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1. INTRODUCTION

During decades, Least-Squares (LS) optimization and es-
timation of the Inverse Dynamic Identification Model
(IDIM) have been the two key elements of the most com-
mon method used for industrial robot identification: see
e.g. (Gautier, 1997) or (Gautier et al., 2013). With the
IDIM, the input torque is expressed as a linear function
of the physical parameters: see e.g. (Khalil and Dombre,
2004). Nevertheless, it is not always robust to the mea-
surement noise correlation that arises from the closed-loop
structure required for robot operation. To overcome this
issue, Instrumental Variable (IV) optimization has been
suggested and adapted to robot systems in (Janot et al.,
2014a).

The IDIM-LS and IDIM-IV methods, however, require the
knowledge of the closed-loop system’s bandwidths. A well-
tuned bandpass filtering is indeed employed to generate
the velocity and acceleration signals from the joint position
measurements (Gautier, 1997). Furthermore, a decimate
filter is also applied to remove high-frequency ripples and
to provide white residuals. The setting of those filters may
be an issue during early tests of the system, especially if
the practitioner has no access to the key design parame-
ters. Brunot et al. (2018b) have successfully employed a
self-tuning method able to estimate the joint derivatives,
which provides admissible physical parameters. Nonethe-
less, the residuals of the estimation cannot be considered
as white due to the wrong setting of the decimate filter.

The assumption of whiteness is needed for the calculation
of the variances.

In the field of automatic control, the IV-based meth-
ods have been studied to insure the consistency of
the estimated parameters and to obtain optimal accu-
racy (Söderström and Stoica, 1983; Gilson et al., 2011).
Amongst the different proposed solutions, an iterative
algorithm, where the required prefilter comes from the
identified noise model, is known to be one of the most
reliable (Young, 2011).

The aim of this paper is, therefore, to deal with the deci-
mate filter in an automated way. If ongoing work examines
the replacement of the decimate filter, another perspective
is chosen here: the filter is not replaced but completed by
a noise filter identification. This noise identification com-
pensates for the potential wrong setting of the decimate
filter. The final goal is to provide estimated parameters
with low and correct covariances, in an automated way. In
this study, the identification procedure is evaluated and
validated on a 1 Degree Of Freedom (DOF) robot for
sake of clarity. This robot is the high-precision Electro-
Mechanical Positioning System (EMPS) that only has 3
dynamic parameters, which makes the interpretation clear.
More comprehensive work is ongoing to deal with a 6
DOF robot and without the decimate filter (Brunot et al.,
2018a).

This paper is organised as follows. Section 2 describes
the considered closed-loop system. The standard IDIM-LS
and IDIM-IV methods are recalled in section 3. Section
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4 is devoted to the introduced methodology. Then, this
approach is evaluated using experimental data from the
EMPS by considering two cases. First, we assume good
a priori knowledge on the system, which allows a proper
filtering; second, inadequate filtering is assumed due to
a lack of knowledge about the robot characteristics. The
conclusions are presented in section 6.

2. EMPS MODELLING AND CONTROL

2.1 EMPS Model

To evaluate the proposed methodology, the EMPS is
considered; see Figure 1. It is a standard configuration
of a drive system for prismatic joint of robots or machine
tools. It is connected to a dSPACE digital control system
for easy control and data acquisition using Matlab and
Simulink software. Its main components are:

• A Maxon DC motor equipped with an incremental
encoder. This DC motor is position-controlled with a
PD controller.

• A Star high-precision low-friction ball screw drive
positioning unit and a load in translation.

The Direct Dynamic Model (DDM) of a robot expresses
the acceleration as a function of the motor torque, position
and velocity (Khalil and Dombre, 2004). From Newton’s
law, we have

Mq̈(t) = τidm(t)− Fv q̇(t)− Fcsign (q̇(t)) , (1)

where M is the inertia of the arm; Fv and Fc are respec-
tively the viscous and Coulomb frictions; q, q̇ and q̈ are
respectively the joint position, velocity and acceleration;
τidm is the motor force.

The Inverse Dynamic Model (IDM) of a robot expresses τ
as a function of q, q̇ and q̈. In the case of the EMPS, the
IDM is given by

τidm(t) = Mq̈(t) + Fv q̇(t) + Fcsign (q̇(t)) , (2)

Equation (2) is linear in relation to the dynamic parame-
ters,

τidm(t) = [q̈(t) q̇(t) sign (q̇(t))]θ = φ(t)θ (3)

where φ(t) is the (1 × 3) observation matrix of basis
functions of the IDM and θ = [M Fv Fc]

T is the (3 × 1)
vector of the 3 dynamic parameters. Because the DDM is
usually nonlinear with respect to the dynamic parameters,
it is rarely used (Swevers et al., 2007). In (Brunot et al.,
2015), a comparison between the IDM and the DDM is
made for the identification of the EMPS.

2.2 EMPS Control

The EMPS model (2) has a pure integrator and cannot
therefore be identified in open-loop. The system is thus
driven by a Proportional-Derivative (PD) controller. Gau-
tier et al. (2013) have shown that a PD control is enough
to identify the dynamic parameters of robots because an
excellent tracking is not needed. The control signal ν is
given by

ν(t) = kpkv (qr(t)− q(t))− kv q̇(t), (4)

where kp is the proportional gain and kv is the derivative
gain. With the bandwidth of the position loop equal to 20

Fig. 1. EMPS prototype

Hz, the gains haven chosen such as kp = 160.18 1/s and
kv = 243.45 V/m.s−1. The control signal, coming from the
control law, is linked to τ by the following relation

τidm(t) = gτν(t), (5)

where gτ is the drive gain of the EMPS. Although the
drive gain is usually given by the manufacturer, it can be
identified with special tests (Gautier and Briot, 2014). In
this case, it has been estimated to gτ = 35.15 N/V .

3. STANDARD METHODS FOR ROBOT
IDENTIFICATION

3.1 Joint velocity and acceleration estimation

In most applications, the available information is the mea-
surement of the joint position, qm. The joint velocities and
accelerations have to be calculated from this information
in order to build the observation matrix φ as described
in (Gautier, 1997). qm is firstly filtered to obtain q̂. From
this filtered position, the derivatives can be calculated with
finite differences. The filter type and the cut-off frequency,

ωfq , are selected such as
(
q̂, ̂̇q, ̂̈q

)
≈ (q, q̇, q̈) in the range

[0, ωfq ]. The filter, which is usually a Butterworth one, is
applied in both forward and reverse directions to avoid lag
introduction. The rule of thumb for the cut-off frequency
is ωfq ≥ 5ωdyn, where ωdyn is the natural frequency of the
highest mode of the closed-loop system. The combination
of the Butterworth filter and the central differentiation is
referred to as the bandpass filtering process.

3.2 High-frequency ripples rejection

The IDIM differs from the IDM by an error term v(t),
resulting of perturbations coming from measurement noise
and modelling errors. The IDIM is then given by:

τ(t) = τidm(t) + v(t) = φ(t)θ + v(t). (6)

In practice, the torque is perturbed by high-frequency
ripples which are rejected by the controller. Those ripples
are removed with a parallel lowpass filtering of each
basis function at the cut-off frequency ωFp

≥ 2ωdyn. The
choice of ωFp

is involved to keep enough information while
avoiding the high frequency noise. Since there is no more
useful information beyond the cut-off frequency, the data
are also re-sampled by keeping one sample over nd, i.e.
nd is the decimation factor. This combination of parallel
filtering and re-sampling is referred to as the decimate
process. After data acquisition and parallel filtering, we
obtain



τFp
(t) = Fp(z

−1)τ(t) (7)

= φFp

(
q̂(t), ̂̇q(t), ̂̈q(t)

)
θ + vFp

(t),

where z−1 is the backward shift operator and Fp is the
decimate filter applied to each element of the observation
matrix, the torque signal and the error term.

3.3 The IDIM-LS and IDIM-IV methods

The IDIM-LS and IDIM-IV approaches exploit the IDIM
model. In the IV case, for the EMPS, an (1 × 3) instru-
mental matrix, denoted by ζ, is introduced that must fulfil
the following conditions:

• ζTφFp
is full column rank,

• E
[
ζT vFp

]
= 0,

where E [·] denotes the mathematical expectation. The
first condition means that the instrumental matrix must
be well correlated with the observations. The second
condition expresses the fact that the instrumental matrix
must be uncorrelated with the error. Assuming that the
two previous conditions hold, it can be shown that the IV

parameter estimates θ̂IV (N) given by

θ̂IV =

[
1

N

N∑

i=1

ζT (ti)φFp
(ti)

]−1 [
1

N

N∑

i=1

ζT (ti)τFp
(ti)

]
,

(8)
are asymptotically unbiased and consistent. In this IV
solution, N is the number of sampling points considered
for the identification. Note that the standard LS solution
is obtained if ζ is replaced by φFp

but that, in general
when there is noise on the data, the resulting estimates
will be asymptotically biased and inconsistent.

During the last decade, different IV solutions have been
developed for closed-loop identification; see e.g. (Gilson
et al., 2011). One key feature of the IV method is the
construction of the instruments; i.e. the elements of the
instrumental matrix. There are a number of ways in which
they can be constructed, see e.g. (Söderström and Stoica,
1983), but it has been found that by far the most successful
of these is to generate the instruments using an auxiliary
model of the system: see e.g. (Young, 2011) and the
prior references therein. Janot et al. (2014b) have shown
that the simulation of the whole robotic system using
the DDM, including the inherent closed-loop, provides a
very convenient auxiliary model. The simulation of this
auxiliary model provides noise-free simulated signals that
are used to construct the instrumental matrix using the
same equations as those of the observation matrix. If the
parameters of this auxiliary model are reasonable and
there is no modelling error, the IV requirements will be
satisfied and the resulting estimates will have the required
properties. This is because the simulated signals are noise-
free, since the only input to the simulation is the reference
trajectory and this is known perfectly.

In order to ensure the efficacy of the parameters in the
auxiliary model, the IDIM-IV method, like many IV-based
methods of estimation, is an iterative process in which the
estimates of the parameters from the previous iteration
are used for the auxiliary model on the next iteration, as
it is described in Figure 2. If the convergence cannot be
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Fig. 2. Block diagram of the IDIM-IV methodology

guaranteed in this nonlinear situation, experience with the
IDIM-IV algorithm shows that it is robust in this sense;
see e.g. (Janot et al., 2014b; Brunot et al., 2015).

By noting the simulated signals with a subscript s, the
instrumental matrix at iteration it is:

ζ(t, θ̂it
IV
) = Fp(z

−1)φ
(
qs(t, θ̂

it
IV
), q̇s(t, θ̂

it
IV
), q̈s(t, θ̂

it
IV
)
)
.

(9)

4. AN AUTOMATED IV FOR ROBOT
IDENTIFICATION

As it has been seen in the previous section, the IDIM-
LS and IDIM-IV methods rely on a priori knowledge and
rules of thumb to tune the bandpass and decimate filters.
Therefore, the practitioner must be skilled to employ those
methods. An alternative and automatic methodology is
thus presented here.

4.1 Joint derivatives with IRWSM

To estimate the joints velocities and accelerations without
knowledge on the system bandwidth, a procedure, based
on a Kalman Filter (KF) and a Fixed Interval Smoother
(FIS), can be used. Applied to robot identification, the
idea is to model the position with an Integrated Random
Walk (IRW) such as[

q(ti)
q̇(ti)

]
=

[
1 ∆t
0 1

] [
q(ti−1)
q̇(ti−1)

]
+

[
0
1

]
̟(ti−1), (10)

qm(ti) = q(ti) + ξ(ti),

where ̟ and ξ are respectively the process and measure-
ment noises; q and q̇ are the states that must be estimated
with the combination of the KF and the FIS; ∆t is the



fixed sampling period. The covariances of the noises are
estimated thanks to a maximum likelihood optimisation.
After estimation with the KF and the FIS, the estimated

joint position, q̂, and velocity, ̂̇q, are available to construct
the observation matrix. By applying the process twice,
the joint acceleration is retrieved. It should be stressed
that, thanks to maximum likelihood optimisation, the
practitioner does not have to provide a priori knowledge
to choose the covariances. Recently, (Janot et al., 2017)
have introduced this alternative to the bandpass filtering
process. In (Brunot et al., 2018b), it has been shown
the relevance of this methodology to identify a 6 DOF
industrial robot. The global process is referred to as the
Integrated Random Walk SMoother (IRWSM) technique
and is summarized in (Young, 2011). This IRWSM al-
gorithm is coded as the routine irwsm in the CAPTAIN
Toolbox 1 for MatlabTM.

4.2 Inverse noise filtering

The residual of estimation, at iteration it+ 1, is given by

ǫit+1

τ (t) = τFp
(t)− φFp

(t)θ̂it+1

IV . (11)

If there is no modelling error, and, if θ̂it+1

IV is a consistent
estimation of θ, this residual is a consistent estimation
of the error vFp

. The decimate filter, by removing high-
frequency ripples, insures that vFp

is a white noise se-
quence. This assumption is necessary for the calculation of
the covariances of the estimated parameters. As observed
in (Brunot et al., 2018b), if the IDIM-IV combined with
the IRWSM can provide consistent estimated parameters,
a wrong tuning of the decimate filter leads to a non-white
residual.

According to the Refined IV theory (Young, 2011), there
exists an optimal filter for the case where the additive
noise is not purely white. This filter is said to be optimal
because the resulting estimation reaches the Cramér-Rao
lower bound (Kay, 1993), if there is no modelling error.
For the system of linear equations (2), the optimal filter
would be H−1

τ (z−1), with Hτ given by:

v(t) = Hτ (z
−1)e(t), (12)

where e is a Gaussian white noise. Nonetheless, the prop-
erty of optimality is valid only for Linear Time Invariant
(LTI) systems. In this article, the goal is not to develop a
theory of the optimality for the nonlinear systems that are
the robots. That would be indeed far beyond the scope of
this article, which only aims to adapt such a technique.

A first idea could be to replace the decimate filter by the
identification of Hτ . Nonetheless, it may be feared that the
resulting model could be large, due to the large sampling
frequency, and complex, due to high-frequency ripples and
potential modelling errors. We therefore suggest to model
the noise such as:

vFp
(t) = H ′

τ (z
−1)e′(t). (13)

where e′ is a white noise, with zero mean and covariance λ;
H ′

τ is a discrete-time transfer function, which is assumed
to be asymptotically stable and invertible.

The idea is to keep the decimate filter, even if it is
badly tuned, and to model the remaining error. This
1 This Toolbox is available free and can be downloaded via
http://captaintoolbox.co.uk.

may save computation time while still preventing the
estimation from high frequency ripples. The counterpart
is the lost of the physical meaning of the noise model. A
characterisation of the sensors’ dynamics indeed makes no
sense at the decimation frequency. The practitioner should
in any case be cautious with the inverse noise filtering: it
must not cancel the effect of the decimate filter.

4.3 Noise identification

In general terms, H ′

τ is represented by an AutoRegressive,
Moving Average (ARMA) model, under the assumption
that the noise has rational spectral density. However, an
easier alternative is used here: an AutoRegressive (AR)
model. Its order is found by linear search by using the
Akaike Information Criterion (AIC); as implemented by
the aic routine in CAPTAIN.

The separation of the identification of the dynamic model
and the one of the noise assumes that both models are
statistically independent. The practitioner must therefore
be cautious and be confident about the dynamic model, be-
fore starting the noise identification. Otherwise, the noise
model could encompass unmodelled physical dynamics and
not only measurement noise introduced by the sensors.

4.4 The IDIM-AIV methodology

The IDIM-IV methodology is revised to include the IR-
WSM approach and the noise filter identification. Figure
3 describes the resulting methodology, where C is the
control law. From the residual, ǫit+1

τ , the noise filter is
identified with the aic routine. The subscript f designates
the signals which have been filtered by the decimate filter
and the inverse noise model. This new methodology is
referred to as the Automated IV (IDIM-AIV) due to this
specific prefiltering process.

This simple method of noise model identification, com-
bined with the irwsm approach to signal differentiation,
means that IDIM-AIV algorithm does not require any
access to prior information and so it is easier to apply
in practice. In fact, a cut-off frequency is required for
the decimate filter. However, as shown in section 5, this
knowledge is no longer critical.

5. EXPERIMENTAL RESULTS

The EMPS is controlled in position with the PD control
given in section 2. Data are collected over a 24 s test, with a
sampling frequency of 1 kHz. The resolution of the encoder
is 4 000 counts per revolution. The iterative IV-based

methods are initialized as follows: M̂0 = 100 kg, F̂ 0

v = 0

N/(m/s) and F̂ 0

c = 0 N. The value M̂0 comes from CAD
values. The maximum size of the AR filters is arbitrary
set to 10 in order to avoid a too heavy computation. The
system is excited with a signal based on a trapeze velocity
profile; see Chapter 4 of (Siciliano et al., 2009).

5.1 Good a priori knowledge

For the usual methods, the cutoff frequency of the But-
terworth filter is 60 Hz while the cutoff frequency of the
decimate filter is 40 Hz. We keep one sample over 10. Those
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cutoff frequencies are tuned according to the rules given
in sections 3.1, 3.2 and the references given therein.

The IDIM-LS, IDIM-IV and IDIM-AIV estimates are
given in Table 1. Since the data filtering is appropriate,
the IV methods do not really improve the IDIM-LS one.
This is mainly due to the very accurate data and the
data filtering. The observation matrix can be considered
as noise-free and it is thus not correlated with the noise.
This analysis explains why the LS estimates match the
IV estimates. With respect to the estimation of the joint
velocity and acceleration, as shown in (Brunot et al.,
2018b), the IRWSM approach provides as good results as
an usual Butterworth filter correctly tuned.

Regarding the relative standard deviations, they are
slightly lower with the IDIM-AIV method. That confirms
the contribution of this method. There is a slight dis-
crepancy with regard to the viscous friction coefficient.
However, this has already been observed in previous work
(Brunot et al., 2016) and can be linked to the asymmetry
of the friction model (Janot et al., 2017).

To complete the study of the standard deviations, Figure 4
illustrates the estimated autocorrelations of the residuals,
where the blue lines show the 2σ confidence interval.

Table 1. Identified parameters and relative
standard deviations – Good a priori knowledge

IDIM-LS IDIM-IV IDIM-AIV

M 94.54 (0.34%) 94.53 (0.34%) 94.98 (0.18%)
Fv 200.9 (1.37%) 200.9 (1.38%) 210.8 (1.19%)
Fc 20.66 (1.18%) 20.66 (1.19%) 19.89 (1.12%)

−0.5

0

0.5

1

ID
IM

-L
S

−0.5

0

0.5

1

ID
IM

-I
V

0 5 10 15 20
−0.5

0

0.5

1

Lag

ID
IM

-A
IV

Fig. 4. Residuals autocorrelations – Good a priori knowl-
edge

To validate the white noise assumption used for the
computation of the standard deviations, the residuals
should be serially decorrelated; i.e. all the coefficients
should be within the blue lines, for non zero lags. That
is therefore not perfect for the IDIM-LS and IDIM-IV
methods, whereas it can be considered as satisfactory for
the IDIM-AIV one. This illustrates the role of the noise
filtering that whitens the residuals.

5.2 Poor a priori knowledge

To deal with the case where the robot is still unknown,
larger cutoff frequencies are selected. This is likely the
case with preliminary identification tests. In accordance
with (Brunot et al., 2015), the cutoff frequency of the
Butterworth filter is 180 Hz while the cutoff frequency of
the decimate filter is 120 Hz.

The IDIM-LS, IDIM-IV and IDIM-AIV estimates are
given in Table 2. For the IDIM-IV and IDIM-AIV meth-
ods, the results are similar to those given in Table 1.
The estimated mass of the IDIM-LS method is reason for
alarm. That is due to the presence of noise in the obser-
vation matrix because of the inappropriate filtering. Such
a discrepancy in the inertia reflects a wrong estimation
of the system’s bandwidth. This observation is consistent
with previous work (Brunot et al., 2015).

The advantage of the IDIM-AIV method compared with
the IDIM-IV one appears with the relative standard devi-
ations and by looking at Figure 5. The former are indeed



Table 2. Identified parameters and relative
standard deviations – Poor a priori knowledge

IDIM-LS IDIM-IV IDIM-AIV

M 74.69 (0.89%) 95.38 (0.89%) 95.99 (0.22%)
Fv 201.5 (4.08%) 190.6 (4.76%) 191.7 (1.58%)
Fc 20.60 (3.56%) 21.68 (3.71%) 21.39 (1.25%)
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Fig. 5. Residuals autocorrelations – Poor a priori knowl-
edge

lower for the IDIM-AIV estimates and the latter depicts
whiter residuals for the IDIM-AIV method. The confidence
intervals (blue lines) are narrower than in the good a
priori knowledge case since there are more sampling points
to consider due to the larger decimation frequency. It is
worth noting here that the maximum order for the linear
search of the aic routine is still 10. A larger one could be
considered but at the expense of a larger computational
load.

6. CONCLUSION

In this paper, the identification of electromechanical sys-
tems that operate in closed-loop was revisited with an
Automated Instrumental Variable method. The idea is to
enhance the usual IDIM-IV method with an identification
of the remaining noise. The aim is to provide estimated
parameters with lower and reliable variances.

The experimental results show that the prefiltered IV
method based on the use of the inverse dynamic identi-
fication model seems to be more appropriate than the two
others to identify the dynamic parameters. This method is
robust against noises because a tailor-made data prefilter-
ing is not required and the physical parameters are directly
identified. In addition, the method gives lower estimated
covariances.

Future works concern the use of the IV method for flexible
robot identification and the study of recursive IV methods
for online estimation.
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