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1.1 Introduction

In the Einstein’s general relativity the gravitational field is mediated by the
metric tensor gµν . Scalar-tensor theories are a class of extensions to general rel-
ativity where a scalar field Φ is added as an extra mediator of the gravitational
field. Such theories in a sense date back to just a few years after the final for-
mulation of general relativity, as already the Kaluza-Klein theories [1, 2] contain
a scalar field. Scalar-tensor theories per se were studied by Jordan [3] and Fierz
[4]. Their work was taken over by Brans and Dicke [5], and additionally gener-
alized by Bergmann [6] and Wagoner [7], who promoted the constant coupling
parameter, ω = const, of the original Brans-Dicke formulation into a dynamical
function ω = ω(Φ) of the scalar field Φ. The latter is the starting point for the
thesis, but not in its original formulation, but in the formulation by Flanagan [8]
who completed the action functional with respect to the conformal transformation,
introduced by Weyl [9], and scalar field redefinition. By the term ‘completed’ I
mean that Flanagan considered an action functional where under the above men-
tioned transformations the form invariance of the action functional was explicit,
because all four possible functional multipliers were kept arbitrary. Flanagan did
not generalize the theory, as is also argued in the thesis, but his formulation is nev-
ertheless useful and, prematurely, in my option the only straightforward way for
studying the transformation properties.

One is justified to ask why should we consider the conformal transformation
in the first place. The answer is not so clear, as for the generic case it is not a sym-
metry transformation of such theories. Hence in general, also no Noether current
follows1. As I understand it is just a change of variables which in principle is one
of the most used techniques for solving differential equations. In Dicke’s interpre-
tation the conformal transformation constitutes for changing one’s units of mea-
surement, which in that case might be spacetime point dependent. I am not a fan of
such interpretation, because first such an approach would require a full understand-
ing about measurements in such theories, and second the whole algebra of units
breaks down. If the units are spacetime point dependent, then we cannot naı̈vely
“pull them out” of the (differential) expressions. Perhaps the clearest reason for
introducing a conformal transformation is the historical one. Roughly speaking,
Jordan considered a five-dimensional flat space projected onto a four dimensional
curved space. He obtained that such a projection naturally introduces a scalar field
on the four dimensional space, however, the scalar field also entered the matter
action functional thus breaking the usual local energy-momentum conservation.
The scalar field was included in a particular manner, and its explicit presence in
the matter action functional could be removed via a conformal transformation, as
suggested by Pauli at the time (the description of the historical approach is loosely

1I thank Hardi Veermäe for making that clear at the right moment.
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based on [10] and private communication with my supervisor D. Sc. Piret Kuusk).
When studying extensions of general relativity, one must, however, take into

account that general relativity is in a very good agreement with the solar system
experiments. Thus also the extensions must be close to general relativity in the
weak field and/or late time regime. The first calculations in the parametrized post-
Newtonian formulation were done by Nordtvedt [11] and later neatly generalized
also to multiscalar case by Damour and Esposito-Farèse [12]. Their conclusion
was that the coupling function ω(Φ) must blow up, in order to obtain a general-
relativity-like behavior of the scalar-tensor theory. The condition became even
more significant when it turned out to yield general-relativity-like behavior also
in the late time (Friedmann-type) cosmology [13]. In particular it was shown that
there exists a fixed point in the (Φ, Φ̇) space (“dot” denoting time derivative) that
corresponds to general relativity and under certain circumstances the fixed point is
an attractor, i.e., trajectories with different initial conditions converge towards it.
Here, as different authors use different conformal frames, I have implicitly assumed
that the results are invariant under the conformal transformation and scalar field
reparametrization. Especially the latter needs a closer look, as diverging ω implies
also the scalar field redefinition to be singular. (Perhaps the singular behavior is not
so inadmissible if one takes into account that Liouville’s theorem does not allow
fixed points for Hamiltonian systems, and thus something must blow up [14]2.)

While deriving the described results, the authors did not consider the scalar
field potential. It is therefore interesting to note that the post-Newtonian param-
eters approach their general relativity values also for sufficiently steep potential,
leading to a massive scalar field [15] (see also Ref. VIII in List of publications).
Similar conditions also render the fixed point, which corresponds to general rel-
ativity, to be an attractor, but only if matter is absent or is highly relativistic (the
trace of the energy-momentum tensor vanishes). Let me use the term ‘pseudo
fixed point’ for referring to the latter. In my opinion such results suggest a very
nice speculation. (I heard at least a version of the thought from Dr. Margus Saal.)
Let us consider an early universe, matter has not yet formed, and there is a pos-
sibility for a pseudo fixed point which is an attractor because the scalar field has
high mass, presumably. Trajectories converge to that fixed point and already the
mathematics used to study the nature of the fixed points via linearizing the equa-
tion suggest that in the vicinity of the point the time derivative of the scalar field
is rather small. Potential of the scalar field dominates and we have slow-roll infla-
tion. The weak field conditions are nevertheless rather close to general relativity
because the scalar field is very massive and, thus, with short range. Let us fur-
ther consider some unspecified mechanism which causes the scalar field to decay
into ordinary matter. At first the matter is highly relativistic and the inflation con-
tinues. But once there exists some nonrelativistic matter, the pseudo fixed point

2I thank Mihkel Rünkla for pointing out that paper.
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condition is not valid anymore, and in the phase space the trajectories slowly de-
part from what used to be a fixed point. Assuming that there is also a scalar field
value where ω diverges, the trajectories now converge towards that point (if it is an
attractor). The universe evolves from one inflationary period to another one, both
corresponding to a fixed point in the phase space, and this is possible, because the
nature of the first fixed point changes due to physical processes where matter is
created. The speculation was, unfortunately for me, proven to be unphysical in a
workgroup seminar by invoking the argument that due to the inflationary expan-
sion of the universe the matter, the matter created simultaneously everywhere in
space, would be ripped apart, thus keeping the density effectively zero.

The thesis, however, is about a particular mathematical problem concerning the
transformation properties of expressions under the mentioned conformal transfor-
mation of the metric tensor, and under the scalar field redefinition, which becomes
especially interesting if the latter is singular in the “vicinity” of general relativity.
The mathematical problem could in principle be treated in its own right without
any physical implications. Thus the introduction here is rather generic or even
vague. Readers who are interested in further details concerning the scalar-tensor
theories and the motivation for studying these should consult, first, the introduc-
tory sections of the attached papers, and second, more sophisticated and structured
textbooks [10, 16].

1.2 Aim of the thesis and of the overview article

As briefly mentioned in the Introduction, the results ought to be covariant un-
der the conformal transformation and under the scalar field reparametrization. To
be more precise, while the question might seem trivial in some cases, it is impor-
tant to check the correspondence also for singular transformations (as at least one
particular case is related to the physically interesting general relativity regime),
and perhaps most importantly, it is necessary to understand what must be done to
impose the correspondence. A singular transformation in the case of the cosmo-
logical fixed point is studied in the attached paper V. The treatment there is generic
and rather complete, thus I will not be studying it much in the following overview
article. In the hope to ease the study we, I and Senior Researchers developed a
formalism of quantities that are invariant under the conformal transformation and
transform as scalar functions under the scalar field redefinition – the invariants.
The thesis is mostly about these invariants and the overview article concentrates on
an aspect which in my opinion is not clearly stated in the attached papers. Namely,
it turns out that due to ambiguity in imposing the transformation properties, the
formalism of invariants is not very useful when one is performing calculations in
a particular fixed parametrization. An expression, in a fixed parametrization, by
itself can always be considered to be such an invariant.
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1.2.1 Statements

1. An action in a fixed parametrization is equivalent to the generic action rewrit-
ten in terms of the corresponding invariant pair. The actions differ only
by the interpretation we assign to the quantities contained therein, and thus
there is no physical or mathematical method for discriminating between the
two.

2. The translation rules allow us to take an expression from a fixed parametriza-
tion and to rewrite it as an expression in the generic parametrization. These
rules are just the equivalence, mentioned in the previous point, made ex-
plicit.

3. The translation rules, when applied on an expression without its context, are
ambiguous because of the transformation properties. We cannot impose all
possible transformation properties at once.

4. The transformation properties can be recovered by taking into account how
the expression was derived in the first place, but such an approach is rather
cumbersome.

5. A fixed parametrization is not a good setup for studying transformation prop-
erties. The Flanagan-like generic parametrization is much more convenient.

6. The previous statements have in principle nothing to do with the invariants.
The latter, however, turned out to be useful for understanding the subtleties.

1.3 Structure of the overview article

The overview article contains of the current Introduction, which also includes
the mathematical introduction. The content there is in principle just common
knowledge, but further info may be found from [17, 18]. Chapter Introduction is
followed by three chapters introducing the class of scalar-tensor theories of grav-
ity in the generic parametrization in Chapter 2, in the Einstein frame canonical
parametrization E in Chapter 3, and in the Jordan frame Brans-Dicke-Bergmann-
Wagoner parametrization J in Chapter 4. In these three chapters altogether the
material is presented trice, in hope that such exaggerated manner helps to make
the statements more transparent. Especially the latter two are identical in their
structure. The previous is followed by the Chapter 5 where I write down how the
invariants, the formalism can be used in practice. In my opinion the list is com-
plete, but I am nevertheless glad if somebody finds another uses. The overview
article ends with the Chapter Summary. Each of the chapters 2, 3, 4 and 5 is
preceded by a local Table of Contents.
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1.4 Mathematical introduction

1.4.1 Christoffel symbols

In general relativity we define the curve of extremal length to be also the
straightest one. In other words, varying the length of a curve between spacetime
points x0 ≡ {xµ0}3µ=0 and x1 ≡ {xµ1}3µ=0, i.e.,

s =

∫ x1

x0

ds =

∫ x1

x0

√
−gµν

dxµ

dλ

dxν

dλ
dλ , (1.1)

with respect to coordinates xµ yields

δs =

∫ x1

x0

gµω

(
d2xµ

dλ2
+ Γµσρ

dxσ

dλ

dxρ

dλ

)
δxωdλ , (1.2)

where I took into account that the boundaries are fixed, i.e., δx0 = 0 = δx1, and
there is the possibility to choose dλ =

√
−gµνdxµdxν . The length of the curve

is, thus, extremal if the coordinates xµ solve the differential equations
d2xµ

dλ2
+ Γµσρ

dxσ

dλ

dxρ

dλ
= 0 , (1.3)

where
Γµσρ ≡

1

2
gµτ (∂σgτρ + ∂ρgτσ − ∂τgσρ) (1.4)

are the Christoffel symbols which foremost just make the equation covariant under
a change of coordinates. Equation (1.3) is known as the geodesic equation. Here I
used the spacetime metric tensor (in components) gµν with mostly plus signature,
and the notation

∂τgσρ ≡
∂gσρ
∂xτ

. (1.5)

The choice of connection determines the straightest curves, and for general
relativity the connection coefficients are the Christoffel symbols (1.4). Defining a
vector field

uµ ≡ dxµ

dλ
(1.6)

allows us to write Eq. (1.3) as

dxω

dλ
(∂ωu

µ + Γµωσu
σ) = 0 . (1.7)

The expression in the parenthesis is the covariant derivative (generalization of the
directional derivative), and the condition

∇ωuµ ≡ ∂ωuµ + Γµωσu
σ = 0 (1.8)
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states that the vector field uµ is parallel transported along the coordinate line xω,
i.e., it does not change along that line. Let us generalize covariant derivative to
generic tensor fields as

∇νT λ1...λn
ω1...ωs ≡ ∂νT λ1...λn

ω1...ωs + Γλ1
ναT

α...λn
ω1...ωs + . . .+ ΓλnναT

λ1...α
ω1...ωs

+ Πβ
νω1T

λ1...λn
β...ωs

+ . . .+ Πβ
νωsT

λ1...λn
ω1...β

. (1.9)

From the condition

∇µδλω
!

= 0 ⇒ Πλ
µν ≡ −Γλµν . (1.10)

One can easily check that the Christoffel symbols (1.4) yield a torsionless, i.e.,
symmetric

Γλµν = Γλνµ , (1.11)

as well as metric compatible connection, i.e.,

∇µgσρ ≡ ∂µgσρ − Γλµσgλρ − Γλµρgσλ = 0 . (1.12)

1.4.2 Riemann tensor, Ricci tensor and Ricci scalar

Covariant derivative is a generalization of the directional derivative. Hence, it
shows how does a vector change along some curve. Let us study how does a vector
field Aλ change when it is first infinitesimally shifted in the xµ direction and then
in the xν direction. This constitutes applying the covariant derivatives as

∇ν∇µAλ = ∂ν∂µA
λ − Γωνµ∂ωA

λ + Γλνω∂µA
ω +

(
∂νΓλµω

)
Aω

+ Γλµω∂νA
ω + Γτ νµΓλτωA

ω + ΓλντΓτ µωA
ω . (1.13)

Let us consider the other way, namely first the infinitesimal shift along xν and then
along xµ, yielding

∇µ∇νAλ = ∂µ∂νA
λ − Γωµν∂ωA

λ + Γλµω∂νA
ω +

(
∂µΓλνω

)
Aω

+ Γλνω∂µA
ω + Γτ µνΓλτωA

ω + ΓλµτΓτ νωA
ω . (1.14)

Comparing the difference yields

∇µ∇νAλ −∇ν∇µAλ = RλωµνA
ω , (1.15)

where
Rλωµν = ∂µΓλνω − ∂νΓλµω + Γτ νωΓλµτ − Γτ µωΓλντ , (1.16)

is the Riemann curvature tensor. By contracting the latter we obtain the Ricci
tensor

Rων = δµλR
λ
ωµν , (1.17a)
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and the Ricci scalar

R = gνωRων . (1.17b)

The Christoffel symbols (1.4), Riemann tensor (1.16) and Ricci tensor and scalar
(1.17) are all functionals of the metric tensor gµν , i.e.,

Γλµν = Γλµν [gσρ] , Rλωµν = Rλωµν [gσρ] , (1.18a)
Rων = Rων [gσρ] , R = R [gσρ] . (1.18b)

1.4.3 Einstein-Hilbert action and Einstein equations

The field equations for general relativity can be derived from the Einstein-
Hilbert action

SEH =
1

16πGN

∫

M4

d4x
√−g (R [gµν ]− 16πGNΛ) + Sm [gµν , χ] . (1.19)

1. The action is an integral over the 4-dimensional manifold M4.

2. The infinitesimal invariant integration measure d4x
√−g is given by the

wedge product d4x ≡ dx0 ∧ dx1 ∧ dx2 ∧ dx3, multiplied by
√−g where g

is the determinant of the metric tensor (for that procedure the components
are written as a 4× 4 matrix).

3. GN is the Newton gravitational constant.

4. I am using the units where the speed of light c ≡ 1.

5. R [gµν ] is the Ricci scalar (1.17b).

6. Λ is the cosmological constant.

7. The matter fields, described by the action Sm, are collectively denoted as χ.

Varying the action (1.19) with respect to the metric gµν yields

δSEH =
1

16πGN

∫

M4

d4x
√−gE(g)

µν δg
µν . (1.20)

Here I omitted the boundary terms as well as the equations of motion for matter
fields. The Einstein field equations, i.e., second order differential equations for
determining the components gµν are, thus,

E(g)
µν ≡ Rµν −

1

2
gµνR+ 8πGN gµνΛ− 8πGNTµν = 0 , (1.21)

where
Tµν ≡ −

2√−g
δSm [gσρ, χ]

δgµν
(1.22)

is the energy-momentum tensor.
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Chapter 2

Generic scalar-tensor theory
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2.1 Generic theory

2.1.1 Notation

In the overview article I am going to use, and a bit modify the notation intro-
duced in Ref. II. Mostly I shall introduce each quantity five times.

1. The quantities of the generic parametrization are denoted as

gµν , Φ , A(Φ) , B(Φ) , V(Φ) , α(Φ) . (2.1a)

2. The quantities of the Einstein frame canonical parametrizationE are denoted
as

gEµν , ΦE , AE(ΦE) , BE(ΦE) , VE(ΦE) , αE(ΦE) . (2.1b)

3. The quantities of the Jordan frame Brans-Dicke-Bergmann-Wagoner para-
metrization J are denoted as

gJµν , ΦJ , AJ(ΦJ) , BJ(ΦJ) , VJ(ΦJ) , αJ(ΦJ) . (2.1c)

4. The quantities of the invariant Einstein frame canonical parametrization are
denoted as

ĝ(E)
µν , I(E)

Φ (Φ) , I(E)
A (Φ) , I(E)

B (Φ) , I(E)
V (Φ) , I(E)

α (Φ) . (2.1d)

5. The quantities of the invariant Jordan frame Brans-Dicke-Bergmann-
Wagoner parametrization are denoted as

ĝ(J)
µν , I(J)

Φ (Φ) , I(J)
A (Φ) , I(J)

B (Φ) , I(J)
V (Φ) , I(J)

α (Φ) . (2.1e)

In addition we encounter some fixed parametrization P. See also Section 4 in
Ref. II, page 99 in the current thesis. The main approach in the thesis is to show
that essentially a fixed parametrization is equivalent to the corresponding invariant
parametrization, up to the interpretation, and thus most of the results obtained in
terms of invariants are just the already known expressions rewritten in terms of
nice calligraphic fonts. However, in order to identify pairs of quantities, one must
first distinguish these.
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2.1.2 Action functional

Let me introduce a class of scalar-tensor theories, by postulating an action
functional for the dynamical fields the metric tensor gµν , the scalar field Φ, and
the matter fields, denoted by χ, as [8]

S = S [gµν , Φ, χ] (2.2a)

=
1

2κ2

∫

M4

d4x
√−g

{
A(Φ)R[gµν ]− B(Φ)gµν∇µΦ∇νΦ

− 2`−2V(Φ)
}

+ Sm

[
e2α(Φ)gµν , χ

]
. (2.2b)

Prematurely, let me stress that the action (2.2) with its four unspecified functions
A(Φ), B(Φ), V(Φ) and α(Φ) is chosen, because under the conformal transforma-
tion and scalar field redefinition each expression in such generic formulation has a
specific and unambiguous transformation rule. This is not the case for theories for-
mulated in a fixed parametrization, although, as theories, such fixed parametriza-
tion formulations are equivalent to the generic formulation of the action (2.2).

1. The constants κ2 and ` have the dimensions of the gravitational constant and
length, respectively.

2. The action contains four dimensionless functions of the also dimensionless
scalar field (by convention).

(a) The Ricci scalar R, a functional of the metric gµν , is multiplied by the
nonminimal coupling function A(Φ), introducing, roughly speaking,
a “gravitational constant” ∝ κ2

A(Φ) which through Φ(xµ) inherits the
dependence on the spacetime point, labelled by xµ.

(b) The kinetic term gµν∇µΦ∇νΦ ≡ gµν∂µΦ∂νΦ is multiplied by the
noncanonical kinetic coupling function B(Φ).

(c) The scalar field self-interaction potential V(Φ) may contain also the
cosmological constant Λ.

(d) The matter fields couple to conformally rescaled metric e2α(Φ)gµν , due
to which the coupling function α(Φ) enters also the continuity equa-
tion for the matter fields.

3. The matter action functionalSm describes matter fields, collectively denoted
as χ, that only couple to the scalar field Φ via the above-mentioned confor-
mal coupling.
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2.1.3 Field equations

Varying the action (2.2) with respect to gµν and Φ reads (see also Section 2.1.2
in Ref. V, starting from page 146 in the current thesis)1

δS =
1

2κ2

∫

M4

d4x
√−g

{
E(g)
µν δg

µν + E(Φ,R)δΦ
}
. (2.3)

Here I omitted the boundary terms as well as the equations of motion for matter
fields, which at least formally are included in Ref. V.

The field equations are, thus,

E(g)
µν ≡ A

(
Rµν −

1

2
gµνR

)
+

(
1

2
B +A′′

)
gµνg

ρσ∇ρΦ∇σΦ

−
(
B +A′′

)
∇µΦ∇νΦ +A′ (gµν2Φ−∇µ∇νΦ)

+ `−2gµνV − κ2Tµν = 0 , (2.4a)

E(Φ,R) ≡ A′R+ B′gµν∇µΦ∇νΦ + 2B2Φ− 2`−2V ′ + 2κ2α′T = 0 . (2.4b)

Here

Tµν ≡ −
2√−g

δSm

[
e2α(Φ)gσρ, χ

]

δgµν
and T ≡ gνµTµν , (2.5)

and

gνµE(g)
µν = −AR+ Bgµν∇µΦ∇νΦ + 3A′′gµν∇µΦ∇νΦ

+ 3A′2Φ + `−24V − κ2T . (2.6)

Combining (2.4a) and (2.4b) yields

E(Φ) ≡ E(Φ,R) +
A′
A g

νµE(g)
µν (2.7a)

=
2AB + 3 (A′)2

A 2Φ +

(
2AB + 3 (A′)2

)′

2A gµν∇µΦ∇νΦ

− 2 (AV ′ − 2VA′)
`2A +

κ2 (2Aα′ −A′)
A T = 0 . (2.7b)

2.2 Generic transformations

2.2.1 Transformation of the variables

Let us consider a reparametrization of the scalar field as

Φ ≡ f̄(Φ̄) , (2.8a)
1Note that with respect to Ref. V, I shifted the notation a bit. Equation (2.4b) was there denoted

as E(Φ), i.e., as Eq. (2.7) in the current overview article (cf. Eqs. (8), (9) and (13) in Ref. V, page
147 of the current thesis).
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and a conformal transformation of the metric tensor (also known as a local Weyl
rescaling [9])

gµν ≡ e2γ̄(Φ̄)ḡµν . (2.8b)

Along with (2.8b), we have

gλµ = e−2γ̄(Φ̄)ḡλµ ,
√−g = e4γ̄(Φ̄)√−ḡ , (2.9)

and the Christoffel symbols (1.4) transform as

Γλµν [gσρ] = Γ̄λµν [ḡσρ] + γ̄ ′
(
δλµ∂νΦ̄ + δλν∂µΦ̄− ḡµν ḡλω∂ωΦ̄

)
. (2.10)

See, e.g., Eq. (7.106) in [18] while taking into account that due to (7.99) also in
[18] the “barred” and “unbarred” quantities in the current thesis are interchanged
with respect to [18]. The Ricci tensor and scalar (1.17) transform as

Rµν [gσρ] = R̄µν [ḡσρ]− 2
(
γ̄ ′
)2 (

ḡµν ḡ
σρ∂σΦ̄∂ρΦ̄− ∂µΦ̄∂νΦ̄

)
− γ̄ ′2∇̄µ∂νΦ̄

− γ̄ ′ḡµν ḡσρ∇̄σ∂ρΦ̄− γ̄ ′′
(
ḡµν ḡ

σρ∂σΦ̄∂ρΦ̄ + 2∂µΦ̄∂νΦ̄
)
,
(2.11a)

R [gσρ] = e−2γ̄(Φ̄)
{
R̄ [ḡσρ]− 6

(
γ̄ ′
)2
ḡµν∂µΦ̄∂νΦ̄− 6γ̄ ′′ḡµν∂µΦ̄∂νΦ̄

− 6γ̄ ′ḡµν∇̄µ∂νΦ̄
}
. (2.11b)

If along with the reparametrization of the scalar field (2.8a) and conformal
transformation of the metric tensor (2.8b) one imposes the four arbitrary functions
{A(Φ), B(Φ), V(Φ), α(Φ)} to transform as [8]

A
(
f̄(Φ̄)

)
= e−2γ̄(Φ̄)Ā(Φ̄) , (2.12a)

B
(
f̄(Φ̄)

)
= e−2γ̄(Φ̄)

(
f̄ ′
)−2

(
B̄(Φ̄)− 6

(
γ̄ ′
)2 Ā

(
Φ̄
)

+ 6γ̄ ′Ā′
)
, (2.12b)

V
(
f̄(Φ̄)

)
= e−4γ̄(Φ̄) V̄(Φ̄) , (2.12c)

α
(
f̄(Φ̄)

)
= ᾱ(Φ̄)− γ̄(Φ̄) , (2.12d)

then under (2.8) the action (2.2), S, preserves its form up to a boundary term, which
we have always neglected in the published papers. However, the authors of Ref.
[19]2 claim that the boundary term is neatly cancelled by the transformation of the
Gibbons-Hawking-York boundary term, thus rendering the action to be completely
form-invariant.

Let me stress that the transformations (2.12) are highly specific to the action
(2.2) and I do not know of any fundamental meaning, either mathematical or phys-
ical, of such transformations.

2This paper was brought to my attention by Mihkel Rünkla, and I thank him for that.
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The choice of barred and unbarred variables can be interchanged, in order to
rewrite (2.8) and (2.12) as

Φ̄ = f(Φ) , ḡµν = e2γ(Φ)gµν , Ā(f(Φ)) = e−2γ(Φ)A(Φ) , (2.13a)

V̄(f(Φ)) = e−4γ(Φ)V(Φ) , ᾱ(f(Φ)) = α(Φ)− γ(Φ) , (2.13b)

B̄(f(Φ)) = e−2γ(Φ)
(
f ′
)−2

(
B(Φ)− 6

(
γ ′
)2A(Φ) + 6γ ′A′

)
. (2.13c)

It is of utmost importance to understand that (2.8) does nothing more than
just redistributes the already existing information between the fields gµν and Φ.
One does not generate nor annihilate information. The transformations (2.12) are
obtained by regrouping, i.e., from (2.11b) the Ricci scalarR [gµν ] is substituted by
R = R

[
R̄, Φ̄

]
, etc. The multiplier of

√−ḡR̄ [ḡσρ] is defined to be the function
Ā(Φ̄), etc.

2.2.2 Transformation of the field equations (2.4a), (2.4b) and (2.7)

Under a reparametrization (2.8a) of the scalar field Φ and conformal transfor-
mation (2.8b) of the metric tensor gµν , the Eq. (2.4a) transforms as

E(g)
µν = e−2γ̄Ē(ḡ)

µν , (2.14)

while Eq. (2.4b) transforms as

E(Φ,R) =
(
f̄ ′
)−1

e−4γ̄
{
Ē(Φ̄,R̄) + 2γ̄′ḡµνĒ(ḡ)

µν

}
. (2.15)

Combining the latter two yields

E(Φ) = e−4γ̄
(
f̄ ′
)−1

Ē(Φ̄) (2.16)

to be the transformation of the Eq. (2.7). The transformation prescriptions (2.14),
(2.15) and (2.16) are obtained by plugging the relations (2.8) and (2.12) into (2.4a),
(2.4b) and (2.7), respectively.

Such transformation properties follow immediately from the Jacobian for (2.8)
as a transformation of the variables. In particular




δ

δΦ
δ

δgσρ


 =




δΦ̄

δΦ

δḡµν

δΦ
δΦ̄

δgσρ
δḡµν

δgσρ







δ

δΦ̄
δ

δḡµν




=




(
f̄ ′
)−1

2γ̄ ′
(
f̄ ′
)−1

ḡ µν

0 e2γ̄δµσδ
ν
ρ







δ

δΦ̄
δ

δḡµν


 . (2.17)

See also Section 2.2.2 in Ref. V, starting from page 150 of the current thesis.
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2.2.3 Covariance of the equations and solutions

The form-invariance of the action (2.2) under the transformations (2.8) en-
courages us to consider such transformations. However, let me point out, that
any action can always be completed with respect to such transformations, as it is
merely a choice of variables. By ‘completed’ I mean that we can add extra terms
in order to impose the form-invariance, and consider these terms to be multiplied
by functions that “happen” to be zero in the original formulation. Transformation
prescriptions (2.14), (2.15) and (2.16) show that for regular transformations the
pair (gµν ,Φ) is a solution to E(g)

µν and E(Φ) if and only if the pair (ḡµν , Φ̄) solves
Ē

(ḡ)
µν and Ē(Φ̄). Singular cases must be considered separately and for an example

see Section 4.2 in Ref. V, page 166 in the current thesis. Therefore, I conclude (as
many others have concluded before), that considering the transformations (2.8) in
the context of scalar-tensor theories is as useful as considering any other change of
variables in any other theory. After all, it is a rather common technique for solving
differential equations.

I must stress, however, that one must impose consistency, search for it. In the
thesis I only consider the theory on classical level and then the problems do not
appear. I am not an expert on the quantum level, but I would like to go through a
simple example to illustrate the point. Let us consider a free 2-dimensional point
particle with unit mass. The Hamiltonian reads

H(x, px, y, py) =
p2
x

2
+
p2
y

2
⇔ H(r, pr, ϕ, pϕ) =

p2
r

2
+
p2
ϕ

2r2
. (2.18)

If we now naı̈vely promote the variables to operators (up to constant multiplier) as

Ĥ ∼ ∂2

∂x2
+
∂2

∂y2
6⇔ Ĥ ∼ ∂2

∂r2
+

1

r2

∂2

∂ϕ2
(2.19)

then the correspondence is lost but not because quantum mechanics is coordinate
dependent, but because we did not search for consistency.

2.3 Invariants

The included papers I, II, and III are based on the observation that the quantities

Ī1(Φ̄) ≡ e2ᾱ(Φ̄)

Ā(Φ̄)
=

e2α(f̄(Φ̄))

A(f̄(Φ̄))
≡ I1(Φ) , (2.20a)

Ī2(Φ̄) ≡ V̄(Φ̄)
(
Ā(Φ̄)

)2 =
V(f̄(Φ̄))
(
A(f̄(Φ̄))

)2 ≡ I2(Φ) , (2.20b)

Ī3(Φ̄) ≡ ±
∫ √

F̄(Φ̄)dΦ̄ = ±
∫ √

F(f̄(Φ̄))dΦ = I3(Φ) (2.20c)
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are invariant with respect to the conformal transformation (2.8b), and transform as
scalar functions under the reparametrization (2.8a) of the scalar field. Here

F ≡ 2AB + 3 (A′)2

4A2
, F =

(
f̄ ′
)−2 F̄ . (2.21)

In what follows, I will write the expressions (2.20) always without bar, as the de-
pendence on Φ or Φ̄ should be clear from the context. The numerical value of
(2.20) with respect to a space-time point is invariant as well, and thus, e.g., ∂µI1

is also and invariant. In addition to the scalar invariants (2.20) we may introduce
geometrical invariants

ĝ(E)
µν ≡ A(Φ)gµν , ĝ(J)

µν ≡ e2α(Φ)gµν , (2.22)

which, while being 2nd order tensors with respect to the change of tangent space
basis, are due to (2.12) also invariant with respect to the conformal transforma-
tion (2.8b) and transform as scalar functions with respect to the reparametrization
(2.8a) of the scalar field Φ. Mostly, in what follows, I shall drop the arguments of
the invariants.

One can form infinitely many other invariants by constructing a function of
invariants as

Ik ≡ h({Ii}i∈I ) , (2.23a)

where I is a set of some indices. Second option is to consider a quotient of
derivatives as

Im ≡
I ′k
I ′l

=
dIk
dIl

, (2.23b)

where the second equality follows from the fact that with respect to Φ, the scalar
invariants (such as (2.20)), are functions of one variable, i.e., derivative is given in
terms of total differentials. Third technique is just the inverse of the second one as

Ik ≡
∫
ImI ′l dΦ =

∫
ImdIl , (2.23c)

in the sense of an indefinite integral. See also the corresponding sections in the
attached papers.
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2.4 Parametrizations

Definition 2.4.1: Parametrization P ∈ {E, J, . . .}

Let us consider the generic action functional (2.2), and the scalar invariants
(2.20), together with further scalar invariants composed via (2.23).

The term ‘fixed parametrization P’ refers to a setup where the functional
form of two and only two functions out of the four arbitrary functionsA(Φ),
B(Φ), V(Φ) andα(Φ) is specified in such a manner that also a scalar invariant
I(P)(Φ) has gained a nonconstant fixed functional form.

I have included the requirement of a fixed scalar invariant into the definition of
a parametrization because the existence of such an invariant underlies the construc-
tion of the so called invariant pair, which furnishes the equivalence between the
fixed parametrization and the generic parametrization. The scheme can be found
from Section 4 in Ref. II, starting from page 99 in the current thesis. The invariant
pair, in particular, is introduced in Theorem 4.2, page 101 of the current thesis.

2.4.1 Concerning notation

In a particular parametrization I shall denote the metric tensor and the scalar
field as

gµν |P = gPµν , Φ|P = ΦP . (2.24)

In a sense it is just renaming but it turns out that by fixing a parametrization
to be P we also introduce yet another metric tensor with components equal to
ĝ

(P)
µν

∣∣∣
P

= gPµν , as well as a scalar invariant I(P)
Φ

∣∣∣
P

= ΦP. See Theorem 4.2 in
Ref. II, page (101) in the current thesis and in particular the invariant pair. This
ambiguity is the reason for the equivalence of the generic parametrization and a
fixed parametrization.

The four arbitrary functions (with two of them fixed) are denoted as

A(Φ)|P = AP(ΦP) , B(Φ)|P = BP(ΦP) , (2.25a)

V(Φ)|P = VP(ΦP) , α(Φ)|P = αP(ΦP) . (2.25b)

2.4.2 Six possibilities for choosing a parametrization

The restriction of having a fixed scalar invariant I(P)(Φ), however, just ex-
cludes two minor possibilities. There are 6 possibilities for fixing 2 functions out
of 4.
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1. If one chooses the parametrization to be P by fixing the functional form of
A(Φ)|P = AP(ΦP) and B(Φ)|P = BP(ΦP) then also the invariant

I(P)(ΦP) = I3(Φ)|P = ±
∫ √

2APBP + 3(A′P)2

4A2
P

dΦP (2.26a)

gains a fixed functional form with respect to the scalar field ΦP.

2. If one chooses the parametrization to be P by fixing the functional form of
A(Φ)|P = AP(ΦP) and V(Φ)|P = VP(ΦP) then also the invariant

I(P)(ΦP) = I2(Φ)|P =
VP
A2

P

(2.26b)

gains a fixed functional form with respect to the scalar field ΦP.

3. If one chooses the parametrization to be P by fixing the functional form of
A(Φ)|P = AP(ΦP) and α(Φ)|P = αP(ΦP) then also the invariant

I(P)(ΦP) = I1(Φ)|P =
e2αP

AP
(2.26c)

gains a fixed functional form with respect to the scalar field ΦP.

4. If one chooses the parametrization to be P by fixing the functional form of
V(Φ)|P = VP(ΦP) and α(Φ)|P = αP(ΦP) then also the invariant

I(P)(ΦP) = I4(Φ)|P = e−4αPVP (2.26d)

gains a fixed functional form with respect to the scalar field ΦP.

5. If one chooses the parametrization to be P by fixing the functional form of
B(Φ)|P = BP(ΦP) and α(Φ)|P = αP(ΦP) then there are two possibili-
ties.

(a) If αP = const, then

I(P)(ΦP) = ±
∫ √

GP(ΦP) dΦP , (2.26e)

where

G(Φ) ≡ 2

I1(Φ)
(1− 3I5)

(
I ′3
)2

= e−2αB + 6
(α ′)2

I1
− 6

α ′I ′1
I2

1

. (2.26e′)

See also Eq. (14a) in Ref. III, page 117 of the current thesis as well as
the invariant differential operator D2, in Table I of the attached paper
I, page 79 in the thesis, and also the nearby Eq. (32).
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(b) If BP = 0, then

I(P)(ΦP) =

∫ (
±I ′3(ΦP) +

√
3

4
(ln I1(ΦP))′

)
dΦP

= ±I3(ΦP) +

√
3

4
ln I1(ΦP) + const (2.26f)

=
√

3αP(ΦP) + const

is the invariant gaining fixed functional form.

6. If the parametrization P is obtained by fixing B(Φ)|P = BP(ΦP) and
V(Φ)|P = VP(ΦP) then analogously to the previous case, there are two
possibilities.

(a) If VP(ΦP) = const, then

I(P)(ΦP) =

∫ √
HP(ΦP) dΦP , (2.26g)

where

H(Φ) =
2√
|I2|

(
(
I ′3
)2 − 3

4

((
ln
√
|I2|
)′)2

)

=
B
|V| +

3

8
√
|I2|

(V ′
V

)−2

− 3

4

V ′
V
I ′2√∣∣I3

2

∣∣
. (2.26g′)

(b) BP = 0, then

I(P)(ΦP) =

∫ (
±I ′3(ΦP) +

√
3

4

(
ln
√
|I2(ΦP)|

)′)
dΦP

= ±I3(ΦP) +

√
3

4
ln
√
|I2(ΦP)|+ const (2.26f)

=

√
3

4
ln |VP(ΦP)|+ const

is the invariant gaining a fixed functional form.

The cases 5 and 6 are distinct due to the transformation property (2.12b) which
contains the third function A, therefore spoiling the possibility for specifying two
functions via two transformations. The order of the transformations (2.8) can be
interchanged, and let us consider the conformal transformation (2.8b) to be the first
one. The exceptions arise because after the conformal transformation the further
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transformation of one of the functions is neutralized. Namely, if α (analogously
V) is fixed to be a constant, then the scalar field transformation (2.8a) does not
transform it further and the freedom can be used to fix B. If B is fixed to be zero,
then analogously the scalar field transformation (2.8a) does not alter B, therefore
allowing to fix α (analogously V).
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3.1 Definition and notation

Definition 3.1.1: Einstein frame canonical parametrization E

Let us specify the arbitrary functions in the generic action functional (2.2) to
be

A(Φ)|E ≡ AE(ΦE)
!

= 1 , B(Φ)|E ≡ BE(ΦE)
!

= 2 , (3.1a)
V(Φ)|E ≡ VE(ΦE) , α(Φ)|E ≡ αE(ΦE) . (3.1b)

Such a setup is referred to as the Einstein frame canonical parametrization
(EF can), denoted by E.

See also the subsection II.B in Ref. I (page 77 in the thesis), subsection 3.3 in Ref.
IV (page 130 in the thesis), etc., for references and further information.

I shall denote the metric tensor, and the scalar field in the Einstein frame canon-
ical parametrization E as

gµν |E = gEµν , gµν |E = gµνE , Φ|E = ΦE ≡ ϕ . (3.2)

The Christoffel symbols (1.4) corresponding to the metric in (3.2) are calculated
as

ΓE
λ
µν ≡ Γλµν

[
gEσρ
]

=
1

2
gλωE

(
∂µg

E
ων + ∂νg

E
ωµ − ∂ωgEµν

)
, (3.3)

which allows to define the covariant derivative∇E as the one, where the particular
Christoffel symbols (3.3) are used, and via (1.16), (1.17) lead us to the correspond-
ing Riemann tensor, Ricci tensor and Ricci scalar

REσ
ρµν ≡ Rσρµν

[
gEµν
]

= ∂µΓE
σ
νρ − ∂νΓE

σ
µρ

+ ΓE
λ
νρΓE

σ
µλ − ΓE

λ
µρΓE

σ
νλ , (3.4a)

RE ρν ≡ Rρν
[
gEµν
]

= δµσR
Eσ

ρµν , RE ≡ R
[
gEµν
]

= gνρE RE ρν

[
gEµν
]
.

(3.4b)

3.2 Action functional and field equations

The action functional (2.2) in the Einstein frame canonical parametrization E,
Definition 3.1.1, thus reads

SE ≡ SE
[
gEµν , ΦE, χ

]
(3.5a)

=
1

2κ2

∫

M4

d4x
√
−gE

{
RE − 2gµνE ∇E

µΦE∇E
νΦE − 2`−2VE(ΦE)

}

+ Sm

[
e2αE(ΦE)gEµν , χ

]
. (3.5b)
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The field equations (2.4a), (2.4b) and (2.7) in the parametrization E reduce to

E(gE)
µν ≡

(
REµν −

1

2
gEµνRE

)
+ gEµνg

ρσ
E ∇E

ρΦE∇E
σΦE

− 2∇E
µΦE∇E

νΦE + `−2gEµνVE − κ2TE
µν = 0 , (3.6a)

E(ΦE,RE) ≡ 42EΦE − 2`−2V ′E + 2κ2α′ET
E = 0 (3.6b)

= E(ΦE) , (3.6b′)

where

TE
µν ≡ −

2√
−gE

δSm

[
e2αE(ΦE)gEσρ, χ

]

δgµνE
, TE ≡ gνµE TE

µν , (3.7)

and prime as, e.g., in V ′E means derivative with respect to the Einstein frame scalar
field ΦE, i.e.,

V ′E ≡
dVE(ΦE)

dΦE
, α′E ≡

dαE(ΦE)

dΦE
. (3.8)

3.3 Invariant Einstein frame canonical parametrization

3.3.1 The invariant pair

The invariant pair from Theorem 4.2 in Ref. II in the Einstein frame canonical
parametrization E, i.e., example (4.12) in Ref. II, is

ĝ(E)
µν ≡ A(Φ)gµν , I(E)

Φ ≡ ±I3 =

∫ √
2AB + 3 (A′)2

4A2
dΦ . (3.9)

The integration constant in the indefinite integral is taken to be zero. Note that the
definition is on the generic level, and therefore we do not write the quantities in
the particular parametrization E. However, plugging the Definition 3.1.1 into Eq.
(3.9) verifies

ĝ(E)
µν

∣∣∣
E

= gEµν , I(E)
Φ

∣∣∣
E

= ΦE . (3.10)

The metric ĝ(E)
µν is also know as the invariant Einstein frame metric (see also defi-

nition (18) in Ref. I on page 78 in the current thesis).

3.3.2 Four functions as invariants

Let us consider the invariant pair (3.9) to be a scalar field reparametrization and
a conformal transformation as in (2.13), i.e., (2.8) backwards. The transformations
are given as

e2γ(Φ) = A(Φ) , Φ̄ = ±I3(Φ) , (3.11)

33



and since A itself transforms under the conformal transformation, the obtained
(formally barred) quantities are invariants. The four functions A(Φ), B(Φ), V(Φ)
and α(Φ), thus, transform into the four invariants

I(E)
A =

A(Φ)

A(Φ)
= 1 , I(E)

B = 2 , (3.12a)

I(E)
V = I2 , I(E)

α =
1

2
ln I1 . (3.12b)

Also here, analogously to the case (3.10) of the invariant pair, as AE ≡ 1, it is
natural, that

I(E)
A

∣∣∣
E

= AE = 1 , I(E)
B

∣∣∣
E

= BE = 2 , (3.13a)

I(E)
V

∣∣∣
E

= VE , I(E)
α

∣∣∣
E

= αE . (3.13b)

The invariants I(E)
A , I(E)

B , I(E)
V and I(E)

α are functions of I(E)
Φ = ±I3. However,

we do not need the explicit dependence, as the derivatives may be calculated as

± dI(E)

dI3
= ± dΦ

dI3

dI(E)

dΦ
= ±

(
I(E)

)′

I ′3
. (3.14)

See also the invariant differential operator D3 in the Table 1 of Ref. I, page 79 in
the current thesis, as well as the nearby Eq. (33).

3.3.3 Invariant geometry of the Einstein frame

The metric ĝ(E)
µν is an invariant, and hence, the corresponding Ricci tensor and

scalar are as well. According to Eqs. (2.11)

R̂(E)
µν

[
ĝ(E)
µν

]
= Rµν [gµν ] +

3

2

(A′
A

)2

∂µΦ∂νΦ− 1

2

A′′
A gµνg

σρ∂σΦ∂ρΦ

− A
′′

A ∂µΦ∂νΦ− A
′

A

(
∇µ∂νΦ +

1

2
gµνg

σρ∇σ∂ρΦ
)
, (3.15a)

R̂(E)
[
ĝ(E)
µν

]
=

1

AR [gµν ] +
3

2

(A′)2

A3
gµν∂µΦ∂νΦ

− 3
A′
A2

gµν∇µ∂νΦ− 3
A′′
A2

gµν∂µΦ∂νΦ . (3.15b)

Note, first, that with respect to (2.11), the transformation is backwards, and second,
that the expressions on the right hand side are indeed in the generic parametriza-
tion, and, third,

R̂(E)
µν

[
g(E)
µν

]∣∣∣
E

= REµν

[
gEµν

]
, R̂(E)

[
g(E)
µν

]∣∣∣
E

= RE

[
gEµν

]
. (3.16)

See also the Section IV.B in Ref. I, in particular the Eqs. (52) and (53), from page
the 81 in the thesis.
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3.3.4 Invariant Einstein frame action

By considering the invariant pair (3.9) as a particular scalar field redefinition
and conformal transformation (2.8), and taking into account the results (3.12), we
rewrite the generic action (2.2) as (see also Eq. (5.2) in Ref. II, page 103 of the
thesis)

S = S
[
ĝ(E)
µν , I(E)

Φ , χ
]

(3.17a)

=
1

2κ2

∫

M4

d4x

√
−ĝ(E)

{
R̂(E)

[
ĝ(E)
µν

]
− 2ĝµν(E)∇̂

(E)
µ I(E)

Φ ∇̂(E)
ν I(E)

Φ − 2`−2I(E)
V

}

+ Sm

[
e2I(E)

α ĝ(E)
µν , χ

]
. (3.17b)

The obtained action is just the action (2.2) in terms of different variables and,
thus, as generic. On the other hand, however, comparing the Einstein frame in-
variant action (3.17) with the Einstein frame (noninvariant) action (3.5) reveals,
that these two differ only by the meaning we assign to the quantities contained
therein. The action is postulated, and therefore I conclude, that there is no way to
distinguish the Einstein frame (noninvariant) action (3.5) from (3.17) (a priori). In
other words, specifying the four functions A(Φ), B(Φ), V(Φ) and α(Φ) as in the
Definition 3.1.1 is equivalent to rewriting the action via the invariant pair (3.9), and
hence, the Einstein frame canonical parametrization E is equivalent to the generic
parametrization.

3.4 Translation rules from the Einstein frame canonical
parametrization E to the generic parametrization

The translation rules for the Einstein frame canonical parametrization E are
a set of essentially algebraic substitutions which allow us to rewrite an arbitrary
expression in the Einstein frame as an expression in the generic parametrization.
Therefore, these are just the transformation rules from the Einstein frame canonical
parametrization E to the generic parametrization and from there, of course, further
to any other parametrization.

3.4.1 Rules for the invariant quantities

Under the assumption that the quantity under consideration is an invariant, the
rules have been presented implicitly already in Ref. I. The explicit version, but on
an abstract level was introduced in the last part of Section 5 in Ref. II, in particular
on page 105 of the current thesis. The rules in the Einstein frame but for multiple
scalar fields were introduced by Eq. (17) in Ref. III. More precisely one must revert
the mappings in Eq. (17) on page 118 of the current thesis.
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Therefore, the translation rules for the Einstein frame canonical parametriza-
tion E are the algebraic substitutions

gEµν 7→ ĝ(E)
µν

(3.9)≡ A(Φ)gµν , ΦE 7→ I(E)
Φ

(3.9)≡ ±I3(Φ) ,

(3.18a)
√
−gE 7→

√
−g(E) = A2√−g , VE(ΦE) 7→ I(E)

V (I(E)
Φ ) = I2(Φ) ,

(3.18b)

REµν

[
gEµν

]
7→ R̂(E)

µν

[
ĝ(E)
µν

]
, αE(ΦE) 7→ I(E)

α (I(E)
Φ ) =

1

2
ln I1(Φ) ,

(3.18c)

∇E
µ 7→ ∇̂(E)

µ ,
d

dΦE
7→ d

dI(E)
Φ

= ±( )′

I ′3
.

(3.18d)

Note that the right hand sides are essentially in the generic parametrization. Such
mappings, thus, take us from the Einstein frame canonical parametrization E to
the generic parametrization. On the other hand, fixing the parametrization on the
right hand side to be the Einstein frame canonical parametrization E forces the
mapping to reduce to identity.

3.4.2 Rules for noninvariant quantities

In addition to transforming invariant quantities one can also impose some par-
ticular transformation properties. In the Einstein frame canonical parametrization
we rely on the fact that AE = 1. Hence, whenever we want to impose that some-
thing transforms asA, we just use the translation rules (3.18) to obtain the invariant
expression, and the multiply the latter by A. Analogously

dI(E)
Φ

dΦ
=
(
f̄ ′
)−1 dI(E)

Φ

dΦ̄
, but

dI(E)
Φ

dΦ

∣∣∣∣∣
E

=
dΦE

dΦE
= 1 . (3.19)

Let us go through a number of examples.

1. Suppose we want a quantity that in the Einstein frame canonical parametriza-
tion E has the same functional form as AE, and transforms as A. The in-
variant corresponding to AE is just the number 1. Multiplying the latter by
A yields A which has the numerical value 1 in the Einstein frame canoni-
cal parametrization and under (2.8) transforms asA. This example is rather
trivial, so let us continue with more elaborate ones.
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2. Let us consider the invariant which represents the function αE, i.e., I(E)
α .

The transformation properties of α, given by Eq. (2.12d), are imposed by

1

2
lnA =

1

2
ln Ā − γ̄ ⇒ I(E)

α +
1

2
lnA = α . (3.20)

3. Analogously
A2I(E)

V = V , (3.21)

which reproduces the prescription (2.12c).

4. As the last case, let us consider the invariant which represents BE, i.e., the
number 2. In order to impose the transformation properties (2.12b), let us
take into account, that AE = 1, and thus A′E = 0. On the other hand

A′ =
(
f̄ ′
)−1

e−2γ̄
(
Ā′ − 2γ̄ ′Ā

)
, (3.22a)

(
A′
)2

=
(
f̄ ′
)−2

e−4γ̄
[(
Ā′
)2 − 4γ̄ ′Ā′Ā+ 4

(
γ̄ ′
)2 Ā2

]
. (3.22b)

A straightforward calculation shows the following

2− 3

2

(A′
A

)2
(

dΦ

dI(E)
Φ

)2

= 2− 3

2

(Ā′
Ā

)2
(

dΦ̄

dI(E)
Φ

)2

+ Ā−1
(

6γ̄ ′Ā′ − 6
(
γ̄ ′
)2 Ā

)( dΦ̄

dI(E)
Φ

)2

,

(3.23)

while still

2− 3

2

(A′
A

)2
(

dΦ

dI(E)
Φ

)2
∣∣∣∣∣∣
E

= 2 . (3.24)

Let us complete the transformation properties by multiplying the previous
by

A
(

dI(E)
Φ

dΦ

)2

2− 3

2

(A′
A

)2
(

dΦ

dI(E)
Φ

)2

 =

= e−2γ̄
(
f̄ ′
)−2

{
Ā
(

dI(E)
Φ

dΦ̄

)2

2− 3

2

(Ā′
Ā

)2
(

dΦ̄

dI(E)
Φ

)2



− 6
(
γ̄ ′
)2 Ā+ 6γ̄ ′Ā′

}
, (3.25)
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i.e., we reproduce (2.12b). In the generic parametrization we have

A
(

dI(E)
Φ

dΦ

)2

2− 3

2

(A′
A

)2
(

dΦ

dI(E)
Φ

)2

 = B . (3.26)

The result, of course, is not surprising, as I have just inverted (3.12) under
(3.11). However, I want to stress, that one does not need to substitute 2 7→ B,
which would be ambiguous. We look for an invariant quantity that in the
Einstein frame canonical parametrization is equal to BE, and after imposing
the transformation properties, B emerges.

Note that the four possibilities are complete, as the basic rules (2.12) are re-
produced, and everything else just follows.

3.4.3 Using the translation rules on the field equations (3.6)

Let us use the translation rules in order to rewrite the field equations (3.6) of the
Einstein frame canonical parametrization E in the generic parametrization. Using
(3.18) for substitutions in (3.6a) (recall Eqs. (3.15) and (2.20) as well) yields

Ê(ĝ(E))
µν =

1

AE
(g)
µν . (3.27)

Note that the Eq. (3.27) is invariant, and this is exactly the equation we obtain when
varying the action (3.17) with respect to the invariant metric ĝ(E)

µν (from the invari-
ant pair (3.9)). Imposing the transformation properties (2.14), as discussed in the
previous section, constitutes to multiplying by A (in the Einstein frame canonical
parametrization E), thus, leading exactly to the generic field equation (2.4a).

Analogously, using (3.18) on (3.6b), leads us to

Ê(I(E)
Φ ,R̂(E)) =

1

A2
(
I(E)

Φ

)′E(Φ) , (3.28)

i.e., to Eq. (2.7) instead of (2.4b). The reason is of course clear. In the Einstein
frame canonical parametrization E the Eqs. (2.4b) and (2.7) coincide, as indicated
in Eqs. (3.6b) and (3.6b′). As before (3.28) is the one we obtain when varying
the action (3.17) with respect to the scalar field I(E)

Φ from the invariant pair (3.9).
The equation is invariant, and imposing the transformation rule (2.16) constitutes
multiplying by A2

(
I(E)

Φ

)′
.

We can easily reconstruct also the equation (2.4b) by imposing the suitable
transformation rule (2.15), and hence just inverting (2.7). Note here the caveat.
Let us consider an expression in a particular parametrization, e.g., the Einstein
frame canonical parametrization E. In order to obtain the expression in the generic
parametrization, we must know its transformation properties, we must know its
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origin, how it was derived. This is also the reason why in my opinion we cannot
discriminate between the noninvariant Einstein frame action (3.5) and the invariant
Einstein frame action (3.17). The action is postulated and thus it is not derived
within the theory.

In the Sections IV.B and IV.C, as well as VI of the Ref. I (starting from the page
81 of the current thesis) in principle we have used the translation rules backwards
and, based on later results. In these sections, first, we have done the calculations
in the Einstein frame canonical parametrization E, and, second, these calculation
independently do not prove the invariance (covariance) of the obtained quantities.
However, the covariance of these results was expected from comparison with the
Jordan frame results [23, 24], and later proven explicitly in Ref. V. In a sense, we
just stumbled upon nearly invariant expressions, as many interesting results have
rather simple transformation properties. To conclude, when one intends to study
the transformation properties, the use of a particular parametrizations is not the
best way.
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4.1 Definition and notation

Completely analogously to the Einstein frame case, let me proceed with the
Jordan frame.

Definition 4.1.1: Jordan frame Brans-Dicke-Bergmann-Wagoner
parametrization J

Let us specify the arbitrary functions in the generic action functional (2.2) to
be
A(Φ)|J ≡ AJ(ΦJ)

!
= ΦJ , B(Φ)|J ≡ BJ(ΦJ) =

ω(ΦJ)

ΦJ
, (4.1a)

V(Φ)|J ≡ VJ(ΦJ) , α|J ≡ αJ(ΦJ)
!

= 0 . (4.1b)

Such a setup is referred to as the Jordan frame Brans-Dicke-Bergmann-Wagoner
parametrization (JF BDBW), denoted by J.

See also the subsection II.B in Ref. I (page 77 in the thesis), subsection 3.1 in Ref.
IV (page 129 in the thesis), etc., for references and further information.

I shall denote the metric tensor, and the scalar field in the Jordan frame Brans-
Dicke-Bergmann-Wagoner parametrization J as

gµν |J = gJµν , gµν |J = gµνJ , Φ|J = ΦJ ≡ Ψ . (4.2)

The Christoffel symbols (1.4) corresponding to the metric in (4.2) are calculated
as

ΓJ
λ
µν ≡ Γλµν

[
gJσρ
]

=
1

2
gλωJ

(
∂µg

J
ων + ∂νg

J
ωµ − ∂ωgJµν

)
, (4.3)

which allows to define the covariant derivative∇J as the one, where the particular
Christoffel symbols (4.3) are used, and via (1.16), (1.17) lead us to the correspond-
ing Riemann tensor, Ricci tensor and Ricci scalar

RJσ
ρµν ≡ Rσρµν

[
gJµν
]

= ∂µΓJ
σ
νρ − ∂νΓJ

σ
µρ

+ ΓJ
λ
νρΓJ

σ
µλ − ΓJ

λ
µρΓJ

σ
νλ , (4.4a)

RJ ρν ≡ Rρν
[
gJµν
]

= δµσR
Jσ
ρµν , RJ ≡ R

[
gJµν
]

= gνρJ RJ ρν

[
gJµν
]
.

(4.4b)

4.2 Action functional and field equations

The action functional (2.2) in the Jordan frame Brans-Dicke-Bergmann-
Wagoner parametrization J reads

SJ ≡ SJ
[
gJµν , ΦJ, χ

]
(4.5a)
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=
1

2κ2

∫

M4

d4x
√
−gJ

{
ΦJRJ −

ω(ΦJ)

ΦJ
gµνJ ∇J

µΦJ∇J
νΦJ − 2`−2VJ(ΦJ)

}

+ Sm

[
gJµν , χ

]
, (4.5b)

The field equations (2.4a), (2.4b) and (2.7) in the parametrization J reduce to

E(gJ)
µν ≡ ΦJ

(
RJµν −

1

2
gJµνRJ

)
+

1

2

ω

ΦJ
gJµνg

σρ
J ∇J

σΦJ∇J
ρΦJ

− ω

ΦJ
∇J
µΦJ∇J

νΦJ + gJµν2
JΦJ −∇J

µ∇J
νΦJ

+ `−2gJµνVJ − κ2T J
µν = 0 , (4.6a)

E(ΦJ,RJ) ≡ RJ +
ω′

ΦJ
gµνJ ∇J

µΦJ∇J
νΦJ −

ω

Φ2
J

gµνJ ∇J
µΦJ∇J

νΦJ

+
2ω

ΦJ
2JΦJ − 2`−2V ′J = 0 , (4.6b)

E(ΦJ) =
2ω + 3

ΦJ
2JΦJ +

ω′

ΦJ
gµνJ ∇J

µΦJ∇J
νΦJ

− 2`−2
ΦJV ′J − 2VJ

ΦJ
− κ2

ΦJ
T J = 0 , (4.6c)

where

T J
µν ≡ −

2√
−gJ

δSm

[
gJσρ, χ

]

δgµνJ
, T J ≡ gνµJ T J

µν , (4.7)

and prime as, e.g., in V ′J means derivative with respect to the Jordan frame scalar
field ΦJ, i.e.,

V ′J ≡
dVJ(ΦJ)

dΦJ
, ω′ ≡ dω(ΦJ)

dΦJ
. (4.8)

4.3 Invariant Jordan frame Brans-Dicke-Bergmann-
Wagoner parametrization

4.3.1 The invariant pair

The invariant pair from Theorem 4.2 in Ref. II in the Jordan frame Brans-
Dicke-Bergmann-Wagoner parametrization J, i.e., example (4.11) in Ref. II, is

ĝ(J)
µν ≡ e2α(Φ)gµν , I(J)

Φ ≡ I−1
1 = e−2α(Φ)A(Φ) . (4.9)

Plugging the Definition 4.1.1 into Eq. (4.9) verifies

ĝ(J)
µν

∣∣∣
J

= gJµν , I(J)
Φ

∣∣∣
J

= ΦJ . (4.10)

The metric ĝ(J)
µν is also know as the invariant Jordan frame metric.
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4.3.2 Four functions as invariants

Let us consider the invariant pair (4.9) to be a scalar field reparametrization and
a conformal transformation as in (2.13), i.e., (2.8) backwards. The transformations
are given as

e2γ(Φ) = e2α(Φ) , Φ̄ = I−1
1 (Φ) , (4.11)

The four functionsA(Φ), B(Φ), V(Φ) and α(Φ) transform into the four invariants

I(J)
A = e−2α(Φ)A(Φ) = I−1

1 , I(J)
B =

I1

2

(
I−1

5 − 3
)
, (4.12a)

I(J)
V = I4 ≡ e−4α(Φ)V(Φ) , I(J)

α = 0 . (4.12b)

Here we introduced the invariants

I4(Φ) ≡ I2

I2
1

= e−4α(Φ)V(Φ) , (4.13a)

I5(Φ) ≡
(

1

2

d ln I1

dI3

)2

=
(2Aα ′ −A′)2

2AB + 3 (A′)2 , (4.13b)

which make use of the rules (2.23a) and (2.23b). See also definitions (19) and (25)
in Ref. I as well as Table I in there, page 79 in the current thesis.

Analogously to the case (4.10) of the invariant pair (recall also (3.13)), asαJ ≡
0, it is natural, that

I(J)
A

∣∣∣
J

= AJ = ΦJ , I(J)
B

∣∣∣
E

= BJ =
ω(ΦJ)

ΦJ
, (4.14a)

I(J)
V

∣∣∣
J

= VJ , I(J)
α

∣∣∣
E

= αJ = 0 . (4.14b)

The invariants I(J)
A , I(J)

B , I(J)
V and I(J)

α are functions of I(J)
Φ = I−1

1 . However, as
in the case of (3.14) we do not need the explicit dependence, since the derivatives
may be calculated as

dI(J)

d 1
I1

= −I2
1

(
I(J)

)′

(I1)′
. (4.15)

See also the invariant differential operator D1 in the Table 1 of Ref. I, page 79 in
the current thesis, as well as the nearby Eq. (31).

4.3.3 Invariant geometry of the Jordan frame

The metric ĝ(J)
µν is an invariant, and hence, the corresponding Ricci tensor and

scalar are as well. According to Eqs. (2.11)

R̂(J)
µν

[
ĝ(J)
σρ

]
= Rµν [gσρ]−

(
2
(
α ′
)2

+ α ′′
)
gµνg

σρ∂σΦ∂ρΦ− α ′gµνgσρ∇σ∂ρΦ

− α ′2∇µ∂νΦ + 2
((
α ′
)2 − α ′′

)
∂µΦ∂νΦ , (4.16a)
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R̂(J)
[
ĝ(J)
σρ

]
= e−2α

{
R [gσρ]− 6

(
α ′
)2
gµν∂µΦ∂νΦ− 6α ′′gµν∂µΦ∂νΦ

− 6α ′gµν∇µ∂νΦ
}
. (4.16b)

The expressions on the right hand sides are in the generic parametrization, and

R̂(J)
µν

[
g(J)
µν

]∣∣∣
J

= RJµν

[
gJµν

]
, R̂(J)

[
g(J)
µν

]∣∣∣
J

= RJ

[
gJµν

]
. (4.17)

See also Eq. (4.13) in Ref. II on page 102 in the current thesis.

4.3.4 Invariant Jordan frame action

By considering the invariant pair (4.9) as a particular scalar field redefinition
and conformal transformation (2.8), and taking into account the results (4.12), we
rewrite the generic action (2.2) as (see also Eq. (5.1) in Ref. II, page 103 of the
thesis)

S = S
[
ĝ(J)
µν , I(J)

Φ , χ
]

(4.18a)

=
1

2κ2

∫

M4

d4x

√
−ĝ(J)

{
I(J)

Φ R̂(J)
[
ĝ(J)
µν

]
− I(J)
B ĝµν(J)∇̂

(J)
µ I(J)

Φ ∇̂(J)
ν I(J)

Φ

− 2`−2I(J)
V

}
+ Sm

[
ĝ(J)
µν , χ

]
. (4.18b)

As in the case of the Einstein frame canonical parametrization E invariant action
(3.17), also the Jordan frame Brans-Dicke-Bergmann-Wagoner parametrization J
invariant action (4.18) is just the action (2.2) in terms of different variables. On the
other hand, however, comparing the Jordan frame invariant action (4.18) with the
Jordan frame (noninvariant) action (4.5) reveals, that these two differ only by the
meaning we assign to the quantities contained therein. Specifying the four func-
tions A(Φ), B(Φ), V(Φ) and α(Φ) as in the Definition 4.1.1 is, thus, equivalent
to rewriting the action via the invariant pair (4.9), and hence, the Jordan frame
Brans-Dicke-Bergmann-Wagoner parametrization J is equivalent to the generic
parametrization.

4.4 Translation rules from the Jordan frame Brans-Dicke-
Bergmann-Wagoner parametrization J to the generic
parametrization

Identically to the Einstein frame canonical parametrizationE (see Section 3.4),
the translation rules for the Jordan frame Brans-Dicke-Bergmann-Wagoner para-
metrization J are a set of essentially algebraic substitutions which allow us to
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rewrite an arbitrary expression from the Jordan frame BDBW parametrization as
an expression in the generic parametrization. Therefore, these are just the transfor-
mation rules from the Jordan frame Brans-Dicke-Bergmann-Wagoner parametriza-
tion J to the generic parametrization and from there to any other parametrization.

4.4.1 Rules for the invariant quantities

Under the assumption that the quantity under consideration is an invariant, the
rules have been presented implicitly already in Ref. I. The rules in the Jordan frame
but for multiple scalar fields were introduced by Eq. (25) in Ref. III. More precisely
one must revert the mappings in Eq. (25) on page 120 of the current thesis.

Therefore, recalling also the translation rules (3.18) for the Einstein frame
canonical parametrization E, the translation rules for the Jordan frame Brans-
Dicke-Bergmann-Wagoner parametrization J are the algebraic substitutions

gJµν 7→ ĝ(J)
µν

(4.9)≡ e2α(Φ)gµν , ΦJ 7→ I(J)
Φ

(4.9)≡ I−1
1 , (4.19a)

√
−gJ 7→

√
−g(J) = e4α(Φ)√−g , VJ(ΦE) 7→ I(J)

V (I(J)
Φ ) = I4(Φ) ,

(4.19b)

RJ
µν

[
gJµν

]
7→ R̂(J)

µν

[
ĝ(J)
µν

]
, ω(ΦJ) 7→ I(J)

Φ I
(J)
B =

1

2

(
I−1

5 − 3
)
,

(4.19c)

∇J
µ 7→ ∇̂(J)

µ ,
d

dΦJ
7→ d

dI(J)
Φ

= −I2
1

( )′

I ′1
(4.19d)

Note that the right hand sides are essentially in the generic parametrization. Such
mappings, thus, take us from the Jordan frame Brans-Dicke-Bergmann-Wagoner
parametrization J to the generic parametrization. On the other hand, fixing the
parametrization on the right hand side to be the Jordan frame Brans-Dicke-
Bergmann-Wagoner parametrization J forces the mapping to reduce to identity.

4.4.2 Rules for noninvariant quantities

In the Jordan frame Brans-Dicke-Bergmann-Wagoner parametrization we rely
on the fact that e2αJ = 1. Hence, whenever we want to impose that something
transforms as e2αJ (i.e, as A), we just use the translation rules (4.19) to obtain the
invariant expression, and the multiply the latter by e2α. Analogously

dI(J)
Φ

dΦ
=
(
f̄ ′
)−1 dI(J)

Φ

dΦ̄
, but

dI(J)
Φ

dΦ

∣∣∣∣∣
J

=
dΦJ

dΦJ
= 1 . (4.20)

Let us proceed with examples.
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1. Suppose we want a quantity that in the Jordan frame Brans-Dicke-Bergmann-
Wagoner parametrization J has the same functional form as AJ, and trans-
forms as A. The invariant corresponding to AJ is I−1

1 . Multiplying the
latter by e2α yields A.

2. Let us consider the invariant which represents the functionαJ, i.e., I(J)
α = 0.

Hence just adding α, as a noninvariant function imposing the transformation
properties, to zero, which is the invariant representing αJ, yields α.

3. Analogously
e4αI(J)

V = V , (4.21)

which reproduces the prescription (2.12c).

4. As the last case, let us consider the invariant in (4.12) which represents BJ.
In order to impose the transformation properties (2.12b), let us take into
account, that αJ = 0, and thus α ′J = 0. On the other hand

α ′ =
(
f̄ ′
)−1 (

ᾱ ′ − γ̄ ′
)
, (4.22a)

α ′A′ −A
(
α ′
)2

=
(
f̄ ′
)−2

e−2γ̄
[
α ′A′ −A

(
α ′
)2

+ Ā
(
γ̄ ′
)2 − γ̄ ′Ā′

]
. (4.22b)

A straightforward calculation shows the following

I1

2

(
I−1

5 − 3
)

+ 6e−2α
(
A
(
α ′
)2 − α ′A′

)( dΦ

dI(J)
Φ

)2

=

=
I1

2

(
I−1

5 − 3
)

+ 6e−2ᾱ
(
Ā
(
ᾱ ′
)2 − ᾱ ′Ā′

)( dΦ̄

dI(J)
Φ

)2

+ e−2α

(
dΦ̄

dI(J)
Φ

)2 (
−6
(
γ̄ ′
)2

+ 6γ̄′Ā′
)

(4.23)

while still

I1

2

(
I−1

5 − 3
)

+ 6e−2α
(
A
(
α ′
)2 − α ′A′

)( dΦ

dI(J)
Φ

)2
∣∣∣∣∣∣
J

= BJ (4.24)

=
ω(ΦJ)

ΦJ
.
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Let us complete the transformation properties to reach

e−2α

(
dI(J)

Φ

dΦ

)2 [
I1

2

(
I−1

5 − 3
)

+ 6e2α
(
A
(
α ′
)2 − α ′A′

)( dΦ

dI(J)
Φ

)2 ]
=

= B . (4.25)

Once more, as in the case of the Einstein frame canonical parametrization,
here I have just inverted (4.12) under (4.11).

Note that the four possibilities are complete, as the basic rules (2.12) are re-
produced, and everything else just follows.

4.4.3 Using the translation rules on the field equations (4.6)

Let us use the translation rules in order to rewrite the field equations (4.6) of the
Jordan frame Brans-Dicke-Bergmann-Wagoner parametrization J in the generic
parametrization. Using (4.19) for substitutions in (4.6a) (recall Eqs. (4.16) and
(2.20) as well) yields

Ê(ĝ(J))
µν = e−2αE(g)

µν . (4.26)

Note that the Eq. (4.26) is invariant, and this is exactly the equation we obtain
when varying the action (4.18) with respect to the invariant metric ĝ(J)

µν (from the
invariant pair (4.9)). Imposing the transformation properties (2.14), as discussed in
the previous section, constitutes to multiplying by e2α (in the Jordan frame Brans-
Dicke-Bergmann-Wagoner parametrization J), thus, leading exactly to the generic
field equation (2.4a).

Analogously, using (4.19) on (4.6b), leads us to

Ê(I(J)
Φ ,R̂(J)) =

1

A′ − 2Aα′ e
−2α

(
E(Φ,R) + 2α′gνµE(g)

µν

)
, (4.27)

where one must also use (2.6). The equation (4.27) is invariant, and this is exactly
the equation we obtain when varying the (invariant) action (4.18) with respect to
the scalar field I(J)

Φ from the invariant pair (4.9). Imposing the transformation rule
(2.15) constitutes, first, multiplying by

e4α

(
1

I1

)′
= e2α

(
A′ − 2Aα′

)
, (4.28)

and, second, subtracting −2α′gνµE(g)
µν which eventually yields (2.4b).
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The substitutions (4.19) applied to (4.6c) yields

E(IJΦ) =
1

A′ − 2Aα′ e
−2αE(Φ) . (4.29)

Analogously to the previous, imposing the transformation rule (2.16) constitutes
to multiplying by e2α (A′ − 2Aα′).
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5.1 Relations between fixed parametrizations

Based on the Table I in Ref. IV (page 131 in the current thesis) the Einstein
frame canonical parametrization E, Definition 3.1.1, and the Jordan frame Brans-
Dicke-Bergmann-Wagoner parametrization J, Definition 4.1.1, are related as

gEµν = ΦJg
J
µν , gJµν = e2αEgEµν , (5.1a)

(
dΦE

dΦJ

)2

=
2ω(ΦJ) + 3

4Φ2
J

,

(
dΦJ

dΦE

)2

= 4e−4αE
(
α′E
)2
, (5.1b)

e2αE = Φ−1
J ,

1

2ω(ΦJ) + 3
=
(
α′E
)2
. (5.1c)

Let us now consider the relations between the invariant formulations of these para-
metrizations, i.e., the relation between the invariant pairs (3.9) and (4.9), and the
invariant I5, defined by (4.13b)

ĝ(E)
µν = I(J)

Φ ĝ(J)
µν , ĝ(J)

µν = e2I(E)
α ĝ(E)

µν , (5.2a)
(

dI(E)
Φ

dI(J)
Φ

)2

= I2
1 (4I5)−1 , I5(Φ) =

(2Aα ′ −A′)2

2AB + 3 (A′)2 . (5.2b)

Let me point out that fixing the parametrization leads to

I(J)
Φ

∣∣∣
E

= e−2I(E)
α

∣∣∣
E

= e−2αE , I(J)
Φ

∣∣∣
J

= e−2I(E)
α

∣∣∣
J

= ΦJ , (5.3)

and thus both ΦJ and e−2αE in (5.1a) represent the same invariant I−1
1 . In addition

I5|E =
(
α′E
)2
, I5|J =

1

2ω(ΦJ) + 3
. (5.4)

which shows that both expressions in (5.1b) as well as in (5.1c) also just represent
the same invariants in different parametrizations.

Hence, it turns out that the transformation relations in the Table I in Ref. IV
(on page 131 of the thesis) relate invariants (which was not clear at the time, be-
cause the concept of such invariants was not developed), as only for invariants the
numerical equivalence holds. As argued in Sections 3.4.2 and 4.4.2, imposing dif-
ferent transformation properties yields to different expressions, and therefore, in
order to relate expressions in different parametrizations, we would need to know
the transformation properties beforehand. For example, from the perspective of
the generic parametrization, the scalar field ΦJ in the Jordan frame Brans-Dicke-
Bergmann-Wagoner parametrization J has two meanings, it is the function A and
the scalar field Φ. Those two have different transformation properties. One can
not impose all possible transformation properties (of the same expression in a par-
ticular fixed parametrization P) at once, and thus it is clear that such a table can
only be meaningful for somewhat canonical choice of transformation properties.
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5.1.1 Example of the ambiguity

Let me go through an example to illustrate the ambiguity encountered, when
one wants to know the generic form of an expression, that is written down in a
fixed parametrization, without knowing the transformation rule beforehand. The
same holds for quantities “translated” from one fixed parametrization to another
fixed parametrization. Let us consider the expression

2ω(ΦJ) + 3 (5.5)

in the Jordan frame Brans-Dicke-Bergmann-Wagoner parametrization J, Defini-
tion 4.1.1. Let me write down three expressions in the generic parametrization,
which all reduce to (5.5) if evaluated in the Jordan frame Brans-Dike-Bergmann-
Wagoner parametrization J.

I−1
5

(4.13b)
=

2AB + 3 (A′)2

(2Aα ′ −A′)2 , I−1
5

∣∣
J

= 2ω(ΦJ) + 3 , (5.6a)

4A2F (2.21)
= 2AB + 3

(
A′
)2
,

(
4A2F

)∣∣
J

= 2ω(ΦJ) + 3 , (5.6b)

2AB + 3 , (2AB + 3)|J = 2ω(ΦJ) + 3 , (5.6c)

which of course originates fromA′J = 1,
(
A′J
)2

= 1, etc. The expressions in (5.6)
differ by transformation properties as from (2.12)

I−1
5 (Φ)

(2.8a)
= I−1

5 (f̄(Φ̄)) = Ī−1
5 (Φ̄) , (5.7a)

4A2F (2.21)
= e−4γ̄

(
f̄ ′
)−2

4Ā2F̄ , (5.7b)

2AB + 3
(2.12b)

= e−4γ̄
(
f̄ ′
)−2

2ĀB̄ + 3

+ e−4γ̄(Φ̄)
(
f̄ ′
)−2

(
12γ̄ ′Ā′Ā − 12

(
γ̄ ′
)2 Ā2

)
. (5.7c)

The list is not complete, as we can form infinitely many of such expressions, all
differing by the transformation properties.

In order to demonstrate that this is a generic problem and not related to the
particular Jordan frame, let us also consider an expression(

α ′E
)2 (5.8)

in the Einstein frame canonical parametrization E, Definition 3.1.1. Analogusly
to (5.6) the expressions

I5
(4.13b)

=
(2Aα ′ −A′)2

(
2AB + 3 (A′)2

) , I5|E =
(
α ′E
)2
, (5.9a)

1

4

(
2Aα ′ −A′

)2
,

1

4

(
2Aα ′ −A′

)2∣∣∣
E

=
(
α ′E
)2
, (5.9b)

(
α ′
)2
,

(
α ′
)2∣∣∣

E
=
(
α ′E
)2
. (5.9c)
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Also, analogously to (5.7),

I5(Φ) = I5(f̄(Φ̄)) = Ī5(Φ̄) , (5.10a)
1

4

(
2Aα ′ −A′

)2
= e−4γ̄

(
f̄ ′
)−2 1

4

(
2Āᾱ ′ − Ā′

)2
, (5.10b)

(
α′
)2

=
(
f̄ ′
)−2 (

ᾱ ′ − γ̄ ′
)2
. (5.10c)

Also, as before, there are infinitely many expressions of the generic parametriza-
tion that reduce to (α ′E)2 when evaluated in the Einstein frame canonical parametri-
zation E.

Let me point out, however, that mostly such problems might be unnoticed,
because in practical calculations the expressions usually have rather simple trans-
formation properties.

5.2 Two-floor-structure
Action (2.2)
S [gµν ,Φ, χ]

Action (3.17)
S
[
ĝ

(E)
µν , I(E)

Φ , χ
] Action (4.18)

S
[
ĝ

(J)
µν , I(J)

Φ , χ
]

Invariant pair (3.9)


ĝ(E)
µν ≡ Agµν
I(E)

Φ ≡ ±I3

Invariant pair (4.9)


ĝ(J)
µν ≡ e2αgµν

I(J)
Φ ≡ I−1

1

Eqs. (5.2a)

ĝ(E)
µν = I−1

1 ĝ(J)
µν

(
dI(E)

Φ

)2
=
I2

1

4I5

(
dI(J)

Φ

)2

Action (3.5)
S
[
gEµν ,ΦE, χ

] Action (4.5)
S
[
gJµν ,ΦJ, χ

]

Left hand column of Eqs. (5.1)
gEµν = ΦJg

J
µν

(dΦE)2 =
2ω(ΦJ) + 3

4Φ2
J

(dΦJ)2

Right hand column of Eqs. (5.1)
gJµν = e2αEgEµν

(dΦJ)2 = 4e−4αE
(
α′E
)2

(dΦE)2

Plugging in Definition 3.1.1 Plugging in Definition 4.1.1
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We observe a two-floor-structure. On the upper floor there is the generic para-
metrization , and two invariant formulations ( and , respectively) that are just
rewritings of the generic parametrization and, thus, as generic. On the lower floor
there are two fixed parametrizations ( and ) which correspond to the particular
invariant rewritings above ( ↔ and ↔ , respectively). (In principle there
are infinitely many inhabitants on both floors.) An invariant and the corresponding
noninvariant formulation only differ in the interpretation we assign to the quantities
contained therein. It might seem that by fixing the parametrization one restricts
the theory (goes to the lower floor), but I conclude that a fixed parametrization is
equivalent to the generic parametrization, because both are equivalent to the in-
variant formulation since there is no criteria for a priori discriminating between
the invariant and noninvariant formulation. For each transformation between dif-
ferent invariant formulations there is a corresponding transformation between the
noninvariant formulations, once more the only difference being the interpretation
which is assigned by us. The same from a slightly different angle, invariant formu-
lations inherit their mathematical properties from the corresponding initially fixed
parametrizations, which are used for finding the invariant pairs, and hand these
properties back to the noninvariant ordinary formulations once the parametriza-
tion is fixed.

This is the understanding that underlies the translation rules (3.18) and (4.19).
From the viewpoint of such two-floor-structure, we lift the expressions to the up-
per floor (and also impose transformation properties if necessary). One the other
hand, due to the same equivalence, the use of the invariant formulations as in the
invariant pairs (3.9) and (4.9), as well as in the Sections IV.B, IV.C and VI of Ref.
I is equivalent to the noninvariant formulations, e.g., actions (3.5) and (4.5), and
therefore, by making use of the invariant formulation, we can not solve problems,
that could not be solved within the noninvariant formulation.

5.3 The use of invariants in fixed parametrizations

5.3.1 Using invariants for transforming from a fixed parametrization
P to some other parametrization

As shown in Sections 3.4 and 4.4 for a fixed parametrization P one can con-
struct the translation rules, which allow us to rewrite every expression from the par-
ticular parametrization P as an expression of the generic parametrization, given
by action (2.2). Note, however, that in order to obtain the correct expression in the
generic parametrization, we must know its transformation properties beforehand.
Therefore, fixed parametrizations are not useful for studying transformation prop-
erties, because in a fixed parametrization P each quantity can be considered to be
an invariant. One might obtain some information about the transformation proper-
ties by considering two fixed parametrizations, and comparing the invariant results
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of the translation rules. For example, the Eqs. (3.6a) and (4.6a) are rewritten as
(3.27) and (4.26), respectively. Comparing the latter two yields

Ê(ĝ(E))
µν = I1Ê

(ĝ(J))
µν , (5.11)

where I−1
1 is exactly the conformal factor in (5.2a), and hence we recover the

transformation rule (2.14). There is, however, a simple counterexample. In the
Einstein frame AE = 1, and thus A′′E = 0. In the Jordan frame AJ = ΦJ, and
A′′J = 0. The corresponding invariants are hence zero for both cases. However,

A′′ =
(
f̄ ′
)−2

e−2γ̄
(
Ā′′ − 4γ̄ ′Ā′ + 4

(
γ̄ ′
)2 Ā − γ̄ ′′Ā

)

−
(
f̄ ′
)3
f̄ ′′e−2γ̄

(
Ā′ − 2γ̄ ′Ā

)
. (5.12)

Let me point out that the same problem haunts whenever whatever transforma-
tions are considered between fixed parametrizations. In order to find the correct
expression, we must know the transformation properties.

5.3.2 Using invariants for transforming from some other parametri-
zation to the fixed parametrization P

Once the invariant version of a parametrization P is constructed, it is fairly
easy to write down transformation rules from an arbitrary other fixed parametriza-
tion to the parametrizationP. For an example, let us consider yet another paramet-
rization

Definition 5.3.1: Jordan frame Boisseau-Esposito-Farèse-Polarski-
Starobinsky parametrization B

Let us specify the arbitrary functions in the generic action functional (2.2) to
be
A(Φ)|B ≡ AB(ΦB) = F (ΦB) , B(Φ)|B ≡ BB(ΦB)

!
= 1 , (5.13a)

V(Φ)|B ≡ VB(ΦB) , α(Φ)|B ≡ αB(ΦB)
!

= 0 . (5.13b)

Such a setup is referred to as the Jordan frame Boisseau-Esposito-Farèse-
Polarski-Starobinsky parametrization, denoted by B.

See also the subsection 3.2 in Ref. IV (page 130 in the thesis), etc., for references
and further information.

Without knowing anything but the Definition 5.3.1, i.e., without constructing
the translation rules for this parametrization, let us consider the right hand side
of the translation rules (3.18) for the Einstein frame canonical parametrization E.
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In particular, evaluating the invariants in the second column in the Jordan frame
Boisseau-Esposito-Farèse-Polarski-Starobinsky parametrization B yields, first

(
dI(E)

Φ

dΦB

)2
∣∣∣∣∣∣
B

=

(
dΦE

dΦB

)2

=
(
I ′3
)2∣∣∣

B
=

2AB + 3 (A′)
4A2

∣∣∣∣
B

=
2F + 3 (F ′)2

4F 2
,

(5.14)
second

VE = I2|B =
VB
F 2

, (5.15)

and third
αE =

1

2
ln I1

∣∣∣∣
B

= −1

2
lnF . (5.16)

which reproduces the second row of the third column from Table I in Ref. IV on
page 131 in the thesis. Note that as before, these transformations are constructed
for invariants.

5.4 The use of invariants in the generic parametrization

In the generic parametrization all the transformation properties are explicit and
thus one can just directly study each expression and the result does not depend on
how the particular expression was derived. I have been studying invariants in the
generic parametrization in the context of the general relativity regime which it-
self was thoroughly studied in the papers [20, 21, 22, 23, 24, 25] (not authored
by me) and my contribution to the subject (contained in Refs. IV–V) was to study
the transformation properties. Unlike the formalism of invariants which developed
over time as the understanding grew, the transformation properties of the general
relativity limit are rather compactly and thoroughly studied in Ref. V which in-
cludes the important results from IV as well. I would like to highlight a few of
the calculations where invariants are of importance. The reader interested in the
general relativity regime should proceed to Ref. V.

5.4.1 Confirming the invariance of the general relativity regime point

The invariants were implicitly used in Ref. IV in order to argue for the invari-
ance of the general relativity limit, where the noninvariant conditions (in principle
Eqs. (4.2a), (4.2b) and (4.4) in Ref. IV, page 130–132 in the thesis, recall also
Eqs. (2.20) and (2.21) in the current overview article) for determining a scalar
field value Φ0, i.e,

AV ′ − 2A′V
2AB + 3 (A′)2

∣∣∣∣
Φ0

=
A
4

I ′2
F

∣∣∣∣
Φ0

=
A
4

I ′2
(I ′3)2

∣∣∣∣∣
Φ0

!
= 0 , (5.17a)
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A′ − 2Aα ′
2AB + 3 (A′)2

∣∣∣∣
Φ0

= − 1

4A
(ln I1)′

F

∣∣∣∣
Φ0

= − 1

4A
(ln I1)′

(I ′3)2

∣∣∣∣∣
Φ0

!
= 0 , (5.17b)

were replaced by invariant condition Eq. (4.7) in Ref. IV, page 132 in the thesis

(AV ′ − 2A′V)2

A4
(

2AB + 3 (A′)2
)

∣∣∣∣∣∣
Φ0

=

(
1

2

I ′2
I ′3

)2
∣∣∣∣∣
Φ0

=

(
1

2

dI2

dI3

)2
∣∣∣∣∣
Φ0

!
= 0 ,

(5.18a)

(A′ − 2Aα ′)2

2AB + 3 (A′)2

∣∣∣∣∣
Φ0

=

(
1

2

(ln I1)′

I ′3

)2
∣∣∣∣∣
Φ0

=

(
1

2

d ln I1

dI3

)2
∣∣∣∣∣
Φ0

= I5|Φ0

!
= 0 ,

(5.18b)

since under certain rather reasonable assumptions the roots, i.e, the zeros are the
same for both the invariant and noninvariant expressions.

5.4.2 Using invariants for gaining insight

Let us consider the equation for the scalar field and in particular the linearized
version of it. The eigenvalues characterizing the latter are expected to be almost
invariants (gaining just a multiplier under the transformation). From Eq. (89) in
Ref. I, page 85 in the thesis, we had the insight what the invariant form of the
eigenvalue should be like. (Note that in my opinion the calculation in Ref. I was
just done in the Einstein frame canonical parametrization, although at the time it
seemed to have a wider meaning, and in order to use that result for writing down the
expression in the generic parametrization, one should know the transformation rule
beforehand. Luckily for us this turned out to be rather simple. Recall that in a fixed
parametrization each expression by itself might be considered to be invariant.)
From the direct calculation in the generic parametrization (see Section 4 in Ref. V
from page 163 in the thesis), linearizing the equation around Φ0 for which (5.17)
holds, we obtain the eigenvalue (91) in Section 4.1.4 of Ref. V, namely

λε± =
1

2

(
−Cε1 ±

√
(Cε1)2 + 2(2−M)C2

)
. (5.19)

Let me denote the deviation as x = Φ− Φ0. The constants in (5.19) are

Cε1 ≡
ε

`

√
3I2A

∣∣∣
x=0

, C2 ≡ −
( A

2`2
I ′2
F

)′∣∣∣∣
x=0

, (5.20a)

M ≡ lim
x→0

{(
1

F

)′
F · x

}
, (5.20b)

where ε = ±1. (Currently I am interested in the transformation properties, and
therefore the meaning of the quantities contained in (5.19) is not important. An
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interested reader should consult Section 4 in Ref. V.) The transformation rule (Eq.
(116) in Ref. V, page 170 in the thesis)

λε± = e−γ̄
∣∣
0
λ̄ε± (5.21)

could be checked by considering the transformation properties for each expression
in (5.20) separately, but one can also take into account the insight from Eq. (89) in
Ref. I, page 85 in the thesis, and take into account that due to (5.17) the L’Hospital’s
rule yields

C2 = − A
2`2

∣∣∣∣
x=0

lim
x→0



I ′2
F
/
x


 , (5.22)

in order to write (see Eq. (115) in Ref. V, page 170 in the thesis)

(2−M)C2 = − `−2Ad2I2

dI2
3

∣∣∣∣
x=0

. (5.23)

Hence, Eq. (5.19) reads

λε± =
√
A 1

2`

(
−ε
√

3I2 ±
√

3I2 − 2
d2I2

dI2
3

)∣∣∣∣∣
x=0

, (5.24)

which immediately verifies the rule (5.21).

5.5 Critique and loose ends

The formalism of invariants in scalar-tensor theories of gravity (Refs. I, II and
III) is up to now not yet finished. First, the three invariants (2.20) have been used in
order to generate all other invariants we have encountered via the three rules (2.23),
but nevertheless there is no mathematical proof that these three form a complete set
in that sense. Dr. Laur Järv used an elaborate computer program in 2014–2015,
and his result was that at least up to the specified order of complexity there are
no invariants that could not be constructed from (2.20) by making use of (2.23).
D. Sc. Piret Kuusk has performed some calculations based on the monographs
[26, 27] to investigate infinitesimal operators for finite transformations, but the
calculations have not been finalized.

Therefore, in my opinion, while there is a prescription for deriving translation
rules as (3.18) and (4.19), there is no proof for the uniqueness of such rules. The
whole prescription makes use of invariants which reduce to certain functions once
the parametrization has been fixed, e.g.,

I(E)
Φ

∣∣∣
E

= ΦE , I(E)
V

∣∣∣
E

= VE , I(E)
α

∣∣∣
E

= αE . (5.25)
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However, one should also prove
(
I(E)

1 − I(E)
2

)∣∣∣
E

= 0
?⇒ I(E)

1 = I(E)
2 , (5.26)

in order to complete the formalism. Let me stress that I do not claim that the basic
invariants (2.20) do not form a complete set. I actually believe that they do, but in
my opinion this has not been mathematically proven.

Yet another goal would be to put forward a scheme that would easily allow
us to identify the actions which are obtained from the generic action (2.2) via
some (2.8). For fixed parametrizations the prescription introduced in Ref. II is
perhaps cumbersome but nevertheless straightforward. However, once we extend
the treatment, there is no routine. Let me proceed with an example provided to me
by Mihkel Rünkla. Let us consider a fixed parametrization P1 where the functions
AP1 andαP1 have gained a fixed functional form. Hence also I1 has gained a fixed
functional form. Let us consider the case where the latter is dynamical, as then we
have a fixed parametrization. Using an additional conformal transformation to
fix the potential (in the new frame P2 (abuse of notation!)) to be constant, i.e.,
VP2 = const takes us to a setup where one of the functions, VP2 , is determined,
and two other functions,AP2 and e2αP2 , contain the same undetermined multiplier
via VP1 . The invariant I1 still has a fixed functional form and the parametrization
P2 can be derived from the generic parametrization by rewriting the action (2.2) in
terms of different variables. However, currently the formalism of invariants does
not provide proper tools for analyzing or recognizing such situations.
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Summary

In the attached papers I, II and III underlying the thesis we have developed the
formalism of invariants, i.e., we have constructed quantities that remain invariant
under a conformal transformation (2.8b) and transform as scalar functions under a
scalar field redefinition (2.8a). The research was originated by the idea, hypothe-
sis (from Laur Järv, if I remember correctly) that physically measurable quantities
should be such invariants. However, most of the research in literature was and is
done in a fixed parametrization (see Definition 2.4.1). Thus, when it turned out
that in a fixed parametrization each expression can be considered to be such an
invariant, the significance of such quantities in the context of fixed parametriza-
tions was diminished. The correspondence for rewriting an expression from a fixed
parametrization as an invariant in the generic parametrization, presented in Table I
of Ref. I, was elaborated as abstract translation rules in Ref. II (see also Ref. III for
examples in the multiscalar case). The nuance that perhaps has not been stressed
enough in the attached papers is that in a fixed parametrization the transformation
rules are implicit, i.e., for an expression without context these are lost, but one
can recover these if the derivation of the result is taken into account. (See, for ex-
ample, Eq. (2.17)) An expression by itself, however, contains ambiguity, because
imposing the transformation properties in a fixed parametrization constitutes to
multiplying by and adding functions that have numerical value 1 and 0, respec-
tively, if evaluated in that particular parametrization. The aim of the overview
article is to stress this subtlety.

The invariants can be used to construct transformation properties from a fixed
parametrization to some other parametrization, and also from some other paramet-
rization to that fixed parametrization, but as before, if we do not know the transfor-
mation property of the original expression, then the resulting expression is ambigu-
ous. Note that the same applies if transformation rules between fixed parametriza-
tions are applied without invariants (as in my opinion is mostly done in the litera-
ture). Hence, for example, Table I in Ref. IV contains invariants, since we can im-
pose numerical equality only for these. Due to these ambiguities, while it is good
to have the formalism, because it makes easier to group things appropriately, in my
opinion there is no need to study the formalism of invariants any further. If one is
interested in studying the transformation properties, then the generic parametriza-
tion is the way to go. The attached paper V is a good example. In the generic
parametrization one does not need to know invariants, because one can calculate
the transformation properties explicitly.
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lauluga ma tülita. to mention a couple.Aga kui torm minu kandlelt

kostab siiski kõrvu sull’,
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Kokkuvõte (in Estonian)
Väitekirja alusobjektiks on Flanagani mõjufunktsionaal, mis kirjeldab skalaar-

tensortüüpi gravitatsiooniteooriaid. See mõjufunktsionaal on samaväärne varem
näiteks Bergmanni ja Wagoneri poolt kasutatud mõjufunktsionaalidega. Viimastes
postuleeritakse teooriate klass, mis sisaldab kaht vaba funktsiooni. Täiendusena,
kuid mitte üldistusena, on Flanagan mõjufunktsionaali postuleerinud nelja vaba
funktsiooniga. Selle tulemusel muutub mõjufunktsionaal ilmutatult kujuinvariant-
seks meetrilise tensori konformse teisenduse ning skalaarvälja ümberdefineeri-
mise suhtes. Neli eelmainitud vaba funktsiooni omavad selget ja unikaalset teise-
nemiseeskirja. Varasemate, kahe vaba funktsiooniga teooriate puhul see nii polnud
ning avaldise teisenemiseeskiri oli kodeeritud avaldise tuletuskäiku. Seega aval-
distel endil, väljaspool konteksti, puudus varasemate formuleeringute puhul ühene
teisenemiseeskiri. Väitekirja laiem eesmärk on sellisest üldisest formuleeringust
lähtudes uurida objekte, nii skalaarseid kui ka tensoriaalseid, mis meetrika kon-
formse teisenduse suhtes on invariantsed ning skalaarvälja ümberdefineerimisel
teisenevad kui skalaarsed funktsioonid. Kitsam eesmärk on juhtida tähelepanu
justnimelt asjaolule, et fikseeritud parametriseering, milles põhiosa valdkonna tea-
dustööst on formuleeritud, ei sobi teisenemiseeskirjade uurimiseks. (Täpsemalt
öeldes, teisenemiseeskirjade uurimine sellistes formuleeringutes pole võimatu,
vaid lihtsalt ebamugav. Kirjanduses küll uuritakse usutavasti ainult invariante.)

Aluspublikatsioonidest esimeses, viites I tutvustatakse avaldisi, mis meetrilise
tensori konformsel teisendusel ei muutu ja skalaarvälja ümberdefineerimisl teise-
nevad skalaarsete funktsioonidena. Selles artiklis tutvustatakse kolme skalaarset
baasinvarianti, kolme reeglit edasiste avaldiste formuleerimiseks ning tulemused
on põhiosas kokku võetud sealses Tabelis 1. Hilisemate teadmiste valguses olgu
öeldud, et mainitud tabel sisaldab ainult invariante erinevates parametriseeringu-
tes. Mitteinvariantsete suurustega seal tegeletud pole. Küll aga võib etteruttavalt
öelda, et viites I toodud Tabel 1 täielikult hõlmab ka viites IV esitatud Tabelit
1. Viimane on aga väidetavalt teisenemiseeskirjade tabel ja siit juba järeldubki,
et kirjanduses (enamasti) kasutatavad teisenemiseeskirjad pole mitte teisenemis-
eeskirjad, vaid invariantide avaldised erinevates fikseeritud parametriseeringutes
ja põhjus on sellise üldisema formuleeringu seisukohalt ilmne. Kontekstist välja
rebitud avaldis fikseeritud parametriseeringus ei oma üheselt määratletavat teise-
nemiseeskirja.
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Aluspublikatsioonidest teises, viites II näidatakse abstraktsel tasemel fiksee-
ritud parametriseeringu ja üldise parametriseeringu ekvivalentsust ning põhjenda-
takse sellega ”tõlkereegleid“. Viimased on algebraliste asendamiste kogu, mille-
ga on võimalik fikseeritud parametriseeringu avaldis (teadaoleva teisenemisees-
kirjaga) ümber kirjutada üldise parametriseeringu avaldisena. Sellise protseduuri
võimalikkus ja ka see protseduur ise järelduvad justnimelt kahe formuleeringu ek-
vivalentsusest.

Aluspublikatsioonidest kolmandas, viites III on mõnevõrra eraldiseisvana esi-
tatud invariantide formuleering multiskalaar-tensor tüüpi gravitatsiooniteooriates.
Skalaarväljade ruum on nüüd mitmemõõtmeline ning üks invariantidest oman-
dab selge geomeetrilise interpretatsiooni, olles seotud invariantse infinitesimaalse
ruumalaelemendiga selles skalaarväljade ruumis.

Aluspublikatsioonidest neljandas, viites IV, kõige varasemas, on toodud
esimesed invariandid (neid nii nimetamata) ning juba mainitud teisenemiseeskir-
jad kolme fikseeritud parametriseeringu vahel ehk Tabel 1, mis hilisemate tead-
miste valguses on hoopis invariantide avaldised erinevates parametriseeringutes.

Aluspublikatsioonidest viiendas, viites V on uuritud teisenemiseeskirju üldises
formuleeringus. Kõige uudsema tulemusena on seal näidatud, et ka singulaarne
skalaarvälja ümberdefineerimine üldrelatiivsusteooria piiril ei riku vastavust para-
metriseeringute vahel. Minu hinnangul igasugune teisenemiseeskirjade uurimine
peaks toimuma just selle artikli vaimus.

Ülevaateartiklis ehk aluspublikatsioone täiendavas teaduslikus materjalis, mis
põhimõtteliselt sisaldub vähemalt vihjamisi ka artiklites, keskendutakse justnimelt
mitteinvariantsete objektide käsitlemisele. Selleks esitatakse sama teooria kolm
korda, sealjuures kahel juhul toimub veel materjali dubleerimine. Seega põhimõtte-
liselt viis formuleeringut. Juhtmõtteks on seal loosung, et objektide samastamiseks
peab neid kõigepealt eristama. Põhiliseks tulemuseks on arusaamine, et mitteinva-
riantsete objektide korral ”tõlkereeglid“ pole ühesed, sest kontekstist välja võetud
avaldise korral ei saa me samaaegselt postuleerida kõikvõimalikke teisenemisees-
kirju. Seega pole fikseeritud parametriseeringu avaldised (”tõlkereeglite“ kasutus-
ala) konteksti teadmata sobivad teisenemiseeskirjade uurimiseks. Viimaste teada-
saamiseks on mõistlik teooria formuleerida Flanagani-tüüpi mõjufunktsionaali ka-
sutades, sest siis jäävad teisenemiseeskirjad ilmutatuks ning avaldise teisenemine
on üheselt määratud ja ei sõltu kontekstist. Kuna viimasel juhul pole tarvidust inva-
riante teada ning seoses ”tõlkereeglite“ mitteühesusega pole minu arvates vajadust
täiendavalt invariantide formalismi uurida.
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We consider the general scalar-tensor gravity without derivative couplings. By rescaling of the metric
and reparametrization of the scalar field, the theory can be presented in different conformal frames and
parametrizations. In this work we argue that while due to the freedom to transform the metric and the scalar
field, the scalar field itself does not carry a physical meaning (in a generic parametrization), there are
functions of the scalar field and its derivatives which remain invariant under the transformations. We put
forward a scheme to construct these invariants, discuss how to formulate the theory in terms of the
invariants, and show how the observables like parametrized post-Newtonian parameters and characteristics
of the cosmological solutions can be neatly expressed in terms of the invariants. In particular, we describe
the scalar field solutions in Friedmann-Lemaître-Robertson-Walker cosmology in Einstein and Jordan
frames and explain their correspondence despite the approximate equations turning out to be linear and
nonlinear in different frames.
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I. INTRODUCTION

Scalar-tensor gravity (STG) [1–4] introduces a scalar
field that is nonminimally coupled to curvature and, thus,
can be interpreted as an additional mediator, besides the
usual metric tensor, of gravitational interaction. Such
theories provide a simple but versatile extension to general
relativity. They arise naturally in constructions involving
higher dimensions and are featured in attempts to construct
scale-invariant fundamental physics [5]. The theory can be
generalized further by allowing various derivative cou-
plings and higher-order derivative terms in the action [6]. It
has received a lot of attention in phenomenological model
building: inflation and dark energy [7] and more recently
Higgs inflation [8].
Since the early paper by Dicke [9] it has been well

known that by rescaling of the metric and reparametrization
of the scalar field, the theory can be presented in different
conformal frames and parametrizations [4]. Despite an
extensive use of this property as a convenient calculational
tool, there lingers a conceptual issue of what is the precise
relation of different frames and parametrizations to the
observable world and to each other.
In the former, it is a question of whether physical

measurements choose one frame which defines the units
used in physical observations, i.e. which metric defines the
measured lengths (for early references see Refs. [3,10];
for more recent papers, see Refs. [11]). From an alternative
point of view, allowing the units to rescale inversely
with the metric neutralizes the effect of conformal

transformation [9,12], and the question of physical frame
becomes superfluous. This can be interpreted by general-
izing the underlying geometry from the Riemann into the
Weyl integrable [13].
The latter aspect means a mathematical problem,

addressing whether the different formulations are math-
ematically equivalent. Here the common wisdom about the
subject says that different frames are equivalent on the level
of classical action (although one must be careful in the limit
where the transformation becomes singular [14]). However,
things get more complicated and warrant careful consid-
eration and debate on the level of e.g. cosmological
perturbations [15] and quantum corrections [16,17].
One may view different conformal frames and para-

metrizations of the theory as arising from a change of
coordinates in some abstract generalized field space. Then
the discrepancies can be attributed to the circumstance that
the theory has not been formulated in a covariant way with
respect to that abstract space [17]. Therefore, some authors
have strived to formulate the theory in terms of invariant
variables. The idea has been to focus upon the conformal
transformation and express all observables in terms of
frame-invariant combinations of the theory parameters and
variables, as well as the units [18,19].
In the present paper we complement this line of thought

by introducing invariant quantities of the scalar field. The
scalar field is amenable to reparametrization; therefore, in a
generic parametrization it cannot carry a physical meaning
(cannot be measured directly). However, it is possible to
combine the functions of the scalar field and their deriv-
atives into quantities which remain invariant under the
conformal transformations and field redefinitions and,
therefore, should have a more direct relevance to observ-
able physics. Indeed, using these quantities we show how
the parametrized post-Newtonian (PPN) parameters and the
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qualitative features of the scalar field cosmological sol-
utions like convergence properties and periods of oscil-
lation are independent of the frame and parametrization.
These invariant quantities also enable us to write the
equations of motion and the action in a manifestly invariant
form, and ease the conversion of calculational results from
one frame and parametrization into another. A few pre-
liminary efforts in this approach were presented earlier in a
conference note [20].
The outline of the paper is as follows. First, we recall the

general action for scalar-tensor gravity and the rules of
transformation under conformal rescaling and field repar-
ametrization. In the next section we introduce three basic
invariant quantities of the scalar field and outline how to
construct many other invariants from them. In Sec. IV we
invoke an invariant metric that helps to write the field
equations and the action in terms of the invariants. As an
application in Sec. V we convert the PPN parameters into
an invariant form and check that they reproduce the results
for particular parametrizations known in the literature. In
Sec. VI we focus upon the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) universe without matter and
study the scalar field solutions near the fixed points. The
conditions for the fixed points as well as the eigenvalues
determining the approximate solutions turn out to be
invariant. Yet, for a specific situation it is interesting to
see how a linear result in the Einstein frame can actually
correspond to a nonlinear result in the Jordan frame.
Finally, in Sec. VII we conclude with a brief summary
and outlook.

II. GENERAL ACTION FUNCTIONAL AND
DIFFERENT PARAMETRIZATIONS

A. General action functional

Let us consider the general action functional for a scalar-
tensor theory of gravity written down by Flanagan [4],

S ¼ 1

2κ2

Z
V4

d4x
ffiffiffiffiffiffi
−g

p fAðΦÞR − BðΦÞgμν∇μΦ∇νΦ

− 2l−2VðΦÞg þ Sm½e2αðΦÞgμν; χ�: ð1Þ

It contains four arbitrary functions of the dimensionless
scalar field Φ: curvature coupling function AðΦÞ, generic
kinetic coupling of the scalar field BðΦÞ, self-interaction
potential of the scalar field VðΦÞ and conformal coupling
e2αðΦÞ between the metric gμν and matter fields χ. Functions
AðΦÞ, BðΦÞ, VðΦÞ and αðΦÞ are dimensionless, and fixing
them all gives us some concrete theory. In the rest of the
text, we drop the arguments of functions unless confusion
might arise.
If we impose a physical condition that gravitational

interaction is always finite and attractive, the curvature
coupling function must satisfy 0 < AðΦÞ < ∞. We also
assume from physical considerations that self-interaction

potential is non-negative, 0 ≤ VðΦÞ < ∞. We will use the
units where c ¼ 1, but we do not fix the values of the
nonvariable part of the effective gravitational “constant” κ2

and a positive constant parameter l with the dimension of
length, e.g. the Planck length. Note that from a convention
½κ2� ¼ 1 it follows that ½S� ¼ ½ℏ� ¼ L2 and from a con-
vention ½S� ¼ ½ℏ� ¼ 1 it follows that ½κ2� ¼ L2.
It is well known that two out of the four arbitrary

functions fA;B;V; αg can be fixed by transformations that
contain two functional degrees of freedom,

gμν ¼ e2γ̄ðΦ̄Þḡμν; ð2Þ

Φ ¼ f̄ðΦ̄Þ: ð3Þ

We shall refer to first of them as the change of the frame and
the second one the reparametrization of the scalar field. The
change of the frame is in fact a conformal rescaling of the
metric. We assume that the function γ̄ðΦ̄Þ and its first and
second derivative, dγ̄=dΦ̄ and d2γ̄=dΦ̄2 respectively, do not
diverge at any permitted Φ̄, because otherwise we would
introduce geometrical singularities via conformal trans-
formation. (Note that this excludes the interesting possibil-
ity of “conformal continuation” [21].) We also assume the
function f̄ðΦ̄Þ to be at least directionally continuous, but
retain a possibility that Jacobian f̄0 ≡ dΦ=dΦ̄ of this
coordinate transformation in one-dimensional field space
may be singular at some isolated value of the scalar field Φ̄.
Under the transformation (2), (3) the action functional

(1) preserves its structure up to the boundary term (total
divergence)

S̄ ¼ 1

2κ2

Z
V4

d4x
ffiffiffiffiffiffi
−ḡ

p fĀðΦ̄ÞR̄ − B̄ðΦ̄Þḡμν∇̄μΦ̄∇̄νΦ̄

− 2l−2V̄ðΦ̄Þg þ S̄m½e2ᾱðΦ̄Þḡμν; χ�

−
1

2κ2

Z
V4

d4x∂μð6γ̄0
ffiffiffiffiffiffi
−ḡ

p
Āḡμν∂νΦ̄Þ; ð4Þ

with transformed functions [4]

ĀðΦ̄Þ ¼ e2γ̄ðΦ̄ÞAðf̄ðΦ̄ÞÞ;
B̄ðΦ̄Þ ¼ e2γ̄ðΦ̄Þððf̄0Þ2Bðf̄ðΦ̄ÞÞ− 6ðγ̄0Þ2Aðf̄ðΦ̄ÞÞ− 6γ̄0f̄0A0Þ;
V̄ðΦ̄Þ ¼ e4γ̄ðΦ̄ÞVðf̄ðΦ̄ÞÞ;
ᾱðΦ̄Þ ¼ αðf̄ðΦ̄ÞÞ þ γ̄ðΦ̄Þ: ð5Þ

Here we have adopted a convention that prime at a quantity
with a bar denotes derivative with respect to Φ̄, e.g.

f̄0 ≡ df̄ðΦ̄Þ
dΦ̄

, and prime at a quantity without a bar denotes

derivative with respect to Φ, e.g. A0 ≡ dAðΦÞ
dΦ . If we denote

the backward transformations as
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ḡμν ¼ e2γðΦÞgμν; ð6Þ

Φ̄ ¼ fðΦÞ; ð7Þ

then γðf̄ðΦ̄ÞÞ ¼ −γ̄ðΦ̄Þ.
Under the assumptions on γ̄ and its derivatives men-

tioned above, the transformation rules (5) imply the
following.

(i) The conditions on curvature coupling function,
0<A<∞, and self-interaction potential, 0≤V<∞,
are preserved, i.e. 0 < Ā < ∞ and 0 ≤ V̄ < ∞.

(ii) If in some frame α ¼ 0, then in any other
frame jᾱj < ∞.

(iii) If we want to avoid ghosts, i.e. if there is a frame
where the tensorial and scalar part of the gravita-
tional interaction are separated with A ¼ 1 and
B > 0, then in any related frame and parametrization
it follows that 2Ā B̄þ3ðĀ0Þ2 is non-negative. In this
text we assume this quantity to be also nonvanishing.
In other words we assume a strict inequality

F̄ ≡ 2Ā B̄þ3ðĀ0Þ2
4Ā2

> 0: ð8Þ

However, we do not impose a condition that the
quantity F̄ is bounded from above.

B. Different parametrizations

In the literature mostly such action functionals are
considered where two out of the four arbitrary functions
fA;B;V; αg are fixed. If the latter can be derived from the
action functional (1) by using the transformations (2) and
(3) then the corresponding theory retains its generality up to
some details. We use the term ‘fixed parametrization’ to
refer to the case when two arbitrary functions out of four are
fixed by the transformations. Fixing the remaining two
functions gives a specific theory in this parametrization.
The most common parametrizations are the following:

(i) The Jordan frame action in the Brans-Dicke-
Bergmann-Wagoner parametrization (JF BDBW)
[2] for the scalar field Ψ fixes A ¼ Ψ, α ¼ 0, while
keeping B ¼ ωðΨÞ=Ψ, V ¼ VðΨÞ.

(ii) The Jordan frame action in the parametrization used
by e.g. Boisseau, Esposito-Farèse, Polarski and
Starobinsky (JF BEPS) [22] for the scalar field ϕ
is obtained by taking B ¼ 1, α ¼ 0, while having
A ¼ FðϕÞ, V ¼ VðϕÞ.

(iii) The Einstein frame action in canonical parametriza-
tion (EF canonical) [2,9] for the scalar field φ fixes
A ¼ 1, B ¼ 2, while keeping α ¼ αðφÞ and
V ¼ VðφÞ. This is the parametrization that was
meant when no ghost condition (8) was discussed.

In the Jordan frame the metric tensor that is used to
construct geometrical objects is the same that enters the
matter part of the action functional. Therefore, freely falling

particles follow the geodesics of the corresponding geom-
etry. In the Einstein frame, scalar and tensor degrees of
freedom are separated and a well-posed initial value
formulation is guaranteed by general theorems [23].

III. INVARIANTS

A. Constructing invariants

A closer look at the transformations (5) allows us to write
out four quantities that under the rescaling (2) and
reparametrization (3) gain a multiplier but otherwise
preserve their structure. Namely,

Ā ¼ e2γ̄A; ð9Þ

e2ᾱ ¼ e2γ̄e2α; ð10Þ

V̄ ¼ e4γ̄V; ð11Þ

F̄ ≡2ĀB̄þ3ðĀ0Þ2
4Ā2

¼ðf̄0Þ2 2ABþ3ðA0Þ2
4A2

≡ ðf̄0Þ2F : ð12Þ

From these we can construct three independent quantities
that are invariant under a local rescaling of the metric tensor
and transform as scalar functions under the scalar field
redefinition:

I1ðΦÞ≡ e2αðΦÞ

AðΦÞ ; ð13Þ

I2ðΦÞ≡ VðΦÞ
ðAðΦÞÞ2 ; ð14Þ

I3ðΦÞ≡�
Z ffiffiffiffiffiffiffiffiffiffiffiffi

F ðΦÞ
p

dΦ: ð15Þ

Note that at any spacetime point x ∈ V4, the scalar field
values are related to each other via Eq. (3) and, therefore,
we are actually dealing with spacetime point invariants,

Ī iðΦ̄ðxÞÞ ¼ I iðf̄ðΦ̄ðxÞÞÞ ¼ I iðΦðxÞÞ: ð16Þ
This means that their numerical value at some fixed
spacetime point is preserved under the transformation (3)
while their functional form with respect to the scalar field as
an argument changes under that transformation. We shall
refer to these quantities as invariants. As the conformal
transformation or the scalar field redefinition are, in
principle, unrelated to a coordinate transformation, it
follows that spacetime derivatives of invariants,

∂μðĪ iðΦ̄ðxÞÞÞ ¼ ∂μðI iðf̄ðΦ̄ðxÞÞÞÞ; ð17Þ

are also invariants in this sense.
The quantity I1 can be used to define the notion of

nonminimal coupling in an invariant way. If I1 is a
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constant, then the scalar field is minimally coupled. For
example, quintessence in general relativity has A ¼ 1,
α ¼ 0, thus I1 ≡ 1 which holds in any frame and para-
metrization, i.e. in “veiled” [24] or “Weyled” [25] general
relativity. We say that the scalar field is nonminimally
coupled if I 0

1≢0. Later at Eq. (50) it becomes clear that a
nonminimally coupled scalar field is sourced by the matter
energy-momentum in any frame. If I2 ≡ 0 then the scalar
field has a vanishing potential, a property that is not
affected by a conformal transformation or reparametriza-
tion. Invariant I3 is given as an indefinite integral and,
therefore, it is constant only if the integrand is identically
zero. From Eq. (12) we see that this could only happen if
the theory has minimal coupling to curvature and no kinetic
term for the scalar field. So, in a generic scalar-tensor
theory, the invariants (13)–(15) are dynamical functions of
Φ, independent of each other.
The assumptions on A and α, listed in subsection II A

bring along a constraint, 0 < I1 < ∞. Another useful
assumption for the ensuing presentation is to demand
that I 0

1 and I 00
1 do not diverge. In a similar vein also

0 ≤ I2 < ∞, and it makes sense to assume further that
jI 0

2j < ∞. Constraints on the derivatives are not invariant
themselves and, therefore, we are actually restricting the
possible forms of these functions.
We can also introduce an additional invariant object,

ĝμν ≡AðΦÞgμν; ð18Þ

which can be used to express geometrical quantities via
invariants. In principle, ĝμν can be considered to be a metric
tensor. Note that the choiceAðΦÞgμν is not unique. Namely,
we could have multiplied the metric tensor with any other
function of the scalar field which has a suitable trans-
formation property, e.g. e2αgμν [4]. The assumption that the
first and second derivative of A do not diverge guarantees
that we do not introduce geometrical singularities by
defining the invariant metric (18).
The fact that any function of the invariants is also an

invariant can be used to construct further invariants. For
example, we may define

I4 ≡ I2

I2
1

¼ V
e4α

: ð19Þ

The transformation of a derivative of these quantities with
respect to the scalar field is given by a chain rule,

Ī 0
i ≡ dĪ iðΦ̄Þ

dΦ̄
¼ dI iðΦÞ

dΦ
dΦ

dΦ̄
≡ I 0

if̄
0: ð20Þ

This result is consistent with the transformation properties
of a differential of the scalar field,

dΦ̄ ¼ dΦ̄
dΦ

dΦ≡ ðf̄0Þ−1dΦ; ð21Þ

in a sense that the integration should cancel the differ-
entiation. Indeed,

Ī iðΦ̄Þ¼
Z

Ī 0
idΦ̄¼

Z
I 0
if̄

0ðf̄0Þ−1dΦ¼
Z

I 0
idΦ¼ I iðΦÞ:

ð22Þ

Note that we have already used that logic to construct the
invariant I3. From Eq. (20) we conclude that a quotient of
the derivatives of invariants is also an invariant,

Ik ¼
I 0
i

I 0
j
; ð23Þ

while obviously

I i ¼
Z

IkI 0
jdΦ: ð24Þ

The expressions (15) and (24) are given in the sense of an
antiderivative, meaning that they also contain an integration
constant. Therefore, only their change with respect to some
variable should carry physical information.
By using the rule (23) and the possibility to form

arbitrary functions, let us define

I5 ≡
�

I 0
1

2I1I 0
3

�
2

¼ ð2α0A −A0Þ2
2AB þ 3ðA0Þ2 : ð25Þ

This invariant helps to distinguish between different the-
ories described by the action functional (1), for instance, for
the minimally coupled scalar field I5 ≡ 0. For the
O’Hanlon-type action functional ðB ¼ 0; α ¼ 0Þ [26],
which corresponds to the fðRÞ gravity [7], an easy
calculation shows that I5 ≡ 1

3
. The JF BEPS parametriza-

tion is applicable in the range 0 ≤ I5 <
1
3
, while JF BDBW

and EF canonical parametrizations cover 0 ≤ I5 < ∞. It
has been noted before that in order to match the BDBW
parameter range of − 3

2
< ω < 0, the BEPS parametrization

should have the sign of the kinetic term flipped [22].
Violation of the “no ghosts” assumption (8), corresponding
to BDBW ω < − 3

2
, renders I3 imaginary and I5 negative.

In the calculations we sometimes encounter another
invariant,

I6 ≡
�
I 0
2

2I 0
3

�
2

¼ ðV 0A − 2VA0Þ2
A4ð2AB þ 3ðA0Þ2Þ : ð26Þ

The invariants are conveniently summarized in Table I.
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B. Invariant differential operators

Knowledge about the transformation properties of the
differential (21) allows us to write out invariant differential
operators for taking derivatives with respect to the scalar
field. These will be in the following form:

1

Ī 0
j

d

dΦ̄
¼ 1

I 0
j

d
dΦ

: ð27Þ

If we apply that operator to an invariant, then the result is
also an invariant. For example,

1

I 0
j

d
dΦ

I i ¼
I 0
i

I 0
j
; ð28Þ

and we have once again obtained Eq. (23). Note that as
these invariants have the same argument, this result could
also be written as a derivative of one invariant with respect
to another,

I 0
i

I 0
j
≡ dΦ

dI j

dI i

dΦ
¼ dI i

dI j
: ð29Þ

Previous knowledge becomes handy when we want to
“translate” the results from a distinct parametrization into a
general one. This procedure is based on fact that in
common parametrizations any quantity or operator can
be replaced by an invariant which in this parametrization
functionally coincides with that quantity or operator.
Namely, if for a fixed parametrization there is an invariant
which is a fixed function, then we can construct an invariant
differentiation operator (27) which in this parametrization
functionally coincides with the derivative with respect to

scalar field. For example, let us take a look at the JF
BDBW parametrization. We have I1 ¼ 1

Ψ, where Ψ ¼ 1
I1
.

Therefore,

d
dΨ

¼ dΦ
dΨ

d
dΦ

¼ 1
dΨ
dΦ

d
dΦ

¼ 1
d
dΦ ð 1

I1
Þ
d
dΦ

: ð30Þ

Although that last equality holds only in this parametriza-
tion, it allows us to define the invariant differentiation
operator,

D1 ≡ 1
d
dΦ ð 1

I1
Þ
d
dΦ

¼ −
I2
1

I 0
1

d
dΦ

¼ e2α

A0 − 2Aα0
d
dΦ

; ð31Þ

which in JF BDBW coincides with d
dΨ. Analogically, in JF

BEPS, d
dϕ coincides with

D2 ≡
ffiffiffiffiffi
I1

p

I 0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − 3I5Þ

p d
dΦ

¼ � eαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B − 6ðα0Þ2Aþ 6α0A0p d

dΦ
; ð32Þ

and in EF canonical parametrization, d
dφ coincides with

D3 ≡ 1

I 0
3

d
dΦ

¼ � 2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AB þ 3ðA0Þ2

p d
dΦ

: ð33Þ

These results are also gathered in Table I. Equation (32)
tells us once again that JF BEPS is narrower than the other
two. The term under the square root must be non-negative
and, therefore, I5 < 1

3
.

TABLE I. Invariants in different parametrizations.

Invariant General parametrization JF BDBW JF BEPS EF canonical

I1
e2αðΦÞ
AðΦÞ

1
Ψ

1
FðϕÞ e2αðφÞ

I2
VðΦÞ
AðΦÞ2

VðΨÞ
Ψ2

VðϕÞ
FðϕÞ2 VðφÞ

I3 � R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AðΦÞBðΦÞþ3ðA0ðΦÞÞ2

4AðΦÞ2
q

dΦ � R ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðΨÞþ3

4Ψ2

q
dΨ � R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2FðϕÞþ3ðF0ðϕÞÞ2
4FðϕÞ2

q
dϕ �φþ const

I4 ≡ I2

I2
1

VðΦÞ
e4αðΦÞ VðΨÞ VðϕÞ VðφÞ

e4αðφÞ

I5 ≡ ð I 0
1

2I1I 0
3

Þ2 ð2α0ðΦÞAðΦÞ−A0ðΦÞÞ2
2AðΦÞBðΦÞþ3ðA0ðΦÞÞ2

1
2ωðΨÞþ3

ðF0ðϕÞÞ2
2FðϕÞþ3ðF0ðϕÞÞ2 ðα0ðφÞÞ2

I6 ≡ ð I 0
2

2I 0
3

Þ2 ðV 0ðΦÞAðΦÞ−2VðΦÞA0ðΦÞÞ2
AðΦÞ4ð2AðΦÞBðΦÞþ3ðA0ðΦÞÞ2Þ

ðV 0ðΨÞΨ−2VðΨÞÞ2
Ψ4ð2ωðΨÞþ3Þ

ðV 0ðϕÞFðϕÞ−2VðϕÞF0ðϕÞÞ2
FðϕÞ4ð2FðϕÞþ3ðF0ðϕÞÞ2Þ

ðV 0ðφÞÞ2
4

D1
e2αðΦÞ

A0ðΦÞ−2AðΦÞα0ðΦÞ
d
dΦ

d
dΨ

1
F0ðϕÞ

d
dϕ − e2αðφÞ

2α0ðφÞ
d
dφ

D2
�eαðΦÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðΦÞ−6ðα0ðΦÞÞ2AðΦÞþ6α0ðΦÞA0ðΦÞ
p d

dΦ �
ffiffiffiffiffiffiffiffi
Ψ

ωðΨÞ
q

d
dΨ � d

dϕ
�2

−1
2eαðφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−3ðα0ðφÞÞ2
p d

dφ

D3 � 2AðΦÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AðΦÞBðΦÞþ3ðA0ðΦÞÞ2

p d
dΦ � 2Ψffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωðΨÞþ3
p d

dΨ � 2FðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FðϕÞþ3ðF0ðϕÞÞ2

p d
dϕ � d

dφ

e2αgμν e2αðΦÞgμν gμν gμν e2αðφÞgμν

Agμν AðΦÞgμν Ψgμν FðϕÞgμν gμν
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C. Invariants in different parametrizations

The invariants and their functional forms in three
common parametrizations are presented in Table I which
can be used to obtain transformation rules between differ-
ent parametrizations and the most general one. For example
if one wants to find a relation between the JF BDBW scalar
fieldΨ and the EF canonical scalar field φ in terms of the JF
BDBW variables, then one has to search for an invariant
counterpart of the derivative with respect to the EF
canonical scalar field d

dφ. From that row in Table I, one
can write out

� 2Ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðΨÞ þ 3

p d
dΨ

¼ � d
dφ

; ð34Þ

hence,

�
dΨ
dφ

�
2

¼ 4Ψ2

2ωðΨÞ þ 3
; ð35Þ

which can be integrated to obtain φðΨÞ. If we want the
same in terms of the EF variables, we should look for an
invariant counterpart of the derivative with respect to the JF
BDBW scalar field,

d
dΨ

¼ −
e2αðφÞ

2α0ðφÞ
d
dφ

; ð36Þ

where �
dΨ
dφ

�
2

¼ e−4αðφÞ4ðα0ðφÞÞ2; ð37Þ

which integrates to ΨðφÞ. The relation between the right-
hand sides of Eqs. (35) and (37) can be also acquired by
combining the rows for I1 and I5.
Table I can also be used for transforming invariant

quantities from a distinct parametrization to the general
one. For example, one may want to quickly find out how

the expression ðV 0Ψ−2VÞ2
Ψ4ð2ωþ3Þ written in JF BDBW reads in the

general parametrization. Here one should take I4 which in
JF BDBW has the same functional form as potential V, and
then apply invariant differentiation D1 on I4 to get the
invariant counterpart for V 0. Further, the invariant I1 is in
this parametrization identical to 1

Ψ, while
1

2ωþ3
should be

replaced by I5. So combining these pieces together gives
the whole expression,

ðI−1
1 D1I4 − 2I4Þ2I4

1I5 ¼ I6; ð38Þ

where some manipulation and definitions of the invariants
have been used on the lhs. However, if the quantity we want
to transform is not invariant, some caution is needed since

undetermined multiplicative factors of the transformation
functions f̄ and γ̄ can be left out in the procedure.

D. Scalar field Φ as function of I 3

In each parametrization we can, in principle, express Φ
as a function of any invariant I i. Considering the scalar
field equation of motion (59) later in the paper, it is useful
to express Φ as a function of I3. In EF canonical para-
metrization I3 ∼ φ, but for some other parametrizations
(e.g. JF BDBWand JF BEPS) I3 is given in the form of an
indefinite integral (15) and finding an inverse can be
complicated. However, under certain conditions we can
always approximate Φ ¼ ΦðI3Þ as a Taylor expansion
around some value Φ0.
We start by noticing that I3 as an indefinite integral

contains an integration constant which, in principle, can be
chosen so that I3jΦ0

¼ 0. Recall that

d
dI3

¼ 1

I 0
3

d
dΦ

≡� 1ffiffiffiffi
F

p d
dΦ

: ð39Þ

Therefore, the Taylor expansion reads as follows:

ΦðI3Þ − Φ0 ¼
dΦ
dI3

����
Φ0

· I3 þ
d2Φ
dI2

3

����
Φ0

·
I2
3

2!
þ…

¼ 1

I 0
3

����
Φ0

· I3 þ
�
1

I 0
3

d
dΦ

�
1

I 0
3

��
Φ0

·
I2
3

2!
þ…

¼ � 1ffiffiffiffi
F

p
����
Φ0

· I3 þ
�
1

2

�
1

F

�0�
Φ0

·
I2
3

2!
þ…;

ð40Þ

where we have used

1ffiffiffiffi
F

p d
dΦ

�
1ffiffiffiffi
F

p
�
≡ 1ffiffiffiffi

F
p

�
1ffiffiffiffi
F

p
�0

¼ −
1

2

F 0

F 2
¼ 1

2

�
1

F

�0
:

ð41Þ
One can show that the coefficients in the Taylor series
(40) do not diverge, and at least some of them are
nonvanishing if

0 ≤
1

F
< ∞; ð42Þ

−∞ <

�
1

F

� 0…0z}|{n-times

≡ dn

dΦn

�
1

F

�
< ∞; ð43Þ

if
1

F

����
Φ0

¼ 0; then

�
1

F

�0����
Φ0

≠ 0: ð44Þ

The same assumptions arose in the context of Friedmann
cosmology [27]. They restrict the possible forms of
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F ≡ ðI 0
3Þ2 and the scalar field dynamics. These assump-

tions complement the restrictions on I1, I2 and their
derivatives discussed earlier. A few comments follow.
First, the assumption (44) imposes that 1

F jΦ0
¼ 0 is not

an extremum. Therefore, if the scalar field Φ evolved
through value Φ0, then F would be negative, thereby
violating the condition (42), i.e. (8). A consistent theory
would avoid this happening. Indeed, if the linear term in
the Taylor expansion (40) vanishes due to 1

F ¼ 0, then the
assumption (44) guarantees that the coefficient of the
quadratic term is definitely nonvanishing,

ΦðI3Þ − Φ0 ≈
1

4

�
1

F

�0����
Φ0

I2
3: ð45Þ

Hence, the possible scalar field Φ values are never smaller
(higher) than Φ0 if ð 1FÞ0jΦ0

is positive (negative), which

means that the scalar field Φ can approach Φ0 from above
(form below).
Second, since here I3 is an invariant infinitesimal

quantity, we can use it as a scale to compare the order
of magnitude of the perturbation ΦðI3Þ − Φ0 in different
parametrizations. In the parametrization where F jΦ0

is
regular, the Taylor expansion (40) starts with a linear term
and the perturbation ΦðI3Þ − Φ0 is the same order small as
I3. While expanding at Φ̄0 ¼ fðΦ0Þ in another paramet-
rization, if F̄ jΦ̄0

diverges, the corresponding perturbation
Φ̄ðI3Þ − Φ̄0 is quadratically small compared to I3, as
in Eq. (45).
Third, if the leading coefficient in the Taylor series (40)

vanishes, then ∇μΦjΦ0
¼ 0 because I3jΦ0

¼ 0,

∇μΦjΦ0
≈∇μ

�
1

2

�
1

F

�0����
Φ0

·
I2
3

2!

�
Φ0

¼
�
1

2

�
1

F

�0����
Φ0

· I3

�
I3jΦ0

∇μI3jΦ0
¼ 0; ð46Þ

even if ∇μI3jΦ0
≠ 0.

Finally, we may remark that since in the Einstein frame
canonical parametrization I3 ¼ �φþ const, all discussion
in this subsection is equivalent to the Taylor expansion of
the general scalar field Φ as a function of the EF canonical
scalar field φ.

IV. EQUATIONS OF MOTION

A. Equations of motion in the general parametrization

Varying the action (1) with respect to the metric tensor
gives a tensor equation,

A
�
Rμν −

1

2
gμνR

�
þ
�
1

2
B þA00

�
gμνgρσ∇ρΦ∇σΦ

− ðB þA00Þ∇μΦ∇νΦþA0ðgμν□Φ −∇μ∇νΦÞ

þ 1

l2
gμνV − κ2Tμν ¼ 0; ð47Þ

where the matter energy-momentum tensor is

Tμν ≡ −
2ffiffiffiffiffiffi−gp δSm

δgμν
: ð48Þ

Analogously, varying the action (1) with respect to the
scalar field gives us an equation of motion for the scalar
field,

RA0 þ B0gμν∇μΦ∇νΦþ 2B□Φ − 2l−2V 0 þ 2κ2α0T ¼ 0;

ð49Þ

where T ≡ gμνTμν. Using the trace of the tensor equa-
tion (47) to eliminate R from the scalar field equation (49)
yields

2AB þ 3ðA0Þ2
A

□Φþ ð2AB þ 3ðA0Þ2Þ0
2A

gμν∇μΦ∇νΦ

−
2ðAV 0 − 2A0VÞ

l2A
þ κ2ð2Aα0 −A0Þ

A
T ¼ 0: ð50Þ

As alluded to before in subsection III A, one way to define
the meaning of nonminimal coupling is that the scalar field
in Eq. (50) is sourced by the contracted matter energy-
momentum tensor T. Inspection of the last term on the lhs
confirms the claim that nonminimal coupling is realized
when I 0

1≢0. The continuity equation

∇μTμν ¼ α0T∇νΦ ð51Þ

tells us that the usual matter energy-momentum is
covariantly conserved in those parametrizations where
αðΦÞ ¼ const.

B. Equations of motion in terms of the invariants

We have noted that the invariant object ĝμν ≡Agμν,
introduced in Eq. (18), can be taken as a metric tensor and,
therefore, it is possible to calculate Christoffel symbols
with respect to it,

Γ̂λ
μν ¼ Γλ

μν þ
A0

2A
ðδλμ∂νΦþ δλν∂μΦ − gμνgλσ∂σΦÞ: ð52Þ

Mathematically this result is the well-known transforma-
tion rule for Christoffel symbols under the conformal
transformation [3,23] or the definition corresponding to
Weyl-integrable geometry [13,25]. But here the point is
simply that Γ̂λ

μν remains invariant under the transformations
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(2) and (3). Now we can use (52) to define the covariant
derivative with respect to ĝμν, e.g. ∇̂μVν ¼ ∂μVν þ Γ̂ν

μλV
λ,

etc. Similarly, the objects Γ̂λ
μν can be employed to build the

Riemann-Christoffel tensor R̂λ
μρν, which in this case is

manifestly invariant under conformal transformation and
scalar field reparametrization. Therefore, we can also
construct the Einstein tensor Ĝμν ≡ R̂μν − 1

2
ĝμνR̂; which

can be expressed in terms of gμν and AðΦÞ as

Ĝμν ¼ Rμν −
1

2
gμνRþA00

A
gμνgρσ∇ρΦ∇σΦ −

A00

A
∇μΦ∇νΦ

þA0

A
gμν□Φ −

A0

A
∇μ∇νΦ −

3ðA0Þ2
4A2

gμνgρσ∇ρΦ∇σΦ

þ 3ðA0Þ2
2A2

∇μΦ∇νΦ: ð53Þ

In the same spirit we can define an energy-momentum
tensor that is invariant under conformal transformation and
scalar field reparametrization,

T̂μν ≡ −
2ffiffiffiffiffiffi
−ĝ

p δSm
δĝμν

¼ −
2

A2 ffiffiffiffiffiffi−gp δgμν

δĝμν
δSm
δgμν

¼ 1

A

�
−

2ffiffiffiffiffiffi−gp δSm
δgμν

	
≡ 1

A
Tμν: ð54Þ

Comparing the result (53) with Eq. (47), while taking
into account the definitions (12), (14), (15) and (54), allows
us to rewrite Eq. (47) as follows,

AfĜμν þ ĝμνĝρσ∇̂ρI3∇̂σI3 − 2∇̂μI3∇̂νI3

þ l−2ĝμνI2 − κ2T̂μνg ¼ 0; ð55Þ

and the scalar field equation (50) as

4A2

�
F □̂Φþ 1

2
F 0ĝμν∇̂μΦ∇̂νΦ −

1

2l2
I 0
2 þ

κ2

4

I 0
1

I1

T̂

	
¼ 0:

ð56Þ

Here □ operator with respect to ĝμν is defined by

□̂Φ≡ 1ffiffiffiffiffiffi
−ĝ

p ∂μð
ffiffiffiffiffiffi
−ĝ

p
ĝμν∂νΦÞ ¼

A0

A2
gμν∇μΦ∇νΦþ 1

A
□Φ:

ð57Þ

Due to the identity

I 0
3□̂I3 ¼ F □̂Φþ 1

2
F 0ĝμν∇̂μΦ∇̂νΦ; ð58Þ

we may write the scalar field equation (56) as

4A2I 0
3

�
□̂I3 −

1

2l2

I 0
2

I 0
3

þ κ2

4I1

I 0
1

I 0
3

T̂

	
¼ 0: ð59Þ

Since by the assumption neither A nor I 0
3 ¼ � ffiffiffiffi

F
p

can
vanish, we can divide the last equation with the term in
front of the braces and obtain an equation where each term
is an invariant,

□̂I3 −
1

2l2

dI2

dI3

þ κ2

4

d ln I1

dI3

T̂ ¼ 0: ð60Þ

The logic of differentiation used here was introduced
before Eq. (29).

C. Action in terms of the invariants

The definition of the conformally invariant metric tensor
ĝμν ≡Agμν was based on the knowledge about the trans-
formation properties ofA given by (5), which were read off
from the transformed action functional (4). Therefore, it is
natural that we can also rewrite the action functional in
terms of invariants up to a boundary term, namely,

S¼ 1

2κ2

Z
V4

d4x
ffiffiffiffiffiffi
−ĝ

p
fR̂−2ĝμν∇̂μI3∇̂νI3−2l−2I2g

þSm½I1ĝμν;χ�þ
3

2κ2

Z
V4

d4x∂μ


 ffiffiffiffiffiffi
−ĝ

p
ĝμν∂ν lnA

�
: ð61Þ

Varying (61) with respect to ĝμν and I3 gives us invariant
expressions that coincide with the terms in braces in,
respectively, Eqs. (55) and (59).
As already mentioned, the choice ĝμν ≡Agμν is not

unique; it just seems to give the equations in the simplest
form. Note that these expressions remind us of the Einstein
frame equations because in the Einstein frame the invariant
metric ĝμνjEF coincides with the Einstein frame metric gμν,
while the invariant I2jEF coincides with the Einstein frame
potential V. If we had chosen ĝμν ¼ e2αgμν, then the
equations would have been more similar to the Jordan
frame equations.

V. PPN PARAMETERS

A. PPN parameters in the JF BDBW
parametrization

The aim of this section is to use Table I for writing the
effective gravitational constant Geff and the parametrized
post-Newtonian parameters γ and β in terms of the
invariants and thereby obtain a form which easily allows
us to get the PPN parameters in any other parametrization.
We start from the JF BDBW parametrization where the
most general calculation was recently accomplished [28],
expanding earlier Refs. [29]. Table I contains all possible
objects occurring in that parametrization. We proceed under
the premise that the PPN parameters are invariants and must
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be determined uniquely. It does not matter whether we use
the transformations (5) to obtain the results in the general
parametrization or substitute in the respective invariants
from Table I in order to get an invariant which in a
parametrization at hand functionally coincides with PPN
parameters.
So, from Ref. [28] we take the following results

calculated in the JF BDBW parametrization. The PPN
ansatz assumes that in the absence of any perturbation we
have flat Minkowski geometry as a background, which
leads to the conditions V ¼ 0 and V 0 ¼ 0. Taking these
conditions into account in the calculation gives a result
which is expressed in terms of the scalar field effective
mass,

mΨ ≡ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ψ

2ωðΨÞ þ 3

d2V
dΨ2

s
: ð62Þ

The effective gravitational constant that in an experimental
setup multiplies the nonvarying constant κ2

8π, and the PPN
parameters are given by

Geff ¼
1

Ψ

�
1þ e−mΨr

2ωþ 3

�
; ð63Þ

γ − 1 ¼ −
2e−mΨr

GeffΨð2ωþ 3Þ ; ð64Þ

β − 1 ¼
dω
dΨ e

−2mΨr

G2
effΨð2ωþ 3Þ3 −

mΨr
G2

effΨ
2ð2ωþ 3Þ βðrÞ; ð65Þ

where the extra radius dependent contribution in β,

βðrÞ ¼ 1

2
e−2mΨr þ ðmΨrþ emΨrÞEið−2mΨrÞ

− e−mΨr lnðmΨrÞ þ
3Ψ

2ð2ωþ 3Þ
� d3V

dΨ3

3 d2V
dΨ2

−
1

Ψ
−

dω
dΨ

2ωþ 3

�
× ðemΨrEið−3mΨrÞ− e−mΨrEið−mΨrÞÞ; ð66Þ

involves exponential integrals EiðmΨrÞ. It is understood in
these formulas that Ψ and the functions ωðΨÞ, VðΨÞ, etc.,
are all evaluated at the spatially asymptotic constant
background value of Ψ.

B. PPN parameters in terms of the invariants

Let us rewrite the previous result in terms of invariants by
making use of Table I. The first constraint arising from
Minkowskian boundary conditions, V ¼ 0, translates into
I4 ≡ I2

I2
1

¼ 0, which implies I2 ¼ 0. The second condition

V 0 ¼ 0 gives D1I4jI2¼0 ≡ I 0
2

I 0
1

¼ 0. Similarly, the scalar

field effective mass reads

mΦ ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I−1

1 I5D2
1I4

q
¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 00
2

2I1ðI 0
3Þ2

s
: ð67Þ

Here in order to preserve a simpler form of the expression
on the rhs, we have substituted the Minkowskian boundary
conditions written in terms of the invariants. The quantity
on the rhs is invariant only under these conditions. The
effective gravitational constant and the PPN parameters γ
and β turn out to be

Geff ¼ I1ð1þ I5e−mΦrÞ; ð68Þ

γ − 1 ¼ −
2e−mΦr

Geff
I1I5;

ð69Þ

β − 1 ¼ e−2mΦr

G2
effI

−1
1

I3
5

�
D1

�
1

2

�
1

I5

− 3

���
−

mΦr
G2

effI
−2
1

I5βðrÞ

¼ 1

2

I3
1I5

G2
eff

I 0
5

I 0
1

e−2mΦr −
mΦr
G2

eff

I2
1I5βðrÞ; ð70Þ

where

βðrÞ¼ 1

2
e−2mΦrþðmΦrþemΦrÞEið−2mΦrÞ−e−mΦr lnðmΦrÞ

þ3I5

2I1

�
1

3

D3
1I4

D2
1I4

−I1−I5D1

�
1

2

�
1

I5

−3

���
× ðemΦrEið−3mΦrÞ−e−mΦrEið−mΦrÞÞ: ð71Þ

Note that the quantity mΦr is invariant in our conventions.

C. PPN parameters in the general parametrization

In the general parametrization, expressing the
invariants in terms of the functions fA;B;V; αg, the
result is [20]

mΦ ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2α

2AV 00

2AB þ 3ðA0Þ2
s

ð72Þ

and

Geff ¼
e2α

A

�
1þ ð2α0A −A0Þ2

2AB þ 3ðA0Þ2 e
−mΦr

�
; ð73Þ

γ − 1 ¼ −
2e−mΦr

Geff

e2α

A
ð2α0A −A0Þ2

ð2AB þ 3ðA0Þ2Þ ; ð74Þ

β − 1 ¼ e4α

2AG2
eff

ð2α0A−A0Þ
ð2ABþ 3ðA0Þ2Þ

� ð2α0A−A0Þ2
2ABþ 3ðA0Þ2

�0
e−2mΦr

−
mΦr
G2

eff

e4α

A2

ð2α0A−A0Þ2
ð2ABþ 3ðA0Þ2ÞβðrÞ: ð75Þ
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Now it is easy to check that there is a match with the
Einstein frame calculation [30,31] and the corresponding
expression in the JF BEPS parametrization [22]. The
effective mass (72) differs from the one obtained in
Ref. [31] by the factor e−α, but in the conventions of
Ref. [31] this is precisely the factor that relates the masses
in the Jordan and Einstein frames.

VI. COSMOLOGICAL SOLUTIONS

A. Equations for flat FLRW cosmology without matter

Let us start with the flat (k ¼ 0) Friedmann-Lemaître-
Robertson-Walker (FLRW) line element

ds2 ≡ gμνdxμdxν

¼ −dt2 þ ðaðtÞÞ2fdr2 þ r2dϑ2 þ r2sin2ϑdφ2g: ð76Þ

Now take the conformally invariant metric tensor
ĝμν ≡Agμν, Eq. (18), where gμν is in the FLRW form.
In order to have ĝμν also in that form, we should make a
coordinate transformation and the scale factor redefinition

d
dt̂

≡ 1ffiffiffiffi
A

p d
dt

; ð77Þ

âðt̂Þ≡ ffiffiffiffi
A

p
aðtÞ: ð78Þ

The Hubble parameter Ĥ calculated in terms of the
invariant variables is related to the Hubble parameter H
calculated in the frame defined by gμν as

Ĥ ≡ 1ffiffiffiffi
A

p
�
H þ 1

2

A0

A
_Φ

�
: ð79Þ

Plugging the invariant form of the FLRW metric (76) into
Eqs. (55) and (60) yields

Ĥ2 ¼ 1

3

�
d
dt̂

I3

�
2

þ 1

3l2
I2; ð80Þ

2
d
dt̂

Ĥ þ 3Ĥ2 ¼ −
�
d
dt̂

I3

�
2

þ 1

l2
I2; ð81Þ

d
dt̂

�
d
dt̂

I3

�
¼ −3Ĥ

d
dt̂

I3 −
1

2l2

I 0
2

I 0
3

: ð82Þ

We have dropped the matter terms, i.e. T̂μν ≡ 0. By doing
this we have truncated the theory by omitting α; thus, we
are left with only three arbitrary functions fA;B;Vg.

B. Scalar field equation as a dynamical system

The first equation of the system (80)–(82) is a constraint;
therefore, we may focus only upon Eq. (82) where the
geometrical quantity Ĥ has been substituted from Eq. (80),

d
dt̂

�
d
dt̂

I3

�
¼ −ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
d
dt̂

I3

�
2

þ 3

l2
I2

s
d
dt̂

I3 −
1

2l2

dI2

dI3

;

ð83Þ

where ε ¼ þ1 (ε ¼ −1) corresponds to an expanding
(contracting) universe with respect to the metric ĝμν. In
order to learn about the general features of the cosmological
solutions it is instructive to write the scalar field equation as
a dynamical system and ask whether there are any fixed
points and what are their properties. For Φ0 to give a fixed
point we must insist that d

dt̂ I3jΦ0
¼ 0 and d2

dt̂2 I3jΦ0
¼ 0.

From Eq. (83) we see that this occurs when

dI2

dI3

≡ I 0
2

I 0
3

����
Φ0

¼ 0: ð84Þ

Hereby we may distinguish two types of the scalar field
values Φ0:

Φ•∶ I 0
2jΦ•

¼ 0;
1

I 0
3

����
Φ•

≠ 0; ð85Þ

Φ⋆∶
1

I 0
3

����
Φ⋆

¼ 0: ð86Þ

Note that the condition (84) for a fixed point is invariant,
while the distinction (85), (86) is not. Therefore, if a
fixed point occurs in some parametrization, then a corre-
sponding fixed point will be present in any parametrization.
However, whether the fixed point satisfies (85) or (86)
might depend on the parametrization.
Linearizing Eq. (83) around a fixed point ðI3ðΦ0Þ ¼ 0;

d
dt̂ I3 ¼ 0Þ gives

d
dt̂

�
d
dt̂

I3

�
¼ −ε

ffiffiffiffiffiffiffiffiffiffiffi
3

l2
I2

r ����
Φ0

·
d
dt̂

I3 −
1

2l2

d2I2

dI2
3

����
Φ0

· I3

ð87Þ

or, written as a dynamical system,

� d
dt̂ I3

d
dt̂Π

�
¼

"
0 1

− 1
2l2

d2I2

dI2
3

−ε
ffiffiffiffiffiffiffiffiffiffi
3
l2 I2

q #
Φ0

�
I3

Π

�
; ð88Þ

where Π≡ d
dt̂ I3.

C. Solution to the linearized equation

Solutions of the linearized equation (87) are
determined by the eigenvalues of the matrix in Eq. (88).
A straightforward calculation shows that the eigenvalues
are
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λε� ¼ 1

2l

"
−ε

ffiffiffiffiffiffiffiffi
3I2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I2 − 2

d2I2

dI2
3

s #
Φ0

: ð89Þ

It is clear that these eigenvalues are invariant. As the
properties of a fixed point, i.e. the characteristic features of
the solutions near that point, are determined by the real and

imaginary parts of the eigenvalues, we can infer that if a
fixed point is an attractor in one parametrization, it will be
an attractor in any parametrization, etc. The qualitative
features of the solutions like convergence and periods of
oscillation are independent of the parametrization. Writing
the eigenvalues in terms of the arbitrary functions
fA;B;Vg gives

λε� ¼ 1

l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðΦ0Þ

p �
−ε

ffiffiffiffiffiffiffi
3V
4A

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V
4A

− 2
ðV 0A − 2VA0Þ0
2AB þ 3ðA0Þ2 −

�
1

2AB þ 3ðA0Þ2
�0
ðV 0A − 2VA0Þ

s �
Φ0

: ð90Þ

Here under the second square root we have realized that if
I 0
2

I 0
3

¼ 0 then also I 0
2

ðI 0
3
Þ2 ¼ 0 due to the assumption (42). From

the eigenvalues (90) we see that if 1
F ≡ 4A2

2ABþ3ðA0Þ2 ¼ 0 and

ð 1FÞ0 ≡ ð 4A2

2ABþ3ðA0Þ2Þ0 ¼ 0 at the same value Φ0, then one of

the eigenvalues is zero, hence its real part is also zero and
the fixed point is nonhyperbolic. Therefore, the assump-
tions (42)–(44) are necessary conditions for studying the
properties of the fixed points by using linearization.
If the eigenvalues are different, then the general solution

for Eq. (87) reads

I3ðt̂Þ ¼ M1eλ
ε
þ t̂ þM2eλ

ε
− t̂; ð91Þ

where M1 and M2 are constants of integration. We can
make use of the Taylor expansion (40) to write out the
solution for scalar field Φ from (91). If the scalar field value
at that fixed point is determined by the condition (85), then
the leading term in the Taylor expansion is linear and gives

Φðt̂Þ − Φ• ≈� 1ffiffiffiffi
F

p
����
Φ•

I3ðt̂Þ: ð92Þ

On the other hand, if the scalar field value is determined by
the condition (86), then the first coefficient of the Taylor
expansion (40) vanishes and the leading term is of the
second order (45),

Φðt̂Þ − Φ⋆ ≈ 0þ 1

4

�
1

F

�0����
Φ⋆

· I2
3ðt̂Þ: ð93Þ

In the latter case the solution is

Φðt̂Þ − Φ⋆ ≈
1

4

�
1

F

�0����
Φ⋆
ðM1eλ

ε
þ t̂ þM2eλ

ε
− t̂Þ2: ð94Þ

Here the underlying perturbed equation for Φ could not
have been a linear one, and this is exactly in accord with
the approach in Ref. [32]. See also the discussion
around Eq. (45).
The redefinition of time t̂ → t should rigorously be given

as an integral due to Eq. (77). Since A is assumed to be
always positive, nondiverging and nonvanishing, we con-
clude that we can just substitute t̂ ¼ ffiffiffiffi

A
p

t because this has
no effect on the properties of the fixed point.
Analysis of the λεþ ¼ λε− case can be handled in a similar

manner.

D. Eigenvalues in different parametrizations

Writing the eigenvalues in the general parametrization
(90) in terms of the Jordan frame BDBW parametriza-
tion gives

λεðBDBWÞ
� ¼ 1

l
ffiffiffiffiffiffi
Ψ0

p
"
−ε

ffiffiffiffiffiffiffi
3V
4Ψ

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V
4Ψ

− 2
ðV 0Ψ − 2VÞ0

2ωþ 3
−
�

1

2ωþ 3

�0
ðV 0Ψ − 2VÞ

s #
Ψ0

: ð95Þ

For the more usual fixed point atΦ•, this result coincides with the eigenvalues found in Refs. [27,33], while for the nonlinear
situation of Φ⋆ this result matches the solutions obtained in Ref. [34]. The eigenvalues (90) expressed in the JF BEPS
parametrization read

λεðBEPSÞ� ¼ 1

l
ffiffiffiffiffiffiffiffiffiffiffiffi
Fðϕ0Þ

p
"
−ε

ffiffiffiffiffiffi
3V
4F

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V
4F

− 2
V 00F2 − 2VððF0Þ2 þ FF00Þ

Fð2F þ 3ðF0Þ2Þ

s #
ϕ0

: ð96Þ
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For instance these can be compared to the present accel-
erating epoch in the model with specific curvature coupling
function but general potential in Ref. [35]. The fixed point
stability condition is determined by the real part of the
eigenvalues. Note that in the JF BEPS parametrization only
the Φ• case (85) can be realized. The last remark holds true
also for the Einstein frame canonical parametrization for
which the eigenvalues,

λεðEF canÞ� ¼ 1

2l
½−ε

ffiffiffiffiffiffi
3V

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V − 2V 00p

�φ0
; ð97Þ

obtained from (90) are in accord with the results for the
general potential case analyzed in Ref. [36], as well as the
solutions in Ref. [37].

VII. CONCLUSION

We have considered general scalar-tensor gravity with-
out derivative couplings. Using the transformation proper-
ties of four arbitrary functions fAðΦÞ;BðΦÞ;VðΦÞ; αðΦÞg,
we have constructed three functions I1, I2, I3 of the scalar
field Φ that are invariant under a local rescaling of the
metric tensor and the scalar field reparametrization. These
three invariants can be used to define infinitely many
analogical invariants via three procedures: (i) forming
arbitrary functions of these, (ii) introducing quotients of
derivatives Im ≡ I 0

k
I 0
l
, and (iii) integrating in the sense of the

indefinite integral Ir ≡ R
InI 0

pdΦ. Using these invariants
we have written down the rules that easily allow us to
transform invariant quantities from three distinct paramet-
rizations (JF BDBW, JF BEPS and EF canonical) into the

general one. Useful formulas are gathered into Table I. By
introducing an invariant object ĝμν ≡Agμν, we can write the
equations of motion and the action in terms of invariants.
We argue that physical observables appear as invariant

quantities. This is illustrated by PPN parameters and the
features of cosmological solutions near scalar field fixed
points. We demonstrate that these invariant expressions
accommodate the results obtained in earlier literature for
distinct conformal frames and reparametrizations of the
scalar field. In a particular case, this formalism provides a
nice explanation of the correspondence of linear and
nonlinear approximate solutions in the Einstein and
Jordan frames.
In the future it would be interesting to see, whether the

invariant variables proposed here would help to clarify the
contested issues of the frame dependence of cosmological
perturbations and quantum corrections in STG. As an
extension one may consider whether an analogous reason-
ing can be carried out for more general scalar-tensor
theories of gravity with derivative couplings and higher-
order derivatives in action [6], where the role of conformal
transformation seems to be taken over by disformal trans-
formation [38].
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Some remarks concerning invariant
quantities in scalar-tensor gravity

Ott Vilson∗
Institute of Physics, University of Tartu,

Ravila 14c, Tartu 50411, Estonia

Abstract

The aim of the current paper is to clarify some aspects of the
formalism used for describing the scalar-tensor gravity characterized
by four arbitrary local functionals of the scalar field. We recall the
objects that are invariant with respect to a spacetime point under the
local Weyl rescaling of the metric and under the scalar field redefi-
nition. We phrase and prove a theorem that allows to link such an
object to each quantity in a theory where two out of the four arbitrary
local functionals of the scalar field are specified in a suitable manner.
Based on these results we phrase and reason the existence of the so
called translation rules.
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1 Introduction

The history of scalar-tensor theories of gravity (STG) is long, starting with
the works of Jordan [6], later developed by Brans and Dicke [1], [2]. The
original idea was purely theoretical since there were no observational con-
tradictions to Einstein’s general relativity (GR). In about a decade ago as-
tronomers claimed that the Universe is expanding in an accelerating manner
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and explained that in the context of GR with a nonvanishing cosmological
constant. This needs finetuning which we would like to avoid in a funda-
mental theory. Due to the latter studying the extensions of GR, STG being
one of them, is still popular.

The aim of the current paper is to clarify some mathematical issues
concerning the invariant quantities in general STG and the so called trans-
lation rules that were proposed in our recent paper [8]. A more detailed
introduction and references to the literature on that subject can also be
found there.

The outline of the paper is the following. In Section 2 we recall the
general framework for STG mostly relying on the paper by Flanagan [4].
Section 3 summarizes the results of Ref. [8] that will be used in the current
paper. In Section 4 we phrase and prove a lemma and a theorem claiming
the existence of the so called invariant pair. In Section 5 we point out an
important corollary of the latter. Based on these results we formulate and
reason the existence of the so called translation rules proposed in Ref. [8].

2 Parametrizations in scalar-tensor theories of
gravity

In a scalar-tensor theory of gravity the gravitational interaction is char-
acterized by a metric tensor gµν(xµ) of a curved spacetime xµ ∈ V4 and a
scalar field Φ(xµ). In the current paper we consider a family of scalar-tensor
theories of gravity by postulating a general action functional [4]

S =
1

2κ2

∫

V4

d4x
√−g

{
A(Φ)R− B(Φ)gµν∇µΦ∇νΦ− 2`−2V(Φ)

}

+ Sm

[
e2α(Φ)gµν , χ

]
(2.1)

which contains four arbitrary local functionals {A(Φ), B(Φ), V(Φ), α(Φ)}
of the dimensionless scalar field Φ(xµ). Out of the four the local functional
A(Φ) is multiplied by the Ricci scalar R and occasionally the term ‘curva-
ture coupling’ is used to refer to A(Φ). Analogically ‘kinetic coupling’ refers
to B(Φ), i.e. to the multiplier of the kinetic term for the scalar field Φ(xµ).
The local functional V(Φ) is known as the scalar field potential and from
the particle physics viewpoint it contains the scalar field self-interactions.
For a general case the matter action functional Sm depends on the metric
tensor gµν via conformal coupling e2α(Φ), i.e. the spacetime indexes in the
Lagrangian for the matter fields, collectively denoted as χ, are contracted
by e2α(Φ)gµν and its inverse. The term ‘matter coupling’ is frequently used

2

94



to refer to α(Φ). Due to suitably chosen dimensionful constants κ2 and
`−2 the four arbitrary local functionals {A(Φ), B(Φ), V(Φ), α(Φ)} are di-
mensionless and if the functional form w.r.t. Φ(xµ) of each of them is fixed
then the theory is fixed. Let us point out that all local functionals of Φ(xµ)
inherit a dependence on xµ and hence are functions of a spacetime point as
well.

Proposition 2.1. If under the local Weyl rescaling of the metric tensor and
under the scalar field redefinition

gµν = e2γ̄(Φ̄)ḡµν , (2.2)
Φ = f̄(Φ̄) (2.3)

the four arbitrary local functionals are imposed to transform as

A
(
f̄(Φ̄)

)
= e−2γ̄(Φ̄)Ā(Φ̄) , (2.4a)

B
(
f̄(Φ̄)

)
= e−2γ̄(Φ̄)

(
f̄ ′
)−2

(
B̄(Φ̄)− 6

(
γ̄ ′
)2 Ā

(
Φ̄
)

+ 6γ̄ ′Ā′
)
, (2.4b)

V
(
f̄(Φ̄)

)
= e−4γ̄(Φ̄) V̄(Φ̄) , (2.4c)

α
(
f̄(Φ̄)

)
= ᾱ(Φ̄)− γ̄(Φ̄) (2.4d)

then the action functional (2.1) is invariant under the transformations (2.2)-
(2.3) up to a boundary term [4].

Here and in the following we shall drop the arguments of the functionals
unless confusion might arise. Let us also adopt a notation where prime
as a superscript of a “barred" local functional of the scalar field means
variational derivative w.r.t. the “barred" scalar field Φ̄(xµ) and prime as a
superscript of such a quantity without “bar" means variational derivative

w.r.t. the “unbarred" scalar field Φ(xµ), e.g. f̄ ′ ≡ δf̄(Φ̄)

δΦ̄
and A′ ≡ δA(Φ)

δΦ
respectively. Note that due to the inherited dependence on a spacetime
point one can differentiate functionals of Φ w.r.t. xµ via ordinary partial
derivatives.

The relations (2.4) are obtained by rewriting the action functional (2.1)
using ḡµν and Φ̄ as dynamical fields. In the current paper we assume the
affine connection to be the Levi-Civita one. Due to the latter such a rewrit-
ing of the action functional (2.1) also introduces a boundary term but here
and in the following we shall drop boundary terms. We also assume the pre-
miss of Proposition 2.1 to hold and whenever Eqs. (2.2)-(2.3) are recalled
also Eqs. (2.4) are taken into account.
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Definition 2.2 (parametrization). If the functional form w.r.t. Φ of exactly
two out of the four arbitrary local functionals {A, B, V, α} is fixed then we
say that the theory is given in a specific frame and parametrization.

The term ‘reparametrization’ refers to the scalar field redefinition (2.3) while
the Weyl rescaling (2.2) is the change of the ‘frame’. Roughly speaking both
of these transformations can be used to fix the functional form of one arbi-
trary local functional out of the four. A closer look on the transformation
properties (2.4) reveals that all four arbitrary local functionals transform
under the Weyl rescaling (2.2) but it might be the case that not all of them
transform under the scalar field redefinition (2.3) (e.g. A = 1). Therefore
it is convenient to think that first the frame is chosen, i.e. we specify the
metric tensor, and then the parametrization is chosen. In that sense the
latter involves the former and in the following an explicit reference to the
chosen frame is suppressed.
Example. The Jordan frame Brans-Dicke-Bergmann-Wagoner parametriza-
tion (JF BDBW) with the scalar field denoted as Ψ is given by [1], [3],
[5]:

A ≡ Ψ , B ≡ ω(Ψ)

Ψ
, V ≡ VJ(Ψ) , α ≡ 0 . (2.5)

The Einstein frame canonical parametrization (EF canonical) with the scalar
field denoted as ϕ is given by [2], [3], [5]:

A ≡ 1 , B ≡ 2 , V ≡ VE(ϕ) , α ≡ αE(ϕ) . (2.6)

A parametrization is in principle meaningful without considering the
Weyl rescaling (2.2) and the scalar field redefinition (2.3) at all but never-
theless in a generic case these transformations can be used to transform an
arbitrary set of functionals {A(Φ), B(Φ), V(Φ), α(Φ)} into e.g. JF BDBW
parametrization (2.5). Hence a chosen parametrization is not a unique de-
scription of a theory.
Example. In order to transform from JF BDBW parametrization (2.5) to
EF canonical parametrization (2.6) we consider the relations

e2γ̄(ϕ) = e2αE(ϕ) ,

(
δΨ

δϕ

)2

= 4e−4αE(ϕ)

(
δαE(ϕ)

δϕ

)2

→ Ψ = Ψ(ϕ) (2.7)

in the case when EF canonical parametrization quantities are considered to
be the “barred” ones. For the reverse transformation we choose

e2γ̄(Ψ) = Ψ ,

(
δϕ

δΨ

)2

=
2ω(Ψ) + 3

4Ψ2
→ ϕ ≡ ϕ(Ψ) (2.8)

if instead JF BDBW parametrization quantities are considered to be the
“barred” ones [3].
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3 Invariants

Let us recall three basic objects introduced in our recent paper [8]

I1(Φ) ≡ e2α(Φ)

A(Φ)
, I2(Φ) ≡ V(Φ)

A(Φ)2
, (3.1)

I3(Φ) ≡ ±

∫ √
2A(Φ)B(Φ) + 3 (A′(Φ))2

4A(Φ)2
δΦ . (3.2)

In Eq. (3.2) the integrand is a local functional of Φ but, as there is no
dependence on the derivatives of Φ, for such a case δΦ coincides with dΦ
and the expression under consideration is in principle an ordinary indefinite
integral.

Eqs. (3.1)-(3.2) define functions of a spacetime point through three com-
positional steps:

i) Ii ≡ Ii({A, B, V, α}), e.g. I1 ≡ I1(A, α) ≡ e2α

A .
The structure of Ii w.r.t. {A, B, V, α} is preserved under the Weyl
rescaling of the metric tensor (2.2) and the scalar field redefinition
(2.3).

ii) Ii ≡ Ii(Φ)⇐ A ≡ A(Φ) etc.
Under the Weyl rescaling Ii preserves its functional form w.r.t. the
scalar field Φ, i.e. Īi(Φ̄) ≡ Ii(Φ ≡ Φ̄). If also the scalar field Φ is
redefined then Īi(Φ̄) ≡

(
Ii ◦ f̄

)
(Φ̄).

iii) Ii ≡ Ii(xµ)⇐ Φ ≡ Φ(xµ).
Ii is an invariant w.r.t. a spacetime point xµ ∈ V4 which follows from
the fact that under the transformations (2.2)-(2.3) the numerical value
of the four arbitrary local functionals at a spacetime point changes due
to multiplicative and additive terms in Eqs. (2.4). For Ii the extra
terms and factors cancel out and hence the numerical value of Ii at
a spacetime point is preserved under the transformations (2.2)-(2.3).
In the same spirit we conclude that ∂µIi is also an invariant w.r.t. xµ.

Corollary 3.1. One may define arbitrarily many quantities having the same
transformation properties as I1 etc. via three procedures

i) Introducing an arbitrary functional h

Ii ≡ h
(
{Ij}j∈J

)
(3.3)

where J is some set of indices.
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ii) Introducing a quotient of derivatives

Ij ≡
I ′i
I ′k
≡
δIi
δΦ

/
δIk
δΦ

=
δIi
δIk

. (3.4)

iii) Integrating over the scalar field Φ

Ii ≡
∫
IjI ′kδΦ (3.5)

in the sense of an indefinite integral.

We shall refer to such quantities as invariants.
Example.

I4(Φ) ≡ I2(Φ)

I1(Φ)2
, I5(Φ) ≡

( I ′1(Φ)

2 I1(Φ) I ′3(Φ)

)2

. (3.6)

Let us introduce an ‘invariant metric’ as

ĝ(·)
µν ≡ IiAgµν . (3.7)

Here the precise definition depends on the choice of Ii and we shall distin-
guish between different invariant metrics by using some superscript (·). By
Eq. (3.7) we have defined an object which under the Weyl rescaling of the
metric tensor (2.2) and under the scalar field redefinition (2.3) transforms
as I1 etc. due to suitable transformation properties of A given by (2.4a).
Nevertheless it is a metric tensor, e.g. it can be used to raise and lower
spacetime indices.

We define the Levi-Civita connection with respect to ĝ(·)
µν as

Γ̂σµν ≡ Γσµν +
A′
2A
(
δσµ∂νΦ + δσν ∂µΦ− gµνgσρ∂ρΦ

)
+

+
1

2 Ii
(
δσµ∂νIi + δσν ∂µIi − gµνgσρ∂ρIi

)
(3.8)

where Γσµν are the Levi-Civita connection coefficients for the metric gµν .
Remark 3.2. The definition (3.8) is in a sense identical to the well known
transformation rule of the Levi-Civita connection coefficients under the
Weyl rescaling of the metric tensor gµν [9] but here the key idea is that
we introduce additional terms to cancel the effect of the Weyl rescaling on
Γσµν .

The definitions (3.7) and (3.8) can be used to construct geometrical
objects, such as R̂(·), that are invariant under the Weyl rescaling of the
metric tensor (2.2).
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4 Invariants and parametrizations

In what follows we shall work with three formulations of STG:

i) The generic case described by the action functional (2.1) where non of
the four arbitrary local functionals {A, B, V, α} of Φ have gained a
fixed functional form. We denote these variables as denoted in (2.1),
i.e.

gµν , Φ , etc. (4.1)

ii) An arbitrary parametrization P, see Definition 2.2, where we shall
add a superscript P to the metric tensor and a subscript P to all
other objects as

gPµν , ΦP , AP ≡ AP(ΦP) , etc. (4.2)

iii) The invariant case determined by a parametrization P. There we use
an invariant metric (3.7) and other invariants

ĝ(P)
µν , I(P)(Φ) , etc. (4.3)

Here P as a superscript in parentheses emphasizes that the quantity
under consideration is determined by the parametrization P but does
not have to be evaluated in that parametrization. It could be calcu-
lated in any other parametrization or instead considered in the generic
case. What it means to be determined by a parametrization P will
be clarified in the following pages.

There are six possibilities to fix two out of the four arbitrary functionals
{A, B, V, α}, i.e. to choose a parametrization. For four possibilities out of
the six a quick glimpse on (2.4) reveals that also one invariant gains a fixed
functional form. Namely

i) A and α are fixed: I1(ΦP) ≡ e
2αP

AP
,

ii) A and V are fixed: I2(ΦP) ≡ VP
A2

P
,

iii) A and B are fixed: I3(ΦP) ≡ ±
∫ √

2APBP+3(A′P)
2

4A2
P

δΦP,

iv) V and α are fixed: I4(ΦP) ≡ VP
e
4αP

.
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The case where B and α (analogically B and V) have a fixed functional form
is more complicated: the corresponding invariant (if it exists) depends on
the exact functional form of B and α and is not the same for all possible
choices. For an example see JF BEPS in [8].

Lemma 4.1. Let us assume that in a parametrization P an invariant
Ifix(ΦP) has gained a fixed functional form. If Ifix is a nonconstant local
functional then there exists a functional K(P)(Φ) which in the parametriza-
tion P is equal to 1 and in the generic case transforms as A(Φ), i.e. ac-
cording to (2.4a).

Note that by writing K(P)(Φ) we abuse the notation (4.3) since it is not
an invariant but we make an exception because it is determined by a
parametrization P and yet does not have to be evaluated in P.

Proof. Let us consider a parametrization P. If the premiss is fulfilled then
Ifix(ΦP) = h(ΦP) is a known nonconstant local functional. We invert the
latter to obtain a possibly multivalued relation ΦP = h−1(Ifix). In the
current paper we do not consider the consequences of multivaluedness. Ac-
cording to the Corollary 3.1 a functional of an invariant is also an invariant
and therefore in the parametrization P it is meaningful to write ΦP = I(P)

where I(P) ≡ h−1(Ifix). Note that I(P) is determined by the parametriza-
tion P but otherwise is an ordinary invariant. In a sense ΦP = I(P)(Φ)
relates the scalar field ΦP to a generic scalar field Φ.

According to the Definition 2.2 two out of the four arbitrary local func-
tionals {A, B, V, α} of Φ have gained a fixed functional form. Therefore
one must be either A, V or α.

First let us consider the case where the functional form of AP(ΦP) ≡
A(Φ)|P is fixed. We make use of the result ΦP = I(P) and replace the
argument of AP(ΦP) as AP ≡ AP(I(P)). The Corollary 3.1 states that the
obtained quantity is an invariant. By making use of the notation introduced
in (4.3) we write A(P)(Φ) ≡ AP(I(P)(Φ)) to denote an invariant with the
property A(P)(Φ)

∣∣
P

= AP(ΦP). Hence A(P)(Φ) is an invariant which is
determined by the parametrization P but can be considered in whatever
case. In the generic case the quotient

K(P)(Φ) ≡ A(Φ)

A(P)(Φ)
(4.4)

is a local functional of Φ that transforms asA(Φ) and in the parametrization
P we obtain that K(P)

∣∣
P

= 1.
The proof in the case when the functional form of either V or α is fixed

proceeds analogically.
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Note that formally each functional that transforms as A, i.e. according to
(2.4a), can be written as a product of A and some invariant, e.g. e2α ≡ AI1.

Example. We consider a parametrization P where AP ≡ ΦP and e2αP ≡
1 + λΦP. Here λ is some constant parameter. The scalar field ΦP can be
expressed as a local functional of the fixed invariant I1 as follows

ΦP =
1

I1 − λ
≡ I(P) . (4.5)

Hence A(P) ≡ I(P) and the quotient

K(P)(Φ) ≡ A(Φ)

A(P)(Φ)
≡ (I1(Φ)− λ)A(Φ) (4.6)

has the demanded properties. A direct calculation shows that if we use an
analogous procedure but consider e2αP instead of AP then we get the same
result.

The result for JF BDBW parametrization (2.5) is obtained by fixing
λ ≡ 0. In that case the result (4.6) reduces to

K(J) ≡ AI1 ≡ e2α (4.7)

which in JF BDBW parametrization is indeed equal to one and in the generic
case transforms as A. For EF canonical parametrization (2.6) K(E) ≡ A.

The relation ΦP = I(P) in the parametrization P, obtained in the proof
of the Lemma 4.1, introduces an another object which in the parametri-
zation P is equal to one but has a specific transformation property. Namely
in the parametrization P

1 =
δΦP

δΦP
=
δI(P)

δΦP
. (4.8)

In the generic case Ī(P) ′ = f̄ ′I(P) ′.

Theorem 4.2. If, due to specifying the parametrization to be P, an invari-
ant gains a fixed nonconstant functional form then there exists an ‘invariant
pair’ (

ĝ(P)
µν , I(P)

)
(4.9)

which in the parametrization P functionally coincides with the
pair

(
gPµν ,ΦP

)
.
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Proof. Let us consider a parametrization P. If the premiss holds then the
Lemma 4.1 proposes the existence of the functional K(P)(Φ) which has the
properties: K(P) = e−2γ̄K̄(P) and K(P)(Φ)

∣∣
P

= 1. Hence ĝ(P)
µν ≡ K(P)gµν is

an invariant metric (3.7) and in the parametrization P

ĝ(P)
µν

∣∣∣
P

= gPµν . (4.10)

In the same spirit I(P)
∣∣
P

= ΦP holds by the definition introduced in the
proof of the Lemma 4.1.

Example. In JF BDBW parametrization (2.5)
(
ĝ(J)
µν ,

1

I1

)∣∣∣∣
J

≡
(
e2αgµν ,

1

I1

)∣∣∣∣
J

= (gJµν ,Ψ) . (4.11)

In EF canonical parametrization (2.6)
(
ĝ(E)
µν , ±I3

)∣∣∣
E
≡ (Agµν , ±I3)|E = (gEµν , ϕ) . (4.12)

Let us take the metric tensor from the invariant pair (4.9), determined
by some parametrization P, and calculate the invariant Ricci scalar R̂(P)

for that metric tensor. In the parametrization P the invariant Ricci scalar
R̂(P) functionally coincides with the Ricci scalar RP that is calculated using
the metric tensor gPµν .

Example. Let us consider JF BDBW parametrization (2.5) that determines
the invariant pair (4.11). One can show that [9]

e2αR̂(J) = R− 6gµν∇µα∇να− 6gµν∇µ∇να (4.13)

where the r.h.s. is calculated for the generic case (4.1). Restricting Eq. (4.13)
to the JF BDBW parametrization (2.5) (α ≡ 0) gives us the equality

R̂(J)
∣∣∣
J

= RJ . (4.14)

The result (4.13) resembles the transformation of the Ricci scalar under
the Weyl rescaling. Here, in the spirit of the Remark 3.2, we introduce
additional terms to cancel the effect of the conformal transformation on the
Ricci scalar.
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5 The relation between the generic case and a
chosen parametrization revisited.
The translation rules.

Let us consider an invariant pair (4.9) determined by a parametrization
P. If one rewrites the action functional (2.1) using the components of the
invariant pair (4.9) as the dynamical variables then four invariants, which
we shall denote as

{
I(P)
A , I(P)

B , I(P)
V , I(P)

α

}
, appear into the positions of the

four arbitrary local functionals {A, B, V, α}.
Such a claim can be reasoned as follows. Using the invariant metric ĝ(P)

µν

to calculate geometrical quantities guarantees that the latter are invariant
under the transformations (2.2)-(2.3). In the same spirit the kinetic term
for I(P) is invariant as well. Therefore there is no mixing of the additive
terms in the action functional S

[
ĝ

(P)
µν , I(P), χ

]
under the transformations

(2.2)-(2.3). We conclude that for such an action functional each additive
term must be an invariant by itself because we have assumed the action
functional (2.1) to be invariant. Each of the four arbitrary local functionals
{A, B, V, α} multiplies an object which after rewriting is replaced by an
invariant. Therefore during the rewriting process the four arbitrary local
functionals must be replaced by invariants as well.

Example. First let us consider JF BDBW parametrization (2.5). Rewriting
the action functional (2.1) in terms of the invariant pair (4.11) reads

S =
1

2κ2

∫

V4

d4x

√
−ĝ(J)

{
1

I1
R̂(J) − I1

1

2

(
1

I5
−3

)
ĝ(J)µν∇̂(J)

µ

1

I1
∇̂(J)
ν

1

I1

− 2`−2I4

}
+ Sm

[
ĝ(J)
µν , χ

]
. (5.1)

Here we have made use of the definitions (3.1)-(3.2) and (3.6) and of the
result (4.13). Hence I(J)

A = 1
I1 , I

(J)
B = I1

1
2

(
1
I5−3

)
, I(J)
V = I4 and I(J)

α = 0.
Second let us consider EF canonical parametrization (2.6) and the corre-

sponding invariant pair (4.12). One can rewrite the action functional (2.1)
as

S =
1

2κ2

∫

V4

d4x

√
−ĝ(E)

{
R̂(E)−2ĝ(E)µν∇̂(E)

µ I3∇̂(E)
ν I3 − 2`−2I2

}

+ Sm

[
I1ĝ

(E)
µν , χ

]
. (5.2)
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In this example I(E)
A = 1, I(E)

B = 2, I(E)
V = I2 and I(E)

α = 1
2 ln I1.

Rewriting the action functional (2.1) in terms of an invariant pair (4.9)
retains the generality of the theory up to some minor details that we shall
not discuss in the current paper.

Corollary 5.1. Let us rewrite the general action functional S = S [gµν ,Φ, χ],
defined by (2.1), using the components of an invariant pair

(
ĝ

(P)
µν , I(P)

)
,

determined by a parametrization P, as dynamical variables. We end up with
an action functional S = S

[
ĝ

(P)
µν , I(P), χ

]
involving a boundary term which

we shall neglect. Let us focus upon the action functional in terms of the
invariants. If we specify the theory by fixing the parametrization to be P
then each invariant quantity is mapped to the corresponding noninvariant
quantity in the parametrization P as follows

ĝ
(P)
µν 7→ gPµν , I(P)

A 7→ AP ,√
−ĝ(P) 7→

√
−gP , I(P)

B 7→ BP ,
R̂(P) 7→ RP , I(P)

V 7→ VP ,
∇̂(P)
µ 7→ ∇P

µ , I(P)
α 7→ αP ,

I(P) 7→ ΦP .

(5.3)

Example. First let us consider JF BDBW parametrization (2.5). The action
functional (2.1) rewritten in terms of the invariant pair (4.11) is given by
(5.1). A straightforward calculation shows that fixing the parametrization
to be JF BDBW parametrization implies

1

I1

∣∣∣∣
J

= Ψ ≡ AJ , I1
1

2

(
1

I5
−3

)∣∣∣∣
J

=
ω(Ψ)

Ψ
≡ BJ , (5.4)

I4|J = VJ(Ψ) , I(J)
α = 0 = αJ . (5.5)

Second let us consider EF canonical parametrization (2.6). The invari-
ant pair (4.12) gives rise to the action functional (5.2). A direct calculation
shows that

1 ≡ AE , 2 ≡ BE , I2|E = VE(ϕ) ,
1

2
ln I1

∣∣∣∣
E

= αE(ϕ) . (5.6)

Remark 5.2. Let us consider the case where we have two action functionals
S1 and S2. The action S1 ≡ S1

[
gPµν , ΦP, χ

]
is obtained from (2.1) by fix-

ing the parametrization to be P and S2 ≡ S2

[
ĝ

(P)
µν , I(P), χ

]
is obtained by

rewriting the action functional (2.1) in terms of the invariant pair (4.9) that
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is determined by P. Suppose that we are given an action functional S3 and
we know that S3 is either S1 or S2. Due to the one to one correspondence
(5.3) we cannot determine whether S3 is S1 or S2 without a priori knowing
how the quantities contained in S3 transform, i.e. whether the transforma-
tion of the quantities obey Eqs. (2.2)-(2.4d) or the rules described after
Eq. (3.2). Therefore without a priori given transformation rules the action
functionals S1 and S2 cannot be distinguished.

Let us point out that the redefinition of the scalar field can be seen as
choosing a different invariant to be the dynamical variable.

Example. Lets us consider JF BDBW parametrization (2.5) scalar field Ψ
as a local functional of the EF canonical parametrization (2.6) scalar field
ϕ. By comparing the invariant pairs (4.11) and (4.12) we obtain that this
corresponds to

1

I1
≡ 1

I1(I3)
. (5.7)

Hence (
δΨ

δϕ

)2

=

(
δ 1
I1
δI3

)2

=

( I ′1
I2

1 I ′3

)2

=
4I5

I2
1

(5.8)

where we made use of the definition (3.6). If the result is evaluated in EF
canonical parametrization (2.6) then it agrees with Eq. (2.7). If Eq. (5.8)
is evaluated in JF BDBW parametrization (2.5) then it agrees with (2.8).

The one to one correspondence (5.3) gives rise to the ‘translation rules’
that were first implicitly used in Ref. [7] and more thoroughly studied in
Ref. [8]. The translation rules can be used to rewrite the results obtained
in some parametrization P as the results of the generic case described by
the action functional (2.1). The key idea can be phrased as follows.

i) Calculate the invariant pair (4.9) determined by a parametrization P.

ii) Rewrite the action functional (2.1) in terms of the obtained invariant
pair and determine the l.h.s. of the correspondence (5.3).

iii) Replace each quantity in the parametrization P by the corresponding
invariant, i.e. use the mapping (5.3) backwards.

iv) Evaluate the obtained invariant quantities in terms of the four arbi-
trary local functionals {A, B, V, α} and use a generic metric tensor
gµν and a generic scalar field Φ as dynamical variables.

13

105



Instead of following the second rule of the aforementioned prescription
one can use the transformations (2.4) to obtain the invariants that corre-
spond to the four local functionals {AP, BP, VP, αP} in a parametrization
P.

Namely, let us consider the quantities of the invariant case to be formally
the “barred" ones. The definition of the invariant metric in the invariant
pair (4.9), i.e. ĝ(P)

µν ≡ K(P)gµν can be seen as a Weyl rescaling of the metric
tensor (2.2) where e2γ̄(I(P)) =

(
K(P)(Φ(I(P)))

)−1. The crucial point is that
for generic case (

K̄(P)
)−1

= e−2γ̄
(
K(P)

)−1
. (5.9)

Therefore using e2γ̄ =
(
K(P)

)−1 for performing the transformations (2.4)
actually, in the spirit of the Remark 3.2, introduces extra terms with suitable
transformation properties to cancel the effect of the Weyl rescaling on the
arbitrary local functionals {A, B, V, α}. Analogically f̄ ′ =

(
I(P) ′)−1.

There are noninvariant objects that in a parametrization P are equal
to one, e.g. (4.4) and (4.8) and various combinations of these. Therefore
the translation rules cannot directly determine the transformation proper-
ties and hence can work fluently only in the case of invariant quantities.
There are indirect ways to obtain the transformation properties as well, e.g.
comparing the results calculated from different parametrizations.
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The aim of the current paper is to study the multiscalar-tensor theories of gravity without
derivative couplings. We construct a few basic objects that are invariant under a Weyl
rescaling of the metric and transform covariantly when the scalar fields are redefined. We
introduce rules to construct further such objects and put forward a scheme that allows
to express the results obtained either in the Einstein frame or in the Jordan frame as
general ones. These so-called “translation” rules are used to show that the parametrized

post-Newtonian approximation results obtained in the aforementioned two frames indeed
are the same if expressed in a general frame.

Keywords: Multiscalar-tensor theories of gravity; invariants; conformal frames.

PACS numbers: 04.50.Kd, 02.40.Ky, 02.40.−k

1. Introduction

Multiscalar-tensor gravity (MSTG)1,2 generalizes the well known Jordan-Brans-

Dicke scalar-tensor gravity (STG) by including more scalar fields non-minimally

coupled to curvature. In recent years these theories have mostly attracted attention

by providing models for inflation,3–10 dark energy,11–15 and relativistic stars.16 To

make a reliable use of these models the details of mathematical correspondence

and physical interpretation of different MSTG conformal frames need to be under-

stood, e.g. in the context of cosmological perturbations,8,9 gravitational particle

production,10 or one-loop divergences.17

As has been argued recently for a single field case the mathematical comparisons

between the results obtained in different frames are greatly facilitated by quanti-

ties which remain invariant under the conformal Weyl rescaling of the metric and

scalar field reparametrization.18–20 In this brief note we generalize the formalism of

invariants to the multiscalar case.
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The paper is organized as follows. In Sec. 2 we postulate an action functional for

multiscalar-tensor theories of gravity, invoke the Weyl rescaling of the metric and

redefinition of the scalar fields in order to study the transformation properties of

the unspecified functions contained in the action. The equations of motion and the

Einstein and the Jordan frame are introduced in Sec. 3. Next, Sec. 4 is devoted to the

functions of the scalar fields as well as to the metric tensors for the space of scalar

fields that are invariant under the local Weyl rescaling of the (spacetime) metric.

We note that a spacetime Weyl rescaling induces a disformal transformation in the

space of scalar fields. Based on these results, in Sec. 5 we construct the so-called

“translation” rules for both the Einstein frame and the Jordan frame. These are

used in Sec. 6 in order to express the parametrized post-Newtonian approximation

results1,2,21 in a generic frame.

2. Action Functional and Transformations

Let us start by postulating an action functional (generalizing Refs. 18 and 22)

S =
1

2κ2

∫

V4

d4x
√−g

{
A(Φ)R− BAB(Φ) g

µν∇µΦ
A∇νΦ

B − 2ℓ−2V(Φ)
}

+ Sm

[
e2α(Φ)gµν , χ

]
, (1)

describing a generic multiscalar-tensor theory of gravity without derivative cou-

plings.1–3 It contains three unspecified functions A(Φ), V(Φ), α(Φ) and one in-

vertible symmetric square matrix function B(Φ)AB of order n. Each of the three

unspecified functions as well as the entries of the matrix B(Φ)AB in general depend

on all n scalar fields denoted by the set Φ ≡
{
ΦA

}n

A=1
as an argument of these

quantities. We consider the scalar fields ΦA, the functions A(Φ), V(Φ), α(Φ) and

the entries of BAB(Φ) to be dimensionless. In order for the latter to be consistent

with c = 1, while ~ and GN are left unspecified, we have introduced constants κ2

having the dimension of the Newtonian gravitational constant GN and ℓ > 0 having

the dimension of length. The matter fields, collectively denoted by χ, are described

by the action Sm.

The functions A(Φ) and α(Φ) characterize the scalar coupling to curvature and

to matter, respectively. The interactions between the scalar fields are gathered into

V(Φ) which is often referred to as potential. The matrix B(Φ)AB gives the kinetic

couplings of the scalar fields.

One might want to apply the local Weyl rescaling to the metric tensor gµν and

reparametrize the scalar fields ΦA as

gµν = e2γ̄(Φ̄)ḡµν , (2a)

ΦA = f̄A(Φ̄) . (2b)

Often the term change of the frame is used to refer to the conformal transformation

(2a) of the metric tensor, while (2b) is dubbed the change of the parametrization. If
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under the transformations (2) the arbitrary functions of the scalar fields, contained

in the action (1), are imposed to transform as

A(f̄(Φ̄)) = e−2γ̄(Φ̄)Ā(Φ̄) , (3a)

V(f̄(Φ̄)) = e−4γ̄(Φ̄)V̄(Φ̄) , (3b)

α(f̄(Φ̄)) = ᾱ(Φ̄)− γ̄(Φ̄) , (3c)

BAB(f̄(Φ̄)) = e−2γ̄(Φ̄)
(
f̄C

,A

)−1 (
f̄D

,B

)−1 {
B̄CD(Φ̄)− 6γ̄,C γ̄,DĀ(Φ̄)

+ 3
(
γ̄,DĀ,C + γ̄,CĀ,D

)}
, (3d)

where f̄(Φ̄) ≡
{
f̄A(Φ̄)

}n

A=1
, then the action functional (1) is invariant up to a

boundary term which we shall neglect.

Here and in the following we shall make use of the convention where the “barred”

(“unbarred”) quantities are functions of the “barred” (“unbarred”) scalar fields{
Φ̄A

}
(
{
ΦA

}
). In addition, each index A written after a comma denotes a partial

derivative with respect to (w.r.t.) a scalar field. If such a combination is a subscript

of a “barred” (“unbarred”) quantity then the partial derivative is taken w.r.t. the

“barred” (“unbarred”) scalar field, e.g.

γ̄,A ≡ ∂γ̄(Φ̄)

∂Φ̄A
, A,A ≡ ∂A(Φ)

∂ΦA
. (4)

We have introduced all these conventions in order to be able to drop the arguments

of the functions without generating ambiguities.

The transformation (2b) can be considered as a coordinate transformation in

the n-dimensional space of scalar fields. Then

f̄A
,C ≡ ∂f̄A

∂Φ̄C
≡ ∂ΦA

∂Φ̄C
(5)

is a Jacobian matrix and
(
f̄C

,B

)−1 ≡ ∂Φ̄C/∂ΦB is its inverse.

3. Equations of Motion, Frames and Parametrizations

Varying the action functional (1) w.r.t. the metric gµν and w.r.t. the scalar fields

ΦC gives us the following equations of motion:

A
(
Rµν − 1

2
gµνR

)
+A,A

(
gµν�ΦA −∇µ∇νΦ

A
)
− (BAB +A,AB)∇µΦ

A∇νΦ
B

+gµν

(
1

2
BAB +A,AB

)
gσρ∇σΦ

A∇ρΦ
B + ℓ−2gµνV − κ2Tµν = 0 , (6a)

A,CR+ 2BAC�ΦA + (2BBC,A − BAB,C) g
µν∇µΦ

A∇νΦ
B − 2ℓ−2V,C

+ 2κ2α,CT = 0 . (6b)

Often in the literature some of the unspecified functions contained in the action

(1) are given a fixed functional form, e.g. in order to have a more straightforward

physical interpretation. Let us recall the two setups that are often used.
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• For the Einstein frame as used in Ref. 1 let us denote the metric tensor as gEµν
and specify the scalar functions as

A ≡ 1 ≡ AE , BAB ≡ 2BE
AB , V ≡ VE , α ≡ αE . (7)

A closer look to the equations of motion (6) reveals that if A ≡ 1 then Eq. (6a)

does not contain the second derivatives of the scalar fields ΦA and hence purely

describes the propagation of the metric tensor gEµν . Analogously Eq. (6b) does

not contain the second derivatives of the metric tensor gEµν and hence describes

the propagation of the scalar fields ΦA. One can further separate the scalar fields

by multiplying Eq. (6b) with the inverse matrix BEBC where BEBCBE
CA ≡ δBA .

It is said that the equations are fully debraided.23

• For the Jordan frame in the Brans-Dicke-Bergmann-Wagoner (BDBW)

parametrization as used in Refs. 11, 21 let us denote the metric tensor as gJµν and

distinguish one scalar field Ψ while the others are denoted as Φ̄a, a, b = 1 . . . n−1,

where

A ≡ Ψ ≡ ĀJ , V ≡ V̄J , α ≡ 0 = ᾱJ , (8a)

Bab ≡ B̄J
ab , Bna ≡ 0 = B̄J

na , Bnn ≡ B̄nn ≡ ω(Φ̄1, . . . , Φ̄n−1,Ψ)

Ψ
. (8b)

The quantities in the Jordan frame are “barred” for the sake of notational con-

sistency and the reason will be made clear in Subsec. 5.2. In this frame the action

Sm for the matter fields functionally depends on the geometrical metric gJµν and

hence freely falling particles follow the geodesics of the metric gJµν .

4. Invariants and the Metric for the Space of Scalar Fields

Just as in the case of one scalar field,18 a closer inspection of the transformation

rules (3) allows us to write out two quantities that are invariant under a Weyl

rescaling of the metric (2a) and transform as scalar functions under the scalar

fields reparametrization (2b)

I1(Φ) ≡
e2α(Φ)

A(Φ)
, I2(Φ) ≡

V(Φ)
(A(Φ))

2 . (9)

We shall call them invariants. Also an arbitrary function of these, e.g.

I4 ≡ I2
I2
1

= e−4αV (10)

is an invariant.18 Note that these quantities are also invariants of a spacetime point.

In comparison with the one scalar field case,18 the third invariant I3 and the other

two rules for constructing further invariants do not generalize so straightforwardly

to the case of n scalar fields. To address this issue, a few preluding remarks about

the metric of the space of scalar fields are in order.
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One could take BAB to be the metric of the space of scalar fields and indeed if

only the scalar fields reparametrizations (2b) are considered then BAB transforms

as a second order covariant tensor. However, if also the local Weyl rescaling of the

(spacetime) metric tensor is utilized, then BAB gains additive terms. Our aim is

to construct quantities that are invariant under a Weyl rescaling (2a) and trans-

form covariantly under scalar fields reparametrizations (2b). Thus, we introduce

the metric of the space of scalar fields and its transformation rule as

FAB ≡ 2ABAB + 3A,AA,B

4A2
, FAB =

(
f̄C

,A

)−1 (
f̄D

,B

)−1 F̄CD . (11)

This allows us to generalize the third invariant I3 as an indefinite integral

I3(Φ) ≡
∫ √

det |FAB|dΦ1 ∧ . . . ∧ dΦn . (12)

We assume FAB to be an invertible matrix and denote its inverse as FAB.

Introducing a covariant derivative in the space of scalar fields via the metric FAB

guarantees that the obtained differential operator is invariant under the Weyl rescal-

ing (2a) of the spacetime metric. Note that FAB can be used to contract indexes

as e.g.

I5 ≡ 1

4
FAB (ln I1),A (ln I1),B (13)

and thereby allows us to introduce further invariants.

It is possible to define other objects that transform exactly as FAB. Namely,

one could consider an invariant (Eq. (9) etc.) as a scalar function defined on the

space of scalar fields and invoke a (special) disformal transformation24 of FAB

GAB ≡ 2

I1
FAB − 3

2I1
(ln I1),A (ln I1),B

= e−2α (BAB − 6Aα,Aα,B + 3 (α,AA,B + α,BA,A)) , (14a)

GBC =
I1
2
FBC +

I1
2

(1− 3I5)−1 3

4
FBE (ln I1),E FCF (ln I1),F , (14b)

where the inverse is calculated by making use of the knowledge about disformal

transformations (cf. Appendix A in Ref. 25). Therefore the matrix GAB also fulfils

the requirements of the metric of the space of scalar fields, and can be invoked to

construct invariants analogously to Eqs. (12) and (13).

Let us take a closer look to the relation between metrics (11), (14a) of the

space of scalar fields and BAB. If one chooses to work within the Einstein frame

defined by Eq. (7), then FAB|E = BE
AB. If instead the Jordan frame, defined by

Eq. (8), is considered then GAB

∣∣
J
= BJ

AB. In this sense, we see that a Weyl rescaling

(conformal transformation) in the spacetime introduces a disformal transformation

in the space of scalar fields (cf. also Ref. 26). However this relation is somewhat

formal because I1 does not have a dynamics of its own.
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5. Translation Rules

For one scalar field case a prescription was developed18,20 how to easily “translate”

the results obtained in a particular frame and parametrization to the general one.

The idea is to write the action in terms of invariant quantities in the form resembling

a particular frame and parametrization and read off the correspondences. In the

current paper we generalize this approach to the multiscalar field case.

5.1. Einstein frame

Let us consider the Einstein frame setup (7) used by Damour and Esposito-Farèse.1

We start by defining a spacetime metric

ĝ(E)
µν ≡ Agµν , (15)

that in the Einstein frame (A = 1) coincides with the metric gEµν . Note that due

to suitable transformation properties of A, given by Eq. (3a), the metric ĝ
(E)
µν does

not transform under the local Weyl rescaling (2a). Because of that we shall use the

term invariant metric to refer to ĝ
(E)
µν and other metric tensors having the same

transformation properties. Expressing the action (1) in terms of the new dynamical

metric ĝ
(E)
µν , while neglecting the boundary term, we get

S =
1

2κ2

∫

V4

d4x
√

−ĝ(E)
{
R̂(E) − 2FAB ĝ

(E)µν∇̂(E)
µ ΦA∇̂(E)

ν ΦB − 2ℓ−2I2
}

+ Sm

[
I1ĝ(E)

µν , χ
]
. (16)

The obtained action has preserved all degrees of freedom and hence is as general as

action (1). However, if one fixes the frame to be the Einstein frame (Eq. (7)) then

we have the following mapping

ĝ
(E)
µν 7→ gEµν 1 7→ 1 ≡ AE√

−ĝ(E) 7→
√
−ĝE FAB ≡ 2ABAB+3(A),A(A),B

4A2 7→ BE
AB

R̂(E) 7→ RE I2 ≡ V
A2 7→ VE

∇̂(E)
µ 7→ ∇E

µ
1
2 ln I1 ≡ 1

2 ln
(

e2α

A

)
7→ αE

, (17)

where (E) as a superscript or a subscript denotes that the quantity under consid-

eration is calculated via the invariant metric defined by Eq. (15) and E (without

parenthesis) denotes that the quantity is expressed in the Einstein frame.20

When one wants to express an invariant quantity calculated in the Einstein

frame as a general result then one has to use the mapping (17) backwards and

evaluate everything in terms of gµν , A, V , α and BAB. Note that as no scalar fields

redefinition is used for obtaining action (16) also the derivative ∂
∂ΦA is mapped to

itself in both directions.
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5.2. Jordan frame

Now let us consider the Jordan frame in the Brans-Dicke-Bergmann-Wagoner type

parametrization (8).11,21 Analogously to the previous case, we define an invariant

metric

ĝ(J)µν = e2αgµν . (18)

Expressing the action functional (1) in terms of ĝ
(J)
µν we get

S =
1

2κ2

∫

V4

d4x
√

−ĝ(J)
{

1

I1
R̂(J) − GAB ĝ(J)µν∇̂(J)

µ ΦA∇̂(J)
ν ΦB − 2ℓ−2I4

}

+ Sm

[
ĝ(J)µν , χ

]
. (19)

As before, we have neglected the boundary term. The action functional (19) could

be used to read off the “translation rules” for Jordan frame in a generic parametriza-

tion. However, in the current paper we also consider the case where the parametriza-

tion is chosen to be the BDBW parametrization as given by Eq. (8).

In Refs. 11, 21 one scalar field has been made distinct by defining ĀJ = Ψ = 1
I1

∣∣
J

which multiplies the Ricci scalar. Following that line of thought we redefine the

scalar fields
{
ΦA

}
→

{
Φ̄1, . . . , Φ̄n−1, 1/I1

}
in order to distinguish 1/I1 as a scalar

field that has vanishing kinetic coupling to the other scalar fields, thereby mimicking

conditions (8b). Therefore for the latter the condition

Ḡan ≡ ∂Φ̄a

∂ΦA
GAB

(
1

I1

)

,B

= 0 , a = 1 . . . n− 1 (20)

must hold. Note that this is just a transformation of GAB under a change of coor-

dinates in the space of scalar fields. In the same spirit

Ḡnn = GAB

(
1

I1

)

,A

(
1

I1

)

,B

=
2I5

I1 (1− 3I5)
=

(
Ḡnn

)−1
, (21)

where the last equality follows from the condition (20). We also made use of

Eqs. (14) to write the expression in terms of FAB hidden in I5. Hence we see

that the kinetic term for 1/I1 is an invariant by itself,20

Ḡnnĝ
(J)µν∇̂(J)

µ

1

I1
∇̂(J)

ν

1

I1
=

I1 (1− 3I5)
2I5

ĝ(J)µν∇̂(J)
µ

1

I1
∇̂(J)

ν

1

I1
. (22)

In addition, due to the condition (20) and to the result (21) it holds that

Ḡnn ∂Φ
A

∂ 1
I1

+ Ḡan ∂Φ
A

∂Φ̄a
=

2I5
I1 (1− 3I5)

∂ΦA

∂ 1
I1

= GAB

(
1

I1

)

,B

. (23)

Thereby we can introduce a differential operator

∂

∂ 1
I1

=
∂ΦA

∂ 1
I1

∂

∂ΦA
= ḠnnGAB

(
1

I1

)

,B

∂

∂ΦA
= − I1

4I5
FAB (ln I1),B

∂

∂ΦA
, (24)

that gives an invariant if acted upon an invariant.
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The “translation” rules can be read out from the mapping

ĝ
(J)
µν 7→ gJµν

1
I1

7→ Ψ ≡ ĀJ√
−ĝ(J) 7→

√
−gJ I1(1−3I5)

2I5
7→ ω

Ψ ≡ B̄J
nn

R̂(J) 7→ RJ I4 ≡ e−4αV 7→ V̄J

∇̂(J)
µ 7→ ∇J

µ 0 7→ 0 = ᾱJ

R̂
(J)
µν 7→ RJµν − I1

4I5
(ln I1),A ∂

∂ΦA 7→ ∂
∂Ψ

, (25)

where, analogously to the previous case the superscript (J) denotes a quantity

calculated via the invariant metric (18) and super or subscript J indicates that the

quantity under consideration is evaluated in the Jordan frame. The mapping for ω
Ψ

follows from Eq. (21), while ∂
∂Ψ is Eq. (24) where the indexes are raised with FAB.

Similarly to the Einstein frame, if one wants to “translate” invariant quantities

then one has to invoke the mapping (25) backwards. Note that the rules given by

Eq. (25) are not complete but they are sufficient for showing how the formalism

works as is done in the next section.

6. Parametrized Post-Newtonian Approximation

Each theory must be confronted with experiments. For metric gravity theories a

prescription named the parametrized post-Newtonian approximation (PPN) has

been constructed in order to be able to test the viability of a theory via experiments

carried out in the solar system.

In the current paper we do not calculate the PPN parameters but rather show

that the results obtained in different frames generalize to the same invariant and

hence are frame-independent. We start by writing out the results from Ref. 1 where

the Einstein frame (without potential) was considered:

Geff ≡ κ2

8π
e2αE

(
1 + BEAB(αE),A(αE),B

)
, (26a)

γ − 1 ≡ −2

( BEAB(αE),A(αE),B
1 + BEAB(αE),A(αE),B

)
, (26b)

β − 1 ≡ BEAC(αE),C
(
(αE),AB − ΓF

AB(αE),F
)
BEBD(αE),D

2
(
1 + BEAB(αE),A(αE),B

)2 , (26c)

where ΓF
AB are the Christoffel symbols for BE

AB.

Second, we write out the results from Ref. 21 obtained in the Jordan frame

(without potential):

Geff ≡ κ2

8π

1

Ψ

(
1 +

1

2ω + 3

)
, γ − 1 ≡ − 2

(2ω + 3)
(
1 + 1

2ω+3

) , (27a)

β − 1 ≡ Ψ ∂ω
∂Ψ(

1 + 1
2ω+3

)2
(

1

2ω + 3

)3

. (27b)
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Here the expression for β differs from the one presented in Ref. 21, because we

inverted the normalization κ2

8π
1
Ψ

(
1+ 1

2ω+3

)
≡ 1 in order to get rid of κ2. This result

also matches the early computation2 of γ in the Jordan frame with constant BJ
AB,

as well as the general result for a single scalar field with a potential.27

One can show that if for Eqs. (26) we use the mapping (17) backwards and for

Eqs. (27) we use the mapping (25) backwards then both generalize to

Geff ≡ κ2

8πI1 (1 + I5) , γ − 1 ≡ −2
(

I5

1+I5

)
, (28a)

β − 1 ≡ (lnI1)
,A(lnI1)

,B((lnI1),AB− 1
2FAB,C(ln I1)

,C)
16(1+I5)

2 , (28b)

where the indexes are raised with FAB. Hence, it is evident that physical observables

are frame and parametrization independent since they transform as invariants.

7. Summary

We studied general multiscalar-tensor theories of gravity without derivative cou-

plings. By introducing quantities that are invariant under a local Weyl rescal-

ing of the spacetime metric and transform covariantly if the scalar fields are

reparametrized, we generalized the formalism of the invariants that has been de-

veloped in the case of a single scalar field.18,20 Just as in the latter, we were able

to construct rather simple “translation” rules in the context of multiscalar-tensor

theories of gravity as well. By invoking the prescription, one can neatly compare

the results obtained in different frames and parametrizations by “translating” an

expression under consideration to a generic frame. As an example we used the for-

malism to show that the results of the parametrized post-Newtonian approximation,

calculated in the Einstein frame1 and in the Jordan frame,2,21 indeed are the same

if expressed in a generic frame.

It would be interesting to see, how the formalism of invariant quantities gener-

alizes and could help to explore the next generation of MSTG, namely the theories

of multi-Galileons, multi-Horndeski and beyond,28–30 where the conformal trans-

formation of the metric seems to generalize to multi-disformal.31
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Parametrizations in scalar-tensor theories of gravity

and the limit of general relativity

L Järv, P Kuusk, M Saal and O Vilson

Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia

Abstract. We consider a general scalar-tensor theory of gravity and review briefly different forms it can
be presented (different conformal frames and scalar field parametrizations). We investigate the conditions
under which its field equations and the parametrized post-Newtonian parameters coincide with those of
general relativity. We demonstrate that these so-called limits of general relativity are independent of the
parametrization of the scalar field, although the transformation between scalar fields may be singular at
the corresponding value of the scalar field. In particular, the limit of general relativity can equivalently be
determined and investigated in the commonly used Jordan and Einstein frames.

1. Introduction
The still unknown nature of the phenomena of dark matter and dark energy facilitates continued
interest in the alternatives to Einstein’s general relativity, for a comprehensive review see e.g [1].
A simple and straightforward extension of general relativity (GR) is provided by the Jordan-
Brans-Dicke theory [2, 3] and its generalization scalar-tensor gravity (STG) [4, 5], where an
additional scalar field participates in the gravitational interaction. As was proposed by Dicke,
it is possible via a conformal rescaling of the metric (frame change) and reparametrization
of the scalar field to transform the STG action into another representation, equivalent to the
original one if the units of measurement are also appropriately rescaled [6]. However, the precise
significance of this transformation and the physical and mathematical equivalence of different
representations are still a topic for an ongoing debate, for a glimpse of the most recent papers,
see e.g [7, 8, 9] and [Stabile A et al arXiv:1310.7097]. The present work contributes to the
discussion by following our earlier study [10] in asking what happens when the transformation
from one parametrization of the scalar field to another is singular.

In the following section we write down the most general STG action involving four free
functions, the transformations that leave this action invariant, and the ensuing field equations. In
Sec. 3 we recall some of the most used STG frames and parametrizations, and collect some useful
relations between them. Then Sec. 4 argues that the limit that reduces the STG field equations
into those of general relativity does not depend on the particular frame and parametrization,
in particular, it is not affected by a possible singularity in reparametrizing the scalar field.
Sec. 5 gives the parametrized post-Newtonian (PPN) parameters for STG in its most general
form as well as for the most used special cases introduced before, in order to witness again
that the conditions for these parameters to coincide with those of GR are independent of the
parametrization. Therefore if in some parametrization there is a certain value of the scalar field
that takes STG to its GR limit, there is necessarily a corresponding value (or values) of the
reparametrized field, that does the same in another frame and parametrization. This conclusion
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is illustrated by an example in Sec. 6 and summarized in Sec. 7.

2. General action functional and field equations
The most general action functional for a scalar-tensor theory of gravity including scalar self-
interaction only through scalar field but not its derivatives was written down by Flanagan [11],

S =
1

2κ2

∫

V4

d4x
√−g

{
A(Φ)R− B(Φ)gµν∇µΦ∇νΦ− 2κ2V (Φ)

}
+ Sm

(
e2α(Φ)gµν , χ

)
(2.1)

It contains four arbitrary functions of the dimensionless scalar field Φ: nonminimal coupling
function A(Φ), generic kinetic coupling of the scalar field B(Φ), self-interaction potential of
the scalar field V (Φ) and conformal coupling e2α(Φ) between the metric gµν and matter fields
χ. Note that A(Φ), B(Φ) and α(Φ) are dimensionless, but for the convenience of notation in
cosmology the scalar potential is assumed to be of the dimension of energy density, [V ] = [ρ] in
units c = 1. If we impose a physical condition that gravitational interaction is always finite and
attractive, the nonminimal coupling function must satisfy 0 < A < ∞. We also assume from
physical considerations that self-interaction potential is non-negative, 0 ≤ V (Φ) <∞.

As demonstrated by Flanagan [11], two of the four arbitrary functions can be fixed by
transformations that contain two arbitrary functions γ̄(Φ̄), f̄(Φ̄) and leave the structure of
action functional (2.1) invariant:

gµν = e2γ̄(Φ̄)ḡµν , Φ = f̄(Φ̄) (2.2)

We will call the first transformation the change of the frame and the second one the
reparametrization of the scalar field. The change of the frame is in fact a conformal rescaling of
the metric and we assume that it is reasonable, i.e the function γ̄(Φ̄) and its derivative dγ̄/dΦ̄
do not diverge at any Φ̄.

The transformed action functional (2.1) retains its form

S̄ =
1

2κ2

∫

V4

d4x
√−ḡ{Ā(Φ̄)R̄− B̄(Φ̄)ḡµν∇̄µΦ̄∇̄νΦ̄− 2κ2V̄ (Φ̄)}+ Sm

(
e2ᾱ(Φ̄)ḡµν , χ

)
(2.3)

with transformed functions [11]

Ā(Φ̄) = e2γ̄(Φ̄)A
(
f̄(Φ̄)

)
, V̄ (Φ̄) = e4γ̄(Φ̄) V

(
f̄(Φ̄)

)
, ᾱ(Φ̄) = α

(
f̄(Φ̄)

)
+ γ̄(Φ̄)

B̄(Φ̄) = e2γ̄(Φ̄)
(
B
(
f̄(Φ̄)

) (
f̄ ′
)2 − 6

(
γ̄′
)2A

(
f̄(Φ̄)

)
− 6γ̄′f̄ ′A′

) (2.4)

where

f̄ ′ ≡ df̄(Φ̄)

dΦ̄
, A′ ≡ dA(Φ)

dΦ
etc (2.5)

Note that at the conformal transformation (2.2) the energy-momentum tensor

Tµν = − 2√−g
δSm
δgµν

(2.6)

transforms as T̄µν = e2γ̄Tµν and its trace as T̄ = e4γ̄T .
From these transformation rules we can notice the following.

• The conditions on nonminimal coupling function 0 < A <∞ and self-interaction potential
0 ≤ V (Φ) <∞ are preserved, i.e 0 < Ā <∞ and 0 ≤ V̄ (Φ̄) <∞.
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• If in some frame α = 0, then in any other frame |ᾱ| <∞.

• If we want to avoid ghosts, i.e if there is a frame where the tensorial and scalar part of the
gravitational interaction are separated with A = 1 and B > 0, then in any related frame
and parametrization it follows that

2ĀB̄ + 3(Ā′)2 > 0 (2.7)

We assume this relation to hold.

The field equations can be derived from the general action functional (2.1) by varying with
respect to metric tensor gµν and scalar field Φ, respectively:

AGµν+

[
1

2
B+A′′

]
gµν∇ρΦ∇ρΦ−

[
B+A′′

]
∇µΦ∇νΦ+A′ [gµν�Φ−∇µ∇νΦ]+κ2gµνV =κ2Tµν

(2.8)

1

2
RA′ + 1

2
B′gµν∇µΦ∇νΦ + B�Φ− κ2V ′ = −κ2α′T (2.9)

Upon substituting the scalar curvature R from the first equation into the second one and
multiplying by 2A, the equation for the scalar field reads

(
2AB+3(A′)2

)
�Φ+

(
2AB+3(A′)2

)′

2
gµν∇µΦ∇νΦ−2κ2

(
AV ′−2A′V

)
=κ2

(
A′−2Aα′

)
T (2.10)

A direct calculation demonstrates that upon the transformation (2.4) all terms in the equation
of the metric tensor (2.8) acquire a common factor e2γ̄ , which we have assumed to be regular.
However, the transformed equation for the scalar field (2.10) gets a common factor e6γ̄ f̄ ′. If the
transformation is regular, i.e f̄ ′ 6= 0, f̄ ′ 6= ∞, this equation should yield an equivalent account
of the same physics in different parametrizations. What happens for the points where f̄ ′ fails
to be finite needs extra attention.

Finally, from the field equations (2.8) and (2.9) a continuity equation follows:

∇µTµν = α′T∇νΦ (2.11)

If α′ = 0 the right-hand side vanishes and the usual conservation of energy law holds; let us call
the α = 0 case the Jordan frame. Another well-known frame is the Einstein frame with A = 1
and in general α′ 6= 0.

3. Some widely used action functionals
Sometimes in the literature one may encounter treatments which fix the frame (i.e fix α(Φ), e.g
α = 0), but leave the parametrization of the scalar field unfixed, thus keeping three arbitrary
functions in the STG action functional. But most often one meets a few distinct forms of the
STG action functional obtained from the general action (2.1) by fixing two of the four arbitrary
functions. These are the following.

1. The Jordan frame action in the Brans-Dicke-Bergmann-Wagoner parametrization (JF
BDBW) [3, 4, 5] for the scalar field Ψ fixes A = Ψ, α = 0, while keeping B = ω(Ψ)/Ψ,
V = V (Ψ):

S =
1

2κ2

∫
d4x
√−g

[
ΨR− ω(Ψ)

Ψ
∇ρΨ∇ρΨ− 2κ2V (Ψ)

]
+ Sm (gµν , χ) (3.1)
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The original Brans-Dicke gravity (JF BD) [3] with a potential is a special case where ω = const.,

S =
1

2κ2

∫
d4x
√−g

[
ΨR− ω

Ψ
∇ρΨ∇ρΨ− 2κ2V (Ψ)

]
+ Sm (gµν , χ) (3.2)

2. The Jordan frame action in the parametrization used by Boisseau, Esposito-Farèse,
Polarski and Starobinsky (JF BEPS) [12, 13] for the scalar field as φ is obtained by taking
B = 1, α = 0, while having A = F (φ), V = V (φ):

S =
1

2κ2

∫
d4x
√−g

[
F (φ)R−∇ρφ∇ρφ− 2κ2V (φ)

]
+ Sm (gµν , χ) (3.3)

In the so-called nonminimal coupling case (JF nm), the function F has a distinct form
F (φ) = 1− ξφ2, where ξ is a dimensionless parameter:

S =
1

2κ2

∫
d4x
√−g

[(
1− ξφ2

)
R−∇ρφ∇ρφ− 2κ2V (φ)

]
+ Sm (gµν , χ) (3.4)

3. The Einstein frame action in canonical parametrization (EF can) [6, 4, 5] for the scalar
field denoted as ϕ, fixes A = 1, B = 2, while keeping α = α(ϕ) and V = V (ϕ):

S =
1

2κ2

∫
d4x
√−g

[
R− 2gµν ∇µϕ∇νϕ− 2κ2 V (ϕ)

]
+ Sm

(
e2α(ϕ)gµν , χ

)
(3.5)

The well known Einstein gravity with minimally coupled scalar field (EF min) can be viewed as
a special case here with α = 0,

S =
1

2κ2

∫
d4x
√−g

[
R− 2gµν ∇µϕ∇νϕ− 2κ2 V (ϕ)

]
+ Sm (gµν , χ) (3.6)

However, in the latter case the scalar field equation (2.10) does not contain matter energy-
momentum T as a source and strictly speaking the scalar field is not mediating the gravitational
interaction any more.

The transformations between these most common frames and parametrizations are presented
in Table 1. Note that the mutual derivatives of the scalar field in different parametrizations
included in the Table 1 are in fact just f̄ ′ which should satisfy the conditions f̄ ′ 6= 0, f̄ ′ 6=∞ for
a transformation to be regular.

4. Field equations and the limit of general relativity
Let us investigate the conditions under which a STG coincides with GR. Since the latter one does
not involve a dynamical scalar field, a natural assumption is Φ = const., ∇µΦ = 0. However,
this condition should be made consistent by requiring that the source term for the scalar field
also vanishes, otherwise constant Φ can not be maintained. Rewriting the scalar field equation
(2.10) as

�Φ +
1

2

(
2AB + 3(A′)2

)′

2AB + 3(A′)2
gµν∇µΦ∇νΦ = κ2 (A′ − 2Aα′)T + 2 (AV ′ − 2A′V )

2AB + 3(A′)2
(4.1)

it becomes clear that the STG equations can concur with those of GR at the values of Φ where
the term on the RHS of (4.1) vanishes. Given that A is everywhere regular there are several
possibilities.

The first and most obvious case is realized for Φ• which should simultaneously satisfy

(
A′ − 2α′A

)
|Φ• T = 0 (4.2a)
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Table 1. Transformations between frames and parametrizations

JF BDBW (Ψ) JF BEPS (φ) EF can (ϕ)

JF BDBW (Ψ) Identity F (φ) = Ψ α(ϕ) = − 1
2 ln Ψ

( dφdΨ )2 = ω(Ψ)
Ψ ( dϕdΨ )2 = 2ω(Ψ)+3

4Ψ2

(dFdφ )2 = Ψ
ω(Ψ) (dαdϕ )2 = 1

2ω(Ψ)+3

JF BD (Ψ) ω = const. F (φ) = Ψ α(ϕ) = − 1
2 ln Ψ

( dφdΨ )2 = ω
Ψ ( dϕdΨ )2 = 2ω+3

4Ψ2

(dFdφ )2 = Ψ
ω (dαdϕ )2 = 1

2ω+3

JF BEPS (φ) Ψ = F (φ) Identity α(ϕ) = − 1
2 lnF (φ)

dΨ
dφ = dF

dφ (dϕdφ )2 = 3
4 (d lnF (φ)

dφ )2

ω(Ψ) = F (φ) 1
( dFdφ )2

+ 1
2F (φ)

JF nm (φ) Ψ = 1− ξφ2 F (φ) = 1− ξφ2 α(ϕ) = 1
2 ln

(
1

1−ξφ2

)

dΨ
dφ = −2ξφ (dϕdφ )2 = 1−ξφ2+6ξ2φ2

2(1−ξφ2)2

ω(Ψ) = Ψ
4ξ(1−Ψ) = 1−ξφ2

4ξ2φ2 φ2 = 1
ξ (1− e−2α(ϕ))

EF can (ϕ) Ψ = e−2α(ϕ) F (φ) = e−2α(ϕ) Identity

(dΨ
dϕ )2 = 4e−4α(ϕ)(dαdϕ )2

(
dφ
dϕ

)2

= 2e−2α(ϕ)×

×
(

1− 3
(
dα
dϕ

)2
)

ω(Ψ) = 1
2

(
1

( dαdϕ )2
− 3

)
(dFdφ )2 =

2e−2α(ϕ)( dαdϕ )
2

1−3( dαdϕ )
2

EF min (ϕ) Ψ = 1 F (φ) = 1 α = 0

(
AV ′ − 2A′V

)
|Φ• = 0 (4.2b)

while B|Φ• is finite and nonvanishing. In addition, for the full compliance with GR the factors
in front of the kinetic terms in the Einstein equation (2.8) and scalar field equation (4.1) should
remain regular, hence A′′|Φ• and B′|Φ• should not diverge. If the latter is not the case, then the
STG does not allow a solution which behaves exactly as GR, but it may still be possible to have
solutions which dynamically approach GR as a limiting process, provided

A′′∇µΦ∇νΦ→ 0 or/and
B′
B ∇µΦ∇νΦ→ 0 as Φ→ Φ• (4.3)

The result is the GR Einstein equation with V |Φ• effectively playing the role of the cosmological
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constant. It is instructive to observe that for JF BEPS parametrization the condition (4.2a),
(4.2b) translates into F ′|φ• = 0, V ′|φ• = 0, for the nonminimal coupling case into φ• = 0,
V ′|φ• = 0, and for the EF canonical parametrization into α′|ϕ• = 0, V ′|ϕ• = 0. But in the JF
BDBW parametrization the condition (4.2a) can not be realized for general matter (T 6= 0) at
all since A′ ≡ 1.

The second possibility to make the RHS of (4.1) to vanish is by having a value Φ? for which

1

B
∣∣∣
Φ?

= 0 (4.4)

while A′|Φ? , α′|Φ? , and V ′|Φ? do not diverge. An important difference with the previous case is
that here we do not have a constant solution for the scalar field, but only a process of approaching
to that value. For this process to correctly yield the GR, we must demand that B∇µΦ∇νΦ→ 0
as Φ→ Φ?. In addition, if B′|Φ? or A′′|Φ? happen to be singular as well, only the solutions with

B′
B ∇µΦ∇νΦ→ 0, A′′∇µΦ∇νΦ→ 0 (4.5)

lead to GR as a limit. For a later remark we note that if the Einstein equation (2.8) and the
scalar field equation (4.1) converge to the GR limit at the same “rate”, i.e if

B∇µΦ∇νΦ ∝ B
′

B ∇µΦ∇νΦ (4.6)

then B
′
B2 is finite. Among the particular forms of STG the condition (4.4) can be only realized in

JF BDBW parametrization where it translates into 1
ω |Ψ? = 0. In the JF BEPS and nonminimal,

and EF canonical parametrizations the function B is fixed to a constant value which precludes
(4.4).

At first there seems to be also a third option to make the RHS of (4.1) to vanish by
letting 1

A′ = 0. However by looking at the scalar field equation (2.9) this case turns out to
be problematic. Namely, for GR it is well known that spacetime curvature and matter energy
momentum are proportional to each other, R ∝ T . But ifA′ →∞ then finite T would correspond
to vanishing R, unless α′ also blows up. The latter would complicate the continuity equation
(2.11). Hereby we restrict our attention to the cases where A′ and α′ are not singular at the
same value of scalar field Φ, and therefore to achieve a GR-like behaviour we do not consider
this possibility. Furthermore, for the sake of mathematical simplicity we also leave aside the
rather fine-tuned theories where the conditions (4.2a), (4.2b) and (4.4) are realized together,
or where both the numerator and denominator of the RHS term of (4.1) vanish simultaneously
thus requiring a much more thorough analysis.

Now, given the rather different conditions (4.2a), (4.2b) and (4.4), one is entitled to ask
whether there is any connection between them. It is interesting to note that there is. Under the
transformations (2.4) the quantities

(A′ − 2Aα′)2

2AB + 3(A′)2
and

(AV ′ − 2A′V )2

A4 (2AB + 3(A′)2)
(4.7)

retain their form, i.e do not acquire extra terms or common factors. Therefore, under a generic
transformation the condition that the RHS of (4.1) vanishes remains invariant, i.e if some Φ in
a certain frame and parametrization satisfies it, then the corresponding Φ̄ in another frame and
parametrization will also satisfy it. Although, it is completely feasible that Φ• obeying (4.2a),
(4.2b) may get translated into Φ̄? obeying (4.4).
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5. Parametrized post-Newtonian approximation
For being viable, the scalar-tensor theory of gravity must pass the tests on local scales, e.g, give
a good account of the motions in our solar system. A natural framework for such a check is
provided by the parametrized post-Newtonian (PPN) formalism adapted to slow motions in a
weak field. To compare GR and STG there are two nonvanishing PPN parameters γ and β. They
both have value 1 for Einstein’s general relativity which is also favored by current observations.
For an STG, the PPN parameters can deviate from unity as they depend on the spatially
asymptotic background value of the scalar field [14, 15]. When STG has a potential, the PPN
parameters cease to be constants as they also acquire an extra dependence on the distance r from
the source [16, 17, 18, 19]. It is useful to express the result in units where the Newtonian potential

UN = κ2M
8πr is dimensionless, while the dimensionless constant Geff(Φ, r) modifies multiplicatively

Newton’s gravitational constant GN = κ2

8π and determines the Cavendish force.
It is possible to translate the general results [19] from JF BDBW parametrization into a

generic representation of A, B, V , α by using the transformations (2.2) and (2.4) where Ā = Ψ,

B̄ = ω(Ψ)
Ψ , and ᾱ = 0. It follows that γ̄ = −α, γ̄′ = −α′f̄ ′, while the other necessary quantity

f̄ ′ can be expressed by taking the derivative of the first line of Eq. (2.4). Since the PPN ansatz
assumes flat Minkowski spacetime in spatial infinity, the internal consistency requires V = 0,
V ′ = 0 (all values of the functions taken at the asymptotic value of the scalar field). In terms
of the constant related to the scalar field effective mass,

mΦ = κ

√
2A

e2α (2AB + 3(A′)2)

d2V

dΦ2
(5.1)

the results are

Geff =
e2α

A

(
1 +

(A′ − 2Aα′)2 e−mΦr

2AB + 3(A′)2

)
(5.2a)

γ−1 = −2e2α (A′ − 2Aα′)2 e−mΦr

GeffA (2AB + 3(A′)2)
(5.2b)

β−1 =
(A′−2Aα′)2

[(
2AB+3(A′)2

)′
(A′−2Aα′)−2(2AB+3(A′)2) (A′−2Aα′)′

]
e−2mΦr

2e−4αG2
effA (2AB+3(A′)2)3

− (A′ − 2Aα′)2mΦr

e−4αG2
eff (2AB + 3(A′)2)

[
e−mΦr lnmΦr + . . .

]
(5.2c)

Among the number of r-dependent terms in the square brackets on the last line only the
contribution that is leading for large mΦr is given. For different frames and parametrizations
the corresponding expressions can be found in Table 2. These can be deduced by specifying
the functions in the formulas above, or using the transformations (2.4) and the information in
Table 1.

The conceptual difference with the previous section is that now we have a static configuration
and the functions of the scalar field are taken at their spatially asymptotic values. However, the
analysis of the limit where the STG PPN parameters coincide with those of general relativity,
viz. Geff = 1, γ = 1, β = 1 proceeds quite analogously. The first option is provided by the
condition (4.2a), where in addition B is finite and

(
A′ − 2Aα′

)2 (A′ − 2Aα′
)′

= 0 (5.3)

Note that the twin condition (4.2b) is automatically satisfied due to the PPN ansatz. The second

option would be given by (4.4), with α′, α′′ not infinite, and B′
B3 = 0. Comparing the latter with
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Table 2. PPN parameters in different frames and parametrizations

JF BDBW Geff = 1
Ψ

(
1 + e−mΨr

2ω+3

)
mΨ = κ

√
2Ψ

2ω(Ψ)+3
d2V
dΨ2

γ − 1 = − 2e−mΨr

GeffΨ(2ω+3)

β − 1 =
dω
dΨ
e−2mΨr

G2
effΨ(2ω+3)3 − mΨr

G2
effΨ2(2ω+3)

[e−mΨr ln(mΨr) + . . .]

JF BEPS Geff = 1
F

(
1 +

(
dF
dφ

)2
e
−mφr

2F+3
(
dF
dφ

)2

)
mφ = κ

√
2F

2F+3
(
dF
dφ

)2
d2V
dφ2

γ − 1 = −
2
(
dF
dφ

)2
e
−mφr

GeffF

(
2F+3

(
dF
dφ

)2
)

β − 1 =

(
dF
dφ

)2
((

dF
dφ

)2
−2F d2F

dφ2

)
e
−2mφr

G2
effF

(
2F+3

(
dF
dφ

)2
)3 −

(
dF
dφ

)2
mφr

G2
effF

2

(
2F+3

(
dF
dφ

)2
) [e−mφr ln(mφr) + . . .]

JF nm Geff = 1
1−ξφ2

(
1 + 2ξ2φ2e

−mφr

1−ξφ2+6ξ2φ2

)
mφ = κ

√
2(1−ξφ2)

1−ξφ2+6ξ2φ2
d2V
dφ2

γ − 1 = − 4ξ2φ2e
−mφr

Geff(1−ξφ2)(1−ξφ2+6ξ2φ2)

β − 1 = 2ξ3φ2e
−2mφr

(1−ξφ2)(1−ξφ2+6ξ2φ2)3 − 2ξ2φ2mφr

(1−ξφ2)(1−ξφ2+6ξ2φ2)
[e−mφr ln(mφr) + . . .]

EF can Geff = e2α

(
1 +

(
dα
dϕ

)2
e−mϕr

)
mϕ = κ

√
1

2e2α
d2V
dϕ2

γ − 1 = −
2e2α

(
dα
dϕ

)2
e−mϕr

Geff

β − 1 =
e4α

(
dα
dϕ

)2
d2α
dϕ2 e

−2mϕr

2G2
eff

−
e4α

(
dα
dϕ

)2
mϕr

G2
eff

[e−mϕr ln(mϕr) + . . .]

EF min Geff = 1 mϕ = κ
√

1
2
d2V
dϕ2

γ − 1 = 0

β − 1 = 0

the discussion in the previous section we may note that the condition on B′ to achieve the GR
limit is marginally less strict in PPN than the one obtained from the equations of motion, i.e B

′
B2

finite. (A similar observation in the case of cosmology was made in Ref. [20]). The third option
is realized by giving the scalar field a very large effective mass, i.e

1

mΦ

∣∣∣
Φ�

=

(
2κ2A

e2α (2AB + 3(A′)2)

d2V

dΦ2

)− 1
2 ∣∣∣

Φ�
= 0 (5.4)
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However, in that case it is not so obvious what the corresponding condition arising from the
general equations of motion would be.

6. Example
To have an illustration let us take a look at a specific simple example. Let the JF BDBW
functions be given by

A = Ψ, B =
ω(Ψ)

Ψ
=

3

2(1−Ψ)
, V =

1
(

1
2 −Ψ

)2 , α = 0 (6.1)

The attactive gravitation condition (A > 0) and no ghosts condition (2.7) delimit 0 < Ψ ≤ 1.
Recalling the discussions in Secs. 4 and 5 we may find that the field equations and PPN
parameters reduce to those of general relativity in several different occasions.

• The first is realized when (4.4) holds, i.e Ψ? = 1, while B
′
B2 = 2

3 is finite. Here the PPN

parameters also reduce to their general relativity values, as expected, since B
′
B3 = 0.

• The second possibility to reduce the field equations to GR only occurs when the trace of
matter energy-momentum tensor T = 0 and the condition (4.2a) does not apply. Then
(4.2b) is satisfied at Ψ• = 1

4 . The PPN parameters, however, do not coincide with those of
GR now.

• Finally, it is possible to draw the PPN parameters into the GR values by satisfying (5.4)
with an extremely massive scalar field, Ψ� = 1

2 . But now the field equations do not agree
with those of general relativity.

We can transform the theory from the BDBW parametrization with Ψ into the BEPS
parametrization with φ by using Table 1. Integrating

∓ dφ
dΨ

=

√
ω(Ψ)

Ψ
=

√
3

2(1−Ψ)
(6.2)

gives (neglecting the additive integration constant)

±φ =
√

6(1−Ψ) , Ψ = 1− 1

6
φ2 (6.3)

and we see it is actually the nonminimal coupling subclass of BEPS, where

A = F (φ) = 1− 1

6
φ2 , B = 1, V =

1
(

1
2 −

φ2

6

)2 , α = 0 (6.4)

Note that Ψ is mapped doubly to φ, as Ψ ∈ (0, 1] translates into φ ∈ (−
√

6, 0] and φ ∈ [0,
√

6).
Again, there are several possibilities to achive the general relativity limit of the field equations
and PPN parameters.

• First, the field equations reduce to the ones of GR when Eq. (4.2a), given by A′ = 0, and
(4.2b), given by AV ′ − 2A′V = 0, are satisfied. The only common solution is φ• = 0. A
glance to Table 2 reveals that the PPN parameters also trivially fall into their GR limit.
By a direct comparison via (6.3) it becomes obvious that this value of φ corresponds to the
first case in the BDBW case.

• If matter T = 0 and the condition (4.2a) is not enforced, the condition (4.2b) alone has
also the solution ±φ• = 3√

2
. This does not lead the PPN parameters to their GR values. A

direct check by (6.3) tells that the corresponding case in the BDBW parametrization was
the second one.
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• Last, when the scalar field acquires an extremely large mass by (5.4) at ±φ� =
√

3 the PPN
parameters reduce to those of GR, but the field equations do not. It corresponds to the
third case above.

We may transform the same theory from JF BDBW parametrization into EF canonical
parametrization by integrating

∓ dϕ
dΨ

=

√
2ω(Ψ) + 3

4Ψ2
=

√
3

4Ψ2(1−Ψ)
(6.5)

which gives (neglecting the additive integration constant)

±ϕ =
√

3 arctanh
√

1−Ψ , Ψ = 1− tanh2 ϕ√
3

(6.6)

The functions characterizing the frame and parametrization are

A = 1, B = 2, V =
1

(
1
2 − tanh2 ϕ√

3

)2 (
1− tanh2 ϕ√

3

)2 , α = −1

2
ln

(
1− tanh2 ϕ√

3

)
(6.7)

Alternatively, one may embark from the JF BEPS parametrization and integrate

±dϕ
dφ

=

√
3

4

(
d lnF (φ)

dφ

)2

+
1

2F (φ)
=

1
√

2
(

1− φ2

6

) (6.8)

to obtain (again, neglecting the additive integration constant)

±ϕ =
√

3 arctanh
φ√
6
, ±φ =

√
6 tanh

ϕ√
3

(6.9)

The mapping into EF canonical parametrization is again double for JF BDBW, as Ψ ∈ (0, 1]
translates into φ ∈ (−∞, 0] and φ ∈ [0,∞), while JF BEPS φ ∈ (−

√
6,
√

6) translates
into φ ∈ (−∞,∞) and equivalently into −φ ∈ (−∞,∞) according to the sign in Eq. (6.8).
Analogously with the other parametrizations we can discuss the general relativity limit of the
field equations and PPN parameters in three cases.

• When the conditions (4.2a) and (4.2b) both hold, i.e α′ = 0 and V ′ = 0, the value of the
scalar field is ϕ• = 0. It takes the PPN parameters to their GR limit and by direct check
using (6.6) and (6.9) one can conclude it corresponds to the first cases discussed above.

• For absent or radiative matter with T = 0 the condition (4.2a) does not apply and (4.2b)
alone is also solved by ±ϕ• =

√
3 arctanh

(√
3/2
)
. The PPN parameters differ from those

of GR and it is straightforward to check that this value of ϕ corresponds to the second cases
above.

• The scalar field mass diverges at ±ϕ� =
√

3 arctanh
(
1/
√

2
)
, satisfying (5.4) and reducing

the PPN parameters to their GR values. The field equations still differ from those of GR
and we recognize correspondence to the third cases described above.

We see that the derivative of the transformation function f̄ ′ relating different scalar field
parametrizations gets singular for different values of the field. For a transformation from JF
BDBW to BEPS (6.2) it is singular at Ψ = 1, φ = 0, for a transformation from JF BDBW to EF
canonical (6.5) it is singular at Ψ = 1, ϕ = 0 and Ψ = 0, ϕ = ±∞, while for a transformation
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from JF BEPS to EF canonical (6.8) it is singular at φ = ±
√

6, ϕ = ±∞. The value Ψ = 0,
φ = ±

√
6, ϕ = ±∞ also makes the the conformal transformation singular. But strictly speaking,

this value is actually outside the range of the assumed validity of the theory, since for JF BDBW
and BEPS it violates the attractive gravity assumption, while for EF canonical the infinite value
of the field is arguably unphysical since α becomes singular.

So, it is only the singularity of transformation and the GR limit occuring at JF BDBW
Ψ = 1 that is possibly problematic. However, we saw that despite the transformation becoming
singular the general relativity limit in terms of the field equations and PPN parameters, namely
the first cases discussed above, does also occur in the corresponding JF BEPS value φ = 0 and EF
canonical parametrization value ϕ = 0. It is interesting that in the JF BDBW parametrization
this GR limit is realized by satisfying the condition (4.4), while in the JF BEPS and EF canonical
parametrizations it comes from the conditions (4.2a), (4.2b). This confirms the discussion in
Secs. 4 and 5 that the existence of the GR limit is invariant of the parametrization.

7. Conclusion
We studied general scalar-tensor gravity involving four free functions in different conformal
frames and scalar field parametrizations. We investigated its general relativity limits in the
sense of field equations and the values of PPN parameters coinciding with those of general
relativity. Despite the transformation of the scalar field from one representation to another may
possess a singularity, it turned out that the existence of general relativity limits is independent
of the parametrization.
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Abstract
We consider first generation scalar–tensor theories of gravitation in a com-
pletely generic form, keeping the transformation functions of the local
rescaling of the metric and the scalar field redefinition explicitly distinct from
the coupling functions in the action. It is well known that in Jordan frame
Brans–Dicke type parametrization, the diverging kinetic coupling function
w  ¥ can lead to the general relativity regime, however the transformation
functions to other parametrizations then typically become singular, possibly
spoiling the correspondence between different parametrizations. We give a
detailed analysis of the transformation properties of field equations with
arbitrary metrics and also in the Friedmann cosmology, and provide sufficient
conditions under which the correspondence between different parametrizations
is retained, even if the transformation is singular. It is interesting to witness the
invariance of the notion of the general relativity regime and the correspon-
dence of the perturbed cosmological equations as well as their solutions in
different parametrizations, despite the fact that in some cases the perturbed
equation turns out to be linear in one parametrization and nonlinear in another.

Keywords: scalar–tensor gravity, general relativity limit
Friedmann cosmology, transformation properties

1. Introduction

The history of the scalar–tensor theory of gravitation (STG) [1, 2] as an extension to Ein-
steinʼs general relativity (GR) started in principle with the works by Kaluza and Klein.
Complementary ideas were pursued by Jordan and Fierz [3], developed by Brans and Dicke
[4] and further generalized by Bergmann and Wagoner [5, 6]. Nowadays, the aforementioned
can be called first generation scalar–tensor theories. The Horndeski theory [7], which also
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allows derivative couplings and possesses equations of motion with up to second order
derivatives of the metric and scalar field, may be considered to be the second generation.
Healthy, ghost free theories going beyond Horndeski can be referred to as the third gen-
eration [8].

Soon after his joint work with Brans [4], Dicke published another paper [9] where he
recalled the local Weyl rescaling of the metric tensor, interpreted it as a transformation of the
units and claimed that physics must be invariant under this transformation [10, 11]. From this
viewpoint STG is a natural extension of GR because rewriting the Einstein–Hilbert action in
terms of a Weyl rescaled metric tensor introduces an action functional having a structure that
resembles the one used for STG [12, 13]. Namely, on the level of the rewritten action
functional the scalar field entering via the Weyl rescaling is coupled to curvature and to matter
etc. Of course in that case, the functions describing the coupling of the scalar field to
curvature etc are related to each other in a specific way which implies that the scalar field
equation of motion is an identity 0 0,º and the scalar field is hence not a physical degree of
freedom. Nevertheless if one considers an analogous action functional but without the rela-
tions between the coupling functions, then the resulting theory is STG, congruent with Weyl
integrable geometry [14].

Jordan [3] has already pointed out that for scalar–tensor theories with a constant kinetic
coupling parameter ω the equations of motion reduce to those of GR if .w = ¥ In the
framework of the parametrized post-Newtonian approximation it has been shown that for the
theory with a dynamical ( )w wº Y [5, 6], conditions for the theory to comply with GR are
again ( )w Y  ¥ as well as 03

( )
( ) w

w
¢ Y
Y

[15, 16]. In the context of the Friedmann cosmology,
Damour and Nordtvedt [17, 18] showed that for a wide family of theories the limit

( )w Y  ¥ is an attractor. To be more precise, there exists a mechanism ending scalar field
evolution at a constant value thereby rendering the remaining dynamical degrees of freedom
identical to those of GR. In the current paper we shall use the term ‘GR regime’ to refer to
such a situation. Due to these results, a dynamical approach to the GR regime has been
studied by a number of authors, e.g., [19–28].

Damour and Nordtvedt noted that the points in field space where ( )w Y = ¥ enter the
theory as mathematically singular boundary points [18]. They used the local Weyl rescaling
of the metric tensor and redefined (reparametrized) the scalar field ( )j j= Y in order to
rewrite the theory in the so-called Einstein frame where all functions are regular. However,
the singularity in ( )w Y  ¥ (in the so-called Jordan frame) is then absorbed by the scalar
field redefinition, hence rendering the transformation to be singular instead, i.e. .d

d
 ¥j

Y
Therefore, it is not so obvious that these transformations can be trusted at all and one must
take extra caution when applying the transformation in the vicinity of the GR regime [29].

Note that in the literature, when the equivalence of the parametrizations is discussed, the
transformation functions are often assumed to be regular [10, 11], which in principle is easily
achievable when a suitable choice of coupling functions in the Jordan frame is considered.
However, in our recent paper [30] we showed that the scalar field Ψ in the Jordan frame is
equivalent to the invariant notion of the nonminimal coupling while the Einstein frame scalar
field j is equivalent to the invariant notion of the scalar field space volume. Therefore 0d

d
=

j
Y

in the GR regime is not due to an unfortunate choice of coupling functions, but is a crucial
part of the notion of the GR regime, stating via invariants that the nonminimal coupling
vanishes. We hence conclude that the singular scalar field redefinition is physically mean-
ingful and deserves a closer look.

In the current paper we intend to clarify the question of whether or not such a singular
transformation is permitted by first studying the transformation properties of the action, the
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equations of motion and the Friedmann cosmology. Afterwards, we focus upon the trans-
formations in the neighbourhood of the GR regime, which corresponds to a critical point of
the scalar field equation of motion. We argue that the conditions for critical points in general,
as well as in the Friedmann cosmology, are preserved under the scalar field redefinition, even
if the latter is singular. Most importantly we show in detail that the perturbed equation,
approximating the dynamics in the vicinity of the GR regime, transforms well despite the fact
that in the case of the singular scalar field redefinition a nonlinear perturbed equation is
transformed into a linear one. The transformation of the solutions also shows an interesting
analogous correspondence. To give a completely generic treatment of the transformations
between all possible parametrizations we adopt the notation introduced by Flanagan [10]. The
paper is in accordance with the spirit of recent works [31, 32] etc, where the correspondence
between the Jordan and Einstein frames is discussed in explicit detail.

The outline of the paper is as follows: in section 2 we write down the action functional,
derive the equations of motion and plug in the Friedmann–Lemaître–Robertson–Walker
(FLRW) line element in order to obtain the general Friedmann cosmology in the context of
STG. In section 3 we introduce the notion of the general relativity regime by examining the
necessary conditions for maintaining the constancy of the scalar field once it has been
obtained. Section 4 completes the line of thought of [29, 33–36] by considering a dynamical
approach to the general relativity regime in the context of the potential dominated epoch of
the Friedmann cosmology. In the current paper, the latter serves as an example for showing
the equivalence of different parametrizations on the level of the perturbed equations. It turns
out to be nontrivial and we have included a lot of calculational details in order to keep the
treatment as traceable as possible.

From the structural point of view the paper is divided into three sections, each of which is
split into two halves. In the first halves of the sections a relatively complete theory in an
arbitrary parametrization, starting with the action functional and ending with the solutions in
the context of the Friedmann cosmology is given. The second halves follow the first halves by
providing the corresponding transformation properties under the local Weyl rescaling of the
metric tensor and under the scalar field redefinition. Therefore, subsections numbered as i j.1.
contain the theory and i k.2. discuss the transformation properties of the quantities introduced
in i j.1. .

2. General theory

In this section we write down an action functional and derive the equations of motion. The
general Friedmann cosmology is also discussed.

2.1. Theory: part I

2.1.1. Action functional. Let us consider a family of theories of gravitation by postulating an
action functional [10, 37]

S x g R g ℓ S g
1

2
d 2 e , .

1

V

A
2

4 2
m

2

4

{ }( ) ( ) ( )
( )

( )⎡⎣ ⎤⎦  òk
c= - F - F  FF - F +mn

m n
a

mn
- F

There are two unspecified constants: 2k yields the dimension for the gravitational
‘constant’ and ℓ 0> has the dimension of length. We make use of the convention c 1º and
have chosen constants 2k and ℓ 2- suitably in order to consider the scalar field Φ and the four
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arbitrary functions , , ,{ ( ) ( ) ( ) ( )}   aF F F F of it to be dimensionless, regardless of
whether in addition either 12k º or 1 º is imposed.

Note that in the general case, the action functional Sm for the matter fields ,Ac where
different components are labelled by the superscript A, functionally depends on the metric
tensor g ge .2ˆ ( )=mn

a
mn

F Nevertheless, the coupling of the matter fields to the geometry
described by gmn is universal and therefore one of the basic principles underlying general
relativity is fulfilled.

In order to consider a concrete theory one must specify each of the four arbitrary
functions , , , .{ ( ) ( ) ( ) ( )}   aF F F F However, in the literature the action functionals which
have mostly been considered are those in which the functional form of two out of the four
arbitrary functions has been specified. This is because in such cases the calculations are
easier, while the corresponding action functional has retained its generality up to some details
[30, 38]. In the current paper we shall use ‘parametrization’ to refer to these setups and hereby
recall the two most well-known ones:

• The Jordan frame action in the Brans–Dicke–Bergmann–Wagoner parametrization
(JF BDBW) [4–6] for the scalar field denoted as Ψ is obtained as follows:

, , , 0. 2J
( ) ( ) ( )   

w
a= Y =

Y
Y

= Y =

• The Einstein frame action in canonical parametrization (EF can) [5, 6, 9] for the scalar
field denoted as j is obtained as follows:

1, 2, , . 3E E( ) ( ) ( )    j a a j= = = =

Here, and in the following, we shall drop the arguments of the arbitrary functions
, ,{ ( ) ( ) F F ,( ) ( )} aF F unless confusion could arise. We also adopt a convention where

prime means derivative w.r.t. the scalar field, e.g.,

d

d
,

d

d
, etc. 4

( ) ( ) ( )



¢ º

F
F

¢ º
F
F

In the current paper we shall use the so-called mostly plus signature for the metric tensor gmn
and always assume the affine connection to be the Levi-Civita one. The other unspecified
conventions are as, e.g., in the textbook by Carroll [39].

2.1.2. Equations of motion. Varying the action (1) while considering g ,mn Φ and Ac to be the
dynamical fields reads

S x g E g E E

x g

1

2
d 2 e

1

2
d 2 e 5

V

g
A

A

V
g

2
4 2 4

2
4 2 4

4

4
( )
{ }

( )

( ) ( ) ( )

( ) ( ) ( )⎡⎣ ⎤⎦
ò

ò

d
k

d d k dc

k
k

= - + F +

+ ¶ - + +

mn
mn a c

s
s s a

c
s

F

FB B B

where

g g g g g g g g g g ,

6

g { }( )( )
( )

( )    d d d d- = -  -  -  + s
mn

sl
l

mn
m

sm sl
l mn

mn
m

msB
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g g g2 7( ) ( )( )  d- = - -  F Fs sm
mFB

and g e4 ( )- a
c
sB are eventually the boundary terms arising from varying w.r.t. the metric

tensor g ,mn the scalar field Φ and the matter fields respectively. The boundary terms have been
written out explicitly for the sake of completeness, although they do not make a contribution
to the equations of motion. Therefore, by making use of the minimal action principle S 0d =
we obtain the equations of motion as follows:

E R g R g g

g ℓ g T

1

2

1

2

0, 8

g

2 2( )
( )

( )

( ) ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠    

   k

º - + +  F F - +   FF

+ ¢ F -  F + - =

mn mn mn mn
rs

r s m n

mn m n mn mn
-

E R g ℓ T2 2 2 0, 92 2 ( )( )     k aº ¢ + ¢  FF + F - ¢ + ¢ =mn
m n

F -

E E ge , 0. 10A A
C2 ( )( ) ( ) ⎡⎣ ⎤⎦cº =c c a

mn

Here

T
g

S

g

2
11m ( )d

d
º -

-
mn mn

is the matter energy-momentum tensor, T g Tº mn
mn is its contraction and g . º  mn

m n In
the current paper we are not directly interested in the equations of motion for the matter fields

,Ac i.e. we do not specify either (10) or the corresponding boundary terms. However,
including them provides us with a complete picture—at least on the schematic level—and
allows us to stress an important point. Namely, the matter fields Ac ‘feel’ the geometry
determined by g ge .2ˆ ºmn

a
mn Therefore, freely falling material objects follow the

corresponding geodesics. Hence, if one intends to measure the geometry determined by gmn
using reference objects built out of the matter fields then, in the spirit of Dicke [9], correction
factors must be applied.

In the literature, the contraction of (8), i.e.,

g E R g g ℓ T3 3 4 0

12

g 2 2

( )
( )      kº - +  FF +   FF + ¢ F + - =mn
mn

mn
m n

mn
m n

-

is usually used to eliminate the Ricci scalar R from (9) in order to obtain an equation of
motion for the scalar field Φ that does not contain the second derivatives of the metric tensor
gmn and therefore purely describes the propagation of the scalar field. The result reads

g

ℓ
T

2 3 2 3

2

2 2 2
0. 13

2 2

2

2

( )( ) ( )
( ) ( ) ( )

 




 


 



 



k a

+ ¢
F +

+ ¢ ¢

 FF

-
¢ - ¢

+
¢ - ¢

=

mn
m n

This procedure is also known as ‘debraiding’—see for example a recent paper by Bettoni et al
[40] for comments and further references. Note that due to  Fm n in (8) it is not possible to
make an analogous substitution in order to obtain an equation that would describe solely the
evolution of the metric tensor. In some sense this is the underlying motivation for the Einstein
frame canonical parametrization (3). Last but not least, combining (9) and the covariant
divergence of the tensor equation (8) leads us to
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E E E T T
1

2
0 14c g 2 2 ( )( ) ( ) ( ) k k aº  + F = -  + ¢ F =n

m
mn n

m
mn n

F

which is the well-known continuity equation.

2.1.3. Friedmann cosmology. Let us consider the FLRW line element in spherical
coordinates

s t a t
r

kr
rd d

d

1
d 152 2 2

2

2
2 2( ( )) ( )⎛

⎝⎜
⎞
⎠⎟= - +

-
+ W

defined in an arbitrary parametrization. Here t and a t( ) are the cosmological time and the
scale factor connected to the chosen parametrization respectively. The constant k takes values
−1, 0 and +1, determining the spatial geometry to be hyperbolic, flat or spherical
respectively. The dependence on the two angles is gathered into d .2W Due to the homogeneity
and isotropy assumption underlying the Friedmann cosmology, the scalar field can only
depend on the cosmological time t .( )F º F The equations of motion (8), (13) and (14) in the
case of the FLRW metric read

H H
ℓ

k
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3 3
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¢ - ¢
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-

-

H p p3 3 , 19˙ ( ) ( ) ˙ ( )r r a r= - + + ¢ - F

where dot means derivative with respect to the cosmological time t and H a

a

˙º is the Hubble
parameter. We have assumed the matter to be a perfect fluid with the energy density ρ and
pressure p.

2.2. Transformations: part I

2.2.1. Transformation of the action functional. It is well known that the action functional (1)
preserves its structure up to a boundary term under the transformations that contain two
functional degrees of freedom

g ge , 202 ( ) ¯ ( )¯ ¯=mn
g

mn
F

f . 21( )¯ ¯ ( )F = F

The first of them is known as the Weyl rescaling which is a distinct case of the conformal
transformation of the metric tensor gmn . We shall occasionally refer to it as the change of the
‘frame’. The second one is the redefinition of the scalar field Φ, also known as
‘reparametrization’. The transformed action functional reads
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S x g R g ℓ S g

x g
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s
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where

g6 23S( )¯ ¯ ¯ ¯ ¯ ¯ ( )¯ g= - ¢  Fs sm
mB

is a negligible boundary term. Here we have made use of the following notation [10]

f ae , 242 ( )( ) ( )( )¯ ¯ ¯ ¯ ( )¯ ¯ F = Fg F

f f f f be 6 6 , 242 2 2( )( ) ( ) ( )( )( ) ( ) ( )( )¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )¯ ¯   g gF = ¢ F - ¢ F - ¢ ¢ ¢g F

f ce , 244 ( )( ) ( )( )¯ ¯ ¯ ¯ ( )¯ ¯ F = Fg F

f d, 24( )( ) ( ) ( )¯ ¯ ¯ ¯ ¯ ¯ ( )a a gF = F + F

and refined convention (4) in order to distinguish between derivatives w.r.t. the ‘barred’ scalar
field F̄ and the ‘unbarred’ scalar field Φ in the following manner:

f
fd

d
,

d

d
,

d

d
,

d

d
, etc. 25

( ) ( ) ( )¯ ¯ ¯
¯ ¯ ¯ ¯
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¯

( ) ( )





g
g

¢ º
F

F
¢ º

F

F
¢ º

F

F
¢ º

F
F

If we impose a condition in which the action functional (1) is invariant under the local Weyl
rescaling of the metric tensor (20) and under the scalar field redefinition (21), then
equations (24) are the transformation properties of the four arbitrary functions , , , .{ }   a
In the current paper we will adopt the aforementioned assumption and whenever the
transformations (20)–(21) are recalled, equations (24) are also taken into account.

Sometimes it might be clearer to look at the transformations backwards as well. In order
to keep the notation under better control we also introduce

g ge , 262¯ ( )( )=mn
g

mn
F

f , 27¯ ( ) ( )F = F

such that f .( ¯ ( ¯ )) ¯ ( ¯ )g gF = - F If f̄ is a bijection then the composition f f¯ ◦ is equal to the
identity transformation, but we also want to include the possibility that either f̄ or f or both
are multivalued. When using the transformations (26)–(27) instead of (20)–(21), then for the
transformation rules (24) of the four arbitrary functions the property of being ‘barred’ or not is
interchanged. For an example compare (64) with (66).

In the literature, most of the calculations have been carried out in a specific
parametrization, e.g. in the JF BDBW parametrization (2) or in the EF canonical
parametrization (3). A specific parametrization is, in principle, equivalent to the general
one [30, 38], but it turns out that for specific parametrizations the transformation from one to
another may not be so unique at all since there are quantities that remain unseenin these
parametrizations but nevertheless have complicated transformation rules [30, 41]. As an
example let us consider ¢ in the JF BDBW parametrization. We obtain 1.J¢ = Hence, an
arbitrary power of the latter is also equal to one, and in this specific parametrization we cannot
distinguish between ,J¢ ,J

2( )¢ etc. However, all of these have different transformation
properties. In the current paper, in order to overcome this shortcoming, we have adopted the
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notation by Flanagan [10], which has the following advantages: i) all four possible couplings
(curvature ,( ) kinetic ,( ) self-interaction ( ) and matter ( )a ) of the scalar field are explicitly
written out, ii) two transformation functions ḡ and f̄ are kept separate from the coupling
functions.

2.2.2. Transformation of the equations of motion. A straightforward calculation shows that
under the local rescaling of the metric tensor (20) and the scalar field redefinition (21) the
equation of motion (8) for the metric tensor g ,mn denoted in short as E 0,g( ) =mn transforms as
follows

E Ee . 28g g2 ¯ ( )( ) ¯ ( ¯)=mn
g

mn
-

Here we have made use of the fact that under the conformal transformation (20) the energy-
momentum tensor Tmn transforms as T Te 2 ¯¯=mn

g
mn

- and its contraction as T Te .4 ¯¯= g-

Checking the transformation properties of the scalar field equation (9) that explicitly
contains R gives

E f E g Ee 2 . 29g1 4 { }( ) ( )¯ ¯ ¯ ¯ ¯ ( )( ) ¯ ¯ ( ¯)g= ¢ + ¢g mn
mn

F - - F

Therefore these transformations mix the scalar field equation (9) with the metric equation (8).
The reason for this lies in the transformation properties of the variational derivatives
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In the context of the transformations (20)–(21) the prescription for using the contraction
g E g( )mn

mn to eliminate R from the scalar field equation of motion (9) can be seen as giving an
unconfounded equation under the transformation: namely

E g E f E g Ee . 31g g4 1( ) ( )¯ ¯ ¯
¯ ¯ ¯ ( )( ) ( ) ¯ ¯ ( ¯)⎪ ⎪
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⎧
⎨
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⎫
⎬
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+
¢

= ¢ +
¢

mn
mn

g mn
mn

F - - F

Note that as under transformations,
d
dF

gains an additive term, and gd mn also gains one

which of course follows from (20). Since the action functional Sm for the matter fields Ac
functionally depends on ge2a

mn , which is invariant under the transformations (20)–(21) in the
sense of subsection 2.3 [10, 30], it follows that the equations of motion (10) for the matter
fields are also invariant under these transformations. In order to sum up, let us take a look at
the transformation of the varied action (5). A straightforward calculation reveals
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The fourth line forms as follows: under the transformations (20)–(21) the boundary terms (6)
and (7) mix with each other and some extra terms arise. The latter are exactly the ones
obtained by varying the boundary term (23) which arose due to rewriting the action functional
(1) in terms of ḡmn and .F̄ The boundary terms ¯ ( )c

s
B that appear when the action functional (1)

is varied w.r.t. the matter fields Ac are invariant. As before, we have included the boundary
terms for the sake of completeness although they do not contribute to the equations of motion.
Indeed, from the viewpoint of the transformation properties they must also behave well.

One can think about the continuity equation (14) in the same spirit. Let us consider a
symmetric second order tensor E( )mn having the following transformation properties:
E Ee .2 ¯( ) ¯ ( )=mn

g
mn

- For such a tensor

E E g Ee e 334 4¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )¯ ¯g =  - ¢ Fm
mn

g m
mn

g ml
ml n

- -

holds. A straightforward calculation shows that previous knowledge is at least implicitly
taken into account when the continuity equation is constructed. Indeed, by making use of
(33), the transformation properties (28) of the tensor equations (8) and (29) covering the
transformation properties of the scalar field equation (9), we obtain
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Hence, we have equations of motion given by (8), (10), (13) and (14) which only gain a
common multiplier under the local Weyl rescaling of the metric tensor (20) and under the
scalar field redefinition (21), but otherwise preserve their structure. An analogous conclusion
was drawn in [42]. We deem that as these are general equations no problems arise when either
the transformation (20) or (21) become singular at some isolated scalar field value.

2.2.3. Transformations in the Friedmann cosmology. Previously, the transformation
properties of the field equations were discussed. The Friedmann cosmology is a particular
case and the corresponding equations of motion (16)–(19) transform according to the rules
(28), (31) and (34), of course. Nevertheless, there are some details that need to be mentioned.
The line element in Friedmann cosmology has the form (15). In order to keep this form of the
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metric, each conformal transformation g ge2 ¯¯=mn
g

mn is followed by a time coordinate
transformation and a redefinition of the scale factor

t t t t a t a t a t a td d : e d d ; : e . 352 2( ) ( )¯ ¯ ( ) ¯ ¯ ¯ ¯ ( ) ( )¯ ¯= =g g 

Therefore as the cosmological time depends on the chosen parametrization we adopt the
following notation

t t

d

d
and

d

d
. 36()̇ () ()̇̄ ¯ ()̄ ( )º º

Due to (35) the transformation of the Hubble parameter reads

H
a

a
He . 37( )˙ ¯ ¯ ¯̇ ( )¯ gº = + ¢Fg-

One can counter the additive term arising in (37), for example, by considering the quantity

H H
1

2
e

1

2
. 38˙ ¯ ¯

¯ ¯̇ ( )¯⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟





+
¢
F = +

¢
Fg-

Also note that

f f f fe , ¨ e ¨ 392 2 2( )˙ ¯ ¯̇ ¯ ¯ ¯ ¯̇ ¯ ¯ ¯̇ ( )¯ ¯ gF = ¢F F = ¢F + F - ¢ ¢Fg g- -

are the transformations of the first and the second derivative of the scalar field w.r.t. the
cosmological time respectively.

The transformation of ρ and p is determined by the transformation of the contraction T of
the energy-momentum tensor T .mn Using the transformation rule (30) of the variational
derivative

g

d
d mn

on the definition (11) of the matter energy-momentum tensor reveals that

T Te 4 ¯¯= g- , as also mentioned after (28).

2.3. Invariants

A closer look at the transformation rules (24) of the four arbitrary functions , , ,{ }   a
allows us to write out objects that do not gain any additive or multiplicative terms under the
local Weyl rescaling (20) and under the scalar field redefinition (21). Let us recall the three
basic ones introduced in our recent paper [30]

e
, , d 401

2

2 2 3( ) ( ) ( ) ( )
( ( )) ( ) ( ) ( )( )








 òF º
F

F º
F
F

F º  F F
a F

where [10]

f
2 3

4
, . 41

2

2

2( )( ) ¯ ¯ ( )
 


 º

+ ¢
= ¢

Under the scalar field redefinition (21) these quantities transform as scalar functions but their
numerical value at some spacetime point x V4Îm is nevertheless invariant. One can introduce
further objects having the same transformation properties by making use of three operations:
i) forming an arbitrary function of the invariants (40) etc, ii) introducing a quotient of
derivatives i j k  º ¢ ¢ or iii) integrating the previous result dj i k( ) ( )  òº F ¢ F F in the
sense of an indefinite integral [30].

The basic quantities (40) were chosen since they are well known and used in the lit-
erature. For instance, in the JF BDBW parametrization 2 J

2 = Y and
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22 J J
3( )  ¢ = Y ¢ - Y determine the fixed points in [43], while in [44] the term ‘effective

potential’ refers to .2 The invariant 3 is essential in the Barrow and Parsons solution
generating prescription [21]. Last but not least, in the JF BDBW parametrization 1 1 = Y
and in the EF canonical parametrization const.3 j = + Therefore

d
1

d

1 d

d
421

3 1
2

1

3

( )
 


 j

= -
¢
¢
= 

Y

can also be considered to be an invariant.

3. General relativity regime

In this section we first write down the conditions under which STG coincides with GR, i.e. we
introduce the notion of the ‘GR regime’. Second, we consider the GR limit, i.e. a dynamical
approach to the GR regime.

3.1. Theory: part II

3.1.1. General relativity regime. GR is in rather good agreement with the experiments carried
out in the solar system. Therefore whatever theory of gravitation we consider, its predictions
—in order to be viable—must be close to those of GR, at least in the sufficient neighbourhood
of the Sun. In the current paper we will bestow consideration upon STG in which the
predictions are close to the ones obtained from GR because the field equations themselves are
the same—at least in some regime. We shall use ‘GR regime’ to refer to such a situation.

In Einsteinʼs GR, the tensor equation, a specific case of (8), does not contain the terms
, FFm n , FFm n ¢  Fm n or the contractions of these. Requiring that  and the

derivatives of  are zero at the same value of the scalar field Φ in a generic theory needs
finetuning, and therefore we instead impose that in the GR regime the scalar field is constant

,0F = F i.e.

0 43
0

( ) F =m F

and 0. F =m n In this case (8) reduces to the Einstein equation in GR, with 2
0( )k F

playing the role of the gravitational constant and ℓ 2
0( ) F- as the cosmological constant, both

positive. The continuity equation (14) also reduces to T 0. =m
mn

In order to maintain the constancy of the scalar field Φ the equation of motion (13) must
become an identity 0 0= at the scalar field value .0F Let us divide (13) by 4 and make
use of the invariant objects (40) and , given by (41), in order to rewrite (13) in a more
compact manner as follows

g
ℓ

T
1

2

1

2 4

ln
. 44

2
2

2 1( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟


 


 
 




k

F +
¢
-

¢
 FF =

¢
-

¢
mn

m n

The lhs of (44) contains derivatives and therefore for a constant scalar field value it vanishes.
Hence, in order to avoid finetuning we impose that the source terms

ℓ
ℓ

2
2

2

2 3
0, 45

2
2 2

2
0

0

( )
( ) ( ) 



 

 

¢
=

¢ - ¢

+ ¢
=

F

-

F
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4

ln 2

2 3
0 46

2 1 2
2

0 0

( )
( )

( ) ( )






 

 

k
k

a¢
=

¢ - ¢

+ ¢
=

F F

in the regime where the predictions of the theory described by the action functional (1) are
also close to those of GR. In the following we shall use ‘vanishing source conditions’ for
referring to (45)–(46). In the JF BDBW parametrization (2) the second condition (46) can
only be satisfied by letting ( )w Y  ¥ [41] and in this case the first condition is also satisfied.

Let us point out that one may also consider a situation where on the rhs of (44) the sum
vanishes, but both additive terms separately are nonvanishing. In this case a so-called
screening mechanism is operating, e.g. the chameleon effect [45] or the symmetron screening
mechanism [46]. However, in these cases, the vanishing of the rhs of (44) depends on the
matter contribution. If the latter changes, e.g. the energy density ρ in the Friedmann
cosmology decreases as the Universe expands, then the scalar field must also evolve further.
In the current paper, we are interested in basic cosmological scenarios where the scalar field
dynamic ends once and for all, and therefore we do not focus upon the screening mechanisms.

For a specific matter content with T 0,º e.g. radiation, the condition (46) is not needed
[41]. If in addition to the latter 0 º is also considered then the rhs of (44) vanishes
automatically, and the GR regime can, in principle, be realized at any value of Φ. In the
context of the original Brans–Dicke theory, with a constant parameter ω, i.e. a particular case
of the JF BDBW parametrization (2), there is a discussion in the literature that in the case of
T 0,º 0 º taking parametrically w = ¥ does not reduce the STG solutions to the ones of
GR [47]. However, if 0 Y =m is not imposed, only letting ω diverge is not sufficient for
obtaining the GR regime indeed.

In addition to the vanishing source conditions (45)–(46), a little more is needed to
achieve GR-like behaviour. Namely, for GR the well-known relation R T4( )- + L µ holds.
Let us make use of the latter and obtain some restrictions from the contraction (12) of the
tensor equation (8). First, a short glimpse reveals that vanishing or diverging

0 F violates the

mentioned condition. Second, as
2

0

k

F
is the effective gravitational ‘constant’ we impose

00 >F in order to have an attractive gravity. Third, the same equation reveals that the
potential , which at the constant scalar field value 0F mimics the cosmological constant Λ,
must be nondiverging as well. In the current paper we also assume it to be non-negative. Last
but not least, we impose that α must be nondiverging, because otherwise the coupling of the
matter fields to the geometry determined by gmn is unphysical. These assumptions are spelled
out below in (56).

Analogously to the previous, let us point out that in the context of the GR regime the
scalar field equation of motion (9) containing R might be a constraint equation. We start by
assuming 0¢ < ¥F , because otherwise the behaviour of the effective gravitational

‘constant’
2


k becomes unnatural if the scalar field Φ deviates from its constant value .0F

Under this assumption (9) also reveals that 0a¢ < ¥F and 0 ¢ < ¥F , because otherwise
the constraint R T4( )- + L µ is violated. These conditions are captured below as (57). For
the latter we have implicitly assumed that neither  nor its derivative diverges. In the current
paper we restrict our analysis to the cases where only one out of the four arbitrary functions

, , ,{ }   a along with its derivatives might diverge. Hence if diverging  is under
consideration then all other functions are assumed to be regular and (57) is therefore imposed
as a general condition in the GR regime.
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Let us analyze the possibilities of satisfying the vanishing source conditions (45)–(46) in
more detail. The first and most obvious possibility is to demand that both numerators are zero
at the same scalar field value .0F The other possibility is to let the denominator diverge at the
scalar field value .0F In some sense this is more natural because no tuning is needed, i.e. if
one of the conditions is satisfied then the other must be satisfied as well. Since the diverging

0 F and 0¢ F cases have already been omitted, we are left with possibly diverging 0 F (i.e.
in essence JF BDBW ( )w Y ). In what follows we keep the latter in mind, but nevertheless
make the most of the statements about where  resides because the transformation property
of , given by (41), is remarkably simpler than the rule for , given by (24b).

To sum up, we consider two possibilities for fulfilling the vanishing source conditions
(45)–(46) [30]:

i 0 and
1 1

0 , 47• 2 1
3

2( ){ }( ) ( )
⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

 
 

F º F ¢ = = ¢
¢

º ¹

ii
1 1

0 . 48
3

2( ){ }( ) ( )
⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪ F º F

¢
º =

If  diverges then one must also demand that the last term on the lhs of (44)in the GR
regime vanishes nevertheless. However, this is rather a question about the permitted
behaviour of a specific solution, i.e. the order of magnitude of 0 F m w.r.t. 0,0F - F 
which we shall not yet discuss.

3.1.2. General relativity limit. Once we have a consistent notion of the GR regime it is of
course important to find out whether a solution under consideration converges to that regime
or repels from it. One useful tool for clarifying the question is provided by the dynamical
systems method. In section 4 of the current paper we benefit from this method because the GR
regime can be identified with a critical point in the ,( )F  Fm space. More precisely, we
linearize (44), i.e. the scalar field equation of motion. According to the Hartman–Grobman
theorem, the linearized equation captures the qualitative behaviour of the full dynamics if and
only if the critical point is hyperbolic, i.e. all eigenvalues have a nonzero real part. It can be
shown that a necessary condition for the critical point to be hyperbolic is given by either of
the conditions [35, 48]

C C
ℓ ℓ

0 :
d
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1
, 492 2 2

2
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2
2
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( )⎜ ⎟
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⎛
⎝

⎞
⎠

⎞
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¢
= -


+

¢
¢

F F

C C0 :
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ln

4

ln 1
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3 3

2 1 2 1
1
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( ) ( ) ( )
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⎝
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⎞
⎠
⎟⎟

⎛
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⎝
⎞
⎠

⎞
⎠
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k k
< < ¥ º

F

¢
=


+

¢ ¢

F F

In other words we assume that the leading term in the Taylor expansion of the rhs of (44) is
linear w.r.t. .0F - F In what follows we shall refer to (49)–(50) as ‘first order small source
conditions’. In (49)–(50) we have made use of the vanishing source conditions (45)–(46) in
order to cancel some additive terms. Actually, due to the same conditions only one of the
additive terms on the right hand sides of (49)–(50) can be nonvanishing. Perhaps it is also
instructive to write out these conditions in the EF canonical parametrization (3) (cf [43, 49])
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C
ℓ

C
1

2
,

2
51E E2 EF can. 2 3 EF can.

2

0 0

( )
k

a= -  = 
j j

and in the JF BDBW parametrization (2) (see [33, 43])

C ℓ
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Let us make use of the first order small source conditions (49)–(50) in order to adopt the
following three assumptions on  [30, 33]:

0
1

, 53
0

( )


 < ¥
F

1 d

d

1
, 54

n

n

...
n times

0 0
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⎝

⎞
⎠
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⎞
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¢ ¢
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if , see 48 , i.e.
1
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1

0. 550 ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠ 

 

F º F =
¢

¹
F F

The transformation rule for , given by (41), reveals that  preserves its sign under the local
Weyl rescaling (20) and under the scalar field redefinition (21). Therefore, if we want to stay
connected with the EF canonical parametrization (3), where 1,E = then in any other
parametrization  must be non-negative. Here we go one step further by imposing (53), i.e.
assuming  to be strictly positive in order to avoid the possibility that in the vanishing source
conditions (45)–(46) both the numerator and denominator vanish. In the following we shall
refer to (53) as the ‘positive  assumption’. Let us point out that in the JF BDBW
parametrization (2) the limit 0J = corresponds to .3

2
w = -

The ‘differentiable 1


assumption’ (54) guarantees that we can handle the possible

singularity lying in . Last but not least, the ‘nonvanishing 1( ) ¢ assumption’ (55) is a

necessary condition for the critical point to be hyperbolic. The latter only applies if .  ¥
Therefore, e.g. in the EF canonical parametrization (3) the assumption (55) is automatically

satisfied since 1E = never diverges. It can be shown that if the nonvanishing 1( ) ¢

assumption (55) is not fulfilled then one cannot express the JF BDBW parametrization scalar
field Ψ as a Taylor expansion of the EF canonical parametrization scalar field j [30]. Let us
point out that if the condition (55) holds, then the equation of motion (8) for the metric tensor
and the equation of motion (13) for the scalar field converge to the GR regime at the same
‘rate’. The latter is determined by g 0  FF mn

m n [41].
In order to sum up, let us gather the restrictions on the three arbitrary functions , ,{ }  a

while  is covered by assumptions (53)–(55):

0 , 0 , 0 e , 562
0 0 0∣ ∣ ∣ ( ) < < ¥ < ¥ < < ¥a

F F F
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, , , 57
0 0 0

( )  a¢ < ¥ ¢ < ¥ ¢ < ¥
F F F

, , , 58
0 0 0

( )  a < ¥  < ¥  < ¥
F F F

if
1

0 then either 0 or 0 or 0, 59
0

0 0 0
( )


  a= ¢ ¹ ¢ ¹ ¢ ¹

F
F F F

if
1

0 then either 0 or 0 601 2
0

0 0
( )


 ¹  ¹  ¹

F
F F

where (56)–(57) are necessary for a consistent notion of the GR regime and (58)–(60)
complement the assumptions (53)–(55) on  in order to obtain a hyperbolic critical point
when the dynamical systems method is used.

3.1.3. Two remarks. Two comments about the assumptions (53)–(55) on  are in order.

First the nonvanishing 1( ) ¢ assumption (55) imposes that 01

 
=

F
is not an extrema of the

same function. Therefore if the scalar field Φ evolves through the value F then 1


becomes

negative hence violating the positive  assumption (53). We would expect that a consistent
theory be endowed with a mechanism that forbids the violation of the condition (53). In other

words if 1( )


¢
F

is positive (negative) then the scalar field Φ values permitted by the field

equations should not be allowed to be less (more) than the value .F Essentially, the same was
pointed out in the context of the Friedmann cosmology where the argumentation was based
on the field space dynamics [35].

Second, the differentiable 1


assumption (54) states that the limiting value

Mlim
1

61( )· ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

 


¢
F - F =

FF

holds. Here if  diverges, then M is the order of the first nonzero derivative 0,
M1( )( )


¹

otherwise M = 0. If the nonvanishing 1( ) ¢ assumption (55) is also applied then we can

always replace 1( ) 
¢ by 1

F - F
whenever calculating the limiting values in the process where

 diverges. In the following we shall use the assumptions (53)–(55) on and therefore in the
current paper M = 0 or M = 1 are the two possibilities.

3.1.4. Barrow–Parsons classes. The assumptions (53)–(55) on  are restrictive, but there
are many studies which consider a functional form of  obeying (53)–(55). A rather general
classification of the possible functional forms of  in the JF BDBW parametrization (2) was
given by Barrow and Parsons [21]. There they constrained the constant powers ib so that the

parametrized post-Newtonian conditions ( )w Y  ¥ and 03

( )
( ) w

w
¢ Y
Y

were satisfied. Here,
analogously to [28], we write out the further necessary restrictions on the Barrow–Parsons
classes so that the assumptions (53)–(55) are satisfied.

1)
1 4

2 3
1 ,

J

2
2

1

( ) w
º

Y
Y +

µ Y -
Y
Y

b
1

2
.1b >

i) Assumption (53) is fulfilled if .Y ¥ The latter is assured by assumption (56).
ii) Assumption (54) is fulfilled if 1b is an arbitrary positive integer power.
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iii) Assumption (55) is fulfilled if 1.1b =

Hence we obtain
1

1
J

2

 
µ Y -

Y
Y

fulfilling the assumptions (53)–(55). Such

functional forms have been considered e.g. in [24, 50].

2)
1

ln ,
J

2
2⎛

⎝⎜
⎞
⎠⎟ 

µ Y
Y
Y

b

.2
1

2
b >

i) Assumption (53) is fulfilled if Y ¥ and 0.Y
ii) Assumption (54) is fulfilled if 2b is an arbitrary positive integer power.
iii) Assumption (55) is fulfilled if 1.2b =

Hence we obtain ln1 2
J

( ) 
µ Y Y

Y
fulfilling the assumptions (53)–(55). Such

functional forms have been considered e.g. in [17, 51].

3)
1

1 ,
J

2
3⎛

⎝⎜
⎞
⎠⎟ 

µ Y -
Y
Y

b

0.3b >

i) Assumption (53) is fulfilled if .Y ¥
ii) Assumption (54) is fulfilled for arbitrary .3b
iii) Assumption (55) is fulfilled for arbitrary .3b

Hence we obtain 11 2
J

3( ) 
µ Y -

bY
Y

fulfilling the assumptions (53)–(55) for

arbitrary .3b Such theories have been studied e.g. by [23, 52, 53].

3.2. Transformations: part II

In the current subsection we analyze the transformation properties in the vicinity of the GR
regime. In order to simplify the notation we drop an explicit reference to the point of
evaluation .0() Let us start by studying the local Weyl rescaling of the metric tensor (20) and
the scalar field redefinition (21). The former shall be restricted on mathematical grounds, but
in order to impose conditions on the latter we make use of the assumptions (53)–(55) on . A
preluding remark concerning the scalar field redefinition (21) is in order. Let us impose the
function f̄ ( ¯ )F to be at least directionally continuous but retain the possibility that the
Jacobian f d d¯ ¯¢ º F F of this coordinate transformation in the 1-dimensional field space may
be singular or have zeros at some isolated value of the scalar field .F̄ The latter is motivated
by the observation that in the GR regime  can be singular in some parametrization.

Whenever the consistency between the constraints imposed on the transformation
functions ḡ and f̄ , and on the four arbitrary functions , , ,{ }   a is studied, we consider
having two parametrizations where the assumptions on the four arbitrary functions hold. We
then check whether the transformation between these two obeys the constraints on the
transformation functions.

3.2.1. Constraints on �γ . We hereby restrict the local Weyl rescaling of the metric tensor (20)
by making mathematical assumptions, and analyze how the resulting constraints are related to
the restrictions (56)–(58), which are imposed on the three arbitrary functions , , .{ }  a

We start by assuming the local Weyl rescaling of the metric tensor (20) to be regular, i.e.
the function ¯ ( ¯ )g F and its first and second derivative, d d¯ ¯g F and d d2 2¯ ¯g F , respectively, do
not diverge because otherwise we would introduce geometrical singularities via the local
rescaling of the metric. Note that this excludes the interesting possibility of ‘conformal
continuation’ [54]. However, here we are focused upon the GR regime which cannot be
consistent with conformal continuation anyway. Let us proceed by pointing out a conclusion
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that follows from introducing the Weyl rescaling and the scalar field redefinition backwards,
i.e. (26)–(27),

f
f

d

d

d

d

d

d

d

d
. 62

( )( ) ( )¯ ¯ ¯
¯

¯ ¯
¯

( )
¯ · ¯ ( )g

g g g
g- ¢ º -

F

F
º

F

F
=

F
F

F
F

º ¢ ¢

From assumption ḡ¢ < ¥ we deduce that if f̄ ¢  ¥ then in the same process 0g¢ 
because otherwise ḡ¢ would necessarily diverge. Hence as f̄ ¢  ¥ implies f 0¢  we
conclude that for any transformation where f 0¢  also 0.g¢  The latter is a necessary
condition. The actual value of the uncertainty 0 · ¥ depends on the limiting process which
we have assumed to have a nondiverging result.

In order to show that the constraints on the transformation function ḡ are in accordance
with the assumptions on the three arbitrary functions , , ,{ }  a given by (56)–(58), let us
write out the following:

e , 632¯ ( )¯ = g

fe 2 , 642 ( )¯ ¯ ¯ ( )¯  g¢ = ¢ + ¢ ¢g

f f fe 2 4 4 . 652 2 2( )( )( )¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )¯     g g g =  + ¢ + ¢ ¢ ¢ + ¢  +  ¢g

From (63) we see that a diverging ḡ would render ̄ infinite because we have assumed
0 .< < ¥ Due to the latter, without finetuning ḡ¢  ¥ implies ̄¢  ¥ and
analogously from (65) for the relation between ḡ and .̄ Hence, if we have two
parametrizations where the restrictions (56)–(58) imposed on the three arbitrary functions

, ,{ }  a hold, then the local Weyl rescaling connecting these parametrizations must be
regular. In the spirit of the discussion around (62) let us consider the case f .¯¢  ¥ From
(64) we ascertain that in the same process¢ must vanish for the limiting value flim ¯ ¢ ¢ < ¥
to hold, because otherwise ̄¢ would necessarily diverge. Again, let us make use of the
backward transformations (26)–(27) in order to write the transformation (64) backwards

f0 e 2 . 662 ( )¯ ¯ ( )!
  g= ¢ = ¢ + ¢ ¢g

We hence conclude that in the process under consideration f 0¢  implies 0g¢  , and this
is in perfect agreement with the discussion after (62).

Note that in the context of regular Weyl rescaling (20) the conditions (56), i.e.
0 < < ¥ and 0 e2< < ¥a are mathematical necessities for the existence of the
transformations from an arbitrary frame to the Einstein frame (3) 1E( ) = and to the Jordan
frame (2) 0 ,J( )a = respectively.

3.2.2. Constraints on �f . Let us recall that the function f̄ ( ¯ )F is imposed to be at least
directionally continuous. However, it might be the case that f 0¯¢ = or f .¯¢  ¥ The latter
has already been used implicitly because according to (41) in the EF canonical
parametrization (3) 1.Ē = Therefore, if  diverges in some other parametrization then also
f f0 .E

2¯ ¯ ( ¯ ) ¢ =  = ¢
Let us continue analyzing an analogous case more generically. We consider having

,  ¥ ̄ < ¥ and f 0.¯¢ = We proceed under the differentiable 1


assumption (54). Due

to the transformation properties of  itself, i.e. (41), the transformation of the first derivative
reads
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f

1 2 1
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¯
¯ ¯ ¯ ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
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⎛
⎝

⎞
⎠  

¢
=


+ ¢ ¢

According to the nonvanishing 1( ) ¢ assumption (55) the lhs of (67) is nonzero. The
second term on the rhs is zero and hence the first term on the rhs must be nonzero. The
positive  assumption (53) states that ̄ is nonvanishing and therefore also f 0¯ ¹ in the
case under consideration.

Table 1 maps all the possibilities for transformations between  and .̄ Here six
situations can be considered, but not all of them are distinct. The two possibilities v) and vi)
for which f̄ ¢  ¥ are taken into account by looking at the two possibilities i) and ii) for
f 0¯¢  backwards. In order to examine the viability of the remaining four, let us analyze
each case separately.

i) The case f 0¯¢  and f0 .¯<  < ¥
This case does not have any pathologies so we keep it.

ii) The case f 0¯¢  and f .¯  ¥
In order to reveal a pathology let us consider a transformation where the JF BDBW
quantities are considered to be the ‘unbarred’ ones. Therefore 1¢ = and the
transformation (65) implies ̄  ¥, which is something we want to avoid. Despite
the fact that we used the JF BDBW parametrization, this behaviour is fairly general
because of the assumption (59) arising from first order small source conditions (49)–(50).
Due to such a pathology we neglect this possibility.

iii) The case f0 ¯< ¢ < ¥ and f .¯ < ¥
This transformation is also perfectly normal and we keep it.

iv)
a) Almost the same as previous. Only that in this case both  and ̄ diverge. We

keep it.
b) The case f0 ¯< ¢ < ¥ and f .¯  ¥

This case possesses the same pathology as case ii) and we therefore neglect it.

We will thus focus upon two possible cases. We shall refer to them according to the
characteristics of the transformation function f .¯
a) ‘The regular case’, based on cases iii) and iv) a) in table 1,

f f0 , ;

, or , . 68

¯ ¯
¯ ¯ ( )   

< ¢ < ¥  < ¥

< ¥ < ¥  ¥  ¥

b) ‘The singular case’, based on case i) in table 1,

f f0, 0 , 0;

, . 69

¯ ¯ ¯
¯ ( ) 

g¢  <  < ¥ ¢ 

 ¥ < ¥

We have also explicitly included knowledge of ḡ¢ given by discussion after (62) or
equivalently after (66).

3.2.3. Transformation of the GR regime. In subsection 3.1 we gave a notion of the GR
regime, and it is important to ascertain whether the given notion is invariant under the local
rescaling of the metric tensor (20) and under the scalar field redefinition (21). Let us start by
focusing upon the vanishing source conditions (45)–(46) for the GR regime at .0F Due to the
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constraints (56)–(58) imposed on the three arbitrary functions , ,{ }  a and the positive 
assumption (53) the following holds [30, 41]

2 2

2

2 3
0

4

2

2 3
0,

70

2

3

2

2 2

2
2

( )
( )

( )
( )

( )







 

  




 

 

¢
¢
º 

¢
º 

¢ - ¢

+ ¢
= 

¢
º

¢ - ¢

+ ¢
=

ln

2

ln

2

2

2 3
0

ln

4

2

2 3
0. 71

1

3

1

2

1

2

( )
( )

( )
( )

( ) ( )

( ) ( )









 

 





 

 

a

a

¢

¢
º 

¢
º 

¢ - ¢

+ ¢
=


¢
º

¢ - ¢

+ ¢
=

The expressions on the left of both (70)–(71) are invariants in the spirit of subsection 2.3, and
therefore their numerical value does not depend on the parametrization. On the right of (70)–
(71) are the vanishing source conditions (45)–(46) respectively. Hence we see that if these
conditions hold in one parametrization then they hold in any other. In what follows, the left
hand sides of (70)–(71) are referred to as the ‘invariant vanishing source conditions’.

The derivative of the scalar field Φ with respect to the spacetime coordinate transforms as
follows: f .¯ ¯ ¯ F = ¢ Fm m Hence for the regular case (68) if 0 F =m then also 0.¯ ¯ F =m For
the singular case (69) the latter does not have to be zero since f 0.¯¢ = Hence it might seem
that the notion of the GR regime, i.e. ,0F = F 0,

0
 F =m F

is not invariant. Nevertheless,
taking into account the equation of motion (44) for the scalar field allows us to overcome this
problem. Namely, let us proceed by considering the transformation

f f f g g 2 . 72( )¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )g F = ¢ F +  FF + ¢ ¢  FF -  FFm n m n m n mn
sr

s r m n

Again, for the regular case (68) if 0 F =m and 0 F =m n then also 0¯ ¯ F =m and
0.¯ ¯ ¯ F =m n However, in the singular case 0 F =m n implies 0¯ ¯ F =m because f 0.¯ ¹

Therefore 0 F =m is preserved for both the regular (68) and the singular (69)
transformation. Last but not least, as all other terms in (44) are zero, ¯ ¯F must also vanish.
The latter is automatically fulfilled if 0¯ ¯ ¯ F =m n and we conclude that the GR regime is
preserved under the local Weyl rescaling (20) and under the scalar field redefinition (21).

Let us point out that in the singular case (69) the scalar field value ,F defined by (48), is
transformed into ,•F given by (47). However, the vanishing source conditions (45)–(46) are
fulfilled for both cases. Also note that due to the invariant vanishing source conditions (70)–
(71)

f 73• •( ){ } { }{ } { } ¯ ¯ ¯ ( ) È ÈF F = F F

holds. In the following we will not distinguish between elements of the same set.

3.2.4. Transformation of the hyperbolic critical points. Let us consider the transformation of
the first order small source conditions (49)–(50). Here we do not provide a thorough analysis
but rather give an insightful explanation. The condition (49) is discussed in more detail in
section 4.

We start by pointing out that the conditions under consideration are not given by
invariants in the sense of subsection 2.3 but they are closely related to the following invariant
objects
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In principle we have taken the derivative of the invariant vanishing source conditions (70)–
(71) w.r.t. the invariant 3 [30] and in the following we shall refer to (74)–(75) as the
‘invariant first order small source conditions’. The quantities (74)–(75) differ in principle
from the (noninvariant) first order small source conditions (49)–(50) only by a factor 1

2
in

front of the second additive term on the rhs. As mentioned in the discussion after (50) one of
the additive terms must be zero in the GR regime. The same holds for (74)–(75). We hence
conclude that (49)–(50) are nonvanishing (vanishing) if and only if the invariants (74)–(75)
respectively are nonvanishing (vanishing). In other words, if the necessary conditions (49)–
(50) are fulfilled in one parametrization then they are also satisfied in any other.

Therefore from (51)–(52) we obtain the following: if in the JF BDBW parametrization

(2) 01

2 3( )¢ ¹w+
then also for the same theory written in the EF canonical parametrization (3)

0.a ¹

4. Dynamical system in the Friedmann cosmology

The aim of this section is to work through a relatively simple example in the framework of the
Friedmann cosmology (see subsubsection 2.1.3) in order to prove the following. Let us
consider the GR regime as a hyperbolic critical point in the context of the dynamical systems
approach. The qualitative behaviour of the critical point is determined by invariants, and
therefore whether the theory under consideration converges to GR or repels from it does not
depend on the chosen parametrization. In order to show the nontriviality of the transforma-
tions we provide a lot of calculational details.

4.1. Theory: part III

Let us start by using the notation of the current paper to rewrite the approach formulated in
[35, 36]. Our focus is upon the transformation properties. Therefore, in order to make our
calculations less lengthy and more transparent we truncate the physical side of the theory by
considering flat Friedmann cosmology without matter, i.e., k T0 and 0.= =mn Note that this
entails the dropping of the coupling function α from the theory. Due to the latter, the notion of
the GR regime differs slightly from the one used in [35] because one of the vanishing source
conditions, namely (46), is no longer needed.

4.1.1. Critical points for potential  dominated Universe with ρ ¼ 0; k ¼ 0. We want to study
the scalar field equation (18) as a dynamical system in order to write out the critical points and
study their properties. Let us follow the well-known prescription: solving the Friedmann
constraint equation (16) as a quadratic equation for H and plugging the answer into the scalar
field equation of motion (18). The resulting equation reads

ℓ
ℓ

¨ 1

2

1

2

1
3 3

2
762 2 2 2

2 2
2˙ ˙ ˙ ˙ ( )⎜ ⎟⎛

⎝
⎞
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eF =
¢
F +

¢
F - F F + -

¢
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where 1e = + ( 1e = - ) corresponds to the positive (negative) solution of (16) as a quadratic
equation for H, i.e. in principle to the expanding (contracting) Universe. Analogically to (44)
we made use of the invariants, defined by (40), and , given by (41), in order to write (76) in
a more compact form. For a critical point one must impose 0.Ḟ = For the latter to be
sustained ¨ 0F = must also hold, i.e. the rhs of (76) must vanish. Hence the critical point
corresponds to the GR regime discussed in section 3. In the context of the latter, the scalar
field equation (76) describes a process that may approach this regime. In the current case we
have omitted the influence of α and therefore the condition (46) and the equivalent invariant
condition (71) are no longer needed. Hence the GR regime ( 0 F =m and the vanishing
source conditions (45)–(46)) reduce to

0, 0. 772˙ ( )


F =
¢
=

Therefore, analogically to (47)–(48), while also taking into account the first order small
source condition (49), we distinguish the scalar field values as

: 0 and 0 and
1

0, 78• 2 2
• •

•

( ) 


F ¢ =  ¹ ¹
F F

F

:
1

0 and
1

0 and 0. 792 ( )⎜ ⎟⎛
⎝

⎞
⎠ 


 


F =

¢
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F F
F

It is well known that for the scalar field value •F the equation (76) can be rewritten as an
ordinary dynamical system [33, 43, 49], but the case corresponding to F must be studied
more carefully. Namely, if  diverges then (77) gives necessary but insufficient conditions.
From (76) one can see that ¨ 0

0˙ F =
F=
F=F can only be achieved if for a trajectory of a specific

solution under consideration the limiting value

lim
1

0 80
0

2˙ ( )
˙

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭




¢
F =

F
FF

holds. In the case when the latter is violated, a trajectory passes the point in the phase space
where the conditions given by (77) are fulfilled, i.e. the critical point. Hence, e.g. for an
attractive critical point the limiting value (80) restricts the ‘final’ part of the trajectory—i.e.
the order of the magnitude of Ḟ relative to F - F in processes where the scalar field Φ

evolves toward F —and stops there. Taking into account the knowledge of (61) we ascertain
that the expression under the limiting value (80) is equivalent to .x

x

2˙ Therefore, it necessarily

holds up to Ḟ being the same or higher order small compared to F - F [33].

4.1.2. Perturbed equation. Let us introduce the following notation for small perturbations

x , 810 ( )º F - F

x 82˙ ˙ ( )º F

where 0F is defined by either (78) or by (79).
Let us first write out the first order perturbed approximation of (76) as follows

E x
M x

x
C x C x¨

2
0. 83x

2

1 2
˙ · ˙ · ( )( ) º - + - + =e

While deriving the first order perturbed equation (83) for (76) we dropped the first term on the
rhs of (76) because it is definitely a higher order term. For the first order approximation of the
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third and the fourth term on the rhs of (76) we use the Taylor expansion and the following
constants

C
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The last equality for C2 holds because if x 0 , then due to the critical point condition (77)
the numerator vanishes and we can make use of the l’Hospital rule. The constant C2 is the
same as that defined by the first order small source condition (49).

The second term on the rhs of (76) is a bit tricky. Namely, if  is finite then this is
already a higher order term and we drop it, but if  diverges then calculating the Taylor
expansion introduces coefficients that depend on the ratio .x

x

˙ The latter is clearly something
we want to avoid because the properties of a critical point should not depend on the choice of
the trajectory. We instead make use of the knowledge obtained by the second remark (61) in
subsubsection 3.1.3. Hence, due to the nonvanishing 1( ) ¢ assumption (55), if  diverges then

x

x

1

2

1 1

2
852

2˙ ˙ ( )⎜ ⎟⎛
⎝

⎞
⎠ 
¢

F ~

holds. In the diverging  case, this is the first order approximation to the limiting value (80).
In order to capture these two possibilities ( < ¥ and   ¥) in one equation we
substitute the second term on the rhs of the scalar field equation (76) by

M x

x
M x

2
, lim

1
86
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2
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˙ · ( )⎜ ⎟
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⎫⎬⎭
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¢



where M, introduced in (61), is a constant with the following properties. If  < ¥ then
M = 0 and the term vanishes but if   ¥ then M = 1 and the term survives. Hence, we
conclude that (83) is the first order approximation of (76).

4.1.3. Linearized equation. We have obtained a first order approximated equation (83), but
in the case of the F critical point (79), where  diverges, this is a nonlinear equation and we
cannot apply the usual methods of dynamical systems directly. However, it turns out that (83)
contains a hidden linearity. Let us make use of the coordinate transformation that was
proposed in [35]

x
x

x
87

M
2

˜
∣ ∣

( )º 

where the meaning of ± becomes clear later. The derivatives of x̃ with respect to
cosmological time t read

x
x
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x x
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The obtained results can be used to rewrite (83) as

M
x x C x

M
C x

2

2
¨ 2

2
0. 89

M
2 1 2{ }∣ ∣ ˜ ˜̇ ˜ ( )

-
+ -

-
=e

We are not interested in the trivial solution x 0.º Therefore the expression in curly brackets
must be equal to zero and this is a linear equation which can be written as an ordinary
dynamical system
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where y x.˜ ˜̇º In the following we shall use ‘linearized equation’ to refer to the dynamical
system (90) or equivalently to the underlying expression in the curly brackets of (89). The
term ‘linear equation’ is used to denote the perturbed equation (83) in the case when M = 0.
Note that for the latter the coordinate transformation (87) is actually an identity transformation
up to a sign. Hence, for the case M = 0 the linear equation and the linearized equation
coincide. The solutions and hence also the properties of the critical point are now determined
by the eigenvalues of the matrix that contains the constant coefficients.

4.1.4. Solutions. The eigenvalues of the square matrix in (90) are

C C M C
1

2
2 2 . 911 1

2
2( )( ) ( ) ( )l = -  + -e e e



The latter can be used to write out the solution for x.˜ In order to determine the behaviour of
x 0º F - F , we invert the relation (87) as

x x . 92M
2

2˜ ( )=  -

If the eigenvalues l+ and l- are different then the solution for x reads

x t K Ke e 93t t M1 2

2
2( )( ) ( )=  +l l -

e e
+ -

where K1 and K2 are integration constants. In principle the same result was obtained in [30].
Due to the power

M

2

2 -
the theory under consideration is indeed endowed with a mechanism

called for in the first remark of subsubsection 3.1.3. Namely, the diverging  implies M = 1
as mentioned in the discussion after (86), and in that case x x .2˜=  Therefore we have an

encoded mechanism, which due to the nonvanishing 1( ) ¢ assumption (55) does not allow us

to violate the positive  assumption (53). In the case M = 0 the power 1
M

2

2
=

-
because, as

mentioned earlier, the coordinate transformation (87) is then an identity transformation up to
a sign.

The ± in coordinate transformation (87) can now be reasoned as follows: ifM = 0 then it
does not matter whether x x̃= or x x̃= - , but ifM = 1 then in the spirit of the first remark in

subsubsection 3.1.3 one must have x 0 x 0( ) if 01( ) ¢ > 0 .1( )( ) ¢ < The same applies

to the solution (93) and there the sign ‘+’ (‘−’) corresponds to 01( ) ¢ > 0 .1( )( ) ¢ <

Because of the previous reasoning we have also dropped the absolute value in (93).
Let us point out that in the case of the diverging  if the nonvanishing 1( ) ¢ assumption

(55) is not fulfilled then C 02 = , as can be read out from (84) or equivalently from (49).
Therefore, one eigenvalue is zero and the critical point is nonhyperbolic. We conclude that the
first order small source conditions (49)–(50) in subsubsection 3.1.2 are indeed well motivated.

4.2. Transformations: part III

4.2.1. Transformation of the perturbed equation. In order to study the transformation of the
first order perturbed equation (83), let us first consider the transformation of x, ẋ and ẍ. For
the latter, we take the definitions (81)–(82), write these in terms of the ‘barred’ quantities—
i.e. make use of (21), (39), also taking into account the cosmological time transformation (35)
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—and then use the Taylor expansion around x 0,¯ = x 0¯̇ = and ẍ 0¯ = in order to obtain
polynomials with respect to x,¯ x̄̇ and ẍ .¯ At the moment we shall keep the terms up to the
second order for reasons that will become clear soon:
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where f: .0 0 0¯ ¯ ( ¯ )F F = F When calculating the transformation of the first order perturbed
equation (83) we only keep the leading order terms. Therefore, for the regular case (68) we
substitute as follows:
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However, in the singular case (69) the linear order coefficients vanish due to f 00
¯¢ = and

the leading order is actually quadratic. Hence, in the singular case (69) we substitute as
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Let us point out that in the case of the singular transformation (69) the order of magnitude of
the small perturbation 0F - F changes, i.e. x that is first order small in its own
parametrization is actually second order small with respect to x.¯ Also note that x 0˙ =
whenever x 0.¯ =

One can show that the coefficients M C C, , ,1 2
e defined by (86) and (84) respectively,

transform as follows
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where Q1¯ and Q2¯ are the limiting values
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The assumption that f̄ ( ¯ )F itself is at least directionally continuous implies that if 0F  F
x 0( ) then also 0¯ ¯F  F x 0 .( ¯ ) Hence, when calculating the limiting values we do not
actually have to be concerned about the limiting process itself. The limiting values (102)–
(103) can be calculated, for example, by making use of the l’Hospital rule. The results read

Q
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for the singular case 69
, 1041 1
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Let us point out that based on the definition of M, given by (86), one can determine from
table 1 that

M M M M

M M

0 and 0 or 1 and 1 for the regular case 68 ,

1 and 0 for the singular case 69 . 106

¯ ¯ ( )
¯ ( ) ( )

= = = =
= =

This result is consistent with the transformation rule (99) for M and the results (104)–(105).
By making use of the transformation rules (97), (99)–(101) and results (104)–(105) we

ascertain that in the regular case, the transformation of the perturbed equation (83) reads
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Analogously by using (98) etc for the singular case (69) the transformation reads
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Note that in the case of the singular transformation (69) a nonlinear equation (M = 1) is
transformed into a linear one (M 0¯ = ), but its structure is nevertheless preserved.

4.2.2. Transformation of the linearized equation. The transformation of the quantity x,˜
defined by (87), reads

x
x
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f f

Q x 109
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where Q3¯ is the limiting value
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The latter can easily be calculated by using the knowledge of (106) and the l’Hospital rule.
The result reads
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Therefore for both the regular (68) and the singular (69) case Q3¯ is nonvanishing and
nondiverging. Therefore the order of magnitude of x̃ is preserved under both transformations.

Combining the transformation rules of M and C2, given by (99) and (101) respectively,
reveals
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Note that in the context of the invariant first order small source condition (74) the constant M
effectively plays the role of 1

2
which makes the difference between the invariant and

noninvariant first order small conditions, given by (74) and (49), respectively. Namely, due to
the definition (49) of C2 and the GR regime conditions (77) (see also (45)) in the Friedmann
cosmology
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Let us stress that neither C2 nor M are defined via invariants. However, combining these two
gives us an expression that only gains a finite multiplier under the local Weyl rescaling (20)
and under the scalar field redefinition (21). As suggested by (113) the expression M C2 2( )-
is practically the one introduced by the invariant first order small source condition (74).

The results (100), (109) and (112) impose that the expression in curly brackets in (89),
hence also the linearized equation transforms as follows

x C x
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C x Q x C x
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2
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2
. 1141 2 3
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-
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-e g e-

Let us study the transformation of M C2 2( )- in more detail. Instead of considering the
intermediate results (99) and (101) let us write the quantity M C2 2( )- using the definitions
for C2, M and invariants, given by (84), (86) and (40) respectively, as follows
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Hence M C2 2( )- is indeed the invariant first order small source condition (74). Such
analogous procedures can also be carried through in the case of condition (46). The previous
results suggest that including the nonlinear term M x

x2

2˙ is an inevitable step.

4.2.3. Transformation of the solutions. A straightforward calculation reveals that due to the
previously given transformation rules (100) and (112), the transformation of the eigenvalues
(91) reads

e . 116
0

¯ ( )¯l l=e g e


-


The result (115) allows us to write the eigenvalues (91) as [30]
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making the transformation properties obvious.
In order to obtain the transformation of the solution (93)

x t K Ke e 118t t
1 2

M
2

2( )( )¯ ¯ ¯ ¯ ( )¯ ¯ ¯ ¯¯ ¯ ¯=  +l le e
+ - -

in addition to the eigenvalues, one must also consider the transformation (35) of the
cosmological time t. In (35) only the transformation of the time coordinate differential is
given. Here we are interested in the transformations calculated at the critical point. Hence, in
the lowest approximation level when considering the integral te d¯¯ò g we may assume the
scalar field to be approximately constant. In other words t te .0 ¯¯= g Therefore

t t . 119· ¯ · ¯ ( )l l=e e
 

Hence the quantity t ,· le
 i.e. the power of the exponent in the solution (93), is transformed

into itself.
Last but not least, we have to consider the transformation of the power

M

2

2 -
of the

solution (93). In the regular case (68) M M̄= and the power does not change. However, in
the singular case (69) M M 11

2
¯= + and hence

M M M

2

2

2

2 1
2

2

2
. 120

1
2

¯ ¯ ( )
-

=
- -

=
-

Therefore, the power of the solution (93) for x is twice the one for x.¯ The latter is in perfect
agreement with the transformation of the small perturbation in the singular case (69), i.e. (98)
where it was pointed out that x x .2¯~ The difference of the power is a mathematical artefact
due to the mapping between nonlinear and linear approximate equations, both covered by
(83). One should keep in mind that in the generic parametrization, the value of the scalar field
Φ itself is not measurable and the physical meaning of the scalar field is not the same for
different parametrizations. For example the JF BDBW parametrization (2) scalar field Ψ
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encodes the nonminimal coupling 1

1
Y = while the EF canonical parametrization (3) scalar

field j encodes the scalar field space volume [30].
However, leaving aside the power, the characteristic behaviour of a solution, i.e.

convergence to the GR regime or divergence from it, is determined by the eigenvalues (91)
and is therefore preserved under the local Weyl rescaling of the metric tensor (20), and under
the scalar field redefinition (21), even if the latter is singular.

5. Summary

We investigated first generation scalar–tensor theories of gravity, characterized by four
arbitrary coupling functions , , ,{ }   a and invariant under the local rescaling of the metric
and scalar field redefinition (20)–(21), (24). Our main focus was upon the GR regime where
the scalar field evolution has ceased and the remaining dynamical degrees of freedom are
identical to those of GR. It is well known that in the GR regime the scalar field redefinition
(21) connecting the JF BDBW (2) and EF canonical (3) parametrization is singular. As we
pointed out in the introduction, this singularity is physically meaningful and not due to an
unfortunate choice of coupling functions. Therefore, for showing the equivalence of the
parametrizations it is also important to study the transformation properties in the case of a
singular scalar field redefinition.

In section 2 we started with the general action functional (1) and derived the equations of
motion for the metric tensor gmn (8), for the scalar field Φ (13) and the matter continuity
equation (14). Specifying the FLRW line element gave the equations of motion (16)–(19) in
the Friedmann cosmology. By (28), (31), (34) we showed how under the transformations
these basic equations gain an overall multiplicative term containing the transformation
functions of the metric rescaling and of the scalar field redefinition. To facilitate further
discussion we also recalled the invariants (40) introduced in our earlier paper [30].

Section 3 concentrated on the GR regime, defined by (43), (45)–(46). This definition is
supplemented by assumptions (56)–(57) that enforce the consistent notion of the GR regime
and complementary restrictions (53)–(55), (58)–(60) necessary for making the corresponding
critical point hyperbolic. To satisfy these conditions, the allowed transformation functions fall
into two cases, regular (68) and singular (69). These results were used to show that the notion
of the GR regime is invariant under the local Weyl rescaling and the scalar field redefinition.

In section 4 we considered small perturbations of the scalar field (81) in the neigh-
bourhood of the GR regime in the context of potential dominated Friedmann cosmology. It
turned out that the perturbed equations (83) in different parametrizations were in corre-
spondence, despite the fact that this equation itself might be nonlinear in one parametrization
and linear in some other, related by a singular transformation (69) giving relations (98). For
instance, the perturbed equation in the JF BDBW parametrization in the case when ω diverges
is nonlinear, while the corresponding perturbed equation in the EF canonical parametrization
is linear. These results complement our recent paper [30] where a slightly different approach
was used. Last but not least, we showed that the qualitative behaviour of the solutions, i.e.
whether the theory converges to the general relativity regime or repels from it is independent
of the parametrization.

To sum up, we demonstrated that if the general relativity regime as a hyperbolic critical
point is under consideration then there is an exact correspondence between different para-
metrizations, even if the scalar field redefinition connecting them is singular. However, in the
latter case it is rather important to note that the order of magnitude of the small perturbation of
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the scalar field around some constant value changes under the singular scalar field redefinition
as in (98).

From a more general viewpoint we have developed a methodology which rather rigor-
ously allows us to check whether the imposed conditions are sufficient for establishing the
equivalence of parametrizations. It would be interesting to study whether the correspondence
is preserved if the conditions (49)–(50) leading to the hyperbolic critical point are loosened.

As an outlook it would also be interesting to study the transformation properties in the
context of second and third generation scalar–tensor theories [7, 8] while generalizing the
local Weyl rescaling (conformal transformation) of the metric tensor to a disformal trans-
formation [55].
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