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In parameter estimation, it is common place to design a linearly constrained minimum variance estima-
tor (LCMVE) to tackle the problem of estimating an unknown parameter vector in a linear regression
model. So far, the LCMVE has been mainly studied in the context of stationary constraints in stationary
or non-stationary environments, giving rise to well-established recursive adaptive implementations when
multiple observations are available. In this communication, provided that the additive noise sequence is
temporally uncorrelated, we determine the family of non-stationary constraints leading to LCMVEs which
can be computed according to a predictor/corrector recursion similar to the Kalman Filter. A particularly
noteworthy feature of the recursive formulation introduced is to be fully adaptive in the context of se-
quential estimation as it allows at each new observation to incorporate or not new constraints.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the signal processing literature dealing with parameter es-
timation, one of the most studied estimation problem is that of
identifying the components of a N-dimensional observation vector
(y) formed from a linear superposition of P individual signals (x)
to noisy data (v): y = Hx +v!, a.k.a. the linear regression problem,
where H is a N-by-P matrix and v is a N-dimensional vector. The
importance of this problem stems from the fact that a wide range
of problems in communications, array processing, and many other
areas can be cast in this form [1,2]. As in [3, Section 5.1], we adopt
a joint proper complex signals assumption for x and v, which al-
lows to resort to standard estimation in the mean squared error
(MSE) sense defined on the Hilbert space of complex random vari-
ables with finite second-order moment. A proper complex random
variable is uncorrelated with its complex conjugate. Any result de-
rived with joint proper complex random vectors are valid for real
random vectors provided that one substitutes the matrix/vector
transpose conjugate for the matrix/vector transpose. Additionally,
it is assumed that: (a) v is zero mean, (b) x is uncorrelated with
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v, (c) the model matrix H and the noise covariance matrix Cy are
either known or specified according to known parametric models.
In this setting, the weighted least squares estimator of x [4]:?

X = arg mxin{ (v - H0)"¢;' (y - Hx)} (1a)

— (H'C;'H) 'HIG,y, (1b)

coincides with the maximum-likelihood estimator [5], if x is de-
terministic and v is Gaussian, and is known to minimize the MSE
matrix among all linear unbiased estimators of x, that is X? = WbHy
where [6]:

Wb=argne\i]n{E[(W”y—x)(W”y—x)H]} st. WiH=1 (2a)

= C,'"H(H"C,'H) (2b)

whatever X is deterministic or random. Furthermore, since the ma-
trix WP is as well the solution of [2,6]:

W’ = arg ne\iln{W”CvW} s.t. WiH=I, (2c)

xb is also known as the minimum variance distortion less re-
sponse estimator (MVDRE) [1,2,6]. However, it is well known that
the performance achievable by the MVDRE strongly depends on
the accurate knowledge on the parametric model of the obser-
vations, that is on H and Cy, and are not particularly robust in

2 The superscript ? is used to remind the reader that the value under considera-
tion is the “best” one according to a given criterion.



the presence of various types of differences between the model
and the actual environment [1, Section 6.6], [7, Section 1], [8].
Thus linearly constrained minimum variance estimators (LCMVEs)
[6,9,10] have been developed in which additional linear constraints
are imposed to make the MVDRE more robust [1, Section 6.7],
[7, Section 1], [8]:

Wb = argm“i,n{W”CVW} st. WIA=T, A=HQ], T=[I7Y],
(3a)

= G;'A(ARGA) T, (3b)

where € and Y are known matrices of the appropriate dimen-
sions, at the expense of an increase of the minimum MSE achieved,
since additional degrees of freedom are used by the LCMVE in
order to satisfy these constraints. However, firstly, the closed-
form solution of the LCMVE (3b) requires the inversion of Cy,
which can be too computationally complex for numerous real-
world applications. Secondly, C;, may be unknown and must be
learned by an adaptive technique. Interestingly enough, if x and
v are uncorrelated, Cy can be replaced by Cy in (1b), (2b) and
(3b), which means that either Cy can be learned from auxiliary
data containing noise only, if available, or Cy can be used instead
and learned from the observations. Therefore, when several ob-
servations {yi,...,Yy,} are available, adaptive implementations of
the LCMVE have been developed resorting to constrained stochas-
tic gradient [6,11], constrained recursive least squares [12,13] and
constrained Kalman-type [14,15] algorithms. The known equiva-
lence between the LCMVE and the generalized side lobe canceller
processor [9,10,16] allows to resort as well to standard (uncon-
strained) stochastic gradient or recursive least squares [2]. These
recursive algorithms belongs to the set of sequential estimation
algorithms compatible with applications where the observations
become available sequentially and, immediately upon receipt of
new observations, it is desirable to determine new estimates based
upon all previous observations (including the current ones). It is
an attractive formulation for embedded systems in which compu-
tational time and memory are at a premium, since it does not re-
quire that all observations are available for simultaneous (“batch”)
processing. Last, this can be computationally beneficial in cases in
which the number of observations is much larger than the number
of signals [17].

However, the aforementioned recursive algorithms can only up-
date sequentially the LCMVE (3b) in non-stationary environments,
i.e. when the observation model changes over time (y; = Hx+ v,
1<I<k), for a given set of linear constraints WHA =T [2,6,11-
15], which defines the set of recursive LCMVEs for stationary con-
straints. An example of a recursive LCMVE for non-stationary con-
straints in non-stationary environments is given by the MVDRE iﬁ
of x, based on observations up to and including time k. Indeed,
provided that the additive noise sequence {vq, ..., v,} is temporally
uncorrelated, i}: follows a predictor/corrector recursion similar to
the Kalman Filter [17, Section 1] [18]:

o~ ~ o~ o~ -1
Xp =%+ W (v, —HX_,), X} = (HIC'Hy) HYCly:, (4)

where Wz is analogous to a Kalman gain at time k. In this case,
the set of constraints (2c) is non-stationary since it is defined as
WHﬁk =1, where H, is the matrix resulting from the vertical con-
catenation of k matrices Hy, ... ,H;, and W is an unknown matrix
of the appropriate dimensions. Off course, from a theoretical point
of view, if all the observations {y;,...,y,} are stacked into a sin-
gle vector y; = (¥].....¥}). the “batch form” (3b) obtained from
¥, allows to implement LCMVEs with non-stationnary constraints,
which are, unfortunately, hardly likely to be computable as the
size of ¥, increases. Therefore the novel contribution of the present

communication is to introduce, provided that the additive noise se-
quence {vq,..., v, } is temporally uncorrelated, the family of linear
constraints yielding a LCMVE which can be computed recursively
in the form of (4) in place of the “batch form” (3b). It appears
that this family only contains non-stationary constraints, includ-
ing the aforementioned MVDRE. A particularly noteworthy feature
of the recursive formulation introduced is to be fully adaptive in
the context of sequential estimation as it allows at each new ob-
servation to incorporate or not new constraints. The relevance of
the proposed recursive formulation of the LCMVE is exemplified in
Section 3 in the context of array processing.

2. Recursive linearly constrained minimum variance estimators

In the following: a) the vector space of complex matrices with
N rows and P columns is denoted M¢ (N, P), b) the matrix result-
ing from the vertical concatenation of k matrices Ay, ..., A, of same
column number is denoted A;. We consider the linear measure-
ment/observation model:

k>1, (5a)

where X is a P-dimensional complex unknown vector, y; is a
Nj-dimensional complex measurement/observation vector, Hy
Mc (Ng, P) and the complex noise sequence {Vy}-1 IS zero-mean
and temporally uncorrelated. Then (5a) can be extended on a hori-
zon of k points from the first observation as:

Vi = Hix + vy,

V1 H; \'2
Ye={:]=]:[Xt|:
Vi Hy Vi
B Yio Vk € Mc (N, 1)
=Hx+V, | H e Mc(WN,, P) . (5b)
Ne= TN

Let W, = [ﬁ‘ﬁkl] where Dy_j e Mc(Ni_1.P) and W e
Mc (Ng, P). The aim is to look for the family of linear constraints:

W, A =Ty A= [He ] Te=[17,] (6)

where €, and Y, are known matrices of the appropriate dimen-
sions, yielding a LCMVE X! = WZ”yk where (3a) and (3b):

WZ =arg nlin{WfCVka} s.t. fok =Ty (7a)
Wi

e (e !
=Cvk1Ak(A,<(ka1Ak> I,

(7b)
which can be computed according to a predictor/corrector recur-
sion of the form, Vk > 2:

X=X, + Wi (v, — HXE_) = (1- WHH )X, + Wity (8)

A key point to solve the problem at hand is to notice that, since
Gy, = CkaL , then for any W, satisfying (6):

— J— — —H — —
P (W) = W/CICVka =D Gy, , D1 + W C, Wy =P (Dy_;. Wk)v
9)
which suggests that some ad hoc linear constraints (6) could yield
separable solutions for D;_; and Wy, which is investigated in a first
step.
o First step
— — — J— $ —
If we recast Aj=[H, @] as Ax=] qﬁ;]] where @;_; =

[Hi_1 @_1] and @, = [H, 2], then an equivalent form of (6) is:

—_H— 71.1 —
Wi A =Ty & D& =T~ Wi/ ®,. (10)
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Fig. 1. MSE of recursive MVDREs and LCMVEs versus k.

Therefore, according to (9):

—b . [=H — —H —

D, , —arg gmlnk_@ﬁ_,nk_, ] st. Dy @, =T~ Wi,
-1

(11)
that is, provided that ®,_; and Gy, _, are full rank, (3a) and (3b):

—b —_ —H —_ -1 H
Du=Cv]‘_,°k—1(°k-1cv‘f_,°k—1) (T, —WH®,)". (11b)

It is noteworthy that (11b) can be recasted as:

—b —b H —_ —H — -1

Doy = Wo_ (I-W/H)" + G T, (‘I’k-lcv‘.‘_. @k_,) e .
(12a)

where ©;_; =T, —~WH &, — (1-WHH,)T,_; and:

—» . — —
Wi =arggvnnlwf_1€n-.wk_1] st. W& =T,,. (12b)
k-1

Thus, the LCMVE (7a) follows a predictor/corrector recursion
(8) with separable solutions for D;_; and W iff, YW,:

D, =W, (1 _wak)H €0, =0
=T — W@, — (1- WiH,) Ty,

that iS iff, VWk: rk —Wﬁbk = [l - WfHk Yk —Wfﬂk] =
(1-WHH,)T,_;, which requires that Ty, =[I Y, ;] where

k_1= Yy, and 2, =H,Y,_ ;. Ergo, the LCMVE (7a) follows a
predictor/corrector recursion (8) iff (11a):

—H —
Dj_1 i1 = I — Wi @ = (1 - WEH,)[T Y 4],

or equivalently, iff:

C,} :W:[H’H 2 4

[ Y4l
Hk Hka—l] [ k 1]

and (12b) amounts to:

(13)

W:—l = arg%lin{W:’_IC,—,k_ka_l} S.L. Wg_] l_ﬁk—l §k_l]
k-1

= [I Y], (14)

. = —bH _ .
which means that Xp_ | = W:_ﬂk_] is a LCMVE as well. The spe-
cific form of (13) reflects the fact that the linear constraints at time
k —1 (14) propagates at time k via C,: (13). Interestingly enough,
additional linear constraints on W, can be introduced on-line as
shown in a second step.

« Second step

Let us notice that P (Dy_;,W,) =Dy 1Cr, ,Dy_s + WHC, W,
can be recasted as:

Py (ﬁ:q , Wk) =W/C, W, + (I-W/H,)P,_, (Wz_]) (I_wﬁHk)H,

that is as:
—b —bH _ —bH _ H
Py (Dk-hwk) =E [(Dk-lvk—l - Wka) (Dk-1vk—1 - W:ka) ]

(16)

where ﬁ:’jﬁk_l —ngk = Wl;”j]vk—'l —Wil (ka,?jﬁk_] +Vk).
Then two cases are possible:
(1) no additional linear constraints on W, are introduced. In
that case, as shown at the first step, the LCMVE only propagates
at time k the existing linear constraints at time k — 1 (14) via C,}

(13). Then the solution of: W,': = argminwk{Pk(ﬁ£_1,Wk)}, is well
known and given by [18], [17, Section 1]:

R =Ry + W (v — HiRy), (17a)
S =H,P2_HI+C,, W2=S/THP} . (17b)
PY = (I-W¥H,)P? . (17¢)

(2) additional linear constraints on Wy, i.e. W;'Ak =T, are in-
troduced on-line and (13) must be updated to take them into ac-
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Fig. 2. MSE of recursive and batch form LCMVEs versus k, P; = 0.9.

count, leading to:

H, 9, 0
Cf:W‘:I:kl k-1

[ Yoy Tl 18
Hk Hka—l Ak] [ k-1 k] ( )

In that case, the solution of: Wﬁ:argminwk {Pk(_D:_l.Wk)} s.t.
WH A, =T, is analogous to a linearly constrained Wiener filter
[2, (2.113)]. Thus (7a) follows a predictor/corrector recursion given
by:

X =R, + W (v —HXP_,), (192)

S = HPL_HY +C,, Wy =S;"HPL ,, T, =T, — WHA,, (19b)
W2 = Wi + ;" A(Al'S; A ) T, (19¢)

P — (1- WHP}_, + Te(A}S; " Ac) 7 TY.
In both cases:

Pg_] = wl]'_lki_l']]{W‘:_lch_ka_ll S.L W‘:—l [ﬁk_1 §k—1] = [l Tk_]],

(19d)

which means that the same rationale can be applied at time k — 1
and so forth until time k = 2.

 Summary

The linear constraints (6) allowing the LCMVE to follow the pre-
dictor/corrector recursion:

X =% "‘WzH(Yk - Hk?f(’_l),

are built as follows:
> at time k = 1, a set of linear constraints of the form:

(20a)

WA =T, {Ay=H;, Ty =1} or {A; =[H; ], T1=[1 11]},

(20b)
must be set, leading to:
X = Wiy, W =G A (ARCTA,) T,
Py = Iy (A A) T, (20c)

> at time k> 2:

(a) either no additional linear constraints on Wy, are introduced
and ig must be computed according to (17a)-(17c) in order to
propagate the existing set of linear constraints,
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Fig. 3. MSE of recursive and batch form LCMVEs versus k, 7 = 0.5.

(b) or additional linear constraints on Wy, i.e. WfAk =Ty, are

introduced on-line and i,“’ must be computed according to (19a)-
(19d) in order to propagate the updated set of linear constraints.

3. Illustrative examples

To some extent, the LCMVE can robustify the MVDRE in the
presence of parametric modelling errors in measurement matri-
ces Hy2H, (@), where 6 is a deterministic vector value. Indeed, if
the value of @ is known during the observations, then its value
can be incorporated into any expression involving the paramet-
ric model, such as MLEs, MVDREs, LCMVEs, etc... Otherwise an
estimated value # must be provided. Experimental systems at-
tempt to eliminate or minimize the parametric modelling errors
8 —6 by careful calibration of the system. However, system pa-
rameters # may change over time due to thermal effects, ag-
ing of components, changes in the location of the sensors, etc...
Thus, for the batch form of MVDRE, it is common place to add
derivative constraints in order to mitigate the effect on H(6) of
a small change in system parameters @ [1, Section 6.7.1], leading
to a batch form of LCMVE. Thanks to the recursive form of the
LCMVE released above, this mitigation technique can now be used

in sequential estimation in the form of on-line linear constraints
wgaﬂk(é)/ae =0, if 6 reduces to a single value, for the sake
of simplicity. As an example we consider a ULA of N =100 sen-
sors equally spaced at & = A/2 (half-wavelength) and an imping-
ing signal x = (1 + j)/+/2 with broadside angle a = 10°, embed-
ded in a spatially and temporally white noise: y, = hy (6, @)x + vy,
h(6.a) = ,...,emN-Dgsin@),) Cy.v, =18.. Due to a calibra-
tion error, or array deformation (thermal effects, aging, etc ...), the
actual inter-sensor distance is 8 =0.996, i.e. 6 — 6 = A/200. We
superimpose on the Fig. 1, the MSE (P,f) of the recursive MVDRE
based on (17a)-(17c) and the MSE of the recursive LCMVE based on
(19a)-(19d) where T, =0 and Ay = dhy (0, «)/36. The “Matched”,
respectively the “Mismatched”, estimators are based on recursions
computed with the true value 6, respectively with the assumed
value 6. To check the validity of (17a)-(17c) and (19a)-(19d) for the
true value 6, the empirical MSEs of the MVDRE and of the LCMVE
are assessed with 10# Monte-Carlo trials (“... (Sim)"). Fig. (1) ex-
emplifies the strong dependency of MVDRE's MSE on the accurate
knowledge on the parametric model, and the trade-off brought by
the recursive LCMVE. If Hy(#) is perfectly known, then the addition
of on-line linear constraints increases the minimum MSE achieved.
However, if the on-line linear constraints are adequately chosen,
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Fig. 4. MSE of recursive and batch form LCMVEs versus k, P; = 0.1.

the LCMVE obtained may become more robust to parametric mod-
elling errors than the MVDRE. Please note that both the recursive
MVDRE and the recursive LCMVE considered are associated to non-
stationary constraints (13) and (18), respectively.

If calibration uncertainties must be mitigated for each new ob-
servations yy, in some sequential estimation problems it is more
optimal to add on-line constraints that are triggered by a prepro-
cessing of y, or by external information on the environment. As an
example we consider the same scenario as above but involving a
smaller ULA of N = 10 sensors, which can be regarded as perfectly
calibrated (f = 6). An intermittent jammer is located at a known
broadside angle ¢; in the angular vicinity of the signal of interest,
i.e. @ = oy — a3qp/4, where 345 denotes the beamwidth. The jam-
mer to noise power (JNR) is 40 dB and its probability of activation
at each observation is denoted by P;. We assume that the jammer
is detected whenever it is activated. At each jammer detection, the
null constraint [1, Section 6.7.1] wf hy (6, ¢j) =0 is added to cancel

the jammer signal, and the recursive LCMVE is updated according
to (19a)-(19d) where T, =0 and Ay = h (6, ;). In the absence of
jammer detection, the recursive LCMVE is updated without addi-
tional constraint, that is according to (17a)-(17c). We compare the
proposed dynamic jammer cancellation with the standard proce-
dure [1, Section 6.7.1] which consists in imposing a permanent null
constraint W’,;’Ek (6, 2) = 0 in the batch form of the LCMVE ((17a)-
(17¢)), i.e. T, = [0 1] and A, = [ (6, @) hy (6, oy)]. When the null
constraint is set, the jammer signal is cancelled at the expense of
an increase of the output noise power in comparison with a jam-
mer free scenario, which increases the minimum MSE achieved.
Therefore, to limit the increase of the MSE achieved, the null con-
straint must be set only when the jammer is activated, which is
highlighted by Figs. 2-4 displaying the MSE of both solutions ob-
tained for 3 values of P;: 0.9, 0.5, 0.1. As expected, the superiority
of the recursive LCMVE over the batch form LCMVE increases as P;
decreases.



4. Conclusions

In this communication, for multiple noisy linear observations
which noises are uncorrelated, we have introduced the family
of linear constraints yielding a LCMVE computable via a predic-
tor/corrector recursion similar to the Kalman Filter in place of
the “batch form”. It appears that this family only contains non-
stationary constraints. A noteworthy feature of the recursive for-
mulation introduced is to be fully adaptive in the context of se-
quential estimation as it allows optional constraints addition that
can be triggered by a preprocessing of each new observation or
external information on the environment.
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