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a b s t r a c t 

In parameter estimation, it is common place to design a linearly constrained minimum variance estima- 

tor (LCMVE) to tackle the problem of estimating an unknown parameter vector in a linear regression

model. So far, the LCMVE has been mainly studied in the context of stationary constraints in stationary

or non-stationary environments, giving rise to well-established recursive adaptive implementations when

multiple observations are available. In this communication, provided that the additive noise sequence is

temporally uncorrelated, we determine the family of non-stationary constraints leading to LCMVEs which

can be computed according to a predictor/corrector recursion similar to the Kalman Filter. A particularly

noteworthy feature of the recursive formulation introduced is to be fully adaptive in the context of se- 

quential estimation as it allows at each new observation to incorporate or not new constraints.

© 2018 Elsevier B.V. All rights reserved.
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. Introduction

In the signal processing literature dealing with parameter es-

imation, one of the most studied estimation problem is that of

dentifying the components of a N -dimensional observation vector

 y ) formed from a linear superposition of P individual signals ( x )

o noisy data ( v ): y = Hx + v 1 , a.k.a. the linear regression problem,

here H is a N -by- P matrix and v is a N -dimensional vector. The

mportance of this problem stems from the fact that a wide range

f problems in communications, array processing, and many other

reas can be cast in this form [1,2] . As in [ 3 , Section 5.1], we adopt

 joint proper complex signals assumption for x and v , which al-

ows to resort to standard estimation in the mean squared error

MSE) sense defined on the Hilbert space of complex random vari-

bles with finite second-order moment. A proper complex random

ariable is uncorrelated with its complex conjugate. Any result de-

ived with joint proper complex random vectors are valid for real

andom vectors provided that one substitutes the matrix/vector

ranspose conjugate for the matrix/vector transpose. Additionally,

t is assumed that: (a) v is zero mean, (b) x is uncorrelated with
∗ Corresponding author.

E-mail addresses: francois.vincent@isae.fr (F. Vincent), eric.chaumette@isae.fr (E.

haumette).
1 Throughout the present communication, scalars, vectors and matrices are rep- 

esented, respectively, by italic, bold lowercase and bold uppercase characters. The

calar/matrix/vector transpose conjugate is indicated by the superscript H . [ A B ] and
A 
B

]
denotes respectively the matrix resulting from the horizontal and the vertical
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toncatenation of A and B.  E[  · ] denotes the expectation operator. 
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 , (c) the model matrix H and the noise covariance matrix C v are

ither known or specified according to known parametric models.

n this setting, the weighted least squares estimator of x [4] : 2 

 

 

b = arg min 

x

{
( y − Hx ) 

H C 

−1 
v ( y − Hx )

}
(1a) 

 

(
H 

H C 

−1 
v H 

)−1 
H 

H C 

−1 
v y , (1b)

oincides with the maximum-likelihood estimator [5] , if x is de-

erministic and v is Gaussian, and is known to minimize the MSE

atrix among all linear unbiased estimators of x , that is ̂  x b = W 

bH y

here [6] : 

 

b = arg min 

W

{
E 

[ (
W 

H y − x 

)(
W 

H y − x 

)H
] }

s.t. W 

H H = I (2a)

 C 

−1 
v H 

(
H 

H C 

−1 
v H 

)−1
, (2b) 

hatever x is deterministic or random. Furthermore, since the ma-

rix W 

b is as well the solution of [2,6] : 

 

b = arg min 

W

{
W 

H C v W 

}
s.t. W 

H H = I , (2c)

̂ x b is also known as the minimum variance distortion less re-

ponse estimator (MVDRE) [1,2,6] . However, it is well known that

he performance achievable by the MVDRE strongly depends on

he accurate knowledge on the parametric model of the obser-

ations, that is on H and C v , and are not particularly robust in
2 The superscript b is used to remind the reader that the value under considera- 

ion is the “best” one according to a given criterion.
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the presence of various types of differences between the model

and the actual environment [ 1 , Section 6.6], [ 7 , Section 1], [8] .

Thus linearly constrained minimum variance estimators (LCMVEs)

[6,9,10] have been developed in which additional linear constraints

are imposed to make the MVDRE more robust [ 1 , Section 6.7],

[ 7 , Section 1], [8] : 

W 

b = arg min 

W

{
W 

H C v W 

}
s.t. W 

H � = �, � = [ H �] , � = [ I ϒ] ,

(3a)

= C 

−1 
v �

(
�H C 

−1 
v �

)−1 
�H , (3b)

where � and Y are known matrices of the appropriate dimen-

sions, at the expense of an increase of the minimum MSE achieved,

since additional degrees of freedom are used by the LCMVE in

order to satisfy these constraints. However, firstly, the closed-

form solution of the LCMVE (3b) requires the inversion of C v ,

which can be too computationally complex for numerous real-

world applications. Secondly, C v may be unknown and must be

learned by an adaptive technique. Interestingly enough, if x and

v are uncorrelated, C v can be replaced by C y in (1b) , (2b) and

(3b) , which means that either C v can be learned from auxiliary

data containing noise only, if available, or C y can be used instead

and learned from the observations. Therefore, when several ob-

servations { y 1 , . . . , y k } are available, adaptive implementations of

the LCMVE have been developed resorting to constrained stochas-

tic gradient [6,11] , constrained recursive least squares [12,13] and

constrained Kalman-type [14,15] algorithms. The known equiva-

lence between the LCMVE and the generalized side lobe canceller

processor [9,10,16] allows to resort as well to standard (uncon-

strained) stochastic gradient or recursive least squares [2] . These

recursive algorithms belongs to the set of sequential estimation

algorithms compatible with applications where the observations

become available sequentially and, immediately upon receipt of

new observations, it is desirable to determine new estimates based

upon all previous observations (including the current ones). It is

an attractive formulation for embedded systems in which compu-

tational time and memory are at a premium, since it does not re-

quire that all observations are available for simultaneous (“batch”)

processing. Last, this can be computationally beneficial in cases in

which the number of observations is much larger than the number

of signals [17] . 

However, the aforementioned recursive algorithms can only up-

date sequentially the LCMVE (3b) in non-stationary environments,

i.e. when the observation model changes over time ( y l = H l x + v l ,

1 ≤ l ≤ k ), for a given set of linear constraints W 

H � = � [2,6,11–

15] , which defines the set of recursive LCMVEs for stationary con-

straints. An example of a recursive LCMVE for non-stationary con-

straints in non-stationary environments is given by the MVDRE ̂  x b
k

of x , based on observations up to and including time k . Indeed,

provided that the additive noise sequence { v 1 , . . . , v k } is temporally

uncorrelated, ̂ x b 
k

follows a predictor/corrector recursion similar to

the Kalman Filter [ 17 , Section 1] [18] :

 x 

b 
k = ̂

 x 

b 
k −1 + W 

bH 
k 

(
y k − H k ̂  x 

b 
k −1 

)
, ̂ x 

b 
1 = 

(
H 

H 
1 C 

−1 
v 1 

H 1 

)−1 
H 

H 
1 C 

−1 
v 1 

y 1 , (4)

where W 

b 
k

is analogous to a Kalman gain at time k . In this case,

the set of constraints (2c) is non-stationary since it is defined as

W 

H 
H k = I , where H k is the matrix resulting from the vertical con-

catenation of k matrices H 1 , ... , H k , and W is an unknown matrix

of the appropriate dimensions. Off course, from a theoretical point

of view, if all the observations { y 1 , . . . , y k } are stacked into a sin-

gle vector y 
T 
k = 

(
y T 

1 
, . . . , y T 

k

)
, the “batch form” (3b) obtained from

y k allows to implement LCMVEs with non-stationnary constraints,

which are, unfortunately, hardly likely to be computable as the

size of y increases. Therefore the novel contribution of the present
k 
ommunication is to introduce, provided that the additive noise se-

uence { v 1 , . . . , v k } is temporally uncorrelated, the family of linear

onstraints yielding a LCMVE which can be computed recursively

n the form of (4) in place of the “batch form” (3b) . It appears

hat this family only contains non-stationary constraints, includ-

ng the aforementioned MVDRE. A particularly noteworthy feature

f the recursive formulation introduced is to be fully adaptive in

he context of sequential estimation as it allows at each new ob-

ervation to incorporate or not new constraints. The relevance of

he proposed recursive formulation of the LCMVE is exemplified in

ection 3 in the context of array processing. 

. Recursive linearly constrained minimum variance estimators

In the following: a) the vector space of complex matrices with

 rows and P columns is denoted M C ( N, P ) , b) the matrix result-

ng from the vertical concatenation of k matrices A 1 , ... , A k of same

olumn number is denoted A k . We consider the linear measure-

ent/observation model: 

 k = H k x + v k , k ≥ 1 , (5a)

here x is a P -dimensional complex unknown vector, y k is a

 k -dimensional complex measurement/observation vector, H k ∈
 C ( N k , P ) and the complex noise sequence { v k } k ≥ 1 is zero-mean

nd temporally uncorrelated. Then (5a) can be extended on a hori-

on of k points from the first observation as: 

 k = 

⎛
⎝y 1 

.. . 
y k 

⎞
⎠ =

⎡
⎣H 1 

.. . 
H k 

⎤
⎦ x +

⎛
⎝v 1 

.. . 
v k 

⎞
⎠

= H k x + v k , 

∣∣∣∣∣
y k , v k ∈ M C ( N k , 1 ) 

H k ∈ M C ( N k , P ) 

N k = 

∑ k
l=1 N l 

. (5b)

Let W k = 

[D k −1 
W k 

]
where D k −1 ∈ M C 

(
N k −1 , P 

)
and W k ∈

 C ( N k , P ) . The aim is to look for the family of linear constraints:

 

H

k �k = �k , �k = 

[
H k �k 

]
, �k = [ I ϒk ] , (6)

here �k and Y k are known matrices of the appropriate dimen-

ions, yielding a LCMVE ̂  x b 
k 

= W 

bH 

k y k where (3a) and (3b) :

 

b 

k = arg min 

W k

{
W 

H

k C v k 
W k 

}
s.t. W 

H

k �k = �k (7a)

 C 

−1 
v k

�k

(
�

H 

k C 

−1
v k

�k

)−1

�H 
k , (7b)

hich can be computed according to a predictor/corrector recur-

ion of the form, ∀ k ≥ 2: 

 

 

b 
k = ̂

 x 

b 
k −1 + W 

bH
k 

(
y k − H k ̂  x 

b
k −1

)
= 

(
I − W 

bH 
k H k 

)̂
 x 

b 
k −1 + W 

bH 
k y k . (8)

 key point to solve the problem at hand is to notice that, since

 v l , v k 
= C v k 

δl 
k 

, then for any W k satisfying (6) :

 k 

(
W k 

)
= W 

H 

k C v k 
W k = D 

H

k −1 C v k −1 
D k −1 + W 

H 
k C v k W k = P k 

(
D k −1 , W k 

)
,

(9)

hich suggests that some ad hoc linear constraints (6) could yield

eparable solutions for D k −1 and W k , which is investigated in a first

tep. 
• First step

If we recast �k =
[
H k �k 

]
as �k = 

[�k −1 
�k 

]
where �k −1 =

H k −1 �k −1 

]
and �k = [ H k �k ] , then an equivalent form of (6) is:

 

H

k �k = �k ⇔ D 

H

k −1 �k −1 = �k − W 

H �k . (10)
k 
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. Conclusions

In this communication, for multiple noisy linear observations

hich noises are uncorrelated, we have introduced the family

f linear constraints yielding a LCMVE computable via a predic-

or/corrector recursion similar to the Kalman Filter in place of

he “batch form”. It appears that this family only contains non-

tationary constraints. A noteworthy feature of the recursive for-

ulation introduced is to be fully adaptive in the context of se-

uential estimation as it allows optional constraints addition that

an be triggered by a preprocessing of each new observation or

xternal information on the environment. 
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