greys but not reds in the brigalow belt (Table 9.10).  The piecewise 

regression model was not supported in any case and partially compensatory harvest 

mortality generally had slightly higher support than additive harvest mortality.  Lagged 

density again improved the fit of all models.  Models for the survey blocks generally 

reflected the result at the broader, regional level (Table 9.11).  At Blackall and Charleville, 

only models with compensatory mortality were considered.  Models for red kangaroos had 

a reasonable fit only for Hungerford and Bollon using recent rainfall.  Reasonable fits 

were obtained for eastern grey kangaroos in all blocks south of Longreach and east of 

Windorah (Fig. 9.2), using a range of rainfall intervals.  Reasonable fitting models were 

fitted for wallaroos at Blackall and Roma.  Compensatory harvest mortality was supported 

over additive mortality in 13 out of 24 cases.  Lagged density improved fit in almost all 

cases. 

 

Time traces again provided little support to differing responses to rainfall among time 

periods, although the time series is shorter for Queensland than other states. 
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Table 9.6.  Correlations between red and eastern grey kangaroo rate of increase, adjusted for harvest rate 

(see text), and candidate periods of standardised rainfall in three regions in the Queensland survey area.  

Data cover the period 1984-2003.  Rainfall is coded as x,y where x is the interval of rainfall in months and y 

is the lag in months from the second of two consecutive aerial surveys (Fig. 9.3).  The strongest positive 

correlation for each set of region and species is shown in bold.   Significant correlations (P < 0.05) are 

italicised. 

 

Rainfall Brigalow belt Mulga lands Mitchell grass downs 

Red kangaroos 

12,0 0.12 0.25 -0.21 

12,5 -0.08 0.23 0.15 

12,12 -0.33 0.02 0.13 

6,2 0.18 0.29 -0.29 

6,8 -0.20 -0.07 0.00 

6,14 -0.23 0.28 0.09 

    

Eastern grey kangaroos 

12,0 0.11 0.01 -0.34 

12,5 0.57 0.38 0.10 

12,12 0.40 0.24 0.12 

6,2 0.13 0.34 -0.21 

6,8 0.10 0.10 -0.09 

6,14 0.51 0.33 0.26 
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Table 9.7.  Correlations between red and eastern grey kangaroo and wallaroo rate of increase, adjusted for harvest rate (see text), and candidate periods of standardised 

rainfall in ten survey blocks in the Queensland survey area.  Data cover the period 1991-2003.  Rainfall is coded as x,y where x is the interval of rainfall in months and y is the 

lag in months from the second of two consecutive aerial surveys (Fig. 9.3).  The strongest positive correlation for each set of block and species is shown in bold.   Significant 

correlations (P < 0.05) are italicised.  J, Julia Creek; Wt, Winton; L, Longreach; Wd, Windorah; Bk, Blackall; Cv, Charleville; H, Hungerford; Bo, Bollon; R, Roma; Wm, 

Westmar. 

 

Rainfall J Wt L Wd Bk Cv H Bo R Wm 

Red kangaroos 

12,0 -0.37 -0.38 0.03 -0.18 -0.07 0.00 0.63 0.23 -0.19 0.14 

12,5 0.07 -0.24 0.24 0.01 -0.10 -0.01 0.29 0.39 -0.06 -0.06 

12,12 0.08 -0.18 0.01 0.00 -0.14 -0.48 0.27 -0.11 -0.17 -0.28 

6,2 -0.50 -0.40 -0.09 -0.15 -0.11 -0.03 0.59 0.38 -0.23 0.21 

6,8 0.08 -0.09 0.22 0.12 -0.24 0.14 0.11 0.01 -0.04 -0.13 

6,14 0.09 -0.21 -0.18 -0.04 -0.26 -0.39 0.05 -0.13 -0.14 -0.02 

           

Eastern grey kangaroos 

12,0 -0.29 0.07 -0.07 -0.15 0.11 0.50 0.54 0.51 0.38 -0.11 

12,5 -0.01 -0.09 0.15 0.15 -0.19 0.10 0.50 0.70 0.53 -0.11 

12,12 0.25 0.13 -0.04 0.06 -0.39 -0.42 0.43 0.48 0.29 0.16 

6,2 -0.40 0.05 -0.05 -0.12 0.16 0.39 0.46 0.74 0.45 -0.06 

6,8 -0.27 -0.31 -0.04 0.02 -0.06 0.59 0.28 0.00 -0.04 -0.21 

6,14 0.32 0.07 -0.04 0.07 -0.45 -0.36 0.32 0.58 0.43 0.27 

           

Wallaroos 

12,0  -0.27 -0.36 -0.12 0.52 -0.21 0.06 -0.14 0.19  

12,5  0.11 -0.19 -0.65 0.06 -0.09 -0.37 0.17 0.44  

12,12  0.24 -0.35 -0.88 -0.32 -0.36 -0.21 0.51 0.46  

6,2  -0.33 -0.51 -0.28 0.49 -0.28 0.01 -0.21 -0.22  

6,8  0.32 -0.09 -0.04 0.39 -0.07 0.13 0.03 0.62  

6,14  0.26 -0.29 -0.72 -0.55 -0.25 -0.16 0.44 0.42  
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Table 9.8.  Correlations between red and eastern grey kangaroo and wallaroo rate of increase, unadjusted for 

harvest rate (see text), and candidate periods of standardised rainfall in two survey blocks in the Queensland 

survey area where harvest rates had been relatively high (>50%).  Rainfall is coded as x,y where x is the 

interval of rainfall in months and y is the lag in months from the second of two consecutive aerial surveys 

(Fig. 9.3).  The strongest positive correlation for each set of block and species is shown in bold.   Significant 

correlations (P < 0.05) are italicised.   

 

Rainfall Blackall Charleville 

Red kangaroos 

12,0 0.31 0.37 

12,5 0.38 0.34 

12,12 0.07 -0.22 

6,2 0.20 0.30 

6,8 0.18 0.51 

6,14 -0.02 -0.09 

   

Eastern grey kangaroos 

12,0 0.53 0.74 

12,5 0.53 0.45 

12,12 0.13 0.04 

6,2 0.45 0.59 

6,8 0.66 0.83 

6,14 -0.06 0.11 

   

Wallaroos 

12,0 0.68 -0.01 

12,5 0.43 0.05 

12,12 0.06 -0.23 

6,2 0.63 -0.11 

6,8 0.61 0.10 

6,14 -0.22 -0.11 
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Table 9.9.  Regressions models used to assess the influence of two rainfall periods and past density on 

kangaroo rate of increase in Queensland.  Models 1-9 assume harvest mortality is additional to natural 

mortality, whereas model 10 assumes it is compensatory to an extent dependent on the past rainfall (see 

text).  Rainfall is coded as x,y[<b] where x is the interval of rainfall in months and y is the lag in months 

from the second of two consecutive aerial surveys (Fig. 9.3) and b is the threshold below which to include 

the rainfall term in a piecewise regression.  The time lag for density was 12 months. 

 

Model  Model 

1 12,0 

2 12,5 

3 12,12 

4 6,2 

5 6,8 

6 12,0 + 12,12 

7 6,2 + 6,8 

8 12,0 + 6,14 

9 12,0[<b] + 12,12 

10 Best model(1-9) with compensatory mortality 

11 Best model(1-10) - lagged density 
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Table 9.10.  Akaike weights for models 1-10 in Table 9.9 predicting rate of increase (adjusted for harvest 

rate) in red and eastern grey kangaroos in three regions in the Queensland survey area.  Parameter b for 

model 9, estimated by minimising deviance, and adjusted R
2
 for the best of models 1-9 and model 11, are 

also shown.  The model with greatest weight is shown in bold. 

 

Model Brigalow belt Mulga lands Mitchell grass downs 

Red kangaroos 

1 0.26 0.08  

2  0.07 0.36 

3  0.04 0.35 

4 0.30 0.10  

5  0.05  

6    

7    

8  0.09  

9    

10 0.44 0.56 0.29 

    

    

b -0.20 -0.40 0.00 
Adj. R

2
 (1-9) 0.02 0.20 0.01 

Adj. R
2 (11) 0.46 0.38 0.31 

    

Eastern grey kangaroos 

1 0.01 0.05  

2 0.41 0.24 0.30 

3 0.05 0.09 0.32 

4 0.01 0.17  

5 0.01 0.06  

6 0.02   

7 0.00 0.07  

8 0.06 0.06  

9  0.04  

10 0.42 0.22 0.38 

    

b -0.90 -0.80 -1.00 
Adj. R

2
 (1-9) 0.37 0.19 0.06 

Adj. R
2
 (11) 0.37 0.22 0.11 
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Table 9.11.  Akaike weights for models 1-10 in Table 9.9 predicting rate of increase (adjusted for harvest rate) in red and eastern grey kangaroos and wallaroos in ten survey 

blocks in the Queensland survey area.  Parameter b for model 9, estimated by minimising deviance, and adjusted R
2
 for the best of models 1-9 and models 11, are also shown.  

The model with greatest weight is shown in bold.  For Blackall and Charleville, harvest mortality was always assumed to be compensatory (i.e. model 10 in Table 9.9).  J, 

Julia Creek; Wt, Winton; L, Longreach; Wd, Windorah; Bk, Blackall; Cv, Charleville; H, Hungerford; Bo, Bollon; R, Roma; Wm, Westmar. 

 

Model J Wt L Wd Bk Cv H Bo R Wm 

Red kangaroos 

1   0.15  0.35 1.00 0.26 0.12  0.00 

2 0.24  0.21 0.37 0.61  0.02 0.22   

3 0.24  0.15    0.02    

4     0.04 0.00 0.17 0.21  0.00 

5 0.24  0.20 0.41  0.00 0.01 0.09   

6   0.06    0.10    

7       0.08    

8       0.13    

9           

10 0.28  0.22 0.22   0.20 0.37  1.00 

           

b -0.85  -0.60 -0.25 -0.10 -1.00 -0.35 0.00  -0.35 

Adj. R
2
 (1-9) -0.08  -0.03 -0.08 0.07 0.08 0.40 0.47  0.09 

Adj. R
2
 (11) 0.63 0.24 0.49 0.37 0.31 0.20 0.53 0.46 0.61 0.53 

           

Eastern grey kangaroos 

1  0.20   1.00 0.35 0.03 0.02 0.09  

2   0.40 0.28  0.00 0.02 0.14 0.26  

3 0.49 0.21  0.25   0.01 0.02 0.06 0.44 

4  0.20   0.00 0.04 0.02 0.32 0.14  

5    0.25  0.36 0.01 0.00   

6  0.08     0.02 0.02 0.05  

7      0.24 0.01    

8  0.07     0.08 0.05 0.09  

9  0.09     0.41 0.26 0.07 0.45 

10 0.51 0.14 0.60 0.23   0.39 0.17 0.24 0.11 

           

b -0.85 -0.50 -0.60 -0.45 -0.20 -1.00 -0.95 0.00 -0.65 -0.85 

Adj. R
2
 (1-9) -0.03 -0.15 -0.06 -0.07 0.51 0.62 0.52 0.57 0.33 0.52 

Adj. R
2
 (11) 0.51 0.55 0.26 0.12 0.55 0.64 0.77 0.53 0.33 0.12 



Monitoring for harvest management of kangaroos 127 

Table 9.11 cont. 

 

Model J Wt L Wd Bk Cv H Bo R Wm 

Wallaroos 

1     0.70 0.20 0.22  0.06  

2  0.20    0.27  0.17 0.11  

3  0.24      0.39 0.12  

4     0.04 0.11 0.21    

5  0.27   0.26 0.37 0.23  0.29  

6         0.06  

7      0.05 0.09    

8         0.07  

9         0.06  

10  0.29     0.25 0.44 0.22  

           

b  -1.00   -0.20 -1.00 0.00 -0.55 -0.25  

Adj. R
2
 (1-9)  -0.12   0.54 -0.09 -0.11 0.10 0.31  

Adj. R
2 (11)  0.70 0.36 0.60 0.58 -0.07 0.14 -0.17   
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9.3.5 Geographic patterns in population dynamics 

 

Simulations described in Section 9.3.1 suggested model fit (i.e. R
2
) should decline with 

increasing average annual rainfall; essentially moving away from central Australia 

towards the coast.  There is a suggestion of this for red and western grey kangaroos, 

despite a considerable scatter of points, but not for eastern grey kangaroos or wallaroos 

(Fig. 9.10).  Bollon and KMZ 8 are the most obvious outliers in the plot for red kangaroos.  

The poor fit of models for the northern Queensland sites, relative to elsewhere, is also 

evident from these plots. 

 

The strength of density dependence was expected to increase with average annual rainfall 

and again such a relationship is suggested for red kangaroos (Fig. 9.12a).  Marree is an 

outlier in this case.  For western grey kangaroos there is no hint of a pattern (Fig. 9.12b).  

For eastern greys, strong density dependence was only recorded at higher rainfall areas 

(Fig. 9.12c), but this pattern was not evident within states; reflecting a contrast between 

New South Wales and Queensland.  For wallaroos, the pattern is not clear, but tends to be 

opposite to what was expected (Fig. 9.11d). 

 

Variability in kangaroo density was expected to decline with increasing average annual 

rainfall.  If anything, the opposite was the case for red kangaroos when states are 

considered separately (Fig. 9.12a).  The data for western grey kangaroos (Fig. 9.12b) and 

eastern grey kangaroos (Fig. 9.12c) tend to support the hypothesis, whereas the wallaroo 

data (Fig. 9.12d) are counter to what was expected. 

 

9.4 Discussion 

 

A number of aspects of kangaroo population dynamics have been clarified in this study.  

Firstly, the appropriate period of rainfall to predict rate of increase is best represented by 

two rainfall intervals, most likely reflecting mortality in all age classes during drought and 

variation in juvenile survival outside of drought.  An age structured model should improve 

on this relationship.  Secondly, the relationship between rainfall and rate of increase for 

eastern grey kangaroos and common wallaroos has been examined showing broadly 

similar patterns to the other two species.  Thirdly, harvest rate has been incorporated into 

the relationships, which is clearly important for Queensland where harvest rates are higher 

than other states and for all states over the past 15 years as harvest rates have increased to 

meet quotas (see Section 13).  Finally, variation in the numerical response has been 

documented across much of the latitudinal and longitudinal range of all four species, 

certainly for the areas where the harvest is concentrated. 
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(a) 

(b) 

(c) 

 
Fig. 9.10.  Relationship between mean annual rainfall and the adjusted coefficient of determination (R

2
) for 

the model, using only rainfall (i.e. models 1-9 in Tables 9.3, 9.5 and 9.10), that best predicts rate of increase 

of (a) red kangaroos, (b) western grey kangaroos, (c) eastern grey kangaroos and (d) common wallaroos.  All 

models assume additive harvest mortality. Each point represents a region in South Australia (○), New South 

Wales (■) or Queensland (∆) (see Figs 9.1 and 9.2). 
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(d) 
 

Fig. 9.10 cont. 
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(a) 

(b) 

 

(c) 

 
Fig. 9.11.  Relationship between mean annual rainfall and the partial regression coefficient of the previous 

year’s density for the model (i.e. model 11 or 12 in Tables 9.2 and 9.9) that best predicts rate of increase of 

(a) red kangaroos, (b) western grey kangaroos, (c) eastern grey kangaroos and (d) common wallaroos.  Each 

point represents a region in South Australia (○), New South Wales (■) or Queensland (∆) (see Figs 9.1 and 

9.2).  Points on the x-axis in (a) are actually -0.8 and -1.3.  Coefficients of zero refer to best models 

excluding past density. 
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(d) 

 
Fig. 9.11 cont.
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 (a) 

 (b) 

 (c) 

 
Fig. 9.12.  Relationship between mean annual rainfall and variability (CV = SD/mean) in annual density of 

(a) red kangaroos, (b) western grey kangaroos, (c) eastern grey kangaroos and (d) common wallaroos.  Each 

point represents a region in South Australia (○), New South Wales (■) or Queensland (∆) (see Figs 9.1 and 

9.2). 
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(d) 

 
Fig. 9.12 cont.
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The striking feature of these analyses is that the ability to predict kangaroo rate of increase 

using rainfall alone is poor in northern Queensland and for species in regions where they 

occur at low density.  The latter may simply be a function of poorer precision at low 

density, as demonstrated with the simulation model.  Precision is poor in the survey blocks 

in Queensland, but not generally worse in the northern blocks.  The inclusion of lagged 

density greatly improves model fit as expected from Figure 9.5.  However, this is 

unsatisfactory as density is only a surrogate for processes regulating the population (Krebs 

2002).  All the evidence points to kangaroo populations being extrinsically regulated by 

food supply (Caughley et al. 1987; Pople 1996) and so density in combination with 

rainfall can be considered a substitute for pasture biomass, as shown by simulation here.  

Unfortunately, NDVI proved no better than rainfall in predicting rate of increase, at least 

in South Australia.  Nevertheless, NDVI may prove useful for predicting smaller-scale 

fluctuations in kangaroo numbers in response to patchy rainfall and resulting from 

movement as well as spatially-variable survival rates. 

 

Interpretation of the geographic patterns in Figures 9.10-9.12 needs to consider the 

proximity of populations to the edge of each species’ range, population density and the 

precision of density estimates.  The simulation modelling demonstrated that imprecision in 

density estimation can, not surprisingly, mask underlying relationships and strengthen 

apparent density dependence.  Precision (SE/mean) of density estimates of kangaroos are 

generally > 0.2 at a regional level (e.g. Caughley et al. 1977; Caughley and Grigg 1982; 

Cairns and Grigg 1993) and appear to be a major impediment to predicting density at this 

scale.  It is not clear how populations are expected to behave dynamically at the edge of 

their range (Williams et al. 2003), but these species are candidates for assessment, 

particularly given their contrasting patterns of distributions (see Section 12).  For eastern 

grey kangaroos, populations in the east and closer to the range core appear less variable, 

but are in more mesic environments.  In contrast, red kangaroos in the east are on the 

periphery of their range and show comparable variation in density to populations at their 

arid core. 

 

A good fit does not necessarily imply a model is correct. Cross-validation of these 

population models should be attempted, although there are some important caveats.  

Splitting the red kangaroo time series for Northeast Pastoral SCB into two equal time 

series showed Ricker (i.e. essentially the rainfall and density model fitted here) and ratio-

dependent models (McCarthy 1996; see Section 10) to both predict one half of the time 

series well when parameterised on the other half (A. R. Pople unpublished data).  The fit 

of Caughley’s (1987) interactive model was also reasonable (Fig. 9.6).  However, each 

model yields quite different predictions (see Section 5), again highlighting the problems of 

using density as a predictor of rate of increase rather than the regulating processes 

themselves (Krebs 2002).  The partial regression coefficient for lagged density varied 

substantially among regions and species, but there were no clear patterns to draw 

generalisations.  Some of this is due to variation in the strength of the relationship with 

rainfall.  Such models are nevertheless region-specific, contrasting with the findings of 

Jonzen et al. (2005) for red kangaroos in the SAPZ (see Section 10). A more formal 

analysis is needed for all four species across all states.  

 

Whether harvest mortality should be treated as additive or partially compensatory is not 

clear from these data, as there was empirical support for both.  Simulation modelling 

suggested the method of analysis may not distinguish between them.  The problem could 
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be avoided if pasture biomass (i.e. kangaroo food supply) and the negative feedback with 

kangaroo density could be modelled directly as in Caughley’s (1987) interactive model. 

 

From a management perspective, the ability to predict kangaroo density may allow survey 

frequency to be altered, as outlined in Section 6.  Useful predictions using rainfall are 

clearly possible in some regions for some species. 
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Summary

1.

 

We analysed time-series data from populations of red kangaroos (

 

Macropus rufus

 

,
Desmarest) inhabiting four areas in the pastoral zone of South Australia. We formu-
lated a set of 

 

a priori

 

 models to disentangle the relative effects of the covariates: rainfall,
harvesting, intraspecific competition, and domestic herbivores, on kangaroo population-
growth rate.

 

2.

 

The statistical framework allowed for spatial variation in the growth-rate parame-
ters, response to covariates, and environmental variability, as well as spatially correlated
error terms due to shared environment.

 

3.

 

The most parsimonious model included all covariates but no area-specific parameter
values, suggesting that kangaroo densities respond in the same way to the covariates
across the areas.

 

4.

 

The temporal dynamics were spatially correlated, even after taking into account the
potentially synchronizing effect of rainfall, harvesting and domestic herbivores.

 

5.

 

Counter-intuitively, we found a positive rather than negative effect of  domestic
herbivore density on the population-growth rate of kangaroos. We hypothesize that this
effect is caused by sheep and cattle acting as a surrogate for resource availability beyond
rainfall.

 

6.

 

Even though our system is well studied, we must conclude that approximating
resources by surrogates such as rainfall is more difficult than previously thought. This
is an important message for studies of consumer-resource systems and highlights the
need to be explicit about population processes when analysing population patterns.
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stochasticity, spatial correlation 

 

Journal of Animal Ecology

 

 (2005) 

 

74

 

, 22–30
doi: 10.1111/j.1365-2656.2004.00915.x

 

Introduction

 

Since the pioneering work by the Australian statistician
P.A.P. Moran in the early 1950s (e.g. Moran 1953), the
spatial dimension of population dynamics and espe-
cially large-scale synchrony in population fluctuations
has received a lot of attention from ecologists (Royama
1992; Ranta 

 

et al

 

. 1995; Bjørnstad, Ims & Lambin 1999;
Koenig 1999). There is a growing interest in extending

the analysis of  ecological dynamics to include the
spatial dimension (e.g. Bascompte & Solé 1997; Tilman
& Kareiva 1997; Dieckmann, Metz & Law 2000).

The spatial distribution of individuals can be import-
ant when the primary interest is to understand tem-
poral dynamics. For instance, populations at different
spatial locations may differ in terms of  demography
(LaMontagne, Irvine & Crone 2002) and how they
respond to environmental fluctuations, i.e. averaging
across space can be misleading. The driving environ-
mental variables may also vary across space. Hence, to
be able to analyse space–time series data in a rigorous
way, population models should allow for spatial vari-
ation in growth-rate parameters and environmental
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variability, as well as spatially correlated error terms
(Dennis, Kemp & Taper 1998). In some cases, the
populations may also be connected by dispersal, which
has turned out to be challenging to estimate, but possible,
from space–time series data (Lele, Taper & Gage 1998).
Failure to account for spatial patterns may sometimes
lead to very different conclusions about an organism’s
ecology, such as when estimating environment–
abundance relationships (Keitt 

 

et al

 

. 2002).
In this paper, we use a multivariate maximum likeli-

hood framework to study spatio-temporal population
dynamics in the red kangaroo (

 

Macropus rufus

 

,
Desmarest) inhabiting the pastoral zone of  South
Australia. We are primarily interested in finding out to
what extent kangaroo dynamics are affected by rainfall,
intraspecific competition, interspecific competition
with sheep and cattle, and whether there are any spatial
differences in these interactions between different
management areas. Previous kangaroo studies have
highlighted the importance of the interactions listed
above, but no attempt has been made to put them all
together in a unified statistical framework.

Because kangaroos interact with sheep via resource
competition (Caughley 1987; Edwards 1989) and are
harvested for meat and skins (Ramsay 1994; Pople &
Grigg 1998; Grigg & Pople 2001), there is a clear need
for population models that can be used to evaluate
alternative decisions under uncertainty. There is also a
need to sort out how the different processes identified
above translate into observable kangaroo dynamics
and that is our major goal here. Such knowledge is
important to be able to make reasonable management
decisions, such as optimal harvesting in response to
predicted grazing pressure and rainfall. It is also valu-
able on a more general level because different popula-
tion processes can give rise to the same patterns in
time-series data (Jonzén 

 

et al

 

. 2002a; Jonzén, Ripa &

Lundberg 2002b). However, the system dealt with in
this paper is relatively well studied, which minimizes
the risk of ignoring key processes governing a popula-
tion’s dynamics (Jonzén 

 

et al

 

. 2002a).
It has previously been assumed that the red kangaroos

inhabiting the study area make up a single large and
uniform population (McCarthy 1996), but there are
other studies suggesting that there may be differences
between at least the western and the central and eastern
regions in terms of the numerical response to rainfall
(Cairns & Grigg 1993). Furthermore, the study area
has been divided by the government management
agency into different management regions, each with
its own annual harvest quota (SADEH 2002). Hence,
there are ecological as well as management reasons to
increase the spatial resolution of current understand-
ing and to study the temporal dynamics of  the red
kangaroo in the different management areas rather
than across South Australia as a whole.

 

   

 

The pastoral zone of South Australia covers approxi-
mately 282 000 km

 

2

 

 in area and comprises a range of
different landforms and vegetation types (Laut 

 

et al

 

.
1977). The aerial survey of kangaroos in the pastoral
zone of South Australia was initiated in 1978 and has
been conducted annually each winter. Survey methods
are described elsewhere (Caughley & Grigg 1981; Cairns
& Grigg 1993).

Data on red kangaroo densities (individuals km

 

−

 

2

 

) in
six management regions of South Australia (Fig. 1)
were collected by winter aerial survey (Caughley &
Grigg 1981; Grigg 

 

et al

 

. 1999) between 1978 and 2002.
To reduce the number of  parameters that we had to
estimate, we amalgamated data from pairs of similar
regions, resulting in the following four major areas:

Fig. 1. Map showing the six management regions of South Australia where the analysed data were collected.
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Eastern Districts, Gawler, Kingoonya/Maree, and North
Flinders Ranges/North-east Pastoral, referred to as
areas 1, 2, 3 and 4, respectively. The pooled regions
border each other and have similar rainfall statistics.

Kangaroos are shot throughout the year and the
carcasses are brought to nearby refrigeration units or
dealer sites throughout the pastoral zone. The density
(individuals km

 

−

 

2

 

) of kangaroos harvested on proper-
ties in South Australia each year were determined from
shooter and dealer returns collated by the South Aus-
tralian government conservation agency (currently the
Department for Environment and Heritage). Records
of harvested kangaroos were available only for the State
as a whole in 1978 and 1979. Therefore, the proportion of
the State total that was shot in each region in 1980 was
used to apportion the State total in 1978 and 1979. The
number of red kangaroos harvested in each region between
consecutive aerial surveys was used in the analysis.

We used rainfall data from each of the management
areas collected during the 12-month period prior to the
start of the winter census. Rainfall during this period
has been found to have the best positive correlation
with the population rate of change of red kangaroos
between two censuses following this 12-month period
of rain, at least on the broad spatial scale of the whole
pastoral zone in South Australia (McCarthy 1996).

Sheep are the predominant domestic stock in the
South Australian pastoral zone, with cattle run mostly
on properties in the north of the zone. Mean annual
numbers of sheep and cattle on properties in the pas-
toral zone were determined from graziers’ stock returns
collated by the South Australian government department
responsible for primary industries (currently Depart-
ment of Water, Land and Biodiversity Conservation).
Cattle numbers were converted to dry sheep equivalents
by multiplying by eight, the conversion factor recom-
mended by the Department of Water, Land and Bio-
diversity Conservation in South Australia (Reid 1990).
Henceforth, we refer to the combined mean as Dry
Sheep Equivalents (DSE), which will be expressed as a
density (km

 

−

 

2

 

).

 

  

 

(a) Background to kangaroo modelling research

 

Several different models of macropod populations
have been developed (reviewed by Cairns 1989) and the
focus of most studies has been to document a general
impact of  (time-lagged) rainfall on population rate
of  change in the red kangaroo (e.g. Caughley, Bayliss
& Giles 1984; Bayliss 1985a,b; Cairns & Grigg 1993;
McCarthy 1996). Rainfall is a proxy for pasture growth
and biomass and is important for predicting fluctu-
ations in kangaroo populations. In the pastoral zone of
South Australia, initial data analysis (Cairns & Grigg
1993) found that red kangaroo populations respond
to rainfall at short time-lags on the scale of  single
management areas of 20 000–40 000 km

 

−

 

2

 

. However, a

longer lagged effect of rainfall was found using a longer
time series on a broad scale across the entire South
Australian pastoral zone (McCarthy 1996).

Statistical density dependence (i.e. a relationship
between population rate of  change and density) was
detected on a broad scale covering the entire pastoral
zone of  South Australia (McCarthy 1996), but the
processes underlying that pattern are not fully under-
stood. Whereas intraspecific competition for food may
seem to be a logical explanation, one must also consider
that kangaroos compete with sheep and cattle (Edwards
1989). The conventional wisdom is that domestic live-
stock density has a marked influence on the long-term
density of  kangaroos, but only a negligible effect on
their short-term dynamics (Caughley 1987). In other
words, domestic herbivore density should not affect the
rate of change of kangaroos. However that has not been
shown statistically. In this paper we explore different
models for the impact of domestic herbivore density on
kangaroo population dynamics at the regional scale.

 

(b) Models

 

Let 

 

N

 

i

 

,(

 

t

 

)

 

 be the kangaroo population density (individuals
km
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2

 

) in area 

 

i

 

 at time 

 

t

 

 for 

 

i

 

 = {1,2,3,4} correspond-
ing to Eastern Districts, Gawler, Kingoonya/Maree,
and North Flinders Range/North-east Pastoral,
respectively. We assume the mapping of  density
from one year to the next is described by a multivariate
stochastic Ricker model (Dennis 

 

et al

 

. 1998) including
harvesting (

 

H

 

), rainfall (

 

R

 

) and the DSE density (

 

S

 

) as
covariates. Hence, the full model can be written

eqn 1

where 
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 and 
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 are constants for each area 

 

i

 

, often
referred to as a drift or location parameter and statis-
tical density dependence, respectively. We assume
the dynamics are influenced by a regionally and time-
dependent environmental random variable 
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 that is
drawn from a multivariate normal distribution with
mean zero and variance-covariance matrix 
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. The
parameters 
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 capture the local response to rain-
fall and DSE in each area. To be able to compare the
response to kangaroo density, rainfall and DSE across
the areas, we standardized these time series to zero
mean and unit variance.
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i

 

between winter in year 

 

t

 

 

 

−

 

 1 and winter in year 
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 calcu-
lated as

eqn 2
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 is the total number of harvested animals per
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 between consecutive aerial surveys.
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discrete event and population density is estimated only
once every year (see Cairns & Grigg 1993). By not fit-
ting a coefficient to the harvest term, we are assuming
that the effect of  harvesting is constant for a given
population-growth rate, and the population-growth rate
was simply adjusted for harvest rate (i.e. we assumed
the coefficient was one). Estimating a coefficient (other
than 1) would be seeking the level of compensation
(< 1) or perhaps superadditivity (> 1) in harvesting in
addition to the density dependence that was modelled,
and the effect of harvesting is not the focus of this paper.

Finally, we also consider a different model structure
motivated by the theory of ratio-dependent consumer–
resource interactions (Arditi & Ginzburg 1989) and a
previous study on red kangaroo dynamics in South
Australia (McCarthy 1996). This second model is

eqn 3

where 

 

b

 

i

 

 is now the regression coefficient with respect
to the ratio of kangaroo density and rainfall (i.e. not
standardized as above), 

 

d

 

i

 

 is the regression coefficient
with respect to the ratio of  DSE and rainfall. These
ratios were standardized to mean zero and unit variance
to facilitate the comparison across areas.

 

(c) Parameter estimation and model selection

 

The stochastic multivariate Ricker model with covari-
ates (equation 1) can be considered a hybrid between an
ecological and a statistical model in the sense that the
parameters have an ecological interpretation, but the
model can be expressed as a statistical time-series model
on a logarithmic scale. If  we define ln(

 

N

 

) 

 

≡

 

 

 

X

 

, we can
write equation 1 as a multivariate first-order nonlinear
autoregression (NLAR) model (Tong 1990) with linear
covariates on the log-scale:
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, eqn 4

where the boldface indicates that the parameters and
data have vector (

 

a

 

, 
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 are column
vectors) or matrix (
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 and 
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 are diagonal
matrices) structure. The likelihood function for a mul-
tivariate NLAR with Gaussian error structure is pre-
sented in Dennis 

 

et al

 

. (1998) and the log-likelihood,
which was used for estimating the unknown parameters,
can be written as

eqn 5

where 

 

Z

 

t

 

 is a vector of  residuals at time 

 

t

 

, 

 

m

 

 is the
number of areas (

 

m

 

 = 4) and all sums are from time

 

t

 

 = 1 to 

 

t

 

 = 

 

q

 

 (= 25). We obtain maximum-likelihood
estimates of the unknown parameters by minimizing

the negative log-likelihood (–ln 

 

L

 

(

 

a

 

, 

 

b

 

, 

 

c

 

, d, Σ)) using
the Nelder–Mead simplex algorithm (Press et al. 1994).
For a more detailed explanation of  the multivariate
normal likelihood function, see Dennis et al. (1998).

We calculate the likelihood for each of a set of can-
didate models where equations 1 and 3 describe the full
models assuming either additive (equation 1) or ratio-
dependent (equation 3) effects of density and rainfall.
We confront models with and without a term for den-
sity dependence and/or DSE, but harvesting, rainfall
and a location parameter were included in all models.
Each model could be further classified as having
population-specific or global parameter values and the
variance-covariance matrix had either zero or non-zero
off-diagonal elements. Model selection was guided by
the information-theoretic approach and we used the
Akaike Information Criteria corrected for small
sample size, AICc (Burnham & Anderson 1998; p. 51)
to rank the alternative models. We ignored observation
error because we have no a priori reason to assume that
the magnitude of the observation error should differ
among the alternative models, and relative differences
should therefore remain similar (LaMontagne et al.
2002).

Finally, we undertook a residual analysis of the best
model as determined by the smallest AICc value to
make sure that the residuals were approximately norm-
ally distributed and not strongly serially correlated.
For this purpose, one can treat the residuals from the
four areas as approximately independent (Tong 1990).
We performed Lilliefors test for goodness of  fit to a
normal distribution at the α = 5% level (Conover 1980),
and we analysed the residuals for autocorrelation by
estimating the partial autocorrelation function. The
critical value of the partial autocorrelation coefficient
is considered significantly differently from zero at the
5% level if it is greater than | 2/√n | = 0·408, where n is the
length of the residual vector (Chatfield 1999).

Results

Inspection of the time series of kangaroo density in the
four regions (Fig. 2a) shows that the four populations
do not fluctuate independently. However, they are not
as correlated to each other as their biotic and abiotic
environments are correlated across regions, as indicated
by the temporal dynamics of DSE (i.e. sheep and cattle),
rainfall and the annual harvest fraction (Fig. 2b–d,
Table 1). When confronting a set of alternative models,
the most parsimonious model turned out to have a drift
parameter and a parameter for statistical density
dependence common to all areas, dry sheep equivalents
as a covariate, and a variance-covariance matrix with
non-zero off-diagonal elements (Table 2). Remember
that rainfall and harvest were included in all models.
This model provided a reasonable fit (see Fig. 3) and
the assumption of normally distributed errors could
not, according to Lilliefors test, be rejected in any of the
four areas: Area 1 (D* = 0·12, P > 0·2), Area 2 (D* =
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0·07, P > 0·2), Area 3 (D* = 0·12, P > 0·2), Area 4
(D* = 0·09, P > 0·2). There were no indications of seri-
ally correlated residuals in areas 1, 2 or 3, but the second
order partial autoregressive coefficient, r2, in area 4
exceeded the critical value: Area 1 (r1 = −0·24, r2 =
0·11), Area 2 (r1 = 0·14, r2 = −0·022), Area 3 (r1 = −0·037,
r2 = −0·27), Area 4 (r1 = −0·13, r2 = −0·44). However,
the proportion of the variation, R2, explained by the

best model varied from 0·07 in Kingoonya/Maree to
0·6 in Northern Flinders/North-east Pastoral, with
intermediate values, 0·2, in Eastern Districts and Gawler.

The second best model was identical to the best
model except that the variance-covariance matrix was
diagonal (i.e. the populations were considered to be
independent). The sum of the Akaike weights for the
two most parsimonious models was about 0·7; hence,

Fig. 2. The observed dynamics of (a) red kangaroo density (individuals km−2), (b) sheep plus cattle density as dry sheep
equivalents (DSE km−2), (c) rainfall during the 12-month period prior to the first winter census of kangaroo, and (d) the annual
harvest fraction. The four areas are Eastern Districts (solid lines), Gawler (dashed lines), Kingoonya/Maree (dotted lines), and
North Flinders Range/North-east Pastoral (solid lines with dots).

Table 1. Spatial correlation of red kangaroo density, domestic herbivore density (as Dry Sheep Equivalent, DSE), rainfall and
harvest fraction. Corr(i, j ) refers to the correlation between the time series in area i and j. Area 1–4 correspond to Eastern Districts,
Gawler, Kingoonya/Maree, and North Flinders Range/North-east Pastoral, respectively
 

Corr(1,2) Corr(1,3) Corr(1,4) Corr(2,3) Corr(2,4) Corr(3,4)

Kangaroo density 0·32 0·38 0·39 0·49 0·19 0·51
Sheep + cattle (as DSE) 0·44 0·47 0·62 0·78 0·71 0·84
Rainfall 0·75 0·66 0·78 0·67 0·63 0·94
Harvest fraction 0·58 0·68 0·82 0·67 0·70 0·86

Table 2. Alternative models, number of estimated parameters (K ), log-likelihood (log L), Akaike Information Criteria corrected
for small sample size (AICc), AICc differences (∆i = AICci  – min AICc) and Akaike weights (wi) for the models where wi − 0·01. The
Σ sign (variance-covariance matrix) refers to models where the covariance in error structure is estimated. All other models assume
that the variance-covariance matrix is diagonal (i.e. no covariances)
 

Model Log L K AICc ∆i wi

a + bN + cR + dS − H, Σ 44·6 14 −56·1 0 0·53
a + bN + cR + dS − H 35·7 8 −53·7 2·4 0·16
a + bN + cR + diS − H, Σ 47·5 17 −53·1 2·9 0·12
a + bN + cR + diS − H 38·4 11 −51·6 4·4 0·06
a + bN + ciR + dS − H, Σ 46·2 17 −50·5 5·6 0·03
a + bN + ciR + dS − H 37·3 11 −49·5 6·6 0·02
a + biN + cR + dS − H, Σ 45·2 17 −48·5 7·6 0·01
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there was strong evidence of a common dynamic struc-
ture across areas as well as an impact of DSE on the
population-growth rate in the red kangaroo. Unex-
pectedly, the regression coefficient with respect to
DSE was positive rather than the negative we would
expect for competing species. Because both rainfall and
DSE were standardized we can compare the corre-
sponding regression coefficients. The positive effect of
DSE on the kangaroo population-growth rate was in
fact even stronger than the effect of  rainfall. The
maximum likelihood estimates of  all parameters in
the best model are given in Table 3. There was no
support for ratio-dependence (Akaike weights = 0); in
fact, there were 10 alternative additive models that
were more parsimonious than the best ratio-dependent
model.

Discussion

The sheep rangelands of southern Australia constitute
a grazing system where the erratic fluctuations of rain-
fall and kangaroo abundance have influenced the way
many ecologists think about population dynamics in
large herbivores. This system has provided the inspira-
tion for the ‘mechanistic paradigm’ of population-growth
rate (Sibly & Hone 2002) and an emphasis on the rela-
tionship between population-growth rate and resource
availability (Caughley 1976, 1987; Cairns & Grigg 1993).
The general idea is that density-dependent mortality
regulates population density through food-shortage
(Sinclair, Dublin & Borner 1985) and, hence, the only
effect of population density is to reduce the amount of
available resources (see review by Bayliss & Choquenot

Fig. 3. The observed time series of red kangaroo density (dotted lines with circles) and the fit of the most parsimonious model
(solid line with squares) for the 4 different areas.

Table 3. Maximum likelihood estimates, 95% confidence intervals, and the variance-covariance matrix when fitting the most
parsimonious model ln{Ni,(t)} − ln{Ni,(t−1)} = a + bNi,(t−1) + cRi,(t−1) + d Σi,(t−1) – Hi,(t) + Ei,(t) to time-series data on red kangaroo
density (individuals km−2) in each area i between 1978 and 2002. The parameter a is the drift parameter, b is the strength of density
dependence, c is the regression coefficient with respect to rainfall, and d is the regression coefficient with respect to the density of
dry sheep equivalents. All predictor variables where standardized to zero mean and unit variance. We assume that the process
error has a multivariate normal distribution with a mean vector of zero and a variance-covariance matrix Σ. Correlations are given
in boldface in the lower triangular of Σ
 

Area a b c d Σ

E districts 0·10 −0·25 0·088 0·13 0·26 0·05 0·01 −0·01
Gawler 0·10 −0·25 0·088 0·13 0·40 0·05 0·03 0·01
Kingoonya/Maree 0·10 −0·25 0·088 0·13 0·11 0·51 0·08 0·02
N Flinders R/NE Pastoral 0·10 −0·25 0·088 0·13 −−−−0·11 0·16 0·50 0·03
Boundary of 95% CI

Upper 0·038 −0·30 0·011 0·061
Lower 0·16 −0·20 0·16 0·21
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2002). This idea has sparked a research programme
where per capita population-growth rate is assumed to
be a function of available resources rather than previous
population densities; the latter being the approach in
classical studies of density dependence (e.g. Turchin 1999).
In this paper we attempted to blend the mechanistic
paradigm and classical studies of  density depend-
ence, using a time series longer than previously available
for kangaroos.

Despite some model uncertainty (Table 2), there was
no evidence of  ratio-dependence. Models without a
separate term for density dependence were not supported
at all. Instead, there was strong support for region-
independent density dependence (b) and the same loca-
tion parameter (a). The lagged rainfall, which has been
used as a surrogate for resources in previous studies,
did not account for the observed feedback structure.
This is in agreement with McCarthy (1996) who studied
the effect of density dependence and rainfall assuming
that the red kangaroos inhabiting South Australia’s
pastoral zone make up a single large and uniform popu-
lation. The strong support for global parameter values
across the four areas (i.e. no area-specific parameter
values) suggests that the spatial difference in average
kangaroo density between the areas (Fig. 2a) is most
likely due to spatial variation in the average level of the
covariates (Fig. 2b–c). Hence, rainfall, sheep and cattle
density vary between areas, but populations respond to
that variation in a similar way. This in turn suggests
that the population structure in the four regions is not
different enough to generate spatial variation in the
demographic response to variation in resource abund-
ance. What did differ among the regions, however, was
the proportion of the variation explained by the best
model. We conclude that a ‘best model’ is not necessarily
a good model, but it is not clear why we explained as
much as 60% in one area and only 7% in another area.

When we initiated this study, we believed that sheep
and cattle densities would have a negative effect on the
rate of change of red kangaroos, generating an effect
not accounted for by the resource proxy. However, the
effect of sheep and cattle on population rate of change
in kangaroos was positive rather than negative. Does
this mean that grazing by sheep and cattle has facilita-
tive effects? No, not necessarily. One has to realize that
pastoralists control sheep and cattle densities and it
makes perfect sense for them to increase the sheep and
cattle densities when grazing conditions are favourable.
If  rainfall is a good surrogate for resources, then we
should be able to pick up the effect of competition. The
positive effect of DSE on kangaroos suggests the con-
trary, and it seems that we do not yet have a clear under-
standing of how resource availability should be modelled
in this system. This view is further supported by our
results showing the occurrence of density dependence
obviously not captured by the rainfall data, and the
fact that there was still evidence of spatially correlated
residuals (Table 2) despite the inclusion of all known
sources of population synchrony in this grazing system

(Table 1). Dispersal could potentially generate spa-
tially correlated residuals, but there is no evidence of
dispersal of the magnitude required for the spatial scale
studied here (Priddel 1987; Croft 1991; Norbury, Nor-
bury & Oliver 1994). More likely, we have missed an
aspect of resource dynamics that is not captured by the
rainfall included in the models. Future studies may
show that including another rain period will solve the
problem but that remains to be proven. Also, future
work should explore the possibility of nonlinear effects
of rainfall. How abiotic conditions work their way
through the individuals to the dynamics of a population
is indeed a general problem, and potentially important
to our understanding of population declines observed
in, for example, South African large herbivores (Ogutu
& Owen-Smith 2003).

Given that kangaroo dynamics in the sheep range-
lands have been studied for a long time and there exists
a theory for how rainfall drives the kangaroo dynamics
by generating fluctuations in the resource abundance
(Caughley 1987), the conclusion that we still do not
know how to approximate resource availability may
seem a bit surprising. However, previous studies have
focused on one or a few processes at a time, which
sometimes give the false impression that we understand
more than we do, especially if  different processes can
generate identical patterns in data (Jonzén et al. 2002a;
Jonzén, Ripa & Lundberg 2002b). Our conclusions
should alert ecologists working in less well-known sys-
tems to think carefully about what demographic and
environmental processes are operating and how these
processes could be expressed in mathematical terms.
Only then can we get an idea about whether our models
and hypotheses are supported by empirical observations.

We find ourselves in the crossfire between the pro-
ponents of  models that explicitly consider resource–
herbivore interactions (e.g. Choquenot & McLeod
1997) and the more pragmatic view motivated by the
difficulties of measuring the resources and estimating
functional relationships between the two trophic levels
(e.g. Sæther 1997). We have followed the more prag-
matic view, but our results indicate that we must think
more carefully about the mechanistic relationships
between sheep, cattle, kangaroos and their resources.
Hence, if  we are ever going to understand how demo-
graphic processes interact with environmental fluctu-
ations, we need to go much further than simply model
patterns in data. This calls for rigorous treatment of the
problems, an understanding of the stochastic nature of
the phenomena we are studying, and an embracing
of flexible stochastic models with strong theoretical
underpinning that can be confronted with all available
relevant data.
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Summary 

 

1. Wildlife surveys usually focus on determining estimates of population size, 

and management actions such as commercial harvesting, culling and poison 

baiting are commonly referenced to population size alone without taking into 

account the way in which those animals are distributed.  This paper outlines 

how point-based aerial survey data can be converted to continuous density 

surfaces using spatial analytic techniques.  Using this approach, we describe 

and explore the spatial patterns of abundance of two species of kangaroos in 

an area exceeding 200,000 km
2
 in South Australia over a 26-year period. 

2. Densities of red and western grey kangaroos were estimated in 1-km
2
 

segments along aerial survey transect lines, yielding point density estimates.  

Universal kriging provided an unbiased interpolation of these data using the 

spatial autocorrelation structure described by the semivariogram.  The Getis 

statistic identified clusters of segments of high and low kangaroo density.  

Residuals from the Taylor’s power law relationship were used as a measure of 

dispersion and related to recent rainfall and greenness from satellite imagery.   

3. Considerable year-to-year variation in the spatial patterns of kangaroo density 

was observed.  In many cases, annual rates of increase over large areas were 

too high to be explained by vital rates alone, implying immigration from 

surrounding areas.  These large shifts in distribution were often to areas that 

had received better rainfall than the surrounding areas.  For both species, there 

was no obvious local spatial autocorrelation pattern or clustering of kangaroo 

density beyond that described by average density and the present set of 

management regions, suggesting the latter are appropriate divisions for harvest 

management. 

4. Data for both species fitted the power law relationship extremely well.  During 

dry times, red kangaroos but not western grey kangaroos were more 

aggregated, supporting past ground observations at a fine spatial scale. 

5. Synthesis and applications. Kriged density surfaces enable estimation of 

kangaroo density on individual properties, which are the management units at 

which harvest quotas or culling approvals are allocated. These estimates will 

be marked improvements over systematic sampling estimates when sampling 

intensity is low.  Predictions of shifts in kangaroo distribution using rainfall or 

satellite imagery will allow more accurate allocation of harvest quotas.  

Similarly, predictions of more even kangaroo dispersion following high 

rainfall will allow managers to anticipate downturns in harvest rate. 

 

Key-words: Australia, interpolation, long-term survey, Taylor’s power law, 

geostatistics.
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Introduction  

 

Whether the goal is conservation, sustainable use or pest control, wildlife 

management ideally requires regularly updated information on a population’s size and 

distribution.  Most frequently, population size is estimated from sample counts 

throughout a study area, but the pattern of distribution is either ignored or considered 

only subjectively.  Typically, management actions such as setting appropriate 

seasonal harvest limits or undertaking poison baiting or culling are triggered by 

estimates of the total population without sufficient regard to its distribution pattern.  

This means that management actions may be focussed inappropriately, leading to 

wastage of money and outcomes that may be seriously sub-optimal.  This paper 

outlines how point-based aerial survey data can be converted to continuous surfaces 

using spatial analytic techniques. Using this approach, we then describe and explore 

the spatial patterns of abundance of red kangaroos (Macropus rufus) and western grey 

kangaroos (M. fuliginosus) in the South Australian pastoral zone (SAPZ, 282,000 

km
2
) over a 26-year period.   

 

Throughout large parts of Australia, particularly in the semi-arid rangelands, kangaroo 

populations are harvested sustainably for a meat and skin industry and, outside the 

prescribed harvest areas, culled under pest destruction permits (Pople & Grigg 1998).  

Annual harvest quotas are set as a percentage (typically 10-20%) of the most recent 

estimates of population size, usually determined by aerial survey, in management 

regions.  For a given survey intensity, the precision (i.e. standard error/mean × 100) of 

a population estimate becomes poorer  as the size of the area declines.  In highlighting 

this, Caughley (1979) considered a precision of 40% inadequate, but a precision of 

5% useful for kangaroo management based on the ability to detect biologically 

significant changes in numbers over time (Caughley, Sinclair & Wilson 1977).  Given 

a proportional harvesting strategy rather than a strategy based on population trends, 

improving precision is best considered as reducing the risk of under or overharvesting 

(McCarthy 1996; Pople 2004).  Using this framework, Pople, Cairns & Menke (2003) 

found that the probability of quasiextinction for a modelled, harvested kangaroo 

population increased dramatically above a precision of 50%.  Harvest quotas can 

therefore be set reliably only for regions that are considerably larger than 10,000 km
2
 

and so precision is generally <40% (Caughley, Sinclair & Wilson 1977; Caughley & 

Grigg 1982; Cairns & Grigg 1993; Cairns et al. 2000) given the sampling intensity 

used in aerial surveys of kangaroos.  However, pest destruction permits, tags to be 

attached to harvested animals and, in some cases, harvest quotas, are issued at the 

much finer scale of a property, largely on an ad hoc basis. This is important to 

management because harvest rate can vary substantially within regions because of 

variation in access, density of harvested species and distance to dealer sites where 

harvested animals must be taken (Sinclair 1977; Pople 1996).  Clearly it would be 

useful if there were readily available and up-to-date information about the distribution 

of kangaroos within a management region, as well as the total number.  To do this, the 

point-based data need to be translated to density surfaces. At the simplest level, counts 

in sampling units from aerial surveys are extrapolated to larger, contiguous blocks.  

Alternatively, they can be modelled with or without habitat covariates to create 

continuous surfaces, from which density at a broader scale can be estimated. Density 

surfaces modelled using geostatistics or habitat models have been produced from 

ground and airborne surveys of marine (e.g. Augustin et al. 1998; Hedley, Buckland 

& Borchers1999; Rivoirard et al. 2000) and terrestrial (e.g. Campbell & Borner 1995; 
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Villard & Maurer 1996; McKenney et al. 1998; Rempel & Kushneriuk 2003) wildlife 

populations.  However, few if any of these have covered the same combined spatial 

and temporal extent as that examined in this work.  It is important to distinguish 

between density surfaces derived from count data and maps depicting probability of 

occurrence that are derived from incidence models such as logistic regression 

(Buckland & Elston 1992; Rushton et al. 2004), as only some modelling techniques 

(e.g. generalised linear or additive models) are appropriate to both. 

 

Previous studies on kangaroo population dynamics have focussed on changes in 

overall abundance rather than on changes in distribution.  Fluctuations in kangaroo 

numbers and their relationship with food supply have been described in a number of 

studies (see review by Cairns 1989; McCarthy 1996; Cairns et al. 2000; Bayliss & 

Choquenot 2002; Jonzen et al. 2005).  The underlying environmental determinants of 

kangaroo distribution have similarly been described in studies throughout each 

species’ range (see review by Pople 1989).  However, these studies have either been 

conducted on such a broad scale that movement has been ignored (e.g. Caughley et al. 

1987), or at a scale so fine that movement is a prime focus (e.g. Newsome 1965; 

Priddel 1988).  Short time frames, too, have constrained interpretation of data from 

most previous studies and, with the exception of Cairns, Pople & Grigg  (1991), 

descriptions of broad-scale kangaroo distribution have typically covered only 1-3 

years, limiting the generality of the results.  Distribution data spanning long time 

scales (decades rather than years) also allows assessment of hypotheses specific to 

temporal variation. Movement of red kangaroos in particular in home ranges usually 

much less than 40 km
2
, is influenced by temporally and spatially varying food 

availability (Norbury, Norbury & Oliver 1994; McCullough & McCullough 2000), 

which in turn may influence their broad-scale pattern of distribution as well as their 

dispersion. In this context, ‘pattern of distribution’ refers to the geographic variation 

in density and ‘dispersion’ refers more specifically to the extent of aggregation or 

evenness within an area (Elliott 1977). 

 

Previous models relating kangaroo density to the environment (e.g. Short et al. 1983; 

Cairns, Pople & Grigg 1991) have not been spatially explicit, neglecting 

neighbourhood effects such as spatial autocorrelation that may lead to spurious 

relationships and fail to detect true relationships (Keitt et al. 2002).  Inspection of the 

spatial structure alone in wildlife survey data can also suggest possible biotic or 

abiotic relationships (Perry et al. 2002), and identify the appropriate scale of 

management or analysis.  In analysing the long-term spatial variations in red and 

western grey kangaroo density,  this paper extends the analysis of Cairns, Pople & 

Grigg (1991) by using a considerably longer time series and geostatistical methods to 

explore patterns of distribution.  Year-to-year changes in the dispersion of kangaroos 

at a finer scale are also examined.  The resulting spatial and temporal patterns will 

allow kangaroo and land managers to better allocate harvest quotas and interpret 

variation in harvest offtake.  These patterns should also provide insights into kangaroo 

ecology including how kangaroo distribution and dispersion changes through wet and 

dry years. 
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Methods 

 

AERIAL SURVEY 

 

Aerial surveys of kangaroos in the South Australian pastoral zone (Fig. 1) have been 

conducted annually since 1978 in order to determine the size of populations and 

thereby assist setting harvest quotas.  Survey methods throughout, including the 

transect lines flown, have remained essentially the same as those used in the 1978 

survey (Caughley & Grigg 1981; Grigg et al. 1999). The survey comprises a series of 

east-west oriented transects, 28 km apart, providing a sampling intensity of 

approximately 1.3% and yielding coefficients of variation of around 7% and 13% for 

population estimates of red and western grey kangaroos, respectively, within the 

entire study area (Caughley & Grigg 1981).  

 

Figure 1 

 

Transects were flown at a ground speed of 185 km h
-1

 by a high-wing aircraft (e.g. 

Cessna 172) at 76 m height.  An observer on either side of the aircraft counted 

kangaroos in 200-m wide strips along 5-km segments (i.e. 1 km
2
), each separated by a 

seven second break (i.e. 0.2 km) in counting.  Counts of red kangaroos were adjusted 

for visibility bias by a factor of 2.29 in open vegetation cover, 2.36 in light cover and 

2.42 in medium cover (Caughley, Sinclair & Scott-Kemmis 1976).  Counts of western 

grey kangaroos were multiplied by 4.8 to account for visibility bias (Grigg & Pople 

1999).  Counts were also adjusted if air temperatures (T) exceeded 15
o
 C at survey 

height by multiplying by 1/(1.474-0.0316 × T) (Caughley 1989), but the need for this 

was uncommon.  Areas higher than the 500 m contour in the Flinders Ranges were 

not surveyed because of the impracticality in maintaining constant height above 

ground in rugged terrain. 

 

MAP PRODUCTION  

 

Each 5 km aerial survey segment was first georeferenced to its midpoint by mapping 

segments relative to the start and finish of transects. A method was then required to 

convert these points to a spatially continuous surface.  Techniques for the 

interpolation of spatial data have been applied extensively and the methods used for 

data preparation, processing and error assessment are well documented, particularly 

for the geosciences (Isaaks & Srivastava 1989; Cressie 1991). However, there are few 

reported applications of these techniques to fauna surveys, so a brief overview is 

presented here.  

 

Overview of interpolation techniques 

 

Interpolation techniques can be either deterministic or geostatistical, depending on the 

form of algorithm used (Fig. 2).  Non-deterministic methods assume that the 

measured values contain an error component, and a fitted surface therefore has only 

one of several possible shapes. Deterministic interpolation techniques create surfaces 

from measured points, based on either the extent of similarity (e.g. inverse distance 

weighting) or the degree of smoothing (e.g. splines). Geostatistical interpolation 

techniques utilize the spatial autocorrelation properties of the measured points. 

Deterministic approaches can be split into global or local scale applications, 
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depending on the extent to which all data points are used in the interpolation process. 

In global methods, the spatial distribution of the variable to be interpolated is 

understood to be discrete, rather than characterised by a probability and error 

function.  Examples of global methods are trend and regression surfaces.  Global 

methods rely on external information, including regression models with habitat 

covariates, and tend to be stochastic in nature, so that local variation of sample points 

is discarded as noise. Local methods are based on the assumption that the measured 

values are more correct than any globally obtained surface values, hence they 

calculate predictions from the measured points within neighbourhoods.  

 

Figure 2 

 

Selection of an appropriate interpolation technique 

 

We considered four of the most commonly used and commercially accessible 

interpolation techniques, kriging, splines, triangulated irregular network and inverse 

distance weighting. Kriging was considered the best interpolator for our application 

with splines not too far behind.  Kriging’s major advantages are its ability to cope 

with data uncertainty, the inclusion of exploratory spatial analysis as part of the 

process, a high level of user control and the provision of error diagnostics to assess 

density surfaces.  The nature of the input data also required a technique that would not 

be biased to the underlying sampling design and would allow for interpolation over an 

irregular grid to a pre-specified output cell size.  Kriging requires more computing 

resources than the other methods, but this is of little concern given the ready 

availability of computing power and storage.  Greater operator experience is also 

required with kriging, but this allows greater flexibility. 

 

 

SPATIAL ANALYSIS OF KANGAROO DISTRIBUTION 

 

Kriging was implemented using the Geostatistical Analyst extension to ArcGIS (ESRI 

2004). GS+ (Robertson 2000) was used to calculate and compare semivariograms 

(eqn 2) for a range of search angles.  The search angle is the axis or axes along which 

autocorrelation is assessed. Universal (a combination of global and local methods), 

anisotropic kriging, was used to estimate densities within the study area in 5 km x 5 

km cells.  Two forms of cross-validation were employed to allow assessment of 

alternative modelled density surfaces, leave-one-out cross-validation and setting aside 

every second survey point.  Modelling of the density surface was somewhat ad hoc, 

avoiding unrealistically jagged or repetitive patterns.  However, it was largely guided 

by goodness-of-fit to modelled points and points set aside. An adequate fit was 

determined by a small, standardised prediction error or residual and small root-mean-

square prediction error that is similar to the average standard error (ESRI 2004).  The 

coefficient of determination (r
2
) between actual and predicted values is reported here 

to provide a simple measure of goodness-of-fit (Rempel & Kushneriuk 2003) and 

maps of the standardised residual (residual/standard error) were used to indicate the 

spatial variation of the fit. 

 

Mean density surfaces were used to identify areas with consistently high or low 

kangaroo densities. Coefficient of variation (CV) surfaces enabled areas of high and 

low population variability to be identified.   
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Spatial structure (geostatistics) 

 

Semivariograms and the Getis statistic (Gi*) were used to quantify spatial patterns in 

kangaroo distributions and provide guidance for the interpolation.  These techniques 

have been applied extensively in the physical sciences and epidemiology, but have so 

far had limited application in ecological studies (Isaaks & Srivastava 1989; Cressie 

1991; Fortin 1999; Olea 1999; Dungan et al. 2002; Legendre et al. 2002). The 

semivariogram was used to express the strength of association between pairs of 

locations as a continuous function of the separating distance. The semivariogram and 

related functions serve as tools to separate the large and small-scale variation in a 

spatial phenomenon (Cressie 1991). This may be useful for kangaroo management as 

the effective scale of many population processes such as dispersal is not fully known 

and has a bearing on the appropriateness of the survey design and the appropriate 

scale of harvest regulation. Furthermore, the semivariogram extracts the 

characteristics required to derive the interpolated surfaces.  The Getis statistic 

provides a measure of the degree of aggregation of high or low values, and can be 

applied as a summary measure to a series of points, or as the result of a moving 

window for a continuous spatial surface.  These clusters can then be associated with 

environmental patterns, such as soil type, vegetation community, drainage catchment 

and areas of similar rainfall or land-use practices.  The Getis statistic (eqn 2) was 

calculated for densities in survey segments averaged over 1978-2003 in 10 km
2
 cells 

using the program ROOKCASE (Sawada 1999).  The local semivariance was also 

calculated for densities in survey segments averaged over the study period in 5 km x 5 

km cells using the program VESPER (Minasny, McBratney & Whelan 2002).  This 

enabled the spatial variation in spatial autocorrelation to be assessed.  Examining local 

semivariogram parameters such as the range can be useful in identifying the scale of 

dominant landscape features (Curran 2001), and so in our application they may 

identify broad-scale population subdivisions for mobile species such as kangaroos. 

 

2
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where,  

 γ(h) = average semivariance at lag h 

 Z(xi) = kangaroo numbers at a sample or interpolated point 

 h = lag distance 

 m = number of observation pairs separated by lag h 

 

XjXjdWijdGi
jj

∑∑= )()(*           eqn. 2 

where,  

Gi*(d) = Getis statistic at distance d 

Wij (d) = spatial weights matrix 

Xj = kangaroo numbers at a sample or interpolated point 

 

Kangaroo dispersion (Taylor’s power law) 

 

The data also allow an assessment of the regional dispersion of both species of 

kangaroos.  At a scale of 1-16 ha, red and eastern grey kangaroos (M. giganteus) are 
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reported to exhibit a clumped distribution (e.g. Caughley 1964), with an increased 

aggregation during dry periods around remnant pasture (e.g. Newsome 1965).  This is 

in agreement with oft-repeated anecdotal reports from kangaroo harvesters that 

kangaroos become harder to shoot following rain because they have dispersed into 

wooded areas (Kirkpatrick & Amos 1985), but are easier to find during dry spells 

when they make greater use of open areas (Hill 1979).  This, in turn, is reflected in 

analyses of harvest returns (Prince 1984). 

 

Kangaroos in the SAPZ are managed in regions based on district soil conservation 

boards (SCBs) that roughly correspond to the environmental provinces described by 

Laut et al. (1977).  Six SCBs, ranging in size from 13,000 to 71,400 km
2
, cover most 

of the survey area (Fig. 1) and were used in the analyses here.  The degree of 

clumping in the red and western grey kangaroo populations at the scale of a 2-km
2
 (= 

200 ha) survey unit in each of the six SCBs was measured by the parameter b in 

Taylor’s power law (Taylor 1961; Elliott 1977), where the variance (s
2
) of a 

population is proportional to a fractional power (b) of the mean (m): 

 

s
2
 = am

b
    eqn 3 

 

Parameters a and b were calculated from the intercept (log10(a)) and slope (b) of a 

regression of log10(s
2
) on log10(m) of the kangaroo densities in survey units within 

each SCB.  Each year provided a single point in the analysis.  Heterogeneity of slopes 

and differences among intercepts was assessed in an analysis of covariance.  The 

residuals from this relationship were then correlated with rain that had fallen in the 1, 

3, 6 and 12 months prior to the winter aerial survey, and with annual exponential rate 

of increase (i.e. loge(Nt+1/Nt)).  A better measure of pasture conditions may be the 

Normalised Difference Vegetation Index (NDVI), which is a measure of green 

vegetation derived from satellite multispectral image data (Tucker et al. 1985).  An 

alternative is the difference between the maximum and minimum NDVI (NDVI flush) 

within an annual growth cycle (Cridland, Burnside & Smith 1995).  The residuals 

were therefore also correlated with 6-weekly NDVI and NDVI flush averaged over 

the six months prior to survey.  These measures were standardised over time to 

account for regional differences in mean rainfall and NDVI.  Differences in slopes, 

and therefore dispersion, between species were similarly assessed using an analysis of 

covariance (Crawley 2002). 

 

Fine-scale density estimation 

 

Density of each kangaroo species was estimated using two methods for 162 

properties, ranging in size from 20 km
2
 to > 2,000 km

2
, within the six SCBs. Based on 

systematic sampling, the density Dss is simply the average of the density in survey 

units that fall within a property.  An alternative estimate Dk comes from integrating 

under the interpolated density surface.  These two estimates were calculated for each 

year.  For each property, bias was calculated as loge(Dss/Dk) to place the simple ratio 

on a symmetric scale.  Defining bias in this way assumes the interpolated density 

estimate is more accurate.  The average bias over the 26 years was then calculated for 

each property and mapped. To avoid undefined values, 0.001 was added to each 

density estimate. 
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Results  

 

KANGAROO DISTRIBUTION AND ABUNDANCE 

 

Semivariance 

 

Initial exploration of the data with semivariograms using GS+ indicated distinct 

spatial scales of aggregation for both species. As examples, Fig.3 provides 

semivariogram plots from the 1982 and 1995 surveys, prior to interpolation. The 

analysis of dispersion (see below) indicated that, over the study period, red kangaroos 

were most aggregated in the drought year of 1982 (Caughley, Grigg & Smith 1985) 

and most evenly dispersed in 1995, when rainfall prior to survey had been above 

average in most areas (mean ± s.e. standardised 6-months rainfall prior to survey = 

0.61 ± 0.16 s.d. units across SCBs).  In each semivariogram, the 90
o
 plot provided the 

most detailed information, as it is parallel to the survey line.  The range value suggests 

a threshold distance beyond which density is no longer autocorrelated.  The large 

ranges in 1995 reflect broad-scale correlation structures that were not appropriate for 

interpolation here.  These values were also sensitive to the interval between flight 

lines and the lag distance used in their calculation. 

 

Final modelling of density surfaces in ArcGIS was best achieved with a spherical 

model fitted to the semivariogram following first-order trend removal.  A 45
o
 search 

angle to the principal axes appeared optimal, capturing along- and between-survey 

line variability, along with a search neighbourhood of 2-20 points per quadrant.  The 

range was constrained to be > 4.5 km.  Figure 4 indicates variation in the 

semivariogram range and kangaroo density over the study period, with 1991-4 having 

notably lower range than other years for red kangaroos and the mid-1980s and mid-

1990s having higher values for western greys. Significant variations in spatial pattern 

of kangaroo distribution are evident from the fluctuating range values (14-97 km for 

red kangaroos, 13-63 km for western grey kangaroos), which coincide with density 

variations. There was considerable spatial variation in the local range for both species, 

but no obvious spatial clustering (Fig. 5). 

 

Figure 3 

Table 1 

Figures 4 & 5 

 

Spatial pattern 

 

Across the entire SAPZ, numbers of both species fluctuated over a broad range over 

the 26-year study period (Fig. 4). The time series includes two periods of drought 

(1982-3 and 2002-3), when numbers declined markedly.  In 1982 and 1983, mean ± 

s.e. standardised rainfall 12 months prior to survey was –0.67 ± 0.07 and –1.45 ± 0.10 

s.d. units across SCBs and in 2002 and 2003 rainfall was  -0.49 ± 0.14 and –0.64 ± 

0.10 s.d. units. Despite these temporal fluctuations in density, there were relatively 

stable, distinct groupings of low and high densities of both species. For both species, 

the maps of Gi* (Fig. 6) mirrored the maps of average, interpolated density over the 

study period (Fig. 7), suggesting relative stability in their pattern of distribution.  Red 

kangaroo density has consistently been highest just south of Lake Frome in the 

northeastern section of the SAPZ (Fig. 7a). Density in this area has also fluctuated 
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less than elsewhere in the SAPZ (Fig. 8a).  Western grey kangaroos have a 

distribution and spatial pattern of variability in density almost complementary to that 

of red kangaroos (Figs 7b & 8b), with grey kangaroo numbers high in the Gawler 

Ranges and southeastern section of the SAPZ where red kangaroo densities are low. 

Both species show most marked fluctuations at the edge of their ranges, although this 

is exaggerated because of zeros in low-density areas inflating the coefficient of 

variation.   

 

Figures 6- 8 

 

Figure 9 illustrates interpolated counts from surveys conducted in 1982 and 1995. 

Each map enables assessment of regional to local scale (< 10 km) patterns in the 

distribution and population densities over the entire SAPZ, recognising that this is a 

snapshot of the population at the time of survey.  Goodness-of-fit for each annual 

density surface appeared acceptable over the entire study area, with r
2
 ranging 0.20-

0.82.  These values will be influenced by the degree of smoothing applied to the 

interpolation and the size of the range.  Furthermore, the error surface will not be 

uniform and, as an example, Figure 10 identifies some discrepancies in the density 

surface for both species in 1995, primarily in the higher density areas that have been 

dampened by the interpolation.  Each year differs in both the pattern of distribution of 

kangaroos within the study area and their dispersion (see below).  This highlights the 

spatially dynamic nature of the system.  One way of displaying this changing pattern 

of distribution is to map the annual exponential rate of increase of kangaroos.  In 

some areas and in some years, the increase in numbers is so great and over such a 

broad scale that it cannot be explained by recruitment and survival alone.  This 

suggests an important role for movement in broad-scale population dynamics.  Figure 

11a shows an interpolated surface for the exponential rates of increase for red 

kangaroos over 1986-7.  In the eastern SAPZ there is a large, contiguous area where 

red kangaroo numbers have more than tripled.  Measurement error contributes to this 

fluctuation, but the fact that it occurs over such a large contiguous block and coincides 

with declines elsewhere, suggests that it is real.  Many of the patches of extraordinary 

increases in Figure 11a coincide, albeit imperfectly, with areas receiving above 

average rainfall in the six months prior to the aerial survey in 1987 (Figure 11b). 

 

Figures 9-11 

 

Kangaroo dispersion 

 

For red kangaroos, the most parsimonious model (r
2
 = 0.90) describing Taylor’s 

power law included shared, rather than separate slopes (F5,144 = 0.80, P > 0.5), but 

separate intercepts for each SCB (F5,149 = 11.83, P < 0.001), indicating constant 

degree of aggregation (b = 1.50 ± 0.06) across SCBs (Fig. 12).  Points for the higher 

rainfall SCBs in southern pastoral zone fall along lines elevated from the other SCBs.  

This is reflected in a larger estimate for the intercept parameter (a in eqn 3) and a 

simpler model with two intercepts (F4,149 = 1.35, P > 0.2).  The residuals from this 

relationship were not correlated with rate of increase, but correlated negatively to all 

rainfall and NDVI measures; most strongly to rain falling 12 months prior to survey (r 

= -0.32, 95%CI: -0.45, -0.17).  The relationship has considerable scatter, but the 

absence of points at high rainfall and large positive residuals (= highly aggregated) 

(Fig. 13) is notable.  Low rainfall frequently, but not always, leads to greater 
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aggregation, but the population is always more evenly dispersed following high 

rainfall.  These results are reflected in the temporally and spatially varying 

semivariogram range (Figs 4 & 5), although patterns of dispersion will not necessarily 

coincide with autocorrelation patterns. 

 

Figures 12 & 13 

 

For western grey kangaroos, there was some suggestion of heterogeneity of slopes 

among SCBs (F4,117 = 2.16, P = 0.07) due to less aggregation in the Northeast Pastoral 

SCB.  However, the most parsimonious model (r
2
 = 0.98) again included only 

separate intercepts for each SCB (F4,121 = 6.63, P < 0.001), indicating constant degree 

of aggregation (b ± s.e. = 1.35 ± 0.03) across SCBs (Fig. 14).  In contrast to red 

kangaroos, the residuals from this relationship were not correlated with rate of 

increase or any rainfall or NDVI measures.  Excluding Marree SCB and examining 

both species together, analysis of deviance indicated little support for slopes varying 

among species (F1,241 = 0.74, P > 0.3), SCBs or an interaction between the two.  The 

most parsimonious model (r
2
 = 0.98) included a common slope (b ± s.e. = 1.37 ± 

0.03) and, hence, a similar level of aggregation across SCBs for both species. 

 

Figure 14 

 

FINE-SCALE DENSITY ESTIMATION 

 

Throughout the six SCBs, density could not be estimated on 28 properties using 

systematic sampling because they contained no survey segments, but these were 

typically small properties (Fig. 15).  Similarly, bias was positively correlated with 

logged property size for reds (r = 0.43, P < 0.01) and western greys (r = 0.56, P < 

0.01).  For both species, interpolated densities were generally higher than those just 

based on survey segments, with a mean bias (± s.e.) over 1978-2003 of -0.73 ± 0.10 

(median = -0.23) for red kangaroos and -0.98 ± 0.09 (median = -0.66) for western 

grey kangaroos.  This negative bias is obviously offset by a positive bias on properties 

with high-density segments.  There was no obvious spatial pattern in the bias for red 

kangaroos, but segment-based (Dss) densities of western grey kangaroos were 

consistently lower than interpolated density estimates (Dk) through the centre of the 

SAPZ (Fig. 15), which is the northern extent of the western grey kangaroo range (Fig. 

5b). 

 

Figure 15 

 

Discussion  

 

INTERPOLATION TECHNIQUES 

 

Kriging was intuitive to apply, as a detailed exploratory analysis of spatial pattern 

within the point data set was required to establish a suitable semivariogram. In 

combination with the ability to assess or map the likely error in the kriged surfaces, 

this interpolation technique is inherently suited to exploring and mapping spatial 

patterns in wildlife survey data and, perhaps, modifying survey design to improve the 

accuracy and precision of estimates.  Thus, high density areas and areas with large 
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error could be surveyed with increased sampling intensity and, conversely, sampling 

could be reduced in areas of uniformly low density.  However, one problem with 

kriging is that density cannot be extrapolated beyond the most extreme data points 

without making a number of assumptions or using other data such as habitat 

covariates.  In this project, the study area is bounded by the spatial extent of the 

transect lines (Fig. 1).  Smoothed surfaces of kangaroo density have been generated 

previously from aerial survey data (e.g.  Caughley, Sinclair & Wilson 1977; Caughley 

1987), but the interpolation method has not been identified, although it almost 

certainly was not kriging with its advantages described above. 

 

An obvious alternative to kriging is spatial modelling using habitat covariates. This 

will be advantageous if there are discontinuities in a species’ spatial pattern of 

density.  Sharp steps in distribution are not a feature of these species’ ecology 

(Caughley et al. 1988), except at the dingo fence marking the northern boundary of 

this study area, where predation appears to dramatically alter abundance (Pople et al. 

2000).  There are certainly discontinuities in the habitat, but these are either of little 

consequence to kangaroos or they occur at a much finer scale than a 1-km
2
 survey 

segment.  Assessment of the accuracy of these density surfaces could be undertaken in 

a number of locations using more intensive aerial surveys or ground surveys. 

 

SPATIO-TEMPORAL PATTERNS 

 

Conversion of point-based samples from long-term, frequent systematic surveys to a 

spatially extensive map of population density enables recurrent patterns in the 

distribution of animals to be clearly identified. Figures 7 and 8 show that the broad 

pattern of distribution of both red and western grey kangaroos in the SAPZ has been 

relatively stable.  High densities of red kangaroos were consistently recorded in the 

northeast of the SAPZ, an area with a mosaic of soil and vegetation types, but 

generally dominated by low bluebush shrublands and calcareous soils and where 

sheep are grazed at a relatively high density (Cairns, Pople & Grigg 1991).  Western 

greys are restricted to the less arid parts of the study area and densities were 

consistently high in the southwest.  This area is also heterogeneous in terms of soil, 

landform and vegetation, with many areas of woodland interspersed with grassland 

and open shrubland (Cairns, Pople & Grigg 1991).  There is temporal variation in this 

pattern for both species, particularly where they occur at relatively low density (Fig. 

7).  This probably reflects the vagaries of marginal habitat, despite the inflation of the 

CV by zeroes.  Whether these areas with highly fluctuating densities experience high 

rates of local extinction and recolonisation or are driven just by local population 

dynamics, is unclear from these data. 

 

From year-to-year there are also substantial shifts in distribution, some of which 

cannot be explained by birth and death alone.  Even an unstable age distribution and 

biased sex ratio, possible in drought, can result only in a less than doubling (i.e. 

annual exponential rate of increase < 0.69) of population size (Bayliss 1985; Pople 

1996), well short of the increases described over large areas in Figure 11a.  Cairns, 

Pople & Grigg (1991) reported a shift in distribution of red kangaroos in the 1982-3 

drought.  This was largely due to spatial variation in the onset of drought, which was 

delayed in the west of the pastoral zone, and resulted in uneven declines in density.  

Uneven changes in density resulting in changes in distribution can be particularly 

marked during declines because of the convex shape of the numerical response of 
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kangaroos (Davis, Pech & Catchpole 2002).  What became apparent with a reanalysis 

of these data and over a longer time period, was that distribution shifts were also 

associated with increases in density.  Long distance movements of > 100 km have 

been recorded for individual red kangaroos from tagging and radio telemetry (Bailey 

1971; Bailey & Best 1992).  However, these have been considered exceptions in a 

generally sedentary population where individuals move within home ranges of 

variable size (McCullough & McCullough 2000).  Adult red kangaroos have been 

recorded ranging more widely during drought (Norbury, Norbury & Oliver 1994), and 

movements of up to 30 km have been reported for red kangaroos in response to patchy 

rainfall during prolonged dry spells, resulting in global shifts of the population 

(Newsome 1971; Denny 1980; Priddel 1987; Croft 1991).  The data presented here 

lend further support to the hypothesis that large-scale movements occur to areas of 

higher quality food supply. However, Priddel, Wellard & Shepherd (1988) and 

Bayliss (1985) considered red kangaroo movement had little influence on their 

dynamics at a scale of 440 km
2
.  The results of this study suggest that populations are 

not closed at this scale or even greater.  This apparent discrepancy from previous 

studies may be due to a number of factors including, the relatively short time frame 

and small spatial scale of many radio-tracking and tagging studies, site-specific 

factors such as fences and lakes which influence movement, low recapture rates of 

some population classes in tagging studies and a bias towards selection of adult 

animals in radio tracking studies. 

 

The exceptional fit of these data to Taylor’s power law is not surprising, given its fit 

to a broad range of taxa (Taylor, Woiwod & Perry 1978; Taylor & Woiwod 1982).  A 

slope of between 1 and 2 has also been found for most species.  We do not offer an 

explanation for this scaling relationship; rather we use it to detect increased 

aggregation of red kangaroos during dry times, supporting fine-scale observations.  

What is interesting is that it has been detected here at the scale of a 1-km
2
 survey 

segment.  It suggests that seasonal movements can be detected with broad-scale aerial 

survey and that the more extensive NDVI data may be able to predict movement and 

the resulting changes in spatial distribution of kangaroos.  

 

These shifting patterns of distribution have important implications for management.  

Annual harvest quotas are based on surveys conducted at least six months prior to the 

actual harvest, by which time the geographic variation in kangaroo density may have 

altered.  Spatial allocation of quotas needs to account for these shifts and the results 

here suggest this may be possible.  Harvest rate appears to be influenced by dispersion 

of kangaroos with increased harvests when animals are aggregated (Kirkpatrick & 

Amos 1985).  Rainfall or NDVI could be used to predict downturns in harvest offtake 

although the direct link between harvest rate and rainfall or NDVI needs to be 

quantified for the eastern Australian states. 

 

APPROPRIATE SCALE OF MANAGEMENT AND ANALYSIS 

 

A semivariogram range of 13-97 km indicates that spatial autocorrelation needs to be 

accommodated in spatial modelling with data collected within these distances.  The 

correlation structure can be incorporated directly (Guisan & Zimmerman 2000; Keitt 

et al. 2002) or data can be pooled into larger units that are less likely to be 

autocorrelated (Hall 1988; Buckland & Elston 1993). 
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Appropriate geographic stratification of broad-scale data has been considered critical 

for monitoring population trends in declining populations (Villard & Maurer 1996).  It 

will similarly be important for other management fields such as regulating harvests.  

The clusters of high and low densities identified by the Getis statistic are alternative 

strata to administrative or biogeographic boundaries.  For both species, Gi* broadly 

matches average density, which tends to cluster and differ in value for each SCB, 

providing support for one level of current kangaroo management in South Australia.  

Management activities such harvest regimes, survey frequency and enforcement could 

be tailored to these strata.   At present, these activities, including the proportion of the 

population that is offered as a harvest quota, are uniformly undertaken or applied 

across SCBs within the SAPZ (SADEH 2002).  However, harvest rate and variability 

differs among as well as within these SCBs (Jonzen et al. 2005), suggesting that 

management would be more efficient if it varied its activities accordingly (Pople, 

Cairns & Menke 2003; Pople 2004). The lack of clustering in the semivariogram 

range suggests the present management regions are not ignoring a spatial 

autocorrelation structure that may suggest discrete population units other than the 

SCBs. 

 

In South Australia, kangaroo harvest quotas are allocated to individual properties.  

More widely within Australia, permits for culling are given to individual properties.  

Ideally, this requires fine-scale estimates of density, relative or absolute, to divide a 

regional quota among constituent properties, or to assess requests for culling permits 

by a property manager.  This study highlights how kriging can overcome the 

imprecision and bias associated with low sampling intensities when estimating density 

on a fine scale.  The marked differences between interpolated densities and averaged 

segment densities within properties highlights the gain that can accrue by taking the 

approach we have described in this paper. 
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Table 1. Parameters, coefficients of determination (r
2
) and models for the 

semivariograms shown in Figure 3. 

 Red Western grey 

 1982 1995 1982 1995 

Range (degrees) 0.43 0.50 0.27 1.70 

Nugget 107.6 67.4 24.1 117.9 

Sill 215.3 134.9 113.6 235.9 

r
2
 0.75 0.47 0.73 0.71 

Model Exponential Spherical Exponential Spherical 
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Figure Captions 

 
Fig. 1. (a) The South Australian pastoral zone (hatched) showing soil conservation boards 

(shaded) which serve as kangaroo management regions and the location of survey segments 

(•) in 2003.  (b) Vegetation structural formations within the survey area (Boomsma & Lewis 

1980). 

 

Fig. 2. Classification of interpolation techniques. 

 

Fig. 3. Semivariograms for (a) red kangaroos in 1982, (b) red kangaroos in 1995, (c) western 

grey kangaroos in 1982 and (d) western grey kangaroos in 1995.  Points represent four 

analysis directions ( , 0 °; , 45 °; , 90 °; , 135 °). X-axis units are in decimal degrees. 

 

Fig. 4. Semivariogram range (■) and population densities (♦) (± SE) for (a) red kangaroos 

and (b) western grey kangaroos within the study area, 1978-2003. 

 

Fig. 5. Map of local semivariogram range for (a) red kangaroo and (b) western grey kangaroo 

density, averaged over 1978-2003 within 5 km x 5 km cells, in the South Australian pastoral 

zone. 
 
Fig. 6. The Getis statistic for (a) red and (b) western grey kangaroo density, averaged over 

1978-2003 within 25 km x 25 km cells, in the South Australian pastoral zone. 

 
Fig. 7. Average density of (a) red kangaroo and (b) western grey kangaroos in the South 

Australian pastoral zone over 1978-2003.  Calculated from annual densities in 5 km x 5 km 

cells interpolated from densities in aerial survey segments (Fig. 1a) using universal kriging. 

 

Fig. 8. Coefficient of variation of (a) red kangaroo and (b) western grey kangaroo density 

over 1978-2003. Calculated from annual densities in 5 km x 5 km cells interpolated from 

densities in aerial survey segments (Fig. 1a) using universal kriging. 

 

Fig. 9.  Densities of (a) red kangaroos in 1982, (b) red kangaroos in 1995, (c) western grey 

kangaroos in 1982 and (d) western grey kangaroos in 1995.  Densities in 5 km x 5 km cells 

were interpolated from densities in aerial survey segments (Fig. 1a) using universal kriging.  

Over 1978-2003, red kangaroos were most aggregated in 1982 and most evenly dispersed in 

1995.  Dispersion showed less marked changes for western grey kangaroos. 

 

Fig. 10.  Standardised residuals for the density of (a) red kangaroos (r2 = 0.32) and (b) 

western grey kangaroos (r
2
 = 0.27) in aerial survey segments in 1995. 

 

Fig.11. (a) Annual exponential rate of increase for red kangaroos over 1986-87.  Calculated 

from annual densities in 1986 and 1987 in 5 km x 5 km cells interpolated from densities in 

aerial survey segments (Fig. 1a) using universal kriging. (b) Rainfall, standardised using the 

long-term mean and standard deviation, for January – June 1987. 

 

Fig. 12. Relationship between log10(variance) and log10(mean) of red kangaroo density  in six 

soil conservation boards (see Fig. 1a) for each year over 1978-2003.  Fitted regression lines 

with a common slope are also shown. Eastern Districts (○), Gawler Ranges (□), Kingoonya 

(■), Marree (●), North Flinders (▲), North East Pastoral (♦).  

 
Fig. 13.  Relationship between the residuals from the regressions shown in Figure 11 (= index 

of aggregation) and rain falling 12 months prior to each annual aerial survey, 1978-2003.  

Rainfall is standardised within each soil conservation board. Eastern Districts (○), Gawler 

Ranges (□), Kingoonya (■), Marree (●), North Flinders (▲), North East Pastoral (♦). 
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Fig. 14. Relationship between log10(variance) and log10(mean) of western grey kangaroo 

density in six soil conservation boards (Fig. 1a) for each year over 1978-2003.  Fitted 

regression lines with a common slope are also shown.  Eastern Districts (○), Gawler Ranges 

(□), Kingoonya (■), Marree (●), North Flinders (▲), North East Pastoral (♦). 

 

Fig. 15.  Average bias over 1978-2003 in segment-based (Fig.1a) densities of (a) red 

kangaroos and (b) western grey kangaroos in properties within the South Australian 

pastoral zone. Bias was calculated as the loge(Dss/Dk), where Dss is density based on 

systematic sampling and Dk is density based on interpolated density surface.  0.001 

has been added to densities to avoid undefined values.  
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Figure 2. 
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Figure 3 cont. 
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Figure 4.
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Figure 5. 
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Figure 6.
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 9 cont. 
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Figure 10. 
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Figure 11.
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Figure 12. 
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Figure 13. 
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Figure 15. 
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Abstract 
 
Over the past 30 years, the eastern Australian populations of three species of 
kangaroos have been surveyed regularly from the air, enabling us to assess changes in 
the patterns of their distribution in an area greater than 1.2 million km2.  The changes 
were recorded as geographic variations in the rates of increase and include areas of 
local colonisation and extinction.  Rates of increase were modelled as functions of 
latitude, longitude, standardised rainfall and, in some cases, land clearing, using 
regression analysis.  The densities of all three species have undergone marked 
fluctuations over this time, punctuated by steep declines during major droughts in 
each of the last three decades.  Eastern grey kangaroos have expanded their range 
westwards into more arid areas and their pattern of distribution behind this expanding 
front has also shifted westwards.  Red kangaroos have expanded eastwards into more 
mesic areas in association with land clearing.  In South Australia, western grey 
kangaroos have shifted their pattern of distribution northwards into more arid areas, 
perhaps being advantaged by the provision of artificial watering points.  These 
changes in the geographic pattern of distribution were not uniform over time, with 
spatial variation in exponential rates of increase during drought being particularly 
pronounced.  Rainfall could only partially explain these shifts in the pattern of 
distribution and then only in a small number of cases.  Surprisingly, for all species, 
rates of increase during drought were either higher away from the range core (= areas 
of relatively high abundance) or unrelated to the range core.  These patterns were 
often seen during periods of overall population increase as well.  This study highlights 
the importance of having a long time series in assessing geographic patterns of 
distribution and cautions against using proximity to range core as an indicator of 
population resilience.
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Introduction 
 
The ability to monitor changes in wildlife distribution is needed to address questions 
about impacts of climate change and changes in land use.  In Australia’s rangelands, 
broad-scale monitoring of wildlife distribution is of particular interest as part of a 
recognised need for monitoring rangeland biodiversity (Smyth et al. 2004).  Some of 
this occurs, almost inadvertently, as part of the management of several pest and 
commercially-harvested species. When the monitoring is extensive and long-term, 
these species may also be useful surrogates for other elements of biodiversity and as 
indicators of environmental change (Woinarski et al. 2000).  This paper describes 
changes in the pattern of distribution of the three kangaroo species across the 
rangelands of eastern Australia over the past two decades by examining changes 
relative to the core of their respective ranges, changes relative to temporal fluctuations 
in overall population size and suggesting possible causes for these changes. 
 
Two aspects of a species’ distribution need to be distinguished, the range boundary 
and the distribution of density within that range.  It is often considered that species 
tend to reach their highest densities towards the centre of their ranges and density 
declines towards the edge of the range as one or more environmental factors become 
less favourable (Brown 1984, Hengeveld and Haeck 1982, Brown et al. 1996, but see 
Sagarin and Gaines 2002).   The actual geographic position of the abundance peak and 
the pattern of decline in density to the range edge will depend, almost by definition, 
on the factors limiting population size (Caughley et al. 1988, Krebs 2001).  From this 
follows the prediction that, as environmental conditions deteriorate across the range, 
populations will decline at greater rates at the periphery than in the area of peak 
abundance.  There is some empirical support for this prediction (Wilcove and 
Terborgh 1984, Mehlman 1997). However, there are contrary data and in fact 
numerous possible geographic patterns of rates of increase, including greater declines 
at the range core and declines distributed randomly through the range (Villard and 
Maurer 1996).  Similarly, under improved environmental conditions, there are 
numerous scenarios of the geographic pattern of rates of increase.  The actual pattern 
in these rates of increase will again depend on the spatial and temporal variation in the 
factors that limit populations (Sinclair 1989).  What is of interest is how position 
within the range influences a population’s response to variation in these limiting 
factors.  For instance, the idea that populations are more resilient at the range core has 
raised further concern for many populations of endangered species that persist in low 
and variable densities at the edge of their former ranges (Channell and Lomolino 
2000). 
 
The geographic variation in the density of a species, its pattern of distribution, is 
therefore unlikely to be static.  Changes in the pattern of distribution may be relatively 
permanent or temporary.  A distributional change in a species may be an ongoing 
trend, triggered by events prior to a period of monitoring.  Alternatively, it may be 
caused by events during a period of monitoring, increasing the chance that the causal 
agent can be identified.  Spatial variation in weather, at least in arid environments, is 
likely to induce relatively short-term change in a species’ distribution pattern, whereas 
longer-term changes are likely to result from the introduction or removal of other, 
interacting species.  Data spanning a time period that is long relative to generation 
time and climatic cycles can therefore not only detect a long-term trend, but also help 
reveal a cause and timing. 
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Species’  ranges are also not static (Brown et al. 1996).  As a species’  range expands, 
the density behind the expanding front is also likely to change.  One simple model is 
logistic growth of the species in the new environment of the expanded range (Skellam 
1951), which Caughley (1976) described for an invading herbivore.  The factors that 
allowed a range expansion may also be operating within the original range, resulting 
in an increase in density. Overall, these responses will lead to a shift in the pattern of 
distribution of the species.  There may also be a considerable lag between the original 
range expansion and the shift in distribution pattern behind the range boundary. 
 
There is general agreement among Australian ecologists that the three species of 
kangaroos in Australia, the red kangaroo (Macropus rufus), eastern grey kangaroo (M. 
giganteus) and western grey kangaroo (M. fuliginosus), have increased in abundance 
in the semi-arid sheep rangelands since European settlement (Calaby and Grigg 1989, 
Pople and Grigg 1998).  Land clearing (i.e. removal of woodland and forest), 
facilitative grazing by domestic stock, dingo control and provision of artificial water 
points have been offered as causal factors (Newsome 1975, Caughley et al. 1980, Hill 
1981, Oliver 1986, Pople et al. 2000).  The extent of this increase is hard to quantify 
because of the difficulty in assessing past densities from historical records.  Changes 
in the range boundaries of these species are easier to assess, although it has been 
complicated by the difficulty in distinguishing the two grey kangaroo species within a 
large zone of overlap, predominantly in New South Wales.  For eastern grey 
kangaroos, Caughley et al. (1984) reported a westward extension of its range into 
more arid areas since the early 1900s.  In southern Queensland and northern New 
South Wales, they quantified this expansion at a rate of 4-5 km per year.  An increase 
in the density of artificial watering points was suggested as a primary cause (Caughley 
et al. 1984), with both grey kangaroo species having higher water requirements than 
red kangaroos (Dawson 1995, Blaney et al. 2000).  A change in arid-zone food supply 
has also been offered as a possible explanation (Dawson et al. 2004).  Despite being 
similarly advantaged, there has been no strong evidence for changes in the range 
boundary of western grey kangaroos with the exception of some contractions in 
southern parts of the range due to land clearing for agriculture (Caughley et al. 1984, 
Barker and Caughley 1992).  Similarly, the range of the red kangaroo is considered 
unchanged. 
 
Since the late 1970s, and since most of the observations were made which generated 
these conclusions, there have been regular aerial surveys of the abundance of these 
three kangaroo species as part of their harvest management.  This allows their pattern 
of distribution to be assessed over a period of >20 years.  In most cases, these surveys 
occur within species’  range boundaries, so the analysis concentrates on changes in the 
geographic variation in density.  However, for all three species, these surveys map 
part of the limit of distribution, allowing changes in the range boundary to be 
examined.  Rainfall and, in Queensland, land clearing were considered as possible 
explanatory variables for any distributional change. 
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Methods 
 
Kangaroo surveys 
 
The study area spans three states across a region where sheep grazing has been the 
predominant land use (Fig. 1).  The relatively flat terrain and open vegetation makes 
the area suitable for aerial survey of large wildlife such as kangaroos.  The vast size of 
the study area (>1.2 million km2) makes aerial survey the only feasible monitoring 
method.  Transects were flown at a ground speed of 185 km h-1 by a high-wing 
aircraft (Cessna) at 76 m above ground.  An observer on either side of the aircraft 
counted kangaroos in 200 m wide strips along 5 km segments (i.e. 1 km2), each 
separated by a seven second break (i.e. 0.2 km) in counting.  Since 2001 in both New 
South Wales and Queensland, counts have been made in 100 m wide strips. 
 
In South Australia, aerial surveys have been flown annually since 1978 along east-
west transect lines that are 28 km apart (Caughley and Grigg 1981, Grigg et al. 1999).  
In New South Wales and Queensland, the survey transects are ~50 km apart 
(Caughley et al. 1977, Caughley and Grigg 1982).  Surveys were flown across all of 
the western plains of New South Wales in 1975, 1976 and then annually from 1983 to 
2003.  Surveys were conducted in monitor blocks, representing a subset of the western 
plains, between 1977 and 1982 (Caughley et al. 1977, J. Caughley et al. 1984).  
Kangaroo densities for New South Wales from 1984 are presented in this study, 
although densities prior to 1993 were only available collated in one-degree blocks 
because of a fire that destroyed the raw data.  In Queensland, surveys were flown in 
1980, then annually from 1984 to 1992, then again in 2001. In 1991, the southern 
third of the Queensland study area was not flown.  Density was therefore interpolated 
for this area using the 1990 and 1992 surveys.  Since 1991, kangaroo managers in 
Queensland have used helicopters to survey kangaroo populations in non-contiguous 
monitor blocks and so these data were not used in these analyses (Lundie-Jenkins et 
al. 1999).   
 
In South Australia, counts of red kangaroos were adjusted for visibility bias by a 
factor of 2.29 in open vegetation cover, 2.36 in light cover and 2.42 in medium cover 
(Caughley et al. 1976).  Counts of western grey kangaroos were multiplied by 4.8 to 
account for visibility bias (Grigg and Pople 1999).  Counts in 200 m strips were also 
adjusted if air temperatures (T) exceeded 15o C at survey height by multiplying by 
1/(1.474-0.0316 × T) (Caughley 1989).  Counts in Queensland were similarly 
adjusted, although a correction factor of 2.57 was used for red kangaroos in heavy 
cover.  Correction factors had long been recognised as leading to underestimates of 
true density in many areas, but it was not until the use of helicopter surveys and line 
transect sampling (Clancy et al. 1987) that widely applicable revisions were possible 
(Pople 2004).  In New South Wales, biogeographic correction factors were 
determined by Cairns and Gilroy (2001), ranging 2.21-6.05 for red kangaroos and 
3.04-13.37 for the two species of grey kangaroos that are not readily distinguishable 
from the air.  These revised correction factors were applied to counts in segments 
from 1993 to 2003.  Average correction factors for densities of each species in each 
one-degree block were then applied to data for 1984 to 1992.  In Queensland, similar 
correction factors have been identified (Pople et al. 1998, Pople 1999).  Concurrent 
helicopter and fixed-wing surveys in Queensland in 1992, suggested the latter counts 
needed to be further adjusted by 1.4 for red kangaroos and 1.14 for grey kangaroos.  
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These adjustments were applied to counts over 1980-1992.  The assessment of the 
accuracy of fixed-wing surveys in New South Wales and Queensland (Cairns and 
Gilroy 2001) suggested counts in 100 m strips were more repeatable, so these were 
adopted in 2001.  Biogeographic correction factors were applied to 100 m counts in 
New South Wales, ranging 1.67-2.97 for red kangaroos and 2.98-5.55 for grey 
kangaroos, and applied to 100 m counts in Queensland, ranging 1.92-2.16 for red 
kangaroos and 2.98-3.79 for grey kangaroos.  South Australian densities also needed 
adjustment to make them comparable to the other states.  Comparing averages of the 
old and new correction factors from New South Wales suggested multiplying the 
South Australian densities of red kangaroos by 1.58 and grey kangaroos by 1.27 
would be appropriate, albeit rough. 
 
To provide a context for an analysis of distribution patterns, population densities of all 
species in each state were determined for all available years.  Helicopter survey 
estimates of kangaroo density in Queensland were compiled for 1993-2003.  Monitor 
block densities in New South Wales in 1978-83 (J. Caughley et al. 1984) were 
extrapolated to the entire study area by the ratio of these densities to densities for the 
whole study area in 1975-6 (Caughley et al. 1977).  Estimates were further adjusted to 
account for the revision of correction factors described above.  Where raw data were 
available, standard errors of density estimates based on fixed-wing surveys were 
calculated using ratio estimation (Cochran 1977).  Standard errors for the helicopter 
survey estimates were calculated by treating the monitor block estimates as stratified 
random samples. 
 
Within a broad zone of overlap, ground surveys are required to separate counts of 
grey kangaroos into the two species.  Vehicle surveys were conducted throughout the 
zone in 1982 (Caughley et al. 1984), in the overlap zone in New South Wales in 2000 
(Cairns and Gilroy 2001) and in the zone in Queensland in 2003 (Graham 2003).  In 
New South Wales, the 1982 ratios of the two species were used to separate counts 
over 1976-1992 and the 2000 ratios were used for subsequent counts. In the 
Queensland study area, where ≤ 2% of grey kangaroos are western greys (Graham 
2003), the 1982 ratios were applied to the 1980-1992 counts and the 2003 ratios were 
applied to the 2001 survey counts. 
 
Map production 
 
Densities in aerial survey segments were available across all three states most recently 
in 2001.  The earliest data available at this scale across all three states was for 1993 in 
New South Wales and South Australia and 1992 in Queensland. Each 5 km long aerial 
survey segment was first georeferenced to its midpoint.  Universal, anisotropic kriging 
was then used to create interpolated density surfaces for the entire study area in 1992-
3 and 2001 by estimating densities within 5 km × 5 km cells.  Rather than calculate 
rates of increase from two interpolated density surfaces (Villard and Maurer 1996), 
annual exponential rates of increase (the differences between the logarithms of 
density+0.001) were calculated between 1992-3 and 2001 in half-degree blocks 
(~2,500 km2), then interpolated.  Kriging was implemented with the Geostatistical 
Analyst extension to ArcGIS (ESRI 2004), using a spherical correlation structure and 
a search neighbourhood of five survey segments for the density surface and two half-
degree blocks for the rate of increase surface. 
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Analysis 
 
Shifts in the pattern of distribution were assessed by comparing the average rates of 
increase of each species across their ranges within each state.  Simple linear 
regressions were fitted for loge(density+0.001) against time in each half-degree block 
in Queensland and South Australia and each one degree block (~10,000 km2) in New 
South Wales.  While the slopes of these relationships provide in each block estimates 
of r, the average annual exponential rate of increase (Caughley and Sinclair 1994), 
they assume the only error is sampling error, but there is clearly considerable process 
error in these data as well (McCallum 2000).  However, in this case, the focus is not 
an estimate of trend over time, but a comparison of trends across space.  For this, 
comparisons of the slopes determined by simple linear regression were considered 
adequate.  Rates of increase were calculated over the entire study period for each 
species in each state.  Patterns of distribution were expected to show an expansion of 
areas of higher density during wet periods and overall population increase, while dry 
periods would show a contraction and overall population decrease.  Therefore, the 
study period was also split into periods of decline or increase in kangaroo numbers 
throughout the entire study areas in each state to identify the timing of shifts in 
distribution patterns and possible causes.  For these shorter time periods, rates of 
increase were again calculated using linear regression, although the difference 
between logged density estimates was used when there were only two years. 
 
Rates of increase were then regressed against latitude, longitude and annual (financial 
year) rainfall standardised over time within each block, using the long-term (~100 
year) mean and standard deviation, then averaged over relevant time periods plus the 
previous year.  In each state and for all three species, rain that falls two years prior to 
the second of two winter aerial surveys correlates with kangaroo rate of increase 
between the surveys (Bayliss 1985, Cairns and Grigg 1993, McCarthy 1996, A. R. 
Pople et al. unpublished data).  Monthly rainfall surfaces were interpolated using 
inverse distance weighting from Bureau of Meteorology data recorded at stations 
throughout the study areas.  Regression models were simplified using backwards 
elimination (Crawley 2002) and included curvilinear terms for, and interactions 
between, latitude and longitude.  Spatial autocorrelation was assessed using a 
semivariogram (Isaaks and Srivastava 1989) and, if present, the correlation structure 
was incorporated into the regression models using R version 1.9.1 (R Development 
Core Team 2003).  The significance of the spatial correlation parameters was tested 
using a likelihood ratio (Crawley 2002). 
 
Shifts in the pattern of distribution were expected along a gradient of increasing 
aridity, being a longitudinal gradient in Queensland and New South Wales and a 
latitudinal gradient in South Australia.   For each time period, predicted (using models 
excluding rainfall and land clearing) rates of increase were plotted against longitude 
or latitude.  Comparisons of the relationship between rates of increase and longitude 
and latitude (plus interaction and curvilinear terms) among time periods were made 
using an analysis of covariance.  This method essentially compares a regression model 
common to all time periods with separate relationships for each period.  For these 
analyses, rates of increase were standardised within time periods to eliminate obvious 
differences in average rates of increase over time.  For each species in each state, the 
peak in density along each gradient was determined from plots of density, 
standardised over the study area, and averaged over the study period.  
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In Queensland, land clearing was also included as a potential explanatory variable for 
the latter half of the time series.  The percentage of the landscape within 10 km of the 
transect line that was ‘open’  (woody foliage projective cover < 12%) within each half-
degree block was calculated from the Statewide Landcover and Trees Study (SLATS) 
(Department of Natural Resources and Mines 2003) using FRAGSTATS (McGarigal 
and Marks 1994) and arcsine transformed to improve normality. The change in woody 
cover was determined as the difference between 1991 and 1999 values expressed as a 
percentage of the 1991 value, and transformed to log(x+10) to improve normality. 
 
Results 
 
Distribution and abundance of kangaroos in eastern Australia 
 
Numbers of kangaroos in the sheep rangelands of eastern Australia have fluctuated 
from an estimated low of 14.5 million in 1984 to a high of almost 32 million in 2002 
(Fig.2).  These numbers are important to management, as annual harvest quotas have 
been set as a proportion of population size.  The time series contains major droughts 
in 1981-83, 1991-3 and 2001-03.  There were other periods of drought during the 
study period, but these three droughts were particularly widespread and extended over 
>20 months.  Droughts brought about dramatic declines in the populations of all three 
species (e.g. Caughley et al. 1985).  Also notable are extended periods of general 
decline and increase in the time series for each species and these are explored in the 
analyses below. 
 
The overall patterns of densities for each of the three species in 2001 (Fig. 3) are 
similar to those described by Caughley (1987) for the 1980-82 surveys.  There is a 
notable peak in density synonymous with the range core for each species, although 
there are subsidiary peaks and more modes would have been present with less 
smoothing.  Figure 4 identifies notable shifts in the patterns over the past decade.  
This was a period of general increase for all three species in eastern Australia (Fig. 2).  
Red kangaroo rate of increase tended to be higher in the east of their range and in the 
northern half of the Queensland study area, while eastern grey kangaroo densities 
tended to increase most at the western edge of their range.  Western greys tended to 
have higher rates of increase at the north-western and south-eastern periphery of their 
range in New South Wales and in the north of their range in South Australia.  These 
results include zeros (+0.001) in half-degree blocks in either 1992-3 or 2001, resulting 
respectively in local ‘colonisation’  or ‘extinction’  in the block, producing extreme 
rates of increase (i.e. r <–0.29 or r >0.29).  Nevertheless, this is consistent with a shift 
in the pattern of distribution and many nearby blocks with non-zero density in both 
years also had relatively high rates of increase, supportive of an overall trend.   It also 
has the advantage of distinguishing large and small increases from or decreases to 
zero; information that is lost when treating the data as simply presence or absence.  
These changes in the pattern of distribution are examined over a longer time period 
and in more temporal detail along latitudinal and longitudinal gradients within each 
state in the regression analyses described below.   
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Queensland 
 
Annual rainfall over 1978-2000 was slightly above average (0.05 SD units) and 
variable (coefficient of variation (CV) = 0.34).  Between 1991 and 1999, most land 
clearing occurred in the southeast of the study area between146.5o and 149.5oE, with 
more isolated declines in woody cover further north, but again at the eastern edge of 
the study area (Department of Natural Resources and Mines 2003). Within this band, 
the percentage increase in open areas averaged 18.7 ± 3.4 %.  To the east of this band, 
clearing averaged 3.3 ± 0.7 %.  To the west, clearing averaged 2.2 ± 0.6 %. 
 
Over the entire study period (1980-2001), red kangaroo rate of increase was related 
linearly and positively to longitude (Table 1), being higher in the east of the study 
area (Fig. 5a).  This pattern was seen during a period of decline and a period of 
increase.  The study period was subdivided into four periods of increase or decrease 
and an analysis of covariance indicated that the geographic pattern in rate of increase 
differed amongst the four periods (four relationships vs one relationship: F18,680 = 
4.34, p<0.001).  Combining periods of increase (1984-90 and 1991-2001) and 
decrease (1980-84 and 1990-91) was also not preferred over separate relationships for 
each period (four relationships vs two relationships: F12,680 = 3.86, p<0.001).  
Nevertheless, the pattern in the periods covering drought was strikingly different to 
periods of overall population increase (Fig. 5a), with relatively steep declines in the 
west, although the absolute size of these declines was partly a result of extinctions in 
some cells as discussed above.  Notably, rainfall was not included in the regression 
models for any period.  For 1991-2001, rate of increase in red kangaroos was 
positively related to land clearing (Table 1). 
 
Eastern grey kangaroos showed a contrasting geographic pattern to red kangaroos 
(Fig. 5b), with a negative relationship between rate of increase and longitude over the 
study period (Table 1).  This shift became apparent only after 1986 and was recorded 
during periods of overall population increase and decline.  Neither rainfall nor land 
clearing was a significant predictor.  The geographic pattern in rate of increase 
differed among the four periods identified for this species (F18,692 = 4.40, p<0.001) and 
could not be simplified by combining periods of increase and periods of decrease 
(F12,692 = 5.07, p<0.001). There were also latitudinal shifts over 1980-2001, with 
declines restricted to the northern and southern regions of the study area; the pattern 
similar to that for the last decade (Fig. 4b). 
 
New South Wales 
 
Annual rainfall over 1983-2002 was above average (0.13 SD units) and highly 
variable (CV = 0.40).  Red kangaroos also showed a relative increase in the northeast 
of the study area over 1984-2003 (Table 2, Fig. 6a) and this occurred mainly during a 
period of increase over 1996-98. The geographic pattern in rate of increase differed 
among four time periods (F18,160 = 2.18, p<0.01).  Combining periods of increase and 
periods of decrease was not a warranted simplification (F12,160 = 3.06, p<0.001).  
Again, rainfall was not a significant predictor in the regression models for any period.   
 
Eastern grey kangaroos shifted their pattern of distribution to the west over the study 
period, consistent with the Queensland data (Fig. 6b).  This change was largely 
manifest during the decline in density over 1993-96.  Rainfall influenced this change, 



Shifts in the distribution of kangaroos 10

but did not account for the longitudinal shift (Table 2). The geographic pattern in rate 
of increase differed among four time periods (F18,160 = 14.40, p<0.001) and could not 
be simplified by combining periods of increase and periods of decrease (F12,160 = 
10.65, p<0.001).   
 
Western grey kangaroos did not show a shift in their pattern of distribution over 1984-
2003 (Table 2, Fig. 6c), although the pattern differed among the three time periods 
(F12,99 = 7.00, p<0.001).  In particular, the 2002-03 drought saw a shift in the pattern 
of relative density towards the west (Fig 6c), but this was influenced by rainfall that 
was furthest below average in the east (Table 2). 
 
South Australia 
 
Annual rainfall over 1977-2002 was slightly above average (0.08 SD units) and again 
highly variable (CV = 0.43).  There were only slight changes in the pattern of 
distribution of red kangaroos along a latitudinal gradient over the entire study period, 
although there were no increases at the northern and southern extremities (Table 3, 
Fig. 7a).  However, there was a shift westwards.  Again, the geographic pattern in rate 
of increase differed among four time periods (F18,338 = 4.24, p<0.001) and could not be 
simplified by combining periods of increase and periods of decrease (F12,338 = 5.45, 
p<0.001).  The first twelve years saw a shift in the distribution pattern to the south, 
but this was reversed in the following 13 years (Fig. 7a).  Rainfall was not 
incorporated in any models for red kangaroos. 
 
Western grey kangaroos showed highest rates of increase in the northeast of their 
range over the 25-year study period (Table 3, Fig. 7b), tending to decline in the 
southeast.  This shift in the pattern of distribution occurred during the population 
decline in the drought of the early 1980s (Fig. 7b), which was particularly pronounced 
in the southeast.  Once more, the geographic pattern in rate of increase differed among 
four time periods (F24,345 = 3.45, p<0.001) and could not be simplified by combining 
periods of increase and periods of decrease (F18,345 = 2.43, p<0.01).  Rainfall was 
related to the change in distribution pattern during the population decline over 1995-
2003 (Table 3), but the effect was negative, counter to what was expected. 
 
For all states, semivariograms showed no strong evidence of spatial autocorrelation at 
the scale examined here.  Likelihood ratio tests gave little support for the inclusion of 
spatial correlation parameters in the regression models. 
 
Discussion 
 
Over the past 20 years, the eastern Australian kangaroo population has undergone 
marked population fluctuations (Fig. 2) that have been associated with changes in the 
pattern of distribution (Figs 4-7).  These changes were not uniform over time, and 
were often but not always triggered by drought, which is the major perturbation for 
these populations.  Against predictions, declines during drought were either less 
severe away from the range core or unrelated to the range core.  This result was seen 
across species, states and droughts. 
 
The most likely explanation for the apparent greater resilience away from the range 
core is that rates of increase were simply a function of the severity of drought.  
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Standardised rainfall entered into only a few of the regression models, but it may have 
been too crude a measure of spatial variability in food supply.  The fact that these 
species showed contrasting patterns suggests rainfall will not provide a simple 
explanation for the change in distribution patterns.  For red kangaroos, a possible 
alternative explanation is that declines were most pronounced in the more arid parts of 
the study area and that absolute rather than relative rainfall is the determining factor.  
However, this does not apply to the two grey kangaroo species.  Assessment of the 
spatial variation in the numerical response of these species to rainfall (e.g. Cairns and 
Grigg 1993), or some other surrogate for food supply, should shed light on this. 
 
Eastern grey kangaroos appear to have continued the westward extension of their 
range, particularly in Queensland.  There is a concomitant shift in the pattern of 
distribution behind this expanding front as well.  The shift is not solely along a 
longitudinal gradient, with a movement in density towards the mid-latitudes of the 
study area.  However, this would match a gradient of aridity that is directed roughly 
towards the centre of the continent.  Land clearing in Queensland does not appear to 
have altered the pattern of distribution of eastern grey kangaroos, despite their 
recorded variation in density along a gradient from open to forested areas and a 
preference for partially cleared areas (Hill 1981, McAlpine et al. 1999).  The analysis 
here may have been on too coarse a spatial resolution and too large a geographic area 
to detect changes in eastern grey kangaroo density in response to clearing. 
 
The data suggest red kangaroos and western grey kangaroos have also expanded their 
ranges over the study period, but in different directions.  Red kangaroos have become 
more common in the east of their range and this is associated with land clearing, at 
least in Queensland.  A more sparsely forested landscape is in line with their habitat 
preferences (Pople 1989).  Western grey kangaroos have become more common in the 
northern parts of their range in South Australia.  This parallels the range expansion 
shown by eastern grey kangaroos into more arid areas, and would be explained by 
both species being advantaged by the provision of artificial watering points. 
 
The shifts observed for western grey kangaroos over 1992-2001 (Fig. 4c), are partly 
the result of changes in the ratio of the two species grey kangaroos recorded in ground 
surveys by Caughley et al. (1984) and Cairns and Gilroy (2001).  This study extends 
the analysis of the latter by calculating densities, enabling a shift in density rather than 
ratio of the two species to be determined. 
 
Given that these three species have expanded their ranges, it is difficult to generalise 
the results to wildlife species whose abundance and distribution have not changed or 
are in decline.  Nevertheless, this study highlights how the observed changes in 
distribution pattern will vary depending on the length of the time series as well as how 
distribution patterns will obviously wax and wane within a time series.  It also 
cautions against using geographic position within a range (e.g. edge vs core) solely as 
an indicator of resilience.  The spatial pattern of environmental fluctuation and habitat 
change must also be considered. 
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Table 1.   Regression coefficients and adjusted R2 for the most parsimonious models 
predicting annual rates of increase of kangaroos in half-degree blocks in the 
Queensland study area over various periods between 1980 and 2001. %∆open, 
percentage change in the percentage of the landscape that is open. 
 
Period Latitude Longitude Lat×Long Latitude2 Longitude2 1%∆open Adj. R2 

(a) Red kangaroos 
1980-2001  0.03     0.21 
        
1980-1984 -31.11 68.82 0.21  -0.25  0.08 
1984-1990 0.05      0.11 
1990-1991 10.12 2.82 -0.09 0.07   0.13 
1991-2001 0.67 -4.85  -0.01 0.02 0.15 0.16 
        
(b) Eastern grey kangaroos 
1980-2001 -0.53 -0.21 -0.01 -0.01   0.27 
        
1980-1984 -0.28      0.04 
1984-1986 Intercept only     - 
1986-1991 0.12 -7.18   0.02  0.16 
1991-2001 0.78 -0.07  -0.01   0.23 

1Examined only for 1991-2001 
 
 
Table 2.   Regression coefficients and adjusted R2 for the most parsimonious models 
predicting annual rates of increase of kangaroos in one-degree blocks in the New 
South Wales study area over various periods between 1984 and 2003. zRain, 
standardised financial year rainfall. 
 
Period Latitude Longitude Lat×Long Latitude2 Longitude2 zRain Adj. R2 

(a) Red kangaroos 
1984-2003  -1.13   0.004  0.44 
        
1984-1991 -1.18   0.02   0.19 
1991-1996 Intercept only     - 
1996-1998 -0.11 0.12     0.23 
1998-2003 Intercept only     - 
        
(b) Eastern grey kangaroos 
1984-2003 0.03 -2.59   0.01 0.52 0.27 
        
1984-1991  2.49   -0.01  0.07 
1993-1996 -3.41 -0.81 -0.02    0.40 
1996-2002  0.04     0.43 
2002-2003  -21.95   0.08  0.24 
        
(b) Western grey kangaroos 
1984-2003 Intercept only     - 
        
1984-1991 1.49 3.79  -0.02 -0.01  0.30 
1993-2002 -1.90 -0.39 -0.01    0.39 
2002-2003 0.21     2.48 0.17 
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Table 3.   Regression coefficients and adjusted R2 for the most parsimonious models 
predicting annual rates of increase of kangaroos in half-degree blocks in the South 
Australian study area over various periods between 1978 and 2003. zRain, 
standardised financial year rainfall. 
 
Period Latitude Longitude Lat×Long Latitude2 Longitude2 zRain Adj. R2 

(a) Red kangaroos 
1978-2003 0.62 -0.78 0.004  0.003  0.15 
        
1978-1981 6.48 2.55 0.08 0.08   0.20 
1981-1984 0.07      0.06 
1984-1990 -2.32 -4.90  0.04 0.02  0.22 
1990-2003 1.62 -0.01  -0.03   0.18 
        
(b) Western grey kangaroos 
1978-2003 2.81 0.03  -0.04   0.36 
        
1978-1980 Intercept only     - 
1980-1981 Intercept only     - 
1981-1984 -0.28 -0.21     0.27 
1984-1995 3.39 0.07  -0.05   0.37 
1995-2003 -3.71 9.09  0.06 -0.03 -0.47 0.19 
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Figure legends 
 
Figure 1.  The survey area within the sheep rangelands of eastern Australia.  In New 
South Wales and South Australia, the survey area has been broken up into regions in 
which kangaroo harvests are managed.  Biogeographic boundaries (Environment 
Australia 2000) adjusted to coincide with possible future administrative (shire) 
boundaries, are shown in the Queensland survey area. Transect lines flown in the 
2001 aerial survey are shown as east-west lines. 
 
Figure 2.  Trends in the numbers (± s.e.) of kangaroos in the sheep rangelands of a) 
Queensland, b) and c) New South Wales and d) South Australia over 1975-2003.  
Solid lines connect solid symbols that are numbers estimated using fixed-wing 
surveys across the entire study area of a state.  Dashed lines connect open symbols 
representing estimates from monitor blocks and were not used to assess changes in 
patterns of distribution here.  The thin line connecting grey kangaroo population 
estimates in New South Wales for 1993-4 reflects a change in the ratio, based on 
ground surveys, used to separate aerial counts of the two species.  ��UHG�NDQJDURRV��
��HDVWHUQ�JUH\�NDQJDURRV�� ��ZHVWHUQ�JUH\�NDQJDURRV� 

 
Figure 3.  Density (km-2) of a) red kangaroos, b) eastern grey kangaroos and c) 
western grey kangaroos in 2001 within the sheep rangelands of eastern Australia.  
Densities in 5 km × 5 km cells were interpolated from densities in aerial survey 
segments (Fig. 1) using universal kriging. 
 
Figure 4.  Annual exponential rate of increase of a) red kangaroos, b) eastern grey 
kangaroos and c) western grey kangaroos over 1992-2001 within the sheep rangelands 
of eastern Australia.  Rates of increase were first calculated in half-degree blocks 
(~50km × 50km) then interpolated using universal kriging.  In South Australia, all 
grey kangaroos recorded during aerial survey were assumed to be western grey 
kangaroos. 
 
Figure 5.   Relationship between longitude and predicted annual exponential rates of 
increase of kangaroos for a) red kangaroos and b) eastern grey kangaroos, in the 
Queensland study area for periods of increase and decrease over 1980-2001.   The 
longitude where density has consistently been highest is indicated with an arrow. 
 
Figure 6.   Relationship between longitude and predicted annual exponential rate of 
increase of a) red kangaroos, b) eastern grey kangaroos and c) western grey 
kangaroos, in the New South Wales study area for periods of increase and decrease 
over 1984-2003. The longitude where density has consistently been highest is 
indicated with an arrow. 
 
Figure 7.   Relationship between latitude and annual exponential rate of increase of a) 
red kangaroos and b) western grey kangaroos in the South Australian study area for 
periods of increase and decrease over 1978-2003. The latitude where density has 
consistently been highest is indicated with an arrow. 
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Figure 2 (a) 
 

Figure 2 (b) 
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Figure 2 (c) 
 

 
Figure 2 (d) 
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Figure 3 (a) 
 

 
 
Figure 3 (b) 
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Figure 3 (c) 
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Figure 4 (a) 
 

 
 
Figure 4 (b) 
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Figure 4 (c)
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Figure 5 (a) 
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Figure 5 (b) 

Queensland eastern grey
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Figure 6 (a) 

New South Wales red
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Figure 6 (b) 

New South Wales eastern grey
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Figure 6 (c) 

New South Wales western grey
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 Figure 7 (a) 

South Australian red
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 Figure 7 (b) 
 
 

South Australian western grey
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13. Using harvest statistics to monitor temporal variation in kangaroo 

density and harvest rate 
 

13.1 Introduction 
 

Throughout Australia, government agencies responsible for kangaroo harvest management 

have routinely collected a number of harvest statistics.  These data may provide 

information on population abundance (and therefore trend) and status (i.e. under- or 

overharvest), offering a cost-effective means of indirectly monitoring kangaroo 

populations.  Status includes the desired harvest rate as well as deleterious effects of 

harvesting, such as reduced body size (see Section 15).  From a harvester’s point of view, 

harvest data indicate the quality of the product (e.g. average size or range of sizes). These 

data provide a more extensive coverage of harvest areas than direct monitoring methods 

such as aerial survey and the data are collected continuously as opposed to the infrequent, 

snapshot survey estimates of density.  Harvest data include sex ratio, carcass weight, skin 

size and animals shot per unit time (i.e. catch-per-unit-effort, CPUE) and these are 

generally recorded for each property where kangaroos are harvested.  In the larger states 

of Western Australia and Queensland, because aerial surveys are expensive and 

logistically difficult, a greater emphasis has been placed on harvest data to monitor 

populations (Anon. 1984; Southwell 1989).  However, as pointed out by Southwell 

(1989), there has been no empirical investigation to validate the use of harvest parameters 

as a monitoring tool. 

 

The use of harvest data to monitor populations is commonplace in wildlife management, 

particularly in fisheries and small, fledgling operations where direct monitoring is either 

not feasible or not affordable.  In fisheries management, CPUE is a notoriously poor index 

of population size for a variety of reasons including improved catching efficiency and 

‘targeting’ of fish stock (Hilborn and Walters 1992).  Kangaroo harvesting is less prone to 

some of these problems and so the potential of CPUE and other harvest statistics to 

indirectly monitor kangaroo populations is worth exploring.  Harvest statistics are used in 

the management of waterfowl and deer in North America, which are some of the most 

sophisticated management programs for harvested wildlife in the world.  The ideal appears 

to be combining harvest and direct survey data into models of population dynamics (White 

and Lubow 2002; Williams et al. 2002).  For duck management, new data each year have 

provided an opportunity to compare and weight models and therefore learn about the 

system.  In this sense the management is adaptive.  Such a system of management is not 

proposed here for kangaroos, but should be considered as a logical extension.  The first 

step is outlined in this study, which involves describing the regional and temporal 

variation in harvest statistics and identifying their likely determinants. The next step 

involves integrating this information with rainfall-driven population models (see Sections 

9 and 10), and direct monitoring and the harvest strategy (see Sections 2 and 5) in the 

management program. 

 

13.1.1 Theoretical considerations 

 

Catch-per-unit-effort 

 

An index I is only useful if the ‘proportionality constant’ β connecting it to actual 

population size X (i.e. I = βX) does indeed remain constant between locations or over time 

(Lancia et al. 1996; McCallum 2000).  For CPUE to effectively monitor population 
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abundance or harvest rate, a number of assumptions must therefore be satisfied (Caughley 

1977).  Southwell (1989) identified several potential violations of these assumptions when 

monitoring kangaroo populations.   These assumptions are discussed in turn below.   

 

1. Harvesting equipment must be standardised 

 

Unlike fisheries, kangaroo harvesting equipment (e.g. vehicles, rifles, spotlight) has 

changed little over the past 30 years. 

 

2. Harvesting efficiency must be standardised 

 

There is variation between shooters (e.g. part-time versus full-time shooters) in the 

speed in which they can shoot and process animals.  As shooters change in areas, 

CPUE will therefore change.  This factor will be less pronounced as data are pooled 

over larger areas. 

 

3. Harvesting conditions (e.g. weather, access to animals and market prices) must be 

standardised 

 

As with any index of population size, CPUE is likely to be more useful in comparing 

estimates of population abundance over time rather than between areas (McCallum 

2000).  Regional differences in vegetation, road network and distance between towns 

will invariably lead to regional differences in CPUE.  However, shooter success also 

varies with weather conditions.  It is generally accepted that shooting is difficult in wet 

conditions when the ground is boggy (Prince 1984a) or under windy conditions when 

animals seek cover and are restless, making them difficult targets.  Shooting is 

considered easier during dry times when access is easier, ground cover is low and 

kangaroos tend to concentrate at watering points and on remaining food patches 

(Kirkpatrick and Amos 1985). 

 

4. Harvesting of each animal is independent 

 

The relationship between CPUE and population abundance is unlikely to be linear, 

because of time saturation (Caughley 1977), whereby CPUE eventually reaches a 

plateau at some level of population density.  Changes in abundance in this zone of 

saturation will not be reflected in the CPUE.  If the density of interest is below this 

zone of saturation, which may be the case in drought, then the index could obviously 

still be useful. 

 

5. Kangaroos do not learn to avoid shooters. 

 

This is possible in the longer term of > 10 years, but is unlikely to be a problem for 

monitoring year-to-year changes in abundance. 

 

Harvest composition 

 

These assumptions must also hold if aspects of harvest composition (e.g. sex ratio, carcass 

weight) are to be useful indices of population size or status.  Harvest composition will 

change in quite different ways to CPUE and so it warrants separate discussion.  Changes 

in the composition of the harvest will reflect one or more of three factors:  
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1. Changes in shooter selectivity due to the environment, prices or population density 

2. Changes in population composition due to harvesting and 

3. Changes in population composition due to the environment. 

 

Kangaroos show considerable sexual size dimorphism, with males growing to 2-3 times 

the maximum size of females (Jarman 1989).  Growth, particularly for males, extends well 

into adulthood and beyond the age at sexual maturity.  Shooters are generally paid by 

carcass weight (although some human consumption shooting will be selective for 

intermediate sizes) or skin size so, not surprisingly, there is selection for larger, older, 

predominantly male kangaroos (Pople 1996).  As population density declines, the rationale 

is that shooters will not be able to maintain this selectivity, and will therefore take fewer 

males, smaller animals and, overall, fewer animals per unit time.  Similarly, as harvest rate 

increases, the age structure and sex ratio of the population will change.  The sex ratio of 

the harvest should therefore shift towards females and average carcass weight should 

decline. 

 

However, the composition of the population (i.e. size structure and therefore age structure 

and sex ratio) will also vary in response to the environment regardless of the rate that it is 

being harvested.  In arid areas, it is well documented that kangaroo populations have 

unstable age distributions, resulting from pulses of recruitment during good seasons and 

no recruitment during drought (Frith and Sharman 1964; Kirkpatrick and McEvoy 1966; 

Newsome 1966, 1977).  This is compounded by male-biased mortality during drought 

(Pople 1996); a mortality that may be also biased towards older animals (Robertson 1986).  

Assuming shooter selectivity remains constant, a surge in recruitment may lead to an 

increase in population size, but a decline in the size of harvested animals.  Similarly, a 

shift in the sex ratio towards females during drought would see a decline in the size of 

harvested animals.  Fluctuations in the adult sex ratio of an unharvested red kangaroo 

population in southern Queensland have been recorded over a ten-year period and are 

shown in Figure 13.1 (A. R. Pople and G. Lundie Jenkins unpublished data).  The sex ratio 

became strongly female-biased (>80% female) during drought in the early 1990s (see 

Sections 16 and 17), returning slowly towards parity over the ensuing years. 

 

Regional variation in population composition is only one factor that will lead to 

differences in harvest composition between areas.  Adult sex ratios have been determined 

in a number of harvested red kangaroo populations throughout eastern Australia (Pople 

and Cairns 1995; A. R. Pople and S. C. Cairns unpublished data) and these can be 

compared with the sex ratio of the harvest from the same population (Fig. 13.2).  The 

population sex ratio is restricted to animals > 2 years, which is the age when red 

kangaroos are large enough to be harvested.  The comparison shows considerable 

variation in the strength of selection for males, indicated by departures from the line of no 

selection shown in Figure 13.2.
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Fig. 13.1.  Adult (> 2 years old) sex ratio (± 95% bootstrapped confidence intervals) for the unharvested red 

kangaroo population at Currawinya National Park in southern Queensland (A. R. Pople and G. Lundie 

Jenkins unpublished data).  The population declined markedly during drought in the early 1990s.  The sex 

ratio was determined from random shot samples of 200-400 animals taken annually (Pople 1996). 

 

Fig. 13.2.  Relationship between adult  (> 2 years old) sex ratio (± 95% bootstrapped confidence intervals) 

and harvest sex ratio in six populations of red kangaroos (Pople and Cairns 1995; A. R. Pople and S. C. 

Cairns unpublished data).  Populations were located in far northern Queensland, central Queensland, 

southern Queensland, eastern South Australia and western South Australia.
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Regional variation in other factors such as environmental differences affecting shooter 

access, population density of red kangaroos and other kangaroo species, harvesting costs 

and market prices, are influencing shooter selectivity.  These data come from the scale of a 

single property, so individual variation amongst shooters may well be a factor too. 

 

In addition, there are regional differences in kangaroo morphology, particularly body 

weight and overall size (Pople 1996), which will be reflected in the composition of the 

harvest.  Variation in the growth of male red kangaroos is shown in Figure 13.3, 

highlighting the latitudinal gradient in body size synonymous with Bergmann’s rule and 

observed in a number of Australian mammalian species including macropods (Yom and 

Nix 1986). It is interesting to note that the most northerly population sampled in Figure 

13.3 at Julia Creek in Queensland, recorded a relatively large asymptotic weight, reversing 

the trend.  An explanation for the pattern is not straightforward.  Harvest statistics will 

therefore be more useful in monitoring abundance or status over time rather than between 

areas. 

 

13.1.2 Empirical support 

 

Until recently, there has been limited analysis of kangaroo harvest data.  Analyses of 

historical data, prior to the imposition or influence of harvest quotas, focussed on the 

factors determining harvest offtake.  Kirkpatrick and Amos (1985) argued that both 

market demand and prevailing weather conditions determined the size of the harvest 

offtake of kangaroos in Queensland.  Prince (1984b) found that a large component of the 

variation in the historical offtake of kangaroos in Western Australia could be explained by 

previous rainfall, whereas market fluctuations accounted for only a minor component.  

(Prince 1984a, b) suggested that offtake was impaired by rainfall in the short-term and 

increased with rainfall in the long-term because of resultant increases in population size. 

 

Regional differences and temporal variation in harvest sex ratio and carcass weight in 

Western Australia were reported by Prince (1984a), who speculated on the factors 

responsible.  Population modelling by Nance (1985) suggested that harvest sex ratio could 

effectively monitor the status of an eastern grey kangaroo population.  This modelling, 

supplemented by samples of population composition from harvested and unharvested 

samples, supported the management program for kangaroos in Queensland prior to the 

1990s (Kirkpatrick and Amos 1985).  Under this program, harvest statistics were used to 

monitor the status of kangaroo populations and determine the size of harvest quotas 

(Anon. 1984; Queensland National Parks and Wildlife Service 1989).  Nance’s (1985) 

model made a number of unsupported assumptions about regulation in kangaroo 

populations and shooter behaviour.  Nevertheless, the work provides the hypothesis that 

sex ratio can monitor harvest rate, which can be assessed in studies such as the present 

one.  Notably, these previous studies lacked data on population abundance. 
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Fig. 13.3.  Fitted generalised von Bertalanffy growth curves for male red kangaroos sampled from a number 

of locations in eastern Australia (A. R. Pople and S. C. Cairns, unpublished data). The concentration of 

points at low values reflects the age structure of populations, which is dominated by young animals.  w SA, 

western South Australia; fn Qld, far northern Queensland; e SA, eastern South Australia; n Qld, northern 

Queensland; s Qld, southern Queensland; c Qld, central Queensland. 

 

 

With the benefit of estimates of population size, Pople (1996) examined the relationship 

between harvest statistics and harvest rate across several regions in Queensland for two 

years in the early 1990s.  For red kangaroos, the effect of harvesting appeared to be 

detected in the size of male skins.  However, the effect of drought in on the population sex 

ratio was thought to have overshadowed any relationship between harvest sex ratio and 

harvest rate.  For eastern grey kangaroos, carcass weight, skin size and harvest sex ratio all 

appeared to be potential indicators of harvest rate. The results supported Nance’s (1985) 

modelling and also refuted the argument of de la Mare (1988) that the selectivity of 

shooters when taking skins would be too weak to adequately monitor the population’s 

status.  However, the suggestion that Nance’s (1985) model could be extended to other 

species (Kirkpatrick and Nance 1985; Queensland National Parks and Wildlife Service 

1989), particularly red kangaroos, was not supported. 

 

13.2 Methods 
 

13.2.1 Study area 

 

The study area encompasses the sheep rangelands of eastern Australia in which kangaroo 

density has been estimated by annual aerial survey since the late 1970s (see Section 9, 

Figs 9.1 and 9.2).   This coincides with the main harvest areas in each of the three states 

covered by this area.  The separate management regions within each state were again the 

units of analysis as they were in Section 9.  In Queensland, the ten helicopter survey 

blocks (see Section 9, Fig. 9.2) were the units of analysis, rather than the three broader 

regions as the latter did not provide a longer time series as it did in Section 9 with harvest 

statistics only available from 1991.  Variation in harvest statistics between regions was 

expected and is examined in Section 14.  The primary interest in this section was temporal 

variation within each region.   
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13.2.2 Analysis 

 

Two approaches were taken in the analysis.  Firstly, harvest statistics were used response 

variables and modelled as a function of a number of explanatory variables including 

kangaroo density, harvest rate and rainfall.  This follows current management practice 

involving monitoring harvest statistics to infer changes in kangaroo density or harvest rate 

(e.g. Queensland Parks and Wildlife Service 2003). This approach should also be useful to 

the kangaroo industry as it provides an understanding of product quality and quantity, 

such as carcass weight and catch rates.  The second approach was to use density and 

harvest rate as response variables and use harvest statistics as the explanatory variables.  

This would allow managers to predict density or harvest rate to set harvest quotas, in years 

when direct monitoring such as aerial survey is not conducted (see Section 5).  The first 

approach allows greatest use of the monthly harvest data, while the second approach is 

restricted to the smaller sample size of annual estimates of population size and harvest rate 

and density.  

 

Monthly harvest data were available for South Australia over 1980-2001, for New South 

Wales over 1993-2003 and for Queensland over 1991-2003 (see Section 1).  Three harvest 

statistics were used in the analyses: the percentage of the harvest comprising males 

(%male), CPUE and male carcass weight (male wt).  Skin size was not examined, because 

skin-only shooting is currently restricted to Queensland within the study area and it is 

declining there as a proportion of the overall harvest.  In Queensland, harvest sex ratio was 

restricted to carcasses.  CPUE was calculated as the harvest in a region divided by the 

number of shooter nights.  The structure of the harvest database for South Australia meant 

that effort was calculated as the number of shooter nights when males were harvested.  

This was determined separately for each species.  In New South Wales, CPUE was only 

available quarterly and only from 1997 and so was not incorporated into analyses here.  In 

Queensland, effort was calculated as the number of shooter nights regardless of species 

harvested.  Male rather than female weight was considered a more sensitive indicator of 

changes in density and harvest rate as it spans a greater range, asymptotes at an older age 

and males are generally targeted by shooters. 

 

Explanatory variables used to predict harvest statistics included kangaroo density and 

density squared to allow for a saturation effect, instantaneous harvest rate, effort (but not 

with CPUE), seasonality [comprising sin(2×π×time) and cos(2×π×time) terms], dummy 

variables to account for harvest seasons and regulatory changes, and a number of rainfall 

terms. Harvest rate was calculated as the annual harvest divided by the winter density 

estimate.  Density and harvest rate were only estimated once a year and so were 

interpolated, assuming exponential growth, to provide monthly values.  Rain that fell in 

the month of collection of harvest data was expected to reduce access and selectivity, 

thereby resulting in a drop in the value of all harvest statistics.  Rain falling in the three 

months prior to collection was also expected to have a negative effect on CPUE and 

%male by increasing food supply resulting in a more even dispersion of kangaroos that 

make less use of open, accessible areas (see Section 11).  Rain falling in the 12 months 

lagged one month prior to collection was expected to improve kangaroo body condition, 

thereby increasing male wt.  Shooters appear to be less size selective when taking only 

skins (Pople 1996) can potentially harvest more animals per night.  In Queensland, the 

proportion of the harvest comprising skins was included as a variable as this may have a 

knock-on effect to the composition of the carcass harvest and CPUE.  In New South 

Wales, a dummy variable was included to account for skin-only shooting, which occurred 
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up to mid-1996.  The harvest of each species is likely to be influenced by availability of 

other species to harvest (Pople 1996).  This is manifest as spatial variation in the harvest 

and will be explored in detail in Section 14.  However, temporal variation in the harvest is 

likely to be influenced by season closures for other species and so the closure of the red 

kangaroo season in Queensland over the study period was included as a dummy variable 

in the analysis for eastern greys kangaroos and wallaroos.  In South Australia, carcasses 

were dressed to a smaller weight prior to 1997.  Furthermore, an initial examination of the 

data revealed no differences between male and female carcass weights up to 1987.  

Dummy variables were therefore included to account for these changes.  A likely 

influence that was not incorporated in these models was economics, such as prices paid for 

carcasses. 

 

Serial correlation in the data was expected and a correlated regression structure (first order 

autoregressive, AR1) was included in the regression models using generalised least 

squares (gls) in R 1.9.1 (R Development Core Team 2003).  Models were simplified by 

stepwise removal of non-significant (P > 0.05) terms from the full model (Crawley 2002).  

Finally the most parsimonious model was compared with the equivalent model without the 

correlated error structure using a likelihood ratio test (Maindonald and Braun 2003).  

%male could have been modelled using logistic regression, but was instead arcsine 

transformed and analysed in a linear regression to take advantage of the correlated error 

structure in gls.  Only monthly harvests of > 50 animals of both sexes combined were 

used in analyses. 

 

Explanatory variables used to predict population statistics (i.e. density and harvest rate) 

were restricted to CPUE, %male and male wt, because sample size was limited to annual 

estimates of density and harvest rate, unlike the monthly harvest statistics.  Harvest 

statistics were smoothed using a three point moving average centred on the winter aerial 

survey estimate of density.  Data were also analysed using multiple regression with a 

correlated error structure if needed.  Kangaroo density was log transformed to improve 

linearity.  The purpose of the analyses with harvest statistics as response variables was to 

identify their likely determinants.  For the analyses with population statistics as response 

variables, the purpose was prediction.  95% prediction intervals were therefore determined 

for fitted values.
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13.3 Results 
 

13.3.1 Harvest rate across all states 

 

Variation in density of the three kangaroo species across the study area was described in 

Section 12.  Wallaroo density in Queensland is described in Section 4.  Harvest rate of the 

three kangaroo species over the study period in each state is shown in Figure 13.4.  

Harvest rate in South Australia (Fig. 13.4a) was multiplied by 0.63 for red kangaroos and 

0.79 for western grey kangaroos to account for the likely underestimate of densities in that 

state and make them comparable to harvest rates in New South Wales and Queensland 

(see Section 12). There are four points worth noting from these plots.  Firstly, harvest rates 

have been consistently higher in Queensland.  Secondly, red kangaroos have generally 

been harvested at higher rates than either of the grey kangaroo species, although the 

pattern is less marked in Queensland.  Thirdly, harvest rates declined steeply in 

Queensland after 1995 following a loss of markets.  Finally, harvest rates have generally 

been increasing in New South Wales and South Australia since the mid-1980s. 

 

13.3.2 South Australia 

 

Standardised parameter estimates for models predicting harvest and population statistics in 

South Australia are shown in Table 13.1.  The ability to model fluctuations in harvest 

statistics varied greatly among soil conservation boards (SCBs).  The apparent good fit for 

male wt is largely influenced by the change in carcass dressing being explained by the 

dummy variable.  Often the model with the lower R
2
 provided the more impressive and 

useful fit to the data, particularly if it captured declines in harvest statistics during drought 

and large increases.  Adjusted R
2
 cannot be compared directly between regions as the 

range of explanatory variables differs.  Examples of model fits are shown in Figures 13.5 

and 13.6. In the Northeast Pastoral SCB, trends in all three harvest statistics have been 

tracked reasonably well by the fitted models.  In particular, the decline in red kangaroo 

numbers during the 1982-83 drought was accompanied by a sharp decline in the 

proportion of males in the harvest.  For western grey kangaroos in Gawler SCB, the 

relationships are poorer with much greater scatter and lack of trend in all three statistics. 

 

Kangaroo density and harvest rate were generally important influences on harvest 

statistics for both species.  As expected, higher densities were usually associated with a 

higher proportion of males, higher catch rates and greater weights.  Where the coefficient 

for density was negative, there was a curvilinear term indicating an inverted parabola.  

Density had a saturating effect in a number of cases.  Higher harvest rates were generally 

associated with lower values of %male and male wt and higher catch rates, again in line 

with expectations.  Rainfall had a smaller influence on harvest statistics as gauged by the 

size of the standardised coefficients and the few models where terms were included.  

Three months rainfall was not incorporated in any of the models.  The effect of recent 

rainfall was negative while 12 months rainfall had a positive effect on male carcass 

weight.  Effort also had a minor, positive influence on red kangaroo %male in Northeast 

Pastoral SCB and male red kangaroo carcass weight in Kingoonya SCB.  The dummy 

variable for the change in carcass dressing was incorporated in many models for %male 

and CPUE, but the sign was not always consistent. 
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(a) 

(b) 

 

(c) 

 
Fig. 13.4.  Harvest rate of the red kangaroos (orange squares), western grey kangaroos (black circles) and 

eastern grey kangaroos (green triangles) in the main harvest areas (see Section 9, Fig. 9.1) of (a) South 

Australia, (b) New South Wales and (c) Queensland.  Harvest rates in South Australia have been multiplied 

by 0.63 for red kangaroos and 0.79 for western grey kangaroos to make them comparable to other states.
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Table 13.1.  Standardised parameter estimates with standard errors (in brackets) and adjusted R
2
 for the most parsimonious (according to backwards elimination) 

regression models (see Equation 4) predicting (a) red kangaroo harvest statistics, (b) western grey kangaroo harvest statistics, (c) red kangaroo population 

statistics, and (d) western grey kangaroo population statistics. The average 95% prediction interval (95%PI) is also shown for models predicting population 

statistics.  Models are shown for soil conservation boards (SCBs) in the South Australian pastoral zone (see Section 9, Fig. 9.1).  Population statistics are log 

transformed kangaroo density (logD) and harvest rate expressed as a percentage (HR%).  Harvest statistics are catch-per-unit-effort (CPUE), the percentage of the 

harvest comprising males (%male, arcsine transformed) and average male carcass weight (male wt).  Explanatory variables include untransformed density (D), 

harvest rate expressed as a proportion (HR), CPUE, male wt, the proportion of the harvest comprising males (pmale, arcsine transformed), rain falling in the same 

month of collection of the harvest statistic (rn.1.0), 3 months rain lagged 1 month prior to collection (rn.3.1) , 12 months rain lagged 1 month prior to collection 

(rn.12.1), the number of shooter-nights (effort), seasonal cycle comprising sin(2×π×time) and cos(2×π×time) terms, and 2-3 dummy variables (carcass) 

representing periods when carcasses were dressed differently (male wt and CPUE) and when carcass weight was not distinguished between the sexes (male wt).  

The parameter for sin(2×π×time) is given above the parameter for cos(2×π×time).  K, Kingoonya; M, Marree; NF, North Flinders Ranges; NP, Northeast Pastoral; 

ED, Eastern Districts; G, Gawler 
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(a) Red kangaroos (South Australia) 
Explanatory variables 

SCB Response Intercept 
D D

2
 HR rn.1.0 rn.12.1 effort carcass cycle 

Adj. R
2
 

%male 91.64 (1.60) 5.19 (1.57)  -4.86 (1.52)   1.07 (0.52)   0.49 

CPUE 28.01 (081) 2.94 (0.75)  2.80 (0.81) -1.00 (0.22)   4.72 (1.87) 
0.07 (0.46) 

0.94 (0.46) 
0.52 

NP 

male wt 17.71 (0.40) -2.93 (1.28) 3.12 (1.22) 1.02 (0.23)  0.54 (0.14)  
1.05 (0.58) 

7.19 (0.66) 

-0.06 (0.12) 

0.32 (0.12) 
0.77 

            

%male 83.60 (0.53) 2.07 (0.55)  -2.36 (0.55)      0.32 

CPUE 23.97 (0.42) 8.20 (1.99) -6.11 (1.97) 3.23 (0.39)    3.40 (0.96)  0.51 
NF 

male wt 18.04 (0.34)   -0.82 (0.21)    
0.73 (0.45) 

7.77 (0.54) 
 0.83 

            

%male 78.29 (1.46)   -4.99 (1.34) -1.24 (0.45)     0.14 

CPUE 35.05 (1.59)    -1.17 (0.41)     0.00 
M 

male wt 17.73 (0.50) 0.74 (0.29)      
1.38 (0.64) 

13.28 (0.80) 
 0.82 

            

%male 80.61 (0.92)         - 

CPUE 30.86 (0.82) 18.20 (5.59) -13.59 (5.51)       0.41 
K 

male wt 18.07 (0.32)     0.33 (0.13) 0.13 (0.07) 
0.42 (0.42) 

8.19 (0.53) 

-0.28 (0.11) 

0.21 (0.11) 
0.87 

            

%male 86.86 (0.97) 17.89 (7.45) -17.86 (7.45)      
-2.50 (0.76) 

0.55 (0.75) 
0.10 

CPUE 25.01 (0.88) 21.51 (6.18) -17.43 (6.14) 6.85 (0.87)    -9.49 (2.07)  0.51 G 

male wt 17.84 (0.22)       
0.41 (0.29) 

8.11 (0.35) 

-0.35 (0.11) 

0.21 (0.11) 
0.85 

            

%male 91.50 (1.28)       -17.87 (2.79)  0.24 

CPUE 15.83 (0.34) 5.40 (1.73) -4.20 (1.73)      
0.97 (0.33) 

-0.06 (0.33) 
0.13 

ED 

male wt 19.05 (0.54) 3.99 (1.09) -3.33 (0.94) -1.00 (0.23) -0.24 (0.12)   
-0.97 (0.85) 

5.03 (0.73) 

-0.30 (0.15) 

0.02 (0.15) 
0.54 
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(b) Western grey kangaroos (South Australia) 
Explanatory variables 

SCB Response Intercept 
D D

2
 HR rn.1.0 rn.12.1 effort carcass cycle 

Adj. R
2
 

%male 107.1 (1.50) -5.29 (1.48)  -6.50 (1.38)    14.03 (3.53)  0.34 

CPUE 8.09 (0.25) 1.30 (0.23)      2.31 (0.57)  0.37 
NP 

male wt 19.33 (0.42)   -1.39 (0.26)    
0.43 (0.58) 

3.42 (0.66) 

-0.38 (0.19) 

0.08 (0.18) 
0.46 

            

%male 101.9 (1.70)        
-4.12 (1.63) 

-0.24 (1.63) 
0.03 

CPUE 7.14 (0.21) 3.27 (0.92) -2.12 (0.89) 0.71 (0.25)     
0.46 (0.20) 

0.58 (0.20) 
0.22 NF 

male wt 18.72 (0.34)     0.47 (0.18)  
0.81 (0.44) 

4.85 (0.48) 

-0.78 (0.18) 

0.25 (0.17) 
0.52 

            

%male 101.2 (3.65)         - 

CPUE 9.12 (1.21) 2.39 (1.13)      -6.02 (2.35) 
-1.61 (0.69) 

1.53 (0.71) 
0.13 

K 

male wt 17.26 (0.81) -1.59 (1.36) 2.75 (1.24)   0.78 (0.34)  
2.05 (0.95) 

7.02 (1.29) 

 
0.59 

            

%male 89.91 (0.77)       -5.38 (1.69) 
-3.65 (0.56) 

1.26 (0.56) 
0.30 

CPUE 19.83 (0.63)   -1.73 (0.60)     
-1.17 (0.52) 

-0.86 (0.52) 
0.12 G 

male wt 17.77 (0.31)   -0.55 (0.19)    
0.47 (0.44) 

6.40 (0.49) 

-0.52 (0.13) 

0.33 (0.13) 
0.78 

            

%male 95.69 (1.81)   -5.99 (1.80)      0.12 

CPUE 13.42 (0.36) 0.99 (0.36)  3.18 (0.36)     
-0.41 (0.35) 

0.71 (0.34) 
0.37 

ED 

male wt 18.33 (0.48) 2.93 (1.06) -2.71 (1.04) -0.85 (0.32)    
1.18 (0.57) 

5.18 (0.92) 
 0.44 
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Table 13.1 cont. 

 

(c) Red kangaroos (South Australia) 

Explanatory variables 
SCB Response Intercept 

CPUE pmale 
Adj. R

2
 95%PI 

logD 2.50 (0.05) 0.15 (0.05) 0.21 (0.05) 0.55 2.54 
NP 

HR% 12.82 (0.70) 2.41 (0.70) -2.21 (0.70) 0.49 14.8 

       

logD 2.13 (0.05) 0.13 (0.06) 0.21 (0.06) 0.36 2.26 
NF 

HR% 12.36 (0.87) 2.96 (0.89)  0.33 17.6 

       

logD 1.58 (0.10)  0.32 (0.11) 0.28 2.57 
M 

HR% 19.46 (2.15)  -4.76 (2.20) 0.15 40.9 

       

logD 1.65 (0.07)   - - 
K 

HR% 11.23 (0.71) 1.71 (0.73)  0.17 14.6 

       

logD 1.03 (0.06)   - - 
G 

HR% 11.41 (0.89) 2.04 (0.91)  0.16 18.1 

       

logD 0.76 (0.13)   - - 
ED 

HR% 13.32 (0.19)   - - 
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Table 13.1 cont. 

 

(d) Western grey kangaroos (South Australia) 

Explanatory variables 
SCB Response Intercept 

CPUE pmale 
Adj. R

2
 95%PI 

logD 0.23 (0.22)   - - 
NP 

HR% 16.09 (3.92) -14.05 (5.53) -13.73 (5.53) 0.21 57.1 

       

logD -1.14 (0.33)   - - 
NF 

HR% 51.8 (30.1)   - - 

       

logD -2.65 (0.37)   - - 
K 

HR% 8.89 (3.41)   - - 

       

logD 1.83 (0.08)   - - 
G 

HR% 4.45 (0.38) -0.93 (0.39)  0.18 7.6 

       

logD -1.91 (0.39) 0.03 (0.01) 3.08 (0.34) 0.81 0.79 
ED 

HR% 8.05 (1.05) 3.91 (1.08)  0.40 17.5 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.5.  Monthly (a) %male, (b) CPUE and (c) average male carcass weight for harvested red kangaroos in 

Northeast Pastoral SCB in South Australia.  Fitted models (Table 13.1a) are shown as solid lines. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.6.  Monthly (a) %male, (b) CPUE and (c) average male carcass weight for harvested western grey 

kangaroos in Gawler SCB in South Australia.  Fitted models (Table 13.1b) are shown as solid lines. 
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Seasonal cycles were also incorporated into many models, but these were not strong. 

Likelihood ratio tests supported a correlated error structure for all models. 

 

Predictions of population statistics were best in the higher density SCBs, which are in the 

northeast for red kangaroos and the south for western grey kangaroos.  Correlated error 

structures did not improve any models predicting population statistics.  Approximate 

precision (SE/mean) of predictions of density and harvest rate using these relationships can be 

calculated as the intercept divided by a quarter of the prediction interval (95%PI).  For red 

kangaroos these estimates range 0.25-0.53 and for western grey kangaroos they range 0.43-

0.89.  Examples of fitted models are shown in Figure 13.7. 

 

 

13.3.3 New South Wales 

 

Standardised parameter estimates for models predicting harvest and population statistics in 

South Australia are shown in Table 13.2.  Striking features of the data are the decline in male 

weight during the recent 2002-3 drought and drops in %male at different times during the 

time series depending on the zone and species.  Trends in the two harvest statistics were 

tracked reasonably well by the fitted models in the examples shown in Figures 13.8, 13.9 and 

13.10.  The decline in average carcass weight in the recent drought was tracked by the models 

for red kangaroos in Figures 13.8b and 13.8c, but not western grey kangaroos in Figure 

13.10b and only partly in Figure 13.10c.   

 

As with South Australia, kangaroo density and harvest rate were generally important 

influences on harvest statistics for all three species.  Recent rainfall entered into the models in 

some zones, but only as a minor influence.  Inclusion of 12 months rainfall as an explanatory 

variable allowed the decline in carcass weight during the recent drought to be modelled. 

However, it was only included in 7 of 23 cases. The dummy variable for skin shooting was 

incorporated in many models for %male, but not always as an expected negative effect.  

Seasonal cycles were also incorporated into many models and, while more marked than in 

South Australia, their overall effect was small.  Likelihood ratio tests supported a correlated 

error structure for all models. 

 

Predictions of red kangaroo population statistics were only possible for density and only in 

three zones.  Models could be fitted for both statistics for eastern grey kangaroos, but again 

only in three zones.  Western grey kangaroos faired better, with models fitted in five of seven 

zones. Correlated error structures did not improve any models predicting population statistics.  

Approximate precision of predictions of density and harvest rate ranged 0.27-0.28 for red 

kangaroos, 0.18-0.43 for eastern grey kangaroos and 0.24-0.86 for western grey kangaroos.  

Examples of fitted models are shown in Figure 13.11. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.7.  Fitted models (solid line, Table 13.1c and d) and 95% prediction intervals (dashed lines) for (a) red 

kangaroo density (km
-2

) in Northeast Pastoral SCB, (b) harvest rate of red kangaroos in Northeast Pastoral SCB 

and (c) western grey kangaroo density (km
-2

) in Gawler SCB in South Australia.
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Table 13.2.  Standardised parameter estimates with standard errors (in brackets) and adjusted R
2
 for the most parsimonious (according to backwards elimination) 

regression models (see Equation 4) predicting (a) red kangaroo harvest statistics, (b) eastern grey kangaroo harvest statistics, (c) western grey kangaroo harvest 

statistics, (d) red kangaroo population statistics, (e) eastern grey kangaroo population statistics, and (f) western grey kangaroo population statistics. The average 

95% prediction interval (95%PI) is also shown for models predicting population statistics.  Models are shown for kangaroo management zones (KMZs) in New 

South Wales (see Section 9, Fig. 9.1).  Population statistics are log transformed kangaroo density (logD) and harvest rate expressed as a percentage (HR%).  

Harvest statistics are the percentage of the harvest comprising males (%male, arcsine transformed) and average male carcass weight (male wt).  Explanatory 

variables include untransformed density (D), harvest rate expressed as a proportion (HR), male wt, the proportion of the harvest comprising males (pmale, arcsine 

transformed), rain falling in the same month of collection of the harvest statistic (rn.1.0), 3 months rain lagged 1 month prior to collection (rn.3.1), 12 months rain 

lagged 1 month prior to collection (rn.12.1), seasonal cycle comprising sin(2×π×time) and cos(2×π×time) terms, and a dummy variables (skin) representing the 

period when there was skin-only shooting.  The parameter for sin(2×π×time) is given above the parameter for cos(2×π×time).  
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Table 13.2 cont. 

 

(a) Red kangaroos (New South Wales) 
Explanatory variables 

KMZ Response Intercept 
D D

2
 HR rn.1.0 rn.3.1 rn.12.1 skin cycle 

Adj. R
2
 

%male 92.40 (0.73) 10.61 (3.16) -10.49 (3.16)     -8.46 (1.38) 
-0.87 (0.55) 

-1.38 (0.56) 
0.33 

1 

male wt 22.65 (0.27) 1.19 (0.27)        0.32 

            

%male 98.45 (0.75) 2.63 (0.61)      -7.36 (1.30)  0.45 
2 

male wt 21.50 (0.17) 0.54 (0.17)        0.25 

            

%male 86.18 (0.90)       3.24 (1.48)  0.13 
4 

male wt 21.24 (0.17) -0.32 (0.20)  -0.49 (0.19)   0.55 (0.16)   0.45 

            

%male 110.01 (2.2)         - 
6 

male wt 21.44 (0.11) 2.21 (0.82) -1.83 (0.82)  -0.18 (0.06)     0.29 

            

%male 115.88 (1.0) 11.64 (3.82) -9.17 (3.79)  -1.87 (0.50) -1.71 (0.67)  -18.75 (1.75)  0.75 

7 
male wt 22.17 (0.25)      0.66 (0.18) -1.07 (0.42) 

-0.15 (0.14) 

-0.45 (0.15) 
0.45 

            

%male 108.75 (1.4) 17.12 (4.87) -14.30 (4.66)     6.47 (2.59) 
-0.80 (0.72) 

-1.83 (0.80) 
0.35 

8 

male wt 23.47 (0.49)        
-0.32 (0.15) 

-0.36 (0.17) 
0.02 

            

%male 117.85 (0.9) 14.53 (4.34) -9.19 (4.29) 5.98 (1.08)      0.45 
10 

male wt 22.49 (0.40)         - 

            

%male 84.20 (0.73)       5.31 (1.23)  0.35 
11 

male wt 24.00 (0.10)      0.60 (0.10)   0.41 
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Table 13.2 cont. 

 

(b) Eastern grey kangaroos (New South Wales) 
Explanatory variables 

KMZ Response Intercept 
D D

2
 HR rn.1.0 rn.3.1 rn.12.1 skin cycle 

Adj. R
2
 

%male 100.09 (1.9)         - 
1 

male wt 22.47 (0.20) 0.96 (0.20)      3.15 (0.73)  0.31 

            

%male 97.75 (1.60)   -4.45 (1.56)    -9.17 (3.40)  0.08 

2 
male wt 21.48 (0.17) 0.39 (0.17)       

-0.42 (0.17) 

0.19 (0.17) 
0.08 

            

%male 83.09 (0.46) -15.96 (3.48) 17.51 (3.43) 2.88 (0.93)  -0.88 (0.41)    0.37 

4 
male wt 23.20 (0.14) -4.35 (1.05) 4.61 (1.07)    0.63 (0.15)  

-0.22 (0.12) 

-0.31 (0.12) 
0.52 

            

%male 109.64 (1.9) 3.42 (1.68)      8.58 (3.52)  0.12 

6 
male wt 20.56 (0.14) 0.46 (0.14)   -0.13 (0.06)    

-0.08 (0.10) 

-0.22 (0.11) 
0.29 

            

%male 122.36 (1.0)   -2.81 (0.77)    -11.46 (1.64)  0.43 

7 
male wt 21.56 (0.21) 2.50 (1.10) -2.44 (1.07) -0.58 (0.20) -0.18 (0.08)   -1.09 (0.37) 

-0.16 (0.13) 

-0.34 (0.14) 
0.50 

            

%male 98.15 (0.73) 2.16 (0.81)  -3.01 (0.78)     
-0.39 (0.53) 

-1.17 (0.57) 
0.50 

8 

male wt 22.40 (0.10) -1.67 (0.49) 1.73 (0.48) -0.33 (0.10)    -1.21 (0.18) 
-0.15 (0.08) 

-0.52 (0.08) 
0.60 

            

%male 112.24 (0.8) 1.59 (0.75)        0.11 

10 
male wt 21.28 (0.29)   -0.44 (0.22)     

-0.12 (0.09) 

0.38 (0.10) 
0.19 

            

%male 88.08 (0.64) -13.87 (5.92) 14.07 (5.80) 2.51 (0.68) -0.55 (0.21)   2.91 (1.12)  0.47 

11 
male wt 24.19 (0.18) 3.75 (1.74) -3.42 (1.73)    0.32 (0.14)  

-0.16 (0.09) 

-0.25 (0.10) 
0.47 
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Table 13.2 cont. 

 

(c) Western grey kangaroos (New South Wales) 

Explanatory variables 
KMZ Response Intercept 

D D
2
 HR rn.1.0 rn.3.1 rn.12.1 skin cycle 

Adj. R
2
 

%male 102.5 (1.57)        
-0.78 (1.50) 

-3.44 (1.50) 
0.04 

1 

male wt 20.96 (0.97)   -0.78 (0.26)      0.15 

            

%male 95.01 (0.72) 1.69 (0.66)      -6.85 (1.39)  0.19 

2 
male wt 21.53 (0.16) 0.98 (0.18)  0.50 (0.15)   0.34 (0.11)  

-0.22 (0.10) 

0.17 (0.10) 
0.41 

            

%male 86.80 (0.63) 2.91 (0.62)        0.35 
4 

male wt 20.63 (0.18) -2.90 (1.17) 3.71 (1.17)       0.51 

            

%male 109.10 (1.3) -33.71 (13.2) 33.53 (13.19)  1.35 (0.68)     0.10 

6 
male wt 20.65 (0.11) 0.55 (0.11)   -0.21 (0.06)    

-0.23 (0.09) 

-0.18 (0.10) 
0.40 

            

%male 107.73 (1.7) -25.80 (6.41) 27.91 (6.60)     -7.64 (3.20)  0.47 
7 

male wt 21.26 (0.20) 0.63 (0.20)        0.17 

            

%male 130.66 (1.6)         - 
10 

male wt 21.89 (1.73)       -7.34 (1.21)  0.05 

            

%male 92.70 (0.79) 24.08 (10.21) -24.03 (10.07) 2.32 (1.09)      0.20 
11 

male wt 22.05 (0.06) -3.39 (0.92) 3.71 (0.91) 0.59 (0.09)   0.71 (0.07)   0.71 
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Table 13.2 cont. 

 

(d) Red kangaroos (New South Wales) 

Explanatory variables 
KMZ Response Intercept 

Male wt pmale 
Adj. R

2
 95%PI 

logD 2.94 (0.08) 0.30 (0.08)  0.56 3.27 
1 

HR% 9.55 (0.76)   - - 

       

logD 2.57 (0.07) 0.21 (0.07)  0.42 2.76 
2 

HR% 13.09 (1.17)   - - 

       

logD 1.80 (0.10)   - - 
4 

HR% 13.91 (1.18)   - - 

       

logD 1.55 (0.07) 0.20 (0.07)  0.41 1.72 
6 

HR% 11.09 (1.46)   - - 

       

logD 1.70 (0.14)   - - 
7 

HR% 9.36 (0.94)   - - 

       

logD 1.81 (0.20)   - - 
8 

HR% 7.36 (1.35)   - - 

       

logD 1.50 (0.14)   - - 
10 

HR% 8.91 (1.63)   - - 

       

logD 1.40 (0.08)   - - 
11 

HR% 10.18 (1.14)   - - 
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Table 13.2 cont. 

 

(e) Eastern grey kangaroos (New South Wales) 

Explanatory variables 
KMZ Response Intercept 

Male wt pmale 
Adj. R

2
 95%PI 

logD 0.94 (0.10) 0.32 (0.12) 0.32 (0.12) 0.46 1.61 
1 

HR% 3.40 (0.47) -2.97 (1.19) 3.45 (1.19) 0.42 4.6 

       

logD 1.15 (0.12)   - - 
2 

HR% 6.36 (0.10)   - - 

       

logD 1.09 (0.09)  -0.25 (0.09) 0.37 1.59 
4 

HR% 9.18 (0.41)  1.31 (0.43) 0.46 6.7 

       

logD 1.99 (0.07)   - - 
6 

HR% 5.90 (1.22)   - - 

       

logD 2.21 (0.13)   - - 
7 

HR% 5.36 (0.64)   - - 

       

logD 2.78 (0.12)  0.34 (0.12) 0.41 3.60 
8 

HR% 9.64 (0.94)  -3.45 (0.99) 0.53 14.9 

       

logD 3.27 (0.07)   - - 
10 

HR% 6.27 (0.86)   - - 

       

logD 2.29 (0.06)   - - 
11 

HR% 8.78 (0.72)   - - 
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Table 13.2 cont. 

 

(f) Western grey kangaroos (New South Wales) 

Explanatory variables 
KMZ Response Intercept 

Male wt pmale 
Adj. R

2
 95%PI 

logD -0.14 (0.12) 0.33 (0.13)  0.42 0.48 
1 

HR% 9.33 (1.73)   - - 

       

logD 1.59 (0.07) 0.34 (0.08)  0.65 1.85 
2 

HR% 12.36 (1.97)   - - 

       

logD 2.03 (0.12)   - - 
4 

HR% 10.27 (0.78)   - - 

       

logD 2.37 (0.05) 0.17 (0.06)  0.45 2.30 
6 

HR% 4.30 (0.56)   - - 

       

logD 1.24 (0.09) 0.35 (0.10)  0.54 1.79 
7 

HR% 5.36 (0.87)   - - 

       

logD 1.05 (0.11)   - - 
10 

HR% 1.55 (0.17)  0.44 (0.18) 0.34 2.6 

       

logD 0.70 (0.08)   - - 
11 

HR% 11.10 (1.44)   - - 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.8.  Monthly (a) %male and (b) average male carcass weight in KMZ4 and (c) average male carcass 

weight in KMZ11 for harvested red kangaroos in New South Wales.  Fitted models (Table 13.2a) are shown as 

solid lines. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.9.  Monthly (a) %male in KMZ4 and (b) %male and (c) average male carcass weight in KMZ8 for 

harvested eastern grey kangaroos in New South Wales.  Fitted models (Table 13.2b) are shown as solid lines. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.10.  Monthly (a) %male in KMZ2, (b) average male carcass weight in KMZ4 and (c) average male 

carcass weight in KMZ11 for harvested western grey kangaroos in New South Wales.  Fitted models (Table 

13.2c) are shown as solid lines. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.11.  Fitted models (solid line, Table 13.2d, e and f) and 95% prediction intervals (dashed lines) for (a) 

red kangaroo density (km
-2

) in KMZ1, (b) harvest rate of eastern grey kangaroos in KMZ8 and (c) western grey 

kangaroo density (km
-2

) in KMZ6 in New South Wales. 
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13.3.4 Queensland 

 

While the harvest of all species and harvest effort in Queensland dropped substantially after 

1995 (Figs 13.12 and 13.13a), there was a recovery in the offtake for eastern grey kangaroos 

and wallaroos but not red kangaroos. There is a marked seasonal cycle in the harvest, with 

greater effort (Fig. 13.13a) and offtake (Fig. 13.12) in the winter months.  The closures of the 

harvest season for red kangaroos and wallaroos were met with sharp increases in CPUE for 

eastern grey kangaroos (Fig. 13.13b).  On a regional scale, declines in the densities of red and 

eastern grey kangaroos during the drought of the early 1990s and their subsequent recovery 

(see Section 12) were mirrored by declines in the proportion of males in the harvest for each 

species (Fig. 13.14).  Figure 13.14 also highlights the higher proportion of males in the 

carcass harvest than in the skin-only harvest.  The wallaroo harvest has been comprised 

almost entirely of males (Fig. 13.14c).  An exception was a brief period in the mid-1990s, just 

prior to the industry’s collapse, when very small skins were accepted into the industry and 

high prices were paid for small carcasses providing a market for female wallaroos.  The 

percentage of the harvest that is skin-only has declined to less than 20% in recent years, 

although there continues to be considerable monthly variation in this percentage (Fig. 13.15). 

 

Standardised parameter estimates for models predicting harvest and population statistics in 

South Australia are shown in Table 13.3.  There have been considerable fluctuations in all 

three harvest statistics over the 13-year study period in Queensland, coinciding with a period 

of drought in the early 1990s, good rainfall in the late 1990s followed by dry seasons.  

Examples of good model fits are shown for the three harvest statistics for the three species in 

Figures 13.16, 13.17 and 13.18. 

 

Kangaroo density and harvest rate were again important influences on harvest statistics for all 

three species.  Recent rainfall entered into the models for eastern grey kangaroos and 

wallaroos as minor negative influences in some blocks, but not for red kangaroos.  Twelve 

months rainfall was a predictor for red kangaroo carcass weight in half of the blocks, but only 

in three cases for the other species. The number of shooter nights (i.e. effort) influenced 

harvest composition in some cases, but the sign of the coefficient varied.  This is likely to 

reflect variation in selectivity among shooters.  Skin-only harvesting generally had a positive 

influence on %male and male wt, indicating that smaller and often female animals were being 

taken for skins. There are likely to be economic reasons for this that are not explored here.  

pskin also had a positive effect on CPUE indicating that skin-only shooting allows higher 

catch rates.  The dummy variable for the harvest season for red kangaroos (red.hs) had a 

strong negative coefficient for CPUE for eastern grey kangaroos and wallaroos in most blocks 

as expected from inspection of Fig.13.13b. The dummy variable generally had a positive 

coefficient for %male and male wt, suggesting that shooters were more selective when three 

rather than two species could be shot.  The blocks where red.hs was not important had low 

densities of eastern grey kangaroos or wallaroos.  Seasonal cycles were again incorporated 

into many models, being more marked than in the southern states. Likelihood ratio tests 

supported a correlated error structure for all models.
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(a) 

(b) 

 (c) 

 
Fig. 13.12.  Monthly harvest of (a) red kangaroos, (b) eastern grey kangaroos and (c) wallaroos in Queensland in 

the brigalow belt (bb, blue), mulga lands (ml, green) and Mitchell grass downs (mgd, red) regions (see Section 9, 

Fig. 9.1). 
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 (a) 

(b) 

 
Fig. 13.13.  Monthly (a) shooter nights (i.e. effort) and (b) CPUE of eastern grey kangaroos in the brigalow belt 

(bb, blue), mulga lands (ml, green) and Mitchell grass downs (mgd, red) regions in Queensland (see Section 9, 

Fig. 9.1). 
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(a) 

(b) 

 (c) 

 
Fig. 13.14.  Monthly %male in the skin-only (dashed lines) and carcass (solid lines) harvest of (a) red kangaroos, 

(b) eastern grey kangaroos and (c) wallaroos in Queensland in the brigalow belt (bb, blue), mulga lands (ml, 

green) and Mitchell grass downs (mgd, red) regions (see Section 9, Fig. 9.1). 
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(a) 

(b) 

 (c) 

 
Fig. 13.15.  Monthly (>1991) or annual  (<1991) percentage of the harvest that is skin-only for (a) red 

kangaroos, (b) eastern grey kangaroos and (c) wallaroos in Queensland in the brigalow belt (bb, blue), mulga 

lands (ml, green) and Mitchell grass downs (mgd, red) regions (see Section 9, Fig. 9.1).

0

10

20

30

40

50

60

70

80

90

100

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

R
e
d

 k
a
n

g
a
ro

o
 h

a
rv

e
s
t 

%
s

k
in

bb mgd ml

0

10

20

30

40

50

60

70

80

90

100

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

E
a
s

te
rn

 g
re

y
 k

a
n

g
a
ro

o
 h

a
rv

e
s
t 

%
s

k
in

bb mgd ml

0

10

20

30

40

50

60

70

80

90

100

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

W
a

ll
a
ro

o
 h

a
rv

e
s

t 
%

s
k

in

bb mgd ml



256 

Table 13.3.  Standardised parameter estimates with standard errors (in brackets) and adjusted R
2
 for the most parsimonious (according to backwards elimination) 

regression models (see Equation 4) predicting (a) red kangaroo harvest statistics, (b) eastern grey kangaroo harvest statistics, (c) wallaroo harvest statistics, (d) red 

kangaroo population statistics, (e) eastern grey kangaroo population statistics, and (f) wallaroo population statistics. The average 95% prediction interval (95%PI) 

is also shown for models predicting population statistics.  Models are shown for survey blocks in the Queensland core harvest area (see Section 9, Fig. 9.1).  

Population statistics are log transformed kangaroo density (logD) and harvest rate expressed as a percentage (HR%).  Harvest statistics are catch-per-unit-effort 

(CPUE), the percentage of the carcass harvest comprising males (%male, arcsine transformed) and average male carcass weight (male wt).  Explanatory variables 

include untransformed density (D), harvest rate expressed as a proportion (HR), CPUE, male wt, the proportion of the carcass harvest comprising males (pmale, 

arcsine transformed), rain falling in the same month of collection of the harvest statistic (rn.1.0), 3 months rain lagged 1 month prior to collection (rn.3.1) , 12 

months rain lagged 1 month prior to collection (rn.12.1), the number of shooter-nights (effort), seasonal cycle comprising sin(2×π×time) and cos(2×π×time) 

terms, the proportion of the harvest that was skin-only (pskin), and a dummy variable (red.hs) for months when the harvest season for red kangaroos was open.  

The parameter for sin(2×π×time) is given above the parameter for cos(2×π×time).  J, Julia Creek; Wt, Winton; L, Longreach; Wd, Windorah; Bk, Blackall; Cv, 

Charleville; H, Hungerford; Bo, Bollon; R, Roma; Wm, Westmar. 
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Table 13.3 cont. 

 

(a) Red kangaroos (Queensland) 
Explanatory variables  Adj. R

2
 

SCB Response Intercept 
D D

2
 HR rn.1.0 rn.3.1 rn.12.1 effort pskin cycle  

%male 90.08 (1.60) 5.09 (1.61)         0.25 

CPUE 11.64 (0.40)        2.37 (0.40)  0.25 J 

male wt 26.14 (0.20) 1.74 (0.35)  1.63 (0.45)      
-0.20 (0.22) 

-0.75 (0.21) 
0.24 

             

%male 93.18 (1.11)          - 

CPUE 4.72 (0.15) 0.94 (0.25)  1.13 (0.25)       0.29 Wt 

male wt 25.83 (0.25) 3.86 (1.63) -3.43 (1.59)      0.80 (0.26)  0.20 

             

%male 104.52 (2.5)   -6.86 (2.11)     2.32 (1.08)  0.35 

CPUE 2.94 (0.12)        0.40 (0.10) 
0.07 (0.09) 

-0.23 (0.11) 
0.37 L 

male wt 24.77 (0.32)        0.70 (0.26) 
-0.50 (0.25) 

0.08 (0.28) 
0.18 

             

%male 111.93 (2.7)   -13.70 (2.65)       0.53 

CPUE 6.65 (0.29) 0.69 (0.31)       1.36 (0.30)  0.20 Wd 

male wt 24.83 (0.26) -13.89 (2.2) 13.79 (2.18)    2.24 (0.28)  1.22 (0.29) 
-0.30 (0.27) 

0.66 (0.26) 
0.72 

             

%male 98.51 (1.22) -16.07 (8.7) 19.23 (8.58) -8.03 (1.37)       0.62 

CPUE 2.76 (0.12) 2.57 (0.81) -2.18 (0.80) 0.42 (0.15)     0.77 (0.10)  0.74 Bk 

male wt 21.59 (0.16) -3.91 (1.35) 3.01 (1.32) -1.08 (0.28)   0.37 (0.18)  1.37 (0.24) 
-0.05 (0.15) 

-0.03 (0.17) 
0.40 

             

%male 115.41 (2.4) 14.68 (2.31)      -1.92 (0.91)   0.67 

CPUE 2.45 (0.04) 0.14 (0.07)  0.45 (0.07)      
-0.00 (0.04) 

-0.10 (0.04) 
0.73 Cv 

male wt 22.04 (0.23) 0.59 (0.27)     0.57 (0.23)  0.71 (0.22)  0.32 

             

%male 106.94 (2.1) 6.15 (2.04)         0.18 

CPUE 7.16 (0.43) -4.82 (2.23) 5.88 (2.17) 1.43 (0.49)     0.69 (0.30)  0.30 H 

male wt 23.86 (0.37)    0.57 (0.24)    1.23 (0.30)  0.18 
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Table 13.3 cont. 
(a) Red kangaroos (Queensland) 

Explanatory variables  
SCB Response Intercept 

D D
2
 HR rn.1.0 rn.3.1 rn.12.1 effort pskin cycle 

Adj. R
2
 

%male 119.08 (2.7) 60.74 (13.8) -41.97 (14.0)      8.15 (2.61)  0.51 

CPUE 2.35 (0.09)   0.27 (0.09)      
0.17 (0.07) 

-0.12 (0.08) 
0.20 Bo 

male wt 21.96 (0.24) 0.57 (0.24)     0.97 (0.23)    0.28 

             

%male 110.4 (3.7) -5.45 (2.37)         0.16 

CPUE 0.56 (0.02) 0.42 (0.11) -0.30 (0.10) 0.19 (0.03)     0.17 (0.02)  0.63 R 

male wt 22.12 (0.22) -0.64 (0.24)       -1.01 (0.23)  0.18 

             

%male 107.47 (3.2)          - 

CPUE 0.46 (0.03)        0.14 (0.03) 
0.10 (0.03) 

0.04 (0.03 
0.22 Wm 

male wt 24.18 (0.33)      0.90 (0.33)  0.70 (0.32)  0.13 
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Table 13.3 cont. 

 

(b) Eastern grey kangaroos (Queensland) 
Explanatory variables 

SCB Response Intercept 
D D

2
 HR rn.1.0 rn.3.1 rn.12.1 effort pskin cycle red.hs 

Adj. R
2
 

%male 115.59 (4.91)        -4.44 (1.89)   -0.03 

CPUE 50.76 (7.05) -81.17 (25) 47.50 (23.6) -29.25 (7.19)      
-11.48 (4.02) 

-5.25 (4.55) 
 0.40 J 

male wt 25.62 (0.17)         
-0.40 (0.18) 

-1.04 (0.18) 
 0.22 

              

%male 90.62 (4.31) 21.33 (7.36) -20.26 (7.3)   -3.47 (1.23)  2.48 (1.04)   10.57 (4.30) 0.30 

CPUE 18.93 (2.75)          -10.01 (2.66) 0.08 Wt 

male wt 23.59 (0.59) -2.34 (0.82) 3.21 (0.83) 0.64 (0.20)      
-0.22 (0.16) 

-0.58 (0.17) 
1.73 (0.62) 0.45 

              

%male 102.49 (2.82) -34.03 (9.8) 29.77 (9.64) -5.28 (2.00)       -9.69 (2.52) 0.40 

CPUE 30.75 (2.23) -32.84 (5.5) 26.05 (5.38)      -2.19 (0.91)  -20.74 (2.35) 0.67 L 

male wt 23.05 (0.42) -3.73 (0.90) 3.13 (0.89) -1.03 (0.22)     0.59 (0.18) 
-0.63 (0.14) 

-0.55 (0.15) 
1.39 (0.45) 0.54 

              

%male 126.76 (0.94) 10.02 (1.16)   -4.32 (1.52) -4.66 (1.76)    
0.39 (1.82) 

4.57 (1.33) 
 0.71 

CPUE 80.78 (7.69) -154.9 (46) 136.7 (46.1) -20.87 (9.25)        0.27 Wd 

male wt 26.22 (0.44)   -2.46 (0.44)        0.38 

              

%male 101.90 (4.54)   -46.37 (11.98)     16.88 (4.69)  6.42 (2.21) 0.50 

CPUE 4.84 (0.32)   0.42 (0.17) -0.29 (0.09)     
-0.55 (0.13) 

0.16 (0.14) 
-2.73 (0.33) 0.60 Bk 

male wt 19.80 (0.25)         
-0.13 (0.09) 

-0.32 (0.10) 
0.76 (0.27) 0.26 

              

%male 112.51 (1.40) 8.17 (2.08)  -14.31 (2.06)     2.23 (0.82)   0.87 

CPUE 7.47 (0.39)   1.27 (0.19)       -4.70 (0.40) 0.77 Cv 

male wt 19.88 (0.31) 0.73 (0.23)  -1.17 (0.23)     0.79 (0.12)  0.72 (0.31) 0.78 

              

%male 107.61 (4.25) 13.59 (3.20) -9.71 (3.09)        15.13 (4.52) 0.38 

CPUE 59.10 (7.66) -29.10 (6.5) 23.22 (6.38)      -4.59 (1.82)  -34.45 (7.65) 0.40 H 

male wt 21.46 (0.58) 4.84 (1.32) -4.67 (1.34)    0.81 (0.26)  0.55 (0.19)  2.66 (0.60) 0.45 
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Table 13.3 cont. 

 

(b) Eastern grey kangaroos (Queensland) 
Explanatory variables 

SCB Response Intercept 
D D

2
 HR rn.1.0 rn.3.1 rn.12.1 effort pskin cycle red.hs 

Adj. R
2
 

%male 110.82 (3.04) 79.27 (8.27) -61.12 (7.55) 4.41 (1.98)       8.84 (3.19) 0.80 

CPUE 34.40 (2.06) -15.61 (4.7) 12.90 (4.31) 2.38 (1.13)      
0.27 (0.68) 

3.31 (0.74) 
-20.97 (2.2) 0.76 Bo 

male wt 20.75 (0.16) 0.69 (0.23)  -0.76 (0.26)   0.46 (0.19) 0.34 (0.15)    0.56 

              

%male 93.67 (2.07) -4.82 (1.93)  -10.10 (1.87) -0.66 (0.30) -1.47 (0.53)     2.71 (1.21) 0.73 

CPUE 8.37 (0.57)   1.02 (0.35) -0.41 (0.14)     
0.01 (0.24) 

0.69 (0.27) 
-4.07 (0.58) 0.62 R 

male wt 20.48 (0.30)   -0.34 (0.15)   0.45 (0.12)  -0.49 (0.14) 
-0.32 (0.11) 

-0.32 (0.12) 
1.26 (0.32) 0.62 

              

%male 103.09 (1.82) 5.30 (1.97)  -10.21 (1.85) -1.54 (0.77) -3.48 (1.13)   3.69 (1.49)   0.48 

CPUE 19.80 (2.11) -2.87 (0.98)       2.33 (1.04) 
2.33 (0.83) 

3.84 (0.95) 
-759 (2.29) 0.48 Wm 

male wt 21.66 (0.16) 6.63 (1.05) -5.87 (1.06) -1.33 (0.18)    0.43 (0.18) 0.48 (0.18)   0.57 
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Table 13.3 cont. 

 

(c) Wallaroos (Queensland) 
Explanatory variables 

SCB Response Intercept 
D D

2
 HR rn.1.0 rn.3.1 rn.12.1 effort pskin cycle red.hs 

Adj. R
2
 

%male 151.65 (1.15)           - 

CPUE 1.66 (0.33)          -0.82 (0.33) 0.03 Wt 

male wt 23.40 (0.20) -1.37 (0.57) 1.21 (0.58)     0.62 (0.19)    0.26 

              

%male 149.83 (1.35)       -2.63 (0.45)   4.51 (1.45) 0.17 

CPUE 3.61 (0.29) -2.14 (0.91) 2.73 (0.90)        -1.36 (0.29) 0.38 L 

male wt 23.10 (0.27)    -0.28 (0.13)       0.04 

              

%male 146.13 (1.74)   -4.84 (1.00)    -3.02 (0.69) 2.05 (0.77)  6.30 (1.87) 0.64 

CPUE 7.26 (0.22) 1.08 (0.15)  0.34 (0.15)  -0.22 (0.08)     -3.47 (0.22) 0.74 Bk 

male wt 19.94 (0.12)   -0.74 (0.16)     0.81 (0.15)   0.27 

              

%male 146.82 (2.54) 3.90 (0.99)       3.31 (0.98) 
-0.79 (0.95) 

2.11 (0.93) 
7.00 (2.73) 0.29 

CPUE 1.31 (0.07) 0.64 (0.12) -0.40 (0.12)   -0.06 (0.03)    
0.05 (0.03) 

0.01 (0.02) 
-0.44 (0.08) 0.59 Cv 

male wt 20.88 (0.16) 3.80 (0.74) -2.84 (0.74)  -0.40 (0.11)       0.47 

              

%male 150.60 (0.95)           - 

CPUE 0.12 (0.02)        -0.03 (0.01)  0.06 (0.02) 0.37 R 

male wt 21.83 (0.12) 0.69 (0.46) -0.90 (0.45)     -0.36 (0.16) -1.09 (0.21) 
-0.23 (0.13) 

-0.56 (0.14) 
 0.30 
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Table 13.3 cont. 

 

 (d) Red kangaroos (Queensland) 

Explanatory variables 
SCB Response Intercept 

CPUE pmale male wt 
Adj. R

2
 95%PI 

logD 1.88 (0.23)    - - 
J 

HR% 14.00 (2.14)    - - 

        

logD 1.67 (0.16)    - - 
Wt 

HR% 16.33 (1.74) 6.68 (1.85)   0.60 26.3 

        

logD 2.55 (0.10)    - - 
L 

HR% 10.30 (0.88) 2.99 (1.07) -4.01 (1.07)  0.60 14.5 

        

logD 2.14 (0.12)    - - 
Wd 

HR% 8.43 (0.90) 16.01 (5.64) -21.35 (5.6)  0.87 8.8 

        

logD 2.24 (0.09)  0.25 (0.09)  0.39 2.67 
Bk 

HR% 33.36 (4.88)  -19.39 (5.1)  0.57 68.6 

        

logD 1.67 (0.09)  0.41 (0.10)  0.61 2.26 
Cv 

HR% 34.92 (2.94) 15.74 (3.08)  -8.46 (3.08) 0.75 48.6 

        

logD 1.56 (0.10)  0.35 (0.10)  0.50 2.18 
H 

HR% 13.10 (3.13)    - - 

        

logD 1.46 (0.16)  0.50 (0.17)  0.44 2.61 
Bo 

HR% 23.36 (5.79) 15.17 (6.07)   0.34 69.6 

        

logD 0.08 (0.18)    - - 
R 

HR% 25.70 (7.61)    - - 

        

logD -1.07 (0.16)    - - 
Wm 

HR% 57.11 (12.2)    - - 

 



Monitoring for harvest management of kangaroos 

 
263 

Table 13.3 cont. 

 

 (e) Eastern grey kangaroos (Queensland) 

Explanatory variables 
SCB Response Intercept 

CPUE pmale male wt 
Adj. R

2
 95%PI 

logD 0.58 (0.27)    - - 
J 

HR% 7.33 (0.95)  -4.97 (1.04)  0.81 12.9 

        

logD 1.40 (0.13)    - - 
Wt 

HR% 11.38 (3.17)    - - 

        

logD 2.32 (0.10) -0.32 90.11)   0.45 3.06 
L 

HR% 10.18 (0.89) 4.61 (1.00) -3.69 (1.00)  0.71 18.0 

        

logD 1.55 (0.11)    - - 
Wd 

HR% 3.43 (0.96)  -2.68 (1.04)  0.48 10.8 

        

logD 2.21 (0.09) 0.34 (0.10) 0.37 (0.10)  0.64 2.81 
Bk 

HR% 31.58 (4.63) -18.80 (4.8)   0.56 65.7 

        

logD 2.67 (0.10)  0.51 (0.11)  0.68 3.41 
Cv 

HR% 23.36 (1.60)  -13.53 (1.7)  0.86 25.2 

        

logD 1.57 (0.19)    - - 
H 

HR% 8.09 (2.07)    - - 

        

logD 3.18 (0.08)  0.45 (0.09)  0.70 3.68 
Bo 

HR% 12.75 (2.08)   -6.25 (2.17) 0.40 26.9 

        

logD 3.03 (0.14)    - - 
R 

HR% 17.33 (2.47)  -9.69 (2.58)  0.54 35.4 

        

logD 3.26 (0.10)    - - 
Wm 

HR% 16.09 (1.45)  -5.51 (1.52)  0.55 21.7 
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Table 13.3 cont. 

 

 (f) Wallaroos (Queensland) 

Explanatory variables 
SCB Response Intercept 

CPUE pmale male wt 
Adj. R

2
 95%PI 

logD -0.20 (0.22)    - - 
Wt 

HR% 12.44 (2.99)    - - 

        

logD 2.09 (0.22)    - - 
L 

HR% 16.91 (3.13)  -9.11 (3.29)  0.40 39.4 

        

logD 2.93 (0.11) 0.53 (0.11) 0.48 (0.11)  0.76 3.92 
Bk 

HR% 33.00 (5.30)  -21.94 (5.5)  0.57 73.4 

        

logD 1.11 (0.17) 0.73 (0.18)   0.61 2.60 
Cv 

HR% 22.00 (3.19) -7.80 (3.35)   0.31 46.1 

        

logD -0.41 (0.57)    - - 
R 

HR% 9.67 (1.89)    - - 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.16.  Monthly (a) %male at Longreach and (b) CPUEat Blackall and (c) average male carcass weight at 

Charleville for harvested red kangaroos in Queensland.  Fitted models (Table 13.3a) are shown as solid lines. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.17.  Monthly (a) %male at Bollon, (b) CPUE at Longreach and (c) average male carcass weight at 

Westmar for harvested eastern grey kangaroos in Queensland.  Fitted models (Table 13.3b) are shown as solid 

lines. 
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(a) 

 

(b) 

 

(c) 

 
Fig. 13.18.  Monthly (a) %male and (b) CPUE at Blackall and (c) average male carcass weight at Charleville for 

harvested wallaroos in Queensland.  Fitted models (Table 13.3c) are shown as solid lines. 
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Predictive models for population statistics were possible in the higher density blocks for all 

species.  Correlated error structures did not improve any models predicting population 

statistics.  Approximate precision of predictions of density and harvest rate ranged 0.26-0.74 

for red kangaroos, 0.27-0.79 for eastern grey kangaroos and 0.33-0.59 for wallaroos.  These 

estimates of precision are comparable to direct estimates of population size using aerial 

survey.  Examples of fitted models are shown in Figure 13.19. 

   

13.4 Discussion 
 

The models presented here show that kangaroo harvest statistics change over time in response 

to changes in population density and harvest rate.  Usefully for management, these 

relationships are sufficiently precise to indirectly monitor populations.  They could be used in 

two ways.  Firstly, a consistent shift in a statistic over a number of months may indicate a 

decline in density or increase in harvest rate.  If the likely density or harvest rate is of concern, 

then management action such as quota revision may be triggered.  Other factors such as 

rainfall and season would need to be taken into account.  Whether harvest rate or density or 

both were involved would need to be teased apart.  The second use is for quota setting when 

direct estimates of population size (e.g. from aerial survey) are unavailable. 

 

Important caveats to the preceding conclusions are that not all regions and blocks had useful 

relationships between harvest and population statistics and there was considerable variation 

among regions in the form of the relationship.  There is certainly no one relationship that 

could be applied across an entire state or across species.  Statewide trigger points for harvest 

statistics (i.e. values that trigger management action) that are used in Queensland (Queensland 

Parks and Wildlife Service 2003) are inappropriate.  Regional and species-specific trigger 

points, as discussed above, could be used in many cases.  This regional variation in harvest 

statistics is explored further in Section 14. 

 

Unfortunately, economic factors such as prices paid for skins and carcasses could not be 

incorporated into the analyses here.  Prices fluctuate with both demand for product and 

availability of kangaroos to shooters and should influence CPUE and the selectivity of 

shooters.  Inclusion of economic data would be expected to tighten the relationships described 

here.  The fact that good relationships were found without economic data highlights the 

strength of the connection between harvest and population statistics. 

 

If harvest statistics are to be used to indirectly monitor populations in kangaroo management, 

then they must be considered within the framework described in Section 5 and compared with 

the alternative of using rainfall to predict rate of increase that described in Section 9.  

Reductions in survey frequency are most appropriate in the lower harvest regions and more 

mesic regions within each state.  Rainfall models were poor predictors of rate increase in 

central and northern Queensland, in lower density regions in South Australia and to some 

extent New South Wales.  Harvest statistics can fill some but not all these gaps, and can 

supplement rainfall models in regions where both forms of indirect monitoring have good 

relationships.  Harvest statistics are most likely to be useful in Queensland.  The relationships 
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 (a) 

 

(b) 

 

 (c) 

 
Fig. 13.19.  Fitted models (solid line, Table 13.3d, e and f) and 95% prediction intervals (dashed lines) for (a) 

red kangaroo harvest rate at Charleville, (b) eastern grey kangaroo density (km
-2

) at Bollon and (c) wallaroo 

density (km
-2

) at Blackall in Queensland. 
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between harvest and population statistics were not explored outside the core survey area in 

Queensland.  In these areas survey frequency is already less than annual.  However, the 

relationships described here cannot be readily extrapolated to new areas, as the regional 

variation in the relationships demonstrated. 
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14. Determinants of spatial variation in kangaroo harvest composition, 

catch-per-unit-effort and harvest rate 
 

14.1 Introduction 

 

Kangaroo harvest rate, harvest composition and catch-per-unit-effort (CPUE) will vary 

regionally for a number of reasons.  These include the density of all harvested kangaroo 

species, extent of the road network, distance to major towns that provide a base for many 

shooters and contain the dealer sites where carcasses and skins are brought for sale, and 

factors influencing access to animals such as vegetation.  An understanding of the spatial 

determinants of harvest rate will allow kangaroo managers to identify likely areas of over- or 

under-harvest.  This is particularly useful when direct estimates of harvest rate are 

unavailable, such as in Queensland where aerial surveys of kangaroos have incomplete 

geographic coverage (see Section 9, Fig. 9.2). 

 

If managers are to use harvest statistics to indirectly monitor kangaroo populations, then an 

appreciation of the geographic variation in harvest statistics and its likely determinants will 

help.  In Section 13, regional variation in harvest statistics was recognised and so the 

relationship between harvest and population statistics was examined for each region 

separately.  However, there are unsurveyed or infrequently surveyed areas for which 

relationships could not be developed.  Assessment of the spatial variation in harvest statistics 

may allow interpretation of harvest statistics in these areas, although such extrapolation 

should be conducted cautiously.  Again, in Queensland, incomplete coverage by aerial survey 

meant that temporal variation in harvest statistics could only be assessed in monitor blocks in 

Section 13.  Trends in harvest statistics outside these blocks can only be interpreted in terms 

of changes in density or harvest rate if the spatial variation in the relationship between harvest 

and population statistics is understood.  For example, an unsurveyed area with a low 

percentage of males in the harvest cannot be interpreted as reflecting low density or high 

harvest rate until other factors have been discounted.  A baseline value for harvest statistics 

where harvest rate and kangaroo density are held constant in each area is therefore required. 

 

This section firstly describes geographic variation in kangaroo harvest rate, harvest 

composition and CPUE across the main harvest area in eastern Australia.  The relationship 

between harvest composition and population statistics on a broad scale across the study area 

is then examined graphically.  Finally, a more detailed, finer-scale assessment of the 

determinants of kangaroo harvest rate, harvest composition and catch per unit effort in the 

main harvest area of Queensland is presented. 

 

14.2 Methods 

 

The study area is the sheep rangelands of eastern Australia described in Section 13.  Temporal 

variation in kangaroo harvest rate has been incorporated as a response or explanatory variable 

in regional harvest and population models in Sections 9, 10 and 13.  These trends are 

compared here in simple plots of harvest rate over time. For these plots, harvest rate was 

calculated as the harvest between consecutive aerial survey estimates of kangaroo density 

divided by the geometric mean of those two density estimates (see Section 9).  Harvest rate in 
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South Australia was multiplied by 0.63 for red kangaroos and 0.79 for western grey 

kangaroos to account for the likely underestimate of densities in that state and make them 

comparable to harvest rates in New South Wales and Queensland (see Section 12). For each 

species, monthly proportion of males in the harvest and average male carcass weight (see 

Section 13) were then averaged across the study period for each region and plotted against 

average density and harvest rate across the period.  Sex ratio was only calculated for > 50 

harvested animals in any month.  In South Australia, data were only calculated for 1997-2001 

when full carcasses were dressed.  Prior to 1997, carcasses were dressed to a much lower 

weight.  For these plots, average harvest rate and density was calculated as the average of 

interpolated monthly values (see Section 13).  Standard errors were calculated for harvest 

statistics from the monthly averages.  The ability of kangaroo density and harvest rate to 

predict harvest sex ratio and carcass weight was assessed by multiple regressions. 

 

In Queensland, harvest data were available for grid squares (½
o
 blocks) annually from 1986 

(except 1987), providing seven years of overlap with the aerial survey data (see Section 1).  

The survey data were restricted to the 180 grid squares in the core area (see Section 3, Fig. 

3.2) and these were the unit of analysis.  Response and explanatory variables used in linear 

models are detailed in Table 14.1.  Analyses with harvest rate as the response covered all 

seven years.  However, analyses with percentage of the carcass harvest that is male and 

CPUE and as response variables were restricted to three years, 1991, 1992 and 2001.  

Analyses with average male carcass weight as the response variable were restricted just to 

1992 and 2001.  The percentage of the landscape within 10 km of the transect line that was 

‘open’ (woody foliage projective cover < 12%) within each grid square was calculated from 

the Statewide Landcover and Trees Study (SLATS) (Department of Natural Resources and 

Mines 2003) using FRAGSTATS (McGarigal and Marks 1994) and arcsine transformed to 

improve normality. The density of ‘edge’ between these open areas and wooded areas was 

calculated from the same data.  The 1991 SLATS coverage was used for the 1986-1992 

survey and harvest data, while the 1999 coverage was used for the 2001 survey and harvest 

data. Skin quality in kangaroos declines north of about 23
o
 S because of tick damage (Kelly 

1997), so a dummy variable distinguishing north and south of this latitude was included in 

analyses.  The minimum distances from the centre of each grid square to towns with a 

population > 1,000 and to primary roads were also used and log transformed to improve 

normality.  Annual rainfall data were obtained for recording stations in the study area from 

the Bureau of Meteorology.  Rainfall surfaces were then calculated using inverse distance 

weighting and annual values extracted for each grid square.  Wallaroo harvest density was 

included as a proxy for wallaroo density. 
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Table 14.1. Response and explanatory variables, and associated codes, used to predict kangaroo harvest 

statistics within the core area of Queensland (see Section 3, Fig. 3.2).  See text for details. 

 

Code Variable 

Response variables  

red.%male Percentage of the red kangaroo carcass harvest that is male 

red.cpue Catch-per-unit-effort (i.e. harvest per shooter night) of red kangaroos 

red.mwt Average male carcass weight of red kangaroos 

grey.%male Percentage of the eastern grey kangaroo carcass harvest that is male 

grey.cpue Catch-per-unit-effort (i.e. harvest per shooter night) of eastern grey kangaroos 

grey.mwt Average male carcass weight of eastern grey kangaroos 

  

Response and explanatory 

variables 
 

red.zhr Instantaneous harvest rate of red kangaroos, spatially standardised 

grey.zhr Instantaneous harvest rate of eastern grey kangaroos, spatially standardised 

  

Explanatory variables  

red.zd Density of red kangaroos, spatially standardised 

grey.zd Density of red kangaroos, spatially standardised 

wall.zh Harvest of wallaroos, spatially standardised 

year 1986, 1988-1992, 2001 

edge Density of ‘edge’ (between open and wooded areas) 

%open Percentage of the grid square that is open 

road.dist Minimum distance from centre of grid square to a primary road 

town.dist Minimum distance from centre of grid square to a town with a population > 1,000 

zrain Annual rainfall, spatially standardised 

poc Dummy variable distinguishing areas north (1) or south (0) of latitude 23
o
 

 

 

For the Queensland grid square data, the percentage of males in the harvest was modelled 

using logistic regression, while the other response variables were modelled using multiple 

regressions.  All analyses were performed using R 1.9.1 (R Development Core Team 2003).  

Models were simplified by stepwise removal of even weakly significant (P > 0.01, to avoid 

overparameterisation) terms from the full model (Crawley 2002).  Spatial correlation structure 

was not considered important at the scale of a grid square.  Overdispersion was corrected by 

using a quasibinomial error structure.  Annual rainfall, kangaroo harvest rate, kangaroo 

density and wallaroo harvest density were all standardised spatially across all 180 grid 

squares to a mean of zero and unit variance to remove year-to-year variation in their means, 

which was not of primary interest here (cf Section 13).  For the remaining response variables, 

a year dummy variable was incorporated in the models to account for any year-to-year 
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variation in their means.  A curvilinear term was also included for kangaroo density in the 

models to account for a possible saturation effect (see Section 13). Year-to-year variation in 

the parameter estimates was assessed by incorporating a year interaction with explanatory 

variables from the most parsimonious model without interactions. 

 

Temporal trends in harvest rate over 1986-2001 and trends in harvest sex ratio were examined 

by mapping the slope of the regression of these statistics over time.  This was done for 

kangaroo density in Section 12.  Trends in harvest rate were restricted to the core area, but the 

entire commercial harvest zone in Queensland (see Section 3, Fig. 3.1) was included in the 

analysis of sex ratio trends.  However, many grid squares were harvested only in some years 

of the 13-year period.  A slope was only calculated for a grid square if there was a statistic in 

the periods 1991-1995, 1996-2000, 2001-2003, thereby including the main periods of decline 

and increase in kangaroo density (see Section 12) and covering the variation in effort and the 

amount of skin-only shooting (see Section 13). 

 

14.3 Results 

 

14.3.1 Regional variation in harvest rate across eastern Australia 

 

Regional harvest rate for each kangaroo species in each of the three states is shown in Figures 

14.1-14.3.  There is a striking variation in harvest rate amongst regions, both in the average 

harvest rate and the pattern of change over time.  An exception is red kangaroos in South 

Australia where the six regions showed broadly parallel trends over time (Fig. 14.1a).  In 

New South Wales, differences among regions have become more marked since 1990, and this 

has happened for all three species (Fig. 14.2).  All regions and species in Queensland showed 

the same dramatic drop in harvest rate in the late 1990s (Fig. 14.3). 

 

14.3.2 Regional variation in harvest composition across eastern Australia 

 

Harvest composition has varied widely both among and within states (Figs 14.4-14.11) as 

expected from the data presented in Section 9.  In most cases, it is difficult to see any pattern, 

although the Queensland data tend to dominate the plots with harvest rate.  Male carcass 

weight tends to decline with increasing harvest rate for red kangaroos (Fig. 14.5b) and eastern 

grey kangaroos (Fig. 14.7b).  The proportion of males in the eastern grey kangaroo harvest 

also declined with increasing harvest rate (Fig. 14.6b).  Notably, high kangaroo density 

tended to be associated with relatively low proportions of males in the harvest and relatively 

lower carcass weights for all species.  A likely explanation is that harvest rate is higher where 

density is higher. Only one regression was significant, with harvest rate a significant predictor 

of the sex ratio of the eastern grey harvest (F1,16 = 6.26, P<0.05, R
2
 = 0.24).  Multiple 

regression models with both variables were not supported for either statistic or species.  The 

often inconclusive relationship between harvest statistics and harvest rate suggests other 

factors are involved.   
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(a) 

 (b) 

 
Fig. 14.1.  Trends in the instantaneous harvest rate of (a) red kangaroos and (b) western grey kangaroos in six 

soil conservation boards in the South Australian pastoral zone (see Section 9, Fig. 9.1). 
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(a) 

(b) 

 (c) 

 
Fig. 14.2.  Trends in the instantaneous harvest rate of (a) red kangaroos, (b) eastern grey kangaroos and (c) 

western grey kangaroos in kangaroo management zones (KMZs) in New South Wales (see Section 9, Fig. 9.1). 
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(a) 

(b) 

 (c) 

 
Fig. 14.3.  Trends in the instantaneous harvest rate of (a) red kangaroos, (b) eastern grey kangaroos and (c) 

wallaroos in helicopter survey blocks in Queensland (see Section 9, Fig. 9.2). 
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(a) 

 (b) 

 
Fig. 14.4.  Relationship between the average monthly proportion of males (± SE) in the red kangaroo harvest and 

red kangaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a region or survey 

block in South Australia (circles), New South Wales (squares) or Queensland (triangles) (see Section 9, Figs 9.1 

and 9.2). 
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 (a) 

 (b) 

 
Fig. 14.5.  Relationship between the average monthly male carcass weight (± SE) in the red kangaroo harvest 

and red kangaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a region or survey 

block in South Australia (circles), New South Wales (squares) or Queensland (triangles) (see Section 9, Figs 9.1 

and 9.2). 
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(a) 

 (b) 

 
Fig. 14.6.  Relationship between the average monthly proportion of males (± SE) in the eastern grey kangaroo 

harvest and eastern grey kangaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a 

region or survey block in New South Wales (squares) or Queensland (triangles) (see Section 9, Figs 9.1 and 9.2). 
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(a) 

 (b) 

 
Fig. 14.7.  Relationship between the average monthly male carcass weight (± SE) in the eastern grey kangaroo 

harvest and eastern grey kangaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a 

region or survey block in New South Wales (squares) or Queensland (triangles) (see Section 9, Figs 9.1 and 9.2). 
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(a) 

 (b) 

 
Fig. 14.8.  Relationship between the average monthly proportion of males (± SE) in the western grey kangaroo 

harvest and western grey kangaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a 

region in South Australia (circles) or New South Wales (squares) (see Section 9, Fig. 9.1). 
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(a) 

 (b) 

 
Fig. 14.9.  Relationship between the average monthly male carcass weight (± SE) in the western grey kangaroo 

harvest and western grey kangaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a 

region in South Australia (circles) or New South Wales (squares) (see Section 9, Fig. 9.1).
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(a) 

 (b) 

 
Fig. 14.10.  Relationship between the average monthly proportion of males (± SE) in the wallaroo harvest and 

wallaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a region or survey block in 

Queensland (see Section 9, Fig. 9.2). 
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(a) 

 (b) 

 
Fig. 14.11.  Relationship between the average monthly male carcass weight (± SE) in the wallaroo harvest and 

wallaroo (a) density (km
-2

) and (b) instantaneous harvest rate.  Each point represents a survey block in 

Queensland (see Section 9, Fig. 9.2). 
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14.3.3 Determinants of spatial variation in harvest statistics in Queensland 

 

The results of the regression modelling predicting spatial variation in four harvest statistics 

are summarised in Table 14.2.  The parameter estimates are standardised and so reflect the 

relative importance of each explanatory variable. 

 

For red kangaroos, the percentage of males in the harvest varied among years with a higher 

percentage harvested more recently.  There was a similarly strong latitudinal effect with fewer 

males taken in northern Queensland.  These trends are shown in Section 14.3.2 below and in 

Figure 14.13a and c.  The density of red kangaroos and wallaroos had a smaller but 

significant and surprisingly negative influence.  Not surprisingly, CPUE was higher in areas 

of high red kangaroo density with high harvest rates but lower densities of eastern grey 

kangaroos and wallaroos.  CPUE was also higher in 1992 and greater in grid squares that 

were more open and in southern latitudes.  Surprisingly, a greater distance to towns and 

higher rainfall, particularly in 1992, had positive effects on CPUE.  Carcass weight for red 

kangaroos was lower in grid squares with higher harvest rates, higher grey kangaroo and 

wallaroo density, but was higher in more open areas.  Red kangaroo harvest rate was higher 

primarily where red kangaroo density was lower, but was higher where the densities of other 

species, particularly wallaroos, were higher.  In the early part of the time series, more open 

grid squares had lower harvest rates. 

 

For eastern grey kangaroos, there was again a strong influence of latitude and year-to-year 

variation in the percentage of males in the harvest.  The density of eastern greys and 

wallaroos and the harvest rate had a smaller, negative influence.  More edge, probably 

reflecting access, in a grid square and surprisingly higher rainfall were associated with more 

males in the harvest.  CPUE was again higher in higher density areas and areas harvested at a 

higher rate.  The densities of other species again had a negative influence.  Amount of edge 

and openness, usually associated with higher densities of greys, had negative effects in 

contrast to the result for red kangaroos.  Carcass weight was higher at higher densities and 

declined with harvest rate.  The positive effects of wallaroo density, openness and latitude are 

not readily interpretable.  Harvest rate was again higher where density was lower, although 

the relationship was curvilinear.  Red kangaroo density had a negative effect and wallaroo 

density a positive effect.  As expected, harvest rate was lower in more open areas, closer to 

towns and following rain. 

 

14.3.2 Shifts in the pattern of harvest statistics in Queensland 

 

The spatial pattern of harvest rate for red and eastern grey kangaroos across the core area (see 

Section 3, Fig.3.4) in Queensland has changed little over 1986-2001 (Fig. 14.12).  There is 

some suggestion of a general increase in the harvest rate of red kangaroos in the southwest 

and north of the region and a decline in the central west and southeast, but the trend is not 

strong and generally restricted to a small number of disconnected grid squares.  For eastern 

grey kangaroos, harvest rate has tended to decline in the north and increase in the west and 

southeast.
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Table 14.2.  Standardised parameter estimates and adjusted R
2
 for the most parsimonious (according to backwards elimination) linear models predicting (a) red 

kangaroo harvest statistics and (b) eastern grey kangaroo harvest statistics.  Descriptions of explanatory variables are given in Table 14.1 and in the text.  Only 

significant parameter estimates are shown for individual year and year interactions, with the relevant year shown in brackets.  The reference or baseline year to 

which parameter estimates relate, are 1986 for harvest rate (zhr), 1991 for %male and cpue and 1992 for average male carcass weight (mwt).  The baseline value 

for poc is south of latitude 23
o
. 

 

(a) Red kangaroos 

Explanatory variables 

Response 
red.zd red.zhr grey.zd wall.zh year %open town.dist zrain poc 

year × 

zrain 

year × 

%open 

Adj. R
2
 

%male -0.06   -0.05 0.45 (01)    -0.45    

cpue 2.01 1.39 -2.06 -0.75 2.39 (92) 0.75 1.07 1.07 -1.57 2.26 (92)  0.62 

mwt  -0.72 -0.76 -0.41  0.88      0.33 

zhr -0.62  0.08 0.30       
-0.27 (91) 

-0.34 (92) 
0.39 

 

(b) Eastern grey kangaroos 

Explanatory variables 

Response 
grey.zd grey.zd

2
 grey.zhr red.zd wall.zh year edge %open town.dist zrain poc 

year × 

grey.zd 

Adj. R
2
 

%male -0.15 
 

-0.17  -0.03 
0.12 (92) 

0.80 (01) 
0.12   0.07 -0.37   

cpue 3.42  1.66 -0.71 -0.80 -0.77 (01) -0.38 -0.44 0.31   -0.83 (01) 0.76 

mwt 1.05  -0.61  0.35   0.52   0.82  0.56 

zhr -0.38 0.13  -0.18 0.25   -0.24 -0.28 -0.11   0.25 
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Fig. 14.12.  Annual rate of change in harvest rate of (a) red kangaroos and (b) eastern grey kangaroos in grid 

squares in the core area (see Section 3, Fig. 3.2) of Queensland over 1986-2001. 

 

Across the entire commercial harvest zone in Queensland, the percentage of males in the red 

and eastern grey kangaroo harvest was highest in the south (roughly centred around 

Charleville) in 2003 (Figs 14.13a and b).  Over 1991-2003, this pattern has become more 

pronounced for both species (Figs 14.13c and d), as the percentage of males in the harvest for 

the harvest zone combined increased (Table 14.2, see Section 13, Fig. 13.14).  There has been 

a decline in the percentage of males for red kangaroos in the northwest, whereas the overall 

increase was simply greatest for eastern greys in this broad area.
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Fig. 14.13.  Average %male in the 2003 carcass harvest of (a) red kangaroos and (b) eastern grey kangaroos and 

annual rate of change over 1991-2003 in %male in the harvest of (c) red kangaroos and (d) eastern grey 

kangaroos in grid squares in the commercial harvest zone (see Section 3, Fig. 3.1) of Queensland. 
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14.4 Discussion 

 

Across eastern Australia, there are marked differences among regions in kangaroo harvest 

statistics. This reaffirms the need to consider harvest statistics regionally that was identified in 

Section 13.  Though not shown, this pattern has been fairly stable over the past decade.  This 

relative stability can be seen for harvest rate in Figures 14.1-14.3 and for sex ratio in broad 

regions in Queensland in Section 3, Figure 13.12.  The differences among regions do change, 

but generally over a protracted period.  The determinants of this spatial variation at this scale 

are not simply kangaroo density or harvest rate. 

 

At the finer scale of a grid square (½
o
 block), the spatial pattern of harvest rate and sex ratio 

for both red and eastern grey kangaroos in Queensland was also remarkably stable over a 10-

15 year period.  The increasing percentage of males in the harvest, particularly in the south, 

presumably reflects the decline in skin-only harvesting in Queensland, discussed in Section 

13. 

 

At the scale of a grid square, the determinants of harvest statistics were not always as 

expected.  Certainly there was marked year-to-year variation in CPUE and the percentage of 

males harvested and this often accounted for a substantial part of the overall variation.   

Harvest rate declined with increasing density as has been reported elsewhere (Bayliss 1987; 

Pople and Cairns 1995; Pople 1996).  Harvest rate was also higher where other harvested 

species were present and this is expected from theory (Caughley and Sinclair 1994) and has 

been reported previously for kangaroos.  The harvest rate of red kangaroos, which use 

relatively open habitats, has been found to be affected more by the presence of eastern greys, 

which use more wooded country, than vice versa (Sinclair 1977; Pople 1996).  The results of 

the analysis here is consistent with that result, although wallaroos are also an important 

influence in Queensland. 

 

The move away from skin-only shooting is the likely explanation for the poor relationships 

between the percentage of males in the harvest and density and harvest rate.  The relationship 

between CPUE and density was expected, but the influences of vegetation structure, distance 

to towns and rainfall are harder to explain.  CPUE also increases with harvest rate, a result 

also seen in Section 13.  Theory suggests that CPUE should decline with effort (Hilborn and 

Walters 1992). 

 

Male carcass weight declined with increasing harvest rate as expected, but there were other 

factors with a similar influence such as the openness of the vegetation, possibly reflecting the 

ability to be selective.  Other influences were not consistent among the two species, such as 

the density of other species. 

 

There are a number of applications for these data.  The first is that by mapping changes in 

harvest statistics (e.g. Figs 14.13c and d), areas of over- or under-harvest can be identified.  

This should be useful for managers who regulate the harvest and industry who may place their 

own restrictions in order to optimise aspects of the harvest such as the overall weight or the 

proportion of males and therefore large carcasses.  These changes were examined on a broad, 

regional scale in Section 13, but there are finer scale patterns and broader-scale changes that 

do not always match up with administrative regions.  A second application is to use the 
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harvest data to extrapolate density estimates from aerial surveys, particularly when the 

surveys have incomplete geographic coverage such as the helicopter survey blocks in 

Queensland.  This will require models with density as a function of harvest statistics.  An 

alternative is use habitat variables to model density or a combination of harvest and habitat 

variables (see Section 17). 
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Introduction 

Evolutionary forces acting on the timing of sexual maturity (reviewed in  Roff, 2002; 

Stearns, 1992) also influence population growth (first described by Cole, 1954). From an 

evolutionary point of view, the optimal length of the juvenile period is determined by 

trading off different factors influencing individual’s fitness. For example, the shorter the 

juvenile phase the more time is left for reproducing, but a small size at maturity may 

negatively impact offspring survival and quality. An important component in the optimal 

length of the juvenile period is how quickly individuals grow, which is influenced by 

environmental factors such as food availability and temperature. Hence we can expect the 

onset of sexual maturity to exhibit patterns of phenotypic variation. This paper examines 

the onset of sexual maturity of female red kangaroos (Macropus rufus) under different 

environmental conditions. For males, the timing of maturity has only a small influence on 

fitness because males younger than 4 years are relatively small compared to the rest of 

the male population and consequently have a very low mating probability (Walker, 

1995). 

Red kangaroos are marsupials that live in most of inland Australia, including desert, 

grassland, mallee and mulga country. They prefer open plains with scattered trees, and 

graze on green grasses and dicotyledonous plants. Kangaroos are polygamous (Croft, 

1980), and generally breed year round. Males and females continue to grow after they 

reach sexual maturity and can live for >20 years (Bailey & Best, 1992). In captivity, 

female red kangaroos reach sexual maturity at 15-20 months (Sharman and Calaby 1964), 

but in the field, age at maturity can be delayed by poor environmental conditions (Frith & 

Sharman, 1964; Newsome, 1965).  Similarly, periods of extreme drought can result in 

suppression of the 35-day oestrus cycle (Newsome 1964). After drought breaking rains 

females come back into breeding condition. For more details on the reproductive biology 

of red kangaroos see the review by Tyndale-Biscoe and Renfree (1987). 

Rainfall is a key environmental variable as it determines food availability and influences 

kangaroo growth and survival. Despite its important role, the relationship between 

rainfall and onset of maturity has not been quantified. Long-term studies are necessary to 

investigate the effect of rainfall on onset of sexual maturity because the response of 

kangaroos to rainfall may also depend on food availability in previous years. In good 

years kangaroos can accumulate a large fat body buffering against periods of low food 

availability, and it might take several years of low rainfall to affect kangaroo survival 

because primary cause of death in drought years is starvation and not thirst. In this study 

we used a ten year data set to study the timing of sexual maturity of female red 

kangaroos. Our results revealed that, while most females mature between 1 and 2 years of 

age, the probability of maturing increases with an index of body condition and rainfall. 

Compared to relative body condition the influence of rainfall is small. 

Methods 

Study area 

The study was based at Currawinya National Park (1510 km
2
) (28

o
50’S 144

o
29’E) in 

southwestern Queensland, 170 km southwest of Cunnamulla.  Originally a pastoral 
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property grazing mainly sheep, it was declared a National Park in 1991 and domestic 

stock were removed during the latter part of that year and in 1992.  The property had not 

been harvested since the late 1970s.  The region is dominated by open woodlands of 

mulga and poplar box, interspersed with sandplains and dunefields of buddabush 

(Eremophila sturtii), hopbush (Dodonaea angustissima) shrublands and numerous 

claypans and saltpans.  Rainfall at Currawinya is summer dominant with an annual mean 

of 293 mm and a coefficient of variation in annual rainfall of 49% (Figure 3). The 

Queensland Parks and Wildlife Service monitored the densities of red kangaroos on 

Currawinya National Park between 1990 and 2000 using helicopter surveys (Figure 4, 

unpublished data). For details on the survey method see Clancy et al. (1997).  

Sampling 

Samples of male and female red kangaroos were shot in spring of each year over 1991-

2000 as part of a long-term study of demography in red kangaroo populations (Pople, 

1996). All killings were compliant with the “code of practice for humane shooting of 

kangaroos” endorsed by the Council of Nature Conservation Ministers in 1990 

(www.deh.gov.au/biodiversity/trade-use/publications/kangaroo-report/cop.html).  

Animals were shot at night from a vehicle using a spotlight and a high-powered rifle 

(usually a .222) with a telescopic sight.  Pouch young and the few injured animals were 

killed as quickly as possible, usually with a heavy blow to the head.  Red kangaroos were 

usually encountered in groups of 2-3.  To randomise the sampling, the animal seen first in 

each group was targeted first, but frequently the animal offering the best shot was taken. 

It is possible that the age structure of the kangaroo sample may vary with shooting 

intensity, because some age classes are more vulnerable to shooters. To avoid any 

density-dependent bias we adjusted our initial sample size of 400 animals according to 

changes in population size between different years. 

Animals were shot in the neck to avoid damaging the skull and then decapitated after 

body weight (minus pouch young weight and to a resolution of 0.5 kg) and pes length 

(from heel to base of the large toenail) were taken.  Heads were tagged and boiled in 

water to deflesh the skull.  All skulls were aged from their molar index (MI), calculated 

as the number of molars (to a resolution of 0.1) that had progressed past a reference line 

running across the anterior rim of the orbits.  Kirkpatrick (1964, 1965, 1970) found a 

close relationship between this index and age in several captive macropod species 

including red kangaroos.  Age for animals in this study was estimated using the equation 

developed by Kirkpatrick (1970) for red kangaroos of western Queensland stock: 

Log10(age) = 2.2278 + 0.359MI 

where age is determined in days. 

Immature females were identified by four relatively small, ‘capped’ teats and a relatively 

tight pouch (Frith & Sharman, 1964).  Prior to puberty, the teats of juvenile females are 

inverted and have associated mammary hair.  At the onset of sexual maturity, these hairs 

are shed as the teats become everted (Sharman and Calaby 1964).  Neither the teats, 

associated mammary glands nor the tightness of the pouch revert back to the pre-pubertal 

state in anoestrus females (Tyndale-Biscoe & Renfree, 1987).  Where there was doubt, 

the reproductive tract was removed and assessed according to the macroscopic criteria of 

Sharman (1964).  Following sexual maturity, the vaginae, uteri and urogential sinus all 
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increase in size, although this will vary through the reproductive cycle.  Ovaries will 

contain enlarging or mature Graafian follicles, and a corpus luteum of pregnancy or 

lactation.  Old corpus luteum scars may not be readily identified in anoestrus females, in 

which case the state of the pouch and presence of elongated teats distinguish them from 

immature females (Frith & Sharman, 1964). 

Data analysis 

We calculated logistic regression and survival models using the software package R 

(version 1.8.0) to quantify factors influencing the probability to reach sexual maturity. 

We had the following explanatory variables to choose from: age in years (estimated from 

molar index), hind foot length in mm, weight in kg, and rainfall (mm) in the 12 months 

prior to sampling. Because hind foot length, age, and weight are highly correlated (Table 

1), we calculated two additional explanatory variables: condition as the residual of the 

individual from the regression line of weight on hind foot length (Figure 1), and residual 

weight gain as the residual of the individual from nonlinear regression of weight on age 

(Figure 2). We used package nls to fit the nonlinear regression. 

We examined models including the explanatory variables rain, age, hind foot length, 

condition, and residual weight gain (rwg). Because of the high correlations between these 

variables, we never combined age and condition with hind foot length and residual 

weight gain (Table 2). We tested the following three types of models: 

(i) In the logistic model the probability that at female reaches maturity (pm) is calculated 

by inverse logit transform on the linear predictor (lp). 

  
( )

( )

exp

1 exp
m

lp
p

lp
=

+
. (1) 

(ii) In the exponential model we test whether females mature at a constant rate, i.e. 

exponential distributed maturity times 

  ( ) ( )expmp t tλ= − . (2) 

(iii) In the Weibull model we assume that the probability of females reaching sexual 

maturity is increasing with age. 

 ( ) ( )( )expmp t t
κ

λ= − . (3) 

(ii) and (iii) are cumulative survival functions, in which λ was modelled as a linear 

function of different explanatory variables (McCallum, 2000). Age is always included in 

these models, whereas in the logistic regression models age is not necessarily included. 

We used the cumulative survivor function rather than the hazard function because our 

data do not reveal when different individuals reached sexual maturity; instead we only 

know whether they were mature at the age of death.  

We compared alternative models using Akaike’s Information Criterion (AIC), which 

evaluates models based on both the likelihood of the model and the number of estimated 

parameters: 

 2 2AIC L k= +  (4) 

where L is the negative log-likelihood of the model and k is the number of parameters. 

We could compare these different model structures directly because the likelihood is 
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based on the probability that a given female is mature, and therefore the likelihoods are 

directly comparable. Generally a model with a lower AIC value is considered to be better. 

However it is possible to go beyond a simple ranking of models by calculating Akaike 

weights, which are the probability that each model out of a set of models is closest to the 

correct one (Burnham & Anderson, 2002). First calculate a ∆i value for each model by 

subtracting the AIC of the best model from the AIC of all models. The Akaike weight wi 

for model i is then 

 
2

2

i

i
i

i

e
w

e

−∆

−∆
=
∑

 (5) 

and this weighted distance between model i and the best model can be interpreted as the 

probability that model i is correct. Beginning with the best model, a 95% confidence set 

of models is constructed by adding models to the set until the sum of their Akaike 

weights exceeds 0.95. We used AIC rather than AICc because the number of data points 

exceeds the number of parameters by a ratio of nearly 100:1 for models with 4 

parameters.  

Results 

Rainfall at Currawinya (Figure 3) was low in the early 1990s, but was above average 

during the latter half of the decade. As a result red kangaroo populations declined on the 

Park and surrounding grazing properties by >70% between 1991-1993 (Pople, 1996), but 

by the end of the decade, the population had recovered to pre-drought levels (Figure 4).  

Population decline during 1991-1993 was due to minimal recruitment into the population 

during (Pople, 1996) as is typical of kangaroo populations during drought (Frith & 

Sharman, 1964; Newsome, 1965; Shepherd, 1987), and an increase in mortality 

especially of adult male kangaroos causing a dramatic shift in the adult sex ratio towards 

females (Pople, 1996; Pople & Cairns, 1995).  

Model selection: 

Age strongly influences the probability of reaching sexual maturity. Including age as an 

explanatory variable in the logistic model reduced the AIC value of the null model by 

over 60% (Table 2). Size has also a large effect on AIC values, but size and age are 

highly correlated (correlation coefficient = 0.79, Table 1).  Maturity times were not 

exponentially distributed; the probability of reaching sexual maturity increases with age 

(Weibull model). The absolute best model was the Weibull model including the 

explanatory variables residual weight gain and rain. However including residual weight 

gain in the model improved the fit to a much greater extent than rainfall. Including 

condition does not improve model fit probably because of its high correlation with age.  

The third best model was the logistic model including age, rain and residual weight gain. 

Figure 5 and Figure 6 compares the predictions resulting from Weibull and logistic 

models. The effect of residual weight gain is much bigger in the logistic model than in the 

Weibull model. The logistic model predicts female kangaroos with a very high residual 

weight gain to reach sexual maturity below 0.5 years of age, which is physiologically 

impossible.  
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Discussion 

Compared to eutherian mammals, life history diversity in marsupials has been subjected 

to little quantitative analysis (Fisher et al., 2001). A recent study by Fisher et al. (2001) 

analysing the pattern of marsupial life history traits found that age at maturity is a key 

variable describing life history pattern in marsupials. This paper scrutinizes phenotypic 

plasticity of age at maturity in marsupials using red kangaroos as a case study. Fisher et 

al.’s study (2001) suggests that the energetic value of food is shaping the evolution of 

marsupial life histories; this paper analyzes the plastic response of age at maturity to food 

availability in any given years.  

Mathematical models have predicted that “norms of reaction” for age and size at maturity 

are adaptive (Berrigan & Koella, 1994; Stearns & Koella, 1986; Tenhumberg et al., 2000) 

and empirical studies have demonstrated that  animals reach sexual maturity at an older 

age and smaller size under low food availability (e.g., Morita & Morita, 2002; 

Tenhumberg, 1992). Here we use rainfall as an indication of food availability in the 

current year and condition (individual weight relative to her size) and residual weight 

(individual weight relative to her age) to signify food availability in the past. However 

condition and age are correlated to some extent, making this variable less suitable as a 

signal for past food availability. Our analysis demonstrates that female red kangaroos 

mature earlier the higher their residual weight gain and the higher the rainfall. These 

findings are consistent with kangaroos growing at a faster rate (i.e. high residual weight 

gain) and so reaching a critical weight at an earlier age. Because age is correlated with 

kangaroo size (correlation coefficient = 0.36) our data do not reveal whether the growth 

rate also influences size at maturity.  

There may be a trade-off between early maturity and subsequent growth because 

resources are diverted away from maintenance and growth towards the production of 

offspring (Cockburn & Johnson, 1988); this tradeoff could be particularly severe in 

kangaroos because they have an indeterminate growth pattern (Ealey, 1967). Early 

maturity increases population growth rate (Stearns & Hoekstra, 2000), so in the absence 

of significant costs to early maturity we would expect kangaroos to mature at the smallest 

size possible. However, annual fecundity may increase with female body weight as has 

been demonstrated for the ringtail possum, Pseudocheirus peregrinus, (Lee & Cockburn, 

1985), or a larger body size might increase the chances of females resisting mating 

attempts by younger males (Cockburn & Johnson, 1988). In addition, it might be 

beneficial for kangaroos to mature at larger sizes if offspring survival or quality depends 

on female size. For example, larger mothers might be better in defending their young 

from predators, or they might provide better nutrition.   

This paper quantifies the relationship between rainfall, residual weight gain and onset of 

maturity. Age at sexual maturity influences population growth rates, thus it is an 

important component in models projecting population growth in the future. Population 

models are used to evaluate different management strategies and are an important 

component in decision making, e.g. determining sustainable harvesting quota (Hacker et 

al., 2004). A good estimate of age at maturity at different growth rates is also vital for 

predicting evolutionary responses of kangaroo management because fitness is often more 

sensitive to changes in age at maturity than to changes in other life history traits (Stearns 

& Hoekstra, 2000). Tenhumberg et al (2004) constructed a model predicting genetic 
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consequences of size selective harvesting. Their model assumes that kangaroos with a 

high growth rate have a higher probability of dying during drought years, but females 

reach maturity at an earlier age and male size is positively correlated with mating success. 

They found that without incorporating a positive relationship between age of maturity 

and individual growth rates genetic variation in kangaroo size is virtually lost in a few 

generations as a result of stabilizing selection (unpublished results), which is inconsistent 

with the large variation in sizes in kangaroo populations. Simulating genetic variation in 

kangaroo sizes is a prerequisite for predicting evolutionary responses to size selective 

harvesting.  

 

References 

Bailey, P. & Best, L. (1992) A red kangaroo, Macropus rufus, recovered 25 years after 

marking in north-western New South Wales. Australian Mammalogy, 15, 141. 

Berrigan, D. & Koella, J.C. (1994) The evolution of reaction norms: simple models for 

age and size at maturity. Journal of Evolutionary Biology, 7, 549-566. 

Burnham, K.P. & Anderson, D.R. (2002) Model selection and multimodel inference: a 

practical information-theoretic approach, 2nd edn. Springer Verlag, New York. 

Clancy, T.F., Pople, A.R., & Gibson, L.A. (1997) Comparison of helicopter line transects 

with walked line transects for estimating densities of kangaroos. Wildlife 

Research, 24, 397-409. 

Cockburn, A. & Johnson, C.N. (1988). Patterns of growth. In The developing marsupial 

(eds C.H. Tyndale-Biscoe & P.A. Janssen), pp. 28-40. Springer Verlag, Berlin, 

Heidelberg. 

Cole, L.C. (1954) The population consequences of life history phenomena. Quaterly 

Review of Biology, 29, 103-137. 

Croft, D. (1980) Behaviour of red kangaroos, Macropus rufus (Desmarest 1822), in 

north-western NSW, Australia. Australian Mammalogy, 4, 5-58. 

Ealey, E.H.M. (1967) Ecology of the euro, Macropus robustus (Gould), in north-western 

Australia. IV. Age and growth. CSIRO Wildlife Research, 12, 67-80. 

Fisher, D.O., Owens, I.P.F., & Johnson, C.N. (2001) The ecological basis of life history 

variation in marsupials. Ecology, 82, 3531-3540. 

Frith, H.J. & Sharman, G. (1964) Breeding in wild populations of the red kangaroo, 

Megaleia rufa. CSIRO Wildlife Research, 9, 86-114. 

Hacker, R., McLeod, S., Druhan, J., Tenhumberg, B., & Pradhan, U. (2004). Kangaroo 

management options in the Murray-Darling Basin. Murray Darling  Basin 

Commission, Canberra. 

Lee, A.K. & Cockburn, A. (1985) The evolutionary ecology of marsupials Cambride 

University Press, Cambridge. 

McCallum, H., ed. (2000) Population Parameters, pp 348. Blackwell Science, London. 

Morita, K. & Morita, S.H. (2002) Rule of age and size at maturity: individual variation in 

the maturation history of resident white-spotted charr. Journal of Fish Biology, 

61, 1230-1238. 

Newsome, A.E. (1964) Anoestrus in the red kangaroo, Megaleia rufa (Desmarest). 

Australian Journal of Zoology, 12, 9-17. 



Size at maturity in female red kangaroos 8 

Newsome, A.E. (1965) Reproduction in natural populations of the red kangaroo, 

Megaleia rufa (Desmarest), in central Australia. Australian Journal of Zoology, 

13, 735-759. 

Pople, A.R. (1996) Effects of harvesting upon the demography of red kangaroos in 

western Queensland. PhD, The University of Queensland, Brisbane. 

Pople, A.R. & Cairns, S. (1995). Impact of harvesting on kangaroos. In Conservation 

Through Sustainable Use of Wildlife (eds G.C. Grigg, P. Hale & D. Lunney), pp. 

224-229. Centre for Conservation Biology, The University of Queensland, 

Brisbane. 

Roff, D. (2002) Life History Evolution Sinauer Associates, Inc, Sunderland, 

Massachusetts, USA. 

Shepherd, N. (1987). Condition and recruitment of kangaroos. In Kangaroos: their 

Ecology and Management in the Sheep Rangelands of Australia (eds G. 

Caughley, N. Shepherd & J. Short), pp. 135-158. Cambridge University Press, 

Cambridge. 

Stearns, S.C. (1992) The evolution of life histories Oxford University Press, New York. 

Stearns, S.C. & Hoekstra, A. (2000) Evolution: an introduction Oxford University Press, 

New York. 

Stearns, S.C. & Koella, J.C. (1986) The evolution of phenotypic plasticity in life history 

traits: predictions of reaction norms for age and size at maturity. Evolution, 40, 

893-913. 

Tenhumberg, B. (1992) Untersuchungen zur Populationsdynamik von Syrphiden in 

Winterweizenbeständen und Quantifizierung ihrer Bedeutung als Antagonisten 

von Getreideblattläusen. PhD, University of Göttingen, Gòttingen (FRG). 

Tenhumberg, B., Tyre, A.J., Pople, A.R., & Possingham, H.P. (2004) Do harvest refuges 

buffer kangaroos against evolutionary responses to selective harvesting. Ecology, 

85, 2003-2017. 

Tenhumberg, B., Tyre, A.J., & Roitberg, B.D. (2000) Stochastic variation in food 

availability influences weight and age at maturity. Journal of Theoretical Biology, 

202, 257-272. 

Tyndale-Biscoe, C.H. & Renfree, M.B. (1987) Reproductive Physiology of Marsupials 

Cambridge University Press, Cambridge. 

Walker, L.V. (1995) Mate Choice in female eastern grey kangaroos Macropus giganteus, 

The University of New England. 

 

 

 



Size at maturity in female red kangaroos 9 

Tables: 

Table 1: Correlations between explanatory variables. 

 Rain Age Hind Foot 

Length 

Weight Condition Rel. Weight 

Gain 

Rain 1.00      

Age 0.01 1.00     

Hind Foot Length 0.10 0.76 1.00    

Weight  0.07 0.85 0.89 1.00   

Condition -0.03 0.38 0.00 0.45 1.00  

Rel. Weight Gain 0.14 0.02 0.36 0.48 0.35 1.00 
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Table 2: AIC values for the fitted models. Size is measured as hind foot length and rwg is 

the residual weight gain (see text). k specifies the number of parameters fitted in the 

model. AIC weights less than 0.001 are omitted for clarity. ∆AIC is the difference in AIC 

between each model and the one with the lowest AIC value. 

 

Model Explanatory Variables k AIC ∆AIC weights 

Logistic  null 1 455 332  

 size 2 201 79  

 size + condition 3 144 21  

 size + rain 3 203 80  

 size + rain + condition 4 143 20  

 age  2 169 46  

 age + rwg 3 141 18  

 age + rain 3 162 39  

 age + rain + rwg 4 137 14  

Exponential null 1 314 191  

 condition 2 298 176  

 rain 2 310 187  

 condition + rain 3 293 170  

 rwg 2 293 170  

 rwg + rain 3 292 169  

Weibull null 2 187 64  

 condition 3 189 66  

 rain 3 171 48  

 condition + rain 4 171 48  

 rwg 3 130 7 0.02 

 rwg + rain 4 123 0 0.98 
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Table 3: Parameter estimates and 95% confidence limits (CL) for logistic and Weibull 

model with the lowest AIC values. 

 Logistic Model Weibull Model 

 Estimate 95% CL Estimate 95% CL 

κ - - 2.0282 (1.77, 2.27) 

(Intercept) -13.9893   (-18.0, -10.0) -0.7033 (-0.83, -0.57) 

Age 7.9330 (5.9, 10.0) -  

Rwg 1.3662 (0.75, 1.98) 0.0493 
(0.036, 0.065) 

Rain 0.0050 (0.00099, 0.0090) 0.0005 (0.00018, 0.0007) 
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Figures:  
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Figure 1: Weight as a function of hind foot length, HF. Weight = -40.9 (1.6) + 0.21 

(0.005) * H.F., where values in parentheses are standard errors. 
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Figure 2: Weight as a function of age. The thick line is the logistic model that is used to 

calculate residual weight gain: ( )( )/ 1 exp /Weight a t b c= + −   , where t indicates age 

and a, b, c are constants with the following values: a = 22.26 (0.4), b = 1.06 (0.03), and c 

= 0.52 (0.04). The values in brackets are the standard errors. For comparison we also 

potted a linear model (thin line). 
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Figure 3: Three-monthly rainfall (solid bars) at Currawinya National Park over 1989-

2000.  Long-term average rainfall for each three-month period is shown as dotted lines. 
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Figure 4: Densities (± standard errors) of red kangaroos per km
2
 on Currawinya National 

Park between 1990 and 2000 as determined from helicopter surveys (Queensland Parks 

and Wildlife Service, unpublished data).  
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Figure 5: Predicted and observed maturity from the best logistic regression model. The 

lines are predictions for residual weight gain (rwg) or rainfall held at the 5%, 50% or 95% 

quantiles; the other variable is held constant at the mean. Rugs indicate the observed 

values.  
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Figure 6:  Predicted and observed maturity from the best Weibull distributed maturation 

time model. The lines are predictions for residual weight gain (rwg) or rainfall held at the 

5%, 50% or 95% quantiles; the other variable is held constant at the mean. Rugs indicate 

the observed values. 
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17. Work to be completed 
 

17.1 Introduction 
 

There are a number of pieces of work that were either started or continued during the present 

project that are yet to be completed.  These are described below and some preliminary results 

are presented. 

 

17.2 Spatial modelling 

 

Spatial modelling produces continuous density surfaces, providing alternative estimates of 

population size to that derived from the average of survey units. Integration under the density 

surface allows population size to be estimated for any area within the overall study area.  

Section 11 provided an example using kriging, but habitat covariates can also be used.  In 

New South Wales and South Australia, annual quotas or tags or both are issued to properties 

within each region to put a ceiling on the number of kangaroos that can be commercially 

harvested. In all states, non-commercial culling (i.e. pest destruction) permits are also 

allocated to properties. All of these allocations are made largely on an ad hoc basis.  A spatial 

model would therefore provide a more rigorous basis for allocating quotas and permits. 

 

Aerial surveys provide regional estimates of abundance, but finer or local scale estimates 

generally have poor precision, which declines with size of an area for a given sampling 

intensity.  Predicting future population size at a both scales adds further uncertainty in 

modelling births and deaths and, at a local scale, movement rates.  There are two approaches 

to predicting future fine-scale abundance.  A ‘bottom-up’ approach is to model temporal 

fluctuations at a fine or local scale.  The estimate for each local area can then be combined to 

calculate an estimate of abundance for the region.  An alternative, ‘top-down’ approach is to 

first predict future regional abundance, then divide this estimate up into its constituent, local 

areas using a spatial model. 

 

17.2.1 South Australian habitat models 

 

This latter method is the logical choice for kangaroo management in South Australia as it 

matches the quota setting process.  Here, annual harvest quotas are set as proportions (~15%) 

of aerial survey estimates of red and western grey kangaroo population size for large 

management regions, generally > 10,000 km
2
.  Quotas are then issued to properties (ranging 

20-2,000 km
2
) within each region. 

 

To predict red kangaroo distribution in South Australia, kangaroo density in 25 km × 25 km 

grids cells was ‘centred’ within each year (i.e. differences from the mean density over the 

study area, Quinn and Keough 2002) to avoid the need to account for annual variation in 

regional density within the study area. Four regions were modelled separately (Fig. 17.1) 

because it is this within-region variability that was of interest rather than the broader-scale 

variation across the whole pastoral zone. The latter has also been described before (Cairns et 

al. 1991).  Year-to-year changes in broad-scale abundance were not of interest here; rather it 

was changes in the spatial pattern of density (= pattern of distribution).  The modelling 
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strategy involved constructing a priori multiple regression models relating red kangaroo 

density to sets of environmental variables, comprising aspects of the soil, vegetation, 

landform and climate.  Landscape heterogeneity, considered important to red kangaroos 

(Pople 1989), was incorporated as the number of soil types, landforms and environmental 

associations (Laut et al. 1977) in each cell and the range in a number of soil attributes (e.g. 

nitrogen) in areas of increasing spatial extent surrounding each cell.  More complex sets of 

explanatory variables were contrasted by combining variable sets and including curvilinear 

terms and interactions between likely variables.  A particular interest was to describe any shift 

in the pattern of distribution and assess the influence of NDVI.  This was possible through 

using year interactions with explanatory variables, including NDVI.  To seek the most 

parsimonious model with the most predictive accuracy, models were compared using 

Akaike’s Information Criterion and cross-validation.  Spatial autocorrelation was assessed 

using a semivariogram (Isaaks and Srivastava 1989).  If present, the correlation structure can 

be incorporated into the regression models using generalised least squares (Crawley 2002; 

Venables and Ripley 2002). 

 

Year interactions with static variables would indicate changes in the pattern of distribution 

over time.  Significant year interactions with NDVI would indicate an influence of this proxy 

for food supply in only some years.  Both interactions were significant for the South 

Australian data.  Figure 17.2 shows the predicted distribution and associated residuals for red 

kangaroos across the study area.  These are relative densities that would be converted to 

absolute density from a model predicting average regional density (the ‘top-down’ approach 

from above).  There is no obvious spatial pattern in the residuals. 



Monitoring for harvest management of kangaroos 

 
329 

 

Figure 17.1.  Four regions (shaded) modelled in South Australia in which relative kangaroo 

density was predicted.  Boundaries of the existing management regions are also shown. 

 

Figure 17.2.  Predicted centred red kangaroo density in the South Australian pastoral zone 

and associated residuals. 
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17.2.2 Queensland habitat models 

 

A similar approach was taken with Queensland data.  As highlighted in previous Sections, 

surveys of kangaroos by helicopter in blocks result in incomplete geographic coverage of the 

harvest area and sampling is non-random.  Extrapolating the average kangaroo density in 

these survey blocks to the rest of the harvest area therefore requires some strong and perhaps 

unrealistic assumptions.  A spatial model can overcome these limitations by providing 

regional estimates of density through integration under a density surface.  Estimates of 

kangaroo density from fixed-wing surveys were available in grid squares over 1980-2001 and 

averages for red and eastern grey kangaroos are shown in Figure 17.2.  Density was spatially 

standardised in each year because spatial pattern rather than temporal fluctuation was of 

primary interest.  A number of explanatory variables were included in multiple regressions to 

predict density and these are shown in Table 17.1.  Harvest density was also spatially 

standardised and used as an explanatory variable.  Recent rainfall and NDVI were temporally 

standardised in each cell and also used as explanatory variables.  In addition to these variables 

that vary from year-to-year, a number of static habitat variables were included as explanatory 

variables including soil, landform, vegetation fragmentation and climate.  Spatial correlation 

was assessed by examining variograms using the finer-scale unit data (5 km × 200 m, see 

Section 1) and then comparing models with and without a correlated errors using generalised 

least squares (gls) in R 1.9.1 (Crawley 2002; R Development Core Team 2003). 

  

 

Figure 17.3.  Average densities of (a) red and (b) eastern grey kangaroos in grid squares in 

Queensland from aerial surveys over 1980-2001. 
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Table 17.1. Explanatory variables used to model kangaroo density in grid squares in 

Queensland. 

 

Rainfall 
Temperature 
Seasonality in climate 
Variability in climate 
 
Soil fertility 
Soil water holding capacity 
Soil diversity 
 
Landform 
Landform diversity 
 
Range of fragmentation metrics 
 
Average NDVI 
Variability in NDVI 
 
Recent rainfall 
Recent NDVI 
 
Harvest 

 

Preliminary results indicate the data are not spatially correlated at this scale for either species.  

Akaike’s Information Criterion and the coefficient of determination (R
2
) are shown for four 

models predicting red kangaroo density in Table 17.2.  The relationship between kangaroo 

density and just static aspects of habitat did not vary from year-to-year, as indicated by poor 

support for the model with a year interaction with habitat.  NDVI improved on the 

relationship and its influence did not vary from year-to-year.  Harvest density was a 

particularly useful predictor, being included in the most parsimonious model along with 

habitat variables.  Model predictions are shown in Figure 17.4 with no obvious spatial pattern 

in the residuals. 

 
Similar models were developed for eastern grey kangaroos.  They explain a greater proportion 

of the variation (R
2
 > 0.5) than the models for red kangaroos, which is not surprising given the 

greater concentration of greys in the readily predicted more mesic and more heavily wooded 

regions of the survey area (Fig. 17.3). 
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Table 17.2.  Coefficient of determination (R
2
) and Akaike’s Information Criterion (AIC) for 

four models used to predict red kangaroo density in grid squares in Queensland (Fig. 17.3a). 

 

Model R
2 AIC 

Static habitat variables 33 3051 
Static habitat variables + NDVI 33 3048 
Static habitat variables x year 34 3097 
Static habitat variables + year x NDVI 33 3054 
Static habitat variables + harvest 37 2967 

 

 

These models provide a description of the relationship between habitat, harvest density and 

kangaroo density.  In practice, densities are estimated regularly in the helicopter survey 

blocks and it is these that need to be extrapolated to the rest of the harvest area using a spatial 

model.  This could be done in at least two ways.  If local estimates of density were needed, 

then one option would be to use the average density among survey blocks, or a stratified 

estimate, in combination with harvest densities in grid squares to convert the standardised 

kangaroo densities in grid squares in the survey area from the models described above (Table 

17.2, Fig. 17.4).  However, the primary need is for regional and state-wide estimates of 

density, so a second option is to develop a spatial model from the helicopter survey blocks, 

for which there are now 15 years of data.  This model could then be used to predict density 

outside the survey blocks.  Finally, these models could then be cross-validated using the 

fixed-wing data.  A complication is if the relationship between kangaroo density and habitat 

varies between years.  For example, good rainfall over a number of years, but only in the 

Mitchell grass downs resulting in increases in red kangaroo density only there, would change 

the overall relationship between density and less wooded areas.  This could be overcome with 

a year-specific spatial model, but annual sample size is small (n = 16).  Sample size needs to 

be considerably larger than the number of explanatory variables (Tabachnick and Fidell 

1996).  The results in Table 17.2 suggest this may not be a problem, particularly if harvest 

density, a year-specific variable, is included as a predictor. 
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Figure 17.4.  Predicted spatially-standardised densities of red kangaroos and model residuals 

in grid squares in Queensland. 
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17.3 Demography of an unharvested red kangaroo population 
 

The dynamics of unharvested populations, including their underlying vital rates (i.e. survival 

and reproduction), provide an important contrast to their harvested counterparts.  The contrast 

should allow a better understanding of the impact of harvesting, hopefully identifying the 

nature and strength of density dependence.  However, a relatively long time series is required 

to encompass the broad range of environmental conditions experienced in arid and semi-arid 

areas. 

 

Over a ten year period (1991-2000), age structure was determined annually for the red 

kangaroo population on Currawinya National Park (see Fig. 17.12) using large (200-400), 

random shot samples at approximately the same time each year.  The study site is described in 

Section 16 along with sampling methods.  Population density was also estimated at the same 

time using helicopter surveys.  Currawinya was formerly a sheep grazing property and was 

gazetted as a National Park in 1991.  However, there had been no authorised harvesting of 

kangaroos on the property for at least the ten years prior to 1991 and the shot samples were 

the only harvest, albeit small, since gazettal.  Harvesting occurs regularly on the surrounding 

sheep grazing properties.  Results for the first four years of this time series have been reported 

by Pople and Cairns (1995) and Pople (1996). 

 

Annual survival rates were calculated from consecutive age structures and adjusted for 

population rate of increase (Caughley 1977; Pople 1996).  Confidence intervals for age 

structures and survival were calculated from 1,000 bootstrap samples of the data. 

 

Red kangaroo density on Currawinya and surrounding properties declined sharply during a 

protracted drought in the early 1990s (Figs 17.5 and 17.6).  For the remainder of the decade, 

the population generally increased on the back of above average rainfall.  By 2000, it had 

recovered to its pre-drought density.  On the surrounding harvested properties, the overall 

recovery rate was lower so that that average densities on the two areas diverged (Fig. 17.5). 

 

This difference between the two areas is likely to be the result of two factors.  The first factor 

is harvesting, which is expected to have a greater impact when populations are increasing 

because harvest mortality is likely to be additive rather than compensated by a density-

dependent increase in survival (Pople 1996; Pople and McLeod 2000).  The second factor is 

the removal of sheep from Currawinya, which is likely to have freed up resources for 

kangaroos. 



Monitoring for harvest management of kangaroos 

 
335 

Figure 17.5.  Trends in the density of red kangaroos (±SE) on Currawinya National Park, 

which is unharvested, and the surrounding harvested properties, as detrmined from helicopter 

surveys (Queensland Parks and Wildlife Service, unpublished data). 
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Figure 17.6.  Quarterly rainfall (solid bars) at Currawinya National Park over 1989-2000.  

Long-term average rainfall for each three-month period is shown as a dotted line. 
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Mortality during the drought was strongly male biased, leaving an adult population 

comprising ~85% females (Fig. 17.7).  This bias in mortality was across all age classes, 

resulting in a strong female bias in all sub-adult and adult age classes (Fig. 17.8).  This result 

contrasts with another report of the age structure of red kangaroos dying during drought 

which was biased to larger, older animals, although population age structure was not 

determined (Robertson 1986).  However, the subsequent recovery of the population on 

Currawinya saw a change in the age structure that could not be explained by survival alone.  

Annual survival rates > 1 indicated an influx of males and females in the sub-adult and adult 

age classes (Fig. 17.9).  Survival rates in Figure 17.9 have therefore been termed ‘apparent’ 

survival. 

 

The suggestion here is that the increase in red kangaroo density following the removal of 

sheep on Currawinya was delayed by the drought, but accelerated by an unstable age structure 

(i.e. few sub-adults, strong female bias amongst adults) and immigration following the 

drought.  What is surprising is that immigration played such an important role in the 

population’s dynamics over such a large area (1,510 km
2
). 

 

Reproductive data were also collected in this study.  The proportion of adult females (≥ 3 

years old) breeding to full potential (see section 17.6 for methods) over the study period are 

shown in Figure 17.10.  This was predictably low during the drought, but subsequently 

recovered to 0.5-0.6 with the exception of 1999.  These estimates broadly match the survival 

rates for juveniles (Fig. 17.9a), although the age class and likely time periods for influential 

environmental conditions are slightly different. A female’s breeding status only reflects 

juvenile survival to weaning, whereas juvenile survival includes a period beyond weaning. 

 

Variation in the sex ratio (proportion male) of pouch young is shown in Figure 17.11.  These 

were often, but rarely significantly, above 0.5.  A male bias is predicted by evolutionary 

theory for species with male-biased dispersal, such as red kangaroos, as it ensures equal 

investment in males and females (Maynard Smith 1978; Johnson 1989).  Evolutionary theory 

also predicts that if males have more variable reproductive success than females, as in 

polygynous species such as kangaroos, and this success is influenced by parental investment, 

then females should invest more heavily in sons, but produce more daughters (Trivers and 

Willard 1973; Clutton-Brock et al. 1982).  This may be achieved by varying either the sex of 

offspring relative to their body condition or the resources provided to offspring (Clutton-

Brock et al. 1982).  The relationship between maternal condition and age with pouch young 

sex ratio needs to be examined with these data.  As an initial exploration, the relatively strong 

male bias in the drought year of 1991 is consistent with the negative correlation between the 

pouch young sex ratio (proportion male) in eastern grey kangaroos and rainfall reported by 

Jarman and Johnson (1983).  However, over the entire time series at Currawinya, the 

proportion of pouch young that are male was not significantly correlated with rainfall in either 

the six or twelve months preceding sampling (six months rainfall: r8 = -1.55, P > 0.1), as 

Jarman and Johnson (1983) also found.  The data in this study differ to those of Jarman and 

Johnson (1983) in that they represent a long time series from the same study site rather than 

data from multiple sites. 
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Figure 17.7.  Changes in the proportion (± 95% CI) of males in the adult (≥ 3 years old) red 

kangaroo population on Currawinya National Park over 1991-2000.
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(a) 

 

(b) 

Figure 17.8.  Proportion of the (a) male and (b) female red kangaroo population in five age 

groupings (0-1, 1-2, 3-5, 6-10, > 10 years old) at Currawinya National Park over 1991-2000. 

 

Figure 17.9 (overpage).  Annual ‘apparent’ survival (± 95% CI) of 0-1 (juvenile), 1-2 (sub-

adult) and ≥ 3 year old (adult) male (dotted line, solid circle) and female (solid line, open 

circle) red kangaroos on Currawinya National Park over 1991-2000.  The year on the x-axis 

refers to annual survival to that year.
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(a) 

(b) 

(c) 

Figure 17.9.
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Figure 17.10.  Proportion (± 95% CI) of mature (≥ 3 years old) red kangaroo females 

breeding to full potential at Currawinya National Park. 

 

 

Figure 17.11.  Sex ratio (proportion male ± 95% CI) of red kangaroo pouch young at 

Currawinya National Park.
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17.4 Geographic variation in red kangaroo body size 

 

The regional variation in growth patterns of male red kangaroos described in Section 13, Fig. 

13.3, was drawn from data collected across eastern Australia (Fig. 17.12).  There are also data 

for females which show a similar pattern. These data are consistent with Bergmann’s rule 

which predicts that mammals will have a larger body size in colder climates.  The rationale is 

that the lower surface area to volume ratio of larger mammals will allow them to radiate less 

body heat and therefore stay warmer in cold climates.  Conversely, in warmer climates, the 

higher surface area to volume ratio will facilitate heat loss and cooling of the body. An 

exception to this rule was the unexpectedly large body size of kangaroos at the sites near Julia 

Creek in far northern Queensland. 

 

Other morphometric measurements were taken in this study allowing an assessment of 

Allen’s rule.  This rule predicts that endotherms should have shorter limbs in colder climates, 

again as an aid to temperature regulation for similar reasons to Bergmann’s rule. 

 

 

Figure 17.12.  Location of study sites where random shot samples of red kangaroos were 

taken to determine population age structure.  These data (circles) also formed the basis for 

assessing geographic variation in body size (Section 17.4; see Section 13, Fig. 13.3) and 

determinants of reproductive success and offspring sex ratio (circles and star) (Section 17.6).  

Ku, Kulwin; To, Toorak; Bd, Bladensburg; Te, Terrick Terrick; Bo, Boorara; Cw, 

Currawinya; Be, Boorungie; Mu, Mulyungarie; Bu, Bulgunnia.
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17.5 Age structure and harvest selectivity 
 

Random shot samples of red kangaroos (see Section 16 for a description of methods) were 

taken at sites throughout eastern Australia (Fig. 17.12) spanning a range of harvest rates.  This 

allows an assessment of the effect of harvesting and past rainfall (as a proxy for food supply) 

on population age structure.  Some of these data were reported in Section 13, Fig. 13.2.  Age 

structures for these populations are shown in Figure 17.13.  Ninety-five percent confidence 

intervals were calculated from 1,000 bootstrap samples.  In far northern and southern 

Queensland, samples were taken from a harvested and a nearby unharvested site. 

 

Kangaroos in the two unharvested populations are not surprisingly older on average and there 

is a higher proportion of females.  The heavily harvested populations in central Queensland 

and eastern South Australia show marked contrasts with the other populations.  The relative 

size of the sub-adult (1-2 years old) age class is partly a function of the adult sex ratio, but it 

is greatly influenced by past food supply.  Good seasons result in high recruitment rates, 

contrasting with negligible recruitment in drought (Fig. 17.9a). 
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a. Currawinya (Southern Queensland) unharvested b. Boorara (Southern Queensland) 

c. Bulgunnia (Western South Australia)  d. Mulyungarie (Eastern South Australia) 

 

Figure 17.13.  Age structures of harvested and unharvested red kangaroo populations in 

eastern Australia (Figure 17.11) sampled over 1993-95.  Bars (stippled, female; open, male) 

represent the proportions (± 95% CI) of the non-juvenile population in each age class.
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e. Terrick Terrick (Central Queensland)  f. Bladensburg (North Queensland) 

 

 

g. Toorak (Far north Queensland) unharvested h. Kulwin (Far north Queensland) 

 

Figure 17.13. (cont.)
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17.6 Determinants of female reproductive success and offspring sex ratio 

 

There are now considerable reproductive data in addition to data on age and body condition 

from shot samples throughout eastern Australia for red kangaroos (Fig. 17.12) and the two 

species of grey kangaroos.  The data have been collected by Tony Pople, Stuart Cairns, Steve 

McLeod and colleagues.  These data allow a number of questions to be addressed.  Firstly, 

Croft (2004) argued that older females are important to the overall reproductive success of a 

kangaroo population.  Older red kangaroo females appear to have a higher probability of 

rearing young through to weaning (Bilton and Croft 2004).  In addition, their daughters can 

learn habitat and diet selection from their mothers by being allowed to remain in the natal 

home range.  Thus, if maternal age has a strong influence on breeding success, then a 

reduction in the average age of females in a population through harvesting, as described in 

Section 17.5, could alter a population’s dynamics more than expected from simply increasing 

the proportion of mature animals. 

 

A second set of questions involves the determinants of offspring sex ratio.  It has been 

suggested that pouch young sex ratio in kangaroos varies geographically and with 

environmental conditions (Johnson and Jarman 1983).  The data in this study broaden the 

geographic extent of that assessment.  Furthermore, sex of offspring may vary with maternal 

age, social rank, and body condition as suggested for red deer (Cervus elaphus) (Clutton-

Brock et al. 1982) and both red-necked wallabies (Macropus rufogriseus) and eastern grey 

kangaroos (Stuart-Dick and Higgenbottom 1989).  These patterns can be explored, and their 

supporting theory tested (see Section 17.3), for red kangaroos on a broad geographic scale 

rather than in a longitudinal study at a single site (e.g. Section 17.3).  Combining the two 

approaches should allow much stronger generalisations to be made. 

 

Breeding success in female red kangaroos has been measured elsewhere by the proportion of 

females with young-at-foot and by mean pouch young age (e.g. Newsome 1965, Shepherd 

1987).  These measures may be confounded by the fact that females with pouch young > 120 

days old will have weaned their young-at-foot.  Pouch young age and the proportion of 

females with young-at-foot therefore need to be considered together.  One way of achieving 

this is to determine whether females are breeding to full potential (bfp).  Females with pouch 

young < 120 days old and no young-at-foot are not breeding to full potential.  Females with 

pouch young > 120 days old, or with pouch young and a young-at-foot, are breeding to full 

potential.  The percentage of females breeding to full potential (%bfp) in a sample can then be 

used as a measure of breeding success.  Only females ≥ 3 yo were considered in the statistic 

because younger females may have been rearing their first young. 

 

Logistic regression was used to model the influence of maternal body condition and age, and 

the study site as a proxy for local environmental conditions, on %bfp.  An index of maternal 

body condition was calculated from the residuals of the multiple regression of log(body 

weight) as a function of log(age), log(hind foot length) and a dummy variable representing the 

study site.  This relationship accounted for the non-linear relationship between body weight 

and a one-dimensional quantity such as length and the known variation in growth patterns 

between geographically separated study sites (e.g. Section 13, Fig. 13.3). 
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The most parsimonious model predicting %bfp included all three terms: maternal age, body 

condition and study site.  Their relative influences can be seen graphically by comparing how 

much each variable affects %bfp (Figure 17.14).  Depending on the value of age and 

condition, study site is responsible for variation in %bfp of roughly 50-60%.  Holding 

condition constant, maternal age changes %bfp by 10-20% (Figure 17.14a). Finally, holding 

age constant, condition changes %bfp by roughly 30-40% (Figure 17.14b).  Environmental 

conditions are clearly the major determinant of reproductive success, although within a site 

there will be variation in body condition among individuals.  Maternal age is a lesser 

influence. 

 

These results could be incorporated into population models to examine the extent to which 

changes in age structure reduce rates of recruitment.  The indications here are that it would be 

slight, as Bilton and Croft (2004) similarly suggested for the influence of maternal age on a 

female red kangaroo’s lifetime reproductive success.  Nevertheless, studies of the population 

dynamics of harvested populations suggest these populations are not experiencing long-term 

decline through depressed recruitment following the removal of older, more reproductively 

successful animals that are ‘educators’ of new recruits.  A likely explanation is that female 

reproductive success and juvenile survival is enhanced in harvested populations with a 

reduction in density and subsequent greater availability of resources.  Comparisons of 

breeding success and juvenile survival in harvested and unharvested population have provided 

supporting data for this explanation (Pople 1996). 

 

Pouch young sex ratio (proportion male) ranged 0.46-0.55, with no obvious geographic 

pattern.  Environmental and maternal correlates of this variation now need to be assessed. 
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(a) 

 

(b) 

 

Figure 17.14.  Fitted logistic regression model predicting reproductive success (bfp) in red 

kangaroos.  Lines represent separate sites across eastern Australia (Fig. 17.11).  The influence 

of maternal age is shown in (a) and the influence of body condition is shown in (b). 
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