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ABSTRACT

The modern world requires high reliability and availability with minimum
ownership cost for complex industrial systems (high-value assets). Main-
tenance and mission planning are two major interrelated tasks affecting
availability and ownership cost. Both tasks play critical roles in cost savings
and effective utilization of the assets, and cannot be performed without
taking each other into consideration. Maintenance schedule may make
an asset unavailable or too risky to use for a mission. Mission type and
duration affect the health of the system, which affects the maintenance
schedule. This article presents a mathematical formulation for integrated
maintenance and mission planning for a fleet of high-value assets, using
their current and forecast health information. An illustrative example for a
fleet of unmanned aerial vehicles is demonstrated and evolutionary-based
solutions are presented.
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1. Introduction

Today’s industry requires high availability for high-value assets (HVAs), such as aircraft, helicopters,
power plants and unmanned aerial vehicles (UAVs). High availability can be achieved by avoiding
failures through effective maintenance planning based on near real-time health monitoring. Even
though maintenance planning and mission planning greatly affect each other, they are often consid-
ered and planned independently. This article presents an integrated methodology for maintenance
and mission planning of a fleet of HVAs based on their current and forecast future health states.

Different mission types affect the health of assets differently. Some missions are harsh and lead to
more degradation, whereas others are easy, with less degradation. For example, a ‘combat’ mission for
an aircraft will degrade its health more than a ‘cross-country’ mission. Maintenance aims to enhance
the asset’s health by reducing the degradation caused by missions. Thus, it is important to perform
mission and maintenance planning together because of their interacting nature.

Preventivemaintenance involves real-timemonitoring through sensors. Diagnostics aims to deter-
mine existing failure and prognostics aims to estimate the remaining useful life (RUL). Readers are
referred to Lei et al. (2018) for a review on machine diagnostics and prognostics. RUL represents the
time left before failure stops the system performing its intended function (Atamuradov et al. 2017).

Sincemaintenance planning is related to a defined future, the forecast health and RUL information
should be incorporated in the maintenance planning. The estimated RUL is valuable only if it is used



in mission and maintenance planning. Studies on maintenance planning have either ignored mis-
sion planning or received mission planning as an input. The opposite is also true. This article aims
to address this gap in the literature by presenting a model for integrated maintenance and mission
planning for a fleet of HVAs using RUL information on the assets of the fleet.

A literature review, model details, results and conclusions are presented in Sections 2–5,
respectively.

2. Literature review

The literature on maintenance planning and mission planning is discussed in the following
subsections.

2.1. Maintenance planning

Periodic maintenance (PM) is the most common approach to maintenance, and aims to reduce the
consequences of failures by performingmaintenance at regular intervals. Most of the research on PM
covers the identification of the best maintenance period. A review of this work is presented by Ben-
Daya, Duffua, and Raouf (2000). Other studies focus on finding the best grouping for maintenance
actions (e.g. Ab-Samat and Kamaruddin 2014). Even though PM reduces the probability of failure, it
leads to unnecessary maintenance in addition to necessary maintenance.

The maintenance period in PM is determined based on the reliability analysis of similar systems.
Prognostics and healthmanagement (PHM) introduces new opportunities for more effectivemainte-
nance planning compared to PM. In PHM, monitoring data unique to the system under observation
are used to identify the system health (Son et al. 2013; Sankararaman 2015). PHM recommends
actions specific to the system under observation.

Industry today seeks maintenance solutions based on real-time health monitoring of assets (Hu
et al. 2012). When a failure is detected through diagnostics, there is not much to plan. The failure
should be fixed immediately to avoid higher failure consequences. Thus, planning requires forecasting
the future health of the assets, which is performed through prognostics. Forecast health creates the
opportunity to calculate the associated risk, which may be used for effective planning. Prognostics
gives the RUL in the form of time to failure or the forecast probability of failure. Since the forecast
involves uncertainty, the general approach of RUL in maintenance planning is in the form of failure
probability (Camci 2009).

The classical approach to maintenance planning with RUL information is to set a threshold
on the RUL values. Maintenance is scheduled when estimated RUL reaches the threshold (Javed,
Gouriveau, and Zerhouni 2013; Sandborn andWilkinson 2007; Haddad, Sandborn, and Pecht 2012).
Although threshold optimization is possible (Marseguerra, Zio, and Podofillini 2002), the inef-
fectiveness of this approach for multiple components or multiple assets has been demonstrated
(Camci 2009).

Maintenance scheduling using a genetic algorithm with RUL for a production system has been
presented by Yang, Djurdjanovic, and Ni (2008). In this work, a cost function based on production
rate is minimized for the best maintenance schedule. Tian and Liao (2011) presented a maintenance
planning system for multiple components using a proportional hazards model. A dynamic model
using the component health states anddetected failures is presented inBouvard et al. (2011). A version
of the travelling salesman problem focusing on maintenance planning of HVAs located in different
places with RUL was proposed by Camci (2014). The model has been expanded to better represent
real maintenance planning for a set of geographically distributed assets (Camci 2015).

A dynamic maintenance planning method to handle changes in reconfigurable systems was pre-
sented by Xia et al. (“Reconfiguration-Oriented” 2017). There are also studies where maintenance
is planned based on different criteria depending on the business need (Xia et al., “Lease-Oriented”
2017; Xia et al. 2018). The throughput of a manufacturing system has been used as a constraint in a



cost minimization problem to identify the best maintenance plan (Nahas and Nourelfath 2018). Liao,
Zhang, and Jiang (2017) studied single-machine maintenance scheduling. Their model aims to meet
the requirements of production scheduling and preventive maintenance. Lecerf, Allaire, andWillcox
(2015) used the degradation of UAVs to estimate their capability through simulation.

None of the work cited above involves maintenance and mission planning using RUL. To the best
of the authors’ knowledge, this article addresses this problem for the first time in the literature.

2.2. Mission planning

Mission planning deals with methods that allow scheduling of a set of operations and tasks to achieve
a main objective or function. It takes different constraints into account, such as the human andmate-
rial resources needed in the mission. Several studies on mission planning have been reported in the
literature, especially in the aerospace domain. Mission planning that integrates the efforts of space
and ground systems for spacecraft has been presented by Harinath, Mahadevan, and Sarma (2008).
Vachtsevanos et al. (2005) presented an overview of mission planning and analysis for UAVs. A hier-
archical model was proposed, with different layers such as mission planning, trajectory generation
and vehicle navigation. Similarly, Lin et al. (2014) proposed a hierarchical, three-level, decomposed
framework tomodel the overall mission planning problem. In this framework, the first-level problem
deals with the top-level mission scenario parameters, the second-level problem deals with the vehicle
visiting strategy and the third-level problem deals with flying orbital missions.

A planning method using mixed-integer nonlinear programming is presented by Zhang et al.
(2011). The method investigates single-phase parameters and phase-connecting parameters simul-
taneously. The method improves the rendezvous mission’s overall performance. Evers et al. (2014)
consider three extensions to the standard orienteering problem to model characteristics of practical
relevance in planning reconnaissance missions of UAVs. A centralized–distributed hybrid control
framework is proposed by Wei, Blake, and Madey (2013) for mission assignment and scheduling.

Mission planning and health monitoring are discussed together in Liu, Wang, and Liu (2009).
Their article presents a mission-planning method for a flying robot to monitor the health of pow-
erlines. The proposed method can determine the best checking order, the optimal space path and
the best flight trajectory. Although health monitoring and mission planning are discussed together
in the article, the mission planning and health monitoring are for different systems. Mission plan-
ning is done for the flying robot but the health monitoring targets powerlines using the flying robot.
McClenaghan et al. (2013) present an integrated pathway for surgical missions and a report on its
performance in action.Mission planning integrated with failure diagnosis system state is discussed in
Balaban and Alonso (2013). The proposed method is based on partially observable Markov decision
processes. The mission planning in that article is defined as the route of a UAV during a flight.

To the best of the authors’ knowledge, mission planning using current and forecast health infor-
mation on the fleet of assets incorporated with maintenance scheduling has not been presented
previously. This article addresses this gap in the literature by proposing a methodology to deal with
mission planning and maintenance scheduling together, using the current and forecast health of the
assets.

3. Methodology

The problem involves assigning missions to assets and scheduling the maintenance of assets for a
given period. There are ss number of mission types. For each mission type i, Si,t number of missions
i is required at time t. There is a total of

∑s
i=1 Si,t missions to be performed at a given t. There are

N number of assets to be assigned for each mission type. Assignment decisions are made through
the decision variable (Yi,j,k,t), which is a binary decision variable. It is equal to 1 if the kth mission
in mission type j is assigned to asset i at time t; 0 otherwise. The second decision variable is used for
maintenance scheduling (Xit), which is 1 if maintenance is scheduled for asset i at time t; 0 otherwise.



The problem is formulated as a cost (Z) minimization problem with three main terms: expected
failure cost, maintenance cost and missed mission cost (Equation 1). Expected failure cost (FC)
represents the expected consequence of a failure. Expected failure cost is the sum of expected fail-
ure costs of each asset, which is calculated as the product of the cumulative failure probability (CPi)
of asset i and its fixed failure cost (Fi), as shown in Equation (2). Fixed failure cost is the repair and
downtime cost or the cost of loss of the asset due to failure. Maintenance cost (MC) is the product of
unit maintenance cost (Mi) for asset i and the total number of maintenance events to be performed
in the given period T, as in Equation (3). The total number of maintenance events is calculated as
the sum of the binary decision variable (Xit). The last main term in the cost equation is the missed
mission cost, which is the consequence of not performing a requested mission type at time t on time.
Cost per time unit delay of not performing mission type j is Cj. The number of missed missions in
mission type j at time t is represented by MTj,t . Missed cost is the product of Cj and the sum of all
mission types in the given period (T), as shown in Equation (4). The details of each term are discussed
in detail below.

Min Z = FC + MC + MM (1)

FC =

N
∑

i=1

CPi × Fi (2)

MC =

N
∑

i=1

(

Mi ×

T
∑

t=1

Xit

)

(3)

MM =

S
∑

j=1

(

Cj ×

T
∑

t=1

MTj,t

)

(4)

First, the calculation of failure cost will be discussed. The cumulative failure probability (CPi) used
in the failure cost formula is calculated based on the effective failure probability (Pij). The effective
failure probability is obtained using two failure probability estimations and themaintenance schedule.
The first failure probability estimation is a vector of failure probabilities obtained from the prognos-
tics module for all assets at all time units within the given period (FP1it). This probability forecast is
obtained from the current and forecast health of the asset based on the real-time monitoring, diag-
nostics and prognostics. The solid line in Figure 1 illustrates this probability estimation. This failure
probability estimation will be true until maintenance is performed. When a maintenance action is
performed, the estimation will become invalid because the component on which the analysis is based
may be replaced or fixed. Thus, reliability analysis will be used to forecast the failure probability after
maintenance (FP2it). Since no sensory data have been collected to identify and forecast the health of
the asset (since the new component will be used after the maintenance event), it is acceptable to use
the reliability data obtained from similar systems that have degraded after previousmaintenance. The
dashed line in Figure 1 illustrates the probability forecast based on the reliability information.

In addition to failure forecasts from prognostics and reliability analysis, the forecast failure prob-
ability of the asset will depend on the maintenance schedule. The failure probability will be obtained
from prognostics until the maintenance is carried out, and will be based on the reliability data after
the maintenance event. Consider a case in which the maintenance is an oil change. The prognostics
module analyses the quality of the oil and predicts the oil’s RUL. This prediction is valid until the
oil is changed. After the oil change, the prediction of oil quality should rely on the reliability data
because monitoring data are obtained from already replaced oil. If the oil change is scheduled for
next week, the quality of the oil for the following week cannot be based on the monitoring data of the
oil currently in use.



Figure 1. Effect of maintenance on failure probability.

Figure 2. Cumulative failure probability based on prognostics, reliability forecasts and maintenance time: (a) early maintenance;
(b) late maintenance.

The effect of maintenance time (performing maintenance earlier or later) is demonstrated in
Figure 2. In Figure 2, the failure probability forecast obtained from the prognostics module (solid
line) determines the failure probability until the maintenance event. After the maintenance has been
carried out, the probability forecast from the reliability analysis (dashed line) becomes effective. The
cumulative failure probability (CPi) is the area under the effective failure probability (Pit) (solid line
before maintenance; dashed line after maintenance). Figure 2(a) shows a case where the maintenance
is performed earlier, whereas Figure 2(b) shows another case with later maintenance. The cumulative
failure probability (CPi) (area under effective probability; shaded area) is greater in Figure 2(b) since
the maintenance has been performed later. The effect of maintenance time (early or late) is quantified
using cumulative failure probability (CPi) in the objective function. Note that FP1it and FP

2
it are input

parameters to themodel used to calculate the effective failure probability forecast (Pit) and cumulative
probability (CPi) based on a given maintenance schedule.

The effective failure probability is received either from the prognosticsmodule (FP1it) or from relia-
bility analysis (FP2it). If there is nomaintenance scheduled for the asset before time t, then the effective
failure probability is calculated as Pij = FP1i,j. If there is at least one maintenance event before time t,
then the effective failure probability is obtained from the reliability data, as shown in the ‘after main-
tenance’ part of Figure 3. The time index of the failure probability obtained from reliability analysis



Figure 3. Failure probability with and without maintenance.

should be shifted by the time difference between the last maintenance and the corresponding time
index. For example, a failure probability estimate for the next 50 time units is obtained from the prog-
nostics module and maintenance is scheduled at time 14. The failure probability for time units 1–13
is equal to the failure estimations obtained from the prognostics module, and is Pi,1:13 = FP11:13. The
failure probability at time unit 14 is 0 (Pi,14 = 0), since this is the maintenance time. The failure prob-
ability for time units 15–50, obtained from reliability analysis, is Pi,15:50 = FP21:36. The thick solid line
in Figure 3 shows the effective failure probability. Equation (5) presents the formulation of the failure
probability selection process. If maintenance is scheduled at time t, then the failure probability is 0.
Otherwise, it is calculated with probabilities obtained from prognostics and reliability analysis. T(m)

represents the latest maintenance before time t.

Pit =











0 If Xit = 1

FP1i,t × max

(

0; 1 −
t−1
∑

r=1
Xir

)

+ FP2i,t−T(m)
× min

(

1;
t−1
∑

r=1
Xir

)

If Xit = 0

∀t = 1 : T, ∀i = 1 : N (5)

It is assumed that the failure probability is constant within a time unit. If the time unit is a day,
then the failure probability within a day does not change. The time unit should be narrow enough
compared to the expected life of the asset. For example, aweek is narrow enough for a componentwith
an expected life of 20 years, but not narrow enough for a component with life expectancy of 1month.
The degradation within a week for the component with a 20 year life expectancy can be ignored. The
time unit should also be large enough to allow maintenance of multiple assets. Too narrow a time
unit will increase the complexity of the optimization, whereas too large a time unit will reduce the
optimality of the result. Failure probability in a time unit is basically the shaded area between the
previous time unit and the current time unit, shown as Pi1,Pi2, . . . Pi10 in Figure 3. The cumulative
failure probability within the time period T is calculated as the union of failure probabilities in the
time units in the period T, as shown in Equation (6). For simplicity, it is assumed that the failure
probabilities used in the union calculation are independent.

CPi =
⋃T

t=1
(Pi,t), ∀i = 1 : N (6)

The second term in the cost formula is the maintenance cost. Each asset may have a distinct unit
maintenance cost (Mi). The total number of maintenance actions performed for an asset is calcu-
lated as the sum of binary variables for all time units in the given time period. Summation of the
maintenance costs of all assets gives the total maintenance cost, as in Equation (3).



The third term in the cost formula is the missed mission cost. Cj (delay cost for mission type j) is

multiplied by the sum of delay times for mission type j (
∑T

t=1MTj,t). The total missedmission cost is
the sum of all missed mission cost types. The number of missed mission type j at time t is calculated
as the difference between the required number ofmission type j at time t (RMj,t) and the total number
of assets assigned to mission type j at time t, as shown in Equation (7).

MTj,t = RMj,t −

RMj,t
∑

k=1

(

N
∑

i=1

Y i,j,k,t

)

, ∀t = 1 : T, ∀j = 1 : ss (7)

It is important not to have a negative value forMTj,t . Thus, a constraint is introduced to the model
in (8) to ensure its non-negativity.

RMj,t −

RMj,t
∑

k=1

(

N
∑

i=1

Yi,j,k,t

)

≥ 0, ∀t = 1 : T,∀j = 1 : ss (8)

There is a special constraint for maintenance capacity. The number of assets scheduled for main-
tenance for a given time unit is restricted by the capacity of the maintenance depot. This may be due
to limitations of available space or personnel. Equation (9) shows the capacity constraint, where cj is
the capacity of the maintenance depot at time unit t.

n
∑

i=1

Xi,t ≤ ct ∀t = 1 : T (9)

Another constraint ensures that at any time t, an asset can be onmaintenance or onmission or idle.
Thus, no asset can be maintained and assigned in the same time unit. The first term in (10) shows an
asset’s maintenance schedule and the second term shows its assignment to anymission. The equation
does not allow the sum of these numbers to be greater than 1. If the sum is 1, then the asset is either
assigned to a mission or scheduled for maintenance. If the sum is 0, then the asset is idle, meaning
that the asset is not scheduled for maintenance and no mission has been assigned.

Xa,b,t +

MSt
∑

j=1





RMj,t
∑

k=1

(Yi,j,k,t)



 ≤ 1 ∀t = 1 : T,∀i = 1 : N (10)

It is also possible to limit the use of assets for specific missions. For example, the model can define
an upper limit for usage of an asset for specific mission types. The total number of assignments of
asset i to mission type j is calculated as the sum given in (11), which is forced to be less than or equal
to the limit (Lj,i).

T
∑

t=1





RMj,t
∑

k=1

(Yi,j,k,t)



 ≤ Lj,i ∀j = 1 : MSt ,∀i = 1 : N (11)

The model described above involves a single asset type. However, there may be different types of
assets in a fleet. It may not be possible to assign some asset types to some mission types. So that the
model can handle such a requirement, different asset types have been defined. Each asset type has a
different number of assets in the fleet, represented by Ni. Thus, the total number of assets is equal to

the sum of the number of assets in each asset type (N =
∑A

a=1 Na, where A is the number of asset
types). Note that the notation of assignment decision variables should also be changed from Yi,j,k,t to
Ya,b,j,k,t , which represents the assignment of the bth asset of asset type a to the kth mission of mission
type j. Also note that the number of decision variables does not change with this notation if the total



number of assets is the same. In order not to assign asset type h to mission type v, the sum of all the
binary decision variables representing the banned assignment should be equal to 0, as in (12).

Nh
∑

b=1





T
∑

t=1





RMb,t
∑

k=1

Yh,b,v,k,t







 = 0 (12)

The optimization model discussed above is given as a full formula below. The objective is to find
the best maintenance and mission schedule that minimizes the total cost by satisfying the given
constraints.

Objective function:

Min Z =

A
∑

a=1

Na
∑

b=1

(

CPa,b × Fa,b + Ma,b ×

T
∑

t=1

Xa,b,t

)

+

S
∑

j=1

(

Cj ×

T
∑

t=1

MTj,t

)

Constraints:

(1) CPa,b =
⋃T

t=1 (Pa,b,t) ∀a = 1 : A,∀b = 1 : Na

(2) Pa,b,t =



















0 If Xa,b,t = 1

FP1a,b,t × max
(

0, 1 −
∑j−1

t=1 Xa,b,t

)

+FP2a,b,t−T(m)
× min

(

1,
∑j−1

t=1 Xa,b,t

) If Xa,b,t = 0

∀t = 1 : T,∀a = 1 : A,∀b = 1 : Na

(3) MTj,t = RMj,t −

RMj,t
∑

k=1

(

A
∑

a=1

(

Na
∑

b=1

(Ya,b,j,k,t)

))

∀t = 1 : T,∀j = 1 : ss

(4) RMj,t −

RMj,t
∑

k=1

(

A
∑

a=1

(

Na
∑

b=1

(Ya,b,j,k,t)

))

≥ 0 ∀t = 1 : T,∀j = 1 : ss

(5)
A
∑

a=1

(

Na
∑

b=1

(Xa,b,t)

)

≤ ct ∀t = 1 : T

(6) Xa,b,t +
S
∑

j=1

(

RMj,t
∑

k=1

(Ya,b,j,k,t)

)

≤ 1 ∀t = 1 : T,∀a = 1 : A,∀b = 1 : Na

(7)
T
∑

t=1

(

j
∑

k=1

(Ya,b,j,k,t)

)

≤ Lj,a,b ∀j = 1 : S,∀a = 1 : A,∀b = 1 : Na

(8)
Nh
∑

b=1

(

T
∑

t=1

(

RMb,t
∑

k=1

Yh,b,v,k,t

))

= 0 for given h and v

Decision variables (model output):

Xa,b,t Binary decision variable indicating if maintenance is scheduled for the bth asset in asset
type a at time t

Ya,b,j,k,t Binary decision variable indicating if the kth mission of mission type j has been assigned
to the bth asset in asset type a at time t

Input parameters:
Na Number of assets in asset type a
A Number of asset types in the fleet
T Time period when the maintenance schedule and mission assignment will be performed
ss Number of mission types



Table 1. Binary variables.

Time

1 2 3 4 5

UAV1 Mission 1 0 1 1 0 0
Mission 2 0 0 0 0 1
Maintenance 1 0 0 1 0

UAV2 Mission 1 1 0 0 0 0
Mission 2 0 1 1 0 0
Maintenance 0 0 0 0 1

New format UAV1 01 10 10 01 11
UAV2 10 11 11 00 01

Note: UAV = unmanned aerial vehicle.

MSj Number of missions in mission type j
Fa,b Failure cost of the bth asset in asset type a (repair, downtime cost)
Ma,b Maintenance cost of the bth asset in asset type a; it is expected thatMa,b < Fa,b
Cj Cost of delaying the mission type j by one time unit
RMj,t Required number of missions for mission type j to be completed at time t
ct Maximum number of assets that can be maintained at unit time t
Lj,a,b Maximum number of times the bth asset in asset type a can be assigned to mission type j

FP1a,b,t Failure probability forecast obtained from the prognostics module for the bth asset in asset
type a at time t

FP2a,b,t Failure probability forecast after maintenance obtained from reliability analysis for the bth
asset in asset type a at time t

Calculated parameters in the model:
N Number of assets in the fleet
TMS Total number of missions required to be completed in given period
CPa,b Cumulative failure probability of the bth asset in asset type a within a given period
Pa,b,t Effective failure probability of the bth asset in asset type a at time t
MTj,t Missed mission type j at time t

The computational complexity of the model is directly related to the number of decision variables.
For a given problem, the model will involve N × T × TMS + N × T number of binary variables.
The first term is the number of assignment decision variables (N × T × TMS) and the second term is
the number of scheduling decision variables (N × T). To reduce the number of decision variables, the
decision variables are combined. A given asset at a given time can be assigned to amission,maintained
or left idle. Thus, TMS number of states is needed for missions, and two states are needed, one for
maintenance and one for being idle. Assignment of an asset at a given time can be represented as
a binary string of size log(TMS+ 2). Table 1 gives examples of binary variables. The new decision
variable format reduces the number of binary variables to N × T × log (TMS + 2).

4. Results and discussion

This section presents the implementation of the proposedmathematical model onmission andmain-
tenance planning of a fleet of HVAs using simulated data. The implementation is performed using
two cases. The first case aims to demonstrate the capability of finding the global optimum solution for
a small problem with a fleet of four UAVs. The second case aims to demonstrate the effectiveness of
the method over a longer time period. The cases involve different scenarios to enable understanding
and analysis of the terms and factors in the objective function and the constraints of the proposed
approach.



4.1. Case 1: Small-size fleet with short planning period

This case demonstrates maintenance and mission planning for a small fleet with two UAV types,
with one UAV of each type (i.e. a total of two UAVs, tN = 2) and one mission type (i.e. a total of
one missions, tMS = 1). The planning time horizon is set to 4 time units (T = 4) (e.g. days, weeks
or months). The number of decision variables is 16 (tN ×T × log(tMS+ 2)). The total number of
potential maintenance and mission planning is 216, given 16 binary decision variables. It is possible
to find the global best planning option among this number of potential options. Thus, this case is
used to demonstrate the effectiveness of the proposed solution by comparing the best solution found
with nonlinear optimization and the global best. The parameters used in the model are shown in
Table 2. Parameters that are not related to cost have been determined as in previous studies (Camci
2014, 2015). Cost-related parameters have been determined based on the authors’ best engineering
judgement.

The cost of all potential maintenance schedule and mission planning was calculated and the best
option is presented below. The best solution is shown in Table 3, in whichUAV2 is assigned tomission
1 at all times and UAV1 is assigned to mission 1 at times 1 and 3. Thus, the required missions at all
times (i.e. 2, 1, 2, 1 at given times) have been assigned to UAVs. The rows in the table showUAVs and
the columns show the time units. ‘Mis1’ refers to assignment of a UAV in the corresponding row to
mission 1 at the corresponding time in the column. ‘Maint’ refers to the maintenance scheduled for
the correspondingUAV at the given time unit. This solution leads to a total cost of $1409.20 (expected
failure cost: $1309.20; maintenance cost: $100; missed mission cost: $0). Note that the failure proba-
bility ofUAV1 reaches 0.49 before themaintenance event at time unit 2. Aftermaintenance, the failure
probability starts at 0.01 and reaches 0.1 at the end of the planned time period. The cumulative failure
probability for UAV1 is 0.541, which is calculated as the union of 0.49 and 0.1. The expected failure
cost of UAV1 is 649.2 (0.541× 1200). The failure probability of UAV2 is 0.6 since no maintenance is
scheduled. The expected failure cost of UAV2 is 660 (0.6× 1100). The total expected failure cost is
1309.2.

The proposed optimization model was implemented to find the optimum solution for this case.
The model was run 10 times and the best solution was found for all 10 runs, with an average
computational time of 6.74 s (maximum = 13.44 s; minimum = 5.41 s). Note that finding the global
best solution through iterations of all possible solutions (i.e. 216 = 65,536) took 26.67 s.

Table 2. Input parameters for the small fleet case.

Parameter UAV1 UAV2

Failure cost 1200 1100
Maintenance cost 100 100

Time

Parameter 1 2 3 4 5

Required number of missions 2 1 2 1 N/A
Maintenance capacity 5 5 5 5 N/A
Assignment limit 5 5 5 5 N/A
Assignment restrictions N/A N/A N/A N/A N/A
Cost of not performing a mission 300,000 300,000 300,000 300,000 N/A

Failure probabilities
FP1 UAV1 0.42 0.49 0.55 0.64 0.71

UAV2 0.4 0.45 0.5 0.55 0.6
FP2 UAV1 0.01 0.05 0.1 0.15 0.2

UAV2 0.02 0.08 0.16 0.21 0.23

Note: UAV = unmanned aerial vehicle; FP1 = failure probability beforemaintenance; FP2 = failure probability aftermaintenance;
N/A = not applicable.



Table 3. Optimum maintenance (Maint) and mission (Mis) planning for
the small fleet case.

Time

Assets 1 2 3 4

UAV1 Mis1 Maint Mis1 –
UAV2 Mis1 Mis1 Mis1 Mis1

Note: UAV = unmanned aerial vehicle.

Table 4. Optimum maintenance (Maint) and mission (Mis) planning for
scenario 1 of the small fleet case.

Time

Assets 1 2 3 4

UAV1 Mis1 Mis1 Mis1 Mis1
UAV2 Mis1 Maint Mis1 –

Note: UAV = unmanned aerial vehicle.

Table 5. Optimum maintenance (Maint) and mission (Mis) planning for
scenario 2 of the small fleet case.

Time

Assets 1 2 3 4

UAV1 Maint Mis1 Mis1 Mis1
UAV2 Mis1 Mis1 Mis1 Mis1

Note: UAV = unmanned aerial vehicle.

The model will be discussed with several scenarios by changing some of the parameters given in
the base scenario above. In scenario 1, consider that an incipient failure is detected in UAV2 and
its failure probabilities in the planning horizon are increased as follows: 0.6, 0.7, 0.8, 0.9, 0.95. The
increase in the expected failure cost for UAV2 leads to maintenance, and the optimum maintenance
andmission planning changes, as shown inTable 4.UAV2 is set formaintenance at time 2 andUAV1 is
usedmostly to satisfy themission requirements. The total cost of such a plan is calculated as $1774.80
(expected failure cost: $1674.80; maintenance cost: $100). The optimization model was run 10 times
and the best solution presented below was found in all runs. The average computation time is 5.92 s
(maximum = 6.8 s; minimum = 5.4 s).

Scenario 2 demonstrates the trade-off between notmeeting amission requirement and failure cost.
To force the assignment of all UAVs for the mission, the mission requirement for all times is changed
to 2. However, the failure cost for UAV1 and UAV2 has been increased to $12,000 and $11,000. The
cost of not meeting a mission is changed to $1000. Thus, the optimum solution offers an early main-
tenance for the asset, for which the reduced failure cost is more than the sum of the maintenance
cost and missed mission cost. The total cost of the optimum solution in scenario 2, shown in Table 5,
is $13,784 (expected failure cost: $12,684; maintenance cost: $100; missed mission cost: $1000).The
presented optimization model was run 10 times and eight of these runs led to the optimum solution.
The other two runs led to a local optimum solution with the total cost of $14,192, which schedules
the maintenance of UAV1 to time 2 instead of time 1.

Scenario 3 is based on scenario 2 and involves a different requirement of only onemission at time 2.
Thus, maintenance should be scheduled at time 2 since only oneUAVmission is required at this time.
The optimum solution given in Table 6 leads to a total cost of $13,192.The optimization model was
run 10 times and the optimum solution was found in six of the runs. The other four runs identified
a local optimum with the cost of $13,202, which schedules maintenance for both UAVs, leading to
reduced cost but at the price of missing one mission. The computational time for this scenario is
similar to the previous cases.



Table 6. Optimum maintenance (Maint) and mission (Mis) planning for
scenario 3 of the small fleet case.

Time

Assets 1 2 3 4

UAV1 Mis1 Maint Mis1 Mis1
UAV2 Mis1 Mis1 Mis1 Mis1

Note: UAV = unmanned aerial vehicle.

Table 7. Parameters for the large fleet case.

Assets

UAV type 1 UAV type 2

Parameter UAV1 UAV2 UAV3 UAV4

Failure cost 12,000 12,000 13,000 13,000
Maintenance cost 100 100 100 100
Assignment limits
Mission type 1 10 10 10 10
Mission type 2 10 10 10 10

Weibull distribution parameters
FP2 Alpha 3 2.8 2.5 0.7

Beta 2 1.7 1.8 2.1
Starting input 0.1 0.1 0.1 0.1

FP1 Starting input 0.6 0.6 0.6 0.6
Increase 0.2 0.3 0.4 0.25

Note: UAV = unmanned aerial vehicle; FP2 = failure probability after mainte-
nance; FP1 = failure probability before maintenance.

Table 8. Mission type parameters for the large fleet case.

Assignment restrictions Asset type 1 Asset type 2 Cost of not performing mission

Mission type 1 N/A N/A 300,000
Mission type 2 N/A N/A 300,000

Note: N/A = not applicable.

4.2. Case 2: Large-size fleet

Case 2 involves two types of missions and UAVs. The fleet has two UAVs in both UAV types and
two missions in one mission type. The parameters for the UAVs are given in Table 7. The failure and
maintenance costs of each UAV are given first. Then, the assignment limits of UAVs to mission types
are displayed. The failure probabilities before and after maintenance are obtained from a Weibull
distribution, using the alpha and beta parameters given in the table. The starting input is the input
parameter to calculate the corresponding failure probability. The degradation is obtained by increas-
ing the input parameter by 0.1 in each time unit. The failure probability before maintenance uses the
same alpha and beta parameters for a given UAV as the failure probability after maintenance. The
differences are the starting point and probability increase defined in Table 7.

The maintenance capacity for the planning horizon is set as five for each time unit. Mission type
parameters are shown in Table 8.

The number of parameters is 80 (tN ×T × log(tMS+ 2) = 4× 10× 2)). The number of combi-
nations is 280 (1.20893E+ 24), which is quite large. The optimizationmodel was run 10 times. Table 9
shows the results of these runs. The proposed maintenance and mission schedule for the best solu-
tion obtained is presented in Table 10. The average computational time taken to obtain these results
is 1093 s (minimum = 902 s, maximum = 1333 s).

Scenario 1 discussed above requires 29 missions distributed over the given time period with a
length of 10 time units. In scenario 2, the total number of missions required over the time period is



Table 9. Total costs of 10 runs for scenario 1 in the large fleet case.

Results of 10 runs

1 2 3 4 5 6 7 8 9 10

25,857 25,846 26,352 26,940 25,301 24,794 24,758 26,133 27,523 25,214
Max: 27,523 Min: 24,758 Average: 25,871.80 Stuck in solution with penalty: 0

Table 10. Maintenance (Maint) and mission (Mis) planning of scenario 1 in the large fleet case.

Time

1 2 3 4 5 6 7 8 9 10

UAV type 1 UAV1 Maint Mis1 Mis2 Mis2 Mis1 Mis1 Maint Mis2 Mis1 Mis1
UAV2 Mis1 Mis2 Mis1 Maint Mis1 Mis1 Mis1 Mis1 Maint Mis2

UAV type 2 UAV3 Maint Idle Mis2 Mis2 Mis2 Mis2 Mis1 Mis2 Mis2 Mis2
UAV4 Mis1 Maint Mis1 Mis2 Mis2 Mis2 Mis2 Idle Idle Mis2

Required Mis1 2 1 2 0 2 2 1 1 1 1
Mis2 0 1 2 3 2 1 1 2 1 3

Performed Mis1 2 1 2 0 2 2 1 1 1 1
Mis2 0 1 2 3 2 1 1 2 1 3

Note: UAV = unmanned aerial vehicle.

Table 11. Total costs of 10 runs for scenario 2 in the large fleet case.

Results of 10 runs with 1000 generations

1 2 3 4 5 6 7 8 9 10

33,307 32,542 31,253 625,978* 27,023 328,404* 33,168 32,750 30,627 30,170
Max: 625,978 Min: 27,023 Average: 120,522 *Stuck in solution with penalty: 2

Results of 10 runs with 3000 generations

1 2 3 4 5 6 7 8 9 10

34,736 28,588 27,869 33,194 26,865 327,003* 28,323 28,323 32,883 29,203
Max: 327,003 Min: 26,865 Average: 59,699 *Stuck in solution with penalty: 1

increased to 34 (Table 12). Finding the solution in this scenario, with a higher number of required
missions, is more difficult. The model was run 10 times, changing only the required missions. The
average computational time for scenario 2 is 885 s (minimum = 802 s; maximum = 931 s). It can be
seen in Table 11 that the GA may become stuck in solutions with missed mission penalty values in
two of the 10 runs. Runs 4 and 6 lead to solutions with an inability to assign UAVs to two and one
missions, respectively (marked with asterisks in Table 11). The scenario was run 10 times, changing
the number of generations from 1000 to 3000. The average computational time of these runs increases
to 4742 s, (minimum = 2760 s; maximum = 8111 s). The increase in the number of generations in
the GA leads to better results even for more complex problems involvingmoremission requirements,
at the price of higher computational time. As can be seen from Table 11, the maximum, minimum,
average and number of solutions with penalty have been reduced with the higher number of gener-
ations.Table 12 displays the maintenance and mission plan obtained as a result of the best solution
obtained for scenario 2. This result proposes that UAV1 bemaintained at time 2, UAV2 at times 2 and
6, UAV3 at times 4 and 9, and UAV4 at time 8.

In scenario 3, the restriction of assigning a UAV for a given mission is demonstrated. The total
number of allowable assignments of UAV1 to mission 1 is set to 0. All other parameters are set the
same as the base scenario for this case. The solutions with penalty cannot assign a UAV for a required
mission. Table 13 displays the results of 10 runs for scenario 3. Table 14 displays the maintenance and
mission plan for scenario 3. As seen from the results, UAV1 has not been assigned to mission 1 owing
to the introduced limitation. This is true for the results of all 10 runs.



Table 12. Maintenance (Maint) and mission (Mis) planning for scenario 2 of the large fleet case.

Time

1 2 3 4 5 6 7 8 9 10

UAV type 1 UAV1 Mis1 Maint Mis2 Mis2 Mis2 Mis1 Mis1 Mis2 Mis1 Mis2
UAV2 Mis2 Maint Mis2 Mis2 Mis1 Maint Mis2 Mis1 Mis1 Mis1

UAV type 2 UAV3 Mis1 Mis1 Mis1 Maint Mis2 Mis1 Mis1 Mis2 Maint Mis2
UAV4 Mis2 Mis2 Mis1 Mis2 Mis1 Mis2 Mis2 Maint Mis2 Mis2

Required Mis1 2 1 2 0 2 2 2 1 2 1
Mis2 2 1 2 3 2 1 2 2 1 3

Performed Mis1 2 1 2 0 2 2 2 2 2 1
Mis2 2 1 2 3 2 1 2 1 1 3

Note: UAV = unmanned aerial vehicle.

Table 13. Total costs of 10 runs for scenario 3 of the large fleet case.

Results of 10 runs

1 2 3 4 5 6 7 8 9 10

28,777 25,689 26,122 26,753 28,320 26,300 325,333* 326,299* 324,914* 26,486
Max: 326,299 Min: 25,689 Average: 116,499 *Stuck in solution with penalty: 3

Table 14. Maintenance and mission plan in scenario 3 for large fleet case.

Time

1 2 3 4 5 6 7 8 9 10

UAV type 1 UAV1 Idle Maint Miss2 Miss2 Miss2 Miss2 Miss2 Maint Idle Miss2
UAV2 Maint Miss1 Miss1 Miss2 Miss2 Miss1 Maint Miss2 Miss1 Miss1

UAV type 2 UAV3 Miss1 Miss2 Miss2 Maint Miss1 Miss1 Maint Miss1 Idle Miss2
UAV4 Miss1 Maint Miss1 Miss2 Miss1 Miss2 Miss1 Miss2 Miss1 Miss2

Required Mis1 2 1 2 0 2 2 1 1 1 1
Mis2 0 1 2 3 2 1 1 2 1 3

Performed Mis1 2 1 2 0 2 2 1 1 1 1
Mis2 0 1 2 3 2 1 1 2 1 3

5. Conclusion

This article presents a methodology to perform mission and maintenance planning together, using
current and forecast health information on the HVA. The main contribution of this article is the
mathematical modelling for integrated maintenance and mission planning. The presented method is
a nonlinear optimization model with binary decision variables representing maintenance scheduling
of assets in time units over the planning horizon and their assignments to the required missions. The
method has been applied to two simulated cases with different scenarios.
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