
1
Tartu 2018

ISSN 2613-5906
ISBN 978-9949-77-901-7

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
2

R
IIV

O
 K

IK
A

S	
A

nalysis of Issue and D
ependency M

anagem
ent in O

pen-Source Softw
are Projects

RIIVO KIKAS

Analysis of Issue and Dependency
Management in Open-Source Software
Projects

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

2

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

2

RIIVO KIKAS

Analysis of Issue and Dependency
Management in Open-Source Software

Projects

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on October 15, 2018 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisors

Prof. Marlon Dumas
University of Tartu
Estonia

Prof. Dietmar Pfahl
University of Tartu
Estonia

Opponents

Prof. Tom Mens
University of Mons
Belgium

Assoc. Prof. Andy Zaidman
Delft University of Technology
The Netherlands

The public defense will take place on December 11, 2018 at 10:15 am in J. Liivi 2-
405.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2018 by Riivo Kikas.

ISSN 2613-5906
ISBN 978-9949-77-901-7 (print)
ISBN 978-9949- - - (PDF)

University of Tartu Press
http://www.tyk.ee/

77 902 4

http://www.tyk.ee/

ABSTRACT

Modern open-source software development is being carried out on public plat-
forms such as GitHub. The growing number of open-source projects and their
users raises new challenges in how to navigate community contributions and re-
quests. Users can contribute feature requests or bug reports to projects, increasing
the workload for developers. Meanwhile, developers try to make their life easier
by reusing third-party code in their software, sometimes without understanding
the possible side-effects. This thesis deals with two problems in open-source soft-
ware development: analyzing issue lifetime and understanding the structure of
software package dependency networks.

Issue repositories are used to keep track of bugs, development tasks, and fea-
ture requests in software development projects. For open-source projects, anyone
can submit a new issue report, which can lead to situations where more issues
are created than can be effectively handled by the project members. This raises
the question of how issues are treated as the capacity of the project members is
exceeded. In this thesis, we study the temporal dynamics of issue reports based
on a sample of 4,000 open-source projects. We specifically analyze how the rate
of issue creation, the number of pending issues, and their average lifetime evolve
over the course of time. The results show that more issues are opened shortly
after the creation of a project repository and that the number of pending issues in-
creases inexorably due to forgotten (unclosed) issues. The average issue lifetime
(for issues that do get closed) is relatively stable over time.

Methods for predicting issue lifetime can help software project managers to
prioritize issues and allocate resources accordingly. We explore ways to incor-
porate different types of data into issue lifetime models, such as comments and
developer activity. In this thesis, we develop a machine learning-based method,
applied at different points in an issue’s lifetime, to determine whether or not the
issue will close within a given calendric period. Our method combines static,
dynamic and contextual features. The results show that dynamic and contextual
features complement the predictive power of static ones, particularly for long-term
predictions.

Another problem studied in this thesis is how software dependencies are used.
Software developers often include third-party open-source software packages in
their projects as a dependency to minimize redundant effort. The included depen-
dencies can also have their own dependencies. A complex network of dependency
relationships exists among open-source software packages. This thesis analyzes
the dependency network structure and evolution of the JavaScript, Ruby, and Rust
ecosystems. We propose a method that can be generalized for other ecosystems
to measure their growth and evolution. The results reveal significant differences
across language ecosystems. They also indicate that the number of transitive de-
pendencies for JavaScript has grown 60% over the last observed year, suggesting
that developers should look more carefully into their dependencies to understand

5

what exactly is included. This study also reveals that the vulnerability to the re-
moval of the most popular package is increasing, yet most other packages have a
decreasing impact on vulnerability.

6

CONTENTS

1. Introduction 10
1.1. Problem area . 11

1.1.1. Issue dynamics . 11
1.1.2. Issue lifetime prediction 12
1.1.3. Dependency analysis . 13

1.2. Problem statement . 14
1.3. Research approach . 15
1.4. Contributions of the thesis . 15
1.5. Thesis organization . 16

2. State of the art 17
2.1. Mining software repositories . 17

2.1.1. GitHub . 19
2.1.2. GHTorrent . 20

2.2. Issue management in software projects 20
2.2.1. Issue lifetime analysis . 21
2.2.2. Issue lifetime prediction 23
2.2.3. Beyond issue lifetime prediction 25

2.3. Package dependency management 26
2.3.1. Dependency networks . 27
2.3.2. Dependency management 28
2.3.3. Vulnerabilities . 28
2.3.4. Synthesis of related work for dependency management . . 28

2.4. Summary . 29

3. Background 30
3.1. Machine learning and classification 30

3.1.1. Logistic regression . 31
3.1.2. Decision trees . 32
3.1.3. Random Forests . 32

3.2. Predictive model evaluation and selection 33
3.2.1. Model performance measures 33
3.2.2. Model validation and selection 34

3.3. Network analysis . 35
3.3.1. Paths and components . 36
3.3.2. Centrality . 36

4. Understanding issue dynamics in GitHub projects 37
4.1. Introduction . 37
4.2. Dataset and method . 37

4.2.1. Filtering . 37

7

4.2.2. Descriptive statistics . 38
4.2.3. Terminology . 39
4.2.4. Notations . 40
4.2.5. Examples . 41

4.3. Results . 43
4.3.1. Issue arrival rate (RQ1.1) 43
4.3.2. Pending issue growth (RQ1.2) 45
4.3.3. Issue lifetime (RQ1.3) . 46
4.3.4. Discussion . 48
4.3.5. Design implications . 50

4.4. Threats to validity . 50
4.5. Summary . 51

5. Predicting issue lifetime in GitHub projects 52
5.1. Introduction . 52
5.2. Approach . 52
5.3. Dataset . 53

5.3.1. Analysis of issue lifetime 53
5.4. Model Construction . 53

5.4.1. Features . 53
5.4.2. Model training . 57
5.4.3. Classification method . 60
5.4.4. Evaluation . 61

5.5. Results . 61
5.5.1. Classifier performance (RQ2.1) 61
5.5.2. Feature importance (RQ2.2) 63

5.6. Discussion and limitations . 67
5.7. Replication package . 68
5.8. Summary . 68

6. Structure and evolution of package dependency networks 69
6.1. Introduction . 69
6.2. Background and terminology . 69
6.3. Research questions . 70
6.4. Method . 71

6.4.1. Context . 71
6.4.2. Data collection . 72
6.4.3. Parsing GitHub projects 73
6.4.4. Resolving dependencies 73
6.4.5. Network construction . 74

6.5. Results . 76
6.5.1. Description of dependency networks (RQ3.1) 76
6.5.2. Dependency network evolution (RQ3.2) 80

8

6.5.3. Fragility and vulnerability (RQ3.3) 82
6.6. An example of a critical bug-fix release adoption 83
6.7. Discussion . 85

6.7.1. Results . 85
6.7.2. Design implications . 86
6.7.3. Limitations . 87

6.8. Replication package . 87
6.9. Summary . 87

7. Conclusion and outlook 89
7.1. Contributions and findings . 89

7.1.1. Dynamics of issue lifetime 89
7.1.2. Predicting issue lifetime 89
7.1.3. Characteristics of open-source package ecosystems 90

7.2. Opportunities for future work . 90
7.2.1. Issue lifetime prediction 90
7.2.2. Dependency analysis . 91
7.2.3. Better tooling for issue and dependency management . . . 91

7.3. Closing remarks . 92

Bibliography 93

Acknowledgements 106

Sisukokkuvõte (Summary in Estonian) 107

Curriculum Vitae 109

Elulookirjeldus (Curriculum Vitae in Estonian) 110

List of original publications 111

9

1. INTRODUCTION

Computers and software are running essential services for our every-day life. A
modern car contains of about hundred million lines of code [34] to control the
engine. Moreover, modern medical diagnostics is done with the aid of comput-
ers controlled by software. These few examples illustrate how software has been
introduced into different domains to support existing complex activities and tech-
nologies. However, these software systems need to be first developed and later
maintained indefinitely [92]. During the development process, teams need to
make a variety of decisions such as which features to include in the next release
or which library to use to speed up the development.

Analyzing data generated during the software development process can sup-
port developers in decision-making. Software developers leave traces of their
activities, such as code change commits in version control systems, lists of tasks
worked on, bugs fixed in issue tracking system, communication data in the form
of email, and chat logs. These traces can be used to learn models about activities
in software projects. A model can be used in decision-making for future activi-
ties. For example, bug reports stored in software projects’ issue trackers contain
textual description and an assessment of their severity from a developer. This in-
formation can be used to build a model that estimates bug report severity based
on the presence of certain words in bug report descriptions. Using this model to
predict the severity level for all new incoming bug reports can help developers
resolve important issues, such as security issues, only if in the past security issues
were ranked as severe, and the model has learned this capability.

The process of analyzing data from the software development process and
making decisions based on the findings has been called software analytics [31].
Software analytics has already been put into practice in large enterprises such as
Microsoft [44] and Mozilla [16], where internal tools have been developed to sup-
port decision-making in software projects based on past data. The goal of this
thesis is to contribute to enhancing the body of existing methods in the area of
software analytics to support decision-making by putting forward and testing new
methods in the areas of issue and dependency management.

This thesis studies two different problems in the domain of software analytics.
The first part of this thesis introduces a method to analyze the life-cycle of issue
reports in open-source projects by applying machine learning techniques. We
develop an issue lifetime prediction model that can help estimate the time it will
take to resolve an issue. This is relevant to different stakeholders in a software
project such as developers, project managers, or users requesting a change.

The second part of this thesis deals with analyzing dependency usage in open-
source projects. Software projects reuse libraries to reduce duplicate code. How-
ever, little is known about how often developers update their dependencies. We
study dependency management in open-source projects and introduce methods
and metrics for continuously monitoring dependencies.

10

1.1. Problem area

The problems studied in this thesis, namely issue lifetime analysis and depen-
dency management practices, are part of every modern software development
project. This thesis focuses on open-source software projects hosted on GitHub,
a social coding platform. GitHub hosts code repositories for millions of projects
and provides functionality for issue management and code review (in the form
of pull request review). It has become the largest platform for open-source de-
velopment and collaboration, hosting projects ranging from desktop applications,
machine learning libraries, to mobile application development frameworks.

Centralizing development on GitHub has lowered barriers for community con-
tributions [45]. Besides project members, issue reports are also contributed by
end-users. Raising the visibility of possible projects and developer reputation [45]
can encourage developers to reuse projects and libraries that are being developed
and maintained by other developers. This thesis deals with understanding the is-
sue dynamics and evaluating library-level dependencies in open-source projects.

GitHub can be considered as an ecosystem for software development.
Lungu [96] has defined software ecosystems as a collection of software systems,
which are developed and co-evolve in the same environment. The two prob-
lems studied in this thesis both revolve around GitHub. We study issue handling
in GitHub projects. The dependency analysis is concerned with packages and
projects that are also being developed on GitHub. Although there are no explicit
links in mining issue reports and dependency management, the implicit relation-
ship can be illustrated by following example. When analyzing issue lifetime dis-
tributions for projects we found there are projects where issues are left open for
long periods. If these open issue reports are actually bug reports about possible
vulnerabilities, it could affect other projects using this project.

In the next section we explain the context of the problems studied in this thesis
in more detail.

1.1.1. Issue dynamics

Issue trackers have become essential collaboration instruments in modern soft-
ware development projects [21]. They are used for registering and tracking new
feature requests, development tasks, and bugs. In closed-source projects, usage
of issue trackers is generally restricted and sometimes codified, so that new issues
can only be opened by development team members, managers and a reduced set of
stakeholders, and they may need to comply with established norms and minimum
requirements [21].

On the other hand, in open-source GitHub projects, it is common practice for
everyone to open new issues in the issue tracker of a project with basically no
requirements placed on the content and quality of new issues [24, 42]. This prac-
tice can lead to a potentially large and continuous inflow of issues exceeding the
project’s development team capacity, including low-quality issues or issues that

11

are only marginally relevant to the project. Anvik et al. found in 2005 that the
Mozilla repository was receiving more than 300 issues per day and that this was
too much for the team to handle [7]. As the inflow of issues exceeds the capacity
of the project members, it is natural to conjecture that not all issues are effectively
handled, and are either closed without resolution or are implicitly ignored.

Understanding issue dynamics can be beneficial for different stakeholders.
Project owners can have an overview of the issue-resolving speed and current
team capacity. Users interested in having issues resolved can have an overview
of the team performance or estimated speed. In a wider perspective, it can give
overall health of the projects – if issues are not being resolved or the issue resolu-
tion pace has slowed down, then the project might not be sustainable in the long
term. Dabbish et al. [45] also found from interviewing GitHub users that a large
number of open pull-requests can be a sign of trouble in handling community con-
tributions in the project. We hypothesize that same applies for issues, considering
that pull requests are a solution to some problems and should be easier to resolve
than other issues.

1.1.2. Issue lifetime prediction

When analyzing issue dynamics, we noticed a pattern that in many projects, the
number of open issues shows an increasing trend. This observation leads us to
the problem of predicting when an issue will be closed. Knowing when an issue
will be closed is important from two viewpoints. First, it has been found that
timeliness is an important determinant of contributor engagement and community
contribution acceptance in GitHub [62]. If there is high uncertainty regarding the
time frame in which the development team will address a given issue, the stake-
holder who submitted it might be discouraged from making further contributions
or even from using the software product. Having an estimate of issue closing time
can help to reduce this uncertainty and provide greater transparency to all stake-
holders. Second, an estimate of issue-closing time provides core team members
with a basis to prioritize their efforts and plan their contributions. In this respect, a
recent study of long-lived bugs in different projects [118] observes that over 90%
of such bugs impact user experience and that automatic prioritization and assign-
ment can minimize the impact of such bugs on end users. It is also observed that
in some cases, bugs can be resolved earlier thanks to automatic prioritization and
assignment.

In this thesis, we address the problem of predicting, at a given time point dur-
ing an issue’s lifetime, whether or not the issue in question will close after a given
time horizon, e.g. predicting whether an issue that has been open for one week
will remain open one month after its creation. The general problem of issue (or
bug) lifetime prediction has received significant attention in the research litera-
ture. The focus of this study differs from previous work in four respects. First, the
bulk of previous work has focused on analyzing a small number of hand-picked

12

projects. In contrast, this thesis studies this prediction problem based on a large
sample of projects hosted in GitHub. Second, most previous work has focused on
exploiting static features, i.e. characteristics extracted for a given snapshot of an
issue – typically issue creation time. In contrast, the present study combines static
features available at issue creation time with dynamic features, i.e. features that
evolve throughout an issue’s lifetime. Third, previous approaches have focused
on predicting issue lifetime based on characteristics of the issue itself. In contrast,
the present study combines characteristics of the issue itself with contextual in-
formation, such as the overall state of the project or recent development activity
in the project. Finally, most previous studies have not employed temporal splits
to construct prediction models. In other words, models are trained on future data
and then evaluated on past data. In this study, we construct models predictively
using strict temporal splits such that predictions are always made based only on
past data, which reflects how such predictive models would be used in practice.

1.1.3. Dependency analysis

Open-source software development has resulted in an abundance of freely avail-
able software packages (libraries) that can be used as building blocks for new
projects. Usage of existing libraries can increase velocity and reduce the cost of
software projects [103]. Thung et al. [124] found by manually examining 1,008
projects on GitHub that 93.3% of them use third-party libraries, with an average
of 28 third-party libraries per project. However, introducing third-party libraries
makes a project dependent on them. Dependencies need to be kept up-to-date to
prevent exposure to vulnerabilities and bugs [41]. At the same time, bugs can
also originate from transitive dependencies [71]. Developers might not have an
overview of all the transitive dependencies as they did not include them them-
selves. Updating dependencies also entails risks, as new versions may break ex-
isting functionality or API correctness [115].

In March 2016, a single JavaScript package, left-pad was removed from the
central JavaScript package repository npm. The removal also caused issues for
projects that depended on it indirectly through transitive dependencies [91]. The
left-pad incident illustrates the hidden risks of relying on publicly available pack-
ages. A problem with a single package can propagate through multiple levels of
dependencies.

Over the years, a number of studies have addressed the question of how to
develop maintainable software and how to cope with software evolution chal-
lenges [100, 127]. On the other hand, dependency management practices have
received little attention, despite being a crucial part of almost all software projects.
A study of the JavaScript package ecosystem [136] revealed that dependency
requirement specifications using semantic versioning with flexible version con-
straints (e.g., the latest version) are widely used. This practice often leads to a new
version of dependency being used implicitly every time a project is built. Another

13

study of Maven packages [115] revealed that the semantic versioning scheme is
not always used properly and breaking changes are also introduced in minor ver-
sion releases. Implicit updates combined with non-conforming API changes can
introduce unexpected behavior or software defects. Considering the left-pad in-
cident and the lack of studies on dependency management, we seek to enhance
the understanding of the state of dependency update practices and the structure of
dependency networks.

Data available from package repositories and GitHub repositories enable us
to study the package ecosystems of different programming languages. Having
access both to packages that are published in a central repository and applications
using these can give us an idea of how often dependencies are updated and the
state of the dependency ecosystem.

In this thesis, we take a novel network-based approach for studying depen-
dency networks of JavaScript, Ruby, and Rust. We use data from package reposi-
tories and a subset of GitHub projects. We compose a network of projects based on
dependency relations to understand how the dependency network evolves and how
susceptible it is to different types of attacks, such as removal of a random project.
We show that dependency networks of popular languages such as JavaScript and
Ruby are growing and have at least one single package whose removal can affect
more than 30% of projects in the ecosystem.

1.2. Problem statement

For the problems studied in this thesis, we have formulated three groups of re-
search questions (RQ) to guide our research. Each research question consists of
several sub-questions.
RQ1: What are the dynamics of issue lifetime in open-source projects?
• RQ1.1: What is the issue arrival rate and how does it change over time?
• RQ1.2: How do opened and pending issue numbers evolve over time?
• RQ1.3: What is the average issue lifetime and how does it change over

time?
RQ2: How can we estimate the time period required for an issue to be closed?
• RQ2.1: What level of accuracy is achieved by classification models trained

to predict issue lifetime at different calendric time points in an issue’s life-
time and for different calendric periods (one day, one week, one month, one
quarter, one semester and one year) using both static and dynamic features
of an issue as well as contextual features?
• RQ2.2: What features are most important when predicting issue lifetime?

RQ3: What are the characteristics of open-source package ecosystems?
• RQ3.1: What are the static characteristics of package dependency net-

works?
• RQ3.2: How do package dependency networks evolve?

14

• RQ3.3: How vulnerable are package dependency networks to the removal
of a random project?

The research question RQ1 and its sub-questions were proposed to study issue
dynamics in GitHub projects, which can be beneficial for different stakeholders.
Project maintainers and users interested in having issues resolved can have an
overview of the issue-resolving speed. Studying the proposed research questions
should give an overview of issue resolving dynamics in GitHub and indicate how
fast issues are dealt with in open-source projects.

The research question RQ2 was proposed to study if it is possible to build
automated methods for estimating issue resolution time and how accurate they
can be. Such automated methods can bring transparency and can help stakeholders
prioritize their work. To bring more insight into which features are important for
issue lifetime prediction, we proposed RQ2.2 to study what features are relevant
in the prediction models.

The research question RQ3 and its sub-questions were proposed to study the
dependency management practices and dependency network structure for popu-
lar programming languages. These questions help to guide our research to bring
visibility into how package ecosystems are growing and if there are important
packages in the ecosystems. Understanding the structure and the dependence on
central packages gives insights how vulnerable ecosystems are to specific attacks,
such as removal of a package and spreading of security issues through dependen-
cies.

1.3. Research approach

The research method in this thesis is data-driven. We collected GitHub project
data using GHTorrent [60]. We then conducted empirical studies to understand
issue lifetime and dependency management. We also developed machine learning
models for issue lifetime prediction. For issue lifetime prediction, we analyzed
existing approaches and found possible shortcomings that would not enable us to
apply these models to real-world settings. To validate the constructed machine
learning models we use standard techniques in the field, chiefly a strict split be-
tween training and testing data, cross-validation inside the training set for deriving
new features, and we use well-accepted measures of accuracy.

To ensure reproducibility, we made available all the source code required to
perform the experiments, with instructions for its use. One of the studies reported
in the thesis has been successfully reproduced by a third party [101] as reported
later in the thesis.

1.4. Contributions of the thesis

The main contributions of this thesis are the following:

15

• We develop an approach for analyzing and quantifying issue accumulation
in open-source projects.
• We show that a fraction of issues opened in open-source projects remain

open for long periods of time.
• We develop a machine-learning-based method for temporal prediction of

issue lifetime in GitHub projects.
• We show that training models over different observation periods can give

better estimates. In addition, we find that different sets of features are im-
portant for different prediction tasks.
• We develop a method for analyzing package ecosystems based on network

analysis.
• We show that in npm package ecosystem the number of transitive dependen-

cies is increasing and the vulnerability to the removal of a single package is
generally decreasing.

1.5. Thesis organization

This introduction has provided context for the thesis, introduced the methods used,
and describes the contributions of the thesis.

Chapter 2 reviews state-of-the-art technologies related to this thesis and in-
troduces wider concepts. In Chapter 3 we give a brief overview of the machine
learning and network analysis used in the thesis.

Chapter 4 presents an analysis of issue lifetime dynamics in GitHub. The
contents of this chapter have been published earlier [84]. The author is responsible
for study design, data analysis, interpretation, and writing the first version of the
manuscript.

In Chapter 5 we develop an algorithm for predicting issue closing time in
GitHub projects. This chapter is based on findings that have been published [85].
The author participated in study design, data analysis, interpretation and writing
the first draft of the manuscript.

Chapter 6 analyses dependencies and package ecosystems. The contents of
this chapter have been published [86]. The author developed the idea jointly with
co-authors, carried out data collection, data analysis and wrote the first version of
the manuscript.

The concluding remarks, discussion, and possible future research directions
are outlined in Chapter 7.

16

2. STATE OF THE ART

In the introduction we discussed analyzing data generated during the software
development process and why it is important. To deliver software analytics, we
can use data stored in software repositories to find insights about the development
process. This chapter introduces the mining software repositories concept, one
of the approaches used in software analytics. We then cover state-of-the-art tech-
nologies for the research questions studied in the thesis, namely issue analysis and
dependency management.

2.1. Mining software repositories

The field of mining software repositories (MSR) deals with extracting useful in-
formation from software artifacts [68] generated during the development process.
Software developers leave traces of their actions and the tools they use. An essen-
tial part of a software project repository is the source code version control system
(VCS), which stores and tracks changes made to the source and merges changes
from multiple edits into a single file.

In 1975 Rochkind [116] introduced the first VCS named Source Code Con-
trol System and demonstrated cases where software configuration management
was applied to system development. Later in the 1980s, several new systems ap-
peared, such as RCS in 1982 [126] and followed by Concurrent Version System
(CVS). The aim of early version control systems was to help developers build
and maintain evolving software systems. In 1980 Lehman used the term software
evolution [92] and stated that software needs to be maintained over time to add
value.

In the late 1990s, it was discovered that software repositories contained po-
tentially valuable data and multiple studies appeared to study evolving software
systems and developer behavior. Earlier studies using source code repositories
were carried out on the basis of private code [53], but with the emergence of
open-source software, research on open repositories took off [102]. Around the
same time Bugzilla [30] was introduced for issue and bug management. Source-
Forge was one of the first publicly hosted source code repositories for open-source
projects. In 2005, the git version control system was introduced. GitHub was
launched in 2008, being the first social coding platform to provide an easier mech-
anism by submitting a pull request instead of e-mailing a patch (a difference of
two revisions). The sudden vast amount and variety of data available from open-
source projects made it possible to study from historical evolution [145] and to
track team dynamics and collaboration in open-source software [23].

In addition to data and traces generated by developer actions and tools, mining
software repositories also incorporates other data, such as runtime logs, or data
obtained through static analysis such as call graphs of a program or abstract syntax
trees of the source code. Different data sources consist of different data types

17

such as sequences, graphs, trees, and text [69, 140]. Next, we list some examples
of different data sources and how they can be useful in a software engineering
context.
• Source code. Commits to the repository and history of source code changes

enabling the study of which files were changed together to notify devel-
opers in case they forgot to change a file [145] or to discover error pat-
terns [94]. Source code auto-completion [73] leverages frequent sequential
patterns found in the code.
• Issue data. Issue tracking systems record development tasks, such as

new feature requests, bugs, and maintenance tasks. Also, they store state
changes for an issue, such as when an issue was entered, updated, com-
mented on, and resolved. This enables us to study the time that bugs
spend in each state in the issue tracker [109], automatically triage bugs
to the corresponding developer based on past patterns [8], detect duplicate
bugs [132], and prioritize [125]. Combining issue tracking data with source
code revisions we can predict and detect defects on source code [46, 144].
• Requirements documentation. Information retrieval techniques [98] have

been used to link source code and software documentation, to support pro-
gram comprehension and reverse engineer legacy systems.
• Mailing list. Developers coordinate and communicate through e-mail lists.

These e-mail messages can be used to understand the developer team struc-
ture and who is knowledgeable about which part of module [23], or act as
documentation for the code when linked together with source code reposi-
tory [13].
• Code review data. Source code review is part of modern development

process [12]. By analyzing existing code review data, we can automatically
suggest knowledgeable reviewers in large software systems [123].
• Log data. Log records generated during software runtime can be useful

for software performance analysis when coupled with source code, such
as mining stack traces for performance [67] or helping developers to find
performance issues when load-testing [79].
• Question-answering sites. Sites such as stackoverflow.com enable peo-

ple to ask technical questions about software development. Question and
answer data has been used for multiple purposes, such as to study what
problems developers face in the context of energy-aware software develop-
ment [110]. Stackoverflow data can be incorporated directly into developer
tooling to help with documentation [111] or automatically generate com-
ments for source code [137].
• Application store data. Mobile application stores contain developer-

supported descriptions, reviews and feedback submitted by users. Mali-
cious applications can be detected by comparing API usage and applica-
tion descriptions to find descriptions that do not describe the APIs used by

18

the application [59]. The reviews can be used as a source to understand
what users do not like [83] or to discover new requirements from user feed-
back [66].
• Development environment interaction data. Recording user interactions

in the integrated development environment (IDE) can reveal how developers
test their applications and navigate in the source code [18], and reveal how
developers use their development environment [5].
• Build data. Continuous integration has been adopted in open-source soft-

ware [19] for automating the building, testing and releasing processes. The
build history dataset can reveal the most common failure patterns [20].

These data sources and previous studies have already been turned into every-
day tools that developers use such as recommending pull request reviewers in
GitHub [76] and the StackMine tool at Microsoft to analyze performance issues
using stack traces [67]. Despite the variety of data sources and data types avail-
able, the goal of mining software repositories is to support developers in decision-
making, build new tools to improve developer productivity and software quality,
and automate tasks.

2.1.1. GitHub

GitHub is an online platform for hosting git source code repositories. It offers a
web interface for repositories, an issue tracker, and a mechanism for contributing
to other people’s repositories using pull requests. People can fork a repository,
which means cloning the code base into their repository while maintaining link
to the original repository. After making changes in their repository, changes can
be contributed back to the upstream repository (the original repository forked) by
submitting a pull request. The pull request contains changes made in the devel-
oper repository. Members of the original team can review the code and discuss
changes. The pull-based contribution model can be seen as lowering the contri-
bution barrier. Prior to pull-based development, contributions typically were sent
using patch files of code change differences to a mailing list [102,135]. The main-
tainers then discussed and applied the patches to the repository. Forking a reposi-
tory also leaves a trace visible to the original repository owner. Dabbish et al. [45]
found that the awareness of developers forking and modifying code is beneficial
to maintainers. Maintainers can learn this way about user needs. They can also so-
licit pull requests or monitor usage of their software to prevent breaking changes.
The same study revealed that the social nature of GitHub enables developers to
follow interesting projects and developers, thus learning about new technologies
or development practices faster.

GitHub, originally started in 2008, has been gaining popularity in recent years,
with usages from single-person projects to major companies such as Google and
Microsoft using GitHub for hosting their open-source projects. Already in January
2014, GitHub hosted 10.4 million repositories [81].

19

2.1.2. GHTorrent

GHTorrent [60] is a data collection effort to collect public repositories, commits,
issues, and pull-requests from GitHub. It monitors the publicly available data
stream offered by GitHub and enhances it by additionally fetching data using
GitHub’s official API. As a result, it stores the metadata of all the repositories,
such as commits, issues, issue comments with text, and language used in projects.
Data collected by GHTorrent has been used in multiple studies. However, as the
whole dataset is large and contains a variety of projects, different studies have
employed different sampling techniques [39]. The biggest limitation of using
GitHub projects is the lack of ability to automatically filter out irrelevant projects
(student homework assignments, repositories cloned manually and not via fork-
ing, etc.). This problem has been recently addressed by Munaiah et al. [104] who
developed a tool to classify GitHub repositories into categories and aid in select-
ing suitable repositories for a study. GHTorrent data comes without any quality
guarantees. GHTorrent service description states that minor inconsistencies and
holes in data collection may exist. In this work we use a sample based approach
to select projects for our studies and by selecting a large sample we can reduce
the effect of missing data.

All studies in this thesis use GHTorrent either to collect the data (issue lifetime
analysis in Chapter 4 and issue lifetime prediction in Chapter 5) or select candi-
date repositories and collect additional data from external sources (dependency
management analysis in Chapter 6).

2.2. Issue management in software projects

Task and issue management are central to every software project for planning and
tracking work to be done. Issue tracking systems are tools for organizing all the
issues, tasks, and bugs in a software project. Some of the most popular issue track-
ers are Bugzilla [30] and JIRA [80]. Issue trackers are not specifically tailored to
project types. All the previously mentioned tools are in use in private closed-
source projects as well as in open-source projects. Although this thesis studies
issue management in the context of open-source projects hosted on GitHub, the
problem is relevant also in closed-source projects [65]. However, issue handling
can be different in various kinds of projects due to other differences besides issue
tracking tools, such as resources, goals, and processes [63].

GitHub Issue tracker offers a subset of features compared to more powerful
tools such as JIRA and Bugzilla. Each issue report needs a title and a description
field at minimum to be filled out to describe the issue. The title and the description
are entered as natural language text. An issue report can also have extra metadata,
such as assignee, label, and milestone. Issue reports in GitHub lack customiz-
able fields that are common in JIRA, e.g., it is not possible to enter time estimate,
story points, priority or create other domain-specific fields. There is no desig-

20

nated field for issue type (e.g., bug, feature request, user story). Hence, in this
work we deal with issues in general, and we do not distinguish between bug re-
ports, new development task, maintenance task or non-code related activities such
as documentation update tasks that are stored in the issue tracker. Missing issue
type information can make a difference in analysis results, as the effort required
to resolve an issue might depend on the issue type [11]. For example, simple
one line code fixes can be done faster than implementing a new feature. How-
ever, even if the issue type information is present, it might not always be accurate.
Herzig et al. [72] found that 33.8% of bug reports were misclassified by manu-
ally examining more than 7000 issues from five different projects. Even though
JIRA and Bugzilla might provide better quality datasets with more fine grained
metadata, this thesis focuses on GitHub. The reason is that there is less prior work
dealing with GitHub issues and it is worthwhile to investigate how to build mod-
els specifically for GitHub, as it is a popular platform used for hosting millions of
projects.

Figure 1 shows how an issue listing for a project looks on GitHub. A typical
workflow in GitHub is an issue is entered, people discuss it and if code change
is required, a pull request is created in relation to the issue. Issues do not have a
customizable life cycle in terms of different states – an issue can be open, closed,
or locked for everybody except team members. After closing, it can also be re-
opened. But it lacks states like being in review or being triaged. The issue listing
view typically sorts issues in chronological order. Baysal et al. [17] argued that
issue trackers are essential tools to bring awareness about what is going on in a
project. In addition they found that developers value the temporal proximity of
issues which is why recent issues appear first.

2.2.1. Issue lifetime analysis

Open-source projects can receive vast amounts of bug reports and feature requests.
For example Mozilla issue trackers received on average over 175 issues per day
over an 11-year period from 2002 to 2013 [17]. Reviewing, triaging, and resolving
the issues in a timely manner is relevant to end users. Several previous studies
have focused on issue lifetime mining. In this subsection we review relevant work
to the RQ1 proposed in Section 1.2: What are the dynamics of issue lifetime in
open-source projects.

Issue report mining has received much attention from the research community
since the early 2000s [102]. Several previous studies have focused explicitly on
the analysis of issues in GitHub datasets. Closest to our research is a study by Bis-
syande et al. [24] which gives a basic overview of issue tracker usage in 100,000
Github projects. Their work explores how many issues are tracked on average,
labels and tags usage, who enters issues (developer or not), issue tracker usage
and project success (number of watchers), and user community size and issue fix
time. Compared to our work, they do not analyze the evolution of pending issues

21

Figure 1. Issues of Bootstrap project in GitHub, captured in November 2015. The project
has 283 open issues, while 12,128 have been closed. Labels (in colored blobs) are used
to categorize the work to be done based on the technical component, release or type of
issue.

and their lifetimes. Cabot et al. [32] studied how tagging is used in GitHub is-
sue trackers. Their results showed that only small sets of projects use labels, and
usage of labels correlates with a higher number of closed issues. Related to this,
Izquierdo et al. [77] presented a tool demo to explore issue label usage in projects.

The question of issue lifetime has been studied from different perspectives
both in open-source and closed-source projects. Marks et al. [99] studied issue
lifetimes in Mozilla and Eclipse. They found that 46% of bug reports in the
Mozilla project and 76% of bug reports in the Eclipse project are closed within
three months of their creation. Grammel et al. [63] studied community involve-
ment in closed source IBM Jazz projects. Their findings suggest that community-
created issues can be valuable, but they are handled differently than those created
by project members. The average issue lifetime for community-created issues is
39 days, whereas for team issues it is 5.9 days.

Ko and Chilana [87] studied why some issues in the Mozilla tracker are left
open for long periods. Their findings suggest that issues resulting in fixes or
code changes are proposed by a “group of experienced, frequent reporters.” They
concluded that open source projects benefit most from this group of experts.

Garousi [56] studied three open-source projects with a focus on issue-creation
and resolution times. Their findings showed that bugs and critical issues are han-
dled faster than other issue types. For the jEdit and DrPython projects, the frac-
tions of issues that are closed within the first day is 23% and 42% percent, respec-
tively. Garousi also concluded that more bugs are submitted at the beginning of

22

a project’s lifetime. In addition, he showed that issues pile up over time and then
are closed in batches.

Luijten et al. [95] study issue handling in GNOME issue tracker. To study the
speed of issue resolution, they aggregate issue resolution times into risk profiles.
They construct a risk profile by assigning each issue into a category based on
the resolution time. They define four categories, i.e., an issue is resolved in 28
days (low risk), 70 days (moderate risk), 182 days (high risk) or more than 182
days (very high risk). A product will get a rating based on the fraction of issues
in each category. Luijten et al. note that risk profiles are useful for comparing
different periods of the history of a project. They also note that the GNOME
backlog is constantly growing, with more issues entered than resolved. They also
find evidence of bulk clean-up actions, where multiple high risk issues are closed
during the same time, that have been resolved before but not closed.

Compared to these previous studies on issue lifetime, we employ a larger vol-
ume of projects and we consider not only issue lifetime, but also arrival rate and
number of pending issues. The latter variable (“number of pending issues”) was
studied separately by Kenmei et al. [82], who used time-series modeling to ana-
lyze how the number of opened issues changed over time.

Other studies have considered how the arrival rate of new issues in a project
and their resolution time can be used to plan future work [82] and to predict the
lifetime of pending issues [58, 134]. These latter studies are orthogonal to this
thesis.

2.2.2. Issue lifetime prediction

Projects with a continuous inflow of issues would benefit from tooling that would
help to automatically estimate the properties of incoming issues, such as lifetime.
The RQ2 studied in this thesis tries to answer How can we estimate the time
period required for issue to be closed? Next we will review related work dealing
with predicting issue resolution time and works related to predicting some issue
attributes.

Weiss et al. [134] predicted issue resolution time for the JBoss project. Their
approach enabled early prediction by finding a set of textually similar issues for
a newly entered issue and using this set to predict closing time. Their estimated
resolution times deviated on average by 7 hours from the actual resolution time,
and half of the estimations are in the +/-50% range of the original issue lifetime.
This study showed the feasibility of predicting issues based on models trained for
one specific project, where the project in question has a large set of issues that
share common patterns.

Similarly, Giger et al. [58] predicted bug fix times for Mozilla, Eclipse, and
Gnome projects. Their approach consisted of extracting features for each bug
report and training a decision tree model to predict whether the fix time will be
lower or higher than the project median fix time. They also experimented with

23

dynamic features calculated at different points during a bug report lifetime, such
as the number of comments an issue has received and the number of actions per-
formed on an issue. They concluded that the use of dynamic features improves
accuracy. Their reported Area Under the ROC Curve (AUC) scores fell in the
range [0.65–0.83]. A shortcoming of their work is that it does not apply temporal
splits to separate training and testing data – hence the models may use data ”from
the future” to predict issue lifetime at a particular point in time.

Panjer [109] predicted resolution time for Eclipse bugs using a set of static fea-
tures and a machine learning approach. He divided the bug lifetime distribution
into seven ranges and uses these as classes. Experimenting with different classi-
fiers, his approach can predict around 30% of issues correctly. Cross-validation
is used for evaluation of the classifiers, but no temporal split is used to segregate
training and test data. No dynamic features are used.

Francis & Williams [55] studied the prevalence of long-living bugs in an open-
source Apache HTTP server and a closed-source private project. They trained a
decision tree model to predict whether an issue will be closed by the time that
85%, 90%, and 95% of issues are closed. Their model achieved F-scores in the
range [0.63–0.95] for the closed-source project and [0.21–0.59] for the Apache
open-source project, suggesting that accurate issue lifetime prediction is more
difficult in the context of open-source projects.

Besides issue lifetime prediction, there are other related lines of research that
seek to predict some attribute or future action on an issue report. Examples are
predicting whether an issue will be fixed [65], delayed [35], or reopened [121,138,
139], as well as estimating its priority [125], assignment, or category [6, 64, 143].
In general, these studies use the same general approach: extract features from
issue reports; train a machine learning model; and evaluate the model. A similar
framework has also been used for predicting when contributed code patch or pull
request will be accepted [61, 78, 142].

Table 1 summarizes the above review of related work in terms of six attributes
that delimit the scope of the present study. Specifically, for each referenced study,
the table indicates: (i) if the study relies on a large dataset – where “large” is
defined as encompassing more than 6 projects (cf. column LD); (ii) whether or
not the study relies on dynamic features in addition to static ones (column DF);
(iii) whether or not the study in question relies on contextual features about the
surrounding project in addition to features extracted from individual features (col-
umn CF); (iv) whether or not the study applies temporal splits to separate training
data from testing data (column PT); (v) whether the constructed models can be
used for predicting lifetime at issue creation time and during an issue’s lifetime
(column MA);1 and (vi) whether the study addresses the problem of issue lifetime

1This criterion is included because some previous studies calculate features “as of the closing
time” of each issue – e.g. they calculate the total number of comments received by an issue through-
out its lifetime. Such studies are useful for post-mortem analysis of issue closing time, but not for
predictive purposes.

24

Table 1. Related work for issue lifetime prediction.

Paper LD DF CF PT MA TYPE

Weiss et al. [134] X X IL
Giger et al. [58] X X IL
Panjer [109] IL
Francis and Williams [55] X IL
Assar et al. [10] X X IL
Guo et al. [65] X X IL
Marks et al. [99] X IL
Gousios et al. [61] X X CL
Jiang et al. [78] CL
Ye et al. [142] X X CL
Tian et al. [125] X X X IA
Choetkiertikul et al. [35] X X IA
Antoniol et al. [6] X IA
Xia et al. [139] X IA
Shihab et al. [121] X IA
Guo et al. [64] X X IA
Our approach X X X X X IL

prediction (IL), acceptance time of a contribution (CL), or other issue attributes
(IA) – cf. column TYPE.

We note that only Giger et al. [58] relied on dynamic features and made issue
lifetime predictions at different time points during the issue’s lifetime. Also, only
the studies of Ye et al. [142] and Gousios et al. [61] rely on a large dataset when
building their models; however this latter study is exploratory rather than intended
to construct and test predictive models, and focusing on the problem of contribu-
tion acceptance prediction (pull requests). The use of contextual features has been
considered in several previous studies, but not in conjunction with dynamic fea-
tures. A few related studies use predictive splitting and are designed to be used at
issue creation time.

In summary, the scope of the research presented in this thesis is that it uses
static, dynamic and contextual features on a large issue dataset to construct issue
lifetime models predictively (i.e., all predictions are strictly based on data avail-
able at the time the prediction is made).

2.2.3. Beyond issue lifetime prediction

The total time it takes to resolve an issue can comprise multiple factors, such
as the complexity of the task to implement the issue (for technical tasks or user
stories) and uncertainty concerning what needs to be done (debugging and fixing
a bug).

In agile software teams, an iterative approach is used, where in a develop-

25

ment sprint, typically lasting one to two weeks, software features and releases
are delivered. User stories that reflect user requirements, are planned to be com-
pleted in each iteration. During planning, the relative complexity of each story
is estimated using story points [38]. Story points typically take values from a
Fibonacci sequence of 1,2,3,5,8,13 and the estimated values should reflect the
relative complexity of the story when compared with other tasks. Story point es-
timate also incorporates an effort and risk assessment needed to implement the
task. Developers participating in the estimation process have to come up with an
agreement during a planning poker session [130]. The aim is not have a precise
estimate, but to be able to compare tasks. Porru et al. [112] developed a method to
estimate story points for JIRA task. They claim that automated estimation can be
more reliable and reproducible and is not subject to personal biases or pressures
from other stakeholders [9]. Their approach is similar to other works dealing
with issue attribute prediction (IA, Section 2.2.2) using classifiers based on fea-
tures extracted from issue reports. Compared to issue lifetime prediction, story
point prediction can be more challenging as the story points in training data are
estimates themselves, whereas issue lifetime is an explicit measure derived from
issue state changes.

The goal of agile development is to deliver user stories during sprints. There-
fore the more natural task is to predict which stories will be complete or how many
story points will be completed during a sprint. Choetkiertikul et al. [36] developed
a method for estimating delivery capability of an iteration in terms of predicting
how many story points the sprint will deliver. They combine sprint-level features
(for example number of participants) and aggregate issue-level features (mentions
of words in all issues assigned to the sprint). The approach is fundamentally dif-
ferent compared to single level issue lifetime prediction as it takes into account
all issues in the sprint. Whereas single issue-level estimate might cause changes
because of ongoing conflicting work, the sprint level prediction can take this into
account.

2.3. Package dependency management

To facilitate software reuse, programmers release their shared code as packages,
so that common code can be shared between projects. Different programming
languages have their own dependency management software and they typically
distribute source code packaged with metadata about the package. The package
manager takes care of the inclusion of the package in the project and code can
be invoked as in any other code in the project. If a project A reuses code from a
package P, we say the project is depending on the package or has a dependency.
Next we review related work for research question RQ3 What are the character-
istics of open-source package ecosystems. The related work can be grouped into
three areas: dependency network analysis, dependency management processes
and practices in software projects, and vulnerability spreading through dependen-

26

cies.

2.3.1. Dependency networks

Dependency relations between projects form a network of dependencies.
Network-based analysis of programming language dependency networks has
emerged recently. The first large-scale analysis of the npm ecosystem was carried
out by Wittern et al. [136]. Their analysis concludes that JavaScript is a striving
ecosystem because of its frequent releases of new and existing packages. They
use GitHub applications only to study version numbering practices and state that
there is a prevalence of flexible (not exact) version number specifications. They
conclude that usage of flexible version constraints should result in the immediate
adoption of a new release.

Decan et al. [47] analyzed topologies of npm, PyPI, and CRAN and found that
there are differences across ecosystems, e.g., the PyPI is less interconnected than
npm. They stated that analysis results are not generalizable from one ecosystem
to another. Their follow-up work [48] focusing on dependency version specifi-
cation usage analysis, points out that current tools and versioning schemes can
introduce co-installability issues. When a package specifies its dependency with
a strict version or with a maximal version to use, it can prevent the package being
installed if there are multiple versions of the dependency in the dependency chain
with version constraints that do not match. They note that the prevalence of speci-
fying versions with maximal constraint is increasing, thus possibly increasing the
likelihood of co-installability issues.

German et al. [57] studied packages in the R ecosystem. They found that
most packages do not have any dependencies, but popular ones are more likely
to have them. They also found that growth of the ecosystem comes from user-
submitted packages, and it takes a longer time to build a community around user-
submitted packages than around core contributed packages. Another analysis of
the R ecosystem [49] studies on dependency resolution in R packages finds that
lack of dependency constraints in package descriptions and backward incompat-
ible changes often break dependencies. As community contributed packages are
hosted on GitHub, there is no way to resolve dependencies among GitHub pack-
ages, and therefore a small number of GitHub packages cannot be automatically
installed.

Bogart et al. [25] interviewed seven maintainers of R and npm packages to
understand how dependencies are maintained. They found that developers are not
aware of the stability of packages in the ecosystems and make changes on ad-
hoc principles. In a follow-up work [26], they found that npm, CRAN and Eclipse
ecosystems differ substantially in their practices about resolving API breaking
conflicts and expectations toward change.

27

2.3.2. Dependency management

It is common for projects to have external dependencies. The dependencies need
to be maintained by upgrading them if a new version becomes available or a crit-
ical bug issue is fixed. Each project and ecosystem might have its own preferred
process for dealing with dependency updates. A study of the dependency man-
agement process in Apache projects [15] found that if the number of projects in
the ecosystem grows linearly, the dependencies among them grow exponentially.
Bavota et al. [14] also found that new releases often do not contain updates to their
dependencies. Dependencies are updated only if major new features or bug fixes
are released for the dependencies. Kula et al. [90] measured latency to adopt new
versions among a sample of Java projects that use Maven. They concluded that
over time the maintainers become more trusting and update faster, although no
reason is known for this behavior. Cox et al. [41] measured dependency freshness
in 75 different closed-source projects of 30 different vendors. Their findings indi-
cate that projects with low dependency freshness are more than four times likelier
to include a security vulnerability.

Besides programming language ecosystems, previous research has focused on
the Debian package ecosystem, how to resolve strong dependencies in it, and how
to improve the planning of dependency changes [1, 37, 50, 51].

2.3.3. Vulnerabilities

Dependency networks enable propagation of bugs and security vulnerabilities. If
a package contains a security vulnerability, projects and packages that depend on
it can become susceptible when they execute vulnerable code branching. At the
same time, there might be projects that do not depend directly on the vulnerable
package, but inherit the vulnerability through a chain of dependencies.

Hejderup [71] studied vulnerability spreading across npm packages. He used
information about known vulnerabilities, tracked how long it takes for projects
to update from a vulnerable version and showed that vulnerabilities can affect
projects through dependencies. He also observed that some projects have a dis-
cussion in the issue tracker about vulnerable dependencies that need updating.
Through qualitative analysis, he found that developers were not aware of the vul-
nerabilities and the risk of breaking functionality is what holds back blindly up-
dating vulnerabilities.

Cadariu et al. [33] proposed a tool to track known vulnerabilities in Java
projects. They conducted a case study on private Dutch enterprise projects and
found that 54 out of 75 projects use at least 1 (and up to 7) vulnerable depen-
dency.

2.3.4. Synthesis of related work for dependency management

The research questions RQ3.1, RQ3.2, and RQ3.3 proposed in this thesis have
received attention in the context of existing research. There are similarities within

28

the existing research, but none of them fully covers the scope and problem studied
in this thesis. Wittern et al. [136] and Decan et al. looked at the network topolo-
gies for npm (JavaScript), PyPI (Python) and CRAN (R). Compared to [136], our
work considers the network analysis in more detail and includes applications in
the network analysis step. Compared to [47, 48], we also focus on the network
evolution and outline a more accurate dependency network model. Hejdreup [71]
studied vulnerability spreading among npm projects. Our work analyses the whole
ecosystem and includes evolution analysis to study if such vulnerabilities will be-
come less or more likely over time.

2.4. Summary

In this chapter, we introduced the related context for our thesis, reviewed the
state-of-the-art technologies, and covered related problems studied in the thesis.
We also identified the shortcomings of previous work that guided the research in
this thesis.

29

3. BACKGROUND

To analyze software repository data, we have applied different data analysis meth-
ods. For issue lifetime analysis, we used statistical machine learning to predict
whether an issue will be closed within a predefined time period. To model de-
pendency relationships in software projects, we applied graph theory and network
analysis. In this chapter, we give a brief overview of the data analysis methods
used in the thesis.

3.1. Machine learning and classification

Computers need to be explicitly programmed to perform a task by following a
sequence of predefined operations, also known as an algorithm. For some complex
problems, it may be hard to come up with the algorithm or there may be no known
algorithm for the task. In this scenario, we can use some existing data to learn the
algorithm [4]. Machine learning enables learning from data and the outcome of
the learning process, a model, can be used as an algorithm or incorporated into
the algorithm.

Consider an example of issue lifetime prediction. We have collected a dataset
of issues from the GitHub issue tracker and now want to understand whether issue
textual contents can be used to estimate how long the issue will be open. We count
all the unique words in the dataset and assign them unique numbers starting from
zero. We can represent an i-th issue in the dataset as a vector x = (xi1;xi2; . . . ;xim)
of length m, where the element xi j in the vector denotes that word j is present if it
is equal to 1. If the word is missing, the value is 0. This approach is also known as
one-hot encoding [106]. For each issue, we also know its lifetime, i.e., the number
of days it was open, denoted by yi. Formally, we can represent the dataset D as

D = {(xi ∈ Rm,yi ∈ R)}

where x is a vector of features and y is a real valued scalar.
To predict issue lifetime, we want to learn a function f that corresponds to

f (xi) ≈ yi. This learning process is called supervised learning as we are using
already known y values to learn the mapping. In machine learning, learning is an
optimization problem – learning the function f that minimizes some error

min
n

∑
i=1

L(f (xi),yi)

for all elements in dataset D , where L is an objective function, such as squared er-
ror, L(y, ŷ) = y2− ŷ2 where ŷ is the estimated value. The learning problem where
the target variable y comes from a continuous distribution is also called as regres-
sion. After we have trained the model, a new issue n+ 1 is entered in the issue
tracking system. Estimating lifetime for the new issue xn+1 for which we do not

30

know the lifetime is now straightforward by using the learned approximation and
f and calculating

ŷn+1 = f (xn+1)

Regression is used to predict some continuous value. In many other settings,
we are interested in dividing observations into categories and predicting for an
observation which category it belongs to, i.e., y comes from a discrete distribution.
This act is known as classification, or learning the class labels based on feature
vectors. Lets assume we are interested in predicting whether an issue report gets
closed within one month of being reported or not. We have two classes, a positive
class, denoted by 1 which represents the issues that get closed, and a negative
class, which represents the issues that do not get closed in one month, denoted by
−1. For the classification problem, the dataset can be represented as

D = {(xi ∈ Rn,yi ∈ {1,−1})}

Similarly to regression, we define a loss function for classification L(y, ŷ) =
max(0,1− y · ŷ), also known as Hinge loss [4]. The Hinge loss value is zero if
class labels are equal, and one, if they are different.

3.1.1. Logistic regression

Logistic regression is a linear classifier [40,70] that can learn binary class assign-
ments with class probabilities. For binary classification, we can estimate the prob-
ability of the positive class as a conditional probability of features P(y = 1|xi).
Formulating the prediction as linear regression would give us

p(X) = β0 +β1x1 + · · ·+βmxm

where p(x) = P(y = 1|xi) and β j denotes the learned model parameters. However,
such a model would generate probabilities in the whole real value range as it
is not bounded. To estimate probabilities in the range of [0,1], log-odds (logit)
transformation is used

log(
p(X)

1− p(X)
) = β0 +β1x1 + · · ·+βmxm

Transforming with exponential function gives us

p(x) =
eβ0+β1x1+···+βmxm

1+ eβ0+β1x1+···+βmxm

which is the logistic regression. As we have two classes, the final class labels can
be derived by setting a threshold, e.g., if p(x)> 0.5 then the class label is positive,
and otherwise it is negative.

Several approaches are available for training the logistic regression model such
as using gradient descent or stochastic gradient descent to maximize the likelihood

31

function [27, 129]. The stochastic gradient descent (SGD) uses small batches of
data to update the gradients in an on-line fashion. The advantages of using SGD is
that it is fast and scalable to a large number of training samples and features, mak-
ing it suitable for text classification with large number examples. In this thesis,
we use logistic regression with stochastic gradient descent training.

3.1.2. Decision trees

A decision tree can be regarded as a simple rule-based classifier. The classifier
uses a learned tree where each node in the tree corresponds to a rule that follows
conditional branching known from programming languages such as if-then-else.
Following the tree down from the root node, answering the questions, and follow-
ing the corresponding branches, the path will end at the leaf node that gives the
prediction value.

There are several algorithms for learning the tree from the data, such as
CART [28] or C4.5 [114]. We describe the CART algorithm here only as the
Random Forests algorithm used in thesis relies on the CART algorithm internally.
The CART algorithm starts to build a tree by selecting a feature from a dataset
as a root node. It considers all variables and chooses the best variable and split
condition. The split divides the dataset into different subsets based on some con-
dition on the selected variable. Gini impurity determines the suitability of the
split for CART. Gini impurity measures the error rate if one of the class labels
from the selected subset is randomly applied to one of the observations in the
subset [119]. By considering all variables and splits, the final tree minimizes the
classification error rate. The algorithm continues to split nodes recursively until
no improvement can be made. Decision tree outputs a tree that can be visualized
and interpreted by a person.

3.1.3. Random Forests

The Random Forests [29] classifier trains multiple decision trees on the same data,
but for each tree uses different random subsets of the data and random subsets of
features when creating splits for individual trees. The final predictions are created
from finding the frequency of classes output by each individual tree. The random-
ization combined with multiple trees helps to avoid over-fitting. Random Forests
have shown very good performance on different datasets, even when compared to
other well-known methods such as logistic regression, support vector machines or
gradient-boosted decision trees [54].

The Random Forests classifier lends itself to measuring individual feature im-
portance via mean decrease in impurity [28]. For each feature, this method calcu-
lates how much it decreases the Gini impurity of a node in a tree and averages this
quantity across all trees in the forest. This method enables us to rank the important
features in a model.

32

3.2. Predictive model evaluation and selection

There are many algorithms available that can be used for classification. In addi-
tion to picking a suitable classifier for a task, these algorithms themselves have
parameters that need to be decided. For example, decision tree height can be lim-
ited to keep a model simple, the Random Forests has a parameter for the number
of trees to train, and the SGD algorithm needs to have number of iterations spec-
ified. When picking an algorithm and parameter set combination, we need a way
to estimate the suitability of the selected combination.

The overall training process consists of multiple steps. First, we have our initial
labeled data that we divide into two parts – the training set and the test set. We use
the training set only for training, and the test data for evaluating the predictions
obtained from the model. The test set can be used for evaluation as it has the
original labels. Such evaluation should give an approximation of how good the
model is when predicting data for which labels are not known. Next, we describe
some of the model performance measures that are used to evaluate suitability, and
approaches for splitting up the training and test data.

3.2.1. Model performance measures

Let’s consider the issue lifetime classification example presented in Section 3.1,
where the positive class denotes issues that will be closed in a specified period
and the negative class denotes issues that will not be closed in a specified period.
Typically the positive class is denoted with 1 and the negative class with -1 or 0.
For the classification setting, we have the predicted class ŷi and the output from
the classifier. For evaluation purposes, we know the actual class label yi. Next,
we define the concepts needed to measure the suitability and correctness of the
classification.
• TRUE POSITIVE (TP) – The predicted class is P, the actual class is P
• FALSE POSITIVE (TP) – The predicted class is P, the actual class is N
• FALSE NEGATIVE (FN) – The predicted class is N, the actual class is P
• TRUE NEGATIVE (TN) – The predicted class is N, the actual class is N
Next, we define precision and recall:

• PRECISION =
T P

T P+FP

• RECALL =
T P

T P+FN
Precision measures the fraction of correctly classified positive class items over

all items predicted to have positive class. Recall measures the fraction of correctly
classified positive class items over all positive class items. The ideal precision and
recall scores are 1, while the worst case is 0.

The F1-measure is the harmonic mean of precision and recall, defined as F1 =
2 ·(precision ·recall)/(precision+recall). The F1-measure allows us to quantify
precision and recall with a single number.

33

Many classifiers give output in the form of a score or a probability of the pre-
diction being positive class, ranging between 0 and 1. To get the actual class labels
for positive and negative classes, we need to pick a threshold from the same range.
A threshold value of t would assign negative class label to all predictions with a
probability less than t and all others will get the positive class labels. Varying
the threshold can give different outputs regarding the true positive and the false
positive rates.

The receiver operating characteristic (ROC) plot displays the true positive rate

(
T P

T P+FN
, recall) and the false positive rate (

FP
FP+T N

) change with changing

the threshold value. Analyzing the ROC curve can help one find the optimal
threshold in terms of desired error rates. The area under curve (AUC) measures
the area under the ROC curve, describing the ROC plot in a single number. The
AUC measure helps to compare classifiers over all the possible threshold values.

In other terms, the AUC measures the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative in-
stance. In the context of this work, AUC measures what the probability is with
which we can rank a randomly chosen closed issue higher than a randomly chosen
issue that will not close. For a random classifier, the value of AUC will be 0.5, for
an ideal classifier it will be 1. An AUC score of less than 0.5 could indicate that
the classification problem has not been designed properly or the classifier picks
labels from the opposite class.

Different metrics have different purposes. The precision and the recall mea-
sure the quality of the classifier if we are interested in predicting the class labels.
The AUC, on the other hand, conveys the quality of the classification if the thresh-
old can be varied or we are interested in finding the most probable positive class
elements.

3.2.2. Model validation and selection

The main goal when training a model is to obtain good predictive power and pre-
vent over-fitting. Over-fitting happens when the model can classify with a good
performance on the training data and might be unable to generalize on a dataset
that was not used for training. To minimize such risk and get a good approxi-
mation of the performance on future unseen data, specific procedures need to be
followed. The labeled dataset is split into three parts: a training set, a validation
set, and a test set. The training set is used to train the model. The validation set is
used to tune the hyper-parameters of the model or select the model. The test set is
only used for the final evaluation. Calculating performance measures on the test
set gives an approximation of what the model performance would be for unseen
data.

Splitting the data into different subsets is typically done randomly, so that 80%
of the initial data is used for training and the remaining 20% is used for the test
set. The training set can again be divided into actual training and the validation

34

set. The amount of labeled data decreases with the splitting and to reuse the
labeled data, cross-validation can be used. Cross-validation is the process where
training data is split into multiple subsets. For example, if it is split into ten
subsets, for every parameter combination that needs to be evaluated, the model
is trained on the nine subsets, and evaluated on the remaining subset. The final
performance can be obtained by averaging over all the folds. This enables reusing
all the training data, but never actually evaluating the data that was set aside for
testing.

Random partitioning sometimes is not enough when the dataset contains tem-
poral information. Consider a dataset of issue reports, where reports originate
from different time periods between 2014 and 2015. Let’s assume that the project
introduced a new release of a specific platform in 2015 and subsequently there
were a lot of bug reports about that release. Randomly splitting the data might
divide some issue reports created in 2015 into both the training and test sets.
Leaking future data into the training set could make the model perform better
as both training and test data contained training examples from the same period.
However, if we want to apply such an approach in practice, we cannot use features
from future issue reports.

Temporal-splitting of the dataset divides training and test so that all test set
data points are temporally placed strictly after training set data points. To extract
the validation set from the training data, the same temporal ordering criteria must
be used. The downside of this approach is that it prevents the usage of cross-
validation and reduces the amount of data for evaluation.

Model selection and validation is part of any statistical modeling process.
Model selection has also received attention in the context of software engineer-
ing tasks. Tantithamthavorn et al. found that hyper-parameter tuning can cause
up to a 40% improvement in AUC for defect prediction [122]. Kocaguneli and
Menzies [88] recommend to use cross-validation (and especially leave-one-out
validation) for software effort estimation modeling to obtain models with the low-
est bias and variance.

3.3. Network analysis

Some datasets are not easily represented by tabular data, for example, if we need
to model relationships between entities. In relational settings, we are not only
interested in linked entities, but also the connections that are formed by following
multiple links. When a software project includes a library, a dependency relation-
ship is formed. Similarly, the dependency itself can have dependencies, leading
to a connected system of software packages. How do we analyze and model such
a system to understand its properties? In this thesis, we use the concept of depen-
dency networks. Networks are composed of nodes and connected edges and have
some additional meta-data, such as node or edge attributes.

Networks can be modeled with graphs. A Graph G is defined as an ordered

35

pair of G = (V,E), where V is a set of nodes (or objects) and E is the set of edges
(relationships) formed between the set of nodes. In the software dependency set-
tings, the nodes represent software packages and the edges between them denote
if one package depends on another. In our setting, the edges are directed, i.e.,
(v1,v2) is a directed edge from v1 to v2 but there is no edge the other way around,
indicating that the relationship is only valid in one direction. The edges can also
be undirected. Edges can be given weights or additional attributes to denote the
properties of the relationships being modeled.

Modeling a network with graphs enables us to study its properties and compare
it with other networks.

3.3.1. Paths and components

In a graph, we say that two nodes are connected if there is an edge between them
or there exists a path between them. A path between two nodes is a sequence of
edges that connect them and are distinct. In a directed graph, all the edges of a
path have to be in the same direction.

A component in the graph is a maximal set of nodes where there exists a path
between each pair of nodes in the component. A subgraph of a graph G is a graph
composed only of subset of G vertices and edges.

A weakly connected component in a directed graph is a subgraph where each
node is connected with every other node in the subgraph via an undirected path.
Similarly, a strongly connected component is a subgraph where there exists a
directed path between every pair of nodes.

3.3.2. Centrality

A typical question in network analysis is which node is important in a given net-
work. The importance can be interpreted and defined in many ways, but typically
it quantifies the connectedness of the node or how many paths pass through the
node. Node (or edge) centrality is a measure of the importance of the node (edge)
in the network. Some of the commonly used node centrality measures are de-
gree centrality, betweenness centrality, and closeness centrality [107]. The degree
centrality measures the number of edges connected to a node. The betweenness
centrality measures the number of shortest paths in the graph that pass through
that node. The closeness centrality measures the average length of the shortest
path from the corresponding node to any other node in the network. All these
measures express node connectedness in the graph. Alternatively, we can say that
if a node with high centrality is removed from the graph, it will break many paths
and connections.

36

4. UNDERSTANDING ISSUE DYNAMICS IN GITHUB
PROJECTS

4.1. Introduction

This chapter studies the extent to which open-source projects cope with the inflow
of issues they are subjected to throughout their lifetime. Based on a sample of
more than 4,000 GitHub projects, we analyze the temporal dynamics of issues
regarding how often they are created (arrival rate), the number of pending issues,
and their lifetime. Specifically, we address the following research questions:
• RQ1.1: What is the issue-arrival rate and how does it change over time?
• RQ1.2: How do opened and pending issue numbers evolve over time?
• RQ1.3: What is the average issue lifetime and how does it change over

time?

4.2. Dataset and method

The dataset for issue lifetime analysis is extracted from GHTorrent [60]. At the
time of the data extraction (April 2, 2015), GitHub had more than 7 million project
repositories (not counting forked ones). Not all repositories in GitHub are soft-
ware projects [81], and many of them use GitHub for code hosting but not for
issue tracking.

4.2.1. Filtering

In order to avoid analyzing non-software projects (e.g., pure documentation
projects), projects that do not use GitHub for issue tracking, and other special
cases such as one-man projects or projects with little issue activity, we filtered the
dataset using the following rules:
• Projects must have been created between January 1, 2012 and December

31, 2014. We limited our observation period to this interval, because the
data of older projects is only partially available in GHTorrent. Even though
the dataset also contains events up to April 2015, we chose 2014 as the
ending date due to the delayed crawling behavior of GHTorrent in which
not all changes are instantly visible.
• Projects must not be forks of existing GitHub projects. The pull-based con-

tribution mechanism encourages forking repositories only for the purpose
of committing a change and then opening a pull request to the base repos-
itory. In these settings, the base repository’s issue tracker is used as the
main issue tracker. However, forks are sometimes made for other purposes
as well, such as when the development has stopped in the base repository
and is continued by a new team in the forked repository. In these cases, the
issue tracker activity might also be present in the forked repository.

37

• Projects must have at least 100 opened issues and one closed issue. This
criterion guarantees that we only include projects that actively use the issue
tracker. The idea of setting this criteria is that with 100 issues it is unlikely
that somebody is using the repository as a personal project or testing GitHub
capabilities.
• Projects must have at least five commits to the main repository. This crite-

rion guarantees that we only analyze projects where there is some develop-
ment activity. Although five might seem like a small number of commits,
developers can use commit squashing when merging into the master branch,
hence five commits can include multiple features etc. Dabbish et al. [45]
discovered through interviewing GitHub users that developers use commits
as a measure for deciding whether a project is active or not.
• Projects must not show any activity before the repository creation date. In

GitHub, it is possible to fork a repository and therefore inherit an already
existing code base which technically shows up as code committed before
the project creation.

An examination of the selected data revealed that some projects had unex-
pectedly high issue-creation activity over short periods, such as several thousand
issues created in a single day. This phenomenon indicates a data import from an
older tracking system or the automatic creation of issues via GitHub’s API. To get
rid of possible import behavior, we additionally filtered out projects that created
or closed more than 2,000 issues in any single month or created more than 500
issues in any single day.

As the data ranged between 2012 and 2014, the selection includes projects
with a maximum of 3 years of history and a minimum of 1 month of history. We
decided to remove projects shorter than 8 months to have enough time to observe
issue closing in every retained project.

Issues can also be reopened and closed multiple times. This affects about 4%
of the issues in our sample. We decided to remove issues that were reopened
and focus on the “first-closing time” as it is the most common behavior. The
phenomenon of issue reopening is a question that deserves separate treatment.
Note also that an issue being closed in the dataset does not necessarily imply that
it has been “fixed” to the satisfaction of the issue creator. An issue may be closed
for a variety of reasons, such as it being a duplicate issue or because someone in
the project team deems it irrelevant or unresolvable.

4.2.2. Descriptive statistics

After filtering, 4,452 projects met our criteria. Figure 2a shows the distribution of
the projects’ observation time lengths. Our sample contains projects with obser-
vation times ranging from 0 to 35 months. We observed that there were relatively
few projects with a short observation time. We wanted to have at least 100 projects
within each observation time interval, in order to have samples with comparable

38

0 5 10 15 20 25 30 35 40
Project observation time

0

50

100

150

200

N
um

be
r o

f p
ro

je
ct

s

(a) Number of projects per project ob-
servation bucket (in months). Dark col-
ored bars represent the sample used in
the analysis.

102 103 104

Number of issues

0
50

100
150
200
250
300

N
um

be
r o

r p
ro

je
ct

s

(b) Number of projects per number
of opened issues bucket (logarithmic
scale).

Figure 2. Basic properties of the dataset.

sizes. This resulted in the removal of all projects with observation less than eight
months, i.e., projects created after April 2014. In Figure 2a, projects that were
filtered out due to their observation time are marked in gray.

The dataset obtained after the above filtering contains 4,024 projects, compris-
ing 967,037 issues in total of which 675,970 (69.9%) were closed and 291,067
(30.1%) were not closed during the observation period.

The number of issues per project (Figure 2b) varies by a factor of almost 50,
the smallest project having 100 issues and the largest project having 4,885 issues
in total. The mean number of issues per project is 240 and the median is 163.

4.2.3. Terminology

The centerpiece of our analysis is issues, i.e., bug reports, new feature requests,
and development-related changes such as refactoring. In GitHub, issues are typ-
ically free text, can be submitted by anyone, support commenting, and can be
referenced from other issues. The collected dataset records when an issue was
created and by whom, and a set of events associated such as closing, reopening,
being commented, or being referenced from another issue. All these events are
marked with the time of the action and which user is responsible for it.

We distinguish the following issue states:
• Opened issue – Newly created issue. Each issue is opened only once during

its lifetime.
• Pending issue – Issue that has been opened but not yet closed. These issues

denote unresolved cases that need attention or actual work.
• Sticky issue – Issue that did not get closed during our observation period.

Sticky issues are a subset of pending issues.
• Closed issue – Issue that is marked closed in the issue tracking system. In

practice an issue might be reopened and closed again, but here we use only
the first closing event. We do not distinguish closed issues based on the
resolution type, meaning that a closed issue might have been closed after
the bug was fixed or closed without any activity.

39

One might consider our notion of pending issues as too simplistic since we do
not take into account re-opening and re-closing. The justification for this is the
fact that re-opening and re-closing affects only 4% of all issues.

Our dataset contains projects that were created at different points in time dur-
ing our observation period and therefore have varying time periods during which
we could observe project behavior. Below we list our time-related terminology:
• Issue lifetime – Time from the first opening of the issue to the first closing

of the issue.
• Project observation time – Number of months between project creation

and the end of the observation period (December 31, 2014). This number is
obtained by calculating the number of days between the two dates, dividing
by 30.4 (the average number of days in a month), and rounding down to the
nearest integer.
• Relative time – Each project is transformed into a relative timescale. The

relative timescale starts from repository creation, and after every 30.4 days,
a new relative month starts. This results in the final month typically not
being a full month, as projects can start on any day during a month, but
our observation period ends with the 31st day of a month. Relative time
”zero” represents the first month of the project observation time, relative
time month ”one” represents the second month of the project observation
time.
• Observation period – From January 2012 until end of December 2014.

This is the period for while we have data about projects and can use for the
analysis.

4.2.4. Notations

In our analysis, we focus on the following metrics over time: opened issues (newly
created issues), sticky issues (issues that do not get closed), and pending issues
(open issues that will get closed). In the following section, we give the definitions
of these metrics.

Let N be the set of projects and T the set of all possible project observation
times. Each project i ∈ N has an observation time of Ti ∈T .

We denote a single issue as a tuple (a j,b j) where j is a unique issue identifier,
and a j and b j denote opening and closing times since project creation (measured
in minute resolution). For each issue, it must hold (a j ≤ b j)∨ (a j ≤ Ti ∧ b j =
nil). Let PIi denote the set of issues associated with project i. Even though Ti

has discrete values, we assume that a j and b j are continuous and have minute-
level resolution in order to be able to derive exact ordering between closing and
opening. Let m(a j) denote the corresponding relative month of a j and m−1(t) the
value in minutes for the corresponding month end date.

Let oi,t denote the number of total newly opened issues for a project i at a

40

relative time t ∈T , then

oi,t = |{(a j,b j)|(a j,b j) ∈ PIi,m(a j) = t}|.

We use si,t to denote sticky issues, i.e.,

si,t = |{(a j,b j)|(a j,b j) ∈ PIi,m(a j)≤ t ∧b j = nil}|.

It represents sticky issues as the total number of sticky issues by the end of month
t.

Let pi,t denote the number of pending issues at time t. The number of pending
issues is the number of opened – but not yet closed – issues at a certain point of
time (measured in minute resolution). Thus, we devise the number of pending
issues pi,t for a project i during a month t as follows:

pi,t =
1

m−1(t−1)+1−m−1(t)

d≤m−1(t)

∑
d=m−1(t−1)+1

δi,d

where δi,d denotes the number of open issues for project i at minute resolution d,
i.e.

δi,d = |{(a j,b j)|(a j,b j) ∈ PIi,a j ≤ d∧ (b j = nil∨b j > d)}|.

Finally, issue lifetime for issue j, denoted by LTj, is the number of days be-
tween issue creation and closing and can be calculated only for closed issues, i.e.,
b j 6= nil:

LTj = (b j−a j)/(60∗24).

4.2.5. Examples

We illustrate our concepts with the help of an example project, Bootstrap1, a front-
end framework for creating user-interfaces in browsers.

Figure 3a shows the numbers of opened and sticky issues observed per month.
Note that here we only show the share of sticky issues that correspond to issues
opened in the month of observation. Each bar on the plot corresponds to oi,t and
si,t − si,t−1 (except for the case t = 0, the sticky issues is equal to si,t). We see
that Bootstrap had increasing numbers of opened issues during the first year of
observation, then the number of opened issues leveled off. The monthly share
of sticky issues started to rise around month 20. One reason for this could be
that our observation period limits the available time for observing issues opened
after month 20 being closed. Figure 3b plots the number of pending and sticky
issues observed over time. We see that the number of pending issues increases
and the majority of pending issues is made up by sticky issues. When comparing

1https://github.com/twbs/bootstrap

41

https://github.com/twbs/bootstrap

0 5 10 15 20 25 30
Relative time, month

0

20

40

60

80

100

120

140

To
ta

l

Opened Issues
Share of Sticky Issues

(a) Opened issues for Bootstrap.

0 5 10 15 20 25 30
Relative time, month

0

100

200

300

400

500

600

To
ta

l

Pending Issues
Sticky Issues

(b) Pending issues for Bootstrap.

Figure 3. Opened, pending, and sticky issues for Bootstrap.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Month

0

50

100

150

200

250

Is
su

e
Li

fe
tim

e
[D

ay
s]

(a) Issue lifetime distributions over time
for Bootstrap.

0
2
4
6
8

10
12
14
16

Is
su

e
Li

fe
tim

e
[D

ay
s]

(b) Issue lifetime distribution for Boot-
strap (all issues).

Figure 4. Issue lifetime for Bootstrap. For both figures, outliers are removed. The max-
imums correspond to 1.5∗ (75p−25p)+75p, where 25p and 75p denote corresponding
percentiles.

the relative share of sticky issues with opened issues per month, we observe that
the majority of opened issues get closed, but the amount of work still to be done,
represented by the amount of pending issues, is continuously increasing due to the
number of sticky issues.

Figure 4a shows issue lifetime distributions as boxplots for groups of is-
sues opened in a specific month of the project observation time (relative time
in months). Note that in Figure 4a month 0 is an abbreviation for the time up
to the beginning of month 1, i.e., representing the observation time interval (0, 1)
months. Issue lifetimes remain stable on average over the project observation time
(mean lifetime equals 12.9 days, median lifetime equals 0.78 days). We see, how-
ever, that issues created in month 0 have a considerably above-average lifetime
than those created in later months. One possible explanation is that during the
first month issues are entered that require additional development and this usually
takes more time than simply correcting a bug. In this particular example, however,
there were only 8 opened issues in month 0. Therefore, this is not an important
phenomenon. The overall issue-lifetime distribution, shown in Figure 4b, indi-
cates a small median (0.78 considering all issues) but large variation (standard
deviation 33.19, maximum value 351.94, number of total issues 1,566).

42

4.3. Results

In the following subsections we answer the research questions outlined in the
introduction. First, we look at the opened issue rates, then we analyze the pending
issues, and finally we analyze the issue lifetime distributions.

4.3.1. Issue arrival rate (RQ1.1)

To answer RQ1.1 we investigate the arrival rates of opened issues in our set of
GitHub projects. We analyze projects with different project observation times
separately because we suppose that the length of the observation time has an effect
on the opened issues. For example, projects with short observation times might
(on average) have different numbers of opened issues during the first months of
the observation time due to the increased popularity of GitHub and the size and
type of projects hosted in GitHub.

We classify projects based on observation times into buckets and calculate the
average number of opened issues per month for all projects in a bucket separately.
Figure 5 shows a line for each group of projects in the same bucket. There are T
buckets in total and for each line l represents a bucket, while a point t on the line
represents the average number of opened issues at relative time since creation of
the projects in the bucket (i.e., the start of the project observation time), given by
the following formula:

Ot,l =
1

∑i∈N∧Ti=l∧t≤l 1 ∑
i∈N∧Ti=l∧t≤l

oi,t

Looking at Figure 5, we observe a relatively higher average number of opened
issues right after project creation as compared to a few months after project cre-
ation. This tendency is visible for all project buckets but most explicitly for
buckets of projects with shorter observation times. Overall, we see that the av-
erage number of opened issues is stable or shows a slight negative trend over the
project observation time. For the first month, a project in GitHub receives an
average of 19.7 opened issues, but one year later, during the 12th month, it re-
ceives 10.3 opened issues, on average. The relative decline of opened issues after
the first few months might be explained as a start-up effect, i.e., at the beginning
many issues are submitted but never worked on because they represent unrealis-
tic features to be included in the project. Furthermore, we observe that projects
in buckets with shorter observation times seem to have significantly higher num-
bers of opened issues than those in buckets with longer observation times. For
example, in the first month after project creation, projects in buckets with the
shortest observation time have on average more than five times more opened is-
sues than projects with the longest observation time. This might be explained by
the relative growth of GitHub and the increasing size of projects in recent times.
The drop-offs in the last months are caused by a technical artifact. Namely, our
relative time line starts with repository creation, and due to this, the last month

43

0 5 10 15 20 25 30 35
Relative time, month

0

5

10

15

20

25

30

35

M
ea

n

Bucket [8,9) Bucket [35,36)

Figure 5. Opened issues for projects with different lifetime. Color intensity varies with
observation period length.

is probably not a full month, as the observation period ends at the end of the
month. In addition, we observe that for some groups, there are outlier months,
such as the outlier at month 12. The outlier is caused by two different projects
opening 818 and 694 issues in a single month (repositories glasklart/hd and
MrNukealizer/SCII-External-Maphack respectively). We observe stable av-
erage numbers of opened issues for all buckets with relative times after month
28.

To understand what the ratio (or share) of sticky issues to opened issues for
projects with different observation times is, we calculated the ratio of sticky to
opened issues for different buckets. In Figure 6, we display the ratios for each
bucket and display the corresponding lines in four different graphs, each con-
taining a subset of buckets. The purpose is to make patterns between groups of
buckets more visible. The ratio of sticky to opened issues varies mostly between
0.2 and 0.6, meaning that still more issues get closed than stay open during the
observation time. We observe that the ratio of sticky issues is higher for early
months, then levels off, and finally starts to rise due to the technical effect of
project observation time ending. The exception is the set of recent projects with
short observation times. Compared to other buckets, projects in buckets with ob-
servation times 8–14 have fewer sticky issues in the early months followed by a
steady growth of the ratio. One possible explanation for this phenomenon might
be that issue submitters in recent projects are more realistic in their issue manage-
ment and do not fill the issue tracker with issues that will never be worked on or
are resolved only after a long time. Alternative explanation could be that, projects
with longer observation times are not using the repository any more and the de-
velopment has stalled, causing accumulation of sticky issues. Another possible
explanation could be that due to the growth of the projects maintained in GitHub,
more development capacity is available to work on issues and thus issues receive
more attention and are resolved more quickly. This explanation, however, would

44

0 5 10 15 20 25 30 35
Relative time, month

0.0
0.2
0.4
0.6
0.8
1.0

st
ic

ky
/o

pe
ne

d
Buckets 8-14

0 5 10 15 20 25 30 35
Relative time, month

0.0
0.2
0.4
0.6
0.8
1.0

st
ic

ky
/o

pe
ne

d

Buckets 15-21

0 5 10 15 20 25 30 35
Relative time, month

0.0
0.2
0.4
0.6
0.8
1.0

st
ic

ky
/o

pe
ne

d

Buckets 22-28

0 5 10 15 20 25 30 35
Relative time, month

0.0
0.2
0.4
0.6
0.8
1.0

st
ic

ky
/o

pe
ne

d

Buckets 29-35

Figure 6. Ratio of (shares of) sticky issues to opened issues.

not explain why the ratio for projects with short observation times strongly grows
after a few months.

To answer RQ1.1, we can conclude that the average monthly rate of opened
issues for projects in our data set decreases over time. During the first 12 months,
the average number of issues opened drops roughly by a factor of two. The ratio
of sticky issues to opened issues changes differently over time for projects with a
shorter observation time as compared to projects with a longer observation time.

4.3.2. Pending issue growth (RQ1.2)

To answer RQ1.2 we analyzed the dynamics of pending issues and sticky issues
over time. Again, we consider projects with different observation times separately.
In Figure 7a, displaying the average number of pending issues over time, we clas-
sified projects with different observation times into buckets. For each bucket we
show the average of pending issues over time as different lines Ti, the values of
each line defined as:

Pt,l =
1

∑i∈N∧Ti=l∧t≤l 1 ∑
i∈N∧Ti=l∧t≤l

pi,t

where l denotes the project observation time and t is the relative time for projects
with observation time l, and thus it must always hold that t ≤ l. Similarly, in
Figure 7b we plot the total number of sticky issues over time for each bucket.

One can see that pending issues are growing at approximately constant rates
for all buckets. This phenomenon is underpinned by the growth pattern of sticky

45

0 5 10 15 20 25 30 35
Relative time, month

0

20

40

60

80

100

120

M
ea

n
Bucket [8,9) Bucket [35,36)

(a) Pending issues.

0 5 10 15 20 25 30 35
Relative time, month

0

20

40

60

80

100

120

M
ea

n

Bucket [8,9) Bucket [35,36)

(b) Sticky issues.

Figure 7. Pending and sticky issues. Even though, sticky issues are a subset of pending
issues, we have plotted them on separate Figures for clarity.

issues, issues that have not been resolved within our observation period.
The growth rates for both pending and sticky issues are different between buck-

ets. Generally, there seems to be a tendency that more recent projects (shorter
project observation time) have on average higher growth rates in the early months
of observation time. To quantify this, we divided projects into two groups. First
group was composed of projects with observation time less or equal than 12
months and the other group composed of projects with observation time longer
than 12 months. We compare the number of pending issues for both groups at
month 10 using a one-sided Mann-Whitney’s U test [97]. For the test, the null
hypothesis indicates that the distributions of the groups are equal. Alternative hy-
pothesis indicates that values of one group are larger than the other’s. The test
rejected null hypothesis (p-value < 10−15) indicating that the first group has more
pending issues at the month 10. Comparing the number of pending issues for the
months 8, 9, 11, 12 also yielded in the first group having more pending issues
than the second group (p-value < 10−4 for all tests). On the other hand, there
exists strong differences between growth rates of buckets with just a one month
difference of project observation time. For example, projects with an observation
period of 34 months have in time interval (34, 35) 25 percent more pending (and
sticky) issues than projects with 35 months of observation period in the same time
interval.

As an answer to RQ1.2, we can say that pending issues are growing constantly
and this comes mostly from the sticky issues that do not get resolved during our
observation period.

4.3.3. Issue lifetime (RQ1.3)

So far, we have observed that there is a steady arrival of new issues and an in-
creasing number of pending (and sticky) issues. Although the number of pending
issues grew, most opened issues actually got resolved (closed) during the project
observation time. In this section, we answer RQ1.3 by analyzing issue lifetimes
in Github projects.

46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Relative time, Month

0
10
20
30
40
50
60
70
80

Li
fe

tim
e

[D
ay

s]

Figure 8. Issue lifetime distribution depending on issue creation month, each month t
lists distribution lifetime of ILTt . Outliers have been removed.

Figure 8 shows issue lifetime distributions for issues opened during each
month (relative time from the start of project observation time) of all projects
in our data set, i.e., we do not classify data into buckets with the same project ob-
servation times. We consider all issues that are not sticky. Each boxplot represents
issue lifetimes for the corresponding ILTt group, defined as ILTt = {LTj|(a j,b j)∈
PIi, i ∈ N,b j 6= nil,m(a j) = t}.

In Figure 8 one sees variation in maximum values but medians vary little over
time. The median issue lifetime is 3.1 days for issues opened in month 0 (time
interval [0, 1]), 4.1 days for issues opened in month 10 (time interval [9, 10]), 2.89
for issues opened in month 20 (time interval [19, 20]), and 1.78 for issues opened
in month 30 (time interval [29, 30]). Thus, one can observe a slight increase
from month zero until month 10 in the median value, and then a slight decrease.
Around month 20, the median starts to drop more, but this might be a technical
effect, caused by the fact that issues opened towards the end of our observation,
in order to be included in the lifetime measurement, must have been closed before
the end of the observation period, thus, leaving out all issues that might be closed
after a longer lifetime.

Figure 9 shows distributions of issue lifetimes for groups of projects with the
same project observation times l. Each boxplot represents the issue lifetime distri-
bution for the set ILLl , defined as ILLl = {LTj|(a j,b j) ∈ PIi, i ∈ N,b j 6= nil,Ti =
l}. The observation that variation of issue lifetimes is growing for projects with
longer observation time is not surprising, as in projects with longer observation
time there is more time available to solve an issue. On the other hand, the median
values seem to be stable. The median for projects with an observation time of
8 months is 2.64 days, for projects with an observation time of 20 months, it is
3.4 days, and for projects with an observation time of 30 months, it is 3.61 days.
The variation over all projects is small, considering that the theoretical maximum
difference can be more than four times for projects with an observation time of 8

47

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Project observation time buckets

0

20

40

60

80

100

120

Is
su

e
lif

et
im

e
[D

ay
s]

Figure 9. Issue lifetime distribution depending on the project lifetime, each lifetime
bucket l lists distribution of lifetime for issues in ILLl .

months and projects with an observation time of 35 months.
As in the previous section, we also analyzed different project buckets sepa-

rately. In Figure 10, we show median issue lifetimes for each group of projects
with different observation times. Formally, there are again T lines in total and
for each line l, we calculate a median for a set of issues MLTl,t , defined as
MLTl,t = {LTj|(a j,b j) ∈ PIi, i ∈ N,b j 6= nil,Ti = l,m(a j) = t}. We observe that a
few outliers distort the big picture. Ignoring those outliers, we observe that medi-
ans are stable. The drop in the last months of the observation times is due, to some
extent, to the fact that issues requiring a longer time for closing are excluded from
the analysis. Interestingly, median values for projects in different buckets are very
similar, which is especially true for projects with observation times between 15
and 35 months. To answer RQ1.3, we can conclude that issue lifetimes are stable
over project observation times.

4.3.4. Discussion

Our results partly confirm and partly contribute to published research. For exam-
ple, our results related to RQ1.1 confirm the results of Kenmei et al. [82] who
studied trends in newly opened issues. They found that for some systems (e.g.,
JBoss) there is an increasing trend and for others (e.g., Mozilla) there is not. Simi-
larly, our results, which are averages over large numbers of projects, do not show a
trend of increasing numbers of opened issues over time for projects with compara-
ble observation times. However, we found that more recent projects, i.e., projects
with a shorter observation time in our study period, tend to have generally higher
volumes of opened issues than older projects, i.e., projects with longer observa-
tion times. Furthermore, more recent projects seem to have a decreasing trend in
numbers of opened issues, while older projects show a more stable behavior.

Garousi [56] analyzed three open-source projects and found evidence of in-
creasing work and short issue lifetimes. He showed that for jEdit and DrPython

48

0 5 10 15 20 25 30 35
Relative time, month

0
1
2
3
4
5
6
7

Is
su

e
lif

et
im

e
[d

ay
s] Buckets 8-14

Median 2.9

0 5 10 15 20 25 30 35
Relative time, month

0
2
4
6
8

10

Is
su

e
lif

et
im

e
[d

ay
s] Buckets 15-21

Median 3.8

0 5 10 15 20 25 30 35
Relative time, month

0
20
40
60
80

100

Is
su

e
lif

et
im

e
[d

ay
s] Buckets 22-28

Median 4.0

0 5 10 15 20 25 30 35
Relative time, month

0
5

10
15
20
25
30

Is
su

e
lif

et
im

e
[d

ay
s] Buckets 29-35

Median 3.9

Figure 10. Median issue lifetimes. For each group, we have calculated the median issue
lifetimes over all issues over all months in that group.

projects, the fraction of issues that are closed within the first day is 23% and 42%
percent, respectively. Related to RQ1.2, we found that for Github projects, the me-
dian of issue lifetimes varies between 2 and 4 days. Thus more than 50% of issues
get closed after 4 days at the latest , and in many cases earlier. Thus, our results
are closer to those of Garousi [56] than to those of Marks et al. [99] who found
that for Mozilla 46% of the bugs are closed after three months of bug creation,
while for Eclipse 76% are closed. The findings of Grammel et al. [63] regarding
closed-source IBM Jazz projects suggest that community-created issues can be
valuable, but they are handled differently than those created by project members.
The average issue lifetime for community-created issues is 39 days, but for the
team issues it is 5.9 days. These results are comparable to the 12.9 average issue
lifetime we observed for the Bootstrap project. However, we also saw that median
values are much smaller (e.g., 0.78 days for Bootstrap) and issue lifetime distri-
butions are extremely long-tailed. Thus, reporting mean values of issue lifetime
might not be useful.

Lujiten et al. [95] studied issue report handling in GNOME projects, focus-
ing on bug reports (software defects). They found evidence of more new bug
reports being created than resolved over time, resulting in the growing backlog of
issues. They developed Issue Churn View, a method for visualizing issue backlog
contents separated into groups of issues based on the lifetime. The visualization
revealed that majority of the backlog is composed of issues that have been open
for more than 26 weeks and the absolute numbers for long-living issues is grow-

49

ing. Yet, at the same time new issues are being opened and resolved. Our findings
align with theirs, confirming the increasing number of sticky and pending issues.

Our results regarding the trend of increasing pending and sticky issues over
time (RQ1.2) seems to be related to the observation of highly positively skewed
distributions of issue lifetimes.

4.3.5. Design implications

The exploratory analysis of issue lifetime reveals many potential areas for im-
provement in issue management and issue tracking systems in open-source
projects.

The growing number of pending issues indicates that projects should make
fine-grained statistics about issue resolution visible, such as the average issue res-
olution time and number of issues closed in recent days. This helps potential users
to get an overview of how active the project is and incorporate resolution time into
their project selection criteria, if they are considering adopting a project.

Another aspect would be to evaluate automated issue triaging, severity esti-
mation methods to rank important issues higher. Even though several methods
have been proposed [58, 65, 125, 143], there is still a lack of empirical evidence
about how these methods should be applied in practice. Even automatically clos-
ing issues after some period of inactivity could bring clarity and transparency, as
we observed issues are left open for long periods and those that get closed, get
resolved relatively fast. If an issue is still relevant after closing, the stakeholders
can automatically reopen it. Today there exists a bot on GitHub [113] that can
be configured to automatically close stale issues after some period of inactivity.
Searching for the phrase ”This issue has been automatically marked as stale be-
cause” on GitHub in October 2018 revealed 49,865 issues, of which 7,741 are
open and 42,124 closed. This illustrates that there is a need for such functionality.

4.4. Threats to validity

In this section we briefly discuss threats to validity that may affect our results.
Construct validity threats concern the relationship between theory and observa-
tion. In our study, these threats can be mainly due to the way we measure the
various types of opened, closed, pending, and sticky issues as well as to the qual-
ity of the data extracted from GitHub, and also due to the fact that we neither
distinguish between types and sizes of projects nor issue categories like bug fixes,
enhancements, refactoring, and so on. We tried to address the issue of data quality
by defining exclusion criteria that filter out projects with certain data anomalies,
e.g., low activity, small size, and issue imports due to changes in the issue tracker
system used.

External validity concerns the generalization of the findings. Different from
most of the studies presented in related work, our results rely on the analysis of
more than 4,000 GitHub projects over a time period of three years. We believe that

50

our results are to some degree representative of open-source projects in general.
However, we noticed that there is some variation between projects depending on
the length of the observation time. Also, we do not distinguish between types of
projects and application domains. Finally, we would like to point out that closed-
source projects might have different issue behaviors due to the more controlled
environment in which these projects are conducted.

4.5. Summary

Issue trackers are important for software projects to manage bugs and as a general
task list indicating development actions needing to be done.

We analyzed the issue dynamics of more than 4,000 GitHub projects. Un-
derstanding issue volumes and issue lifetimes can be a source for understanding
project performance and planning project resources. Once typical evolution pat-
terns for issues are better understood, they might become an indicator of the state
of a project and its future outlook.

The primary finding about the increasing number of pending issues over
project lifetime indicates the need for better issue management tooling to prevent
issue creep up in open-source projects.

51

5. PREDICTING ISSUE LIFETIME IN GITHUB
PROJECTS

5.1. Introduction

In the previous chapter, we observed that GitHub repositories would have pending
issues accumulate over time. In this chapter, we build a model to predict whether
an issue will be closed during a specified time frame.

Within the scope of the problem of issue lifetime prediction, this chapter seeks
to answer the following research questions:
• RQ2.1: What level of accuracy is achieved by classification models trained

to predict issue lifetime at different calendric time points in an issue’s life-
time and for different calendric periods (one day, week, one month, one
quarter, one semester, and one year) using both static and dynamic features
of an issue as well as contextual features?
• RQ2.2: What features are most important when predicting issue lifetime?

5.2. Approach

In this setting, we address the problem of predicting, at a given time point during
an issue’s lifetime, whether or not the issue in question will close after a given
time horizon, e.g. predicting whether an issue that has been open for one week
will remain open one month after its creation. The general problem of issue (or
bug) lifetime prediction has received significant attention in the research litera-
ture. The focus of this study differs from previous work in four respects. First, the
bulk of previous work has focused on analyzing a small number of hand-picked
projects. In contrast, we study the prediction problem based on a large sample of
projects hosted in GitHub. Second, most previous work has focused on exploiting
static features, i.e. characteristics extracted for a given snapshot of an issue – typ-
ically issue creation time. In contrast, the present study combines static features
available at issue creation time with dynamic features, i.e. features that evolve
throughout an issue’s lifetime. Third, previous approaches focus on predicting
lifetime based on characteristics of the issue itself. In contrast, the present study
combines characteristics of the issue itself with contextual information, such as
the overall state of the project or recent development activity in the project. Fi-
nally, most previous studies do not employ temporal splits to construct prediction
models. In other words, models are trained on future data and then evaluated
on past data. In this study, we construct models predictively using strict tempo-
ral splits such that predictions are always made based only on past data, which
reflects how such predictive models would be used in practice.

52

Figure 11. Issue lifetime box-plots for closed and sticky issues. The green-filled line
represent outliers not falling into the inter-quantile range.

5.3. Dataset

The dataset in this study is the same as in Chapter 4 and follows the same dataset
extraction process as described in Section 4.2.1. In addition, we used GHTorrent’s
MongoDB service [60] to query the issue title and body for all the issues (queries
issued in January 2016).

5.3.1. Analysis of issue lifetime

Figure 11 shows the issue lifetime distribution for the 69.9% of issues that get
closed in the observation period (bottom box-plot) and for the set of remaining
“sticky issues” (top box-plot). We use the term sticky issue to refer to issues that
do not get closed in our observation period. For the sticky issues, the lifetime is
calculated with the assumption they were all closed on January 1, 2015 (recall that
we only retained issues created in 2014 or before).

The median lifetime for the closed issues is 3.7 days, the mean lifetime is 32.6
days, and 90% of issues get closed in 96.4 days or less. We observe that the
median lifetime for sticky issues is 280 days, which is approximately 75 times
longer than for closed issues. This long lifetime gives us confidence that most of
the sticky issues are indeed long-lived issues rather than issues that will be closed
shortly after the end of the observation period. Note that the maximum theoretical
lifetime of any sticky issue is 1,092 days (i.e. this is the number of days between
the start of the observation period and Jan. 1, 2015).

5.4. Model Construction

The overall predictive model construction method involves extracting features to
characterize issues in the dataset, training the model, and evaluating the model. In
the following subsections, we give detailed information about the first two steps.

5.4.1. Features

Our approach is based on applying supervised machine learning. The input for
learning algorithms is a set of features that describe each issue in as much de-

53

tail as possible. Next we list the features we extracted from each issue and the
justification for doing so (the features are listed in Table 2).

During the feature engineering process, we tried to come up with features that
would capture the properties of issues as well as the activity of the project and
issue submitter around the time of issue creation. The assumption is that besides
individual issue factors, the surrounding context also determines whether an issue
will be closed.

We initially came up with 36 features. We identified correlated features by
calculating Spearman’s rank correlation [89] between all pairs of features and
manually removed a feature from the each pair of those with a correlation value
larger than 0.8. The decision of which feature to remove was done manually, but
if a feature was correlated with multiple other features, it was removed first. For
the remaining 32 features, we calculated the chi-squared (χ2) statistic [93] be-
tween the training label and each of the features. We then removed features that
were ranked to the last third of all the features based on the χ

2 statistic value. The
χ

2 statistic between a training label and a feature measures statistical dependence
between them, thus enables us to remove features that are most likely to be inde-
pendent of the class label. This gave a final feature set with 21 features. Table 3
lists features that were removed from the initial set. Most of the filtered features
are related to issue features and actions that could be done in the issue tracker,
such as updating issue milestone (nMilestonedByT, nDeMilestonedBy), renam-
ing the issue (nRenameT) and removing the label (nUnlabeledT). These actions
in GitHub are not frequently used and the resulting features were sparse and only
had assigned value in a small subset of issues.

To capture the dynamic aspects of open issue reports, we calculate the evolving
features at different time points. For example, the number of comments changes
over time, but the issue title does not. In Table 2, the dynamic features have suffix
T in their name.

Issue Features. The first group of features describes the issue itself. For ex-
ample the number of comments (nCommentsT) can be regarded as a measure of
engagement on the issue. Guo et al. have found that more commenting on the
bug report can lead to a faster fix [65] and Tsay et al. [128] have shown that the
more comments on a pull-request, the more likely it is to be accepted. Besides the
comments themselves, the number of persons interacting with the issue might im-
pact the issue resolution time. Number of actors (nActorsT) is the total number
of persons who have had interactions with the issue – opening, closing, comment-
ing, and referencing. These features are dynamical in nature – the number of
comments can be different at each observation point.

Other features in this group, such as the number of times an issue has been
assigned or mentioned in connection with other issues, reflect the overall activity
of the issue and are dynamical. Besides dynamical features, we extracted the issue
content text length (issueCleanedBodyLen) to represent the length or possible
complexity of the issue.

54

The issue reports’ unstructured textual content has been shown to have pre-
dictive power for estimating the issue lifetime [134]. The typical approach for
analyzing text data would be to convert issue reports into a bag of word represen-
tations. This typically leads to a large sparse representation, as some words are
only present in a small set of documents. Adding all these features to our previ-
ously defined features would make the classification task harder as the number of
parameters can become very large. In addition, it makes it harder to understand
what the important features are.

We decided not to include textual features directly into our model. Instead,
we transformed the textual content into a single score, representing the likelihood
that an issue report with such text will be closed within a time period. A similar
approach has been previously used for bug classification [143] and clustering [10].

For each issue, we joined issue title and content text into a single text.1 We
parsed the markdown representation and completely removed all source code
blocks, tables, and links. Next we removed the remaining markdown markup
and kept only the textual content. We converted all the text into lowercase and
removed the punctuation and English stop words (such as a, the, that, etc.). We
also applied the Porter stemming algorithm to extract the stem for each word. For
each issue, we kept single words and n-grams of size 2 and we constructed the
bag of words representation using feature hashing [133], with 220 features. Each
vector is normalized with l2 norm and is non-negative. Using the hashing trick,
we can keep all the words and n-grams and do not have to construct a dictionary
during training that contains all allowed words, which is helpful when deriving
the score for different parts of the data as the usage of dictionary could also leak
information about the target label.

We divided the training data into two random sets. We use the first subset to
train a model on text vectors and predict the score on the second subset. The pre-
dicted scores will be the corresponding textual score (textScore) for the second
subset. We repeat the process the other way around – we train on the second sub-
set and predict on the first subset and attach a prediction score to the features of
the first subset. The scores will be appended to the overall feature set. The process
is illustrated in Figure 12.

For the test set, we train on the whole training data and predict for the test
set’s textual content and add the score as a new column. Note that in any case, we
do not leak any information about the target as we always derive the score using
different subsets and do not compare them to actual labels.

To train the textScore classifier, we used the Stochastic Gradient Descent-
based classifier [129] incorporating logistic error, l2 regularization with a penalty
of 0.001, and shuffling before iterations and 5 iterations. This model is suitable
for problems with a large number of features as the regularization helps to control

1We use the latest version of title and body as GHTorrent only keeps the last version if the fields
are updated.

55

Dataset
La
b
el
s

Part1

La
b
el
s

Part2

La
b
el
s

Train
SGD

Train
SGD

Part1

La
b
el
s

te
xt
Sc
o
re

Part1

La
b
el
s

te
xt
Sc
o
re

Predict

Predict

Dataset

La
b
el
s

te
xt
Sc
o
re

Figure 12. Deriving textScore feature for the training data.

over-fitting by constraining coefficient values and is fast to train. Other alter-
natives to consider would be the linear support vector machines (obtaining the
probabilities is more costly) and Naive Bayes. We briefly experimented with the
latter one and the results were approximately in the same order.

Issue submitter features. An individual’s reputation has been shown to have an
impact on the time in which an issue will be fixed [65]. The idea of this group
of features is to capture the previous interactions that the issue submitter has had
prior to the submission in the context of the project. The features extracted reflect
the prior activities done by the submitter in the past three months in the context of
this project, such as the number of issues created (nIssuesByCreator) and their
number of commits (nCommitsByCreator).

Participant’s features. Open-source projects have different levels of partic-
ipation, ranging from core team to irregular contributors. To study the pos-
sible effects of individual influence, we extract the number of commits made
(nCommitsByActorsT) by the people participating in the issue, or in other words,
actors. Actors are all people who comment on an issue, change any of its proper-
ties such as tags, milestones, and/or assignments. In addition, we count a person
to be an actor if they reference it from another issue or commit message. These
features are dynamic and we calculate them over a period of two weeks before the
observation point, to see whether the persons who have had interactions with the
issue are still active.

Project (contextual) features. The aim of project features is to capture the over-
all state of the project. Our hypothesis is that if the project is not active, i.e.,
there has not been coding activity recently or no issues have been closed, then
it is also likely that new issues will not receive attention. We calculate the to-
tal number of commits in the past three months (nCommitsInProject), the total
number of new issues in the past three months (nIssuesCreatedInProject),
and the same activity in the past two week with respect to the observation point

56

(nCommitsInProjectT, nIssuesCreatedInProjectT). We use different period
ranges of three months and two weeks to prevent possible overlap and correlated
features, as in some cases the dynamic features can be calculated close to the issue
submission and therefore have overlap with each other.

Note that we do not use any identifier of the specific project to which an issue
belongs, as our goal is to study the performance of cross-project models built on
large project repositories. However, information about the project characteristics
and its state is captured via the above contextual features.

5.4.2. Model training

Often for prediction tasks, cross-validation is used for evaluating the suitability of
the model and making sure the model performance is reliable on different subsets
of data. Our goal is to train a predictive model that also takes into account the
temporal information of issues. This prevents us from using traditional cross-
validation. The idea is that for training data, we can only use data from a period
that is prior to the period in which issues contained in the test dataset have been
opened. This corresponds to a real-world scenario – we cannot use future data for
training and then test on past data.

Our dataset covers three years: 2012, 2013, and 2014. We split the data in
two from September 1, 2013. Everything before September 2013 is for training
data, and everything after that point in time is for testing. This split leaves 424,004
(43.9%) issues into the training set and 543,033 (56.1%) into the testing set. In ad-
dition, the final number of issues that can be used for training and testing depends
on the task as the number of issues that could be used for estimating whether an
issue will be closed within a year is smaller than the number of issues used for
estimating whether an issue will be closed within a month.

We trained classification models for different combinations of an observation
point (i.e. the point in an issue’s lifetime when the prediction is made) and a
prediction horizon (i.e. the timeframe after issue creation by which we predict
that an issue will already be closed). For example, an observation point of 7 days
means that we make a prediction for an issue that has already been open for 7
days. Meanwhile, a prediction horizon of 30 days means we predict whether an
issue will be closed within 30 days of its creation or not (note that this is a binary
classification task).

The observation points and prediction horizons are chosen to match calendric
periods (one day, one week, one fortnight, one month, one quarter, one semester,
and one year) and of course, the issue creation time itself is taken as one of the
observation points. This leads to seven observation points (0, 1, 7, 14, 30, 90, and
180 days) and seven prediction horizons (1, 7, 14, 30, 90, 180, and 365 days).

Note that the models with a zero-day observation point are such that the dy-
namic features are not meaningful. A small caveat, however, is that the dataset
also has issues where the first comments arrive at exactly the same time as the is-

57

Table 2. Features extracted for each issue. Suffix "T" (short for "Time") in the feature
name denotes that this feature is dependent on the observation point.

Issue features
nCommentsT Number of comments issue has received before the

observation point T.
nActorsT Number of unique persons who have commented, referenced

or subscribed to the issue before the observation point T.
nAssignmentsT Number of assignment events before T.
nLabelsT Number of labels added before T.
nMentionedByT Number of times issue was mentioned from other issues

before T.
nReferencedByT Number of times issue was mentioned in commit messages

using the issue id, before T.
nSubscribedByT Number of persons subscribing to receive updates on the

issue before T.
meanCommentSizeT Average comment size of the comments received before the

observation point T.
issueCleanedBodyLen Length of the combined title and body with markdown

parsed and tags removed.
textScore Classification score obtained from cleaned issue title and

content.
Issue submitter features
nIssuesByCreator Number of issues created by the issue submitter in the three

months prior to issue opening.
nIssuesByCreatorClosed Number of issues created by the issue submitter that were

closed in the three months prior to issue opening.
nCommitsByCreator Number of total commits to the issue repository by the issue

submitter in the three months before the issue opening.
Participant’s features
nCommitsByActorsT Total number of commits done by actors who committed

code to the project repository during the period from two
weeks before the issue creation to observation point T.

nCommitsByUniqueActorsT Number of unique actors who committed code to the project
repository during the period from two weeks before the
issue creation to observation point T.

Project features
nIssuesCreatedInProject Number of issues created in the project during the three

months prior to issue creation.
nIssuesCreatedInProjectClosed Number of issues created and closed in the project in the

three months prior to issue creation.
nCommitsInProject Number of commits created in the project in the three

months prior to issue creation.
nIssuesCreatedProjectT Number of issues created in the project during the period of

2 weeks before the issue creation until the observation point
T.

nIssuesCreatedProjectClosedT Number of issues created and closed in the project during
the period of 2 weeks before the issue creation until the
observation point T.

nCommitsProjectT Number of commits in the project during the period of 2
weeks before the issue creation until the observation point
T..

58

Table 3. Features removed from the initial feature set due to correlations or low predictive
power.

Feature Description Reason
Issue features
nDemilestoningT Number of times issue milestone tag

was removed
chi-squared

nMilestonedByT Number of times milestone was set chi-squared
nRenamedT Number of times issue was renamed chi-squared
nUnassingedByT Number of times issue was

unassigned
chi-squared

nUnlabeledT Number of times a label was
removed

chi-squared

issueBodyLen Length of the raw contents
(markdown) of the issue content
body text

Correlated
with issue-
Cleaned-
BodyLen

issueTitleLen Length of the raw contents
(markdown) of the issue title text

chi-squared

sumCommentSizeT Total comment size of the comments
received before the observation point

Correlated
with
meanCom-
mentSizeT

nPersonsMentionedBody Number of persons mentioned
(using @mentions) in the issue body
text

chi-squared

nCommitsMentiondBody Number of commits mentioned in
the issue body text

chi-squared

nIssuesMentiondBody Number of issues referenced (using
#issueId or user/project#issueId
convention) in the issue body text

chi-squared

nCodeBlocksInConet Number of code sections in the issue
body text

chi-squared

Issue submitter features
nCommitsByCreatorProjects Number of different repositories

committed to
Correlated
with
nCommits-
ByCreator

Participant’s features
nPersonCommitingInProject Number of unique persons

committing in the project
chi-squared

nCommitsProjectUniqueT Number of unique committers in the
project within two week of
observation point

Correlated
with nCom-
mitsProjectT

59

sue itself. We do count such comments when calculating the zero-day features in
order to keep the feature calculation method consistent. Thus the dynamic feature
nCommentsT is meaningful for zero-day models.

For each pair (observation point and prediction horizon), we trained a classifier
to predict whether an issue will be closed before or after the end of the prediction
horizon. Naturally, such a predictive model only makes sense when the prediction
horizon ends after the observation point. Hence, there are only 28 valid combina-
tions of an observation point and a prediction horizon, and this is the number of
models we trained.

In line with the predictive setting, when evaluating a model for a given obser-
vation point, we only make predictions for issues that were not yet closed at the
observation point in question. Hence, the sizes of the training and the testing sets
are different for each combination of observation period and prediction horizon.

We approach the issue lifetime prediction problem using binary classification.
The problem could also be approached by training a multi-class classifier, for
example where different classes denote whether an issue will be closed in a corre-
sponding time range. We choose binary classification as it helps us to understand
at which points in time it is feasible to make predictions and how the accuracy
of the models changes depending on the chosen observation point and prediction
horizon. In addition, regression analysis could be used to estimate issue lifetime.
However, regression analysis would not allow to use sticky issues as they have not
been closed and the lifetime would be undefined. Regression analysis would be
suitable only for projects where all the issues get closed eventually.

5.4.3. Classification method

We use the Random Forest method [29] for classifier construction. As we don’t
have a separate validation set to select the best hyper-parameter combination, we
did not do hyper-parameter selection. For the hyper-parameters, we set the num-
ber of trees to 1,000 and limit the maximum tree depth to 5. The number of trees
parameter for Random Forests is typically regarded as the larger the better, but
more trees requires more computational cost to calculate. We limited the maxi-
mum tree depth to 5 to keep the learned trees simpler and reduce the training error
to prevent over-fitting on the training data.

As we train in total 28 classifiers on the different observation and prediction
horizon combinations, we do not perform any additional hyper-parameter opti-
mization in order to use the same classifier for all different prediction horizon
values and avoid optimizing each task separately. The results reported below
should thus be construed as lower-bounds that can be further improved via hyper-
parameter optimization.

60

5.4.4. Evaluation

To evaluate the classifiers, we use the following technical measures: precision,
recall, F1-score and area under the receiver operating characteristic (ROC) curve
(AUC) (Introduced in Section 3.2.1). In our classification task, the positive class
denotes issues that will be closed in the specified period and the negative class
denotes issues that will not be closed in the specified period. We calculate the
precision and recall for the positive class.

In the context of our classification task, precision measures the fraction of cor-
rectly classified closing issues over all issues predicted to close. Recall measures
the fraction of correctly classified closing issues over all closing issues. The ideal
precision and recall scores are 1, while the worst case is 0. AUC measures the
probability with which we can rank a randomly chosen closed issue higher than
a randomly chosen issue that will not close. For a random classifier, the value of
AUC will be 0.5, while for an ideal classifier it will be 1.

We use these different measures for two reasons. Firstly, we want to compare
our results with existing work and all these measures have been used in previous
work. Secondly, different measures help us to prove the usefulness of the model
in different scenarios. If our goal is to make an individual prediction for a single
issue, it is important to obtain good precision and recall scores in order to get a
correct prediction for each item. If we were interested in finding the ranked list of
most likely issues to be closed in a project, then the AUC reflects how well this
can be done.

We will use random forest feature importance (Section 3.1.3) to understand
which features are useful in making the decision and also compare feature ranking
for different observation point scenarios.

5.5. Results

In this section we report the evaluation results and analyze them with respect to
the questions posed in Section 1.

5.5.1. Classifier performance (RQ2.1)

We analyze model performance for different observation points to answer our re-
search question RQ1 (What level of accuracy is achieved by classification models
trained to predict issue lifetime using static, dynamic and contextual features?)
Table 4 shows the obtained AUC scores for each combination of observation
points and prediction horizons. The scores all fall into the range of 0.636 to 0.694.
The results show that long-term predictions can be made with higher AUC than
short-term predictions. For each observation point, the best AUC score corre-
sponds to the 180 day prediction horizon. The AUC scores are increasing until
180 day prediction horizon and the 365 day prediction horizon has lower AUC
score than the 180 day prediction horizon.

61

Table 4. AUC scores for different prediction horizon and observation point (OP) values.

Prediction horizon(days)
OP 1 7 14 30 90 180 365

0 0.650 0.658 0.662 0.670 0.676 0.679 0.658
1 0.640 0.643 0.651 0.659 0.669 0.654
7 0.639 0.646 0.654 0.672 0.645
14 0.649 0.657 0.674 0.636
30 0.657 0.676 0.639
90 0.688 0.663
180 0.694

Table 5. F1 scores for different prediction horizon and observation point (OP) values.

Prediction horizon(days)
OP 1 7 14 30 90 180 365

0 0.449 0.614 0.669 0.725 0.800 0.855 0.887
1 0.406 0.497 0.573 0.660 0.769 0.853
7 0.250 0.422 0.573 0.692 0.785
14 0.296 0.518 0.651 0.751
30 0.406 0.578 0.730
90 0.362 0.654
180 0.498

We also calculated F1-scores for each model as shown in Table 5. The F1-
scores show the cases of models that fail overall, meaning that while they do
correctly identify the issues that are most likely to close (i.e. that have a certain
level of ranking accuracy as measured by AUC), they have either low precision
or low recall or both. We observe the lowest F1-scores when the gap between
the observation point and the end of the prediction horizon is the smallest (cf. the
diagonal values in the table). The reason for this phenomenon is that in these
cases, the class imbalance is the highest. The best F1-scores are obtained when
the gap between the observation point and the prediction horizon is the largest. In
other words, longer-term predictions are more accurate. One possible explanation
for this is that there are more issues with a smaller lifetime (note that half of the
issues have a lifetime of less than 3.7 days) and making predictions for them is
harder as there are more varied reasons for closing them. Meanwhile, there is
a smaller number of issues with a longer lifetime and therefore the features can
better capture the corresponding reasons for closing them.

The raw experimental results give us a broad view of how well the models per-
form. But since the sample sizes vary considerably across different (observation
point, prediction horizon) combinations, we cannot directly compare performance
across models. Accordingly, in Table 6, we report the results for experiments in
which the testing set is always of the same size for all models with a given predic-
tion horizon. This makes it more meaningful to compare models across different
observation points. For each prediction horizon, the table gives the performance
across all observation points that are before the prediction horizon. For exam-

62

365180900

Issues closing

before 365 days

(N=12496)

Issues not closing

before 365 days

(N=29251)

Observation period (N=41747)

Time

[days]

Figure 13. Observing a set of issues for prediction whether they will close before 365
days or after (Observation point 180 days, prediction horizon 365 day). The sample size
(N) values correspond to the first group in Table 6.

ple, for the prediction horizon of 365 days, we only include issues that have not
been closed in the first 180 days. For these issues, we can perform the prediction
at different observation points. Figure 13 illustrates the concept of observing the
same set of issues over different observation points (and thus different observation
periods) in order to predict whether or not the issue will close before 365 days or
not. Similarly, we do the analysis for other prediction horizons, with each time
one less possible observation point and a larger test set.

When looking at the AUC and precision values (Table 6), we observe that in
many cases (specifically for prediction horizons of 365, 180 and 90 days) the
scores increase as the observation point increases. For the prediction task of
whether an issue will be closed within 365 days, we observe an 28.7% increase
in AUC (from 0.499 to 0.694) and a 28.5% increase in precision (from 0.301
to 0.421) across the seven corresponding observation points. This supports the
hypothesis that observing an issue over an extended period can lead to better pre-
dictive power. In contrast, the recall scores are more fluctuating and show a slight
negative trend when the observation point increases. The reason for this is that
the number of true positives (correctly classifying closing issues) decreases only
slightly with an increasing observation point, while the number of true negatives
(correctly classified issues that will not close) keeps increasing.

To summarize the findings with respect to RQ1, we conclude that when making
repeated predictions for issues as they evolve over time, predictions made at later
observation points yield higher AUC and precision scores, but lower recall scores.

5.5.2. Feature importance (RQ2.2)

In order to address RQ2 (What features are most important when predicting is-
sue lifetime?), we analyze the mean decrease in impurity for each feature as dis-
cussed in Section 3.1.3. We are particularly interested in understanding the role

63

Table 6. Prediction performance of models tested with a constant test size (N) for any
given prediction horizon.

Observation
point AUC Precision Recall F1 TP FP FN TN

Prediction horizon of 365 days (N=41747)

0 0.499 0.301 0.623 0.406 7790 18125 4706 11126
1 0.529 0.312 0.631 0.418 7879 17346 4617 11905
7 0.557 0.339 0.581 0.428 7263 14191 5233 15060
14 0.570 0.360 0.574 0.442 7169 12757 5327 16494
30 0.597 0.368 0.599 0.456 7485 12866 5011 16385
90 0.658 0.382 0.635 0.477 7938 12826 4558 16425
180 0.694 0.421 0.608 0.498 7594 10425 4902 18826

Prediction horizon of 180 days (N=136926)

0 0.569 0.199 0.769 0.317 18657 74947 5606 37716
1 0.594 0.217 0.663 0.327 16088 58178 8175 54485
7 0.634 0.234 0.644 0.343 15617 51169 8646 61494
14 0.649 0.231 0.651 0.341 15784 52500 8479 60163
30 0.664 0.229 0.663 0.341 16098 54107 8165 58556
90 0.688 0.242 0.719 0.362 17446 54609 6817 58054

Prediction horizon of 90 days (N=235195)

0 0.592 0.267 0.755 0.395 41674 114185 13527 65809
1 0.605 0.293 0.566 0.386 31230 75506 23971 104488
7 0.625 0.291 0.570 0.385 31449 76578 23752 103416
14 0.639 0.292 0.599 0.392 33091 80357 22110 99637
30 0.657 0.296 0.645 0.406 35595 84508 19606 95486

Prediction horizon of 30 days (N=318153)

0 0.612 0.175 0.757 0.284 35234 166590 11288 105041
1 0.616 0.191 0.597 0.290 27795 117533 18727 154098
7 0.632 0.189 0.608 0.289 28266 121068 18256 150563
14 0.649 0.192 0.651 0.296 30295 127771 16227 143860

Prediction horizon of 14 days (N=372749)

0 0.613 0.142 0.757 0.239 33088 199788 10606 129267
1 0.616 0.152 0.627 0.245 27375 152226 16319 176829
7 0.639 0.155 0.650 0.250 28400 155246 15294 173809

Prediction horizon of 7 days (N=486691)

0 0.639 0.275 0.785 0.408 86055 226352 23584 150700
1 0.640 0.288 0.692 0.406 75883 187941 33756 189111

64

played by dynamic features, hence we compare the feature importance for the
models constructed at creation time (the zero-day models) versus one week after
issue creation (the 7-day models). This approach allows us to understand the role
played by dynamic features early on during the lifetime of an issue. Regarding the
prediction horizon, we look at models constructed to predict if an issue will close
after 30 days (short-term predictions) or after 180 days and 365 days (long-term
predictions).

The ranking of feature importance for the zero-day models is given in Fig-
ure 14. In the case of the zero-day model with a 30-days prediction horizon (cf.
Figure 14a), the top-ranked features are nIssuesCreatedProjectClosedT and
nIssuesCreatedInProjectClosed (i.e. issue closing activity in the two weeks
and the three months before the issue submission respectively). The presence of
these features at the top of the ranking (including nCommitsProjecT as the fourth
feature) suggests that contextual features play an important role when making pre-
dictions at creation time. The third feature in the ranking is the number of com-
ments (nCommentsT), which in the zero-day models only has two possible values
(0 or 1) – some issues come without any attached commentary at issue creation
time, while others come with a comment having the same timestamp as that of
issue creation. Expectedly, the presence of this initial comment carries some in-
formation about issue lifetime. We also observe that textScore is highly ranked,
stressing the potential value of extracting information from the text attached to
issues.

In the case of the zero-day model with a 180-day prediction horizon (Fig-
ure 14b), we observe that the top 3 features are the same as in the model with a
30-day prediction horizon. On the other hand, the importance of textScore when
predicting for 180 days is lower than when predicting for 30 days. In other words,
the text attached to the issue is useful for short-term prediction, but becomes less
important for longer-term prediction.

In both cases (zero-day models with 30-day and 180-day horizons), the fea-
tures that have least importance are those related to the size of comments and
number of issue labels. This is simply because these features are dynamic and
hence not meaningful for zero-day models.

Let us now compare the feature importance ranking of the zero-day mod-
els (Figure 14) against the 7-day models (Figure 15) with a 180-day prediction
horizon. The top feature remains the same nIssuesCreatedInProjectClosed.
We observe that feature textScore has less importance in the 7-day mod-
els, and instead dynamic features overtake it in importance, e.g. num-
ber of commits (nCommitsByActorsT), number of unique actors commit-
ting (nCommitsByUniqueActors), and number of assignments of the issue
(nAssignmentsT). This observation reinforces the hypothesis that dynamic fea-
tures carry information that complements static features, particularly when mak-
ing long-term predictions.

One can wonder if a longer-term prediction horizon affects feature importance

65

0 50 100
Relative Importance

meanCommentSizeT
nLabelsT

textScoreComments
nMentionedByT

nActorsT
nSubscribedByT

issueCleanedBodyLen
nCommitsByCreator

nCommitsByUniqueActorsT
nAssignmentsT

nCommitsByActorsT
nIssuesCreatedProjectT
nIssuesCreatedInProject

nReferencedByT
nIssuesByCreator

nCommitsInProject
nIssuesByCreatorClosed

textScore
nCommitsProjectT

nCommentsT
nIssuesCreatedInProjectClosed
nIssuesCreatedProjectClosedT

(a) 30-day horizon

0 50 100
Relative Importance

meanCommentSizeT
nLabelsT

nMentionedByT
textScoreComments

nActorsT
issueCleanedBodyLen

nSubscribedByT
nCommitsByCreator

nCommitsByUniqueActorsT
nCommitsByActorsT

nAssignmentsT
nIssuesCreatedProjectT

nReferencedByT
nIssuesCreatedInProject

nCommitsProjectT
textScore

nCommitsInProject
nIssuesByCreator

nIssuesByCreatorClosed
nCommentsT

nIssuesCreatedProjectClosedT
nIssuesCreatedInProjectClosed

(b) 180-day horizon

Figure 14. Feature importance for the zero-day models with 30-day and 180-day hori-
zons.

0 50 100
Relative Importance

nLabelsT
nCommitsByCreator

issueCleanedBodyLen
nMentionedByT

textScore
nCommitsProjectT
nCommitsInProject

nIssuesCreatedInProject
textScoreComments

meanCommentSizeT
nIssuesByCreator

nIssuesByCreatorClosed
nReferencedByT
nSubscribedByT

nIssuesCreatedProjectT
nActorsT

nCommentsT
nAssignmentsT

nIssuesCreatedProjectClosedT
nCommitsByUniqueActorsT

nCommitsByActorsT
nIssuesCreatedInProjectClosed

(a) 180-day horizon

0 50 100
Relative Importance

nLabelsT
nMentionedByT

issueCleanedBodyLen
nCommitsByCreator

textScore
nCommitsProjectT

nSubscribedByT
textScoreComments

meanCommentSizeT
nIssuesCreatedInProject

nCommitsInProject
nCommentsT

nIssuesCreatedProjectT
nActorsT

nIssuesByCreator
nReferencedByT

nIssuesByCreatorClosed
nCommitsByUniqueActorsT

nCommitsByActorsT
nAssignmentsT

nIssuesCreatedProjectClosedT
nIssuesCreatedInProjectClosed

(b) 365-day horizon

Figure 15. Feature importance for the 7-day models with 180-day and 365-day horizons.

significantly. To this end, Figure 15b displays the feature importance ranking of
the 7-day model with a 365-day prediction horizon. It turns out that this ranking
is very similar to the one for the 7-day model with a 180-day horizon. Although
not shown here, we observed a similar ranking in the 7-day model with a 90-day
horizon, suggesting that the task of predicting closing time with a horizon of a
few months is similar to that of predicting it with a one-year horizon.

In summary, with reference to RQ2, we can say that contextual features com-
plement static features both for short-term and long-term predictions. Dynamic
features in turn complement both static and contextual features and their inclusion
explains the observed increase in accuracy of models built for later observation
points.

66

5.6. Discussion and limitations

The observed accuracy of our models (AUC and precision scores) suggests that
predictive models of issue lifetime across large sets of open-source projects could
potentially be used in practice if users were willing to tolerate some fluctuation
in their predictive accuracy. Compared to previous research, Giger et al. [58] ob-
tain AUC scores between 0.649 and 0.823 when increasing the dynamic feature
observation period from 0 days to 30 days (Eclipse JDT project). Their results
also show fluctuations in performance, i.e., observing features for a longer period
does not lead to a monotonic increase in model performance. Their model pre-
cision scores are also better, ranging from 0.635 to 0.885, but recall values are
lower than in our experiments, ranging from 0.485 to 0.661. They also experience
high variation across projects, especially with Gnome Gstreamer project dataset
where performance decreases with longer post submission data, with the AUC
values mostly decreasing from 0.724 to 0.586. Francis & Williams [55] similarly
show that the same issue lifetime prediction method can perform differently with
an open-source versus a closed-source private project. This confirms that issue
lifetime prediction varies across projects, and suitable accuracy can not be always
obtained.

The experimental setup used by Giger et al. [58] is not directly comparable
to ours, as they used a different prediction task and their dataset properties were
different, such as a considerably larger median issue lifetime. The main obstacle
for using their study as a baseline is that they have a different set of features with
richer meta-data about issue reports such as reporter, milestone, outcome, and
platform. Another aspect that might work in their favor is that they perform cross
validation without using any temporal information about the creation of issue re-
ports (i.e. no temporal split), so that “future data” may be used to classify an issue
at a given time point. Nevertheless, their results with using only static features are
comparable in terms of AUC, where they had scores ranging from 0.649 to 0.724
across projects.

With respect to the use of temporal splitting, the reported findings are in line
with those of Assar et al. [10], who observe that when using temporal splits and
observing issues for a longer period, the prediction error becomes lower compared
to shorter observation periods.

Our work uses issues from more than 4,000 projects. The projects have dif-
ferent development practices, backgrounds, resources and goals. Hence the het-
erogeneity in project properties can affect our results as the models cannot make
sound generalization based on issues from different projects. It has been shown
that features, such as developer reputation, which can be important in projects
determining the issue lifetime, are not important in other scenarios [22]. An-
other shortcoming is that we do not distinguish between different types of issues
(e.g. bugs vs. feature requests), although this can have an effect on the resolution
time [11, 105].

67

Another limitation of the study is the lack of cross-validation in the evalua-
tion of the classification models. We have chosen to use temporal splits between
training and testing data, as this is exactly how the models are trained when used
in real world scenarios, and should give a better estimate of issue lifetime. The
drawback of this choice is that it does not leave much room for performing multi-
ple test splits, since the period covered by the dataset is exactly the length required
for one split.

In addition, the precision scores of our models are low – i.e. issues that we
predict will close before the horizon often remain open beyond it. This restricts
their direct practical applicability. A critical direction for future work is thus to
investigate the reasons for low precision and to improve the models, for instance,
by introducing additional features (e.g. from the code commits or from the text of
the comments).

A potential threat to validity is that our dataset contains non-software devel-
opment projects since removing all of them manually would be impractical. To
estimate the extent of non-software development projects in the dataset, we man-
ually checked a random sample of 100 projects. We found that 89 of them can
be classified as software projects (i.e. projects containing code and build files or
deployment guides). Two projects contained only documentation, two contained
specifications, two data, one was used purely as an issue tracker for an externally
hosted project, and four had been since deleted and thus their nature could not be
ascertained.

5.7. Replication package

Replication of the experiments was successfully carried out by Mittal [101] as
a course project. Replication revealed minor issues in our code regarding fixing
random seeds, and a bug which resulted in subset of training data not being used.
The results presented in thesis therefore differ numerically from the results pre-
sented in the original paper [85]. However, the conclusions and findings remain
unchanged. The dataset and the code for training and evaluating the model is
available at
https://github.com/riivo/github-issue-lifetime-prediction.

5.8. Summary

We studied the problem of predicting issue lifetime in GitHub projects for differ-
ent calendric periods, using a combination of static (creation-time), dynamic, and
contextual features. Based on the issues extracted from a sample of 4,000 projects,
we show that such predictive models exhibit better accuracy when trained with
one-day-old or one-week-old issues to predict whether or not an issue will remain
open after a one month or longer period. This study highlights the importance of
dynamic and contextual features in such predictive models.

68

https://github.com/riivo/github-issue-lifetime-prediction

6. STRUCTURE AND EVOLUTION OF PACKAGE
DEPENDENCY NETWORKS

6.1. Introduction

We observed that projects have an increasing number of pending issues that linger
over time. The pending issues can also contain bug reports including security
vulnerabilities. With software reuse becoming more prevalent, these bugs could
propagate through dependencies with other projects. This led us to study depen-
dency networks formed between software packages.

The goal of this chapter is to study the current state of dependency networks,
to understand their characteristics, and to predict their future evolution. We have
formulated the following research questions to guide our research:
RQ3.1: What are the static characteristics of package dependency networks?
RQ3.2: How do package dependency networks evolve?
RQ3.3: How vulnerable are package dependency networks to the removal of a
random project?

The answers to these questions can help to quantify the state of the ecosys-
tems, give an overview of the trends in dependency management, and inform the
development of improved dependency management tools.

6.2. Background and terminology

The current study analyses dependencies between software projects. We distin-
guish between two types of software projects: packages and applications. We
define a package as a reusable code or a set of components that can be included
in other applications by using dependency management tools. Packages are pub-
lished in repositories and are available to everyone. Applications are projects that
make use of packages, are not published as a package, and thus cannot be used
in other projects as a dependency. Packages and applications can have multiple
versions distinguished by version numbers.

One package can depend on another package. If package C depends on pack-
age D, we say that C has a dependency (C is a dependent of D) and D has a reverse
dependency (D has a dependent). Applications can have dependencies but since
they are not published as reusable packages they cannot have reverse dependen-
cies. A project has a direct dependency if a package on which the project depends,
and which it needs in order to be built, is directly included in the project. A project
can have transitive dependencies on packages that are not needed for the project
itself but are needed for the direct dependencies included in the project to work.
Transitive dependencies can be included through multiple levels of dependencies.
Figure 16 illustrates the concepts of dependency relation types from the perspec-
tive of package C.

69

A
0.1

C
0.4

B
0.3

D
0.2

E
0.1

H
0.6

G
0.1

F
0.1

L
0.1

J
0.2.6

K
0.4

dependents

transitive
dependents

dependencies

transitive
dependencies

F
0.2

Figure 16. Dependency relationship types between projects from the perspective of pack-
age C.

A dependency network is composed of packages, applications, and the depen-
dency relations between them. An ecosystem is a set of packages and applications
involved in a dependency network.

6.3. Research questions

Our overall goal is to analyze the structure and evolution of dependency networks
to gain insight into current dependency usage and possible issues that arise from
them. Next, we explain the motivation behind each research question in more
detail.

RQ3.1 (Structure). Currently, not much is known about the static properties
and topologies of programming language package ecosystems. For example, we
know to what extent dependencies are used in packages only [47, 136]. However,
we do not know if there are differences in dependency usages across published
packages and applications. Modern package managers allow different conven-
tions for specifying dependency version numbers such as the exact version or
version range. However, we do not know what the most popular way of specify-
ing dependencies is. Answers to these questions would enable us to understand
the current state of the dependency ecosystem and would be the starting point for
analyzing ecosystem evolution.

RQ3.2 (Evolution). Software projects can add new dependencies and up-
date existing dependencies. Changes in dependencies in a new release of a single
package will also be reflected in the overall dependency network. Studying the
dependency network’s evolution since its creation can explain its current state and
also provide knowledge to help explain it and make predictions about its future

70

evolution. The need for such analysis was outlined by respondents to a recent
survey on software ecosystems challenges [120]. One of the answers given by
a respondent stated: if an ecosystem is not able to evolve quickly it is going to
die [120]. Similarly, our goal is to understand the current evolutionary state of the
studied ecosystems and analyze whether they are growing or not.

RQ3.3 (Vulnerability). When selecting a package to use, several factors are
important besides the functionality it provides. Developers ideally would like
to be sure that the package quality is good, well-maintained, and trustworthy. As
these properties are not explicitly visible, developers might end up using packages
of varying quality. For example, if an attacker publishes packages with names
very similar to the names of popular packages, developers making a typo could
end up using them unwillingly [75]. The left-pad incident happened because the
developer decided to remove the package. How vulnerable are ecosystems to such
scenarios? We define vulnerability as the number of projects that are affected
if we remove a package or a specific version of it. This scenario also helps us
estimate the proportion of the dependency network that is impacted if a package
contains a bug, or is stopped being maintained. The vulnerability measure is a
proxy for a centrality or importance of the package in the ecosystem. Note that
we lend the term vulnerability from the complex systems domain, where attack
vulnerability denotes the decrease of network performance due to a removal of
vertices or edges [3, 74].

6.4. Method

In the following section, we describe the data collection method, preprocessing
steps, and our approach to modeling dependency networks using graphs.

6.4.1. Context

We study three package ecosystems for the programming languages: JavaScript,
Ruby, and Rust. Majority of the packages and applications are hosted on GitHub
for the chosen programming languages. These languages have central reposito-
ries for distributing packages, namely npm, RubyGems, and Crates. Developers
specify required packages in their projects’ dependency files (package.json,
Gemfile, Cargo.toml) and packages are retrieved by the dependency manager
(npm, Bundler, Cargo). The packages contain source code and developers can use
functionality from packages in their project. In addition to packages, we study
applications downloaded from GitHub. By adding applications, we can analyze
package usage from the end-user’s viewpoint.

We chose to study JavaScript and Ruby, both dynamically typed languages,
which are popular choices for web application development. Rust, on the other
hand, is a multi-paradigm language that supports static typing primarily meant for
system programming. JavaScript and Ruby have been used since the 1990s and

71

their corresponding central package managers appeared in 2010 and 2004, respec-
tively. Rust first appeared in 2010 and its central package management appeared
in 2014. Our analysis of JavaScript revolves around the packages used in the
node.js environment and managed through the npm tool, but also includes pack-
ages only needed for web development, such as front-end frameworks. JavaScript
differs from the other languages used in this study as it supports multiple versions
of a project in its dependency chains. For example, if package A depends on
package B version 1.0 and package C depends on version 2.0, while package B
depends again on package C version 3.0, then npm downloads both versions of the
package C. Rust and Ruby do not allow such a scenario and a single version of
package C is required. In practice, JavaScript developers can have more freedom
in including dependencies, but Rust and Ruby developers need to make sure their
dependencies do not conflict.

6.4.2. Data collection

We used multiple sources to compose the dataset. For JavaScript and Ruby, we
downloaded the full list of packages, release dates, dependencies, and other rel-
evant meta-data from their central repositories, npm and RubyGems, respectively.
To extract data from npm, we used the public API [108]. For RubyGems, we used
a copy of their meta-data database available online [117].

Central repositories such as npm and RubyGems host projects that are typically
only libraries, frameworks, command line applications, or resource bundles for
web development. We also include end-user applications from GitHub in our
study to understand the package usage in practice. We used the GHTorrent [60]
database from March 2016 to select projects whose repository language identified
by GitHub was either Rust, JavaScript, or Ruby, were not forks, and the project
GitHub repository did not appear in the npm- or RubyGems-hosted project list.
After composing the initial list of projects, we made an HTTP request to every
repository to check if it had a dependency file in the root folder of the latest revi-
sion. We only cloned repositories that had a dependency file present in the latest
revision. For Rust, we cloned all projects listed in GHTorrent, but for JavaScript
and Ruby, we only cloned those that either had at least one fork or at least one
star, to minimize the number of projects to be collected. We acknowledge that we
were not trying to collect all the projects from GitHub.

Rust has a central repository called Crates.io, but its meta-data is not available
in a structured machine-readable format. Therefore, for Rust, we only rely on
the packages from GitHub by first selecting all Rust language projects from the
GHTorrent database and then filtering out those that do not have a dependency
file named Cargo.toml. The Rust data can be considered as a sample of the whole
package universe of Cargo and additional applications written in Rust.

Data collection took place between April 2016 and May 2016. We collected
the package repository data after collecting applications from GitHub. We ex-

72

cluded all updates and changes after April 2016 in order to get a comparable time
scale for all ecosystems.

6.4.3. Parsing GitHub projects

The projects obtained from GitHub have their dependency information recorded
in dependency files. To extract dependencies, we consider all revisions of the de-
pendency files to recover the dependency history. We used the git log command
to extract all changes to the dependency file. For accurate modeling, we had to
know when each version of a project was released. JavaScript’s package.json and
Rust’s cargo.toml provide explicit version information of the project. Ruby’s de-
pendency files (.gemspec and Gemfile) are written in Ruby code and sometimes
the version number is expressed as a variable or read in from a file. This makes
reading the exact version numbers hard, as there is no general pattern. Extracting
this is therefore not feasible, as it would require manual inspection or executing
the code. In cases where we could not extract explicit version numbers, we used
the time of the last modification of the dependency file. This only affects applica-
tions and does not impact the dependency network structure as dependency files
do not have dependents. The limitation of this approach is that there might be
many more revisions than actual releases. If multiple revisions of a dependency
file exist with the same version number, we use the latest revisions for the version.
Developers might change the contents of the file during development with the new
version number already entered but after the release the contents will not change.

6.4.4. Resolving dependencies

When parsing dependency files, we encountered situations where some of the de-
pendencies were not available. A dependency might not be available in a case
where a single revision of a dependency file committed to the repository con-
tained typos or incorrect version constraints – thus a dependency did not exist.
We only kept those dependencies that we could match in the central repositories
for JavaScript and Ruby. For Rust, we kept all dependencies we could match
between the projects as we did not use official package repository data. If a de-
pendency is specified as a reference to a git source code repository, we only kept
this if it was a Rust project and the repository was in the list of collected projects.

Dependency version constraints can be specified in different ways, for instance
as an exact version, a latest version, or a pattern-based matching using the seman-
tic versioning notation. A version number is typically written in the format of
MAJOR.MINOR.PATCH. An increase in the MAJOR number denotes incompatible
API changes, an increase in the MINOR number indicates an addition of backward
compatible changes, and an increase in the PATCH number indicates a bug fix. A
version requirement specification has specific notations for describing valid ver-
sion. JavaScript and Rust support similar notation formats. To obtain any version
or the latest version, the requirement should be specified as the wild-card (*) or

73

with an explicit condition (≥ 0). The tilde operator (~) matches the most re-
cent MINOR version. For example, ~3.0.3 matches the highest version in the range
(3.0.3,3.1), but will not match 3.1. The caret (^) will select the most recent MAJOR
version (the first number). For example, ^1.2.3 matches the highest version in the
range (1.2.3,2.0). Ruby does not support the tilde and the caret directly, but has
something similar called the pessimistic operator, expressed by∼>. For example,
∼> 3.0.3 is equivalent to ~3.0.3. Requirement ∼> 1.1 is equivalent to ^1.2, i.e.,
matches the highest version in the range (1.2.3,2.0).

For network construction, we must be able to represent the state of depen-
dencies as they were at the time a package was released or an application was
committed to the repository. With inexact version requirements, the actual ver-
sion that might be included in the project might differ every time the project is
built, as a more up-to-date version of a dependency that satisfies the requirements
might have become available. We resolved all dependency version requirements
to the version that would have been used when the package was released or a
GitHub commit was made. Therefore, we knew when the release was made and
also could trace back which packages and versions were available at that time.
For JavaScript projects, we used the package semver to find for each dependency
the highest version candidate available. For Ruby projects, we used Gem library
code for finding the latest revision among all the matching candidates. For Rust,
we implemented our own dependency resolution.

Dependency version resolution did not take into account transitive dependen-
cies and possible version conflicts. We are aware that in practice, some other ver-
sion might have been chosen. To resolve all dependencies we would have needed
to re-implement the corresponding language dependency resolution algorithm be-
cause dependency management tools do not support resolving dependencies as
they would have been resolved at any arbitrary time in the past.

6.4.5. Network construction

When modeling a system within a network, we need to define what nodes and
edges represent. A straightforward approach to representing dependency rela-
tions in networks is to model projects as nodes, and directed edges between them
denote dependencies between projects. The limitation of this solution is its lack
of differentiation between project versions and thus this modeling approach could
give misleading information about the network. Figure 17 illustrates three dif-
ferent approaches for network modeling. Packages A and B depend on different
versions of C, but only C version 0.4 depends on D. The aggregated network
model would indicate that package B is dependent on package D, which is not
true. The number of different packages dependent on D is two (A and C) in the
actual network, but aggregated version would give us three projects (C, A, and B).
We also studied an approach where we annotate network edges with attributes.
We have a list of pairs (source version, target version) for which this edge is valid.

74

A
0.1

C
0.4

B
0.3

C
0.5

D
0.2

A

C

B

D

A

C

B

D

[{s=0.3,t=0.5}]

[{s=0.4,t=0.2}]

[{s=0.1,t=0.4}]

actual with edge attributesaggregated

E
0.1

E E

[{s=0.5,t=0.1}]

Figure 17. Dependency network construction approaches.

When traversing the network, we have to make sure that the target version on the
edge that was used to access the node has a corresponding source node for taking
the next step. For evolution analysis, both the aggregated network and aggregated
network with attributes are unsuitable. If we want to answer questions such as
what the number of transitive dependencies is, we have to consider all project ver-
sions. A new release of a project can update its dependencies, thus increasing the
connectivity in the aggregated graph. For example, all versions of the aggregated
graphs (Figure 17) would indicate that project C has two dependencies; however,
at any one time, it can have only one. Considering this, it might affect all the
projects and we would get a more connected graph than the actual project and the
number of dependencies would not reflect the actual value.

We chose an approach where a node represents a specific project version. The
edges denote dependency relations between specific versions (Figure 17, actual).
With this modeling approach, we can find the correct answers to queries such
as how many different versions depend on a project and how many of these are
unique projects.

In our analysis, we sometimes used the aggregated modeling version with edge
attributes for some calculations. Whenever we did so, we mention it explicitly
in the following. By analyzing the top 10 projects for JavaScript based on the
number of dependencies, we confirmed that the aggregated network without edge
attributes overestimates the dependency counts. Therefore we decided to use edge
attribute information when analyzing dependency chains.

Our choice of dependency network model makes it hard to compare our
results with existing research, which uses the aggregated network without at-
tributes [136]. Only Hejderup [71] uses a similar approach to our actual network.
The difference is that Hejderup also keeps meta-nodes in the network to represent
a project. Each meta node has links to the corresponding project’s version node.

We only use projects that have at least one dependency or one reverse depen-
dency. If a project neither had dependencies nor is a dependency for others, it

75

Table 7. Summary of datasets.

Projects in the network

Projects Dependencies Applications Packages Versions
Version

dependencies

Rust 7,978 25,144 0 7,978 22,105 66,055
JS 246,670 1,182,114 78,657 168,013 1,319,919 7,260,426
Ruby 147,449 776,061 69,544 77,905 1,231,480 10,747,737

Initially collected
Applications Packages

Rust 0 11,037
JS 84,987 254,466
Ruby 62,133 122,786

does not appear in the network. As soon as a project adds a dependency, it ap-
pears in the network. Due to this filtering, single isolated nodes cannot exist in
the network, while isolated clusters of connected nodes can.

We kept snapshots of the network for each month. A snapshot records how the
ecosystem looked at the end of the corresponding month. Snapshots are cumu-
lative, adding new projects and dependency links. Neither projects nor links are
ever removed. All analyses involving the temporal evolution are also cumulative,
i.e., if we calculate some property at a specific time, we calculate the property for
all the projects published up to that point.

We manually removed three projects from our dataset that appeared to be out-
liers. Two JavaScript applications and one Ruby package had been engineered so
that they would contain all possible packages in their dependency file.

6.5. Results

6.5.1. Description of dependency networks (RQ3.1)

In this subsection, we describe the datasets and basic properties of the dependency
networks.

Static properties. Table 7 lists basic properties of the language ecosystems
used in our study, the number of projects initially collected, and different releases
in the network.

We initially collected 11,037 Rust, 339,453 JavaScript, and 184,919 Ruby
projects. However, not all packages have dependencies or are used as a dependent,
and therefore we exclude those projects in the network-based analysis. The ex-
clusion was based on the latest snapshot and included projects that never had any
dependencies. The final dataset comprises 7,978, 246,670 and 147,449 projects
for Rust, JavaScript, and Ruby, respectively.

76

Table 8. Mean (median) number of dependencies and dependents.

Transitive Direct
Dependencies Dependents Dependencies Dependents

JS 54.6 (17) 15.5 (0) 5.5 (3) 1.3 (0)
Ruby 34.1 (22) 6.4 (0) 8.7 (4) 1.2 (0)
Rust 9.3 (5) 7.4 (0) 3.0 (2) 1.6 (0)

Table 8 lists the number of dependencies and dependents (reverse dependen-
cies) per release. Comparing languages, we see that Ruby projects have more
direct dependencies on average (8.7) than JavaScript (5.5) and Rust (3.0). The
differences in the number of direct dependents are smaller, i.e., 1.2, 1.3, and 1.6,
respectively. However, we again see larger differences across transitive depen-
dencies and transitive dependents (the average number of projects that depend on
a project). JavaScript has the largest number of transitive dependencies and de-
pendents, 54.6 and 15.5, respectively, while Ruby has 34.1 and 6.4, and Rust 9.3
and 7.4, respectively. The number of transitive dependents for JavaScript is al-
most two times larger than for the other languages. Ruby has the highest average
number of direct dependencies and Rust has the highest number of direct depen-
dents. Differences in the number of dependencies across ecosystems indicates
that for different the criterias for deciding when to use a dependency can be dif-
ferent. JavaScript’s large dependency count can possibly be attributed to fact that
developers are preferring third-party code more for some reason or that the stan-
dard library lacks some required functions. The latter argument can be illustrated
by the popularity of simple, short packages such as left-pad (padding a string to
specified length) or isarray (a single line function for checking if an object is an
array, the second most frequently used npm package according to Table 11).

Direct and transitive dependents. The left-pad incident had a high impact not
because it was directly used in many projects but indirectly, through transitive
dependencies (in our dataset, 33 unique projects depend directly on the left-pad,
but 175,377 unique projects have left-pad as a transitive dependency). Figure 18
shows the relationship between the total number of dependents (direct and tran-
sitive dependents) and direct dependents for all projects at the beginning of April
2016. For all ecosystems, we can see that there exist projects that have a small
number of direct dependents (less than 100) and a large number of transitive de-
pendents. We can see that this pattern is stronger in JavaScript (Figure 18a) and
Ruby (Figure 18b) than for Rust. Ruby also exhibits a clear pattern with a pack-
age having an equal number of direct and transitive dependents, meaning that a
package is only involved in direct dependencies but not transitive ones.

Weakly connected components. Even though we limited our analysis to
projects that have at least one dependency relation, the ecosystems under study
are not fully connected for Rust and JavaScript. We calculated the number of
weakly connected components in the dependency graphs for all languages. A

77

0 2000 4000 6000 80001000012000

Number of direct dependents

0

20000

40000

60000

80000

100000

T
o

ta
l n

u
m

b
e

r
of

 d
e

p
en

d
e

n
ts

string_decoder 0.10.25

asn1 0.1.11

lodash 3.10.1

escape-string-regexp 1.0.3

core-util-is 1.0.1
isarray 0.0.1

debug 2.2.0

sigmund 1.0.0

async 0.9.0

underscore 1.8.3

lodash 2.4.1

express 4.13.3

inherits 2.0.1

lru-cache 2.5.0

(a) JS

0 2000 4000 6000 8000 10000

Number of direct dependents

0

10000

20000

30000

40000

50000

T
o

ta
l n

u
m

b
er

 o
f

d
ep

e
n

de
n

ts

jquery-rails 4.0.3

rack 1.3.10
json 1.8.1

rack 1.4.1

coffee-rails 4.1.0

erubis 2.7.0

tilt 1.3.3

turbolinks 2.5.3

(b) Ruby

0 100 200 300 400 500 600 700 800

Number of direct dependents

0

500

1000

1500

2000

2500

3000

T
o

ta
l n

u
m

b
er

 o
f

de
p

e
n

de
n

ts

log 0.3.1

libc 0.1.1

winapi 0.2.1 libc 0.1.8

libc 0.1.4

time 0.1.34

rustc-serialize 0.3.16

log 0.3.5

libc 0.2.1

time 0.1.32

rand 0.3.8
libc 0.2.0
winapi 0.2.4

rustc-serialize 0.3.15

(c) Rust

Figure 18. Relationships between the number of direct dependents and total dependents
in April 2016. A sample of project names are plotted.

Table 9. Distribution of version update counts.

Type 5p median mean 95p max

explicit JS Package 1.0 1.0 1.06 1.0 69.0
Application 1.0 1.0 1.37 3.0 253.0

Ruby Package 1.0 1.0 1.19 2.0 96.0
Application 1.0 1.0 1.53 3.0 343.0

Rust 1.0 1.0 1.19 2.0 62.0
implicit JS Package 1.0 1.0 1.11 2.0 66.0

Application 1.0 1.0 1.70 4.0 280.0
Ruby Package 1.0 1.0 1.91 6.0 95.0

Application 1.0 1.0 2.17 6.0 344.0
Rust 1.0 1.0 1.44 4.0 63.0

weakly connected component in a directed graph is a subgraph where each node
is connected with every other node in the subgraph via an undirected path. We ob-
served the emergence of a giant weakly connected component in each of the three
analyzed ecosystems. For Rust, JavaScript and Ruby, 96.14%, 98.2%, 100% of
projects, respectively, belong to the largest weakly connected component in the
latest snapshot. Many real-world networks such as social networks exhibit the gi-
ant component property [52]. The remaining projects are part of components with
a small number of projects. The existence of a giant component illustrates the fact
that existing packages, even being developed by different developers, can be used
together in applications. Their ability to be used together makes the ecosystem
valuable, illustrating that the packages in the ecosystem follow standards and any
random set of packages could be possibly used together.

Dependency updates and constraint notation practices. We define explicit de-
pendency version change as a manually changed version constraint for a depen-
dency by a developer. The number of explicit changes is similar across ecosys-
tems (Table 9). The number of implicit changes denotes the number of times a
dependency was resolved to a different version after each project release or depen-
dency file commit, but without modifying the dependency requirement specifica-
tion. An implicit update happens when dependencies are specified with flexible

78

constraints, and there are newer versions released matching the constraints. The
number of implicit updates has a larger variation across projects, with the highest
mean of 2.17 for Ruby, compared with 1.7 for Rust, and 1.44 for JavaScript. The
mean number of implicit updates for the published packages is smaller than for
applications: 1.91 and 1.1 for Ruby and JavaScript, respectively. We also see that
the maximum values for both explicit and implicit updates are larger for applica-
tions, which can be explained by higher velocity in development as these projects
do not have dependents. For both types of projects, packages and applications,
Ruby seems to have higher update counts which can be explained by its longer
history. Another insight is that there are more implicit than explicit updates, indi-
cating dependencies are updated more often than a developer would manually do
this. Even though implicit updates can be considered a good practice, in case the
implicit update fixes a possible bug or security vulnerability. On the other hand,
implicit updates can prevent reproducible builds and the same source code config-
uration can yield in different outcome. In the following section, we analyze more
closely the popular ways of specifying dependency version requirements that lead
to implicit updates.

Table 10 lists the relative popularity of each requirement specification scheme
in each ecosystem. Note that we also distinguish here between published pack-
ages and applications. The different ways to specify versions are: any or latest
version (any), exact version (exact), explicitly specified version range such as
[2.0,4), and one-sided ranges (range), the most recent minor version (tilde), the
most recent major version (caret) or anything else, such as manually specified git
version (other).

The dominating approaches for Rust version specifications are exact and any
versions, used in 32% and 47.8% of the cases, respectively. Besides these, all dif-
ferent possible schemes for specification are used by developers. Rust developers
prefer to specify specific versions or latest versions, as the ecosystem is growing.

Among the most popular approaches for JavaScript are the caret, exact, and
the tilde notation. Exact versions are used only in 22% of the cases for differ-
ent JavaScript projects. The difference between JavaScript GitHub projects and
published packages is non-existent, whereas for Ruby, there are differences in the
fraction of exact versions and range-based specifications. We looked more into
range usage in packages and found that a majority of range specifications in pub-
lished packages come from specifications that require a larger version than the
specific major version. We used Pearson’s chi-squared test to confirm that Ruby’s
applications and published packages have different preferences in specifying ver-
sion requirements (χ2 = 884540, d f = 5, p-value < 2.2 · 10−16). Ruby also has
the lowest number of exact dependencies, which in turn can explain our observa-
tion of Ruby having the highest number of implicit version updates on average
(Table 9). In the end, we used Pearson’s chi-squared on the full contingency table
(Figure 10 with absolute values) to confirm that dependency management pref-
erences vary across languages (χ2 = 8025600, d f = 20, p-value < 2.2 · 10−16).

79

Table 10. Relative popularity of dependency specification notations.

Type any(*) caret(^) exact other range tilde(~)
Ecosystem

JS Application 0.047 0.498 0.221 0.005 0.019 0.210
JS Package 0.037 0.536 0.217 0.007 0.029 0.174
Ruby Application 0.583 0.157 0.135 0.000 0.063 0.062
Ruby Package 0.360 0.178 0.070 0.000 0.249 0.143
Rust 0.320 0.034 0.478 0.109 0.007 0.052

2005 2007 2009 2011 2013 2015

100

101

102

103

104

105

106

107

108

C
ou

nt

JS N
JS NV
JS E
JS EV
Ruby N
Ruby NV

Ruby E
Ruby EV
Rust N
Rust NV
Rust E
Rust EV

Figure 19. Number of unique projects (N), dependencies between projects (E), the num-
ber of versions (NV) and dependencies between versions (EV).

6.5.2. Dependency network evolution (RQ3.2)

In this subsection, we investigate the evolution of dependency networks in more
detail.

General growth. To understand how the ecosystems are growing, we first an-
alyzed the number of projects and dependency relations between them. Figure 19
shows the number of projects and unique relations in the dependency network.
We also show the number of releases and the number of dependency links be-
tween them. We see that in almost all cases, the speed at which the number of
relations is growing is getting faster compared to the number of nodes in the net-
work, especially visible for JavaScript (JS N on Figure 19), where the difference
between the number of projects and dependencies is tenfold. The figure also in-
dicates that the growth of Rust is still continuing. JavaScript has become larger
than Ruby, both in terms of versions and dependencies between versions, and its

80

growth speed is faster than Ruby. The growth of Ruby has been been continuing
at a constant steady rate since 2012, whereas JavaScript is in fact growing at an
accelerated rate.

Figure 19 highlights the size differences when analyzing actual networks and
aggregated networks with annotated edges. There is a more than tenfold differ-
ence between the number of nodes and edges in both networks and the difference
is growing. Therefore, there are differences in the network structure, which con-
firms our initial discussion on the choice of network modeling approach.

As the ecosystem is composed of multiple projects, we next analyzed the
project-level changes in dependencies. We sought to determine what the num-
ber of dependencies and dependents for projects and the full size of the transitive
dependency chain was. Figure 20a shows the number of dependencies and depen-
dents for each project release. We see a faster growth for the number of depen-
dents in Ruby and JavaScript. The number of dependencies has been growing at
a slower rate. When comparing JavaScript and Ruby, we see that the difference
between the number of dependents is larger than the number of dependencies.
One possible explanation could be that the overall number of packages published
in RubyGems is smaller than in npm and there are fewer alternatives for packages,
leading to a higher number of dependents.

Figure 20b shows the total number of dependencies for each project release.
We observe fast growth for JavaScript projects and slower, steadier growth for
Ruby and Rust projects. The average size of total dependencies for JavaScript
was 34.3 in April 2015 but grew to 54.6 in April 2016, more than 60% yearly
growth. Growth at such a speed is unlikely to continue and most likely will be
lower in the future.

When comparing JavaScript’s and Ruby’s numbers of direct dependencies
(Figure 20a) and the total number of transitive dependencies, we see that
JavaScript projects have more transitive dependencies, but fewer direct dependen-
cies. This behavior indicates differences between these two ecosystems. Ruby has
packages that are used mostly by applications and do not have dependencies, but
packages published by JavaScript do have dependencies, making the ecosystem
more connected and complex. One possible explanation for JavaScript’s larger
number of transitive dependencies can be that JavaScript developers are more
open to third-party code usage and the standard library lacks functionality, re-
sulting in usage of micro-packages (See Section 6.5.1 for examples).

Judging by these observations, it is hard to predict the exact number of tran-
sitive dependencies for Rust as both Ruby and JavaScript have shown different
behavior. We argue that this may be because Rust is a very new ecosystem at its
initial stages of evolution.

Conflict evolution. The ecosystems keep growing and the number of depen-
dencies between projects is also growing. We next analyze projects that have a
single dependency included through multiple packages, which could lead to con-
flicts if the package version requirement specification does not match.

81

2005 2007 2009 2011 2013 2015

0

2

4

6

8

10

12

A
ve

ra
ge

 n
um

be
r

of
 p

ro
je

ct
s

Dependents JS
Dependencies JS
Dependents Ruby
Dependencies Ruby
Dependents Rust
Dependencies Rust

(a) Evolution of the number of
direct dependencies and depen-
dents for each project version.
Average over those that have at
least one dependency or one de-
pendent.

2005 2007 2009 2011 2013 2015

0

10

20

30

40

50

60

A
ve

ra
ge

 n
um

be
r

of
 to

ta
l d

ep
en

de
nc

ie
s

JS
Ruby
Rust

(b) Average number of total de-
pendencies, including the full
transitive closure. Average cal-
culated over projects that have at
least one dependency.

2005 2007 2009 2011 2013 2015

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
ep

en
de

nc
y

ov
er

la
p

ra
te

JS
Ruby
Rust

(c) Dependency overlap evolu-
tion. Fraction of projects having
at least one dependency required
through multiple projects.

Figure 20. Dependency network evolution.

We define a dependency overlap as a situation where a project appears as a de-
pendency through multiple different paths for a single project. In practice, overlap
could lead to conflict, which would occur only if the version specification did not
match and it was not possible to find the best matching version. Dependency
overlap illustrates how much dependencies are co-used in projects. On the other
hand, it illustrates the need for consistent usage of version number specification
by package maintainers. Increasing dependency overlap should give developers a
signal to look at their dependency version requirements and use as loose of criteria
as possible in order to allow dependency managers to find a suitable version.

Figure 20c lists the proportion of projects that have dependency overlap in
their dependency chains. The general trends are similar to the overall growth of
the ecosystems. More than two-thirds of Ruby and half of JavaScript projects
have a single dependency appear through multiple dependency chains. The result
indicates package reuse, but the chance of dependency version conflicts might
become more likely. Increasing overlap can lead to issues which prevent different
packages from being used together due to dependencies that cannot be satisfied.
Similar behavior has been observed for Debian software packages [2].

6.5.3. Fragility and vulnerability (RQ3.3)

Next we analyze the tolerance of dependency networks to the removal of a single
project or a single release. We define the vulnerability of a package as the fraction
of the network nodes that are impacted by the removal of a single package or a
single package version. This approach enables us to analyze the impact of inci-
dents such as the left-pad project removal. While complete removal of a project
removes all versions from the dependency networks, we can also study the re-
moval of a single version. For example, bugs or security vulnerabilities might not
impact all project versions as only specific ones might contain the bug.

We first calculate the vulnerability of the network where each node denotes

82

the different version. For each package version, we calculate the total number of
dependents. Next, we have the list with the total number of dependents for all
packages. Within this list, we look at the maximum value and the 90th percentile
value. We chose these values as the distribution of the number of dependents is
skewed and the median value is typically either 0 or 1 depending on the snapshot
date.

Figure 21a shows the maximum and 90th percentile vulnerability score nor-
malized with respect to the full network size at each snapshot. We see that the
maximum is fluctuating and having a positive trend, which means that there is a
version in the network whose importance is growing. Looking at the 90th per-
centile value, we see a decreasing trend, which indicates that most of the other
packages in the ecosystem are not central and are not included in the majority of
dependency paths.

We also look at the vulnerability on the aggregated graph. Figure 21b shows
the same vulnerability calculation on the aggregated network, meaning we remove
a project and all its versions. It is evident that the maximum score is growing and
the impact of every project is growing. This is even interesting in the context of
growing ecosystems, whose absolute values are also increasing. The 90th per-
centile vulnerability is again decreasing.

To find the differences between packages and applications, we analyzed the
mean vulnerability rate for different types of JavaScript and Ruby projects. Figure
21c shows the average number of projects affected by a single package removal.
The figure illustrates the dependence on a single package. We see that right after
the creation of the package ecosystem, it starts to decrease. In a later phase, the
positive trend of JavaScript is more visible. The average number of impacted
applications remains larger than the packages.

Table 11 lists the top five releases based on unique dependent projects and
unique dependent releases. For JavaScript, the list is composed of unique util-
ity packages, such as array or inherits. For Ruby and Rust we see that multiple
versions of single packages have made it to the top lists. The top five packages
for Ruby are related to webserver (rack) or templates (erubis, tilt). Rust packages
are an interface to system-level types and libraries (libc), a serialization library
(rustc-serialize), and a logging library (log).

6.6. An example of a critical bug-fix release adoption

To demonstrate how dependency network analysis could help to understand the
adoption of a bug-fix release for an existing package, we conduct a case study on
a reported vulnerability for the Ruby package Rack. Rack is a library for building
web applications in Ruby and is used by most Ruby web frameworks and web
servers. It is also one of the most popular packages according to Table 11. The
vulnerability CVE-2015-3225 [43] enables an attacker to craft request parameters
that would crash the web application, essentially enabling denial-of-service-type

83

2005 2007 2009 2011 2013 2015

10-6

10-5

10-4

10-3

10-2

10-1

100

V
ul

ne
ra

bi
lit

y
ra

te

90% JS
Max JS
90% Ruby
Max Ruby
90% Rust
Max Rust

(a) Relative vulnerability with
respect to the actual dependency
network size. The network size
is the number of releases.

2005 2007 2009 2011 2013 2015

10-6

10-5

10-4

10-3

10-2

10-1

100

V
ul

ne
ra

bi
lit

y
ra

te

90% JS
Max JS
90% Ruby
Max Ruby
90% Rust
Max Rust

(b) Relative vulnerability with
respect to the total number of
unique projects in the network.

2005 2007 2009 2011 2013 2015

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

V
ul

ne
ra

bi
lit

y
ra

te

Application mean JS
Package mean JS
Application mean Ruby
Package mean Ruby

(c) Relative vulnerability among
published packages and GitHub
projects.

Figure 21. Vulnerability of the ecosystems.

Table 11. Top packages based on the number transitive dependents (unique project re-
leases).

Package
Direct

dependents
Transitive

dependents Vulnerability

JavaScript

inherits 2.0.1 8131 499254 0.38
isarray 0.0.1 727 384907 0.29
core-util-is 1.0.1 524 371871 0.28
string_decoder 0.10.25 39 303116 0.23
sigmund 1.0.0 256 283319 0.21

Ruby

erubis 2.7.0 9014 519555 0.42
rack 1.4.1 4707 490329 0.40
rack-test 0.6.2 1566 386937 0.31
rack 1.3.10 3248 362810 0.29
tilt 1.3.3 2084 359862 0.29

Rust

libc 0.1.1 44 5520 0.25
rustc-serialize 0.3.16 1651 5379 0.24
libc 0.2.1 141 4840 0.22
libc 0.1.4 79 4598 0.21
log 0.3.1 1030 4415 0.20

84

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0

10000

20000

30000

40000

50000

60000

70000

N
um

be
r o

f p
ro

je
ct

s

Fixed versions
Vulnerable versions, <1.5.4 and < 1.6.2
CVE-2015-3225

Figure 22. Adoption of vulnerable Rack versions through direct and transitive dependen-
cies. The vertical purple line indicates release of the public Common Vulnerabilities and
Exposures (CVE) notification.

attacks.
The vulnerability disclosure was released to the public on 16 June 2015, but

the fixed versions were released on 12 June 2015. Figure 22 shows the adoption
of vulnerable and fixed versions through direct and transitive dependencies. We
can see that the adoption of fixed versions started right after their release. At the
same time, vulnerable versions were still being adopted by projects, although at
a lower rate than compared to the fixed versions. In total, 2,324 projects that had
not used Rack before, adopted one of the vulnerable versions after the CVE was
published. By the end of our observation period in July 2016, one year after the
vulnerability disclosure, only about 20.7% of the projects had migrated away from
the vulnerable versions (12326 projects out of 59336 projects that had adopted the
vulnerable version before).

6.7. Discussion

Below, we discuss our results, their practical implications, compare them with
related work, and outline the limitations of our research. The results differ to
some extent for all studied languages, but generalizations can still be made.

6.7.1. Results

Network modeling. Previous research on package dependency networks has not
reached a consensus on how to model dependencies using graphs. We propose
an approach for modeling and constructing the network from dependency data.
We believe that the chosen approach captures the actual network most accurately,
enabling us to analyze dependencies on their version level. Although the anal-
ysis of aggregated network can yield similar conclusions, the real dependencies
are still using version information and in future evolution stages this might not be

85

sufficient anymore. We believe that our contribution in network modeling is a sin-
gle step forward towards a more unified system of software dependency network
modeling.

Structure. Analysis of dependency network structure reveals differences be-
tween ecosystems. Although this has been observed before [47] for the depen-
dencies, we have also shown differences in dependency version constraint speci-
fications across ecosystems. The findings complement previous research [26] that
found that different ecosystems approached API changes differently, which could
impact dependency management. Our findings indicate that there are more im-
plicit than explicit version updates, which suggests that there may be a need for
tools to automatically monitor the dependencies that are included through implicit
updates and reveal possible breaking API changes. Alternatively, monitoring im-
plicit updates could be incorporated into the build process to notify developers
about the changes in the dependencies to raise awareness.

Evolution. Our evolution analysis revealed that the number of transitive de-
pendencies for JavaScript projects has grown over 60% over the past year. A large
number of dependencies can lead to issues such as extended build time because
of fetching the dependencies and increased software package size. Exponential
growth has been observed inside the Apache ecosystem as well [15]. Recently, a
newer dependency management tool compatible with npm was introduced [141].
One of its main new functions is an improved concurrent dependency download-
ing ability. The tool tries to solve the dependency abundance problem by provid-
ing a faster download. Alternatively, a future solution could be to study how to
reduce dependencies through better static code analysis. Function-call level anal-
ysis could help to eliminate unneeded dependencies if the corresponding code is
not invoked. Our finding illustrates that by observing network evolution, such
troubles can be anticipated. Analysis of trends and number of transitive depen-
dencies over time could be useful for other package-based language ecosystems.

Vulnerability. Our vulnerability analysis, inspired by the left-pad incident
[91], reveals that each studied ecosystem has packages whose removal could im-
pact up to 30% of the other packages and applications. We showed that ecosys-
tems have a few central packages that they depend on, which could enable bug
spreading if they are not up to date. The high vulnerability score of a package
should also alert developers and maintainers to make sure all security bugs are
fixed quickly. A package with a high vulnerability score can be of interest to
attackers as an opportunity to exploit projects depending on it.

6.7.2. Design implications

By using our findings, one could design a better package ecosystem and better
dependency management tooling. First, we would propose making dependency
relations explicitly visible to understand the importance of packages in the ecosys-
tems. Having an up-to-date view of which packages are most popular and impor-

86

tant in the ecosystem can ensure they receive maintenance and support effort from
the community. Repositories such as npm and Crates give statistics about the
popularity of packages and list dependents for each package already today. But
they still lack fine-grained information about transitive dependents and the list of
other packages that a package is frequently installed together with. This infor-
mation could make developers aware of the package usage-patterns and update
dependencies accordingly, i.e., to support smooth updates for its most popular
dependents and to reduce the likelihood for co-installability issues [131].

We would also investigate alternatives to semantic versioning. Our findings re-
vealed that exact version notation is used frequently for Rust packages. Specifying
exact versions guarantees reproducible builds, but does not allow automated up-
dates. The versioning system and package manager could automatically suggest
overriding strict versioning, if it detects it is possible to update packages without
introducing breaking changes. Overall, the ecosystem and tooling should improve
awareness of what dependencies are used, make dependency listing explicit, help
to minimize irrelevant dependencies and at the same time support automated up-
grading of dependencies for non-breaking changes.

6.7.3. Limitations

The limitation of our dependency network construction approach is that it will
not compose the exact representation that the build tool would have. When re-
solving wildcard version specifications with a matching version, we look at all
dependencies separately for given projects. In practice, when using build tools,
the whole transitive closure of dependencies would be resolved if a package is in-
cluded through multiple paths and a matching version was calculated that shares
all requirements. To recreate the exact dependencies for a project historically is
complicated as dependency management tools do not support backdated retrieval.

6.8. Replication package

Datasets and source code used in this chapter are available at
https://github.com/riivo/package-dependency-networks

6.9. Summary

The main contributions of this chapter are: (i) an approach to extract dependency
networks from public (open-source) repositories; and (ii) an analysis of the de-
pendency networks of JavaScript, Ruby, and Rust. The latter analysis shows that
these ecosystems are alive and growing, with JavaScript having the fastest growth.
JavaScript also exhibits the largest number of transitive dependencies per project
among the studied languages. All ecosystems have a subset of popular packages
used in the majority of projects. Yet, over time, these ecosystems have become
less dependent on a single popular package such that the removal of a random

87

project would not impact the whole ecosystem, but still impact up to one third of
the ecosystem for some languages.

88

7. CONCLUSION AND OUTLOOK

Modern software development relies on open-source software to facilitate reuse
and reduce redundant work. Developers use open-source packages in their
projects. Even if developers are aware of the possible risks, they still might be
lacking full insights into how these components are being developed and main-
tained. The main goal of this thesis has been to bring new insight into issue
management and dependency management in the context of open-source software
projects.

This thesis has analyzed data from GitHub projects following the mining soft-
ware repositories approach. Empirical analysis of issue report data from more
than 4,000 GitHub projects revealed trends about the growth of pending issues.
To understand which issues get closed, we developed a machine-learning-based
approach for predicting issue closing time. Inspired by the discovery of a grow-
ing number of pending issues, we analyzed dependency management with re-
spect to dependency updates. We also developed an approach for the whole
ecosystem-wide dependency network analysis to quantify possibilities of vulner-
abilities spreading through non-maintained dependencies.

The approaches and findings developed here could help to bring transparency
into open-source projects with respect to how issues are handled or dependencies
are updated. The thesis highlights the risk of acquiring vulnerabilities through
software packages.

7.1. Contributions and findings

In the introduction we formulated three broad research questions. In this section,
we summarize our contributions and findings.

7.1.1. Dynamics of issue lifetime

In this thesis we empirically analyzed issue handling for more than 4,000 open-
source projects on GitHub. Our findings revealed that a fraction of issues opened
in open-source projects remain open for long periods of time. At the same time,
the mean issue resolution time remains stable over the project lifetime. Stable is-
sue resolution time and growth of pending issues indicates that some issues do not
get attention and those that do get it are usually resolved in a matter of days. The
approach developed for analysis is generalizable for analyzing and quantifying
issue accumulation in software projects.

7.1.2. Predicting issue lifetime

Our findings about pending issues led us to build a model to predict issue life-
time. We developed a machine-learning-based method for temporal prediction of
issue lifetime in GitHub projects. We demonstrated that predictive models exhibit

89

better accuracy when trained with one-day-old or one-week-old issues to predict
whether or not an issue will remain open after a one month or longer period. Our
approach utilizes dynamic and contextual features of the project and issues, and
shows how recalculating these features over issue lifetime can lead to better re-
sults. In addition, we identified that different sets of features are important for
different prediction tasks.

7.1.3. Characteristics of open-source package ecosystems

We developed a method for analyzing package ecosystems based on network anal-
ysis. Software projects include packages to reuse code and thereby form a depen-
dency relationship. We model dependency relationships as a network and analyze
how the networks have evolved for three large ecosystems: JavaScript, Ruby, and
Rust. By including both packages from respective package manager and end-user
projects, we have an overview of ecosystem growth and package update frequen-
cies. We developed a notion of ecosystem vulnerability – what fraction of the
ecosystem is vulnerable to a removal or infection of a single package. We show
that in the npm package ecosystem the amount of transitive dependencies is in-
creasing and the vulnerability to the removal of a single package is in general
decreasing. The developed approach is generic and usable for monitoring the
structure and evolution of different software packaging ecosystems.

7.2. Opportunities for future work

This work opens up multiple possibilities for lines of future work, which we out-
line below.

7.2.1. Issue lifetime prediction

Our issue analysis did not distinguish between issue types. Future work should
look more into the semantics behind issues and distinguish between issue cate-
gories such as bugs or feature requests and how they might impact results. There
is evidence that the issue type is often incorrectly entered into issue tracking sys-
tems [72], yet at the same time the issue type can make a difference in prediction
models [11]. Future work should also clarify if there is a need for issue type infor-
mation in such kind of analysis and if it is possible to infer it via machine-learning
approaches. The next step would be to study how issue growth actually impacts
projects in terms of code changes, new releases or even project popularity. Fur-
thermore, future work should look into how to detect reasons why issues are not
being resolved. Issues might not be worked on because there is lack of resources,
their priority or severity is low or the issue report is lacking details. Incorporat-
ing the reason into the output of the issue life-time prediction model could give
stakeholders more context and make it more useful.

The predictive models studied in this paper benefit from being trained on a

90

large dataset. The drawback of this asset is that the set of projects in the dataset are
very heterogeneous, making the prediction problem more difficult. One possible
direction for future work would be to study the performance of predictive models
trained for specific types of projects (i.e. partial classifiers), such as to strike a
tradeoff between volume of projects and homogeneity.

Another direction for future work would be to extend the feature set with
more dynamic and contextual features, such as features extracted from the text
of the comments added during the lifetime of an issue, or features capturing how
busily the developers are handling other concurrent issues in the same or in other
projects.

7.2.2. Dependency analysis

The dependency management process should be studied qualitatively to under-
stand issues developers are facing. There is lack of studies on how a measure
quantifying dependency health in an ecosystem should be developed, by combin-
ing network data with data about testing efforts, code analysis, number of main-
tainers, etc.

This work takes a high-level view of dependencies. Future work should go
into lower-level details, such as function calls. When including a dependency,
only subset of its code and transitive dependencies would be used depending on
which functions are invoked. Function-call level analysis would enable to reveal
which dependencies and code-paths are actually invoked in a project. This would
enable to analyze ecosystem-wide data-flow and would give information to pack-
age maintainers about how their packages are used. In addition, it could help
developers understand if they are impacted by a possible security issue if security
notices indicate impacted functions. Furthermore, this would enable to enforce
proper semantic versioning, which in turn could enable automated updates for
bug fix releases that do not change APIs.

7.2.3. Better tooling for issue and dependency management

The methods developed in this thesis for issue lifetime characterization and pre-
diction, and dependency analysis can be turned into tools for supporting develop-
ers. There are challenges that need to be solved, such as tailoring the tools such
that they fit into the development workflow and study how to make stakehold-
ers adopt the tooling. For example, our issue lifetime prediction model can give
support for issue prioritization and insights for the submitter. Alternatively, future
research could lean towards automated actions based on issue lifetime predictions,
e.g., closing the issue if the model predicts it will not be resolved in the upcom-
ing year and has not seen any activity recently. The computation cost for such
automated tooling is feasible, the biggest limitation is the requirement of having
real-time access to data, which is typically only possible for organizations running
the repository, such as GitHub and npm.

91

Future research should also focus on dependency management tooling. The
general goal of future research is to support developers with tools in dependency
management and maintenance and provide analytics to maintainers about their
packages and the overall ecosystem trends. Automated dependency updates are
a reality today, but understanding what they might break is still unclear to devel-
opers. Automated tooling to understand test coverage and potential pitfalls for
upgrading dependencies is needed.

7.3. Closing remarks

Software development is a predominantly human-centered activity and will re-
main so in the near future. Providing tools that support developers and provide in-
sights into projects enables developers to deliver complex software projects faster
and with better quality. Project and product improvement, however, can only be
achieved through a better understanding of the underlying processes. This the-
sis contributes to a better understanding of issue and dependency management in
open-source projects.

92

BIBLIOGRAPHY

[1] Pietro Abate, Roberto Di Cosmo, Jaap Boender, and Stefano Zacchiroli.
Strong dependencies between software components. In Proceedings of
the 2009 3rd International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM ’09, pages 89–99, Washington, DC, USA,
2009. IEEE Computer Society.

[2] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice Le Fessant, Ralf
Treinen, and Stefano Zacchiroli. Mining component repositories for instal-
lability issues. In Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, pages 24–33. IEEE, 2015.

[3] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack
tolerance of complex networks. Nature, 406(6794):378, 2000.

[4] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.
[5] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. A study

of Visual Studio usage in practice. In Software Analysis, Evolution, and
Reengineering (SANER), 2016 IEEE 23rd International Conference on,
volume 1, pages 124–134. IEEE, 2016.

[6] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,
and Yann-Gaël Guéhéneuc. Is it a bug or an enhancement?: A text-based
approach to classify change requests. In Proceedings of the 2008 Confer-
ence of the Center for Advanced Studies on Collaborative Research: Meet-
ing of Minds, CASCON ’08, pages 23:304–23:318. ACM, 2008.

[7] John Anvik, Lyndon Hiew, and Gail C Murphy. Coping with an open bug
repository. In Proceedings of the 2005 OOPSLA workshop on Eclipse tech-
nology eXchange, pages 35–39. ACM, 2005.

[8] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug?
In 28th International Conference on Software Engineering (ICSE 2006),
Shanghai, China, May 20-28, 2006, pages 361–370, 2006.

[9] Jorge Aranda and Steve Easterbrook. Anchoring and Adjustment in Soft-
ware Estimation. ESEC/FSE-13. ACM, New York, NY, USA, 2005.

[10] Saïd Assar, Markus Borg, and Dietmar Pfahl. Using text clustering to pre-
dict defect resolution time: A conceptual replication and an evaluation of
prediction accuracy. Empirical Software Engineering, pages 1–39, 2015.

[11] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman.
Test code quality and its relation to issue handling performance. IEEE
Transactions on Software Engineering, 40(11):1100–1125, 2014.

[12] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 2013 international
conference on software engineering, pages 712–721. IEEE Press, 2013.

93

[13] Alberto Bacchelli, Michele Lanza, and Romain Robbes. Linking e-mails
and source code artifacts. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering-Volume 1, pages 375–384.
ACM, 2010.

[14] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto,
and Sebastiano Panichella. The evolution of project inter-dependencies in a
software ecosystem: The case of Apache. In ICSM, pages 280–289, 2013.

[15] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto,
and Sebastiano Panichella. How the Apache community upgrades de-
pendencies: An evolutionary study. Empirical Software Engineering,
20(5):1275–1317, 2015.

[16] Olga Baysal, Reid Holmes, and Michael W Godfrey. Developer dash-
boards: The need for qualitative analytics. IEEE software, 30(4):46–52,
2013.

[17] Olga Baysal, Reid Holmes, and Michael W Godfrey. No issue left behind:
Reducing information overload in issue tracking. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 666–677. ACM, 2014.

[18] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman.
When, how, and why developers (do not) test in their IDEs. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 179–190, New York, NY, USA, 2015. ACM.

[19] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke
the build: An explorative analysis of Travis CI with GitHub. In Proceed-
ings of the 14th International Conference on Mining Software Repositories,
pages 356–367. IEEE press, 2017.

[20] Moritz Beller, Georgios Gousios, and Andy Zaidman. Travistorrent: Syn-
thesizing Travis CI and GitHub for full-stack research on continuous in-
tegration. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th
International Conference on, pages 447–450. IEEE, 2017.

[21] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. Communi-
cation, collaboration, and bugs: The social nature of issue tracking in small,
collocated teams. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, CSCW, pages 291–300, Savannah, Georgia,
USA, 2010. ACM.

[22] Pamela Bhattacharya and Iulian Neamtiu. Bug-fix time prediction models:
Can we do better? In Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR ’11, pages 207–210. ACM, 2011.

[23] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
Swaminathan. Mining email social networks. In Proceedings of the 2006
international workshop on Mining software repositories, pages 137–143.
ACM, 2006.

94

[24] Tegawende F Bissyande, David Lo, Lingxiao Jiang, Laurent Reveillere,
Jacques Klein, and Yves Le Traon. Got issues? Who cares about it? A large
scale investigation of issue trackers from GitHub. In Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on, pages
188–197. IEEE, 2013.

[25] C. Bogart, C. Kästner, and J. Herbsleb. When it breaks, it breaks: How
ecosystem developers reason about the stability of dependencies. In 2015
30th IEEE/ACM International Conference on Automated Software Engi-
neering Workshop (ASEW), pages 86–89, Nov 2015.

[26] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian
Thung. How to break an API: Cost negotiation and community values
in three software ecosystems. In Proceedings of the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (FSE), FSE ’16. ACM
Press, 11 2016.

[27] Léon Bottou. Large-scale machine learning with stochastic gradient de-
scent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[28] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Re-
gression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[29] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[30] Bugzilla. https://www.bugzilla.org/. Last accessed 12.05.2017.
[31] Raymond PL Buse and Thomas Zimmermann. Analytics for software de-

velopment. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 77–80. ACM, 2010.

[32] Jordi Cabot, Javier Luis Canovas Izquierdo, Valerio Cosentino, and Belén
Rolandi. Exploring the use of labels to categorize issues in open-source
software projects. In Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on, pages 550–554.
IEEE, 2015.

[33] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen. Tracking known
security vulnerabilities in proprietary software systems. In 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pages 516–519, March 2015.

[34] Robert N Charette. This car runs on code. IEEE spectrum, 46(3):3, 2009.
[35] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose.

Predicting delays in software projects using networked classification. In
Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-
tional Conference on, pages 353–364, 2015.

[36] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, and
John Grundy. Predicting delivery capability in iterative software develop-
ment. IEEE Transactions on Software Engineering, 2017.

95

https://www.bugzilla.org/

[37] Maelick Claes, Tom Mens, Roberto Di Cosmo, and Jérôme Vouillon. A
historical analysis of Debian package incompatibilities. In Proceedings of
the 12th Working Conference on Mining Software Repositories, MSR ’15,
pages 212–223. IEEE Press, 2015.

[38] Mike Cohn. User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[39] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. A system-
atic mapping study of software development with GitHub. IEEE Access,
5:7173–7192, 2017.

[40] David R Cox. The regression analysis of binary sequences. Journal of the
Royal Statistical Society. Series B (Methodological), pages 215–242, 1958.

[41] J. Cox, E. Bouwers, M. v. Eekelen, and J. Visser. Measuring dependency
freshness in software systems. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 2, pages 109–118,
May 2015.

[42] Kevin Crowston, Hala Annabi, and James Howison. Defining open source
software project success. ICIS 2003 Proceedings, page 28, 2003.

[43] Cve-2015-3225: Potential denial of service vulnerability in rack. https:

//www.cvedetails.com/cve/CVE-2015-3225/.
[44] Jacek Czerwonka, Nachiappan Nagappan, Wolfram Schulte, and Brendan

Murphy. Codemine: Building a software development data analytics plat-
form at microsoft. IEEE software, 30(4):64–71, 2013.

[45] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social cod-
ing in GitHub: Transparency and collaboration in an open software reposi-
tory. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, pages 1277–1286. ACM, 2012.

[46] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive com-
parison of bug prediction approaches. In Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on, pages 31–41. IEEE, 2010.

[47] Alexandre Decan, Tom Mens, and Maelick Claes. On the topology of pack-
age dependency networks: A comparison of three programming language
ecosystems. In European Conference on Software Architecture Workshops,
2016.

[48] Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical compar-
ison of dependency issues in OSS packaging ecosystems. In IEEE 24th
International Conference on Software Analysis, Evolution and Reengineer-
ing, SANER 2017, Klagenfurt, Austria, February 20-24, 2017, pages 2–12,
2017.

[49] Alexandre Decan, Tom Mens, Maelick Claes, and Philippe Grosjeanm.
When GitHub meets CRAN: An analysis of inter-repository package de-

96

https://www.cvedetails.com/cve/CVE-2015-3225/
https://www.cvedetails.com/cve/CVE-2015-3225/

pendency problems. In 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering, 2016.

[50] Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli, and
Jérôme Vouillon. Maintaining large software distributions: New challenges
from the FOSS era. In Proceedings of the FRCSS 2006 workshop., pages
7–20. EASST, 2006.

[51] Roberto Di Cosmo, Stefano Zacchiroli, and Paulo Trezentos. Package
upgrades in FOSS distributions: Details and challenges. In Proceedings
of the 1st International Workshop on Hot Topics in Software Upgrades,
HotSWUp ’08, pages 7:1–7:5. ACM, 2008.

[52] David Easley and Jon Kleinberg. Networks, crowds, and markets: Reason-
ing about a highly connected world. Cambridge University Press, 2010.

[53] Stephen G Eick, Todd L Graves, Alan F Karr, J Steve Marron, and Audris
Mockus. Does code decay? assessing the evidence from change manage-
ment data. IEEE Transactions on Software Engineering, 27(1):1–12, 2001.

[54] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani
Amorim. Do we need hundreds of classifiers to solve real world classi-
fication problems? J. Mach. Learn. Res., 15(1):3133–3181, 2014.

[55] P. Francis and L. Williams. Determining ’Grim Reaper’; Policies to pre-
vent languishing bugs. In Software Maintenance (ICSM), 2013 29th IEEE
International Conference on, pages 436–439, 2013.

[56] Vahid Garousi. Evidence-based insights about issue management pro-
cesses: An exploratory study. In Trustworthy Software Development Pro-
cesses, pages 112–123. Springer, 2009.

[57] Daniel M German, Bram Adams, and Ahmed E Hassan. The evolution of
the R software ecosystem. In Software Maintenance and Reengineering
(CSMR), 2013 17th European Conference on, pages 243–252. IEEE, 2013.

[58] Emanuel Giger, Martin Pinzger, and Harald Gall. Predicting the fix time
of bugs. In Proceedings of the 2nd International Workshop on Recommen-
dation Systems for Software Engineering, RSSE ’10, pages 52–56. ACM,
2010.

[59] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller.
Checking app behavior against app descriptions. In Proceedings of the
36th International Conference on Software Engineering, pages 1025–1035.
ACM, 2014.

[60] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories, MSR ’13,
pages 233–236, 2013.

[61] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory
study of the pull-based software development model. In Proceedings of the

97

36th International Conference on Software Engineering, ICSE 2014, pages
345–355. ACM, 2014.

[62] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van
Deursen. Work practices and challenges in pull-based development: The
integrator’s perspective. In Proceedings of the 37th International Confer-
ence on Software Engineering - Volume 1, ICSE ’15, pages 358–368. IEEE
Press, 2015.

[63] Lars Grammel, Holger Schackmann, Adrian Schröter, Christoph Treude,
and Margaret-Anne Storey. Attracting the community’s many eyes: An
exploration of user involvement in issue tracking. In Human Aspects of
Software Engineering, page 3. ACM, 2010.

[64] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Bren-
dan Murphy. "Not my bug!" and other reasons for software bug report
reassignments. In Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work, CSCW ’11, pages 395–404. ACM, 2011.

[65] P.J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characteriz-
ing and predicting which bugs get fixed: An empirical study of Microsoft
Windows. In Software Engineering, 2010 ACM/IEEE 32nd International
Conference on, volume 1, pages 495–504, 2010.

[66] Emitza Guzman and Walid Maalej. How do users like this feature? A fine
grained sentiment analysis of app reviews. In Requirements Engineering
Conference (RE), 2014 IEEE 22nd International, pages 153–162. IEEE,
2014.

[67] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Per-
formance debugging in the large via mining millions of stack traces. In
Proceedings of the 34th International Conference on Software Engineer-
ing, pages 145–155. IEEE Press, 2012.

[68] Ahmed E Hassan. The road ahead for mining software repositories. In
Frontiers of Software Maintenance, 2008. FoSM 2008., pages 48–57. IEEE,
2008.

[69] Ahmed E Hassan and Tao Xie. Software intelligence: The future of mining
software engineering data. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, pages 161–166. ACM, 2010.

[70] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer New York, 2009.

[71] JI Hejderup. In dependencies we trust: How vulnerable are dependencies
in software modules? Master’s thesis, TU Delft, Delft University of Tech-
nology, 2015.

[72] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature:
How misclassification impacts bug prediction. In Proceedings of the 2013

98

International Conference on Software Engineering, ICSE ’13, pages 392–
401, Piscataway, NJ, USA, 2013. IEEE Press.

[73] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar
Devanbu. On the naturalness of software. In Software Engineering (ICSE),
2012 34th International Conference on, pages 837–847. IEEE, 2012.

[74] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack
vulnerability of complex networks. Physical review E, 65(5):056109, 2002.

[75] How a student fooled 17,000 coders into running his
‘sketchy’ programming code. https://fossbytes.com/

typosquatting-technique-used-by-student-tricks-17000-coders/.
Accessed: 2016-06-19.

[76] https://help.github.com/articles/about-pull-request-reviews/. https:

//help.github.com/articles/about-pull-request-reviews/b/,
2017. [Online; accessed 22-September-2017].

[77] Javier Luis Cánovas Izquierdo, Valerio Cosentino, Belén Rolandi, Alexan-
dre Bergel, and Jordi Cabot. GiLA: GitHub label analyzer. In Software
Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd Inter-
national Conference on, pages 479–483. IEEE, 2015.

[78] Yujuan Jiang, Bram Adams, and Daniel M. German. Will my patch make
it? and how fast?: Case study on the linux kernel. In Proceedings of
the 10th Working Conference on Mining Software Repositories, MSR ’13,
pages 101–110. IEEE Press, 2013.

[79] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora.
Automatic identification of load testing problems. In Software Mainte-
nance, 2008. ICSM 2008. IEEE International Conference on, pages 307–
316. IEEE, 2008.

[80] Jira. https://www.atlassian.com/software/jira. Last accessed
12.05.2017.

[81] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela Damian. The promises and perils of min-
ing GitHub. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 92–101. ACM, 2014.

[82] Benedicte Kenmei, Giuliano Antoniol, and Massimiliano Di Penta. Trend
analysis and issue prediction in large-scale open source systems. In Soft-
ware Maintenance and Reengineering, 2008. CSMR 2008. 12th European
Conference on, pages 73–82. IEEE, 2008.

[83] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Has-
san. What do mobile app users complain about? IEEE Software, 32(3):70–
77, 2015.

[84] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Issue dynamics in GitHub
projects. In Product-Focused Software Process Improvement, volume 9459

99

https://fossbytes.com/ typosquatting-technique-used-by-student-tricks-17000-coders/
https://fossbytes.com/ typosquatting-technique-used-by-student-tricks-17000-coders/
https://help.github.com/articles/about-pull-request-reviews/b/
https://help.github.com/articles/about-pull-request-reviews/b/
https://www.atlassian.com/software/jira

of Lecture Notes in Computer Science, pages 295–310. Springer Interna-
tional Publishing, 2015.

[85] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using dynamic and con-
textual features to predict issue lifetime in GitHub projects. In Proceed-
ings of the 13th International Conference on Mining Software Repositories,
MSR ’16, pages 291–302, New York, NY, USA, 2016. ACM.

[86] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Struc-
ture and evolution of package dependency networks. In Proceedings of the
14th International Conference on Mining Software Repositories, MSR ’17,
pages 102–112, Piscataway, NJ, USA, 2017. IEEE Press.

[87] Andrew J Ko and Parmit K Chilana. How power users help and hinder
open bug reporting. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1665–1674. ACM, 2010.

[88] Ekrem Kocaguneli and Tim Menzies. Software effort models should be
assessed via leave-one-out validation. Journal of Systems and Software,
86(7):1879–1890, 2013.

[89] Stephen Kokoska and Daniel Zwillinger. CRC standard probability and
statistics tables and formulae. Crc Press, 1999.

[90] Raula Gaikovina Kula, Daniel M. Germán, Takashi Ishio, and Katsuro In-
oue. Trusting a library: A study of the latency to adopt the latest maven
release. In 22nd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering, SANER 2015, Montreal, QC, Canada, March
2-6, 2015, pages 520–524, 2015.

[91] left-pad issue #4. https://github.com/stevemao/left-pad/issues/
4. Last accessed 25.01.2017.

[92] Meir M Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

[93] Huan Liu and R. Setiono. Chi2: feature selection and discretization of
numeric attributes. In Tools with Artificial Intelligence, 1995. Proceedings.,
Seventh International Conference on, pages 388–391, 1995.

[94] Benjamin Livshits and Thomas Zimmermann. Dynamine: Finding com-
mon error patterns by mining software revision histories. In Proceedings
of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pages 296–305, New York, NY, USA, 2005.
ACM.

[95] B. Luijten, J. Visser, and A. Zaidman. Assessment of issue handling effi-
ciency. In Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 94–97, May 2010.

[96] Mircea F Lungu. Reverse engineering software ecosystems. PhD thesis,
University of Lugano, 2009.

100

https://github.com/stevemao/left-pad/issues/4
https://github.com/stevemao/left-pad/issues/4

[97] Henry B Mann and Donald R Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals of math-
ematical statistics, pages 50–60, 1947.

[98] Andrian Marcus, Jonathan I Maletic, and Andrey Sergeyev. Recovery of
traceability links between software documentation and source code. In-
ternational Journal of Software Engineering and Knowledge Engineering,
15(05):811–836, 2005.

[99] Lionel Marks, Ying Zou, and Ahmed E. Hassan. Studying the fix-time for
bugs in large open source projects. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, Promise ’11,
pages 11:1–11:8. ACM, 2011.

[100] T. Mens and S. Demeyer. Software Evolution. SpringerLink: Springer
e-Books. Springer Berlin Heidelberg, 2008.

[101] Dishant Mittal. Paper replication report: Using dynamic and contextual
features to predict issue lifetime in github projects. Private communica-
tions, 2017.

[102] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies
of open source software development: Apache and Mozilla. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 11(3):309–
346, 2002.

[103] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and eco-
nomic benefits of software reuse: A review of industrial studies. Empirical
Software Engineering, 12(5):471–516, 2007.

[104] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan.
Curating GitHub for engineered software projects. Empirical Software En-
gineering, 22(6):3219–3253, 2017.

[105] Alessandro Murgia, Giulio Concas, Roberto Tonelli, Marco Ortu, Serge
Demeyer, and Michele Marchesi. On the influence of maintenance activity
types on the issue resolution time. In Proceedings of the 10th International
Conference on Predictive Models in Software Engineering, PROMISE ’14,
pages 12–21. ACM, 2014.

[106] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[107] Mark Newman. Networks: An introduction. Oxford university press, 2010.
[108] NPM API. https://registry.npmjs.org/-/all. Accessed: 2016-05-

01.
[109] Lucas D. Panjer. Predicting Eclipse bug lifetimes. In Proceedings of the

Fourth International Workshop on Mining Software Repositories, MSR ’07,
page 29. IEEE Computer Society, 2007.

101

https://registry.npmjs.org/-/all

[110] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions about
software energy consumption. In Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, pages 22–31. ACM, 2014.

[111] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Michele Lanza. Mining StackOverflow to turn the IDE into a self-
confident programming prompter. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pages 102–111. ACM, 2014.

[112] Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and
Roberto Tonelli. Estimating story points from issue reports. In Proceedings
of the The 12th International Conference on Predictive Models and Data
Analytics in Software Engineering, page 2. ACM, 2016.

[113] Probot stale. https://github.com/probot/stale. Last accessed
1.10.2018.

[114] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1993.

[115] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic version-
ing versus breaking changes: A study of the Maven repository. In Proceed-
ings of the 2014 IEEE 14th International Working Conference on Source
Code Analysis and Manipulation, SCAM ’14, pages 215–224, Washing-
ton, DC, USA, 2014. IEEE Computer Society.

[116] Marc J Rochkind. The source code control system. IEEE Transactions on
Software Engineering, pages 364–370, 1975.

[117] RubyGems API. https://rubygems.org/pages/data. Accessed:
2016-05-01.

[118] R.K. Saha, S. Khurshid, and D.E. Perry. An empirical study of long lived
bugs. In Software Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on,
pages 144–153, 2014.

[119] Toby Segaran. Programming collective intelligence: building smart web
2.0 applications. O’Reilly Media, Inc., 2007.

[120] Alexander Serebrenik and Tom Mens. Challenges in software ecosystems
research. In Proceedings of the 2015 European Conference on Software
Architecture Workshops, ECSAW ’15, pages 40:1–40:6. ACM, 2015.

[121] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao
Ohira, Bram Adams, Ahmed E. Hassan, and Ken-ichi Matsumoto. Study-
ing re-opened bugs in open source software. Empirical Software Engineer-
ing, 18(5):1005–1042, 2012.

[122] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and
Kenichi Matsumoto. Automated parameter optimization of classification
techniques for defect prediction models. In Software Engineering (ICSE),

102

https://github.com/probot/stale
https://rubygems.org/pages/data

2016 IEEE/ACM 38th International Conference on, pages 321–332. IEEE,
2016.

[123] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina
Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who
should review my code? A file location-based code-reviewer recommen-
dation approach for modern code review. In Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference
on, pages 141–150. IEEE, 2015.

[124] Ferdian Thung, David Lo, and Julia Lawall. Automated library recommen-
dation. In Reverse Engineering (WCRE), 2013 20th Working Conference
on, pages 182–191. IEEE, 2013.

[125] Yuan Tian, D. Lo, and Chengnian Sun. Drone: Predicting priority of re-
ported bugs by multi-factor analysis. In Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pages 200–209, 2013.

[126] Walter F Tichy. Design, implementation, and evaluation of a revision con-
trol system. In Proceedings of the 6th international conference on Software
engineering, pages 58–67. IEEE Computer Society Press, 1982.

[127] P. Tripathy and K. Naik. Software Evolution and Maintenance. Wiley,
2014.

[128] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
pages 356–366. ACM, 2014.

[129] Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Stochastic
gradient descent training for l1-regularized log-linear models with cumu-
lative penalty. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09, pages
477–485. Association for Computational Linguistics, 2009.

[130] Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto.
Effort estimation in agile software development: A systematic literature
review. In Proceedings of the 10th International Conference on Predictive
Models in Software Engineering, pages 82–91. ACM, 2014.

[131] Jérôme Vouillon and Roberto Di Cosmo. On software component co-
installability. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 22(4):34, 2013.

[132] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An ap-
proach to detecting duplicate bug reports using natural language and exe-
cution information. In Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on, pages 461–470. IEEE, 2008.

103

[133] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and
Josh Attenberg. Feature hashing for large scale multitask learning. In Pro-
ceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML ’09, pages 1113–1120. ACM, 2009.

[134] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller.
How long will it take to fix this bug? In Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, MSR ’07, page 1. IEEE
Computer Society, 2007.

[135] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small patches get in!
In Proceedings of the 2008 International Working Conference on Mining
Software Repositories, MSR ’08, pages 67–76, New York, NY, USA, 2008.
ACM.

[136] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dy-
namics of the JavaScript package ecosystem. In Proceedings of the 13th
International Workshop on Mining Software Repositories, MSR ’16, pages
351–361. ACM, 2016.

[137] Edmund Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question
and answer sites for automatic comment generation. In Automated Soft-
ware Engineering (ASE), 2013 IEEE/ACM 28th International Conference
on, pages 562–567. IEEE, 2013.

[138] Xin Xia, D. Lo, Xinyu Wang, Xiaohu Yang, Shanping Li, and Jianling Sun.
A comparative study of supervised learning algorithms for re-opened bug
prediction. In Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, pages 331–334, 2013.

[139] Xin Xia, David Lo, Emad Shihab, Xinyu Wang, and Bo Zhou. Automatic,
high accuracy prediction of reopened bugs. Automated Software Engineer-
ing, 22(1):75–109, 2015.

[140] Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. Data mining
for software engineering. Computer, 42(8), 2009.

[141] Yarn: A new package manager for javascript. https:

//code.facebook.com/posts/1840075619545360/

yarn-a-new-package-manager-for-javascript/. accessed 2016-
10-27.

[142] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bog-
dan Vasilescu. Wait for it: Determinants of pull request evaluation latency
on GitHub. In Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, pages 367–371. IEEE Press, 2015.

[143] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining text
mining and data mining for bug report classification. In Proceedings of the
2014 IEEE International Conference on Software Maintenance and Evolu-
tion, ICSME ’14, pages 311–320. IEEE Computer Society, 2014.

104

https://code.facebook.com/posts/1840075619545360/yarn-a-new-package-manager-for-javascript/
https://code.facebook.com/posts/1840075619545360/yarn-a-new-package-manager-for-javascript/
https://code.facebook.com/posts/1840075619545360/yarn-a-new-package-manager-for-javascript/

[144] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting de-
fects for Eclipse. In Proceedings of the third international workshop on
predictor models in software engineering, page 9. IEEE Computer Society,
2007.

[145] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan
Diehl. Mining version histories to guide software changes. IEEE Transac-
tions on Software Engineering, 31(6):429–445, 2005.

105

ACKNOWLEDGEMENTS

I would like to express my gratitude and appreciation to my supervisors Marlon
Dumas and Dietmar Pfahl. I am thankful for their constant encouragement, sug-
gestions and feedback over all these years.

I am thankful to Georgios Gousios for hosting me at Radboud University, find-
ing time to discuss ideas and guiding me in my research.

I would also like to thank my thesis reviewers Tom Mens and Andy Zaidman
for their insightful feedback and comments.

I want to thank Tõnu Soots for helping to improve the readability of the thesis.
I would like to thank my parents for supporting me and encouraging me to

work on my thesis. Their regular inquiries about the progress of the thesis was the
best motivation to complete it.

I would also like to acknowledge those who awarded me with scholarships and
provided funding for my research: IT Akadeemia Scholarhip, Estonian Doctoral
School of Information and Communication Technology (IKTDK) Scholarhip, Es-
tonian Research Council, and ERDF via the Software Technology and Applica-
tions Competence Centre.

106

SISUKOKKUVÕTE

Avatud lähtekoodiga tarkvaraprojektide vearaportite ja
tehniliste sõltuvuste haldamise analüüsimine

Nüüdisaegses tarkvaraarenduses kasutatakse avatud lähtekoodiga tarkvara kom-
ponente, et vähendada korratava töö hulka. Avatud lähtekoodiga projektide hulga
kasvuga kaasneb uusi katsumusi kogukonna panuste ja soovide haldamisel. Kasu-
tajad saavad esitada uusi nõudeid, vearaporteid ja tööülesandeid, sundides arenda-
jad nendega tegelema. Teisalt soovivad arendajad enda tööd lihtsustada, kasutades
projektides kolmanda poole tarkvarateeke. Selles töös uuritakse kahte probleemi
avatud lähtekoodiga arenduses: tööülesannete eluiga ja avatud lähtekoodiga tark-
vara komponentide vaheliste sõltuvuste võrgustiku analüüsimist.

Veahaldussüsteeme kasutatakse lisaks tarkvaravigade haldamisele ka selleks,
et kirjeldada arendusülesandeid ja uusi kasutuslugusid. Avatud lähtekoodiga pro-
jektides saab iga kasutaja lisada uue vearaporti või nõude, mis viib olukorrani,
kus nõuete esitajaid on rohkem kui projektis osalisi. Selles töös uuritakse veara-
porti käsitlemise ajalist dünaamikat 4000 avatud lähtekoodiga projekti näitel, mis
on kogutud ühisarendusplatvormist GitHub. Konkreetsemalt uuritakse vearaporti-
te loomise sagedust, avatud olekus raportite arvu, keskmist vearaporti eluiga ning
nende muutumist ajas. Tulemused näitavad, et vearaporteid luuakse vahetult pä-
rast projekti loomist tavapärasest rohkem ning avatud vearaportite arv kasvab aja
jooksul pikalt lahendamata vearaportite tõttu. Keskmine raporti eluiga on projekti
eluea vältel stabiilne.

Vearaporti lahtiolekuaja ennustamise meetodid aitavad projektijuhtidel priori-
seerida tööd ning planeerida ressursse. Selles töös uuritakse, kuidas kaasata veara-
porti eluea ennustamise mudelisse erinevat tüüpi andmeid, näiteks kommentaare,
arendajate ja projekti aktiivsust. Töös arendatakse välja masinõppel baseeruv mu-
del, mille abil ennustatakse erinevatel ajahetkedel, kas antud vearaport suletakse
mingis etteantud ajavahemikus. Tulemused näitavad, et dünaamilised ja konteks-
tipõhised tunnused on eriti olulised pikema perioodi ennustamisel ning erinevat
tüüpi tunnuste olulisus muutub ennustusperioodi pikkuse järgi.

Doktoritöös uuritakse ka seda, kuidas tarkvaraprojektides tehnilisi sõltuvu-
si kasutatakse. Tarkvaraarendajad kasutavad varem väljaarendatud komponente,
et kiirendada arendust ja vähendada korratava töö hulka. Samamoodi kasutavad
spetsiifilised komponendid veel omakorda teisi komponente, misläbi moodustub
komponentide vaheliste seoste kaudu sõltuvuste võrgustik. Selles töös arendatak-
se välja meetodid komponentidevahelise sõltuvuste võrgustiku struktuuri ja aja-
lise kasvu uurimiseks. Meetodit rakendatakse kolme laialt levinud tarkvarateegi
ökosüsteemi peal, milleks on JavaScript, Ruby ja Rust. Tulemused näitavad, et
uuritud ökosüsteemid erinevad. JavaScripti transitiivsete sõltuvuste hulk on vii-
mase uuritud aasta jooksul üle 60% kasvanud, mis viitab kasvavale keerukusele.
Töös demonstreeritakse, kuidas võrgustiku struktuuri analüüsi abil saab hinnata

107

tarkvaraprojektide riski hõlmata sõltuvusahela kaudu mõni turvaviga.
Doktoritöös arendatud meetodid ja tulemused aitavad avatud lähtekoodiga pro-

jektide vearaportite ja tehniliste sõltuvuste haldamise praktikat läbipaistvamaks
muuta.

108

CURRICULUM VITAE

Personal data

Name: Riivo Kikas
Date of Birth: 15.08.1987
Nationality: Estonian
Language skills: Estonian (native), English
E-mail: riivokik@ut.ee

Education

2012– University of Tartu, Ph.D. in Computer Science
2009–2011 University of Tartu, M.Sc. in Computer Science
2006–2009 University of Tartu, B.Sc. in Computer Science

Employment

2016– Senior Software Engineer, Twilio Estonia OÜ
2009–2015 Junior Researcher, Software Technology and Applications

Competence Centre (STACC)
2007–2009 Junior Developer, AS Nortal

109

ELULOOKIRJELDUS

Isikuandmed

Nimi: Riivo Kikas
Sünniaeg: 15.08.1987
Kodakondsus: Eesti
Keelteoskus: eesti keel, inglise keel
E-post: riivokik@ut.ee

Haridus

2012– Tartu Ülikool, informaatika doktorant
2009–2011 Tartu Ülikool, M.Sc. informaatikas
2006–2009 Tartu Ülikool, B.Sc. informaatikas

Teenistuskäik

2016– Tarkvaraarenduse insener, Twilio Estonia OÜ
2009–2015 Nooremteadur, Tarkvara Tehnoloogia Arenduskeskus OÜ
2007–2009 Nooremarendaja, AS Nortal

110

LIST OF ORIGINAL PUBLICATIONS

• Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Issue dynamics in GitHub
projects. In Product-Focused Software Process Improvement, volume 9459
of Lecture Notes in Computer Science, pages 295–310. Springer Interna-
tional Publishing, 2015.
• Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using dynamic and con-

textual features to predict issue lifetime in GitHub projects. In Proceed-
ings of the 13th International Conference on Mining Software Repositories,
MSR’16, pages 291–302, 2016. ACM.
• Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Struc-

ture and evolution of package dependency networks. In Proceedings of the
14th International Conference on Mining Software Repositories, MSR ’17,
pages 102–112, 2017. IEEE Press.

111

112

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

113

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

114

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex
Systems. Tartu 2018, 179 p.

	Introduction
	Problem area
	Issue dynamics
	Issue lifetime prediction
	Dependency analysis

	Problem statement
	Research approach
	Contributions of the thesis
	Thesis organization

	State of the art
	Mining software repositories
	GitHub
	GHTorrent

	Issue management in software projects
	Issue lifetime analysis
	Issue lifetime prediction
	Beyond issue lifetime prediction

	Package dependency management
	Dependency networks
	Dependency management
	Vulnerabilities
	Synthesis of related work for dependency management

	Summary

	Background
	Machine learning and classification
	Logistic regression
	Decision trees
	Random Forests

	Predictive model evaluation and selection
	Model performance measures
	Model validation and selection

	Network analysis
	Paths and components
	Centrality

	Understanding issue dynamics in GitHub projects
	Introduction
	Dataset and method
	Filtering
	Descriptive statistics
	Terminology
	Notations
	Examples

	Results
	Issue arrival rate (RQ1.1)
	Pending issue growth (RQ1.2)
	Issue lifetime (RQ1.3)
	Discussion
	Design implications

	Threats to validity
	Summary

	Predicting issue lifetime in GitHub projects
	Introduction
	Approach
	Dataset
	Analysis of issue lifetime

	Model Construction
	Features
	Model training
	Classification method
	Evaluation

	Results
	Classifier performance (RQ2.1)
	Feature importance (RQ2.2)

	Discussion and limitations
	Replication package
	Summary

	Structure and evolution of package dependency networks
	Introduction
	Background and terminology
	Research questions
	Method
	Context
	Data collection
	Parsing GitHub projects
	Resolving dependencies
	Network construction

	Results
	Description of dependency networks (RQ3.1)
	Dependency network evolution (RQ3.2)
	Fragility and vulnerability (RQ3.3)

	An example of a critical bug-fix release adoption
	Discussion
	Results
	Design implications
	Limitations

	Replication package
	Summary

	Conclusion and outlook
	Contributions and findings
	Dynamics of issue lifetime
	Predicting issue lifetime
	Characteristics of open-source package ecosystems

	Opportunities for future work
	Issue lifetime prediction
	Dependency analysis
	Better tooling for issue and dependency management

	Closing remarks

	Bibliography
	Acknowledgements
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

