Inaugural-Dissertation zur Erlangung der Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

Unterschiedliche Immunkapazitäten beim Rind nach polyklonaler Stimulation

von Karina Lutterberg

aus Leinefelde

München 2017

Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

Lehrstuhl für Tierphysiologie

Arbeit angefertigt unter Leitung von Univ.-Prof. Dr. Cornelia A. Deeg

Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

Dekan:	UnivProf. Dr. Joachim Braun
Berichterstatter	UnivProf. Dr. Cornelia A. Deeg
Korreferent/en:	UnivProf. Gabriela Knubben-Schweizer

Tag der Promotion: 11. Februar 2017

Oma Frieda und Tante Lisa

1 Ell	NLEITUNG	1
2 LI	TERATUR	2
2.1 Bo	ovine Neonatale Panzytopenie	2
2.1.1	Auftreten und Krankheitsbild der BNP	2
2.1.2	Ätiologie der BNP	3
2.1.3	Pathogenese der BNP	4
2.1.4	MHCI als mögliches Alloantigen	8
2.1.5	MHCI als auslösendes BNP-Alloantigen konnte nicht abschließend	
	bestätigt werden	11
2.2 Im	munreaktionen beim Rind	15
2.2.1	Unterschiedliche T-Zellantworten	15
2.	2.1.1 T-Zell-mediierte Autoimmunerkrankungen beim Menschen	17
2.2.2	Immunreaktionen beim Rind	17
2.	2.2.1 Unterschiedliche T-Zellantworten beim Rind	17
2.	2.2.2 Verschiedene Immunreaktionen bei Rindern	18
2.	2.2.3 Rinder mit funktionellen Unterschieden in der Immunantwort	20
3 MA	ATERIAL UND METHODEN	22
3.1 Pro	obenmaterial	22
3.1.1	Puffer und Lösungen zur Gewinnung und Aufbereitung von PBL	24
3.1.2	Gewinnung der Blutproben	24
3.1.3	Gewinnung der peripheren Blutlymphozyten mittels	
	Dichtegradientenzentrifugation	25
3.1.4	Zählung der gewonnenen Zellen	25
3.2 Ze	Ilproliferationsassay	26
3.2.1	Lösungen für die Zellproliferation	26
3.2.2	In vitro Stimulation und radioaktive Markierung von Lymphozyten	26
3.2.3	Statistische Auswertung der Zellproliferationsraten	29
3.3 Sti	imulation und Fraktionierung von Zellen für die differenzielle	
Pro	oteomanalyse	30

3.3.1	Puffer und Lösungen zur Anreicherung von Oberflächenproteinen	
	und zur Zellfraktionierung	30
3.3.2	Stimulation von Zellen für die Proteomanalyse	35
3.3.3	Fraktionierung der stimulierten Zellen für die Proteomanalyse	35
3.3	3.3.1 Biotinylierung der Plasmazellmembranproteine	35
3.3	3.3.2 Anreicherung der Plasmazellmembranproteine und	
	Gewinnung der zytosolischen Fraktion	36
3.3	3.3.3 Ablösen der Proteine von den Beads und Verdau der	
	Plasmazellmembran-Fraktion	37
3.3	3.3.4 Aufbereitung der Zellkern-Fraktion	37
3.4 Ma	ssenspektrometrische Identifikation von Proteinen	38
3.4.1	Puffer und Lösungen für den FASP-Verdau	38
3.4.2	Puffer und Lösungen für die massenspektrometrische Analyse	40
3.4.3	FASP-Verdau der Fraktionen Zytosol und Nukleus	41
3.4.4	LC-MS/MS	41
3.4.5	Quantitative Auswertung mit Progenisis	43
3.4.6	Datenbanksuche für die mittels LC-MS/MS identifizierten Peptide	43
3.4.7	Suche von Orthologen und Paralogen	44
3.4.8	Auswertung der Proteinabundanzen	45
3.5 SD	S-Page	45
3.5.1	Puffer und Lösungen zur Lymphozytenstimulation und	
	Lymphozytenaufbereitung	45
3.5.2	Puffer und Lösungen zur Proteinbestimmung	46
3.5.3	Puffer und Lösungen für die SDS-Page	47
3.5.4	Puffer und Lösungen für den Western Blot	50
3.5.5	Stimulation von Zellen für den Western Blot	53
3.5.6	Bestimmung der Proteinkonzentration der Lysate	53
3.5.7	1D Gelelektrophorese	54
3.5.8	Durchführung des Western Blots	55
3.5.9	Überprüfung des Proteintransfers mittels Ponceau-Färbung	56
3.5.10	Immunblot	56
3.5.11	Statistische Auswertung	59
3.6 lm	nunhistochemie	

3.6.1	Puffer und Lösungen für die Immunhistochemie	59
3.6.2	Herstellung der Paraffinschnitte	61
3.6.3	Entparaffinieren der Paraffinschnitte	61
3.6.4	Immunhistochemische Färbung	62
3.7 Au	swertung der Leistungs- und Gesundheitsdaten	63
4 EF	GEBNISSE	65
4.1 Ab	weichende Immunreaktion von BNP-Überträgerlymphozyten nach	
ро	lyklonaler Stimulation	65
4.1.1	BNP-Lymphozyten reagieren nach polyklonaler ConA-Stimulation hyperproliferativ	65
42 Pr	teine von Kontroll- und BNP-Überträgerlymphozyten werden nach ConA-	
Sti	mulation unterschiedlich exprimiert	67
4.0.1		
4.2.1	Auf der Plasmazeilmembranobernache von Kontrolliymphozyten hach	67
100	Auf der Plasmazellmembranoberfläche von BNP-Überträgerlymphozyten	07
7.2.2	nach ConA-Stimulation stärker exprimierte Proteine	68
4.2.3	Im Zvtosol von Kontrolllymphozyten nach ConA-Stimulation stärker	
	exprimierte Proteine	71
4.2.4	Im Zytosol von BNP-Überträgerlymphozyten nach ConA-Stimulation	
	stärker exprimierte Proteine	77
4.2.5	Im Nukleus von Kontrolllymphozyten nach ConA-Stimulation stärker	
	exprimierte Proteine	88
4.2.6	Im Nukleus von BNP-Überträgerlymphozyten nach ConA-Stimulation	
	stärker exprimierte Proteine	95
4.3 U	ntersuchungen der durch ConA-Stimulation stärker exprimierten Proteine	
m	ittels Western Blot	102
4.3.1	29 Antikörper zeigen gegen viele Transkriptionsregulatoren	
	keine Bindung in Rinderlymphozyten	102
4.3.2	Kein Expressionsunterschied von STAT5a und TF IIB in	
	Kontroll- und Überträgerlymphozyten nach ConA-Stimulation	103
4.3.3	Verifikation der stärkeren STAT1-Expression in Kontrolllymphozyten	
	nach 48 h ConA-Stimulation	105

4.	3.4	Überträgerlymphozyten zeigen eine stärkere Expression von	
		pSTAT3 (Tyr/05)	.106
4.	3.5	Uberträgerlymphozyten exprimieren PLCy1 nach ConA-Stimulation stärker	
		als die Kontrolllymphozyten	.107
4.4	Na	chweis einer unterschiedlichen Expression von Signaltranskriptions-	
	fak	toren in Lymphknoten <i>in situ</i>	.109
4.5	lde	entifikation von PregSure BVD ungeimpften Kühen mit einem	
	hy	perproliferativen Immunphänotyp	.117
4.6	He	mmung der verschiedenen Immunreaktionen	.121
4.	6.1	Der STAT3 Inhibitor III hemmt die Proliferation der immundevianten	
		ConA-stimulierten Lymphozyten	.123
4.7	Fu	nktionelle Korrelation zwischen dem hyperproliferativen Immunphänotyp	
	un	d der Häufigkeit verschiedener Krankheiten	.124
5	DIS	SKUSSION	128
6	ZU	SAMMENFASSUNG	153
7	SU	IMMARY	155
8	LIT	TERATURVERZEICHNIS	157
9	DA	NKSAGUNG	169

α	alpha
β	beta
¥	gamma
δ	delta
μg	Mikrogramm
μΙ	Mikroliter
μm	Mikrometer
μΜ	Mikromolar
\mathfrak{O}	Grad Celsius
1D	Eindimensional
A	Ampère
Å	Ångström
Abb.	Abbildung
ABC	Ammoniumbicarbonat
ACN	Acetonitril
AMIR	Antikörper-mediierte Immunreaktion
APS	Ammoniumpersulfat
Aqua bidest.	Aqua bidestillata
Aqua dest.	Aqua destillata
B2M	β2-Microglobin
Bcl-xL	<i>engl.</i> BCL2 like 1
BCR	B-Zell-Rezeptor, engl. B-cell receptor
BLIMP1	engl. B lymphocyte-induced maturation protein 1
BLV	Bovines Leukose Virus
BoLA	Bovines Leukozyten-Antigen
BNP	Bovine Neonatale Panzytopenie
BRSV	Bovines Respiratorisches Syncytialvirus
BSA	Bovines Serum Albumin
ВТК	engl. Bruton's tyrosine kinase

BVD	Bovine Virus Diarrhoe
BVDV	Bovine Virus Diarrhoe Virus
CaCl ₂	Kalziumchlorid
CD	Erkennungsmolekül an der Oberfläche von Zellen,
	engl. Cluster of Differentiation
CD4 ⁺ T-Zelle	CD4 positive T-Lymphozyten
CD4 ⁻ T-Zelle	CD4 negative T-Lymphozyten
CD8 ⁺ T-Zelle	CD8 positive T-Lymphozyten
CDC	Complement Dependant Cytotoxicity
cFOS	nukleares Phosphoprotein
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1-
	propanesulfonate
CID	Normalisierte Kollisionsenergie,
	engl. Collision Induced Dissociation
cm	Zentimeter
CMIR	Zell-mediierte Immunreaktion
CLL	Chronische Lymphatische B-Zell-Leukämie
CO ₂	Kohlenstoffdioxid
ConA	Concanavalin A
cpm	Einheit für die [3H]-Aktivität,
	engl. counts per minute
Da	Dalton
DAPI	4',6-Diamidin-2-phenylindol
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure,
	engl. Deoxyribonucleic acid
DTT	Dithiothreitol
ECL	Enhanced-Chemilumineszenz
EDTA	Ethylendiamintetraessigsäure,
	engl. Ethylenediaminetetraacetic Acid

ELISA	engl. Enzyme-linked Immunosorbent Assay
engl.	Englisch
et al.	und Kollegen, <i>lat.</i> et alumni
FACS	Durchflusszytometrie,
	engl. Fluorescence activated cell sorting
FASP	Art der Proteinaufbereitung für die
	Massenspektrometrie,
	engl. Filter-aided sample preparation
FCS	Fötales Kälberserum, engl. Fetal calf serum
FDR	engl. False Discovery Rate
FoxP3	Transkriptionsfaktor, engl. Forkhead box P3
g	Gramm
GATA3	Trankriptionsfaktor, engl. GATA binding protein 3
h	Stunde
H+L	Schwere und leichte Kette,
	engl. Heavy and Light Chain
H ₂ O	Wasser
H_2O_2	Wasserstoffperoxid
HCI	Salzsäure
HEWL	engl. Hen egg white lysozyme
HLA	Humanes Leukozyten-Antigen
HPLC	Hochleistungsflüssigkeitschromatographie,
	engl. High-performance liquid chromatography
Hyper	Tiere mit einem hyperproliferativem Immunphänotyp
IDO	Indolamin-2,3-Dioxygenase
I.E.	Internationale Einheiten
IFN	Interferon
lg	Immunglobulin
lgE	Immunglobulin der Klasse E
lgG	Immunglobulin der Klasse G

lgM	Immunglobulin der Klasse M
INDOL	engl. Indoleamine 2,3-dioxygenase 2
IL	Interleukin
IRF4	Interferon-regulatorischer Faktor 4
IRIS	engl. Immune Reconstitution Inflammatory Syndrom
ITP	primäre Immunthrombozytopenie
iTreg	induzierte regulatorische T-Zellen
JAK	<i>engl.</i> Janus kinase
c-JUN	engl. Transcription factor AP-1
Кар.	Kapitel
KCI	Kaliumchlorid
kDa	Kilodalton
kE	Konstitutive Expression
KH ₂ PO ₄	Kaliumdihydrogenphosphat
LAT	engl. Linker for activation of T-cells family member 1
LC	Flüssigchromatografie, engl. Liquid chromatography
LCK	engl. Lymphocyte-specific protein tyrosine kinase
I	Liter
LIF	engl. Leukemia inhibitory factor
LILRA	engl. Leukocyte immunoglobulin-like receptor
	subfamily A
Μ	Molar
mA	Milliampère
MAP	Mykobakterium avium subsp. paratuberculosis
MAP-Kinase	engl. Mitogen-activated protein-Kinase
mCi	Millicurie,
MCL	Mantelzell-Lymphom
MDBK	Bovine Nierenzelllinie,
	engl. Madin darby bovine kidney

meta-GWAS	engl. Meta Genome-Wide Association Strategy
mg	Milligramm
MgCl ₂	Magnesiumchlorid
mgf	Dateiformat, engl. Mascot generic file
MHC	Haupthistokompatibilitätskomplex,
	engl. Major histocompatibility complex
min	Minute
МК	Mediumkontrolle
ml	Milliliter
mM	Millimolar
mm	Millimeter
MM	Multiples Myelom
MS	Massenspektrometrie
MS/MS	Tandem-Massenspektrometrie
mTOR	engl. mechanistic Target of Rapamycin
Na ₂ CO ₃	Natriumcarbonat
Na ₂ HPO ₄	Dinatriumhydrogenphosphat
NaCl	Natriumchlorid
NaHCO ₃	Natriumhydrogencarbonat
n	Anzahl
ng	Nanogramm
NKT-Zelle	natürliche Killer T-Zellen
nl	Nanoliter
nm	Nanometer
NOS ₂	engl. Nitric Oxide Synthase 2
nTreg	natürliche regulatorische T-Zellen
р	Signifikanzwert
PAGE	Polyacrylamid-Gelelektrophorese

PBMC	periphere mononukleäre Blutzellen,
	engl. Peripheral blood-mononuclear cells
PBL	Periphere Blutlymphozyten
PBS	Phosphatgepufferte Kochsalzlösung,
	engl. Phosphate buffered saline
PBS-T	PBS-Tween Lösung
PCR	Polymerase-Kettenreaktion,
	engl. Polymerase chain reaction
PCV	Porcines Circovirus
Pen/Strep	Penicillin/Streptomycin
PHA	Phytohämagglutinin
PI3-Kinase	Phosphoinositid-3-kinase
PLC	Phospholipase
PMT	Photodetektor, engl. Photomultiplier Tube
PNGase F	Peptide-N-Glycosidase F
PNP	Purin-Nukleosid-Phosphorylase
POD	Peroxidase
ppm	engl. Parts per Million
PVDF	Polyvinylidenfluorid
PVP(-T)	Polyvinylpyrrolidone (-Tween) Lösung
PWM	engl. Pokeweed Mitogen
RA	Rheumatische Arthritis
rcf	Relative Zentrifugalkraft,
	engl. Relative centrifugal force
RNA	Ribonukleinsäure, engl. Ribonucleic acid
RORYT	Retinoic acid receptor gamma T
RPMI	Zellkulturmedium,
	engl. Roswell Park Memorial Institute
RT	Raumtemperatur
SCAMP3	engl. Secretory carrier membrane protein 3

SDS	Natriumdodecylsulfat, engl. Sodium dodecyl sulfate
SH2-Domäne	Proteindomäne, engl. Src-homology 2
SS	Systemische Sklerose
STAT	engl. Signal Transducers and Activators of
	Transcription
SYK	engl. Spleen tyrosine kinase
Tab.	Tabelle
Tbet	Transkriptionsfaktor,
	engl. T-box transcription factor TBX21
TBS	Tris-gepufferte Kochsalzlösung,
	engl. Tris-buffered saline
TCR	T-Zell-Rezeptor, engl. T-cell receptor
TEMED	NNNN'-Tetra-methylethylendiamin
TF IIB	engl. Transcription initiation factor IIB
TFA	Trifluoressigsäure (engl. Trifluoracetic acid)
Tfh	follikuläre T-Helferzelle
TGF	Transformierender Wachstumsfaktor,
	engl. Transforming growth factor
Th	T-Helferzellen
TIMP3	engl. Tissue Inhibitor of Metalloproteinases 3
TLR2	engl. Toll-like receptor 2
TNF	Tumornekrosefaktor
Treg	regulatorische T-Zellen
Tyr	Tyrosin
VDR	engl. Vitamin D 1a,25 dihydroxyvitamin D3 receptor
vgl.	vergleiche
VLA-3	engl. Very Late Antigen 3
WP1066	STAT3 Inhibitor III
ZAP70	engl. Zeta-chain TCR associated protein kinase 70

1 EINLEITUNG

Die bovine neonatale Panzytopenie (BNP) ist eine seit 2006 bekannte Erkrankung neugeborener Kälber, die mit einer hämorrhagischen Diathese einhergeht (Bastian et al. 2011, Friedrich et al. 2011). Das plötzliche Auftreten von multiplen äußeren und inneren Blutungen, Thrombozytopenie, Leukozytopenie und Knochenmarksdepletion sind typische Symptome der BNP (Penny et al. 2009, Laming et al. 2012) und nur 10 % der Kälber überlebten diese Erkrankung (Pardon et al. 2011). Als Ursache der BNP wurde die Impfung mit PregSure BVD festgestellt (Sauter-Louis et al. 2012, Jones et al. 2013), nach welcher nur 5-10 % der geimpften Kühe pathogene Antikörper ausbildeten (Bastian et al. 2011). Die BNP-Antikörper wurden über das Kolostrum an ihre Kälber übertragen (Friedrich et al. 2011) und banden an Leukozyten, Thrombozyten sowie Knochenmarkszellen, welche sie zerstörten (Bell et al. 2013). MHCI wurde als BNP auslösendes Antigen beschrieben (Deutskens et al. 2011, Foucras et al. 2011). Dies konnte jedoch nicht verifiziert werden (Deutskens 2012), da nicht nur die Antikörper der BNP-Überträgertiere, sondern alle mit PregSure BVD geimpften Tiere spezifisch an MHCI auf MDBK-Zellen oder auf PBL banden (Deutskens 2012, Benedictus et al. 2015). Des Weiteren ist bekannt, dass Kühe häufig während der Trächtigkeit Antikörper gegen paternales MHCI ausbilden (Bell et al. 2013). Somit bleibt die genaue BNP-Pathogenese bislang ungeklärt und ferner ist zu klären, warum die BNP-Überträgertiere auf die Impfung PregSure BVD mit einer abweichenden Immunreaktion reagierten.

Ziel dieser Arbeit ist es, unterschiedliche Immunkapazitäten von PregSure BVD geimpften Kontrollkühen und BNP-Überträgerkühen nach T-Zell-Stimulation nachzuweisen und die Immunreaktionen von nicht geimpften Tieren mit den PregSure BVD geimpften Kühen zu vergleichen. Darüber hinaus wollen wir klären, ob die BNP-Tiere bereits vor der Impfung einen abweichenden Immunphänotyp besaßen. Weiterhin soll die funktionelle Korrelation der verschiedenen Immunphänotypen mit der Häufigkeit von diversen Erkrankungen analysiert werden.

2 LITERATUR

2.1 Bovine Neonatale Panzytopenie

2.1.1 Auftreten und Krankheitsbild der BNP

Die Erkrankung der bovinen neonatalen Panzytopenie trat erstmals im Jahr 2006 in Bayern auf (Friedrich et al. 2009). Danach folgten Fälle aus ganz Deutschland, den Niederlanden, Belgien, Frankreich, Luxemburg, Großbritannien, Irland, Italien, Spanien, Polen, Ungarn und 2011 auch in Neuseeland (Friedrich et al. 2009, Bell et al. 2010b, Sanchez-Miguel et al. 2010, Bastian et al. 2011, Pardon et al. 2011, Jaskowski et al. 2012, Laming et al. 2012, Sauter-Louis et al. 2012, Jones et al. 2013). Das Krankheitsbild der BNP ist gekennzeichnet von einer hämorrhagischen Diathese bei unter vier Wochen alten Kälbern (Friedrich et al. 2011). Die charakteristischen Symptome waren das plötzliche Auftreten von multiplen äußeren Thrombozytopenie, und inneren Blutungen, Leukozytopenie und Knochenmarksdepletion bei neugeborenen Kälbern (Penny et al. 2009, Laming et al. 2012). Die erkrankten Kälber zeigten blasse Schleimhäute, Petechien, Epistaxis und weitere Blutungen beispielweise aus der Maulhöhle. Injektionsstellen, Insektenstichen oder Ohrmarkeneinzugsstellen (Penny et al. 2009, Bell et al. 2010b, Sanchez-Miguel et al. 2010, Pardon et al. 2011, Laming et al. 2012). Einige Kälber entwickelten auch hohes Fieber und Dyspnoe (Friedrich et al. 2009, Kappe et al. 2010, Pardon et al. 2011). Im weiteren Verlauf der Erkrankung verschlechterte sich das Allgemeinbefinden zunehmend, die Kälber wurden apathisch und die meisten verstarben innerhalb weniger Tage oder wurden euthanasiert (Pardon et al. 2011, Euler et al. 2013, Demasius et al. 2014). Nur etwa 10 % der Kälber erholten sich vollständig und überlebten die BNP (Pardon et al. 2011). Auch subklinische Verlaufsformen der BNP, die mit ähnlichen Blutbildveränderungen, aber ohne klinische Symptome einhergingen, wurden beobachtet (Pardon et al. 2011, Bell et al. 2014). Die hämatologischen Befunde wiesen wenige Stunden nach Kolostrumaufnahme auf eine hochgradige Thrombozytopenie mit gleichzeitiger Leukozytopenie hin (Bell et al. 2010a, Friedrich et al. 2011, Laming et al. 2012).

Einige Kälber zeigten durch den starken Blutverlust auch eine aregenerative Anämie (Friedrich et al. 2009, Bell et al. 2010b, Pardon et al. 2011, Laming et al. 2012). Eindeutige Veränderungen ließen sich histologisch auch im Knochenmark feststellen (Pardon et al. 2011, Laming et al. 2012, Bell et al. 2013). Im Verlauf der Erkrankung konnte eine schnell fortschreitende Depletion des Knochenmarks bis zur vollständigen Knochmarksaplasie nachgewiesen werden (Kappe et al. 2010, Pardon et al. 2011). Die hämatopoetischen Zellen im Knochenmark wurden im Krankheitsverlauf fast vollständig durch proteinhaltige Flüssigkeit, Fettgewebe und Erythrozyten ersetzt (Bell et al. 2010b). Eine Knochenmarksbiopsie mit dem Nachweis einer degenerativen Knochenmarksdepletion wird als Goldstandard zur Diagnose von BNP angesehen sowie der Nachweis von Hämorrhagien, Thrombozytopenie und Leukozytopenie zur Bestätigung der Diagnose (Friedrich et al. 2009, Pardon et al. 2011, Sauter-Louis et al. 2012).

2.1.2 Ätiologie der BNP

Als Ursache für das Auftreten der BNP bei neugeborenen Kälbern wurden mehrere Möglichkeiten in Betracht gezogen. Die Beteiligung von toxischen Substanzen, Medikamenten und radioaktiver Strahlung konnte frühzeitig ausgeschlossen werden (Friedrich et al. 2009, Pardon et al. 2011). Auch eine Infektion mit dem Bovinen Virus Diarrhoe Virus (BVDV), dem Blauzungenvirus, dem Enzootischen Hämorrhagie Virus (Friedrich et al. 2009, Pardon et al. 2011) oder dem porcinen Circovirus (PCV) Typ 2b konnte nicht bestätigt werden (Kappe et al. 2010, Willoughby et al. 2010). So ergaben epidemiologische Studien, dass in allen Betrieben in denen die BNP auftrat, der inaktivierte Impfstoff PregSure BVD der Firma Pfizer Animal Health angewendet wurde (Friedrich et al. 2009, Kasonta et al. 2012, Lambton et al. 2012, Sauter-Louis et al. 2012, Jones et al. 2013). In Ländern wie der Schweiz, Österreich und Skandinavien, in denen PregSure BVD nicht auf dem Markt war, wurden hingegen keine BNP-Fälle registriert (Friedrich et al. 2009, Kasonta et al. 2012). In verschiedenen Studien bestätigte sich der Zusammenhang zwischen der Verwendung des Impfstoffs PregSure BVD bei Mutterkühen und dem Auftreten der BNP bei deren neugeborenen Kälbern (Kasonta et al. 2012, Sauter-Louis et al. 2012, Jones et al. 2013). Untersuchungen ergaben, dass der Impfstoff PregSure BVD mit

Bestandteilen einer bovinen Nierenzelllinie (MDBK, *Madin Darby Bovine Kidney*) verunreinigt war, die zur Herstellung des Impfstoffes verwendet wurde (Euler et al. 2013). Außerdem wurde das neuartige, hochpotente Adjuvans Procision-A verwendet, welches eine starke Immunreaktion bewirkte (Bastian et al. 2011). In Deutschland wurde PregSure BVD 2004 auf den Markt gebracht (Kasonta et al. 2012). Die Inzidenz der BNP lag in Deutschland insgesamt unter 0,3 % (Bastian et al. 2011). Dabei konnte kein Zusammenhang zwischen der Inzidenz und der Zeit nach der letzten Impfung festgestellt werden (Bell et al. 2014). Auch der Zeitpunkt der Impfung im Trächtigkeitsstadium stellte keinen Risikofaktor für die BNP dar (Demasius et al. 2014). Jedoch stieg das Risiko der BNP nach der zweiten Trächtigkeit an, welches auf die mehrmalige Applikation des Impfstoffes und die damit verbundene höhere Antikörperkonzentration zurückzuführen sein könnte (Kasonta et al. 2012, Demasius et al. 2014).

Am auffälligsten war die Tatsache, dass nur 5-10 % der mit PregSure BVD geimpften Kühe durch ihr Kolostrum die BNP bei ihren Kälbern induzierten (Bastian et al. 2011). Bei den restlichen Kühen, die ebenfalls mit PregSure BVD geimpft waren, zeigten die Kälber nach Kolostrumaufnahme keine BNP (Bastian et al. 2011). Im Jahr 2010 wurde der Impfstoff PregSure BVD freiwillig von der Firma Pfizer Animal Health vom europäischen Markt und nach ersten BNP-Fällen im August 2011 auch in Neuseeland vom Markt genommen (Bastian et al. 2011, Jones et al. 2013). Die Zulassung für PregSure BVD wurde dann in allen EU-Mitgliedstaaten im August 2011 durch die Behörde aufgehoben (Jones et al. 2013). Als Ursache für die BNP vermuteten mehrere Arbeitsgruppen ein immunmediiertes Geschehen (Friedrich et al. 2009, Penny et al. 2009, Bridger et al. 2011, Pardon et al. 2011).

2.1.3 Pathogenese der BNP

Das Kolostrum spielte eine zentrale Rolle bei der Entstehung der BNP (Friedrich et al. 2011). So konnte in mehreren Tränkeversuchen gezeigt werden, dass Kälber aus BNP-freien Beständen ebenfalls an der BNP erkrankten, wenn sie das Kolostrum von einer Kuh bekamen, die bereits ein BNP-Kalb hervorgebracht hatte (Friedrich et al. 2011, Schroter et al. 2011). Damit konnte nachgewiesen werden, dass die BNP-auslösenden Antikörper von den Mutterkühen über das Kolostrum auf ihre

Kälber übertragen wurden (Friedrich et al. 2011, Schroter et al. 2011, Bell et al. 2013, Henniger et al. 2014). Es zeigte sich aber ebenfalls, dass sich keine **BNP-Symptomatik** entwickelte. wenn Kälber von nachweislichen BNP-Überträgerkühen das Kolostrum von einer Kuh aus einem BNP-freien Bestand erhielten (Bell et al. 2010a). Diese Versuche wiesen die entscheidende Bedeutung des Kolostrums (BNP-Kolostrum) der BNP-Überträgerkühe bei der Pathogenese der BNP nach (Bell et al. 2010a, Friedrich et al. 2011, Schroter et al. 2011, Laming et al. 2012). In vier unabhängigen Tränkeversuchen wurde der Verlauf der Erkrankung untersucht und es konnte die charakteristische BNP-Symptomatik nachgewiesen werden (Friedrich et al. 2011, Schroter et al. 2011, Laming et al. 2012, Bell et al. 2013). Verschiedene Verlaufsstadien zeigten das Auftreten erster klinischer Symptome bereits wenige Tage nach Kolostrumaufnahme. Die Kälber hatten blutigen Kot. petechiale Blutungen (Friedrich et al. 2011), Blutungen an den Ohrmarkeneinzugsstellen, Injektionsstellen, verlängerte Blutungszeiten und Fieber (Friedrich et al. 2011, Laming et al. 2012). Weiterhin konnte ein charakteristischer Verlauf der Blutwerte beobachtet werden (Bell et al. 2013). Wenige Stunden nach Kolostrumaufnahme kam es im Vergleich zu den Kontrolltieren zu einem signifikanten Abfall der Thrombozyten (auf 40 % der physiologischen Werte), Lymphozyten (auf 70 %), neutrophilen Granulozyten (auf 75 %) und Monozyten (auf 95 %) (Bell et al. 2013). Die Lymphozyten und Monozyten blieben nach dem zweiten Tag postkolostral konstant auf diesem niedrigen Niveau, wohingegen die Thrombozyten ab dem vierten Tag postkolostral weiter absanken und teilweise nicht mehr nachweisbar waren (Bell et al. 2013). Im weiteren Verlauf der BNP wurden Veränderungen des Knochenmarks beschrieben (Laming et al. 2012, Bell et al. 2013). Etwa sechs Tage nach Kolostrumaufnahme zeigten alle untersuchten Kälber eine deutlich reduzierte Dichte an hämatopoetischen Zellen und am zehnten Tag postkolostral wiesen 70 % der Kälber mit einer Zelldichte von weniger als einem Viertel eine trilineäre Hypoplasie (erythroide sowie myeloide Reihe, Megakaryozyten) des Knochenmarks auf (Laming et al. 2012, Bell et al. 2013). Nach Kolostrumaufnahme entwickelten 90 % der Kälber klinische Symptome der BNP und verstarben oder mussten euthanasiert werden, die restlichen Kälber entwickelten

lediglich eine subklinische BNP oder zeigten keinerlei Symptome (Friedrich et al. 2009, Schroter et al. 2011, Laming et al. 2012, Bell et al. 2013).

Neben dem kolostralen Übertragungsweg konnte die BNP zudem durch eine Serumantikörper-Transfusion von BNP-Überträgerkühen in neugeborenen Kälbern induziert werden (Foucras et al. 2011). Zu diesem Zweck wurde IgG aus dem Serum von BNP-Kühen präzipitiert und Kälbern aus BNP-freien Beständen infundiert (Foucras et al. 2011). Zehn Tagen post infusionem erkrankten die Kälber an der BNP (Foucras et al. 2011). Sie zeigten petechiale Blutungen, blutigen Kot und einen signifikanten Abfall der Thrombo- und Leukozyten (Foucras et al. 2011). Bei der Sektion der Kälber wurden am zehnten Tag nach Kolostrumaufnahme Blutungen in den Eingeweiden, Gelenken und Muskeln festgestellt sowie eine deutliche Knochenmarksdepletion diagnostiziert (Foucras et al. 2011).

Da die BNP-Antikörper die Blutzellen und die Zellen im Knochenmark angreifen, wurde das Bindungsverhalten der Serumantikörper von Überträgerkühen und Kontrollkühen an Leukozyten von neugeborenen Kälbern in weiteren Studien untersucht (Bridger et al. 2011). Dabei zeigte sich, dass die BNP-IgG stärker an die Lymphozyten- und Monozytenpopulation banden als an die Granulozyten (Bridger et al. 2011). Dieses Bindungsverhalten von BNP-IgG an die einzelnen Leukozytensubpopulationen konnte von einer weiteren Arbeitsgruppe bestätigt werden, wo BNP-IgG zu 98 % an Lymphozyten, zu 60 % an Monozyten und zu 26 % an Granulozyten band (Bastian et al. 2011).

Die Versuche zur Bindungsintensität von Kontroll- und BNP-Überträgerseren auf Lymphozyten und Monozyten von Kälbern zeigten, dass nur Seren von PregSure BVD geimpften Tieren an die Kälberzellen banden (Bastian et al. 2011). Dabei banden die BNP-Überträgerseren wiederum signifikant stärker an die Kälberzellen als die Seren der PregSure BVD geimpften Kontrollkühe (geimpfte Kontrollseren) (Bastian et al. 2011). Die Seren von ungeimpften oder anders BVD-geimpften Tieren (nicht Pregsure BVD geimpfte Kontrollseren) zeigten hingegen keine Bindung an die Kälberzellen (Bastian et al. 2011). In einem weiteren Versuch konnte festgestellt werden, dass BNP-IgG an die bovine MDBK-Zelllinie band, wohingegen IgG der ungeimpften Kontrollseren keine Bindung an die zur

Impfstoffherstellung verwendete Zelllinie zeigte (Bastian et al. 2011). Dies sprach nach Meinung der Autoren für eine Alloantikörperbildung aufgrund der Verunreinigung des Impfstoffs mit MDBK-Zellbestandteilen (Bastian et al. 2011). Das Bindungsverhalten von geimpften Kontrollseren an MDBK-Zellen wurde jedoch nicht getestet (Bastian et al. 2011).

Des Weiteren wurde das Bindungsverhalten von kolostralem BNP-IgG untersucht und es zeigte sich, dass BNP-Kolostren ebenfalls sehr schwach (3 %) bis mittelstark (66 %) an MDBK-Zellen binden konnten (Schumann 2011).

Weiterhin wurden immunzytologische Färbungen von Leukozyten und Thrombozyten Kälbern, die keinerlei Symptome der BNP aufwiesen, mit Kontrollvon (PregSure BVD geimpft) und BNP-Kolostren angefertigt (Assad et al. 2012). Dabei zeigte sich, dass die BNP-Alloantikörper des Kolostrums dem Isotyp IgG1 angehörten (Assad et al. 2012). Die kolostralen BNP-Alloantikörper banden zu 70 % an Leukozyten und zu 100 % an Thrombozyten der Kälber (Assad et al. 2012). Diese zeigten nicht nur an der Zelloberfläche eine Bindung, sondern banden auch intrazytoplasmatisch (Assad et al. 2012). Das Kontrollkolostrum zeigte wiederum keine Bindung an den Leukozyten und Thrombozyten der Kälber (Assad et al. 2012). Darüber hinaus ergab sich kein Unterschied im Bindungsverhalten von BNP-IgG1 an juvenile oder mature Blutzellen. Somit konnte kein Unterschied in der BNP-Antigenexpression zwischen neugeborenen Kälbern und adulten Kühen nachgewiesen werden (Assad et al. 2012). Unabhängig von Alter und Rasse des Muttertieres banden die BNP-IgG1 an 100 % der Thrombozyten, Granulozyten und Monozyten, einen Großteil der B- und zytotoxischen (CD8⁺) T-Lymphozyten und nur geringgradig an CD4⁺ T-Lymphozyten (Assad et al. 2012).

Die Versuche zur Pathogenese der BNP zeigen zusammenfassend, dass die BNP-Überträgertiere gegen eine Proteinverunreinigung im Impfstoff PregSure BVD pathogene Alloantikörper bildeten (Bastian et al. 2011, Deutskens et al. 2011, Assad et al. 2012) und diese pathogenen BNP-Antikörper über das Kolostrum an ihre Kälber weitergaben (Friedrich et al. 2009, Foucras et al. 2011, Friedrich et al. 2011, Bell et al. 2013). Die Aufnahme der pathogenen Antikörper induzierte bei den neugeborenen Kälbern eine Knochenmarksdepletion bis hin zu einer vollständigen

Knochenmarksaplasie sowie eine intravasale Zerstörung der Thrombozyten und in unterschiedlicher Ausprägung von Granulozyten, Monozyten und Lymphozyten (Bridger et al. 2011, Foucras et al. 2011). Dabei reagierten jedoch nur 5-10 % der mit PregSure BVD geimpften Kühe mit der Produktion der hochtitrigen pathogenen Antikörper (Bastian et al. 2011). Daraus entstand die Hypothese, dass die BNP-Überträgertiere ein Antigen aus dem Impfstoff PregSure BVD als fremd erkennen und gegen dieses die BNP-Antikörper bildeten (Deutskens et al. 2011). Die restlichen geimpften Kühe bildeten keine pathogenen Antikörper, weil diese das Antigen selbst exprimieren (Deutskens et al. 2011)

2.1.4 MHCI als mögliches Alloantigen

In weiteren Studien wurde die Suche nach dem BNP-auslösenden Antigen intensiviert. Mehrere Arbeiten beschrieben, dass MHCI das Zielantigen der pathogenen BNP-Antikörper sei und somit die Pathogenese der BNP erklärt werden könnte (Deutskens et al. 2011, Foucras et al. 2011, Bell et al. 2015, Benedictus et al. 2015).

Dazu wurden MDBK-Zellen mit Kontroll- und BNP-Seren immunpräzipitiert und anschließend im Western Blot untersucht (Deutskens et al. 2011). Dabei zeigte sich, dass alle BNP-Seren, aber auch 50 % der Kontrollseren (PregSure BVD geimpfte Kontrollkühe) bei den MDBK-Zellen an ein Protein mit der Größe von 44 kDa banden (Deutskens et al. 2011).

In einem ähnlichen Versuch wurden ebenfalls Blutleukozyten von einer BNP-Kuh, einer geimpften Kontrollkuh (Deutskens et al. 2011) und einem BNP-Kalb (Deutskens et al. 2011, Foucras et al. 2011) mit BNP-Seren präzipitiert und im Western Blot getestet (Deutskens et al. 2011, Foucras et al. 2011). Hier konnte nur eine schwache Bande bei 44 kDa mit BNP-Serum auf Leukozyten derselben BNP-Kuh (Deutskens et al. 2011), dafür aber eine deutliche Bindung des BNP-Serums auf Leukozyten des BNP-Kalbes (Deutskens et al. 2011, Foucras et al. 2011) und der geimpften Kontrollkuh nachgewiesen werden (Deutskens et al. 2011). Nur eine der beiden Arbeitsgruppen untersuchte auch das Bindungsverhalten von einem Kontrollserum, wobei nicht beschrieben wurde, ob und wie diese Kontrollkuh gegen BVD geimpft

worden war (Foucras et al. 2011). Dieses Kontrollserum zeigte bei allen getesteten Kälber-Leukozyten keine Bindung an ein 44 kDa Protein (Foucras et al. 2011). Die zugehörige Gel-Bande bei 44 kDa wurde im nächsten Schritt von beiden Arbeitsgruppen massenspektrometrisch untersucht und als MHCI (BoLA MHCI, β 2-Microglobin) identifiziert (Deutskens et al. 2011, Foucras et al. 2011). Eine andere Arbeitsgruppe identifizierte fünf klassische MHCI-Allele in MDBK-Zellen mittels PCR (Bell et al. 2015).

In weiteren Untersuchungen wurde das MHCI-Molekül mögliches als BNP-Alloantigen verifiziert. Dafür wurden wiederum Kälber-PBL mit BNP-Seren präzipitiert und mit einem anti-MHCI-Antikörper (Anti-Rind-MHCI (IL-A88)) im Western Blot der Nachweis geführt, dass eine MHCI-Bande bei 40-45 kDa präzipitiert wurde (Foucras et al. 2011). Zur weiteren Charakterisierung wurden Kälber-Leukozyten und MDBK-Zellen mit BNP-Seren oder geimpftem Kontroll-Seren inkubiert und anschließend die prozentuale Bindung eines anti-MHCI-Antikörpers (Anti-Rind-BoLA) an die Zellen untersucht (Foucras et al. 2011). Kälber-Leukozyten und MDBK-Zellen zeigten nach Inkubation mit BNP-Serum eine geringere MHCI-Bindung als nach der Inkubation mit Kontroll-Seren (Foucras et al. 2011). Als Ursache wurde vermutet, dass die BNP-Antikörper im Gegensatz zu den Kontrollantikörpern an ein bestimmtes Epitop von MHCI banden und damit die nachfolgende Bindung durch den MHCI-Antikörper zum Teil inhibiert wurde (Foucras et al. 2011).

Mittels eines Fluoreszenzmikroskops konnte in Seren von Rindern nachgewiesen werden, dass alle PregSure BVD geimpften Kühe einen signifikant höheren Titer an funktionellen MHCI-spezifischen-Alloantikörpern hatten als die ungeimpften oder alternativ BVD geimpften Kontrollkühe (Bell et al. 2015). Es wurde eine signifikant stärkere MHCI-Expression der Lymphozyten im Vergleich zu Thrombozyten und Granulozyten bei Rindern mittels Durchflusszytometrie detektiert (Bell et al. 2015). Des Weiteren wurde mittels Complement Dependant Cytotoxicity (CDC) Assay die zytotoxische Wirkung des BNP-Serums auf bovine Leukozyten mit quantitativer Lebend-Tod-Bestimmung im Fluoreszenzmikroskop nachgewiesen (Bell et al. 2015).

schädigen, die eine hohe MHCI-Expression besitzen (Bell et al. 2015, Benedictus et al. 2015). Durch weitere CDC-Assays und Durchflusszytometrien konnte der zytotoxische Effekt des BNP-Serums auch auf Knochenmarkszellen untersucht werden (Bell et al. 2015). Dabei wurde festgestellt, dass das BNP-Serum besonders toxisch war für Zellen mit einer stärkeren MHCI-Expression, wie Lymphozyten und Knochenmarkszellen (Bell et al. 2015, Benedictus et al. 2015).

Um als potenzielles BNP-Antigen in Frage zu kommen, musste MHCI nicht nur im Proteinrepertoire von MDBK-Zellen nachweisbar sein, sondern auch Bestandteil des Impfstoffes selber sein. In weiteren Experimenten wurde deshalb das Vorkommen von MHCI im Impfstoff PregSure BVD untersucht (Deutskens et al. 2011, Foucras et al. 2011, Euler et al. 2013). Dabei wurde MHCI mit Hilfe eines bovinen MHCI-Antikörpers (Anti-Rind-MHCI Antikörper IL-A88, gegen die monomorphe Determinante von bovinem MHCI gerichtet) mittels Western Blot im Impfstoff PregSure BVD detektiert (Deutskens et al. 2011, Foucras et al. 2011). In unserer Arbeitsgruppe wurde im Vergleich zu den MDBK-Zellen das Proteinrepertoire des Impfstoffes PregSure BVD und des BVD-Impfstoffes Vacoviron FS als Negativkontrolle analysiert (Euler et al. 2013). In der Negativkontrolle wurden 43 Proteine, im Impfstoff PregSure BVD 159 und in den MDBK-Zellen 163 Proteine identifiziert. Dabei waren 25 Proteine sowohl in PregSure BVD als auch in MDBK-Zellen nachweisbar (Euler et al. 2013). Unter diesen konnte auch MHCI (MHC class I heavy chain isoform 1; ENSBTAP00000031126) mit geringer Abundanz detektiert werden (Euler et al. 2013).

Zusammenfassend wurde auf Grundlage dieser MHCI-Daten folgende Erklärung zur Pathogenese der BNP postuliert: Wenn eine Mutterkuh mit PregSure BVD geimpft wird, so ist die BNP-Alloantikörper-Produktion abhängig von deren MHCI-Phänotyp und somit auch vom Genotyp (Deutskens et al. 2011, Deutskens 2012). Stimmt die MHCI-Variante der PregSure BVD geimpften Mutterkuh mit der des Impfstoffs überein, kommt es zu keiner Alloantikörper-Produktion und das Kalb erkrankt nicht an BNP (Deutskens et al. 2011, Deutskens 2012). Sollte der MHCI-Phänotyp des Muttertieres mit dem des Impfstoffs nicht übereinstimmen, dann wird diese MHCI-Variante als fremd erkannt und es werden BNP-Alloantikörper produziert

(BNP-Überträgertiere) (Deutskens et al. 2011, Deutskens 2012). Folglich erkranken Kälber dieser Kühe nach Aufnahme des Kolostrums an BNP (Deutskens et al. 2011, Deutskens 2012). Ein Kalb bildet jedoch nur dann BNP-Symptome aus, wenn es Träger der entsprechenden MHCI-Variante aus dem Impfstoff ist, welche väterlichen Ursprungs sein muss (Deutskens et al. 2011). Die pathogenen BNP-Antikörper zerstören vor allem Zellen mit einer hohen MHCI-Expression, was mit der Pathologie der BNP korreliert (Bell et al. 2015, Benedictus et al. 2015).

2.1.5 MHCI als auslösendes BNP-Alloantigen konnte nicht abschließend bestätigt werden

In weiteren Untersuchungen konnten die bisherigen Ergebnisse der MHCI postulierenden Arbeitsgruppen nicht verifiziert werden. Es wurde gezeigt, dass bei immunpräzipitierten MDBK-Zellen mit Seren von BNP-Kühen und PregSure BVD geimpften Kontrollkühen einheitlich Banden bei 44 kDa im Western Blot sichtbar waren (Deutskens 2012). Als Negativkontrolle wurden jetzt auch Seren von alternativ gegen BVD geimpften Tieren (BVD-Impfstoff Bovidec, Firma Novartis) verwendet (Deutskens 2012). Von diesen präzipitierten ebenfalls 63 % ein Protein mit einem Molekulargewicht von 44 kDa aus MDBK-Zellen (Deutskens 2012). Immunpräzipitationen mit Kolostren von BNP-Überträgerkühen, von geimpften Kontrollkühen und von BVD ungeimpften Kühen ergaben, dass die Kolostren aller PregSure BVD geimpften Kühe (BNP-Tier und Kontrolltier) einheitlich das 44 kDa-Protein präzipitierten (Deutskens 2012). Die Kolostren der nicht PregSure BVD geimpften Kühe zeigten hingegen keine Banden auf der entsprechenden Höhe (Deutskens 2012). Die bereits publizierten Ergebnisse aus dem Vorjahr (Deutskens et al. 2011) widersprachen somit diesen Erkenntnissen derselben Arbeitsgruppe, was dann aber nur noch als Dissertation publiziert wurde (Deutskens 2012).

In einem Wiederholungsversuch wurden mit BNP-Seren präzipitierte Leukozyten von PregSure BVD geimpften Kontrollkühen und BNP-Kühen untersucht (Deutskens 2012). Dabei zeigten nur noch 75 % der Kontroll-Leukozyten, aber auch 50 % der BNP-Leukozyten eine Bande bei 44 kDa im Western Blot (Deutskens 2012). Eine

Unterscheidung der Bindung von BNP-Seren an MHCI von Kontroll- und BNP-Leukozyten konnte so also nicht mehr festgestellt werden (Deutskens 2012).

Des Weiteren konnte eine Kreuzreaktivität zwischen Alloantikörpern in Seren PregSure BVD geimpfter Kühe und MHCI des Menschen festgestellt werden (Kasonta et al. 2014). Dazu wurden humane Lymphoblasten mit Seren von PregSure BVD geimpften Kontrollkühen sowie Überträgerkühen, Seren von mit alternativem Impfstoff immunisierten Kontrollkühen und nicht geimpften Kühen immunpräzipitiert (Kasonta et al. 2014). Die Präzipitate wurden dann mit einem anti-Rind-MHCI-Antikörper (IL-A88) oder mit einem anti-Mensch-HLAI-Antikörper (W6/32) im Western Blot inkubiert (Kasonta et al. 2014). 81 % der BNP-Seren, aber auch 38 % der Kontrollseren PregSure BVD geimpfter Tiere banden dabei an ein 44 kDa-Protein (Kasonta et al. 2014). Keine Bindung wurde bei den Seren der alternativ geimpften Kontrollkühe und der nicht geimpften Kontrollkühe festgestellt (Kasonta et al. 2014). Somit konnte zwar eine MHCI-Bande bei den Kühen detektiert werden, die mit dem Impfstoff PregSure BVD immunisiert wurden, jedoch zeigte dieses Experiment ebenfalls, dass das bovine MHCI nicht Haplotyp-spezifisch ist.

Auch Untersuchungen zur genetischen Disposition lieferten keinen Hinweis darauf, dass MHCI das BNP-auslösende Antigen ist (Demasius et al. 2014). Es wurde zunächst vermutet, dass es für die BNP eine genetische Prädisposition gab, weil in einer F2-Generation gehäuft Fälle von BNP auftraten, die alle von dem gleichen F1-Bullen abstammten (Krappmann et al. 2011). Diese Hypothese konnte jedoch mit eingehenden Untersuchungen nicht bestätigt werden (Demasius et al. 2014). Die deutschlandweit niedrige BNP-Inzidenz von 0,3 % (Bastian et al. 2011) passte laut Meinung einiger Autoren außerdem nicht zu der Tatsache, dass bei Rindern die MHCI-Region eine der am meisten polymorphen Genregionen ist (Babiuk et al. 2007) und dass BNP-Kälber innerhalb einer kleinen Kuhpopulation das gleiche MHCI-Allel wie die MDBK-Zellen besitzen sollen (Demasius et al. 2014).

Auch mithilfe einer neuartigen RNA-Sequenzierungsmethode konnten Demasius et al. Beweise dafür finden, dass sowohl klassisches als auch nicht klassisches MHCI als alleinige Ursache für die Produktion BNP-assoziierter Alloantikörper ausgeschlossen werden können (Demasius et al. 2016)

Des Weiteren wurden die Alloantikörper gegen MHCI bei allen PregSure BVD geimpften Tieren detektiert und obwohl der anti-MHCI Titer der BNP-Kühe höher war (Benedictus et al. 2015) konnte bei eingehenderen Untersuchungen plötzlich kein Unterschied beim Vorkommen der MHCI-Antikörper zwischen den Kuhgruppen mehr nachgewiesen werden (Deutskens 2012, Benedictus et al. 2015).

Auch die Pathophysiologie und das klinische Erscheinungsbild der BNP korrelieren nicht mit der MHCI-Theorie. Die BNP-Antikörper werden mit dem Kolostrum aufgenommen und gelangen ohne das umliegende Gewebe zu schädigen über das Blut bis ins Knochenmark (Deutskens 2012, Kasonta et al. 2012). Da MHCI von allen kernhaltigen Zellen exprimiert wird, müssten die BNP-Alloantikörper bereits auf ihrem Weg in die Blutbahn die Gewebe des Verdauungstraktes schädigen oder gebunden werden, bevor sie in die Blutbahn gelangen (Penny et al. 2009, Kappe et al. 2010, Laming et al. 2012, Pang et al. 2012a).

In durchflusszytometrischen Experimenten wurde das Bindungsverhalten von BNP-Seren an MDBK (Wildtyp)-Zellen, die MHCI exprimieren und an ß2-Microglobulin (B2M) knockout MDBK-Zellen, die kein MHCI exprimieren, untersucht (Benedictus et al. 2015). Dabei banden die BNP-Seren zu 46-91 % an MDBK-Zellen mit MHCI-Expression und zu 9-54 % an B2M knockout MDBK-Zellen mit deutlich reduzierter MHCI-Expression (Benedictus et al. 2015). Es gab keinen Unterschied bei der Bindungsintensität von PregSure BVD geimpften Kontrollseren oder BNP-Seren (Benedictus et al. 2015). Bei weiteren Untersuchungen wurden neben MHCI als weitere mögliche Antigene auch das Very Late Antigen 3 (VLA-3), ein Integrin alpha 3 und Integrin beta 1 Heteromer detektiert (Benedictus et al. 2015). Dazu wurden B2M knockout MDBK-Zellen und der Wildtyp der MDBK Zellen mit BNP-Seren immunpräzipitiert und im Western Blot getestet (Benedictus et al. 2015). Es konnten drei deutliche Banden bei 40 kDa, 130 kDa und 140 kDa bei dem Wildtyp der MDBK-Zellen nachgewiesen werden (Benedictus et al. 2015). Die Bande bei 40 kDa wurde MHCI zugeordnet (Benedictus et al. 2015). Der gleiche Versuch wurde ebenfalls mit Kontrollseren von PregSure BVD geimpften Kühen durchgeführt und ergab ähnliche Ergebnisse (etwas geringere Präzipitation) wie die der BNP-Seren (Benedictus et al. 2015). Die beiden prominenten Banden bei 130 kDa und 140 kDa,

die vom BNP-Serum gebunden wurden, konnten anschließend massenspektrometrisch als Integrin alpha 3 und Integrin beta 1 identifiziert werden (Benedictus et al. 2015). Weitere Versuche mit Kontrollseren von PregSure BVD geimpften Kühen wurden nicht beschrieben (Benedictus et al. 2015). Es zeigte sich, dass nur 57 % der BNP-Seren VLA-3 präzipitierten und somit wurde vermutet, dass VLA-3 als auslösendes BNP-Antigen unwahrscheinlich ist (Benedictus et al. 2015). Ein weiteres oder alleiniges mögliches BNP-Antigen konnte somit auch in diesen Versuchen nicht identifiziert werden.

Beim Auftreten von MHCI-spezifischen Antikörpern bei Kühen während der Trächtigkeit handelt es sich darüber hinaus um ein physiologisches Phänomen (Bell et al. 2013). Die fötalen Trophoblasten exprimieren MHCI und durch den Anstieg während der Trächtigkeit steigt auch die Antikörperproduktion der Kühe gegen paternales MHCI (Benedictus et al. 2016). Deshalb wurde auch die Entwicklung des MHCI-Antikörpertiters und die MHCI-Alloantikörperbindung in den verschiedenen Trächtigkeitsstadien untersucht (Benedictus et al. 2016). Dazu wurden MDBK-Zellen und B2M-knockout-Zellen mit Seren von PregSure BVD geimpften Kontrollkühen und Überträgerkühen inkubiert und mittels Durchflusszytometrie getestet (Benedictus et al. 2016). Dabei konnte ein Unterschied beim anti-MHCI-Serum-IgG-Titer zwischen Besamung und Geburt festgestellt werden (Benedictus et al. 2016). Das Serum IgG fiel nach der Geburt ab und stieg nach der Besamung bis zur Geburt wieder an (Benedictus et al. 2016). Bei den geimpften Kontrolltieren und BNP-Tieren konnte ein signifikanter Anstieg der anti-MHCI-Antikörper im dritten Trimester nachgewiesen werden (Benedictus et al. 2016). Insgesamt zeigten die BNP-Kühe dabei einen höheren Antikörpertiter als die PregSure BVD geimpften Kontrolltiere (Benedictus et al. 2016). Auch der Titer der nicht-MHCI (Antikörper gegen B2M knockout MDBK-Zellen) spezifischen Antikörper stieg bei den BNP-Überträgertieren sowie bei den geimpften Kontrolltieren im dritten Trimester an (Benedictus et al. 2016), welches somit während der Trächtigkeit als physiologisch anzusehen ist. Im Gegensatz dazu blieben die BVD-spezifischen Antikörper während der gesamten Trächtigkeit konstant und es gab auch keinen Bezug zum Reproduktionsstatus (Benedictus et al. 2016).

Zusammenfassend konnte die MHCI-Theorie bislang nicht bestätigt, aber auch kein anderes auslösendes BNP-Antigen detektiert und verifiziert werden. Somit bleibt die Pathogenese der BNP weiterhin ungeklärt. Der Zusammenhang zwischen dem Impfstoff PregSure BVD und BNP konnte bewiesen werden (Friedrich et al. 2009, Kasonta et al. 2012, Sauter-Louis et al. 2012, Jones et al. 2013). Jedoch produzierten nur 5-10 % PregSure BVD geimpfter Kühe die BNP-auslösenden Antikörper (Bastian et al. 2011), die sie mit dem Kolostrum an die Kälber weitergaben (Friedrich et al. 2011, Schroter et al. 2011, Bell et al. 2013, Henniger et al. 2014).

2.2 Immunreaktionen beim Rind

2.2.1 Unterschiedliche T-Zellantworten

Bei der Immunabwehr lassen sich die angeborene und die adaptive Immunantwort unterscheiden (Iwasaki and Medzhitov 2010). Die angeborene Immunantwort bekämpft unmittelbar die eingedrungenen Krankheitserreger durch Aktivierung des Komplementsystems, Aktivierung der lokalen Abwehrzellen (Makrophagen, Dendritische Zellen), Zytokine und natürliche Killerzellen (Iwasaki and Medzhitov 2010). Die erworbene Immunantwort wird später aktiviert und agiert über Lymphozyten. Dabei lassen sich eine T-Zell- und B-Zellantwort unterscheiden (Iwasaki and Medzhitov 2010).

Die T-Lymphozyten sind für die zellvermittelte adaptive Immunantwort verantwortlich und können in T-Helferzellen (Th, CD4⁺), zytotoxische T-Zellen (CD8⁺), natürliche (NKT-Zellen), T-Zellen Killer T-Zellen gamma delta (yδ T-Zellen) und T-Gedächtniszellen eingeteilt werden (Cooper et al. 2001, Pang et al. 2012b, Mahnke et al. 2013). Aus CD4⁺ T-Lymphozyten können dabei unterschiedliche Subpopulationen entstehen (Geginat et al. 2014). So kann sich die aktivierte CD4⁺ Th-Zelle bei Mensch und Maus während einer Immunantwort in eine Th1-, Th2-, Th6-, Th7-, Th9-, Th10-, Th17-, Th22- oder Tfh- (follikuläre Th-Zelle) Zelle differenzieren und auch die Treg (regulatorische T-Zelle)-Zellen gehören zu den CD4⁺ T-Zellen (Azizi-Semrad et al. 2010, Raphael et al. 2015, Ciccia et al. 2016).

Die Th1-Zellen differenzieren sich bei Maus und Mensch aus der naiven CD4⁺ Th-Zelle durch die Einwirkung der Transkriptionsregulatoren Signal Transducers and Activators of Transcription (STAT) 1 und 4 und des Mastertranskriptionsfaktors T-box transcription factor (Tbet) (Kanhere et al. 2012, Oestreich and Weinmann 2012). Die Th1-Zellen sekretieren Interferon y (IFNy), Interleukin 1 beta (IL1 β) und Tumornekrosefaktor α (TNF α) (Mosmann et al. 1986) und sind hauptsächlich für die Ausbildung der zellulären Immunantwort gegen intrazelluläre Erreger verantwortlich (Abdoli and Najafian 2014). Die Differenzierung von murinen und humanen CD4⁺ Th-Zellen zu Th2-Zellen wird durch das Signaltransduktionsmolekül STAT6 und den Mastertranskriptionsfaktor GATA binding protein 3 (GATA3) initiiert (Onderdijk et al. 2015). Die Th2-Zellen sekretieren hauptsächlich IL4, IL5 und IL10 (Liao et al. 2011b) und sind für die Ausbildung von Antikörpern und die Abwehr extrazellulärer Erreger zuständig (Turner et al. 2003, Adkins et al. 2004, Liao et al. 2011b). Die Th17-Zellen differenzieren sich bei Maus und Mensch über die Transkriptionsregulatoren STAT3, Interferon regulatory factor 4 (IRF4) und dem Mastertranskriptionsfaktor Retinoic acid receptor gamma T (RORyT) und sekretieren vorrangig IL17A, IL17F, IL22 und IL26 (Nalbant and Eskier 2016). Th17-Zellen sind gegen extrazelluläre Bakterien und Pilze gerichtet und werden mit verschiedenen Autoimmunerkrankungen assoziiert (Lochner et al. 2015). Die Ausdifferenzierung der murinen und humanen Treas wird durch das Signaltransduktionsmolekül STAT5 und den Mastertranskriptionsfaktor Forkhead box P3 (FoxP3) induziert (Elyaman et al. 2009). Die Tregs sind für die Toleranz gegenüber körpereigenen Antikörpern verantwortlich (Kristensen et al. 2015) und werden in natürliche (nTregs) und induzierte Tregs (iTregs) unterteilt (Zold et al. 2011, Zhao et al. 2016). Die nTregs sind Th7-Zellen (FoxP3⁺CD25⁺), die IL7 sekretieren (Zold et al. 2011). Die iTregs können in zwei Subtypen unterteilt werden. Zum einen können iTregs Th3-Zellen sein, die TGFß produzieren oder zum anderen Th10-Zellen, die IL10 sekretieren (Kristensen et al. 2015). Th6-, Th9- und Th22-Zellen bei Maus und Mensch produzieren entsprechend die Zytokine IL6, IL9 und IL22 (Azizi-Semrad et al. 2010, Raphael et al. 2015, Ciccia et al. 2016, Zundler et al. 2016). Die Einteilungen der verschiedenen Th-Subtypen sind bei Maus und

Mensch bekannt und lassen sich beim Rind bislang auf die Th1-, Th2-, Th17-Zellen und Tregs übertragen (Maeda et al. 2013).

2.2.1.1 T-Zell-mediierte Autoimmunerkrankungen beim Menschen

T-Zell-mediierte Autoimmunerkrankungen des Menschen werden vor allem mit Th1-, Th9- und Th17-Zellen assoziiert (Ciccia et al. 2016, He et al. 2016, Rutz et al. 2016). Bei entzündlichen Erkrankungen wie beispielsweise der rheumatoiden Arthritis sowie der Psoriasis-Arthritis, der systemischen Vasculitis, dem Lupus erythematodes und der systemischen Sklerosis des Menschen spielen Th9-Zellen mit der Produktion von IL9 eine essentielle Rolle (Ciccia et al. 2016). Auch Th17-Zellen können mit verschiedenen Autoimmunerkrankungen wie Multipler Sklerose, rheumatoider Arthritis, der chronisch-entzündlichen Darmentzündung (Bowel Disease) und diversen Hautentzündungen in Verbindung gebracht werden (Cosmi et al. 2014). Weiterhin können sich Th17-Zellen unter Einfluss von IL17 und IFNy in Th1-Zellen nicht-klassische umwandeln. Die nicht-klassischen Th1-Zellen exprimieren die Transkriptionsfaktoren Tbet der Th1-Zellen und RORyT der Th17-Zellen (Maggi et al. 2012). Diese aggressivere Th1-Antwort löst beim Menschen die juvenile idiopathische Arthritis aus (Kurschus et al. 2010, Maggi et al. 2012). Des Weiteren ist eine gesteigerte FoxP3-Expression von Tregs mit Lupus nephritis sowie dem Schweregrad dieser Erkrankung assoziiert (Shakweer et al. 2016).

2.2.2 Immunreaktionen beim Rind

2.2.2.1 Unterschiedliche T-Zellantworten beim Rind

Beim Rind lassen sich die CD4⁺ T-Lymphozyten bislang in Th1-, Th2-, Th17-Zellen und Tregs einteilen (Maeda et al. 2013). In einer Studie zur Expression von Zytokinen und Transkriptionsfaktoren der verschiedenen Th-Subpopulationen wurde der Effekt von Progesteron untersucht (Maeda et al. 2013). Die Genanalyse der mononukleären Blutzellen (PBMC) von trächtigen und nicht trächtigen Kühen erfolgte mittels Real-Time-PCR (Maeda et al. 2013). In den Zellen aller getesteten Kühe wurden die Genexpression der Zytokine IFNγ, IL4, IL17 und TGFβ sowie der Mastertranskriptionsfaktoren Tbet, GATA3, RORyT und FoxP3 der verschiedenen Th-Zellen nachgewiesen (Maeda et al. 2013). Bei der Untersuchung des Progesteron-Effekts konnte mittels Real-Time-PCR bewiesen werden, dass bedeutender Progesteron ein Regulator der Th1-. Th2-. Th17und Treg-Immunantwort bei trächtigen Kühen ist (Maeda et al. 2013). Die mit Progesteron in vitro inkubierten PBMC von trächtigen und nicht trächtigen Kühen zeigten eine geringere IFNy- und Tbet-Genexpression für die Th1-Immunantwort. Für die Th2-Antwort konnte eine gesteigerte IL4-Genregulation in trächtigen Kühen im Vergleich zu den nicht trächtigen Tieren detektiert werden. Die GATA3-Regulation war nach Progesteron-Inkubation in beiden Kuhgruppen identisch, aber es konnte eine stärkere GATA3-Genexpression in naiven Zellen von trächtigen Kühen als in denen nicht trächtiger Kühe nachgewiesen werden (Maeda et al. 2013). Für die Th17-Immunantwort wurde eine Reduzierung der Genexpression von IL17 in beiden Kuhgruppen festgestellt, die RORC (RORyT)-Regulierung war bei den trächtigen Kühen ebenfalls reduziert (Maeda et al. 2013). Keine Veränderungen konnten bei der TGFβ- sowie FOXP3-Genexpression für die Treg-Immunantwort bei allen Tieren nachgewiesen werden (Maeda et al. 2013). Die stärkere GATA3-Regulation der trächtigen Kühe im Vergleich zu den nicht trächtigen zeigte, dass eine gesteigerte Th2-Immunreaktion während der Trächtigkeit charakteristisch ist (Maeda et al. 2013). Eine andere Arbeitsgruppe publizierte, dass bei der Untersuchung einer Th1- oder Th2-Immunantwort bei trächtigen Tieren mittels Real-Time-PCR. die IFNy-Genexpression nach der Kalbung sowie eine IL4-Genexpression vor der Kalbung stärker sind (Paibomesai et al. 2013).

Für das Rind existieren keine weiteren veröffentlichten Daten zu den verschiedenen T-Zell-Immunantworten, die bei Maus und Mensch bekannt sind (PubMed Recherche, Stand September 2016).

2.2.2.2 Verschiedene Immunreaktionen bei Rindern

Abweichungen bei der T-Zell-Immunantwort nach Infektion mit einem Erreger können zu deutlich verschiedenen Ausprägungen der entsprechenden Pathophysiologie einer Krankheit führen. Dieses Phänomen konnte bisher bei mehreren Infektionskrankheiten von Rindern gezeigt werden. Beispielsweise lassen sich unterschiedliche Immunreaktionen nach Infektion mit dem *Bovinen Leukose Virus* (BLV) nachweisen. Mittels Proliferationsassay konnte bei Lymphozyten von BLV-erkrankten Rindern eine niedrigere Proliferationsrate nach polyklonaler Stimulation mit dem T-Zell-Stimulanz Concanavalin A (ConA) festgestellt werden als bei Lymphozyten serologisch positiver Kontrolltiere, die nach früherem Kontakt mit BLV eine Immunität ausgebildet hatten, ohne jedoch zu erkranken (Erskine et al. 2011). Die an BLV-erkrankten Tiere zeigten ebenfalls eine signifikant niedrigere Gesamtzellzahl von CD3⁺, CD4⁺ und CD8⁺T-Zellen als die serologisch positiven, gesunden Kontrolltiere (Erskine et al. 2011). Somit erkrankten solche Tiere an der bovinen Leukose, die keine ausreichende T-Zellantwort ausbildeten und somit das Virus nicht effizient eliminieren konnten.

Auch eine Infektion mit dem Bovinen Respiratorischen Syncytialvirus (BRSV) führte zu unterschiedlichen Immunreaktionen von Rindern. Die CD4⁺ T-Zellen und vδ T-Zellen von BRSV-erkrankten Kälbern wiesen in der Real-Time-PCR signifikant höhere IL17-, IL21- und IL22-Genexpressionen als die klinisch gesunden Kontrollkälber auf (McGill et al. 2016). Dafür wurden PBMC von Kühen, die mit einem attenuierten Lebendimpfstoff (BoviShield Gold FP5) immunisiert wurden sowie die PBMC von ungeimpften adulten Kühen mit BRSV inkubiert und mittels Real-Time-PCR analysiert (McGill et al. 2016). Die PMBC der geimpften Kühe zeigten eine stärkere Genexpression von IL17 und IL22 (McGill et al. 2016), welche mittels ELISA bestätigt wurde (McGill et al. 2016). Darüber hinaus wurde der Einfluss einer sekundären bakteriellen Infektion mit Mannheimia haemolytica in vitro mittels Real-Time-PCR untersucht (McGill et al. 2016). Die dafür entnommenen Lungenproben der BRSV-erkrankten Kälber wiesen ebenfalls eine gesteigerte Genregulation von IL17, IL21 und IL22 im Vergleich zu den klinisch gesunden Kontrollkälbern auf (McGill et al. 2016). Die Autoren McGill et al. stellten auf Grund dessen die Hypothese auf, dass die erkrankten bzw. geimpften Tiere auf das BRS-Virus mit einer gesteigerten Th17-Immunantwort reagierten (McGill et al. 2016). Die Immunreaktion der gesunden Kontrolltiere wurde nicht analysiert.

2.2.2.3 Rinder mit funktionellen Unterschieden in der Immunantwort

Zur Charakterisierung der verschiedenen Immunreaktionen beim Rind wurden die funktionellen Unterschiede bestimmter Immunantworten von mehreren Arbeitsgruppen genauer analysiert. Dafür wurden Holstein-Kühe mit einem Typ 1und einem Typ 2-Antigen immunisiert, um eine Stimulation des Immunsystems zu erreichen (Thompson-Crispi et al. 2012, Heriazon et al. 2013, Thompson-Crispi et al. 2013, Aleri et al. 2015, Martin et al. 2016). Die Typ 1-Immunantwort wurde einer Antikörper-mediierten Immunreaktion (AMIR) und die Typ 2-Immunantwort der Zell-mediierten Immunreaktion (CMIR) zugeordnet (Thompson-Crispi et al. 2012, Heriazon et al. 2013, Thompson-Crispi et al. 2013, Martin et al. 2016). Für die Typ 1-Reaktion wurde als Testantigen *Candida albicans* und für die Typ 2-Reaktion Hen egg white lysozyme (HEWL) eingesetzt (Thompson-Crispi et al. 2012, Heriazon et al. 2013, Thompson-Crispi et al. 2013, Martin et al. 2016). Alternativ erfolgte eine Kombinationsimmunisierung mit verschiedenen Clostridien und Leptospiren (Aleri et al. 2015). Zur Klassifizierung der verschiedenen Immunreaktionen diente der Nachweis der IgG-Konzentration (Thompson-Crispi et al. 2012, Heriazon et al. 2013, Thompson-Crispi al. al. et 2013, Martin et 2016) oder des Tetanustoxin-Antikörpertiters im ELISA für die AMIR-Immunreaktion (Aleri et al. 2015). Die Einteilung der CMIR-Immunantwort wurde mit Hilfe des verzögerten Hypersensitivitätstests durchgeführt (Heriazon et al. 2013, Aleri et al. 2015). Es konnte festgestellt werden, dass beide Kuhgruppen keinen Unterschied in der IFNy-Konzentration nach ConA-Stimulation im ELISA sowie keinen Unterschied in der Tbet-, GATA3- und IL4-Genexpression mittels Real-Time-PCR aufwiesen (Martin et al. 2016). Weiterhin konnte kein Unterschied in der Zellproliferationsrate nach ConA-Stimulation detektiert werden (Martin et al. 2016). Die Rinder mit einer starken **AMIR-Immunreaktion** zeigten nach ConA-Stimulation eine aesteiaerte IL4-Konzentration im ELISA und die CMIR-Rinder eine stärkere IFNy-Genexpression mittels Real-Time-PCR (Martin et al. 2016). Darüber hinaus konnte ein funktioneller Unterschied zwischen beiden Immunreaktionen festgestellt werden (Thompson-Crispi et al. 2013). So zeigten beispielsweise die CMIR-Rinder eine höhere Inzidenz an einer Metritis zu erkranken als die AMIR-Rinder (Thompson-Crispi et al. 2012).

Arbeitsgruppe konnten unterschiedliche Immunreaktionen In unserer von Lymphozyten PregSure BVD geimpfter Kontroll- und BNP-Überträgerkühe nach polyklonaler Stimulation in in vitro Proliferationsassays festgestellt werden. Die Überträgerlymphozyten zeigten einen hyperproliferativen Immunphänotyp nach polyklonaler Stimulation mit dem T- und B-Zell-Stimulanz Pokeweed Mitogen (PWM) (Fröhlich 2015). Anschließend wurde das Proteom von Lymphozyten geimpfter Kontrolltiere und von Überträgertieren unstimuliert und nach 48 h PWM-Stimulation massenspektrometrisch analysiert. Mit Hilfe des proteomischen Datensatzes konnte erstmalig nachgewiesen werden, dass die Lymphozyten der BNP-Überträgertiere nach PWM-Stimulation andere Proteine differenziell exprimierten als die Kontrollymphozyten (Fröhlich 2015). Diese differenziellen Proteine standen funktionell im Zusammenhang mit unterschiedlichen Th-Subtypen, was auf die Ausbildung abweichender Immunantworten dieser beiden Kuhphänotypen nach PWM-Stimulation hinwies (Fröhlich 2015).
3 MATERIAL UND METHODEN

3.1 Probenmaterial

Für diese Arbeit wurden Proben von 73 gesunden PregSure BVD ungeimpften Kontrollkühen, fünf gesunden PregSure BVD geimpften Kontrollkühen sowie von sechs BNP-Überträgerkühen untersucht. Alle BNP-Kühe und PregSure BVD geimpften Kontrollkühe stammen aus zwei bayerischen Milchviehbetrieben und wurden mindestens zweimal mit PregSure BVD geimpft. Die BNP-Kühe hatten mindestens ein BNP-Kalb geboren, welches die charakteristischen BNP-Symptome Hämorrhagien, Thrombozytopenie, Leukozytopenie und Knochenmarksdepletion (Friedrich et al. 2009, Pardon et al. 2010, Sauter-Louis et al. 2012) zeigten. Die PregSure BVD ungeimpften Kontrollkühe stehen im Lehr- und Versuchsgut Oberschleißheim der LMU München. Von allen aufgeführten Tieren wurden periphere Blutlymphozyten (PBL) aus Vollblut präpariert. Alle Tiere zeigten zum Zeitpunkt der Probengewinnung keine klinischen Krankheitssymptome. Die Blutprobenentnahme von Rindern ist bei der Regierung von Oberbayern unter der Genehmigungsnummer 55.2-1-54-2532.3-22-12 angezeigt.

Die präparierten Blutlymphozyten wurden in verschiedenen Experimenten eingesetzt. In den einzelnen Versuchen wurde insgesamt die folgende Anzahl an Kühen untersucht:

Zellproliferation mit Concanavalin A¹ (ConA):

5 PregSure BVD geimpfte Kontrollkühe und 6 BNP-Überträgerkühe

Zellfraktionierung und Proteomik:

2 PregSure BVD geimpfte Kontrollkühe und 2 BNP-Überträgerkühe

¹ Sigma-Adrich, Taufkirchen

Western Blots zur Untersuchung nicht PregSure BVD geimpfter Kühe:

- Kapitel 4.3.1: 12 ungeimpfte Kontrollkühe und 3 BNP-Überträgerkuh
- STAT5a:17 ungeimpfte Kontrollkühe und 6 BNP-Überträgerkühe
- TF IIB: 9 ungeimpfte Kontrollkühe und 3 BNP-Überträgerkühe
- STAT1: 5 ungeimpfte Kontrollkühe und 1 BNP-Überträgerkuh
- pSTAT3: 8 ungeimpfte Kontrollkühe und 3 BNP-Überträgerkühe
- PLCy1: 4 ungeimpfte Kontrollkühe und 3 BNP-Überträgerkühe

Polyklonale Zellproliferation zur Untersuchung nicht PregSure BVD geimpfter Kühe:

- ConA: 61 Kontrollkühe, 12 Hyper-Tiere und 1 BNP-Überträgerkuh
- IL2: 16 Kontrollkühe, 12 Hyper-Tiere und 1 BNP-Überträgerkuh
- INFy: 3 Kontrollkühe, 11 Hyper-Tiere und 1 BNP-Überträgerkuh
- · IL4: 2 Kontrollkühe, 9 Hyper-Tiere und 1 BNP-Überträgerkuh

Polyklonale Zellproliferation mit Ko-Inkubation von Inhibitoren:

- BTK-Inhibitor: 14 Kontrollkühe, 11 Hyper-Tiere und 1 BNP-Überträgerkuh
- 17-β-hydroxy Wortmannin: 8 Kontrollkühe, 9 Hyper-Tiere und 1 BNP-Überträgerkuh
- p38MAP-Kinase: 6 Kontrollkühe, 7 Hyper-Tiere und 1 BNP-Überträgerkuh
- 1-Methyl-D-tryptophan: 11 Kontrollkühe, 9 Hyper-Tiere und 1 BNP-Überträgerkuh
- 1α,25-Dihydroxyvitamin D3: 5 Kontrollkühe, 6 Hyper-Tiere und 1 BNP-Überträgerkuh
- Nifuroxazide: 5 Kontrollkühe, 6 Hyper-Tiere und 1 BNP-Überträgerkuh
- STAT5 Inhibitor: 17 Kontrollkühe, 12 Hyper-Tiere und 1 BNP-Überträgerkuh
- STAT3 Inhibitor III: 10 Kontrollkühe, 12 Hyper-Tiere und 1 BNP-Überträgerkuh
- STAT3 Inhibitor V: 5 Kontrollkühe, 12 Hyper-Tiere und 1 BNP-Überträgerkuh
- STAT3 Inhibitor VI: 19 Kontrollkühe, 7 Hyper-Tiere und 1 BNP-Überträgerkuh

Für die immunhistochemischen Versuche wurden des Weiteren der Darmlymphknoten von drei ungeimpften Kontrollkühen und einer BNP-Überträgerkuh untersucht.

3.1.1 Puffer und Lösungen zur Gewinnung und Aufbereitung von PBL

ml

Heparinlösung zur Gerinnungshemmung (2.500 I.E./ml)	
Heparin-Natrium ² (25.000 I.E./ml)	1,00

RPMI 16	640 Medium mit	Glutamin ³	9,00 m

Trennlösung zur Isolierung von PBL mittels Dichtegradientenzentrifugation

Pancoll Trennlösung⁴ (Dichte 1,077 g/ml), gebrauchsfertig.

Phosphatgepufferte Kochsalzlösung (PBS), pH 7,2

8,00 g
0,20 g
0,20 g
1,45 g

in 1000 ml Aqua dest. lösen, pH-Wert auf 7,2 einstellen.

3.1.2 Gewinnung der Blutproben

Nach Desinfektion der Injektionsstelle wurde den Rindern je nach Bedarf zwischen 5 und 300 ml Blut aus der Vena jugularis externa entnommen. Zur Gerinnungshemmung wurden pro 50 ml Blut je 1 ml Heparinlösung (2.500 I.E./ml) zugegeben.

² Ratiopharm, Ulm

³ ThermoFisher Scientific, Frankfurt am Main

⁴ Pan Biotech, Aidenbach

⁵ Alle nicht extra markierten Chemikalien: AppliChem, Darmstadt

3.1.3 Gewinnung der peripheren Blutlymphozyten mittels Dichtegradientenzentrifugation

Diese Zellpräparation wurde unter sterilen Bedingungen durchgeführt. Die gewonnenen Blutproben wurden in einem Verhältnis von 1:2 mit PBS verdünnt. 5 ml dieser Blutverdünnung wurden auf 3 ml Pancoll Trennlösung⁶ in einem 15 ml Röhrchen⁷ geschichtet und bei 23 °C für 25 min zentrifugiert (290 rcf, ohne Bremse). Die Lymphozyten-reiche Interphase zwischen Plasma und Pancoll wurde abgenommen und in kaltes PBS überführt. Die abgenommenen Zellen wurden zweimal mit kaltem PBS gewaschen (500 rcf, 10 min, 4 °C, Bremse an) und der Überstand nach Zentrifugation verworfen. Das entstandene Zellpellet wurde in 1 ml 4 °C kaltem PBS resuspendiert und mit 50ml kaltem PBS aufgefüllt. Die Zellzahl wurde bestimmt und die Zellen anschließend direkt in weiteren Versuchen verarbeitet.

3.1.4 Zählung der gewonnenen Zellen

Zur Bestimmung der Zellzahl wurde die Zellsuspension (10 μ l) im Verhältnis 1:2 mit Trypanblau⁸ (10 μ l) verdünnt. Die Hälfte dieser Mischung wurde in eine Neubauer-improved Zählkammer⁹ (Kammertiefe 0,1 mm) gegeben. Waren mehr als 100 Zellen in fünf diagonal angeordneten Gruppenquadraten vorhanden, wurden diese ausgezählt und zur Berechnung der Gesamtzellzahl herangezogen. Waren es weniger als 100 Zellen in fünf diagonal angeordneten Gruppenquadraten, wurden alle 25 Gruppenquadrate ausgezählt (Fläche pro Gruppenquadrat 0,04 mm²).

⁶ Pan Biotech, Aidenbach

⁷ Sarstedt, Nürnbrecht

⁸ Sigma-Aldrich, Taufkirchen

⁹ NeoLab, Heidelberg

Zur Berechnung der Zellzahl diente folgende Formel:

Zellen pro μ l Suspension = $\frac{gezählte Zellzahl}{ausgezählte Fläche [mm²] \cdot Kammertiefe [mm] \cdot Verdünnung}$

3.2 Zellproliferationsassay

3.2.1 Lösungen für die Zellproliferation

RPMI Medium (10/1)

- RPMI 1640 Medium mit Glutamin¹⁰
- + 1 % Penicillin/Streptomycin¹¹ (Pen/Strep)
- + 10 % fötales Kälberserum¹² (FCS)

[³H]-Thymidin-Lösung (0,05 mCi/ml)

[Methyl-³H] Thymidin¹³ (1.0 mCi/ml)

ad 10 ml RPMI 1640 Medium mit Glutamin¹⁰.

3.2.2 In vitro Stimulation und radioaktive Markierung von Lymphozyten

0,50 ml

Es wurden die Auswirkungen verschiedener Stimulantien auf die Zellproliferationsrate von ungeimpften Kontroll-PBL, PregSure BVD geimpften Kontroll-PBL sowie Überträger-PBL im ³H-Thymidin-Assay getestet. Nach

¹⁰ ThermoFisher Scientific, Frankfurt am Main

¹¹ Biochrom, Berlin

¹² Biochrom, Berlin

¹³ Perkin Elmer, Hamburg

Stimulation wurden die Zellen mit radioaktivem [methyl-³H]-Thymidin markiert. Dieses baut sich bei der Zellteilung in die zelluläre DNA ein. Die radioaktive Strahlung der Zellen gibt Auskunft über die proliferative Aktivität der Zellen.

Je 200 μ l einer Lymphozyten-in-RPMI (1/10)-Suspension (1 x 10⁵ Zellen/Delle) wurden in sterilen 96-Flachboden Lochplatten¹⁴ in Triplikaten ausgesät und stimuliert. Als Kontrolle diente für jedes Tier ein Triplikat, welches nicht stimuliert wurde.

Folgende Stimulantien wurden dabei getestet (vgl. Kapitel 4.1 und 4.5):

Stimulanz	Firma/Herkunft	Konzentration
Concanavalin A (ConA)	Sigma-Aldrich, Taufkirchen	5µg/ml
Interleukin 2 (IL2)	Bio-Techne, Wiesbaden	1ng/ml
Interferon gamma (IFNy)	Biomol, Hamburg	1ng/ml
Interleukin 4 (IL4)	Biomol, Hamburg	1ng/ml

Wie in Kapitel 4.6 beschrieben, wurden die Lymphozyten von ungeimpften Kontrolltieren, Hyper-Tieren und BNP-Überträgertieren *in vitro* zunächst mit folgenden Inhibitoren für 12 h präinkubiert und anschließend für weitere 48 h mit ConA (5µg/ml) stimuliert:

Inhibitor	Hemmung von	Firma/Herkunft	Konzentration
BTK Inhibitor	ВТК	Biozol, Eching	50µM
17β-hydroxy Wortmannin	PI 3-Kinase und mTOR	Santa Cruz, Heidelberg	10µM
p38 MAPK Inhibitor	p38 MAP Kinase	SelleckChem	250nM
1-Methyl-D-tryptophan	IDO und INDOL1	Santa Cruz, Heidelberg	200ng/ml
1α,25-Dihydroxyvitamin D3	IRF4	Santa Cruz, Heidelberg	1nM

¹⁴ Sarstedt, Nürnbrecht

Inhibitor	Hemmung von	Firma/Herkunft	Konzentration
STAT5 Inhibitor	STAT5	Santa Cruz, Heidelberg	10μg/ml
Nifuroxazide	Phosphorylierung vom STAT3	Santa Cruz, Heidelberg	0,1µM
STAT3 Inhibitor III	STAT3	Santa Cruz, Heidelberg	50ng/ml
STAT3 Inhibitor V	STAT3	Santa Cruz, Heidelberg	0,01µM
STAT3 Inhibitor VI	STAT3	Santa Cruz, Heidelberg	1µg/ml

Die Inkubation der PBL erfolgte im Brutschrank $(CO_2 \text{ Auto-Zero})^{15}$ bei 37 °C und einer CO_2 -Konzentration von 5 % für 32 Stunden. Anschließend wurden die Zellen mit 20 µl [³H]-Thymidin-Lösung pro Delle (1 µCi/Kavität) radioaktiv markiert. Nach weiteren 16 Stunden Inkubation im Brutschrank wurden die Lymphozyten mit dem Harvester¹⁶ geerntet. Die ausgespülten Zellen wurden in einem Glasfaserfilter¹⁷ aufgefangen und bei 80 °C im Trockenschrank für 30 min getrocknet. Der Glasfaserfilter wurde in Omni Filterkassetten¹⁶ eingespannt und mit 20 µl Szintillationsflüssigkeit¹⁸ pro Kavität versetzt. Nach Versiegelung der Filterkassetten mit selbstklebender Folie, erfolgte, die [³H]-Aktivitäts-Messung im Beta-Counter (TopCount NXT Microplate) in counts per minute (cpm).

¹⁵ Heraeus Instruments, München

¹⁶ Packard, Dreieich

¹⁷ Perkin Elmer, Hamburg

¹⁸ Perbio Science, Bonn

3.2.3 Statistische Auswertung der Zellproliferationsraten

Der Proliferationsgrad der uninhibierten Zellen (vgl. Kapitel 4.1 und 4.5) wurde bestimmt, indem aus den cpm-Werten zunächst der Mittelwert der Triplikate gebildet wurde und anschließend der Quotient aus stimulierten zu unstimulierten Zellen desselben Tieres berechnet wurde. Die unstimulierten Ansätze wurden dabei dem Faktor gleich 1 gesetzt. Anhand dieses errechneten Stimulationsgrades konnten die Unterschiede in der Proliferationsrate zwischen den verschiedenen Kuhgruppen verglichen werden. Alle Proliferationswerte der ungeimpften Tiere wurden mit dem des mitgetesteten Überträgertieres abgeglichen. Tiere, die einen Proliferationsgrad 70 % mindestens des Überträgertieres aufwiesen. von wurden der Untersuchungsgruppe Hyper-Tiere zugeordnet (vgl. Kapitel 4.5). Tiere, die schwächer auf die ConA-Stimulation reagierten wurden der Kontrollgruppe zugeordnet.

Bei den Proliferationsversuchen mit Präinkubation verschiedener Inhibitoren (vgl. Kapitel 4.6) wurde der Proliferationsfaktor der Zellen analog dazu aus dem Quotienten der inhibierten ConA-stimulierten Zellen und den uninhibierten ConA-stimulierten PBL für jedes Tier berechnet. Dabei entsprach die Proliferationsrate der ConA-stimulierten, uninhibierten Lymphozyten bei den Versuchen zu Tab. 4.6 dem Faktor 1 und bei der Abb. 4.6.1 100 %.

Die Werte der technisch unabhängigen Experimente wurden zusammengefasst und die Mittelwerte aebildet. Die Proliferationsraten wurden mittels Kolmogorow-Smirnow- Test auf ihre Normalverteilung geprüft. Bei nicht-Normalverteilung (Kolmogorow-Smirnow-Test: p < 0,05) basierte die weitere Auswertung auf statistische Signifikanz auf Mann-Whitney-U-Test dem (STAT3 Inhibitor III). Bei Vorliegen einer Normalverteilung (Kolmogorow-Smirnow-Test: $p \ge 0,05$) wurde stattdessen mit dem Student's *t*-Test gearbeitet (ConA, IL2).

29

3.3 Stimulation und Fraktionierung von Zellen für die differenzielle Proteomanalyse

3.3.1 Puffer und Lösungen zur Anreicherung von Oberflächenproteinen und zur Zellfraktionierung

PBS mit CaCl₂/MgCl₂ pH 6,7

1 M CaCl ₂ (1 mM)	1,00 ml
1 M MgCl ₂ (0,5 mM)	0,50 ml

ad 1 I PBS, pH auf 6,7 einstellen.

Biotinylierungsreagenz

0,5 M Natriummetaperiodat ¹⁹ (1 mM)	10,00 µl
19,4 mM Aminooxy-Biotin ¹⁹ (500 μM)	129,00 µl
10,9 M Anilin ²⁰ (10 mM)	4,60 µl
ad 5 ml eiskaltes PBS mit 1 mM CaCl ₂ und 0,5 mM MgCl ₂	pH 6,7.

Glycerol

Glycerol (100 mM)	9,21 mg
in 1 ml HPLC-Wasser ²¹ lösen.	

¹⁹ Gentaur, Aachen

²⁰ Sigma-Aldrich, Taufkirchen

²¹ Merck Millipore, Darmstadt

PBS mit CaCl₂/MgCl₂ pH 7,4

1 M CaCl ₂ (1 mM)	1,00 ml
1 M MgCl ₂ (0,5 mM)	0,50 ml
ad 1 I PBS, pH auf 7,4 einstellen.	

Lysepuffer

Nonidet P-40 ²² (1 %)	50,0 μl
5 M NaCl (10 mM)	10,0 µl
1 M Tris-HCl pH 7,6 (10 mM)	50,0 μl
ad 5 ml HPLC-Wasser ²³ .	

Tris gepufferte Kochsalzlösung (TBS), pH 7,4

Tris (30 mM)	3,60 g
NaCl (150 mM)	8,80 g

in 1000 ml Aqua dest. lösen.

Strep-Tactin Superflow Beads²⁴

Waschpuffer

TBS pH 7,4

+ 0,2 % Nonidet P-40²⁵

²² Roche, Penzberg

²³ Merck Millipore, Darmstadt

²⁴ IBA, Göttingen

²⁵ Roche, Penzberg

TBS mit SDS

TBS pH 7,4

+ 0,5 % SDS

TBS mit SDS/DTT

TBS pH 7,4

+ 0,5 % SDS

+ 100 mM DTT²⁶

UC-Puffer

Harnstoff ²⁷ (6 M)	10,81 g
1 M Tris-HCl pH 8,5 (100 mM)	3,00 ml
ad 30 ml HPLC-Wasser ²⁸ .	

UC-Puffer mit Jodacetamid

50 mM 2-Jodacetamid ²⁷	9,25 mg
in 1 ml UC-Puffer lösen.	

5 M NaCl

NaCl 29,22 g

in 100 ml HPLC-Wasser²⁸ lösen.

²⁶ Serva, Heidelberg

²⁷ GE Healthcare, Freiburg

²⁸ Merck Millipore, Darmstadt

100 mM Na ₂ CO ₃	
Na ₂ CO ₃	1,06 g
in 10 ml HPLC-Wasser ²⁹ lösen.	
50 mM Tris-HCl pH 8,5	
1 M Tris-HCI (50 mM)	0,50 ml
ad 10 ml HPLC-Wasser ²⁹ .	
Trypsin	
Trypsin ³⁰ (0,5 mg/ml)	20,00 µg
in 40 μl HPLC-Wasser ²⁹ lösen.	
0,5 % Trifluoressigsäure (TFA)	
Trifluoressigsäure ³¹	15,00 μl
ad 3 ml HPLC-Wasser.	
10x G7-Puffer pH 7,5	
Na ₂ HPO ₄ (500 mM)	889,95 mg
in 10 ml HPLC-Wasser ²⁹ lösen.	

Vor Gebrauch 1:10 mit HPLC-Wasser²⁹ verdünnen.

²⁹ Merck Millipore, Darmstadt

³⁰ Progema, Mannheim

³¹ Sigma-Aldrich, Taufkirchen

PNGase F³² (500.000 U/ml)

Low Salt Puffer

5 M NaCl (10 mM)	10,00 µl
1 M Tris-HCl pH 7,6 (10 mM)	50,00 µl
ad 5 ml HPLC-Wasser ³³ .	

High Salt Puffer

5 M NaCl (500 mM)	500,00 μl
1 M Tris-HCl pH 7,6 (10 mM)	50,00 µl
ad 5 ml HPLC-Wasser ³³ .	

High Salt T-Puffer

Triton X-100 (1 %)	50,00 μl
5 M NaCl (500 mM)	500,00 μl
1 M Tris-HCl pH 7,6 (10 mM)	50,00 μl
ad 5 ml HPLC-Wasser ³³ .	

³² New England Biolabs, Frankfurt/Main

³³ Merck Millipore, Darmstadt

3.3.2 Stimulation von Zellen für die Proteomanalyse

PBL von je zwei PregSure BVD geimpften Kontroll- und Überträgerkühen wurden nach Pancoll-Präparation für die differenzielle Proteomanalyse polyklonal mit ConA³⁴ stimuliert. Hierzu wurden die präparierten Zellen in RPMI Medium (10/1) aufgenommen, zu zwei gleichen Teilen ausgesät (je 2,2 x 10⁷ Zellen), für 48 Stunden bei 37 °C und 5 % CO₂ im Brutschrank³⁵ inkubiert und mit ConA³⁴ (5 µg/ml) stimuliert. Als Kontrolle diente ein unstimulierter Ansatz.

3.3.3 Fraktionierung der stimulierten Zellen für die Proteomanalyse

3.3.3.1 Biotinylierung der Plasmazellmembranproteine

Zur Proteinexpressionsanalyse wurden die Plasmazellmembranproteine der ConA-stimulierten Zellen mittels Oberflächenbiotinylierung angereichert: Nach einem zweifachen Waschschritt in je 10 ml 4 °C kaltem PBS mit CaCl₂/MgCl₂ pH 6,7 (400 rcf, 10 min) wurden die entstandenen Zellpellets in 500 µl Biotinylierungsreagenz mit 500 µM Aminooxybiotin resuspendiert und für 30 min bei 4 °C im Dunkeln über Kopf rotierend inkubiert. Die fünfminütige Inkubation mit 1 mM Glycerol bei 4℃ stoppte die Biotinylierung und die Zellen wurden anschließend einmal mit 4 °C kaltem PBS mit CaCl₂/MgCl₂ pH 7,4 gewaschen (400 rcf, 10 min).

³⁴ Sigma-Adrich, Taufkirchen

³⁵ Heraeus Instruments, München

3.3.3.2 Anreicherung der Plasmazellmembranproteine und Gewinnung der zytosolischen Fraktion

Die gewaschenen und in 300 µl in Lysepuffer resuspendierten Pellets wurden bei 6000 rcf (4°C, 10 min) zentrifugiert und die Überstände in neue 1,5 ml Reaktionsgefäße³⁶ überführt. Die entstandenen Pellets wurden zur weiteren Präparation der Zellkernfraktion bei 4°C gelagert. Die separierten Überstände wurden im Verhältnis von 1:5 mit TBS pH 7,4 verdünnt. Mit Low Retention Pipettenspitzen³⁶ wurden 80 µl Strep-Tactin Superflow Beads³⁷ in LoBind Reaktionsgefäße pipettiert, kurz invertiert und dreimal mit 300 µl Waschpuffer gewaschen (RT, 1000 rcf, 1 min). Die verdünnten Proben wurden zur Bindung der Biotin-markierten Oberflächenproteine an die Streptavidin-beschichteten Beads auf die gewaschenen Beads gegeben und bei 4°C für 120 min langsam über Kopf rotierend inkubiert. Nach dem Abzentrifugieren (RT, 1000 rcf, 1 min) wurde die in den Überständen gelöste zytosolische Fraktion in neue 1,5 ml Reaktionsgefäße³⁶

Die Inkubation der Beads in 200 μ I TBS mit 0,5 % SDS und 100 mM DTT für 30 min bei RT erfolgte nach zwei Waschschritten (erst in 200 μ I Waschpuffer, dann in 200 μ I TBS mit 0,5 % SDS; je 2 min bei RT, 2000 rcf). Anschließend wurden die Proben mit 200 μ I UC-Puffer (RT, 2000 rcf, 2 min) gewaschen und mit 200 μ I UC-Puffer mit Jodacetamid bei RT für 30 min inkubiert (dunkel). Nach der Zentrifugation (RT, 2000 rcf, 2 min) folgten vier weitere Waschschritte mit je 200 μ I UC-Puffer, 5 M NaCl, 100 mM Na₂CO₃ und 50 mM Tris-HCl pH 8,5 (RT, 2000 rcf, 2 min).

³⁶ Eppendorf, Wesseling-Berzdorf

³⁷ IBA, Göttingen

3.3.3.3 Ablösen der Proteine von den Beads und Verdau der Plasmazellmembran-Fraktion

Über Nacht wurden die an den Beads gebundenen Proteine bei 37°C mit 40 µl 50 mM Tris-HCl pH 8,5 mit 1 µg Trypsin verdaut. Nach Zentrifugation der Proben (RT, 2000 rcf, 2 min) wurden die Überstände in neue Reaktionsgefäße³⁸ überführt (= Überstand 1). Die Beads wurden mit 40 µl 50 mM Tris-HCl pH 8,5 gewaschen, abzentrifugiert und der Überstand mit Überstand 1 gepoolt (tryptische Fraktion der Plasmazellmembranproteine). Diese Fraktion wurde mit 0,5% TFA angesäuert und bis zur Weiterverarbeitung bei -20 ℃ gelagert. Die verbleibenden Beads wurden mit 40 µl 1x G7-Puffer gewaschen (RT, 2000 rcf, 2 min) und die Überstände dekantiert. Anschließend N-glykosidischer folgte die Spaltung Bindungen der Plasmazellmembranproteine aus dem Überstand mittels Verdau durch 500 Einheiten Glycerol-freier PNGase F³⁹ in 20 µl 1x G7-Puffer (6 h, 37 ℃). Nach Zentrifugation (RT, 2000 rcf, 2 min) wurde der Überstand in ein LoBind Reaktionsgefäß³⁸ überführt (= Überstand 2, PNGase-Fraktion) und die Beads erneut mit 20 µl 1x G7-Puffer gewaschen. Der entstandene Überstand wurde ebenfalls mit Überstand 2 gepoolt und mit 0,5 % TFA angesäuert. Beide Fraktionen (tryptisch und PNGase) wurden gepoolt und bei -20 ℃ gelagert

3.3.3.4 Aufbereitung der Zellkern-Fraktion

Die Zellpellets (Kapitel 3.3.3.2) wurden zweimal mit 500 μ l Low Salt Puffer gewaschen (4°C, 6000 rcf, 5 min) und anschließend mit 200 μ l High Salt Puffer für 30 min bei 4°C auf einem schnell laufenden Rotationsrad inkubiert. Die Flüssigkeit wurde zehn Mal durch eine 18 Gauge Injektionskanüle⁴⁰ gezogen und die Überstände nach Zentrifugation (4°C, 13000 rcf, 10 min) in ein neues LoBind

³⁸ Eppendorf, Wesseling-Berzdorf

³⁹ New England Biolabs, Frankfurt/Main

⁴⁰ Becton Dickinson, Heidelberg

Reaktionsgefäß⁴¹ überführt. Die Pellets wurden wiederum mit 200 µl High Salt T-Puffer resuspendiert und für 30 min bei 4°C auf einem schnell laufenden Rotationsrad inkubiert. Die entstanden Überstände wurden gepoolt (Fraktion Zellkern).

Mit Hilfe der Bradford-Methode (vgl. Kapitel 3.5.6) und einer Standardreihe aus BSA in 50 % High Salt Puffer und 50 % High Salt T-Puffer wurde die Proteinkonzentrationen der Zytosol- und Zellkernfraktion bestimmt. Im FASP-Verdau wurden je 10 μ g jeder Probe weiterbearbeitet.

3.4 Massenspektrometrische Identifikation von Proteinen

3.4.1 Puffer und Lösungen für den FASP-Verdau

Ammoniumbicarbonat (ABC)-Puffer

ABC (50 mM) 3,95 mg in 1000 μl HPLC-Wasser⁴² lösen.

100 mM DTT

DTT⁴³ (100 mM)

15,42 mg

in 1000 µl HPLC-Wasser⁴² lösen.

⁴¹ Eppendorf Wesseling-Berzdorf

⁴² Merck Millipore, Darmstadt

⁴³ Serva, Heidelberg

UA-Puffer

Harnstoff ⁴⁴ (8 M)	14,41 g
1 M Tris-HCl pH 8,5 (100 mM)	3,00 ml
ad 30 ml HPLC-Wasser ⁴⁵ .	

300 mM Jodacetamid

2-Jodacetamid ⁴⁴ (300 mM)	55,48 mg
in 1000 μl HPLC-Wasser ⁴⁵ lösen, dunkel lagern.	

Lys-C

Lysyl Endopeptidase ⁴⁶ (0,2 mg/ml)	20,00 µg
in 100 μl HPLC-Wasser ⁴⁵ lösen.	

Trypsin

Trypsin ⁴⁷ (0,5 mg/ml)	20,00 µg
in 40 μl HPLC-Wasser ⁴⁵ lösen.	

ABC-Puffer mit 2 % Acetonitril (ACN)

ABC-Puffer

+ 2 % Acetonitril⁴⁸

⁴⁴ GE Healthcare, Freiburg

⁴⁵ Merck Millipore, Darmstadt

⁴⁶ Wako, Neuss

⁴⁷ Promega, Mannheim

⁴⁸ Sigma-Aldrich, Taufkirchen

0,5 % TFA

Trifluoressigsäure49

15,00 μl

ad 3 ml HPLC-Wasser⁵⁰.

3.4.2 Puffer und Lösungen für die massenspektrometrische Analyse

Matrix

α-Cyano-4-Hydroxyzimtsäure ⁵¹	2,50 mg
Acetonitril ⁴⁹ (70 %)	700,00 µl
Trifluoressigsäure ⁴⁹ (0,1 %)	1,00 µl
ad 1000 μl HPLC-Wasser ⁵⁰ .	

Puffer A

Acetonitril ⁴⁹ (2 %)	20,00 ml
Ameisensäure ⁴⁹ (0,1 %)	1,00 ml
ad 1 I HPLC-Wasser ⁵⁰ .	

Puffer B

Acetonitril ⁴⁹ (98 %)	980,00 ml
Ameisensäure ⁴⁹ (0,1 %)	1,00 ml
ad 1 I HPLC-Wasser ⁵⁰ .	

⁴⁹ Sigma-Aldrich, Taufkirchen

⁵⁰ Merck Millipore, Darmstadt

⁵¹ Bruker Daltonics, Bremen

3.4.3 FASP-Verdau der Fraktionen Zytosol und Nukleus

Die noch unverdauten Proben der Fraktionen Zellkern und Zytosol durchliefen einen Filter aided sample preparation (FASP)-Verdau (Wisniewski et al. 2011). Jeweils 10 µg Gesamtprotein pro Probe wurde im Verhältnis 1:4 mit TBS verdünnt. Nach Zugabe von 10 µl 100 mM DTT⁵² (100 mM) wurden die Proben für 30 min bei 60 °C auf dem Schüttler inkubiert. Anschließend erfolgte die Inkubation mit je 250 µl UA-Puffer und 25 µl 300 mM Iodacetamid⁵³ für 30 min bei Raumtemperatur (RT) im Dunkeln. Zwischenzeitig wurden 30 kDa Cut-off-Filter⁵⁴ mit 50 mM ABC-Puffer vorgewaschen (RT, 14000 rcf, 5 min). Die Proben wurden auf die angefeuchteten Filter gegeben, abzentrifugiert (RT, 14000 rcf, 15 min) und der Durchlauf verworfen. Anschließend erfolgten weitere Waschschritte mit 200 µl UA-Puffer (3 x) und 100 µl 50 mM ABC-Puffer (2 x). Die Inkubation mit je 50 μl 50 mM ABC-Puffer, 5 μl Lys-C⁵⁵ (0,2 μg/μl) und 4 μl Trypsin⁵⁶ (0,5 μg/μl) erfolgte über Nacht bei 37 ℃. Am nächsten Tag wurden die Proben für 15 min bei RT und 14000 rcf abzentrifugiert und die Durchläufe, die nun die Peptide enthielten, aufbewahrt. Abschließend wurden 20 µl 50 mM ABC-Puffer mit 2 % ACN auf die Filter pipettiert und erneut abzentrifugiert (RT, 14000 rcf, 15min). Die Eluate wurden mit den aufbewahrten Durchläufen gepoolt, mit 0,5 % TFA angesäuert und die gesamte Probenmenge direkt für die Liquid-Chromatographie Tandem-Massenspektrometrie (LC-MS/MS) verwendet.

3.4.4 LC-MS/MS

Mittels LC-MS/MS wurden die drei isolierten Zellfraktionen von unstimulierten und ConA-stimulierten Lymphozyten von je zwei Kontroll- und Überträgerkühen massenspektrometrisch analysiert. Für jede Probe wurde eine Messung

⁵² Serva, Heidelberg

⁵³ GE Healthcare, Freiburg

⁵⁴ Merck Millipore, Darmstadt

⁵⁵ Wako, Neuss

⁵⁶ Promega, Mannheim

durchgeführt. Diese Analyse wurde in Zusammenarbeit mit der Research Unit for Protein Science des Helmholtz Zentrums München angefertigt.

Die LC-MS/MS-Analyse wurde mit einem Ultimate3000 nano HPLC System⁵⁷ durchgeführt, welches mittels einer Nano Spray Ionenquelle online an ein LTQ OrbitrapXL⁵⁸ Massenspektrometer gekoppelt ist. Das HPLC System ist mit einer Nano Trap Säule⁵⁷ (100 µm i.d. x 2 cm, gepackt mit Acclaim PepMap100C18, 5 µm, 100Å Material) und einer analytischen Säule (75 µm i.d. x 15 cm, Acclaim PepMap 100 C18, 3 µm, 100Å Material) ausgestattet. Die vorbereiteten Proben wurden automatisch injiziert und mit einer Fließgeschwindigkeit von 30 µl/min in 5 % Puffer B und 95 % Puffer A von der Nano Trap Säule eluiert und auf der analytischen Säule aufgetrennt. Diese Auftrennung fand durch einen Gradienten von 5 – 50 % Puffer B bei einer Flussrate von 300 nl/min innerhalb von 140 min statt. Restliche, auf der Säule verbliebene Peptide wurden durch einen kurzen F Gradienten von 50 - 100 % Puffer B innerhalb von 5 min eluiert. Die Analyse der eluierten Peptide erfolgte direkt nach der Nano Spray Ionisierung in einem LTQ OrbitrapXL Massenspektrometer. Dazu wurden die zehn intensivsten Peptid-Ionen aus dem Orbitrap MS Vorscan für die Fragmentanalyse in der linearen lonenfalle ausgewählt. Eine Intensität von mindestens 100 sowie eine minimal doppelte Ladung des Peptides wurden als Auswahlkriterium festgelegt. Der Wert für die normalisierte Kollisionsenergie CID (Collision induced dissociation) wurde auf 35 festgesetzt. Die Detektion der sich daraus ergebenden Fragmente mit einer normalen Auflösung erfolgte in der linearen Ionenfalle. Ein hochauflösendes MS-Spektrum mit einer Halbwertsbreite (engl. full width half maximum) von 60.000 und einer Massenbandbreite von 200 bis 2000 Da wurde in der Orbitrap während der Fragmentanalyse aufgenommen. Jedes Ion, das für die Fragmentierung selektiert wurde, wurde 30 Sekunden lang durch dynamischen Ausschluss von einer erneuten Fragmentierung ausgeschlossen (dynamic exclusion).

⁵⁷ Dionex, Idstein

⁵⁸ Thermo Fisher Scientific, Frankfurt am Main

3.4.5 Quantitative Auswertung mit Progenisis

Zur quantitativen Auswertung der Daten wurden die aufgenommenen MS- und MS/MS-Spektren in die Progenesis-Software⁵⁹ (Version 2.5) eingefügt und die einzelnen Peptidkarten der entsprechenden Proben miteinander verglichen. Die automatische Ausrichtung der Peptidkarten an der ausgewählten Referenzkarte erfolgte anhand fünf bis zehn manuell gesetzter Markierungspunkte. Einfach geladene Peptide oder Peptide mit einer Ladung von über sieben wurden von der weiteren Analyse ausgeschlossen. Nachdem die Proben über alle detektierten Peptide zueinander normalisiert waren, wurden sie der jeweiligen Gruppe zugeordnet (Kontrolle/BNP, unstimuliert/ConA). Daraufhin konnten die Spektren für die Datenbanksuche aus der Progenesis-Software⁵⁹ als Mascot Generic File (mgf) exportiert werden. Nach Identifizierung der Peptide in Mascot⁶⁰ wurden die Daten wieder in die Progenesis-Software reimportiert und die identifizierten Peptide den entsprechenden Proteinen zugeordnet.

3.4.6 Datenbanksuche für die mittels LC-MS/MS identifizierten Peptide

Mit der Ensembl-Rind-Datenbank⁶¹ (Version 80, 2015) wurden die MS/MS-Spektren zur Identifikation der Peptide mit Mascot⁶⁰ (Matrix Science, Version 2.4.1) abgeglichen und die Peptidtoleranz wurde auf maximal 10 ppm und die Fragmentionentoleranz auf 1 Da festgelegt. Für die Analyse der Fragmentspektren wurden die Cystein Carbamidomethylierung als feste und Oxidierung von Methionin und Deamidierung von Asparagin und Glutamin als variable Modifikationen angegeben. Maximal eine nicht geschnittene Spaltstelle war erlaubt. Anhand der in Mascot integrierten Decoy-Datenbanksuche wurde die Falschpositivrate (*engl.* False discovery rate, FDR) abgeschätzt (minimale Ionen-Punktzahl von 13, p < 0,01) und kleiner 1 % gehalten.

⁵⁹ Nonlinear Dynamics

⁶⁰ http://www.matrixscience.com

⁶¹ http://www.ensembl.org/index.html

Eine schematische Darstellung der Arbeitsschritte der quantitativen LC-MS/MS Datenauswertung ist in Abb. 3.4.6 dargestellt.

Abb. 3.4.6: Schema der LC-MS/MS Datenauswertung

3.4.7 Suche von Orthologen und Paralogen

Rinderproteine, die weder mit Namen noch Gensymbol identifiziert werden konnten, wurden in der frei verfügbaren Ensembl-Rind-Datenbank⁶² (Version 80, 2015) entsprechenden Orthologen oder Paralogen zugeordnet. Mit Hilfe des NCBI BLAST Algorithmus⁶³ konnten fehlende Proteine anhand ihrer Proteinsequenz identifiziert werden.

Alle verwendeten Datenbanken sind über das Internet zugänglich:

Ensembl: http://www.ensembl.org/index.html

Genomatix: http://www.genomatix.de

⁶² http://www.ensembl.org/index.html

⁶³ http://blast.ncbi.nlm.nih.gov/Blast.cgi

3.4.8 Auswertung der Proteinabundanzen

Zur Auswertung der differenziellen Proteinexpressionsanalyse von ConA-stimulierten Lymphozytenproteinen der drei Zellfraktionen wurden zu jedem identifizierten Protein zunächst die Mittelwerte der Abundanzen von den jeweils zwei getesteten Kontrollund Überträger-PBL gebildet. Aus diesen Mittelwerten wurde dann für jedes Protein der Quotient aus unstimulierten und ConA-stimulierten Lymphozyten separat für Kontroll- und Überträgertiere gebildet. Anschließend wurde aus diesen Werten für jedes Protein der Quotient zwischen Kontrollen und Überträgern berechnet um Unterschiede in der Änderung der Proteinexpression (ratio) nach Zellstimulation zwischen beiden Kuhgruppen zu detektieren. In den Tabellen 4.2.1 - 4.2.6 sind die nach ConA-Stimulation mindestens zweifach stärker exprimierten Proteine (ratio ≥ 2) zwischen Kontrollen und Überträgern abgebildet.

3.5 SDS-Page

3.5.1 Puffer und Lösungen zur Lymphozytenstimulation und Lymphozytenaufbereitung

RPMI Medium (10/1)

RPMI 1640 Medium mit Glutamin⁶⁴

- + 1 % Penicillin/Streptomycin⁶⁵ (Pen/Strep)
- + 10 % fötales Kälberserum⁶⁵ (FCS)

⁶⁴ ThermoFisher Scientific, Frankfurt am Main

⁶⁵ Biochrom, Berlin

Lysepuffer

Harnstoff (9 M)	27,00 g
Thioharnstoff (2 M)	7,60 g
CHAPS6 (4 %)	2,00 g
DTT (65 mM)	0,50 g

in 50 ml Aqua bidest. lösen.

Bei RT fünf Stunden rühren. Anschließend zu je 1ml aliquotieren und bei -20 °C bis zur Weiterverarbeitung lagern. Direkt vor Gebrauch wurden 100 μl Aqua bidest. pro 1 ml Lysepuffer zugesetzt.

3.5.2 Puffer und Lösungen zur Proteinbestimmung

Bradford Reagenz

Bradford Reagenz⁶⁶, gebrauchsfertig.

Bovines Serum Albumin (BSA)-Stammlösung

BSA

40,00 mg

in 10 ml Aqua dest. Lösen.

Zu je 1 ml aliquotieren und bei -20 °C lagern.

Salzsäure 1 M

Salzsäure 1 M, gebrauchsfertig.

⁶⁶ Sigma-Adrich, Taufkirchen

3.5.3 Puffer und Lösungen für die SDS-Page

Acrylamid-Lösung

Acrylamide-Bis Lösung 33 %⁶⁷, gebrauchsfertig.

Bromphenolblau-Lösung

Eine Spatelspitze Bromphenolblau-Pulver⁶⁸ in Aqua bidest. lösen.

Ammoniumpersulfat (APS)-Lösung 10 %	
APS (10 %)	0,10 g
in 1 ml Aqua bidest. lösen.	
TEMED-Lösung	
N, N, N', N'-Tetramethylethylenediamine (TEMED), gebra	auchsfertig.
Natriumdodecylsulfat (SDS)-Lösung 10 %	
SDS (35 mM)	10,00 g
in 100 ml Aqua bidest. lösen. Lösung bei RT lagern.	
Natriumdodecylsulfat (SDS)-Lösung 20 %	
SDS (70 mM)	20,00 g
in 100 ml Aqua bidest. lösen. Lösung bei RT lagern.	

⁶⁷ Serva, Heidelberg

⁶⁸ Sigma-Adrich, Taufkirchen

Gelpuffer, j	pН	8,8
--------------	----	-----

Tris (1,5 M)	18,15 g
in 100 ml Aqua bidest. lösen und pH 8,8 auf einstellen.	
Sammelgelpuffer, pH 6,8	
Tris (0,5 M)	6,00 g

in 100 ml Aqua bidest. lösen und pH auf 6,8 einstellen.

5x Elektrophoresepuffer-Stammlösung, pH 8,3

Tris (120 mM)	15,00 g
Glycin ⁶⁹ (960 mM)	72,00 g
SDS (0,05 %)	5,00 g

in 1000 ml Aqua dest. lösen und pH auf 8,3 einstellen.

Die Stammlösung wird für die Elektrophorese 1:5 mit Aqua dest. verdünnt.

5x Laemmlipuffer (reduzierend)

1,5 M Tris-HCl, pH 6,8 (250 mM)	8,33 ml
20 % SDS-Lösung (5 %)	12,50 ml
Glycerin, wasserfrei (50 %)	25,00 ml
500 mM 2-Mercaptoethanol ⁷⁰	1,75 ml

ad 50 ml Aqua bidest. und eine Spatelspitze Bromphenolblau-Pulver⁷⁰ hinzufügen.

Lösung aliquotieren und bei -20 °C lagern.

⁶⁹ Biomol, Hamburg

⁷⁰ Sigma-Adrich, Taufkirchen

Abdichtgel

Aqua bidest.	400,00 µl
33 % Acrylamid-Lösung ⁷¹	200,00 µl
10 % APS-Lösung	20,00 µl
TEMED-Lösung	2,00 µl

APS- und TEMED-Lösung erst unmittelbar vor dem Gießen der Gele zugeben.

Laufgel (10 % SDS Gel)	
Aqua bidest.	4,20 ml
Gelpuffer, pH 8,8	2,50 ml
33 % Acrylamid-Lösung ⁷¹	3,30 ml
10 % SDS-Lösung	100,00 µl
10 % APS-Lösung	50,00 μl
TEMED-Lösung	20,00 µl

APS- und TEMED-Lösung erst unmittelbar vor dem Gießen der Gele zugeben.

⁷¹ Serva, Heidelberg

Sammelgel (4 % SDS Gel)

Aqua bidest.	6,17 ml
Sammelgelpuffer, pH 6,8	2,50 ml
33 % Acrylamid-Lösung ⁷²	1,33 ml
10 % SDS-Lösung	100,00 µl
Bromphenolblau-Lösung	100,00 µl
10 % APS-Lösung	90,00 µl
TEMED-Lösung	30,00 µl

APS- und TEMED-Lösung erst unmittelbar vor dem Gießen der Gele zugeben.

2-Propanol

2-Propanol (Isopropanol), gebrauchsfertig.

3.5.4 Puffer und Lösungen für den Western Blot

Anodenpuffer I 0,3 M, pH 10,4

Tris	36,33 g
Methanol, reinst	200,00 ml
ad 1000 ml Aqua bidest.	

⁷² Serva, Heidelberg

Anodenpuffer II 25 mM, pH 10,4

Tris	3,03 g
Methanol, reinst	200,00 ml
ad 1000 ml Aqua bidest.	
Kathodenpuffer, pH 9,4	
Tris	3,03 g
e-Aminocapronsäure	5,25 g
Methanol, reinst	200,00 ml
ad 1000 ml Aqua bidest.	
Ponceau-Färbelösung	
Ponceau-S (0,2 %) ⁷³	0,20 g
Trichloressigsäure13 (3 %)	3,00 g
in 100 ml Aqua bidest. lösen.	
PBS-Tween Lösung (PBS-T)	
Tween-20 (0,05 %)	0,50 ml
ad 1000 ml PBS.	

1 % Polyvinylpyrrolidone-Tween Lösung (PVP-T), pH 7,2

Polyvinylpyrrolidone (PVP40) ⁷³ (1 %)	1,00 g	
in 100 ml PBS-T lösen.		

⁷³ Sigma-Adrich, Taufkirchen

ECL	(Enhanced-Chemilumineszenz)-Lösung	4

Tris (0,1 M)	2,42 g
Luminol ⁷⁴	50,00 mg
in 200 ml Aqua bidest. lösen, pH auf 8,6 einstellen.	
Lagerung bei 4 °C.	

ECL-Lösung B

Para-Hydroxycoumarinsäure ⁷⁴	0,11 g
in 100 ml DMSO lösen.	
Dunkel und bei RT lagern.	

H_2O_2

 H_2O_2 30 $\%^{75}$, gebrauchsfertig.

Unmittelbar vor Gebrauch wurden die Lösungen in folgendem Verhältnis gemischt:

Lösung A	1,00 ml
----------	---------

- Lösung B 0,10 ml
- 30 % H₂O₂ 3,00 µl

⁷⁴ Sigma-Aldrich, Taufkirchen

⁷⁵ Merck Millipore, Darmstadt

3.5.5 Stimulation von Zellen für den Western Blot

Für die Western Blot-Experimente in Kapitel 4.3 dieser Arbeit wurden die Zellen nach der Pancoll-Präparation polyklonal mit Concanavalin A⁷⁶ stimuliert. Die frisch präparierten Zellen wurden in RPMI Medium (10/1) aufgenommen und in vier gleiche Teile à 1×10^7 Zellen aufgeteilt. Zwei Ansätze wurden für 20 Minuten (min), die anderen zwei für 48 Stunden bei 37 °C und 5 % CO₂ in einem Brutschrank⁷⁷ inkubiert. Pro Zeitpunkt wurde einem der beiden Ansätze ConA⁷⁶ (5 µg/ml) zugegeben, der andere blieb als Kontrolle unbehandelt (unstimulierte Zellen).

Nach Ernte der Zellen und einem Waschschritt mit PBS pH 8,6 (4°C, 415 rcf, 10 min) wurden die Zellen bei 2800 rcf zentrifugiert. Der Überstand wurde verworfen und die Pellets je nach Größe in 100 - 500 μ l Lysepuffer resuspendiert. Anschließend wurde der Proteingehalt der Lysate bestimmt. Die Proben lagerten bis zur weiteren Verwendung bei -20°C.

3.5.6 Bestimmung der Proteinkonzentration der Lysate

Die Proteinkonzentration der lysierten PBL-Proben erfolgte nach der Bradford-Methode (Bradford 1976). Die in den Proben enthaltenen Proteine bilden dabei mit dem Farbstoff Coomassie-Brilliant-Blau G-250 einen Komplex, wodurch das Absorptionsmaximum des Farbstoffs von 470 nm auf 595 nm verschoben wird. Die Proteinmenge der Proben lässt sich anhand der hierzu proportionalen Absorption bestimmen.

Die Standardkurve wurde anhand eines bovinen Serum Albumin (BSA)-Standards ermittelt und in Konzentrationen von 0 (Leerwert), 0,125, 0,25, 0,5, 1 und 2 mg/ml gemessen. In je zwei Dellen einer 96-Loch-Flachbodenmikrotiterplatte⁷⁸ wurden je 5 μ l jeder Probe pipettiert. Nach Zugabe von 250 μ l Bradford-Reagenz⁷⁶ in jede zu bestimmende Delle, folgte eine 10 minütige Inkubationszeit bei RT. Die Extinktion

⁷⁶ Sigma-Aldrich, Taufkirchen

⁷⁷ Heraeus Instruments, München

⁷⁸ Sarstedt, Nürnbrecht

wurde bei einer Wellenlänge von 595 nm in einem ELISA-Messgerät (Sunrise)⁷⁹ photometrisch gemessen. Die Nettoabsorption der Probe wurde aus dem Mittelwert der Doppelbestimmung und durch Abzug des Leerwertes der Standardreihe berechnet. Anhand der Standardkurve ließ sich anschließend die Proteinkonzentration bestimmen und entsprechend der verwendeten Probenmenge berechnen.

3.5.7 1D Gelelektrophorese

Nach der Laemmli-Methode erfolgte die eindimensionale Auftrennung der Proteine nach ihrem Molekulargewicht durch Anlegen einer elektrischen Spannung in der SDS-Polyacrylamidgelelektrophorese (Laemmli 1970). Dabei laufen Proteine in einem elektrischen Feld entsprechend ihrer Größe unterschiedlich weit in ein SDS-Gel ein, wobei die größeren Proteine weiter oben im Gel aufgefangen werden und kleinere Proteine weiter nach unten gelangen. Die angefertigten Gele wurden in einer Mini Protean Tetra System Gießkammer⁸⁰ mit einer Größe von 8 x 7 cm und einer Dicke von 1 mm gegossen. Um ein Auslaufen der Laufgele zu verhindern wurde vorab eine dünne Schicht schnell härtender Abdichtgele gegossen. Die gegossenen Laufgele wurden mit Isopropanol überschichtet. Nach Auspolymerisierung des Laufgels wurde das Isopropanol entfernt und das Sammelgel darauf geschichtet. Um die Proben später auf das Sammelgel auftragen zu können und zudem mehrere Proben in einem Gel gleichzeitig aufzutrennen, wurde ein entsprechender Kamm zur Herstellung der Probentaschen in das noch flüssige Sammelgel eingefügt. Die aufzutrennenden Proben wurden im Verhältnis 1:3 mit reduzierendem Laemmlipuffer verdünnt und im Thermomixer (750 rpm) 5 min bei 95 ℃ erhitzt. Um später die Bandenhöhe ablesen zu können, wurde eine der vorgeformten Geltaschen mit 3 µl einer Markerprotein-Mischung (Serva Triple Color

⁷⁹ Tecan, Crailsheim

⁸⁰ Bio-Rad, München

Protein Ladder⁸¹) und die restlichen Geltaschen mit den Proteinlysaten beladen. Anschließend wurden die Gele in die mit Elektrophoresepuffer befüllten Elektrophoresekammern überführt und an das Power Pac Basic Power Supply⁸² angeschlossen. Die Proben liefen bei RT mit 12,5 mA pro Gel in das Sammelgel ein, bis die Lauffront das Laufgel erreicht hatte. Danach wurde die Amperezahl auf 25 mA pro Gel erhöht. Die Elektrophorese wurde beendet, sobald die Lauffront den unteren Rand des Gels erreicht hatte.

3.5.8 Durchführung des Western Blots

Nach der Elektrophorese wurden die aufgetrennten Proteine mit einem einem diskontinuierlichen Puffersystem in Semi-dry-Elektroblotter (PERFECTBLUE)⁸³ aus dem Gel auf eine Polyvinylidenfluorid (PVDF)-Membran⁸⁴ überführt. Die Blot-Papiere⁸⁵ und die PVDF-Membran wurden zugeschnitten und übereinander geschichtet. Auf die anodische Platte des Elektroblotters wurden zwei in Anodenpuffer I getränkte Blot-Papiere und ein in Anodenpuffer II getränktes Blot-Papier geschichtet. Die PVDF-Membran wurde in Methanol und anschließend in Agua bidest. getränkt und auf die bereits geschichteten Filterpapiere aufgelegt, gefolgt von dem SDS-Gel und drei in Kathodenpuffer getränkten Blot-Papieren. Störende Luftblasen wurden mit einer Glaspipette ausgestrichen und anschließend die kathodische Platte des Elektroblotters aufgesetzt. Der Transfer der Proteine erfolgte mit Hilfe eines BP 500 Plus Power Supply⁸⁶ bei einer Stromstärke von 2,5 mA/cm² Gelfläche und einer Transferzeit von 40 min.

⁸¹ Thermo Fisher Scientific, Frankfurt am Main

⁸² Bio-Rad, München

⁸³ VWR, Ismaning

⁸⁴ GE Healthcare, Freiburg

⁸⁵ Roth, Karlsruhe

⁸⁶ Serva, Heidelberg

3.5.9 Überprüfung des Proteintransfers mittels Ponceau-Färbung

Um den Proteintransfer auf die PVDF-Membran zu überprüfen, wurde die Membran nach Entnahme aus dem Elektroblotter für 10 min in Ponceau S-Färbelösung inkubiert. Die Ponceau S-Färbung hat eine Sensitivität von 250 - 500 ng Protein (Salinovich and Montelaro 1986). Durch anschließendes Waschen in Aqua bidest. wurden die Proteinbanden durch Entfernen der Hintergrundfärbung sichtbar gemacht. Die komplette Entfärbung der Membran erfolgte durch Waschen in PBS-T.

3.5.10 Immunblot

Die unspezifischen Bindungsstellen an den Membranen wurden im Anschluss an die Ponceau-Färbung für 1 Stunde bei RT mit 1 % PVP-T blockiert. Darauf folgten drei Waschschritte à 10 min mit PBS-T. Über Nacht wurden die Membranen bei 4 °C mit einem Antigen-spezifischen, primären Antikörper in passender Verdünnung inkubiert. Sollten mehrere Antikörper auf einer Membran getestet werden, wurde diese vorher passend zugeschnitten. Nach drei weiteren Waschschritten zu je 10 min mit PBS-T erfolgte die Inkubation mit einem Peroxidase (POD)-konjugierten sekundären Antikörper in PBS-T für 1 Stunde bei RT. Überschüssiger sekundärer Antikörper wurde durch sechs Waschschritte á 10 min mit PBS-T entfernt. Die POD-markierten Proteine wurden anhand von ECL (enhanced chemoluminescence) detektiert. Dafür wurden die Membranen für 2 min bei RT in der frisch angesetzten ECL-Lösung inkubiert und in eine Röntgenkassette eingelegt. Die Röntgenfilme (Euromed Plus green sensitive⁸⁷) wurden je nach Intensität der Signale zwischen 10 Sekunden und 20 min belichtet und anschließend entwickelt.

⁸⁷ Christiansen, Planegg

In dieser Arbeit wurden für Western Blots folgende kommerziell erhältliche primäre Antikörper verwendet:

Antikörper	Produziert in	Klonalität	Firma/Herkunft	Verdünnung
Anti-Mensch-BTK	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti- Mensch-cFOS	Kaninchen	polyklonal	Merck, Darmstadt	1:1000
Anti-Mensch-GATA3	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-IRF4	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-LILRA	Kaninchen	polyklonal	Biomol, Hamburg	1:1000
Anti-Mensch-mTOR	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-NOS2	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-p38MAP- Kinase (Tyr180/182)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Mensch- pJun (Ser63)II	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Maus-pLAT (Tyr175)	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Rind-PLCy1	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch- pSTAT1 (Tyr701)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Mensch- pSTAT3 (Tyr705)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Mensch- pSTAT4 (Ser721)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Mensch- pSTAT5 (Tyr694)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Mensch- pSTAT6 (Tyr641)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
anti-Mensch-STAT1	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Maus-STAT3	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:1000
Anti-Maus-STAT5a	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:2000
Anti-Mensch-Tbet	Kaninchen	polyklonal	Sigma-Aldrich, Taufkirchen	1:500
Anti-Mensch-TF IIB	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-TIMP3	Kaninchen	polyklonal	Abcam, Cambridge	1:1000
Anti-Mensch-ZAP70	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:2000
Antikörper	Produziert in	Klonalität	Firma/Herkunft	Verdünnung
--------------------	---------------	------------	--	------------
Anti-Rind-CD25	Maus	monoklonal	Serotec, Puchheim	1:1000
Anti-Mensch-CD64	Maus	monoklonal	Dr. E. Kremmer, Helmholtz Zentrum München	1:1000
Anti-Schwein-CD61	Maus	monoklonal	Serotec, Puchheim	1:1000
Anti-Maus-STAT5b	Maus	monoklonal	Santa Cruz, Heidelberg	1:1000
Anti-Rind-TLR2	Mensch	monoklonal	Serotec, Puchheim	1:1000
Anti-Mensch-BLIMP1	Ziege	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-CD103	Ziege	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-FoxP3	Ziege	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-IL17	Ziege	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-RORyT	Ziege	polyklonal	Santa Cruz, Heidelberg	1:1000
Anti-Mensch-SCAMP3	Ziege	polyklonal	Santa Cruz, Heidelberg	1:1000

Folgende POD-gekoppelte sekundäre Antikörper fanden Verwendung:

Antikörper	Produziert in	Klonalität	Firma/Herkunft	Verdünnung
Anti-Maus-IgG (H+L) POD	Ziege	polyklonal	Sigma-Aldrich, Taufkirchen	1:5.000
Anti-Mensch-IgG (H+L) POD	Ziege	polyklonal	Linaris, Dossenheim	1:1.000
Anti-Kaninchen-IgG (H+L) POD	Ziege	polyklonal	Cell Signaling, Darmstadt	1:5.000
Anti-Ziege-IgG (H+L) POD	Esel	polyklonal	Santa Cruz, Heidelberg	1:5.000

3.5.11 Statistische Auswertung

Die Schwärzungsintensität der jeweils detektierten Banden im Western Blot wurde über die frei zugängliche Software ImageJ 1.47^{88} quantifiziert und auf beta-Aktin normalisiert. Zur Berechnung wurden die Werte der ConA-stimulierten Zellen auf die Werte der konstitutiven Expression (kE) der unstimulierten Zellen bezogen. Zur besseren Vergleichbarkeit wurden die Expressionsfaktoren der unstimulierten Kontrolllymphozyten in den Abbildungen gleich 1 gesetzt. Die Expressionsfaktoren wurden mittels Kolmogorow-Smirnow-Test auf ihre Normalverteilung geprüft. Bei nicht-Normalverteilung (Kolmogorow-Smirnow-Test: p < 0,05) basierte die weitere Auswertung auf statistische Signifikanz auf dem Mann-Whitney-U-Test. Es konnte in Kap. 4.3 keine Signifikanz festgestellt werden.

3.6 Immunhistochemie

3.6.1 Puffer und Lösungen für die Immunhistochemie

Bouin'sche Lösung

Bouin's solution⁸⁹, gebrauchsfertig

Ethanol 70%

Ethanol absolut

700,00 ml

ad 1000 ml Aqua dest.

⁸⁸ http://imagej.nih.gov/ij/index.html

⁸⁹ Sigma-Aldrich, Taufkirchen

Ethanol 90%

Ethanol absolut

900,00 ml

ad 1000 ml Aqua dest.

Isopropanol

99,8 % 2-Propanol (Isopropanol)

Xylol

Xylol, gebrauchsfertig

EDTA-Puffer

EDTA (100 mM)

29,22 g

in 1000 ml Aqua dest. lösen. pH auf 8,0 einstellen.

PBS

PBS (Kap.3.1.1)

PBS-T

PBS-T (Kap.3.5.4)

3.6.2 Herstellung der Paraffinschnitte

Die entnommenen Proben wurden mit Bouin'scher Lösung⁹⁰ für 72 h fixiert und anschließend in einer aufsteigenden Alkoholreihe entwässert. Dies erfolgte für je 24 h in 70 % Ethanol, 96 % Ethanol, 99 % Ethanol, Isopropanol und Xylol. Vor der Einbettung wurden die Schnitte noch für jeweils 24 h in flüssigem Paraffin 1, 3, 6 und 9⁹¹ gelagert und anschließend in Paraffin 9 eingebettet und ausgehärtet. Mit Hilfe (HM360)⁹² **Rotationsmikrotoms** wurden eines aus paraffinierten bovinen Darmlymphknoten von drei Kontrolltieren und einem Überträgertier Schnitte mit einer Dicke von 8 µm angefertigt. Um ein Abschwimmen der Präparate während der histologischen Färbeprozesse zu verhindern, wurden die Objektträger für 72 h bei 39 °C gelagert.

3.6.3 Entparaffinieren der Paraffinschnitte

In einer absteigenden Alkoholreihe wurden die Schnitte entparaffiniert und rehydriert. Dies erfolgte für zweimal 5 min in Xylol, einmal 5 min in Isopropanol, zweimal 5 min in 96 % Ethanol, einmal 5 min in 70 % Ethanol und einmal 10 min in Aqua dest. Anschließend wurden durch die Paraffinierung maskierte Proteinepitope durch 15-minütiges Kochen in EDTA-Puffer demaskiert. Nach dem Abkühlen der Schnitte auf RT wurden die Lymphknoten auf dem Objektträger mit einem Fettstift⁹³ umrandet um ein späteres Verlaufen der Antikörpersuspension zu verhindern. Als letzter Schritt wurden die Schnitte für 15 min in PBS-T umgepuffert.

⁹⁰ Sigma-Aldrich, Taufkirchen

⁹¹ ThermoFisher Scientific, Frankfurt am Main

⁹² Microm, Walldorf

⁹³ Delimiting Pen, Dako, Hamburg

3.6.4 Immunhistochemische Färbung

Zu Beginn der Färbung wurden die unspezifischen Bindungsstellen für 45 min mit 1 % BSA in PBS-T + 5 % Serum blockiert. Das Serum stammte jeweils von der Tierart, die zur Herstellung des entsprechenden sekundären Antikörpers verwendet wurde. Nach Abklopfen des Blockierungspuffer erfolgte die Inkubation mit dem jeweiligen primären Antikörper (antigenspezifischen Antikörper in PBS-T + 1 % BSA gelöst) über Nacht bei 4 °C in einer feuchten Kammer.

Für die immunhistochemische Untersuchung wurden folgende primäre Antikörper verwendet:

Antikörper	Produziert in	Klonalität	Firma/Herkunft	Verdünnung
Anti-Mensch-CD4 Klon 16H2	Ratte	monoklonal	Dr. E. Kremmer, Helmholtz Zentrum München	1:10
Anti-Mensch-IRF4	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:100
Anti-Rind-PLCy1	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:100
Anti-Mensch- pSTAT1 (Tyr701)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:100
Anti-Mensch- pSTAT3 (Tyr705)	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:100
Anti-Mensch-TF IIB	Kaninchen	polyklonal	Santa Cruz, Heidelberg	1:100
Anti-Mensch-ZAP70	Kaninchen	polyklonal	Cell Signaling, Darmstadt	1:100
Anti-Mensch-IL17	Ziege	polyklonal	Santa Cruz, Heidelberg	1:200
Anti-Mensch-RORyT	Ziege	polyklonal	Santa Cruz, Heidelberg	1:200

Nachfolgend wurden drei Waschschritte in PBS-T zu je 5 min durchgeführt und anschließend die Schnitte mit dem entsprechenden fluoreszenzgekoppelten sekundären Antikörper (gelöst in PBS-T plus 1 % BSA) für 30 min bei RT in der feuchten Kammer dunkel inkubiert. Folgende sekundäre Antikörper kamen zum Einsatz:

Antikörper + Farbstoff	Produziert in	Klonalität	Firma/Herkunft	Verdünnung
Anti-Ratte IgG (H+L), Alexa Fluor 568	Ziege	polyklonal	Invitrogen. Karlsruhe	1:500
Anti-Kaninchen IgG (H+L), Alexa Fluor 488	Ziege	polyklonal	Invitrogen. Karlsruhe	1:500
Anti-Ziege IgG (H+L), Alexa Fluor 488	Esel	polyklonal	Invitrogen. Karlsruhe	1:500

Die Kernfärbung wurde mit 4',6-Diamidin-2-phenylindol (DAPI)⁹⁴ durchgeführt. Die Schnitte wurden erneut dreimal für je 5 min in PBS-T gewaschen und abschließend mit Dako fluorescent Mounting Medium⁹⁵ und 22 x 22 mm Deckgläsern⁹⁶ eingedeckelt. Die Färbungen wurden mit dem Mikroskop Axio Imager M1⁹⁷ und der Software AxioVision 4.8⁹⁷ beurteilt und dokumentiert.

3.7 Auswertung der Leistungs- und Gesundheitsdaten

In dieser Arbeit wurden die Milchleistungsdaten und Gesundheitsparameter von 54 Kontrollkühen und zwölf Hyper-Kühen (vgl. Kapitel 4.7) im Gesamtuntersuchungszeitraum von 35 Monaten überprüft. Alle getesteten Rinder stammten aus dem nicht PregSure BVD geimpften Rinderbestands des Lehr- und Versuchsguts Oberschleißheim. Somit lagen bei allen Kühen dieselben Umweltbedingungen und Stallbedingungen vor. Von allen beprobten Kühen wurden die Milchleistungsdaten (Laktationsleistung, Tagesmilchleistung) und die Milchparameter (Fett, Eiweiß, Laktose, Harnstoff und Zellzahl) analysiert. Anschließend wurde nach Unterschieden zwischen den beiden Kuhgruppen (Kontrolle, Hyper) gesucht. Außerdem wurden Fertilitätsdaten und gynäkologische

⁹⁴ Invitrogen, Karlsruhe

⁹⁵ DAKO, Hamburg

⁹⁶ Neolab, Heidelberg

⁹⁷ Carl Zeiss, Oberkochen

Parameter wie Brunsteinleitung, Brunstsynchronisation, Häufigkeit der Besamungen bis zur Trächtigkeit, Verlauf der Trächtigkeit, Zughilfe bei der Geburt und die Anzahl der totgeborenen Kälber betrachtet. Des Weiteren wurden Erkrankungen, die innerhalb von 35 Monaten auftraten, untersucht: Klauenerkrankungen, Erkrankungen des Euters, Stoffwechselstörungen, Verletzungen an Haut, Schwanz und Hörnern, Erkrankungen des Atmungstraktes, Problematiken des Bewegungsapparates, parasitäre Infestationen, Uterus- und ovariale Erkrankungen. Ferner wurde der Einfluss von Rasse, Alter, Trächtigkeitsstadium und Abstammung von einem bestimmten Bullen auf die Proliferationsrate der Lymphozyten der beiden untersucht. Zur statistischen Auswertung das Kuhgruppen wurde Quotientenverhältnis (Odds Ratio) berechnet und zur Überprüfung der Signifikanz der Exakte Fisher-Test durchgeführt.

4 ERGEBNISSE

4.1 Abweichende Immunreaktion von BNP-Überträgerlymphozyten nach polyklonaler Stimulation

Die in unserer Arbeitsgruppe bereits durchgeführten Versuche zeigten unterschiedliche Immunreaktionen von Lymphozyten PregSure BVD geimpfter Kontroll- und BNP-Überträgerkühe nach polyklonaler Stimulation in in vitro Es Proliferationsassays (Fröhlich 2015). konnte ein hyperproliferativer Immunphänotyp der Überträgerlymphozyten nach polyklonaler Stimulation mit dem T- und B-Zell-Stimulanz Pokeweed Mitogen (PWM) nachgewiesen werden (Fröhlich 2015). In einem anschließenden proteomischen Experiment wurde ersichtlich, dass die Lymphozyten der BNP-Überträgertiere nach PWM-Stimulation andere Proteine differenziell exprimierten als die Kontrolllymphozyten. Die differenziell exprimierten Proteine weisen dabei auf eine abweichende Immunantwort der BNP-Kühe hin (Fröhlich 2015). Um diesen abweichenden Immunphänotyp weiter zu untersuchen, wurden in der vorliegenden Arbeit Experimente mit dem Lektin Concanavalin A (ConA) durchgeführt. Das Mitogen ConA aus der Jackbohne bindet an Mannose-Reste (Pang et al. 2012a) und ist vorrangig ein T-Zell-Stimulanz (Quade and Roth 1999). Die T-Zell-Stimulation wird bei der Maus über CD28 durch eine Ko-Stimulation von CD80 und CD86 bewirkt (Perrin et al. 1997).

4.1.1 BNP-Lymphozyten reagieren nach polyklonaler ConA-Stimulation hyperproliferativ

Kontroll- und BNP-Lymphozyten wurden für 48h *in vitro* mit dem T-Zell-Stimulanz ConA inkubiert. Die Proliferationsrate der Zellen konnte durch den Einbau von radioaktiv markiertem ³H-Thymidin in die zelluläre DNA mit einem beta-Counter gemessen werden. Die Kontrolllymphozyten reagierten auf die ConA-Stimulation mit einer 20-fach gesteigerten Proliferationsrate im Vergleich zu den unstimulierten Kontrollzellen. Im Gegensatz dazu proliferierten die BNP-Lymphozyten nach ConA-Stimulation 156-fach stärker im Vergleich zu ihren unstimulierten Zellen. Die Überträgerzellen reagierten somit um den Faktor 7,8 stärker als die Kontrolllymphozyten (Abb.4.1 **** $p \le 0,0001$).

Abb. 4.1: Abweichende Immunreaktion von Kontroll- und Überträgerlymphozyten nach polyklonaler ConA-Stimulation (5µg/ml). Dargestellt ist die Proliferationsrate von Kontrolllymphozyten (grüne Säule, biol. n = 5, techn. n = 52) und Überträgerlymphozyten (schwarze Säule, biol. n = 5, techn. n = 86) nach 48 h *in vitro* Stimulation. Der Proliferationsfaktor entspricht dem Quotienten der counts per minute (cpm) -Werte von stimulierten Zellen im Vergleich zu unstimulierten Zellen (MK, Mediumkontrolle, entspricht 1) desselben Tieres. Die ConA-stimulierten Kontrolllymphozyten proliferierten 20 Mal, die BNP-Lymphozyten 156 Mal mehr im Vergleich zu unstimulierten Zellen. Damit proliferierten die Überträgerlymphozyten um den Faktor 7,8 stärker als die Kontrolllymphozyten (**** p ≤ 0,0001).

Dieses Experiment zeigte eine starke Hyperproliferation der Überträgerzellen auf die polyklonale ConA-Stimulation und gab zusammen mit unseren Vorarbeiten (Fröhlich 2015) weitere Hinweise darauf, dass Kontroll- und Überträgerkühe unterschiedlich auf Stimuli des Immunsystems reagieren.

4.2 Proteine von Kontroll- und BNP-Überträgerlymphozyten werden nach ConA-Stimulation unterschiedlich exprimiert

Im nächsten Versuch sollte das Proteom von unstimulierten und ConA-stimulierten Lymphozyten der beiden Kuhphänotypen verglichen werden, um zu untersuchen, ob und wie sich das Expressionsmuster der Zellproteine zwischen PBL (periphere Blutlymphozyten) von Kontroll- und BNP-Kühen nach Immunstimulation ändert. Hierfür wurde eine guantitative, differenzielle Proteomanalyse von unstimulierten und ConA-stimulierten Kontroll- und Uberträgerlymphozyten durchgeführt. Lymphozyten von beiden Kuhgruppen wurden in je zwei Ansätzen ausgesät, von denen einer unstimuliert als Kontrolle diente und der zweite mit dem T-Zell-Stimulanz ConA stimuliert (48 h) wurde. Die Lymphozyten wurden mit Hilfe von Oberflächenbiotinylierung und Fraktionierung in die drei Fraktionen Plasmazellmembranoberfläche, Nukleus und Zytosol aufgetrennt.

Auf diese Weise konnten Änderungen im Proteinrepertoire der einzelnen Zellkompartimente getrennt betrachtet und eine bessere Analysetiefe erreicht werden. Mittels dieser Datensätze war es dann möglich, die Art der Immunstimulation, die ConA auf das Immunsystem von Rindern ausübt, zu Die charakterisieren. Proteinausstattung jeder Zellfraktion wurde im Massenspektrometer identifiziert und die Unterschiede in der Proteinexpression zwischen ConA-stimulierten Kontroll- und Überträgerzellen guantitativ ausgewertet. So wurde für die drei Zellfraktionen separat analysiert, welche Proteine von Kontrolloder von BNP-Lymphozyten nach ConA-Stimulation mindestens um den Faktor 2 differenziell exprimiert wurden. Insgesamt konnten in diesem proteomischen Experiment aus allen drei Zellfraktionen insgesamt 5459 Proteine von Kontroll- und BNP-Lymphozyten identifiziert werden.

4.2.1 Auf der Plasmazellmembranoberfläche von Kontrolllymphozyten nach ConA-Stimulation stärker exprimierte Proteine

Im Zellkompartiment Plasmazellmembranoberfläche von Kontroll- und Überträgerzellen wurden insgesamt 644 Proteine eindeutig identifiziert. Die

Lymphozyten von PregSure BVD geimpften Kontrollkühen exprimierten davon 17 Proteine stärker als die Lymphozyten von BNP-Überträgertieren (Tab. 4.2.1).

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
1	Cationic amino acid transporter 3	ENSBTAP00000020054	15,04
2	H3 histone, family 3A	ENSBTAP00000034086	13,06
3	Macrophage mannose receptor 1	ENSBTAP00000051181	12,72
4	Histone H4	ENSBTAP00000025810	9,90
5	Eukaryotic translation elongation factor 2	ENSBTAP00000005581	6,88
6	Histone H2A	ENSBTAP0000009471	6,48
7	C-type lectin 1	ENSBTAP00000051719	3,80
8	C-type lectin domain family 12, member A	ENSBTAP00000017022	2,89
9	Solute carrier family 38, member 2	ENSBTAP00000014749	2,89
10	Histone H2B	ENSBTAP00000024155	2,83
11	Histone cluster 1	ENSBTAP00000015499	2,75
12	BOLA class I histocompatibility antigen, alpha chain BL3-7	ENSBTAP00000035741	2,53
13	S100 calcium binding protein A8	ENSBTAP00000016774	2,45
14	RNA binding motif protein 39	ENSBTAP0000002491	2,42
15	Leukocyte immunoglobulin receptor subfamily B, member 3	ENSBTAP00000026048	2,26
16	Fc fragment of IgG, high affinity Ia, receptor	ENSBTAP00000011333	2,19
17	Interferon-induced protein 44	ENSBTAP00000031029	2,13

Tab.4.2.1:MassenspektrometrischeindeutigidentifizierteProteinederPlasmazellmembranoberfläche, die auf Lymphozyten von geimpften Kontrollkühen (n = 2) nach ConA-
Stimulation mindestens zweifach höher abundant waren als auf Lymphozyten von Überträgerkühen
(n = 2).

A: Fortlaufende Nummer, B: Name des identifizierten Proteins, C: Identifikationsnummer des Proteins aus der Ensembl-Datenbank (http://www.ensembl.org/Bos_taurus/Info/Index), D: Ratio: Verhältnis der Expressionsänderung im Kontrolltier (nach ConA-Stimulation/konstitutiv) zur Expressionsänderung im BNP-Tier (nach ConA-Stimulation/konstitutiv).

4.2.2 Auf der Plasmazellmembranoberfläche von BNP-Überträgerlymphozyten nach ConA-Stimulation stärker exprimierte Proteine

Von den insgesamt 644 identifizierten Plasmazellmembranoberflächenproteinen exprimierten die Lymphozyten von BNP-Überträgertieren nach ConA-Stimulation

74 Proteine höher abundant als die Lymphozyten von PregSure BVD geimpften Kontrolltieren (Tab.4.2.2).

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
1	CD163L1	ENSBTAP00000052473	24,26
2	Solute carrier family 2 ,member 5	ENSBTAP00000045621	12,02
3	Folate receptor 2	ENSBTAP00000025507	11,38
4	Neuropilin 1	ENSBTAP00000026471	9,13
5	Transportin 2	ENSBTAP00000015682	9,08
6	Cytochrome c oxidase subunit 2	ENSBTAP00000053151	7,21
7	SAM domain and HD domain 1	ENSBTAP00000041236	7,13
8	Killer cell lectin- receptor subfamily K, member 1	ENSBTAP0000006469	6,75
9	Tumor necrosis factor receptor superfamily, member 8	ENSBTAP00000047653	5,85
10	Poly A binding protein interacting protein 2	ENSBTAP00000010815	5,75
11	Junctional adhesion molecule 3	ENSBTAP0000004124	5,19
12	Lymphocyte antigen 6 complex locus protein G6c	ENSBTAP0000000767	5,08
13	CD163	ENSBTAP00000026215	4,96
14	Colony stimulating factor 1	ENSBTAP0000000353	4,29
15	Tetraspanin 2	ENSBTAP00000021222	4,29
16	Nucleophosmin	ENSBTAP00000020363	4,10
17	C-mer proto-oncogene tyrosine kinase	ENSBTAP0000007664	4,07
18	Extended synaptotagmin protein 1	ENSBTAP00000041673	4,07
19	Alkaline phosphatase	ENSBTAP00000011783	4,05
20	Glycoprotein M6A	ENSBTAP0000005543	3,81
21	Cystinosin, lysosomal cystine transporter	ENSBTAP00000049590	3,73
22	Chemokine receptor 4	ENSBTAP00000046254	3,66
23	Glycerophosphodiester phosphodiesterase domain containing 2	ENSBTAP00000017095	3,62
24	Cadherin 17	ENSBTAP00000043215	3,62
25	Protein tyrosine phosphatase, receptor type A	ENSBTAP00000015189	3,51
26	Ectonucleotide pyrophosphatase/phosphodiesterase 1	ENSBTAP00000053402	3,45
27	Mast cell immunoglobulin receptor 1	ENSBTAP0000009744	3,43
28	Major histocompatibility class I related protein	ENSBTAP00000013413	3,36
29	Immunoglobulin lambda polypeptide 1	ENSBTAP00000031165	2,97
30	Mitochondrial carrier 1	ENSBTAP00000020849	2,95
31	Cationic amino acid transporter 3	ENSBTAP00000012086	2,91
32	Beta-2-microglobulin	ENSBTAP00000016359	2,89
33	G protein-coupled receptor 114	ENSBTAP00000043989	2,89
34	Cell adhesion molecule 1	ENSBTAP00000036781	2,85
35	Solute carrier family 44 member 1	ENSBTAP0000009435	2,81
36	CD72	ENSBTAP00000015162	2,79
37	CD36	ENSBTAP00000023750	2,63
38	Signal transducer and activator of transcription 3	ENSBTAP00000028687	2,57
39	Lactotransferrin	ENSBTAP0000001704	2,51
40	CD276	ENSBTAP00000026300	2,48
41	CAP-GLY domain containing linker protein 2	ENSBTAP00000015759	2,48
42	Solute carrier family 39 member 6	ENSBTAP0000001322	2,46
43	Adhesion molecule, interacts with CXADR 1	ENSBTAP00000021233	2,46

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
44	CD7	ENSBTAP00000015095	2,46
45	T-cell receptor gamma chain C region C10.5	ENSBTAP00000048305	2,40
46	Programmed cell death 1	ENSBTAP00000015337	2,40
47	Solute carrier family 43, member 2	ENSBTAP0000000064	2,40
48	Rho GDP-dissociation inhibitor 2	ENSBTAP0000007933	2,40
49	Tumor necrosis factor receptor superfamily member 18	ENSBTAP00000020759	2,34
50	Coagulation factor II receptor 3	ENSBTAP00000012283	2,33
51	Chemokine receptor 1	ENSBTAP00000029488	2,32
52	Albumin	ENSBTAP00000022763	2,31
53	Transportin 3	ENSBTAP0000006573	2,29
54	Glycoprotein IX	ENSBTAP00000019525	2,28
55	Calpain-2 catalytic subunit	ENSBTAP00000044733	2,23
56	T-cell receptor delta chain	ENSBTAP00000043615	2,22
57	Transmembrane protein 206	ENSBTAP00000001006	2,21
58	CD68	ENSBTAP0000000146	2,20
59	UPF0547 protein C16orf87	ENSBTAP0000004555	2,17
60	Zeta-chain TCR associated protein kinase 70	ENSBTAP0000007743	2,16
61	Glycoprotein V	ENSBTAP00000017571	2,16
62	Prostate androgen regulated mucin protein 1	ENSBTAP00000021168	2,14
63	Tetraspanin 7	ENSBTAP00000011802	2,13
64	ORAI calcium release-activated calcium modulator 1	ENSBTAP0000005840	2,13
65	Adenylate cyclase 7	ENSBTAP0000008153	2,12
66	Von Willebrand factor	ENSBTAP00000016273	2,07
67	Melanoma cell adhesion molecule	ENSBTAP00000044248	2,07
68	Coagulation factor II	ENSBTAP0000009406	2,06
69	Adhesion G protein-coupled receptor E3	ENSBTAP0000003821	2,05
70	P-selectin	ENSBTAP00000027661	2,05
71	Integrin alpha E	ENSBTAP0000020307	2,04
72	Synaptophysin 1	ENSBTAP00000026372	2,04
73	T-cell receptor beta chain variable segment	ENSBTAP00000038676	2,03
74	Transgelin 2	ENSBTAP0000002674	2,02

Tab.4.2.2:MassenspektrometrischeindeutigidentifizierteProteinederPlasmazellmembranoberfläche,dieaufLymphozytenvonÜberträgerkühen(n = 2)nachConA-Stimulation mindestens zweifach höher abundant waren als auf Lymphozyten von Kontrollkühen(n = 2).

A: Fortlaufende Nummer, B: Name des identifizierten Proteins, C: Identifikationsnummer des Proteins aus der Ensembl-Datenbank (http://www.ensembl.org/Bos_taurus/Info/Index), D: Ratio: Verhältnis der Expressionsänderung im BNP-Tier (nach ConA-Stimulation/konstitutiv) zur Expressionsänderung im Kontrolltier (nach ConA-Stimulation/konstitutiv).

4.2.3 Im Zytosol von Kontrolllymphozyten nach ConA-Stimulation stärker exprimierte Proteine

Aus der Zellfraktion des Zytosols von Kontroll- und Überträgerzellen wurden insgesamt 2495 Proteine eindeutig identifiziert. Die Lymphozyten von PregSure BVD geimpften Kontrolltieren exprimierten 275 Proteine stärker als die Lymphozyten von BNP-Überträgertieren (Tab. 4.2.3).

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
1	Myeloid/lymphoid or mixed-lineage leukemia translocated to, 1	ENSBTAP00000002936	Infinity
2	Exportin	ENSBTAP00000038398	Infinity
3	Polipoprotein B mRNA editing enzyme	ENSBTAP00000010196	Infinity
4	Serpin peptidase inhibitor, clade A	ENSBTAP0000004927	Infinity
5	Solute carrier family 36, member 1	ENSBTAP00000021426	Infinity
6	Mini-chromosome maintenance complex binding protein	ENSBTAP00000013028	5704,59
7	Major histocompatibility complex, class II	ENSBTAP00000043594	1897,25
8	Protein kinase, AMP activated, beta 1	ENSBTAP0000007798	655,78
9	Ubiquinol-cytochrome c reductase, complex III subunit XI	ENSBTAP00000011458	275,84
10	Alpha-kinase 3	ENSBTAP0000002122	184,66
11	Glutamine-rich 1	ENSBTAP00000025183	163,90
12	Transmembrane protein 214	ENSBTAP0000023162	139,71
13	DEAD (Asp-Glu-Ala-Asp) box polypeptide 18	ENSBTAP00000042872	134,97
14	Desmoplakin	ENSBTAP00000020103	131,80
15	Tubulin, alpha 1a	ENSBTAP00000001948	94,22
16	Cytoplasmic dynein 1 intermediate chain 2	ENSBTAP0000003429	59,58
17	Elongator complex protein 3	ENSBTAP0000003541	54,41
18	Eukaryotic translation initiation factor 2 subunit 3	ENSBTAP00000054001	53,27
19	Protein O-fucosyltransferase 1	ENSBTAP00000021595	38,35
20	Myeloid/lymphoid or mixed-lineage leukemia translocated to, 4	ENSBTAP00000007309	36,47
21	Cyclin dependent kinase 6	ENSBTAP00000053788	36,35
22	Mitochondrial ribosomal protein L4	ENSBTAP0000001861	34,93
23	Mannosyl-oligosaccharide glucosidase	ENSBTAP0000002408	34,07
24	Cytochrome c oxidase subunit Va	ENSBTAP00000022949	33,51
25	Chromosome 10 open reading frame	ENSBTAP0000009709	31,24
26	Splicing factor 1	ENSBTAP0000001376	28,36
27	Zinc finger, C3HC-type containing 1	ENSBTAP00000014941	27,28
28	CD1a	ENSBTAP00000050319	21,54
29	Growth hormone inducible transmembrane protein	ENSBTAP00000043881	20,64
30	Deoxyguanosine kinase	ENSBTAP00000044459	18,41
31	Intercellular adhesion molecule 1	ENSBTAP00000013608	17,70
32	Guanine nucleotide binding protein, G protein, gamma 5	ENSBTAP00000010682	16,22
33	Lys-63-specific deubiquitinase BRCC36	ENSBTAP00000010280	15,24
34	Signal transducer and activator of transcription 1	ENSBTAP00000010351	15,23

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
35	2'-5'-Oligoadenylate synthetase	ENSBTAP0000004270	14,28
36	Heat shock protein HSP 90-beta	ENSBTAP00000056225	14,08
37	Phosphatidylinositol glycan anchor biosynthesis, class X	ENSBTAP00000055862	13,88
38	Aquaporin 1	ENSBTAP0000000993	13,18
39	ATP-binding cassette, sub-family A	ENSBTAP00000027538	11,92
40	NLR family CARD domain-containing protein 4	ENSBTAP00000010814	11,32
41	Microsomal glutathione S-transferase 3	ENSBTAP00000013559	10,35
42	Golgi transport 1B	ENSBTAP0000000490	9,86
43	Non-SMC condensin I complex, subunit G	ENSBTAP00000028759	9,34
44	AKT interacting protein	ENSBTAP00000021617	9,27
45	Microsomal glutathione S-transferase 1	ENSBTAP00000011257	9,27
46	5'-Nucleotidase, cytosolic II	ENSBTAP00000017090	9,21
47	Zinc finger protein 449	ENSBTAP00000024080	9,20
48	Nucleolar complex associated 2	ENSBTAP00000021980	8,89
49	Tumor protein D52, 2	ENSBTAP00000028291	8,89
50	MMS19 nucleotide excision repair	ENSBTAP00000053458	8,78
51	Cytochrome b5 reductase 1	ENSBTAP00000026548	8,67
52	Inhibitor of kappa light polypeptide gene enhancer in B- cells	ENSBTAP00000006570	8,61
53	Caspase recruitment domain family, member 9	ENSBTAP0000008634	8,24
54	Transmembrane protein 256	ENSBTAP00000023810	8,20
55	Protein phosphatase 2, regulatory subunit B	ENSBTAP00000026361	8,09
56	Chromosome 18 open reading frame	ENSBTAP00000018422	8,02
57	Protein LSM12	ENSBTAP00000021620	7,99
58	Uridine phosphorylase 1	ENSBTAP00000011088	7,95
59	Calcium/calmodulin-dependent protein kinase II delta	ENSBTAP00000019230	7,88
60	Hemoglobin, mu	ENSBTAP00000051901	7,76
61	Coiled-coil domain containing 178	ENSBTAP0000000161	7,75
62	Transglutaminase 2	ENSBTAP00000021569	7,73
63	Cathelicidin 1	ENSBTAP00000026750	7,45
64	Replication factor C5, activator 1	ENSBTAP0000009392	7,38
65	U6 snRNA-associated Sm protein LSm3	ENSBTAP00000009684	7,30
66	Rho-related GTP binding protein RhoF	ENSBTAP00000043485	7,15
67	DEAD box polypeptide 24	ENSBTAP00000004441	7,15
68	60S ribosomal protein L23a	ENSBTAP00000030092	7,12
69	Ribosomal protein, large, P1	ENSBTAP00000024376	6,99
70	Chromosome 16 open reading frame 62	ENSBTAP00000025864	6,86
71	Ribosomal protein, large, P2	ENSBTAP0000002326	6,36
72	Small nuclear ribonucleoprotein polypeptide F	ENSBTAP00000021643	6,32
73	Galactosidase, alpha	ENSBTAP00000025636	6,30
74	Src kinase associated phosphoprotein 1	ENSBTAP0000000843	6,28
75	Fibrous sheath-interacting protein 2	ENSBTAP00000013812	5,69
76	Ferritin, heavy polypeptide 1	ENSBTAP00000014853	5,47
77	Presenilin 1	ENSBTAP00000015615	5,44
78	I A I A box-binding protein 1	ENSBIAP00000046701	5,42
79	Inositol 1,4,5-trisphosphate receptor, type 1	ENSBTAP00000047903	5,37
80	Mitochondrial fission factor	ENSBTAP00000028421	5,35

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
81	Transmembrane protein 40	ENSBTAP00000036355	5,17
82	Probable ergosterol biosynthetic protein 28	ENSBTAP00000015904	5,14
83	Kinesin family member 26B	ENSBTAP00000044804	4,99
84	Ribonuclease L	ENSBTAP00000041757	4,97
85	Signal peptidase complex catalytic subunit SEC11C	ENSBTAP00000015866	4,94
86	Calcium/calmodulin-dependent protein kinase II gamma	ENSBTAP00000016830	4,88
87	Acid phosphatase 2, lysosomal	ENSBTAP00000027968	4,78
88	Zinc finger, DHHC-type containing 3	ENSBTAP00000015263	4,77
89	Heterogeneous nuclear ribonucleoprotein H2	ENSBTAP0000009864	4,71
90	Histone cluster 1	ENSBTAP00000015499	4,60
91	Ubiquitin A-52 residue ribosomal protein fusion product 1	ENSBTAP00000010176	4,57
92	Integrin, alpha M	ENSBTAP00000054571	4,54
93	DNA mismatch repair protein Mlh1	ENSBTAP0000022288	4,48
94	Histone-lysine N-methyltransferase NSD3	ENSBTAP00000053526	4,43
95	S100 calcium binding protein A9	ENSBTAP0000008523	4,41
96	Spectrin, beta, erythrocytic	ENSBTAP0000006213	4,37
97	RAB2A	ENSBTAP0000001253	4,34
98	Torsin A interacting protein 2	ENSBTAP00000046577	4,28
99	Transglutaminase 3	ENSBTAP0000006432	4,28
100	Serpin peptidase inhibitor, clade B	ENSBTAP00000052209	4,25
101	Golgi SNAP receptor complex member 2	ENSBTAP00000021217	4,17
102	SH3 domain binding glutamic acid-rich protein 3	ENSBTAP00000012599	4,15
103	Apolipoprotein B	ENSBTAP00000038799	4,12
104	Cathelicidin 4	ENSBTAP00000026747	4,05
105	Phosphodiesterase 12	ENSBTAP00000020675	3,99
106	Hemopoietic cell kinase	ENSBTAP00000051020	3,97
107	60S ribosomal protein L39	ENSBTAP00000046223	3,95
108	Arf-GAP protein 2	ENSBTAP0000004381	3,94
109	Pleckstrin homology domain containing, family O member 2	ENSBTAP00000011069	3,93
110	Basic helix-loop-helix domain-containing protein KIAA2018	ENSBTAP00000027966	3,92
111	Membrane bound O-acyltransferase domain containing 7	ENSBTAP00000021152	3,89
112	Vitamin K epoxide reductase complex, subunit 1-1	ENSBTAP00000029752	3,83
113	Serine/threonine protein kinase	ENSBTAP00000018438	3,80
114	Cathelicidin antimicrobial peptide	ENSBTAP0000003930	3,77
115	Cadherin 15, type 1	ENSBTAP0000032473	3,75
116	Ribosomal L1 domain containing 1	ENSBTAP00000019422	3,73
117	Peptidylprolyl cis/trans isomerase	ENSBTAP00000022592	3,68
118	Nucleoside diphosphate linked moiety X type motif 5	ENSBTAP00000025989	3,62
119	Aldehyde dehydrogenase 1 family, member A1	ENSBTAP00000010661	3,61
120	Protein-glutamate O-methyltransferase	ENSBTAP0000005354	3,60
121	Lactotransferrin	ENSBTAP00000001704	3,56
122	Glycogen synthase 1	ENSBTAP0000007423	3,53
123	Protein TFG	ENSBTAP00000004503	3,50
124	Spermatogenesis and centriole associated 1	ENSBTAP00000027197	3,50
125	Receptor activity modifying protein 1	ENSBTAP00000015322	3,48

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
126	Ras related protein Rab 11A	ENSBTAP00000025235	3,43
127	Topoisomerase 1	ENSBTAP00000010466	3,42
128	Serpin peptidase inhibitor, clade B, member 1	ENSBTAP00000015889	3,38
129	Serine/threonine-protein phosphatase 2B catalytic subunit beta	ENSBTAP00000054636	3,38
130	Zinc finger homeobox 3	ENSBTAP00000019489	3,29
131	Interferon-induced transmembrane protein 10	ENSBTAP00000056116	3,27
132	Jagunal 1	ENSBTAP00000030786	3,25
133	Guanine deaminase	ENSBTAP00000015339	3,20
134	Signal transducer and activator of transcription 6	ENSBTAP0000008311	3,20
135	6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3	ENSBTAP00000048148	3,19
136	Adaptor-related protein complex 2, beta 1 subunit	ENSBTAP00000027078	3,18
137	Mitochondrial ribosomal protein S22	ENSBTAP00000056612	3,11
138	GTP-binding protein SAR1b	ENSBTAP00000022422	3,11
139	Asparagine synthetase	ENSBTAP00000004181	3,10
140	Interleukin 1 receptor accessory protein	ENSBTAP00000017575	3,08
141	Estrogen-related receptor beta	ENSBTAP00000016290	3,04
142	Histamine N-methyltransferase	ENSBTAP00000019196	3,03
143	Eukaryotic translation initiation factor 3, subunit G	ENSBTAP0000003545	3,03
144	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5	ENSBTAP00000004408	3,02
145	Protein phosphatase 3, catalytic subunit, alpha isozyme	ENSBTAP00000021305	3,02
146	Sec61 alpha 1 subunit	ENSBTAP0000006494	3,01
147	Ribonucleoprotein E	ENSBTAP00000050704	2,97
148	Ring finger protein 123	ENSBTAP00000042771	2,96
149	Mitochondrial ribosomal protein S27	ENSBTAP0000002549	2,94
150	7-Dehydrocholesterol reductase	ENSBTAP00000021892	2,89
151	Cytochrome P450, subfamily IIIA, polypeptide 4	ENSBTAP00000055446	2,87
152	S100 calcium binding protein A12	ENSBTAP00000034009	2,84
153	Centromere protein F	ENSBTAP00000033816	2,82
154	Mitochondrial carrier 2	ENSBTAP00000024956	2,82
155	CD1a	ENSBTAP0000009739	2,81
156	Neuroblastoma RAS	ENSBTAP00000012897	2,78
157	Pyruvate kinase, liver and RBC	ENSBTAP00000044193	2,77
158	Sphingosine-1-phosphate lyase 1	ENSBTAP00000044620	2,76
159	ATPase, H ⁺ transporting, lysosomal V0 subunit a1	ENSBTAP00000025588	2,76
160	Lanosterol synthase	ENSBTAP00000025201	2,76
161	Neuroplastin	ENSBTAP00000010806	2,75
162	Hexokinase 2	ENSBTAP00000053231	2,75
163	Shroom 4	ENSBTAP0000003899	2,75
164	Fumarylacetoacetate hydrolase	ENSBTAP00000016368	2,75
165	Cationic amino acid transporter 3	ENSBTAP00000020051	2,73
166	Glycogenin 1	ENSBTAP00000002261	2,73
167	Proteasome 26S subunit, non-ATPase, 4	ENSBTAP0000008019	2,72
168	Ribosomal protein S23	ENSBTAP00000017770	2,70
169	Hippocalcin 1	ENSBTAP00000005577	2,69
170	Methyltransferase 16	ENSBTAP00000035031	2,69
171	Phosphatidylinositol-4-phosphate 5-kinase, type I, alpha	ENSBTAP0000008015	2,67

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
172	Acyl-CoA thioesterase 2	ENSBTAP0000002891	2,65
173	Nitric oxide synthase 2	ENSBTAP0000009062	2,65
174	Torsin family 1, member A	ENSBTAP00000027059	2,65
175	Clustered mitochondria protein	ENSBTAP00000015643	2,62
176	Eukaryotic translation initiation factor 6	ENSBTAP00000014966	2,61
177	ETS domain-containing protein Elk 4	ENSBTAP00000056094	2,60
178	Proteasome assembly chaperone 4	ENSBTAP00000041759	2,59
179	Protein bicaudal D 2	ENSBTAP00000056548	2,59
180	Heat-responsive protein 12	ENSBTAP00000016718	2,58
181	Ribosomal protein L38	ENSBTAP00000040182	2,57
182	Macrophage mannose receptor 1	ENSBTAP00000013591	2,57
183	RCD1 required for cell differentiation1	ENSBTAP00000004955	2,55
184	Elongation factor 1 delta	ENSBTAP00000019499	2,55
185	Ribosomal protein L34	ENSBTAP00000018910	2,54
186	Oxysterol binding protein 8	ENSBTAP0000005804	2,54
187	Solute carrier family 25, member 11	ENSBTAP00000035103	2,54
188	Macrophage mannose receptor 1	ENSBTAP00000051181	2,54
189	Spleen tyrosine kinase	ENSBTAP0000006260	2.53
190	Calcium binding protein 39	ENSBTAP00000052156	2,52
191	Multidrug resistance-associated protein 4	ENSBTAP00000035354	2,50
192	Chromodomain helicase DNA binding protein 4	ENSBTAP00000019612	2.49
193	H2A histone family, member 5	ENSBTAP00000022576	2,49
194	Tumor protein p63 regulated 1	ENSBTAP00000021078	2,49
195	Ras-related GTP binding A	ENSBTAP00000051093	2,47
196	Phosphoinositide-3-kinase, catalytic, gamma	ENSBTAP00000027780	2,47
197	Ribosomal protein S27	ENSBTAP00000018414	2,46
198	Lipase A	ENSBTAP00000014997	2,44
199	Ras-related C3 botulinum toxin substrate 1	ENSBTAP00000012170	2,43
200	Transmembrane protein 33	ENSBTAP00000053517	2,41
201	EH domain binding protein 1-1	ENSBTAP0000008891	2,41
202	Leucine rich repeat containing 32	ENSBTAP0000001716	2,41
203	Nuclear receptor corepressor 1	ENSBTAP00000053758	2,40
204	Ribosomal protein L37a	ENSBTAP00000005015	2,40
205	Cytochrome c oxidase subunit 7C, mitochondrial	ENSBTAP00000048302	2,40
206	Cleft lip and palate transmembrane protein 1	ENSBTAP0000001754	2,38
207	Alpha-2-macroglobuli	ENSBTAP0000006167	2,37
208	Ribosomal protein L13	ENSBTAP00000044536	2,36
209	Ras-related protein Rab-3D	ENSBTAP0000002783	2,35
210	Ribosomal protein L26	ENSBTAP00000016378	2,32
211	CD9	ENSBTAP00000019643	2.32
212	Pumilio 3	ENSBTAP00000017765	2,32
213	Spectrin, alpha, ervthrocytic 1	ENSBTAP00000053194	2.30
214	Eukaryotic translation initiation factor 3. subunit J	ENSBTAP0000000465	2,30
215	NADH dehydrogenase ubiquinone 1 beta subcomplex, 4	ENSBTAP00000021123	2,30
216	S100 calcium binding protein A8	ENSBTAP00000016774	2,30
217	Fused in sarcoma	ENSBTAP00000007571	2,29

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
218	Cell division cycle and apoptosis regulator protein 1	ENSBTAP00000050465	2,28
219	Brefeldin A-inhibited guanine nucleotide-exchange protein 2	ENSBTAP00000009376	2,28
220	Cullin 5	ENSBTAP00000053628	2,28
221	Glutathione S-transferase M1	ENSBTAP0000023627	2,28
222	TATA-binding protein-associated factor 2N	ENSBTAP0000009084	2,28
223	Hexokinase-3	ENSBTAP00000019834	2,27
224	E3 ubiquitin-protein ligase RNF31	ENSBTAP00000053642	2,27
225	ATG3 autophagy related 3	ENSBTAP00000011976	2,27
226	Ras-related nuclear protein	ENSBTAP00000055044	2,26
227	Polymerase RNA II polypeptide I	ENSBTAP00000019969	2,25
228	Tetratricopeptide repeat domain 38	ENSBTAP00000049933	2,23
229	Transmembrane BAX inhibitor motif containing 6	ENSBTAP00000043666	2,22
230	Catenin, beta 1	ENSBTAP00000010077	2,21
231	NADHdehydrogenase ubiquinone 1 alpha subcomplex 11	ENSBTAP00000025322	2,21
232	Alcohol dehydrogenase 5 class III, chi polypeptide	ENSBTAP00000021304	2,21
233	Transportin 3	ENSBTAP0000006573	2,21
234	Ribosomal protein L29	ENSBTAP00000024788	2,20
235	Sorting nexin 8	ENSBTAP00000018213	2,20
236	Ribonucleotide reductase M2	ENSBTAP00000010802	2,20
237	H1 histone family, member X	ENSBTAP00000049910	2,18
238	Lysosomal-associated membrane protein 3	ENSBTAP0000008608	2,18
239	RAB, member RAS oncogene family 6	ENSBTAP0000001237	2,18
240	Cytochrome P450, family 20, subfamily A, polypeptide 1	ENSBTAP0000001132	2.17
241	Ataxin 10	ENSBTAP00000012308	2,16
242	Transferrin receptor protein 1	ENSBTAP00000043726	2.16
243	CCHC-type zinc finger, nucleic acid binding protein	ENSBTAP00000016130	2,15
244	Apolipoprotein L	ENSBTAP00000049096	2.15
245	Dedicator of cytokinesis 8	ENSBTAP0000002840	2,15
246	24-Dehydrocholesterol reductase	ENSBTAP0000006153	2,15
247	Probable E3 ubiguitin-protein ligase HERC4	ENSBTAP00000018639	2,14
248	CD151	ENSBTAP00000051660	2,14
249	Mitochondrial ribosomal protein S30	ENSBTAP0000000091	2,14
250	CDP-diacylglycerol-inositol 3-phosphatidyltransferase	ENSBTAP00000010454	2,14
251	Coatomer protein complex, subunit epsilon	ENSBTAP0000001071	2,12
252	Mitochondrial pyruvate carrier 2	ENSBTAP00000027927	2,12
253	NADH dehvdrogenase subunit 2	ENSBTAP00000053160	2.11
254	Cathepsin W	ENSBTAP00000027681	2.11
255	Defender against cell death 1	ENSBTAP00000025397	2.10
256	Small nuclear ribonucleoprotein D1 polypeptide	ENSBTAP00000010912	2.10
257	Succinate dehydrogenase complex, subunit C, integral	ENSBTAP00000021075	2,10
258	DENN domain-containing protein 3	ENSBTAP00000008069	2.10
259	Structural maintenance of chromosomes 4	ENSBTAP0000007705	2.08
260	Diaphanous related formin 3	ENSBTAP00000053608	2.08
261	Protein typosine phosphatase, receptor type, F	ENSBTAP0000003163	2.08
262	Pyrroline-5-carboxylate reductase 1	ENSBTAP00000000046	2,07

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
263	Adenosine monophosphate deaminase 3	ENSBTAP00000021018	2,06
264	Ribosomal protein L28	ENSBTAP00000031700	2,06
265	ADP-ribosylation factor 8B	ENSBTAP00000017150	2,05
266	Fragile X mental retardation syndrome related protein 1	ENSBTAP00000016666	2,05
267	Ovarian tumor suppressor candidate 2	ENSBTAP00000012341	2,05
268	Cathepsin A	ENSBTAP00000039003	2,05
269	Transmembrane protein 173	ENSBTAP0000002962	2,04
270	Arf-GAP with GTPase, ANK repeat and PH domain- containing protein 2	ENSBTAP00000009418	2,04
271	DEAH (Asp-Glu-Ala-His) box polypeptide 36	ENSBTAP0000008082	2,03
272	Argininosuccinate synthase 1	ENSBTAP00000027649	2,02
273	NADH dehydrogenase, ubiquinone, 1 beta subcomplex,2	ENSBTAP00000029003	2,02
274	40S ribosomal protein S6	ENSBTAP00000019214	2,00
275	Acyl-CoA synthetase long-chain family member 6	ENSBTAP0000008826	2,00

Tab. 4.2.3: Massenspektrometrisch eindeutig identifizierte Proteine des Zytosols, die in Lymphozyten von Kontrolltieren (n = 2) nach ConA-Stimulation mindestens zweifach höher abundant waren als in Lymphozyten von Überträgertieren (n = 2).

A: Fortlaufende Nummer, B: Name des identifizierten Proteins, C: Identifikationsnummer des Proteins aus der Ensembl-Datenbank (http://www.ensembl.org/Bos_taurus/Info/Index), D: Ratio: Verhältnis der Expressionsänderung im Kontrolltier (nach ConA-Stimulation/konstitutiv) zur Expressionsänderung im BNP-Tier (nach ConA-Stimulation/konstitutiv).

4.2.4 Im Zytosol von BNP-Überträgerlymphozyten nach ConA-Stimulation stärker exprimierte Proteine

Von den insgesamt 2495 identifizierten Proteinen des Zytosols exprimierten die Lymphozyten von BNP-Überträgertieren nach ConA-Stimulation 457 Proteine stärker als die Lymphozyten von PregSure BVD geimpften Kontrolltieren (Tab. 4.2.4).

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
1	Pyridoxamine 5-phosphate oxidase	ENSBTAP00000016263	609,24
2	LSM6	ENSBTAP00000018681	62,30
3	Peptidylprolyl isomerase B	ENSBTAP00000022378	46,96
4	NADH dehydrogenase 1, alpha subcomplex 8	ENSBTAP00000005628	42,33
5	Cytochrome C, somatic	ENSBTAP0000007918	38,88
6	NADH dehydrogenase 1 beta subcomplex, 10	ENSBTAP00000012542	37,88
7	Proline synthase co-transcribed bacterial protein	ENSBTAP00000039600	37,04
8	Putative deoxyribonuclease TATDN1	ENSBTAP00000044772	29,67

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
9	Methionine adenosyltransferase 2 subunit beta	ENSBTAP00000016399	29,20
10	Actin related protein 2/3 complex, subunit 5	ENSBTAP0000020318	24,46
11	Nitrilase 1	ENSBTAP00000026843	22,17
12	Sterol carrier protein 2	ENSBTAP0000004879	19,86
13	Dihydropteridine reductase	ENSBTAP00000049659	19,52
14	SPRY domain containing 4	ENSBTAP00000012225	18,94
15	Haloacid dehalogenase hydrolase domain containing 3	ENSBTAP0000000314	18,62
16	Thioredoxin reductase 2, mitochondrial	ENSBTAP00000053158	18,42
17	CDC5 cell division cycle 5	ENSBTAP00000026654	18,14
18	Dihydrofolate reductase	ENSBTAP00000010103	17,68
19	Transmembrane protein 151B	ENSBTAP00000043740	17,55
20	Adenylate kinase 2	ENSBTAP00000023406	17,21
21	Thioredoxin domain containing 5	ENSBTAP00000025617	16,80
22	Fibrinogen beta chain	ENSBTAP00000029826	16,74
23	Family with sequence similarity 50, member A	ENSBTAP00000030166	16,52
24	Ibrinogen alpha chain	ENSBTAP0000002145	15,67
25	N-Acetylglucosamine-6-phosphate deacetylase	ENSBTAP0000001355	15,42
26	Protein disulfide-isomerase A3	ENSBTAP00000022854	14,65
27	Elav family member 2	ENSBTAP00000011768	14,13
28	3-Hvdroxvisobutvrate dehvdrogenase, mitochondrial	ENSBTAP0000001374	13.72
29	Coiled-coil domain-containing protein 25	ENSBTAP0000008601	13,22
30	AMP phosphotransferase AK3, mitochondrial	ENSBTAP00000022789	12,31
31	Fibrinogen gamma-B chain	ENSBTAP0000008877	12,31
32	Coproporphyrinogen oxidase	ENSBTAP0000005398	11,91
33	NADH dehydrogenase ,ubiquinone, flavoprotein 2	ENSBTAP00000052906	11,65
34	Peptidyl-prolyl cis-trans isomerase A	ENSBTAP00000015924	11,04
35	Phosphatidylethanolamine-binding protein 1	ENSBTAP00000024107	10,97
36	Glyoxalase domain containing 4	ENSBTAP00000025501	10,93
37	Flap structure-specific endonuclease 1	ENSBTAP0000000071	10,79
38	BAH domain and coiled-coil containing 1	ENSBTAP00000022317	10,73
39	Non metastatic cells 1	ENSBTAP0000006106	10,01
40	S100 calcium binding protein A13	ENSBTAP00000028499	9,75
41	Macrophage migration inhibitory factor	ENSBTAP0000009699	9,62
42	Thioredoxin domain-containing protein 5	ENSBTAP00000054935	9,51
43	Fumarate hydratase	ENSBTAP00000028902	9,40
44	Striatin	ENSBTAP00000024742	9,27
45	IgM precursor	ENSBTAP00000054179	8,89
46	Polyribonucleotide nucleotidyltransferase 1	ENSBTAP00000011729	8.80
47	Guanosine monophosphate reductase 2	ENSBTAP00000003519	8.63
48	ES1 mitochondrial	ENSBTAP0000009346	8 60
49	DAZ associated protein 1	ENSBTAP0000026274	8 55
50	Pentidoglycan recognition protein 1	ENSBTAP0000003414	8 47
51	Syndecan binding protein	ENSBTAP00000026526	8 45
52	Triosephosphate isomerase 1	ENSBTAP0000026358	8.38
53	NHP2 non-histone chromosome protein 2- 1	ENSBTAP0000008022	8.29
54	Aldolase A	ENSBTAP00000017177	8,18
55	Enolase 1	ENSBTAP00000017839	8,15

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
56	Enhancer of rudimentary	ENSBTAP00000023664	8,03
57	Myeloid-associated differentiation marker	ENSBTAP00000044328	7,98
58	PYD and CARD domain containing	ENSBTAP00000027359	7,92
59	Isocitrate dehydrogenase 3 (NAD ⁺) alpha	ENSBTAP0000008177	7,87
60	Ubiquinol-cytochrome c reductase	ENSBTAP00000054196	7,84
61	Budding uninhibited by benzimidazoles 3	ENSBTAP00000051164	7,75
62	Glutathione synthetase	ENSBTAP0000004559	7,74
63	GAR1 ribonucleoprotein	ENSBTAP0000000992	7,42
64	Osteoclast stimulating factor 1	ENSBTAP0000003560	7,41
65	Lysozyme	ENSBTAP00000038081	7,40
66	Ubiquilin 1	ENSBTAP00000019747	7,35
67	RNA binding motif protein 8A	ENSBTAP00000011016	7,21
68	Succinate dehydrogenase complex, subunit B	ENSBTAP00000010949	7,20
69	Creatine kinase, brain	ENSBTAP00000047181	7,19
70	Ubiquitin fusion degradation 1	ENSBTAP00000047901	7,08
71	Adenine phosphoribosyltransferase	ENSBTAP0000000841	7,03
72	N-acetylneuraminic acid synthase	ENSBTAP00000025318	7,02
73	Profilin 1	ENSBTAP0000006465	6,99
74	Macrophage-capping protein	ENSBTAP0000007150	6,94
75	Hwachman Bodian Diamond syndrome	ENSBTAP00000005296	6,94
76	Zinc finger protein 367	ENSBTAP0000008649	6,88
77	Ubiquitin-conjugating enzyme E2 variant 2	ENSBTAP00000031532	6,85
78	Lectin, galactoside-binding, soluble, 3	ENSBTAP00000041298	6,72
79	Methionine sulfoxide reductase A	ENSBTAP00000028825	6,69
80	A kinase (PRKA) anchor protein 12	ENSBTAP00000053994	6,58
81	Prolyl-tRNA synthetase associated domain-containing protein 1	ENSBTAP00000023208	6,53
82	Endoplasmic reticulum resident protein 29	ENSBTAP0000008754	6,51
83	Ubiquitin-conjugating enzyme E2 N	ENSBTAP00000052296	6,51
84	Aldo-keto reductase family 1, member B1	ENSBTAP00000013082	6,45
85	C4b-binding protein alpha chain	ENSBTAP00000013024	6,40
86	Cat eye syndrome chromosome region, candidate 2	ENSBTAP00000012801	6,33
87	Protein tyrosine phosphatase, receptor type, f polypeptide, alpha 4	ENSBTAP00000003689	6,33
88	Proteasome subunit alpha type-6	ENSBTAP00000012773	6,26
89	Peptidyl-prolyl cis-trans isomerase D	ENSBTAP00000022180	6,23
90	Inosine-5'-monophosphate dehydrogenase 1	ENSBTAP0000000374	6,23
91	Non-metastatic cells 2	ENSBTAP00000041066	6,21
92	Eukaryotic translation initiation factor 3 subunit I	ENSBTAP00000019134	6,19
93	Succinyl-CoA ligase, ADP/GDP-forming, subunit alpha, mitochondrial	ENSBTAP00000007982	6,07
94	Cytochrome b-c1 complex subunit 7	ENSBTAP0000001993	5,98
95	Ribosomal protein S19	ENSBTAP00000015875	5,98
96	Selenophosphate synthetase 1	ENSBTAP00000011613	5,93
97	MRE11 A	ENSBTAP00000011748	5,91
98	Aldolase C, fructose-bisphosphate	ENSBTAP00000017416	5,85
99	Toll-receptor 7	ENSBTAP00000029890	5,79
100	Serine/arginine-rich splicing factor 1	ENSBTAP00000046374	5,76

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
101	Splicing factor 3b, subunit 5	ENSBTAP00000012920	5,63
102	GLI pathogenesis-related 2	ENSBTAP0000000086	5,62
103	Heme binding protein 1	ENSBTAP00000007711	5,59
104	Far upstream element binding protein 1	ENSBTAP00000011751	5,57
105	Coronin, actin binding protein, 1B	ENSBTAP00000029960	5,55
106	Inosine-5'-monophosphate dehydrogenase 2	ENSBTAP00000025179	5,52
107	Regulator of G-protein signaling 10	ENSBTAP0000003425	5,51
108	Calcyclin binding protein	ENSBTAP0000001464	5,49
109	Probable ATP-dependent RNA helicase DDX17	ENSBTAP00000037506	5,48
110	Heat shock protein 1A	ENSBTAP00000017500	5,45
111	Fatty acid binding protein 3, muscle and heart	ENSBTAP00000022375	5,42
112	3-Oxoacid CoA transferase 1	ENSBTAP00000044368	5,41
113	Fascin 1	ENSBTAP0000004145	5,37
114	S-methyl-5'-thioadenosine phosphorylase	ENSBTAP00000045533	5,37
115	Rho guanine nucleotide exchange factor	ENSBTAP00000027619	5,34
116	Peptidyl-prolyl cis-trans isomerase FKBP1A	ENSBTAP00000010928	5,34
117	Activating transcription factor 7	ENSBTAP0000007704	5,32
118	Haloacid dehalogenase hydrolase domain containing protein 2	ENSBTAP00000023026	5,32
119	Ferrochelatase	ENSBTAP0000008384	5,21
120	PRP4 pre-mRNA processing factor 4	ENSBTAP0000006004	5,15
121	ATP-dependent (S)-NAD(P)H-hydrate dehydratase	ENSBTAP00000015238	5,13
122	3-Hydroxyacyl-CoA dehydrogenase type-2	ENSBTAP00000023642	5,12
123	Aconitase 2, mitochondrial	ENSBTAP0000008431	5,11
124	Voltage-dependent anion channel 1	ENSBTAP00000017430	5,10
125	Peroxiredoxin 4	ENSBTAP0000008107	5,09
126	Serine/threonine-protein kinase PAK 2	ENSBTAP00000054939	5,08
127	Dynein intermediate chain 1, axonemal	ENSBTAP00000011254	5,07
128	FRA10AC1	ENSBTAP00000000570	5,06
129	Dehydrogenase/reductase member 4	ENSBTAP00000023493	5,00
130	Hydroxyacyl-Coenzyme A dehydrogenase	ENSBTAP0000002654	4,99
131	COMM domain containing 8	ENSBTAP00000039416	4,95
132	Translin-associated factor X	ENSBTAP00000054428	4,90
133	Haloacid dehalogenase-hydrolase domain containing 2	ENSBTAP00000056036	4,87
134	Exosome component 3	ENSBTAP00000025185	4,86
135	Protein phosphatase, Mg ₂ ⁺ /Mn ₂ ⁺ dependent, 1A	ENSBTAP00000024128	4,83
136	Protein furry	ENSBTAP0000000158	4,82
137	Ts translation elongation factor, mitochondrial	ENSBTAP00000022496	4,79
138	Solute carrier family 44, choline transporter, member 1	ENSBTAP0000009435	4,78
139	TIA1 cytotoxic granule-associated RNA binding protein 1	ENSBTAP0000005331	4,78
140	Sorcin	ENSBTAP00000052219	4,76
141	Growth factor receptor-bound protein 2	ENSBTAP0000006216	4,75
142	Fission 1, mitochondrial outer membrane	ENSBTAP00000010389	4,72
143	Hydroxysteroid-17-beta-dehydrogenase 4	ENSBTAP0000009173	4,71
144	Rab9 effector protein with kelch motifs	ENSBTAP00000020093	4,68
145	Glyoxylate reductase/hydroxypyruvate reductase	ENSBTAP00000025697	4,68
146	Gelsolin	ENSBTAP00000051735	4,68

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
147	Pyrophosphatase, inorganic, 2	ENSBTAP0000003165	4,67
148	Spermidine synthase	ENSBTAP0000006978	4,66
149	Activating transcription factor 2	ENSBTAP0000002963	4,65
150	Megakaryoblastic leukemia, translocation, 1	ENSBTAP0000003407	4,60
151	N-Alpha-acetyltransferase 10	ENSBTAP00000055621	4,56
152	Mitochondrial-processing peptidase subunit beta	ENSBTAP00000004922	4,54
153	Palmitoyl-protein thioesterase 1	ENSBTAP00000017780	4,53
154	Platelet activating factor acetylhydrolase IB, subunit gamma	ENSBTAP00000026366	4,53
155	Heterogeneous nuclear ribonucleoprotein L	ENSBTAP00000031993	4,53
156	Selenocysteine lyase	ENSBTAP00000013719	4,52
157	Heat shock protein 8	ENSBTAP00000017497	4,48
158	Malate dehydrogenase, mitochondrial	ENSBTAP00000012454	4,42
159	NADH dehydrogenase, ubiquinone, 1 beta subcomplex subunit 7	ENSBTAP00000016768	4,39
160	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial yruvate dehydrogenase, lipoamide, alpha 1	ENSBTAP00000052439	4,37
161	Ubiquitin-conjugating enzyme E2I	ENSBTAP00000047838	4,35
162	Ras suppressor protein 1	ENSBTAP00000039209	4,29
163	Regulator of chromosome condensation 2	ENSBTAP00000011314	4,29
164	YTH domain family, member 2	ENSBTAP00000020940	4,28
165	Annexin A3	ENSBTAP00000042843	4,27
166	HD domain-containing protein 2	ENSBTAP00000004334	4,27
167	ELAV 1	ENSB1AP00000000805	4,26
168	COP9 subunit 8	ENSB1AP00000007696	4,24
169	Kelch repeat and BTB domain-containing protein 7	ENSBTAP00000055731	4,21
170	Casein kinase II subunit beta	ENSBTAP00000042926	4,18
171	Signal recognition particle receptor subunit alpha	ENSBTAP00000018762	4,18
172	Glutamate dehydrogenase 1, mitochondrial	ENSBTAP00000009923	4,18
173	Major histocompatibility complex, class II, DO alpha	ENSBTAP00000008504	4,18
174	Solute carrier family 9, subfamily A	ENSBTAP00000041649	4,17
175	Nicastrin	ENSB1AP00000005677	4,16
176	Pleckstrin	ENSB1AP00000012724	4,16
1//	Diphosphomevalonate decarboxylase	ENSBIAP00000015994	4,11
1/8	Alanyl-tRNA synthetase domain containing 1	ENSB1AP00000030466	4,11
179	Chromosome 5 open reading frame, human C22orf28	ENSBIAP00000014699	4,09
180	Glutaredoxin	ENSBTAP00000001575	4,06
181	Platelet-derived growth factor receptor, beta polypeptide	ENSBTAP00000053664	4,05
182	LSM2	ENSBTAP00000007405	4,02
183	Actin related protein 2/3 complex subunit 5	ENSBTAP00000054193	4,00
184	Lysophospholipase II	ENSBTAP00000049070	3,96
185	Pro-cathepsin H	ENSBTAP00000014593	3,94
186	S-Formylglutathione hydrolase	ENSBTAP00000004431	3,92
187	Chromosome 25 open reading frame, human C16orf13	ENSBIAP0000003544	3,90
188	Proteasome subunit alpha type 2	ENSBIAP0000001309	3,90
189	Replication protein A2		3,89
190	DINAJ, SUDIAMIIY A, MEMBER 1	ENSBIAP0000021637	3,87

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
191	Ubiquitin-conjugating enzyme E2Q family member 2	ENSBTAP00000005257	3,86
192	Cytochrome c oxidase subunit VIb polypeptide 1	ENSBTAP0000007369	3,86
193	Acetyl-CoA acyltransferase 2	ENSBTAP0000003716	3,83
194	Methylenetetrahydrofolate dehydrogenase	ENSBTAP0000006419	3,82
195	Septin 9	ENSBTAP0000003415	3,80
196	Acetyl-CoA acyltransferase 1	ENSBTAP00000024335	3,79
197	RAB3 GTPase activating protein subunit 2	ENSBTAP00000045024	3,78
198	Leucine aminopeptidase 3	ENSBTAP0000007860	3,76
199	Beta-2-microglobulin	ENSBTAP00000016359	3,75
200	Phosphoglycerate kinase 1	ENSBTAP0000001187	3,72
201	Enoyl CoA hydratase, short chain, 1, mitochondrial	ENSBTAP00000042386	3,72
202	Minichromosome maintenance complex component 4	ENSBTAP00000052820	3,71
203	Eptidylprolyl isomerase 1	ENSBTAP0000003071	3,67
204	LSM4	ENSBTAP00000011312	3.64
205	Proteasome subunit alpha type-4	ENSBTAP00000019203	3.62
206	NADH dehvdrogenase, ubiguinone, 1 beta subcomplex, 9	ENSBTAP00000027191	3.61
207	ATP synthase subunit Q mitochondrial	ENSBTAP0000024326	3.57
208	Aldehyde dehydrogenase 5 family member A1	ENSBTAP00000029203	3.57
200	5-Aminoimidazole-4-carboxamide ribonucleotide		0,07
209	formyltransferase/IMP cyclohydrolase	ENSB1AP00000025662	3,55
210	Exosome component 2	ENSBTAP00000053924	3,55
211	DEAD (Asp-Glu-Ala-Asp) box polypeptide 49	ENSBTAP00000047676	3,51
212	Phosphomannomutase 2	ENSBTAP0000001888	3,50
213	MEMO1	ENSBTAP00000010168	3,50
214	Poly A binding protein, cytoplasmic 1	ENSBTAP00000056644	3,49
215	Guanine nucleotide binding protein, beta polypeptide 2	ENSBTAP0000008508	3,48
216	Ubiguitin-conjugating enzyme E2L 3	ENSBTAP00000017332	3,48
217	DEAD (Asp-Glu-Ala-Asp) box polypeptide 23	ENSBTAP00000029071	3,43
218	Tumor protein, translationally-controlled 1	ENSBTAP00000013402	3.39
219	Guanine nucleotide binding protein	ENSBTAP0000000259	3,38
220	Endoplasmic reticulum protein 44	ENSBTAP00000012930	3,37
221	Sterile alpha motif domain containing 7	ENSBTAP00000024261	3.37
222	DAB2 interacting protein	ENSBTAP00000032751	3.36
223	DEAD (Asp-Glu-Ala-Asp) box polypeptide 5	ENSBTAP00000024514	3.36
224	Mitochondrial import inner membrane translocase subunit Tim17 B	ENSBTAP00000024618	3,33
225	Synaptotagmin binding, cytoplasmic RNA interacting protein	ENSBTAP0000008774	3,31
226	E3 ubiquitin-protein ligase TRIM71	ENSBTAP00000030842	3,29
227	Splicing factor 3b, subunit 4	ENSBTAP00000016577	3,29
228	Proteasome subunit alpha type 1	ENSBTAP0000008621	3,29
229	Protein tyrosine phosphatase, non-receptor type 7	ENSBTAP0000003923	3,28
230	Actin 6A	ENSBTAP00000037066	3,25
231	Ankyrin repeat and SOCS box containing 4	ENSBTAP00000024202	3,25
232	Chromosome 6 open reading frame 25	ENSBTAP00000017984	3,24
233	Obg-ATPase 1	ENSBTAP00000009160	3,23
234	Adhesion regulating molecule 1	ENSBTAP0000003974	3,23
235	Lymphocyte cytosolic protein 2	ENSBTAP00000012345	3,23

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
236	Stress 70 protein, mitochondrial	ENSBTAP00000015172	3,22
237	RNA binding motif protein 14	ENSBTAP0000001619	3,16
238	ATPase, H ⁺ transporting, lysosomal	ENSBTAP0000037526	3,15
239	Prostaglandin reductase 2	ENSBTAP0000004878	3,15
240	GrpE 1, mitochondrial	ENSBTAP00000013431	3,13
241	LIM and senescent cell antigen- domains 1	ENSBTAP00000014566	3,13
242	Cathepsin D	ENSBTAP00000010022	3,13
243	Acidic,leucine-rich, nuclear phosphoprotein 32 family, member E	ENSBTAP00000022237	3,12
244	Pyrophosphatase 1	ENSBTAP00000010311	3,12
245	Biliverdin reductase B	ENSBTAP00000013889	3,12
246	Ribosome production factor 2	ENSBTAP00000022060	3,09
247	Flotillin 1	ENSBTAP00000013135	3,09
248	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex	ENSBTAP0000008473	3,09
249	Malate dehydrogenase 1	ENSBTAP00000025691	3,08
250	Phosphoglycerate mutase 1	ENSBTAP0000032864	3,07
251	Ribonucleoprotein, PTB-binding 1	ENSBTAP00000020887	3,07
252	NIF3 NGG1 interacting factor 3, 1	ENSBTAP00000024331	3,03
253	GRB2-related adaptor protein 2	ENSBTAP0000020161	3,01
254	Ribonuclease T2	ENSBTAP00000019270	3,01
255	Inverted formin 2	ENSBTAP00000012349	3,01
256	HEAT repeat containing 4	ENSBTAP0000003681	3.00
257	Guanine monphosphate synthase	ENSBTAP00000017301	2.99
258	Peroxiredoxin 3	ENSBTAP00000011505	2,99
259	Protein phosphatase, Mg2 ⁺ /Mn2 ⁺ dependent, 1B	ENSBTAP00000043518	2,99
260	ATP-binding cassette, sub-family C, member 4	ENSBTAP00000035357	2,99
261	Succinate-CoA ligase, GDP-forming, beta subunit	ENSBTAP00000012551	2,99
262	UDP-glucose pyrophosphorylase 2	ENSBTAP00000042228	2.98
263	Small nuclear ribonucleoprotein D2	ENSBTAP00000016153	2.98
264	NmrA-family domain containing 1	ENSBTAP00000013208	2.98
265	Glutathione S-transferase pi 1	ENSBTAP00000004615	2,97
266	Integrin, alpha 7	ENSBTAP00000017145	2,94
267	Hemoglobin, alpha 2	ENSBTAP00000022034	2,94
268	Annexin A11	ENSBTAP00000027893	2,94
269	Sorting nexin 6	ENSBTAP00000017106	2,92
270	DNA replication licensing factor MCM4	ENSBTAP00000049149	2,92
271	TAB DNA binding protein	ENSBTAP00000054152	2.92
272	WD repeat domain 82	ENSBTAP00000043205	2.91
273	Histidine triad nucleotide binding protein 2	ENSBTAP00000015208	2.90
274	C terminal binding protein 1	ENSBTAP0000011166	2 90
275	Platelet-activating factor acetylhydrolase 1b, catalytic	ENSBTAP0000007398	2,89
276	Vacuolar protein sorting 29	ENSBTAP0000011076	2 88
277	Suppression of tumorigenicity 13	ENSBTAP00000011070	2.87
278	Transmembrane protein 192	ENSBTAP00000046602	2.87
279	Heterogeneous nuclear ribonucleoprotein A2/R1	ENSBTAP0000007527	2.86
280	G protein-coupled receptor 158	ENSBTAP00000032818	2.86

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
281	Cathepsin Z	ENSBTAP00000025007	2,85
282	Lamin-B1	ENSBTAP00000052689	2,84
283	UPF0696 protein C11orf68	ENSBTAP0000008137	2,83
284	Cathepsin C	ENSBTAP00000014735	2,83
285	DNAJ, subfamily A, member 4	ENSBTAP00000021199	2,83
286	Probable ATP-dependent RNA helicase DDX46	ENSBTAP00000028682	2,81
287	Heterogeneous nuclear ribonucleoprotein D	ENSBTAP00000018540	2,80
288	S100 calcium binding protein A10	ENSBTAP00000020150	2,80
289	Baculoviral IAP repeat-containing protein 6	ENSBTAP00000053672	2,78
290	DNAJ subfamily A member 2	ENSBTAP00000004890	2,78
291	Heterogeneous nuclear ribonucleoprotein H1	ENSBTAP00000012357	2,76
292	CTP synthase	ENSBTAP0000002131	2,76
293	Vacuolar protein sorting 4 B	ENSBTAP00000013862	2,75
294	Fumarylacetoacetate hydrolase domain containing 2A	ENSBTAP00000015354	2,74
295	Chloride intracellular channel 1	ENSBTAP00000017995	2,74
296	Heterogeneous nuclear ribonucleoprotein R	ENSBTAP00000022054	2,72
297	Electron-transfer-flavoprotein, alpha polypeptide	ENSBTAP00000016570	2,72
298	Valosin containing protein	ENSBTAP00000019970	2,71
299	Proteasome subunit, beta type, 4	ENSBTAP00000028364	2,71
300	RuvB helicase	ENSBTAP00000027964	2,70
301	Ena/VASP protein	ENSBTAP00000012242	2,70
302	Protein-L-isoaspartate O-methyltransferase	ENSBTAP00000013464	2,65
303	Acetyl-CoA acetyltransferase 1	ENSBTAP00000017122	2,63
304	Basic transcription factor 3	ENSBTAP00000036691	2,61
305	Peroxiredoxin 5	ENSBTAP00000011403	2,60
306	Retinoblastoma binding protein 4	ENSBTAP00000007758	2,59
307	Cystic fibrosis transmembrane conductance regulator	ENSBTAP00000049907	2,58
308	Fas (TNFRSF6) associated via death domain	ENSBTAP00000024322	2,57
309	Prefoldin subunit 5	ENSBTAP00000011762	2,56
310	Cytochrome c oxidase subunit VIa polypeptide 1	ENSBTAP00000016993	2,55
311	Small nuclear ribonucleoprotein polypeptide A	ENSBTAP00000018076	2,54
312	Coatomer protein complex, subunit gamma 2	ENSBTAP00000022911	2,54
313	Acyl-CoA dehydrogenase, C4 to C12 straight chain	ENSBTAP00000033383	2,52
314	3-hydroxymethyl-3-methylglutaryl-CoA lyase	ENSBTAP00000029103	2,52
315	BH3 interacting domain death agonist	ENSBTAP00000018590	2,52
316	Coronin 7	ENSBTAP00000012121	2,52
317	Leucine rich repeat containing 49	ENSBTAP00000014533	2,51
318	Thrombospondin 1	ENSBTAP0000002600	2,51
319	Chromodomain helicase DNA binding protein 8	ENSBTAP00000027215	2,51
320	RNA terminal phosphate cyclase domain 1	ENSBTAP0000008293	2,51
321	Peroxiredoxin 1	ENSBTAP00000004751	2,50
322	Aryl hydrocarbon receptor interacting protein	ENSBTAP00000013841	2,50
323	Unc 51 kinase 2	ENSBTAP00000029699	2,49
324	DNAJ, subfamily C, member 7	ENSBTAP0000003437	2,48
325	Heterogeneous nuclear ribonucleoprotein A1	ENSBTAP00000002033	2,48
326	Arginase 2	ENSBTAP00000002529	2,48
327	Interleukin 1, beta	ENSBTAP00000001745	2,48

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
328	Histone deacetylase 4	ENSBTAP00000023621	2,47
329	Hepatoma-derived growth factor	ENSBTAP0000008609	2,47
330	Perforin 1	ENSBTAP0000001336	2,47
331	Glycerol kinase	ENSBTAP00000030898	2,46
332	Annexin A1	ENSBTAP00000021256	2,45
333	Von Hippel-Lindau-binding protein 1	ENSBTAP00000022946	2,45
334	Mps One Binder kinase activator 3	ENSBTAP00000025447	2,45
335	Heterogeneous nuclear ribonucleoprotein F	ENSBTAP00000011658	2,44
336	DNA polymerase zeta catalytic subunit	ENSBTAP00000053310	2,44
337	Transgelin 2	ENSBTAP0000002674	2,44
338	Isovaleryl-CoA dehydrogenase	ENSBTAP0000005782	2,41
339	Glia maturation factor, gamma	ENSBTAP0000007090	2,41
340	NADH dehydrogenase, ubiquinone, flavoprotein 1	ENSBTAP00000029026	2,40
341	Cytochrome b reductase 1	ENSBTAP00000010387	2,40
342	Interferon regulatory factor 4	ENSBTAP0000003812	2,40
343	Sjogren syndrome antigen B	ENSBTAP00000011484	2,39
344	Cystathionase	ENSBTAP00000019679	2,39
345	Dihydrolipoamide dehydrogenase	ENSBTAP00000027461	2,39
346	Dihydrolipoamide dehydrogenase	ENSBTAP00000033696	2,39
347	Glutaredoxin 3	ENSBTAP0000006613	2,39
348	Vitronectin	ENSBTAP00000021497	2,38
349	Scaffold attachment factor B1	ENSBTAP0000002344	2,38
350	Syntaxin 6	ENSBTAP00000027262	2,38
351	Ornithine aminotransferase	ENSBTAP00000009097	2,37
352	Retinoblastoma binding protein 7	ENSBTAP00000029915	2,36
353	Septin 1	ENSBTAP00000028271	2,36
354	RAD50	ENSBTAP00000014945	2,36
355	Aldehyde dehydrogenase 9 family, member A1	ENSBTAP00000033996	2,35
356	Peptidyl-tRNA hydrolase 2	ENSBTAP00000022212	2,35
357	Hydroxysteroid dehydrogenase 2	ENSBTAP00000041843	2,35
358	Kinase D interacting substrate	ENSBTAP00000053227	2,34
359	Interferon-induced protein 44	ENSBTAP00000045648	2,34
360	Pyruvate dehydrogenase, lipoamide, beta	ENSBTAP0000028958	2,34
361	RNA binding motif protein 12	ENSBTAP00000053427	2,34
362	Nuclear distribution gene C	ENSBTAP00000005789	2,33
363	Chromosome 8 open reading frame, human C9orf64	ENSBTAP0000008492	2,33
364	ATP-binding cassette protein C4	ENSBTAP00000036813	2,33
365	Ubiquinol cytochrome c reductase core protein I	ENSBTAP00000025422	2,33
366	DEAD (Asp-Glu-Ala-Asp) box helicase 42	ENSBTAP00000028046	2,33
367	Phosphoserine phosphatase	ENSBTAP00000017392	2,32
368	Signal transducer and activator of transcription 5B	ENSBTAP00000012497	2,32
369	Annexin A4	ENSBTAP00000001463	2,32
370	GTPase, IMAP family member 1	ENSBTAP00000051857	2,31
371	2,3-Bisphosphoglycerate mutase	ENSBTAP00000011713	2,30
372	Chaperonin containing TCP1, subunit 2 beta	ENSBTAP00000025496	2,30
373	Protein phosphatase 1, regulatory subunit 7	ENSBTAP00000001045	2,30
374	Ysophospholipase I	ENSBTAP0000005558	2,30

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
375	ADP-ribosylhydrolase 2	ENSBTAP00000028950	2,30
376	Cathepsin B	ENSBTAP0000036650	2,30
377	Actin related protein 2/3 complex, subunit 3	ENSBTAP0000007028	2,29
378	Vinculin	ENSBTAP00000053644	2,29
379	Persulfide dioxygenase ETHE1, mitochondrial	ENSBTAP0000005747	2,28
380	Glycosyltransferase 25 domain containing 1	ENSBTAP00000016841	2,27
381	Endophilin-B1	ENSBTAP00000041643	2,27
382	Elongation factor Tu, mitochondrial	ENSBTAP00000025586	2,27
383	Glycoprotein IX	ENSBTAP00000019525	2,27
384	Isocitrate dehydrogenase NAD subunit beta, mitochondrial	ENSBTAP00000025044	2,27
385	Ubiguitin-conjugating enzyme E2 K	ENSBTAP00000026871	2,26
386	Guanvlate-binding protein 4	ENSBTAP00000052290	2.25
387	Hydroxysteroid 17-beta dehydrogenase 12	ENSBTAP00000000096	2.24
388	Ubiguitin-conjugating enzyme E2 D2	ENSBTAP00000049292	2.23
389	ATPase family AAA domain containing 1	ENSBTAP0000001066	2 22
390	Ubiquitin carboxyl-terminal hydrolase 15	ENSBTAP00000037402	2 22
391	Proteasome subunit beta type 9	ENSBTAP00000011789	2 22
392	Proteasome subunit, alpha type, 5	ENSBTAP0000027507	2 21
393	Adenosine kinase	ENSBTAP0000014702	2 21
394	Stress induced phosphoprotein 1	ENSBTAP0000020809	2 21
395	O-Sialoglycoprotein endopentidase	ENSBTAP0000003557	2 21
396	Phosphoinositide-3-kinase regulatory subunit 1 alpha	ENSBTAP0000014594	2 21
397	Multidrug resistance-associated protein 4	ENSBTAP00000035359	2,21
398	Sorting and assembly machinery component 50	ENSBTAP00000055147	2,19
399	Lectin, galactoside-binding, soluble, 1	ENSBTAP00000020080	2,18
400	NOP2	ENSBTAP00000019607	2,18
401	SEC13	ENSBTAP00000023702	2,18
402	Annexin A7	ENSBTAP00000046882	2,18
403	Replication factor C, activator 1, 2	ENSBTAP00000024740	2,17
404	Thromboxane A synthase 1	ENSBTAP00000026934	2,17
405	6-Phosphogluconolactonase	ENSBTAP00000022314	2,17
406	Hemoglobin, beta	ENSBTAP00000043063	2,16
407	Dynein, axonemal, heavy chain 10	ENSBTAP00000029662	2,16
408	CD163	ENSBTAP00000026215	2,16
409	Tetraspanin 14	ENSBTAP0000005102	2,16
410	TRNA cytosine 34-C5 methyltransferase	ENSBTAP00000020559	2,16
411	SET nuclear oncogene	ENSBTAP00000027913	2,16
412	Aspartyl aminopeptidase	ENSBTAP00000028671	2,15
413	Proteasome subunit, beta type, 10	ENSBTAP00000024015	2,15
414	Glutathione S-transferase omega 1	ENSBTAP0000006245	2,14
415	Apoptosis-inducing factor, mitochondrion-associated, 1	ENSBTAP0000008987	2,14
416	Ribosomal protein L11	ENSBTAP00000027850	2,14
417	WNK2	ENSBTAP00000053530	2,14
418	Heterogeneous nuclear ribonucleoprotein H3	ENSBTAP00000019039	2,14
419	Serine/threonine kinase receptor associated protein	ENSBTAP00000018840	2,14
420	DEAD (Asp-Glu-Ala-Asp) box helicase 3, X	ENSBTAP00000047104	2,14

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
421	Dynamin 1	ENSBTAP00000037777	2,13
422	BCL2-associated transcription factor 1	ENSBTAP00000052174	2,13
423	Stomatin 2	ENSBTAP00000015136	2,13
424	Transducin beta 1 X-linked receptor 1	ENSBTAP00000029211	2,12
425	Apolipoprotein A I	ENSBTAP0000002914	2,12
426	Cyclin K	ENSBTAP00000024796	2,11
427	Trifunctional enzyme subunit beta, mitochondrial	ENSBTAP00000013310	2,11
428	Protoporphyrinogen oxidase	ENSBTAP00000053328	2,11
429	Aldo-keto reductase family 1, member A1	ENSBTAP0000000630	2,11
430	SIN3 transcription regulator family member A	ENSBTAP00000013167	2,10
431	S100 calcium binding protein A11	ENSBTAP00000020148	2,10
432	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1	ENSBTAP00000053253	2,09
433	Carbonic anhydrase II	ENSBTAP00000023581	2,09
434	PDS5 A	ENSBTAP00000023680	2,09
435	Eukaryotic translation initiation factor 2 alpha kinase 2	ENSBTAP00000011469	2,09
436	Protein phosphatase 2, regulatory subunit B, alpha	ENSBTAP00000038304	2,08
437	KIAA1429 ortholog	ENSBTAP0000004929	2,08
438	CKLF-MARVEL transmembrane domain containing 6	ENSBTAP00000026019	2,07
439	Parvin, beta	ENSBTAP00000029307	2,06
440	Small glutamine-rich tetratricopeptide repeat-containing protein alpha	ENSBTAP00000020081	2,06
441	ATP-dependent RNA helicase DDX1	ENSBTAP00000013075	2,05
442	Serine/threonine kinase 4	ENSBTAP0000004221	2,05
443	Leucine rich repeat containing 47	ENSBTAP0000006219	2,05
444	Peroxiredoxin 6	ENSBTAP0000006383	2,05
445	ATP synthase subunit alpha, mitochondrial	ENSBTAP0000003259	2,04
446	Late endosomal/lysosomal adaptor, MAPK and mTOR activator 1	ENSBTAP00000003907	2,04
447	Caspase 6	ENSBTAP00000016642	2,04
448	Platelet-activating factor acetylhydrolase IB subunit alpha	ENSBTAP00000052656	2,03
449	ERO1L alpha	ENSBTAP00000020878	2,03
450	Wiskott-Aldrich syndrome	ENSBTAP00000056444	2,02
451	DNA ligase	ENSBTAP00000031866	2,02
452	Coiled-coil domain containing 93	ENSBTAP00000013489	2,02
453	Acidic leucine-rich nuclear phosphoprotein 32 family member B	ENSBTAP00000028486	2,02
454	Protein deglycase DJ-1	ENSBTAP00000027339	2,01
455	Splicing factor 3A subunit 1	ENSBTAP0000004398	2,00
456	Proteasome subunit alpha type-3	ENSBTAP0000003636	2,00
457	Calreticulin	ENSBTAP00000020111	2,00

Tab. 4.2.4: Massenspektrometrisch eindeutig identifizierte Proteine des Zytosols, die in den Lymphozyten von BNP-Überträgertieren (n = 2) nach ConA-Stimulation mindestens zweifach höher abundant waren als in den Lymphozyten von Kontrolltieren (n = 2).

A: Fortlaufende Nummer, B: Name des identifizierten Proteins, C: Identifikationsnummer des Proteins aus der Ensembl-Datenbank (http://www.ensembl.org/Bos_taurus/Info/Index), D: Ratio: Verhältnis der Expressionsänderung im BNP-Tier (nach ConA-Stimulation/konstitutiv) zur Expressionsänderung im Kontrolltier (nach ConA-Stimulation/konstitutiv).

4.2.5 Im Nukleus von Kontrolllymphozyten nach ConA-Stimulation stärker exprimierte Proteine

Aus dem Zellkompartiment des Nukleus von Kontroll- und Überträgerzellen wurden insgesamt 2320 Proteine eindeutig identifiziert. Die Lymphozyten von PregSure BVD geimpften Kontrolltieren exprimierten 301 Proteine stärker als die Lymphozyten von BNP-Überträgertieren (Tab. 4.2.5).

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
1	Histone H2A	ENSBTAP00000043357	Infinity
2	Legumain	ENSBTAP00000053922	Infinity
3	Creatine kinase B-type	ENSBTAP00000047181	1405,77
4	H3 histone, family 3A	ENSBTAP00000034086	1282,36
5	SAP domain containing ribonucleoprotein	ENSBTAP00000027539	766,01
6	Vacuolar protein sorting 54	ENSBTAP0000000123	568,14
7	Actin related protein M1	ENSBTAP00000017467	545,87
8	Adenylate kinase 7	ENSBTAP00000053188	169,00
9	Histone cluster 1, H1e	ENSBTAP00000044281	167,49
10	Histone H3.2	ENSBTAP00000050291	144,83
11	Stimulated by retinoic acid gene 6 protein	ENSBTAP00000051075	93,67
12	Cathepsin G	ENSBTAP00000052108	92,81
13	Myosin VIIA	ENSBTAP00000005191	77,25
14	Ubiquitin associated protein 2	ENSBTAP0000005611	66,03
15	Syntaxin 10	ENSBTAP00000021753	64,04
16	Chromosome 17 open reading frame 66	ENSBTAP0000003698	44,71
17	Cadherin 8, type 2 precursor	ENSBTAP00000050062	39,56
18	RAN, member RAS oncogene family	ENSBTAP00000055044	33,54
19	Non-SMC condensin I complex, subunit H	ENSBTAP00000017174	26,10
20	GDNF family receptor alpha 2	ENSBTAP00000027545	24,37
21	Endoglin	ENSBTAP00000011846	21,99
22	Interferon stimulated exonuclease gene	ENSBTAP00000019639	18,11
23	Phosphodiesterase 2A	ENSBTAP00000011077	15,59
24	COP9 signalosome complex subunit 4	ENSBTAP0000009128	14,77
25	Eosinophil cationic protein precursor	ENSBTAP00000036092	13,85
26	Carbonic anhydrase 4	ENSBTAP00000023909	13,46
27	Mesoderm development candidate 2	ENSBTAP0000002045	11,52
28	Ubiquitin protein fubi and ribosomal protein S30	ENSBTAP00000027728	11,13
29	Complement component 3	ENSBTAP00000022979	11,07

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
30	Triggering receptor expressed on myeloid cells- 1	ENSBTAP0000008500	10,97
31	7-Dehydrocholesterol reductase	ENSBTAP00000021892	10,73
32	POU class 2 homeobox 1	ENSBTAP0000034020	10,61
33	Zinc finger protein 546	ENSBTAP00000047801	10,29
34	CAMP responsive element binding protein 1	ENSBTAP00000007201	9,41
35	IK protein	ENSBTAP00000020011	9,21
36	Ferritin, heavy polypeptide 1	ENSBTAP00000014853	9,20
37	RNA binding motif protein 17	ENSBTAP00000029268	9,07
38	Nucleosome assembly protein 1-4	ENSBTAP00000029889	9,03
39	Histone H2B	ENSBTAP00000048179	9,00
40	Guanylate cyclase 2F	ENSBTAP00000036727	8,34
41	GTPase activating protein binding protein 2	ENSBTAP00000018663	8,27
42	Class II, major histocompatibility complex, transactivator	ENSBTAP00000027518	8,20
43	Casein kappa	ENSBTAP00000028685	8,20
44	CD302	ENSBTAP00000054128	8,07
45	Calsyntenin 2	ENSBTAP00000011480	7,98
46	Calcium/calmodulin-dependent protein kinase II delta	ENSBTAP00000019230	7,69
47	Exportin 5	ENSBTAP00000025250	7,63
48	Taxilin alpha	ENSBTAP00000017100	7,51
49	Zinc finger and BTB domain containing 12	ENSBTAP00000042822	7,50
50	Microtubule-associated protein 4	ENSBTAP00000021045	7,43
51	Tetratricopeptide repeat domain 12	ENSBTAP00000013201	7,00
52	Transcription factor A, mitochondrial	ENSBTAP00000052192	6,99
53	S100 calcium binding protein A12	ENSBTAP0000034009	6,99
54	Family with sequence similarity 126, member A	ENSBTAP0000006008	6,92
55	Transmembrane protease, serine 11A	ENSBTAP00000027052	6,85
56	SNW domain containing 1	ENSBTAP00000010697	6,78
57	D4, zinc and double PHD fingers family 2	ENSBTAP00000030064	6,75
58	Olfactory receptor 5AN1	ENSBTAP00000048957	6,61
59	V erb-b2 erythroblastic leukemia viral oncogene 3	ENSBTAP00000013790	6,61
60	High density lipoprotein binding protein	ENSBTAP0000005656	6,47
61	SERPINE1 mRNA binding protein 1	ENSBTAP00000017211	6,35
62	60S ribosomal protein L12	ENSBTAP0000009152	6,28
63	Heat shock protein 1	ENSBTAP0000006600	6,17
64	SH3-domain kinase binding protein 1	ENSBTAP0000004853	6,11
65	Transcription factor 19	ENSBTAP00000019199	6,11
66	Succinate-CoA ligase, alpha subunit	ENSBTAP0000007982	6,05
67	V ral simian leukemia viral oncogene B	ENSBTAP00000026694	5,97
68	Histone H2B type 1-N	ENSBTAP00000051372	5,74
69	Small nuclear ribonucleoprotein polypeptide F	ENSBTAP00000021643	5,67
70	Leucine-rich pentatricopeptide repeat containing	ENSBTAP00000021773	5,60
71	Asparaginase 1	ENSBTAP0000009073	5,55
72	Normal mucosa of esophagus specific gene 1 protein	ENSBTAP00000005987	5,35
73	Apoptosis-associated speck protein containing a CARD	ENSBTAP00000027359	5,23
74	Splicing factor 1	ENSBTAP0000001376	5,16
75	Zinc finger protein 384	ENSBTAP00000022702	5,10
76	Glycosyltransferase 25 domain containing 1	ENSBTAP00000016841	5,10
77	KRI1	ENSBTAP00000014206	5,01

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
78	Poly A binding protein, nuclear 1	ENSBTAP00000021887	4,83
79	Nuclear transcription factor Y, alpha	ENSBTAP00000013080	4,79
80	RNA binding motif protein 8A	ENSBTAP00000011016	4,77
81	GRB2 related adaptor protein 2	ENSBTAP00000020161	4,75
82	Zinc finger, CCHC domain containing 8	ENSBTAP0000008035	4,74
83	Charged multivesicular body protein 2A	ENSBTAP00000018429	4,72
84	YY1 transcription factor	ENSBTAP00000027744	4,71
85	Solute carrier family 9	ENSBTAP00000031479	4,68
86	Peptidylprolyl isomerase, cyclophilin, 4	ENSBTAP00000022582	4,63
87	Sphingomyelin phosphodiesterase 4, neutral membrane	ENSBTAP00000029373	4,61
88	High mobility group box 3	ENSBTAP00000049034	4,56
89	Vasodilator-stimulated phosphoprotein	ENSBTAP00000026119	4,55
90	Eukaryotic translation initiation factor 3, subunit G	ENSBTAP0000003545	4,53
91	Polymerase II polypeptide C	ENSBTAP0000002420	4,39
92	Tyrosine-protein kinase	ENSBTAP0000003828	4,33
93	Eukaryotic translation elongation factor 1 beta 2	ENSBTAP00000029304	4,26
94	Olfactory receptor, family 10, subfamily V, member 1	ENSBTAP00000055537	4,23
95	Cytochrome P450, subfamily IIIA, polypeptide 4	ENSBTAP00000055446	4,22
96	Single-stranded DNA binding protein 1, mitochondrial	ENSBTAP00000014520	4,19
97	Protein phosphatase	ENSBTAP00000026003	4,18
98	Adaptin ear-binding coat-associated protein 2	ENSBTAP00000017663	4,17
99	Cleavage and polyadenylation specificity factor subunit 6	ENSBTAP00000047307	4,16
100	Proteasome subunit alpha type-2	ENSBTAP00000001309	4,15
101	Poly ADP ribos polymerase	ENSBTAP00000022152	4,06
102	Histone H2B type 1-L	ENSBTAP00000046113	4,05
103	Spleen trypsin inhibitor I	ENSBTAP00000023042	4,05
104	60S ribosomal protein L22	ENSBTAP00000019184	4,03
105	Karyopherin alpha 1	ENSBTAP00000014799	3,98
106	Splicing factor proline/glutamine-rich	ENSBTAP00000021719	3,96
107	Heterogeneous nuclear ribonucleoprotein C	ENSBTAP00000001668	3,95
108	Pleckstrin	ENSBTAP00000011069	3,95
109	Probable ATP dependent RNA helicase DDX56	ENSBTAP00000014014	3,92
110	Protein-glutamine gamma-glutamyltransferase 2	ENSBTAP00000021569	3,89
111	Calcyclin binding protein	ENSBTAP00000001464	3,87
112	Nuclear casein kinase and cyclin dependent kinase 1	ENSBTAP00000049804	3,86
113	Adenylate kinase 2	ENSBTAP00000023406	3,85
114	Cytochrome c oxidase subunit Va	ENSBTAP00000022949	3,84
115	Immediate early response 3 interacting protein 1	ENSBTAP00000044053	3,71
116	EBNA1 binding protein 2	ENSBTAP00000028708	3,68
117	Transcription elongation factor A	ENSBTAP00000004499	3,65
118	Adaptor-related protein complex 2, sigma 1 subunit	ENSBTAP00000013989	3,65
119	60 kDa heat shock protein, mitochondrial	ENSBTAP00000016708	3,62
120	Nucleolin	ENSBTAP00000021529	3,62
121	Ribosomal protein L38	ENSBTAP00000040182	3,61
122	Solute carrier family 25 member 6	ENSBTAP00000055370	3,61
123	SUMO1/sentrin/SMT3 specific peptidase 3	ENSBTAP0000000143	3,60
124	Retinol dehydrogenase 11	ENSBTAP00000002535	3,60

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
125	Elongation factor 1-delta	ENSBTAP00000019499	3,59
126	BCL2/adenovirus E1B 19 kDa interacting protein 3	ENSBTAP0000023684	3,58
127	Lamin	ENSBTAP00000023373	3,58
128	Complement component 1, q subcomponent binding protein	ENSBTAP00000013734	3,54
129	Processing of precursor 5	ENSBTAP00000007083	3,54
130	Rho GDP dissociation inhibitor GDI beta	ENSBTAP0000007933	3,53
131	Splicing factor, arginine/serine-rich 13A	ENSBTAP00000010616	3,50
132	Basic helix loop helix domain containing protein KIAA2018	ENSBTAP00000027966	3,48
133	Nucleoporin	ENSBTAP00000022768	3,48
134	Inhibitor of growth family, member 1	ENSBTAP00000035217	3,45
135	MHC Class I JSP.1	ENSBTAP00000011795	3,45
136	B-cell CLL/lymphoma 7A	ENSBTAP0000005481	3,41
137	Core-binding factor, beta subunit	ENSBTAP0000021434	3,41
138	Beta-2-microglobulin	ENSBTAP00000016359	3,41
139	Ribosomal protein L30	ENSBTAP00000021651	3,40
140	Transaldolase 1	ENSBTAP00000013650	3,40
141	Cell cycle associated protein 1	ENSBTAP00000022266	3,37
142	Chromosome 1 open reading frame 131	ENSBTAP00000014253	3,36
143	Fused in sarcoma	ENSBTAP0000007571	3,34
144	Protein S100 A8	ENSBTAP00000016774	3,33
145	Apoptotic chromatin condensation inducer in the nucleus	ENSBTAP00000015372	3,32
146	Glutaredoxin 1	ENSBTAP0000001575	3,31
147	Histone deacetylase 4	ENSBTAP0000023621	3,30
148	Centromere protein P	ENSBTAP00000015681	3,27
149	Serine/arginine rich splicing factor 5	ENSBTAP00000015408	3,26
150	Tropomodulin 3	ENSBTAP00000026116	3,22
151	Hydroxysteroid 17 beta dehydrogenase 12	ENSBTAP0000000096	3,21
152	NADH dehydrogenase subunit 1	ENSBTAP00000053145	3,18
153	Ribosomal protein, large, P1	ENSBTAP00000024376	3,18
154	Undifferentiated embryonic cell transcription factor 1	ENSBTAP0000034747	3,17
155	Paraspeckle component 1	ENSBTAP0000005134	3,17
156	PITH domain-containing protein 1	ENSBTAP00000028809	3,17
157	Fanconi anemia, complementation group I	ENSBTAP00000011991	3,14
158	THO complex subunit 3	ENSBTAP00000046521	3,14
159	DIS3 mitotic control	ENSBTAP0000037928	3,13
160	Shwachman-Bodian-Diamond syndrome protein	ENSBTAP0000005296	3,11
161	Heterogeneous nuclear ribonucleoprotein A2/B1	ENSBTAP0000007527	3,11
162	Septin 5	ENSBTAP00000010956	3,10
163	SAFB-, transcription modulator	ENSBTAP00000015043	3,08
164	CD97	ENSBTAP00000029084	3,07
165	Thymopoietin	ENSBTAP00000005553	3,06
166	Ribosomal protein, large, P2	ENSBTAP0000002326	3,03
167	Chromatin assembly factor 1, subunit A	ENSBTAP00000010763	3,01
168	Tetratricopeptide repeat protein 39B	ENSBTAP00000017264	3,01
169	Sin3A-associated protein	ENSBTAP00000024791	2,99

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
170	THO complex subunit 4	ENSBTAP00000011202	2,98
171	Interleukin 16	ENSBTAP00000014556	2,98
172	Polyhomeotic 2	ENSBTAP0000006041	2,97
173	RNA binding motif protein 12B	ENSBTAP00000017837	2,97
174	Serine/arginine-rich splicing factor 11	ENSBTAP0000020564	2,96
175	Golgin A2	ENSBTAP00000015044	2,96
176	Acyl-CoA:lysophosphatidylglycerol acyltransferase 1	ENSBTAP0000006773	2,96
177	Sp1 transcription factor	ENSBTAP0000003929	2,94
178	Neutrophil cytosolic factor 4	ENSBTAP0000009911	2,93
179	Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit B	ENSBTAP00000029218	2,89
180	X-Prolyl aminopeptidase	ENSBTAP00000052124	2,87
181	Soluble lamin-associated protein	ENSBTAP00000021301	2,85
182	Splicing factor 3A subunit 1	ENSBTAP0000004398	2,85
183	Ewing sarcoma breakpoint region 1	ENSBTAP0000023612	2,76
184	Heterogeneous nuclear ribonucleoprotein A/B	ENSBTAP00000018114	2,76
185	Splicing factor 3b, subunit 2	ENSBTAP0000003602	2,75
186	Chromatin target of PRMT1	ENSBTAP0000033800	2,75
187	Microspherule protein 1	ENSBTAP00000043553	2,74
188	Enoyl CoA hydratase, short chain, 1, mitochondrial	ENSBTAP00000042386	2,74
189	CDP-diacylglycerol-inositol 3-phosphatidyltransferase	ENSBTAP00000010454	2,73
190	Acetyl-CoA acetyltransferase 1	ENSBTAP00000017122	2,73
191	Inactive ubiquitin thioesterase FAM105A	ENSBTAP0000036528	2,71
192	Scaffold attachment factor B1	ENSBTAP0000002344	2,71
193	Sterol carrier protein 2	ENSBTAP0000004879	2,69
194	CD74	ENSBTAP00000020261	2,69
195	Haptoglobin	ENSBTAP0000008335	2,69
196	AHNAK nucleoprotein	ENSBTAP00000048477	2,69
197	Caspase 8	ENSBTAP00000038128	2,69
198	Ribosomal protein L24	ENSBTAP00000017905	2,67
199	Fragile X mental retardation 1	ENSBTAP00000016665	2,66
200	H2A histone family, member V	ENSBTAP00000022576	2,66
201	FSHD region gene 1	ENSBTAP0000009325	2,65
202	BCL2-associated athanogene	ENSBTAP00000023720	2,64
203	Actin related protein 2/3 complex, subunit 5	ENSBTAP00000054193	2,63
204	Serine/arginine-rich splicing factor 9	ENSBTAP00000016997	2,62
205	Marker of proliferation Ki-67	ENSBTAP0000003173	2,61
206	Protein phosphatase 1, regulatory subunit 8	ENSBTAP00000005043	2,60
207	Heterogeneous nuclear ribonucleoprotein A1	ENSBTAP0000002033	2,58
208	Ly1 antibody reactive	ENSBTAP0000004763	2,54
209	Origin recognition complex, subunit 5	ENSBTAP00000045872	2,54
210	GATA zinc finger domain containing 2A	ENSBTAP0000003949	2,54
211	Heterogeneous nuclear ribonucleoprotein A0	ENSBTAP00000022514	2,52
212	NADH dehydrogenase 1	ENSBTAP0000008382	2,52
213	CD3e	ENSBTAP00000032197	2,51
214	Nuclear cap binding protein subunit 2	ENSBTAP00000011684	2,50
215	Centriolin	ENSBTAP00000053866	2,50
216	Hemoglobin, alpha 2	ENSBTAP00000022034	2,50

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
217	Syndecan binding protein	ENSBTAP00000026526	2,50
218	Heterogeneous nuclear ribonucleoprotein D	ENSBTAP00000018540	2,48
219	Interferon regulatory factor 3	ENSBTAP00000031815	2,48
220	Signal peptidase complex subunit 1	ENSBTAP0000006231	2,48
221	UDP-glucuronosyltransferase	ENSBTAP00000050702	2,46
222	Acetyl-CoA acyltransferase 1	ENSBTAP00000024335	2,46
223	Carabin	ENSBTAP00000017459	2,43
224	Translocase of inner mitochondrial membrane 13	ENSBTAP00000018109	2,43
225	Ankyrin repeat, family A	ENSBTAP00000024557	2,42
226	Transmembrane emp24 protein transport domain containing 9	ENSBTAP00000001830	2,42
227	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1	ENSBTAP00000053253	2,41
228	Small nuclear ribonucleoprotein D3	ENSBTAP0000028330	2,41
229	Density-regulated protein	ENSBTAP00000043335	2,40
230	Ras-related and estrogen-regulated growth inhibitor protein	ENSBTAP00000040628	2,40
231	Thymopoietin	ENSBTAP00000048213	2,40
232	SET nuclear oncogene	ENSBTAP00000027913	2,40
233	Ribosomal protein S23	ENSBTAP00000017770	2,37
234	Nicotinamide phosphoribosyltransferase	ENSBTAP00000020608	2,37
235	Ribosomal protein L8	ENSBTAP0000037200	2,35
236	Glycyl-tRNA synthetase	ENSBTAP00000025254	2,34
237	Coactivator-associated arginine methyltransferase 1	ENSBTAP00000015985	2,34
238	Sorting nexin 2	ENSBTAP00000035453	2,34
239	Tumor protein p53 binding protein 1	ENSBTAP0000028388	2,33
240	High mobility group box 1	ENSBTAP00000024094	2,33
241	Napsin A aspartic peptidase	ENSBTAP0000008917	2,32
242	Ligase I	ENSBTAP0000031866	2,32
243	Heterogeneous nuclear ribonucleoprotein K	ENSBTAP0000028162	2,32
244	Serine dehydratase	ENSBTAP00000042524	2,31
245	Sp2 transcription factor	ENSBTAP00000018253	2,31
246	Histone-lysine N-methyltransferase NSD3	ENSBTAP0000002006	2,31
247	3-Ketoacyl-CoA thiolase, mitochondrial	ENSBTAP0000003716	2,29
248	Myosin regulatory light polypeptide 9	ENSBTAP0000021328	2,29
249	Dynamin 3	ENSBTAP00000017776	2,29
250	Ariadne RBR E3 ubiquitin protein ligase 2	ENSBTAP0000007216	2,28
251	TAO kinase 3	ENSBTAP00000016661	2,27
252	Ribosomal protein L23	ENSBTAP0000004190	2,26
253	High mobility group box 2	ENSBTAP00000020096	2,25
254	Succinate-CoA ligase	ENSBTAP0000008894	2,25
255	Limbin	ENSBTAP0000005613	2,24
256	Signal peptidase complex catalytic subunit SEC11	ENSBTAP00000015866	2,23
257	Transcription factor 20	ENSBTAP0000000872	2,23
258	Adenosine monophosphate deaminase 3	ENSBTAP00000021018	2,21
259	Lactotransferrin	ENSBTAP00000001704	2,20
260	CD63	ENSBTAP00000015829	2,19
261	Heat shock protein 4	ENSBTAP00000020825	2,19
Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
------------------	---	-------------------------------	--------------------
262	Pre-rRNA processing protein	ENSBTAP00000028047	2,19
263	Vimentin	ENSBTAP00000024572	2,18
264	Actin, alpha 1, skeletal muscle	ENSBTAP0000006532	2,18
265	Carbonic anhydrase II	ENSBTAP00000023581	2,18
266	Azurocidin 1	ENSBTAP00000055424	2,17
267	RNA binding motif protein 25	ENSBTAP00000022826	2,16
268	Gasdermin A	ENSBTAP00000013285	2,16
269	Pyrroline-5-carboxylate reductase family, member 2	ENSBTAP0000000047	2,15
270	Ubiquitin-conjugating enzyme E2D 2	ENSBTAP00000049292	2,15
271	Ribosomal protein S8	ENSBTAP00000020326	2,14
272	Pre-B-cell leukemia homeobox interacting protein 1	ENSBTAP0000005980	2,14
273	Probable ATP-dependent RNA helicase DDX52	ENSBTAP00000013622	2,14
274	H1 histone family, member 0	ENSBTAP00000049194	2,14
275	Peptidoglycan recognition protein 1	ENSBTAP0000003414	2,14
276	Hepatoma-derived growth factor	ENSBTAP0000008609	2,13
277	Chromosome 19 open reading frame 59	ENSBTAP0000006187	2,13
278	26S protease regulatory subunit 7	ENSBTAP00000056372	2,11
279	ADP/ATP translocase 2	ENSBTAP00000056626	2,11
280	KH-type splicing regulatory protein	ENSBTAP00000027991	2,11
281	T-cell receptor beta chain V region CTL-F	ENSBTAP00000052911	2,11
282	PC4 and SFRS1 interacting protein	ENSBTAP00000010356	2,10
283	Actin-related protein 2/3 complex subunit 1A	ENSBTAP0000005555	2,09
284	Nuclear receptor coactivator 5	ENSBTAP00000018862	2,09
285	DIP2 disco-interacting protein 2 B	ENSBTAP0000006902	2,08
286	26S protease regulatory subunit 6A	ENSBTAP00000028983	2,08
287	S100 calcium binding protein A13	ENSBTAP00000028499	2,07
288	Ring finger protein 20	ENSBTAP00000012521	2,07
289	Small nuclear ribonucleoprotein	ENSBTAP00000022372	2,06
290	Extended synaptotagmin- protein 2	ENSBTAP00000041167	2,06
291	Ubiquitin specific peptidase 34	ENSBTAP00000007921	2,03
292	Ribosomal protein S25	ENSBTAP00000039829	2,03
293	Microtubule-associated protein 1 light chain 3 beta	ENSBTAP00000015449	2,02
294	Phosphoserine phosphatase	ENSBTAP00000017392	2,02
295	Syntaxin binding protein 3	ENSBTAP0000009642	2,02
296	Vacuolar protein sorting 33 B	ENSBTAP0000000029	2,02
297	Squamous cell carcinoma antigen recognized by T-cells 3	ENSBTAP00000042572	2,02
298	Translocase of inner mitochondrial membrane 44	ENSBTAP00000020681	2,01
299	Small nuclear ribonucleoprotein polypeptide G	ENSBTAP00000007241	2,00
300	REST corepressor 1	ENSBTAP0000003016	2,00
301	WD repeat domain 89	ENSBTAP00000011607	2,00

Tab. 4.2.5: Massenspektrometrisch eindeutig identifizierte Proteine des Nukleus, die in den Lymphozyten von Kontrollkühen (n = 2) nach ConA-Stimulation mindestens zweifach höher abundant waren als in den Lymphozyten von Überträgerkühen (n = 2).

A: Fortlaufende Nummer, B: Name des identifizierten Proteins, C: Identifikationsnummer des Proteins aus der Ensembl-Datenbank (http://www.ensembl.org/Bos_taurus/Info/Index), D: Ratio: Verhältnis der Expressionsänderung im Kontrolltier (nach ConA-Stimulation/konstitutiv) zur Expressionsänderung im BNP-Tier (nach ConA-Stimulation/konstitutiv).

4.2.6 Im Nukleus von BNP-Überträgerlymphozyten nach ConA-Stimulation stärker exprimierte Proteine

Von den insgesamt 2320 identifizierten Proteinen des Zellkerns waren bei den BNP-PBL nach ConA-Stimulation 283 Proteine höher abundant als bei den Lymphozyten von PregSure BVD geimpften Kontrolltieren (Tab. 4.2.6).

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
1	Squamous cell carcinoma antigen recognized by T- cells 1	ENSBTAP00000004027	Infinity
2	60S ribosomal protein L7 1	ENSBTAP0000005214	Infinity
3	Acyl-CoA thioesterase 13	ENSBTAP00000021731	Infinity
4	MTERF domain containing 1	ENSBTAP0000001994	Infinity
5	Kinesin family member 4A	ENSBTAP00000017093	Infinity
6	N-Glycanase 1	ENSBTAP0000004933	21665
7	Family with sequence similarity 109, member A	ENSBTAP0000002742	207,46
8	Lethal giant larvae protein 1	ENSBTAP0000006080	42,93
9	Interleukin 1 beta	ENSBTAP0000001745	42,21
10	Vacuolar protein sorting 13C protein	ENSBTAP00000053327	40,51
11	Alpha S1 casein	ENSBTAP00000010119	36,30
12	Phosphoinositide phospholipase C	ENSBTAP00000010937	34,40
13	Fibrinogen gamma B chain	ENSBTAP0000008877	28,22
14	Dynein light chain 1, cytoplasmic	ENSBTAP00000034172	20,02
15	Fibrinogen beta chain	ENSBTAP00000029826	18,94
16	Chitinase 3 protein 1	ENSBTAP00000024253	15,69
17	Von Willebrand factor	ENSBTAP00000016273	12,43
18	Fibrinogen alpha chain	ENSBTAP0000002145	11,78
19	Basic transcription factor 3	ENSBTAP00000036691	11,06
20	Neutrophilic granule protein	ENSBTAP00000042153	10,46
21	Otogelin	ENSBTAP00000045291	10,43
22	Lymphocyte activation gene-3	ENSBTAP00000045595	9,62
23	MHC class II antigen	ENSBTAP00000026100	9,06
24	Optic atrophy 3	ENSBTAP00000054776	8,79
25	Ran GTPase activating protein 1	ENSBTAP00000012125	8,68
26	Endoplasmic reticulum aminopeptidase 1	ENSBTAP00000018026	8,20
27	Superkiller viralicidic activity 2	ENSBTAP0000007339	7,79
28	Dihydroxyacetone kinase 2	ENSBTAP00000024227	7,56
29	Carboxypeptidase A3	ENSBTAP00000019982	7,44
30	Filaggrin family member 2	ENSBTAP00000015611	7,40

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
31	Alpha S2 casein	ENSBTAP0000006590	6,49
32	Protein phosphatase 3, catalytic subunit, alpha	ENSBTAP00000021305	6,48
33	GLI pathogenesis related 1	ENSBTAP00000015396	6,16
34	AU RNA binding protein/enoyl-CoA hydratase	ENSBTAP00000053789	6,07
35	ADP-ribosylation factor 6 interacting protein 6	ENSBTAP0000001883	5,38
36	BCL2-associated X protein	ENSBTAP00000017739	5,33
37	Centromere protein C 1	ENSBTAP0000001748	5,23
38	Telomeric repeat binding factor	ENSBTAP00000044076	5,18
39	CD79B	ENSBTAP00000053195	5,18
40	CKLF MARVEL transmembrane domain containing 7	ENSBTAP0000002243	5,00
41	N-alpha-acetyltransferase 50	ENSBTAP0000031032	4,99
42	Progestagen-associated endometrial protein	ENSBTAP00000019538	4,97
43	PHD finger protein 2	ENSBTAP00000017171	4,85
44	Cytoplasmic linker associated protein 2	ENSBTAP00000015071	4,67
45	Carnitine O palmitoyltransferase 2, mitochondrial	ENSBTAP00000019505	4,62
46	Desmoglein 1	ENSBTAP00000018382	4,61
47	Thromboxane A2 receptor	ENSBTAP00000019892	4,61
48	Phosphoinositide phospholipase C	ENSBTAP00000002717	4,61
49	Transducin beta 2	ENSBTAP0000000422	4,60
50	Thromboxane A synthase	ENSBTAP00000027693	4,59
51	Junction plakoglobin	ENSBTAP00000023522	4,51
52	Echinoderm microtubule associated protein 2	ENSBTAP00000020933	4,44
53	Thromboxane A synthase	ENSBTAP00000026934	4,33
54	Serine/arginine repetitive matrix 1	ENSBTAP00000053480	4,24
55	Protein kinase C delta type	ENSBTAP00000011487	4,22
56	Heterogeneous nuclear ribonucleoprotein D	ENSBTAP00000019699	4,20
57	Prostaglandin reductase 2	ENSBTAP00000004878	4,18
58	Rho GTPase activating protein 1	ENSBTAP00000041467	4,16
59	Granzyme M, lymphocyte metase 1	ENSBTAP0000002709	4,04
60	CSE1 chromosome segregation 1	ENSBTAP00000047927	4,03
61	Protein phosphatase 6, regulatory subunit 3	ENSBTAP00000012612	4,03
62	Pyrophosphatase 2	ENSBTAP0000003165	3,97
63	Alpha 1 antiproteinase	ENSBTAP0000004927	3,90
64	Beta-casein	ENSBTAP0000003409	3,86
65	Dehydrogenase/reductase member 7	ENSBTAP00000027623	3,86
66	Glutamine fructose 6 phosphate transaminase 1	ENSBTAP0000023441	3,76
67	BRI3 binding protein	ENSBTAP0000002020	3,70
68	Mitochondrial antiviral signaling protein	ENSBTAP00000018013	3,69
69	Tubulin, beta 1 class VI	ENSBTAP00000025008	3,68
70	Atlastin GTPase 3	ENSBTAP00000043475	3,65
71	Thyroid hormone receptor associated protein 3	ENSBTAP00000013994	3,62
72	Thioredoxin-related transmembrane protein 1	ENSBTAP00000014908	3,56
73	Cell division cycle 40	ENSBTAP0000000526	3,53
74	Actin-related protein 10	ENSBTAP00000019138	3,52
75	Sodium/potassium-transporting ATPase subunit beta	ENSBTAP00000053967	3,42
76	Proteoglycan 3	ENSBTAP0000002601	3,42
77	Ceramide synthase 4	ENSBTAP00000004459	3,41
78	Tyrosine-protein kinase	ENSBTAP0000008710	3,41

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
79	Forkhead box J3	ENSBTAP00000053827	3,40
80	Ubiquitin conjugating enzyme E2, J1, U	ENSBTAP00000024529	3,40
81	Indoleamine 2,3-dioxygenase 1	ENSBTAP00000027449	3,38
82	RAB14	ENSBTAP00000023671	3,36
83	Exocyst complex component 8	ENSBTAP0000008028	3,32
84	Arginyl tRNA protein transferase 1	ENSBTAP0000004132	3,31
85	Protection of telomeres 1	ENSBTAP00000017541	3,31
86	3'-Phosphoadenosine 5'-phosphosulfate synthase 1	ENSBTAP00000017229	3,31
87	Tubulin, alpha 1a	ENSBTAP0000001948	3,30
88	Cell division control protein 42	ENSBTAP00000041451	3,29
89	Multidrug and toxin extrusion protein	ENSBTAP00000047702	3,28
90	Ribosomal RNA processing 1B	ENSBTAP00000023157	3,25
91	Exocyst complex component 6	ENSBTAP00000028134	3,24
92	ADP-ribosylation factor 1	ENSBTAP00000010159	3,23
93	Matrix metalloproteinase 3	ENSBTAP00000013124	3,22
94	D-3-Phosphoglycerate dehydrogenase	ENSBTAP0000008907	3,17
95	DNA polymerase subunit gamma 2, mitochondrial	ENSBTAP00000024509	3,17
96	Transmembrane protein 214	ENSBTAP00000023162	3,12
97	Cathepsin G	ENSBTAP00000017607	3,10
98	OCIA domain-containing protein 1	ENSBTAP00000014028	3,10
99	Coiled-coil domain containing 132	ENSBTAP00000018952	3,08
100	Family with sequence similarity 120A	ENSBTAP00000030923	3,07
101	Serum amyloid A 1	ENSBTAP00000011597	3,07
102	Proteasome 26S subunit, non-ATPase, 7	ENSBTAP00000024515	3,06
103	Rho guanine nucleotide exchange factor 6	ENSBTAP00000023731	3,06
104	Protein inhibitor of activated STAT 1	ENSBTAP00000045009	2,99
105	Topoisomerase binding protein 1	ENSBTAP0000000686	2,99
106	Ubiquitin protein ligase E3 component n-recognin 4	ENSBTAP00000020277	2,99
107	Regulatory factor X 1	ENSBTAP00000053486	2,96
108	RAB1B, member RAS oncogene family	ENSBTAP00000054670	2,96
109	Family with sequence similarity 49, member A	ENSBTAP00000016983	2,93
110	Vesicle-associated membrane protein 8	ENSBTAP00000032965	2,90
111	Block of proliferation 1	ENSBTAP00000012938	2,89
112	Mitochondrial import inner membrane translocase subunit Tim21	ENSBTAP00000012777	2,88
113	Lysine K specific demethylase 1A	ENSBTAP00000012501	2,88
114	ERGIC 53 precursor	ENSBTAP0000008979	2,87
115	Chromosome 6 open reading frame 25	ENSBTAP00000017984	2,87
116	Phosphatase 2, regulatory subunit B, alpha	ENSBTAP00000024373	2,86
117	Calcium-transporting ATPase	ENSBTAP00000012570	2,85
118	DEAH (Asp-Glu-Ala-His) box polypeptide 16	ENSBTAP0000009148	2,84
119	Cathelicidin 1	ENSBTAP00000011364	2,83
120	URB2 ribosome biogenesis 2	ENSBTAP00000013435	2,83
121	GRAM domain containing 4	ENSBTAP00000029061	2,81
122	Protein phosphatase 2 regulatory subunit B gamma	ENSBTAP00000026895	2,81
123	Protein MIS12	ENSBTAP00000027230	2,78
124	NADH dehydrogenase 1 beta subcomplex subunit 7	ENSBTAP00000016768	2,77

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
125	Chromosome 5 open reading frame 51	ENSBTAP0000006486	2,77
126	Exocyst complex component 2	ENSBTAP0000026920	2,76
127	Transmembrane protein 88	ENSBTAP00000019555	2,76
128	Major facilitator superfamily domain-containing protein 10	ENSBTAP00000028155	2,75
129	Alpha 1,4 glucan phosphorylase	ENSBTAP0000006069	2,75
130	ADP-ribosylation factore 6 interacting protein 1	ENSBTAP00000027628	2,73
131	FYVE, RhoGEF and PH domain containing 3	ENSBTAP0000009131	2,72
132	Ras and Rab interactor 3	ENSBTAP00000013748	2,72
133	Amyloid beta A4 protein-binding, family B, member 1	ENSBTAP00000016629	2,72
134	Centromere protein O	ENSBTAP00000032880	2,71
135	CD53	ENSBTAP0000008479	2,68
136	Transmembrane emp24 domain containing protein 5	ENSBTAP00000032097	2,68
137	Transforming protein RhoA	ENSBTAP00000005600	2,68
138	Myoferlin	ENSBTAP00000038769	2,67
139	Transmembrane protein 97	ENSBTAP00000010666	2,67
140	Excision repair cross complementing rodent repair deficiency, complementation group 2	ENSBTAP00000002680	2,66
141	Vacuolar protein sorting 26 A	ENSBTAP00000022455	2,66
142	Integrin, beta 1	ENSBTAP00000021156	2,65
143	Cytoplasmic linker associated protein 1	ENSBTAP00000030991	2,65
144	Heat shock protein HSP 90-beta	ENSBTAP00000001034	2,65
145	Vitamin K epoxide reductase complex, subunit 1	ENSBTAP0000000519	2,65
146	Target of EGR1, member 1	ENSBTAP00000040666	2,64
147	WD repeat domain 91	ENSBTAP00000023798	2,63
148	Transmembrane emp24 protein transport domain containing 4	ENSBTAP00000014027	2,63
149	Guanine nucleotide binding protein alpha 13	ENSBTAP00000056456	2,62
150	VAC14	ENSBTAP00000032574	2,60
151	Cytochrome b 561 domain containing 2	ENSBTAP00000025505	2,59
152	UPF2 regulator of nonsense transcripts	ENSBTAP00000053336	2,59
153	Family with sequence similarity 49	ENSBTAP00000040143	2,58
154	B-cell receptor-associated protein 29	ENSBTAP00000029129	2,58
155	Heat shock protein 90 kDa alpha, class A member 1	ENSBTAP0000008225	2,58
156	5-Aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase	ENSBTAP00000025662	2,57
157	Eukaryotic translation initiation factor 4E	ENSBTAP00000012530	2,55
158	Tetratricopeptide repeat domain 16	ENSBTAP00000040770	2,55
159	GRB2-related adaptor protein	ENSBTAP00000041340	2,55
160	Protein phosphatase 1 regulatory subunit 21	ENSBTAP0000003332	2,55
161	Transmembrane protein 109	ENSBTAP00000024427	2,55
162	Endoplasmic reticulum metallopeptidase 1	ENSBTAP00000020731	2,55
163	Tryptase	ENSBTAP0000009636	2,55
164	CUGBP, Elav family member 1	ENSBTAP00000003274	2,55
165	Gamma-glutamyl hydrolase	ENSBTAP0000009917	2,53
166	ATP-binding cassette, subfamily B	ENSBTAP0000007432	2,53
167	Nuclear body protein SP140	ENSBTAP00000054823	2,51
168	Proteoglycan 3	ENSBTAP00000014055	2,51

Nr. ^A	Proteinname ^B	Accession Nummer ^C	Ratio ^D
169	Reticulon 3	ENSBTAP00000043467	2,51
170	FAM210A	ENSBTAP00000012046	2,51
171	ADP ribosylation factor 4	ENSBTAP00000021386	2,50
172	GTPase, IMAP family member 5	ENSBTAP00000031161	2,50
173	Reticulon 1	ENSBTAP00000053463	2,50
174	MHC class I antigen	ENSBTAP00000035745	2,45
175	Family with sequence similarity 208, member A	ENSBTAP00000026317	2,45
176	Cytochrome b reductase 1	ENSBTAP00000010387	2,44
177	Chloride intracellular channel 1	ENSBTAP00000017995	2,44
178	Jade family PHD finger 2	ENSBTAP00000028903	2,44
179	Cytochrome b5 reductase 3	ENSBTAP00000040254	2,43
180	Solute carrier family 1, member 5	ENSBTAP00000018050	2,43
181	Acid phosphatase 5, tartrate resistant	ENSBTAP0000006339	2,41
182	Transcriptional regulating factor 1	ENSBTAP00000020376	2,41
183	RAB18, member RAS oncogene family	ENSBTAP00000013018	2,41
184	RAP2B	ENSBTAP00000052927	2,40
185	Cytoskeleton associated protein 4	ENSBTAP00000015804	2,40
186	Glutaminyl peptide cyclotransferase	ENSBTAP00000032205	2,39
187	Isocitrate dehydrogenase 2 (NADP ⁺), mitochondrial	ENSBTAP00000018741	2,39
188	Fibronectin 1	ENSBTAP00000010922	2,39
189	G protein pathway suppressor 1	ENSBTAP00000025728	2,38
190	Dolichyl-phosphate mannosyltransferase polypeptide 3	ENSBTAP00000004597	2,38
191	Necdin 2	ENSBTAP00000050241	2,38
192	Rho-associated, coiled coil containing protein kinase 1	ENSBTAP00000053818	2,36
193	Immunoglobulin lambda polypeptide 1	ENSBTAP00000031165	2,36
194	Armadillo repeat containing 8	ENSBTAP00000026578	2,35
195	Glutathione S transferase pi 1	ENSBTAP00000004615	2,35
196	Cytochrome b5 type B	ENSBTAP0000003129	2,34
197	Unc 93 B1	ENSBTAP00000001581	2,34
198	NADH dehydrogenase, ubiquinone 1 beta subcomplex, 8	ENSBTAP00000000100	2,34
199	Vitamin D 1alpha,25 dihydroxyvitamin D3 receptor	ENSBTAP00000021832	2,33
200	K-Lysine acetyltransferase 8	ENSBTAP00000013893	2,33
201	Malic enzyme 2, NAD ⁺ dependent, mitochondrial	ENSBTAP00000021641	2,33
202	Ribonuclease H2, subunit B	ENSBTAP00000026838	2,32
203	Endoplasmic reticulum protein	ENSBTAP00000012930	2,32
204	Coagulation factor V	ENSBTAP00000023573	2,31
205	Optic atrophy 1	ENSBTAP00000026013	2,31
206	Dynein, light chain, Tctex-type 3	ENSBTAP00000050580	2,31
207	NADH dehydrogenase, ubiquinone 1 beta subcomplex 4	ENSBTAP00000021123	2,30
208	CTAGE family, member 5	ENSBTAP00000043043	2,29
209	Alpha-methylacyl-CoA racemase	ENSBTAP00000029075	2,29
210	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 2	ENSBTAP00000028049	2,29
211	Obg-ATPase 1	ENSBTAP0000009160	2,28
212	Interferon induced with helicase C domain 1	ENSBTAP00000010703	2,27
213	Ribosomal protein S6 kinase, polypeptide 5	ENSBTAP00000014487	2,27
214	APEX nuclease 1	ENSBTAP0000003559	2,27

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
215	Inositol polyphosphate-5-phosphatase	ENSBTAP00000033176	2,27
216	GTPase IMAP family member 4	ENSBTAP0000002894	2,27
217	Mediator complex subunit 24	ENSBTAP00000028616	2,26
218	Helicase, lymphoid-specific	ENSBTAP0000007848	2,26
219	Granzyme B	ENSBTAP00000050126	2,26
220	Ras-related protein Rab-5B	ENSBTAP00000018777	2,25
221	Phosphatidylinositol-5-phosphate 4 kinase, type II, alpha	ENSBTAP00000024007	2,24
222	Cytochrome b5 reductase 1	ENSBTAP00000026548	2,24
223	Myosin VB	ENSBTAP00000053198	2,24
224	Ribosomal L24 domain containing 1	ENSBTAP00000001767	2,24
225	Excision repair cross-complementing rodent repair deficiency 3	ENSBTAP00000027687	2,23
226	Centromere protein A	ENSBTAP00000032858	2,23
227	ATPase, Ca ⁺⁺ transporting, plasma membrane 4	ENSBTAP00000018688	2,23
228	Non-metastatic cells 3	ENSBTAP00000022012	2,22
229	USO1 vesicle docking protein	ENSBTAP00000022642	2,21
230	Guanine nucleotide binding protein, beta polypeptide 2	ENSBTAP0000008508	2,21
231	E1A binding protein p400	ENSBTAP00000027216	2,20
232	ATP-binding cassette, sub-family B,member 7	ENSBTAP00000014650	2,20
233	Proteasome activator subunit 1	ENSBTAP00000028520	2,20
234	Vacuolar protein	ENSBTAP0000003239	2,18
235	Granzyme A	ENSBTAP00000029273	2,17
236	Nibrin	ENSBTAP00000017598	2,17
237	Nucleolar complex associated 4	ENSBTAP00000015774	2,15
238	Dynein, light chain, LC8 type 2	ENSBTAP0000006190	2,14
239	Hydroxyacyl CoA dehydrogenase	ENSBTAP00000002654	2,13
240	Lymphocyte antigen 75	ENSBTAP00000053737	2,12
241	Phosphofurin acidic cluster sorting protein 1	ENSBTAP00000011884	2,12
242	Leucyl/cystinyl aminopeptidase	ENSBTAP00000026511	2,11
243	protein	ENSBTAP00000023306	2,11
244	Probable ubiquitin carboxyl-terminal hydrolase FAF X	ENSBTAP00000047095	2,11
245	Proteasome 26S subunit, non ATPase 6	ENSBTAP00000020108	2,10
246	Vacuolar protein	ENSBTAP00000023197	2,10
247	Transmembrane emp24 domain trafficking protein 2	ENSBTAP00000029667	2,09
248	Vacuolar protein	ENSBTAP0000006216	2,09
249	Tubulin tyrosine ligase family, member 12	ENSBTAP0000002240	2,08
250	Ubiquitin-conjugating enzyme E2N	ENSBTAP00000052296	2,08
251	TAF5 RNA polymerase II	ENSBTAP00000012808	2,08
252	Multidrug resistance protein 1	ENSBTAP00000044742	2,08
253	Voltage-dependent anion channel 2	ENSBTAP00000017251	2,08
254	Ubiquitin carboxyl-terminal hydrolase 48	ENSBTAP00000009110	2,08
255	RAP1, GTP-GDP dissociation stimulator 1	ENSBTAP0000009904	2,08
256	MIT domain-containing protein 1	ENSBTAP00000005179	2,08
257	Signal sequence receptor, gamma	ENSBTAP00000024583	2,08
258	ATPase family, AAA domain containing 2	ENSBTAP00000053735	2,07
259	Family with sequence similarity 78, member A	ENSBTAP0000005969	2,07

Nr. ^A	Proteinname ^B	Accession Nummer ^c	Ratio ^D
260	Tumor protein p53 inducible protein 11	ENSBTAP00000041716	2,06
261	Aldehyde dehydrogenase 2 family ,mitochondrial	ENSBTAP00000011521	2,06
262	Rho GTPase activating protein 15	ENSBTAP00000053462	2,06
263	ORM1 protein 1	ENSBTAP00000016673	2,06
264	Primase, DNA, polypeptide 1	ENSBTAP00000027860	2,06
265	Cytochrome c oxidase subunit 3	ENSBTAP00000053157	2,05
266	A kinase (PRKA) anchor protein 13	ENSBTAP00000028060	2,04
267	Pyruvate dehydrogenase beta	ENSBTAP00000028958	2,04
268	STT3 B	ENSBTAP0000009782	2,03
269	Serine/arginine rich splicing factor 3	ENSBTAP00000049550	2,03
270	NLRC5	ENSBTAP00000007129	2,03
271	26S proteasome non ATPase regulatory subunit 3	ENSBTAP00000028608	2,03
272	Fission 1	ENSBTAP00000010389	2,02
273	TAR DNA binding protein	ENSBTAP00000054152	2,02
274	Vam6/Vps39 protein	ENSBTAP00000006949	2,02
275	Tryptophan-tRNA ligase, cytoplasmic	ENSBTAP0000006139	2,02
276	Protein disulfide isomerase family A, member 6	ENSBTAP0000002508	2,02
277	Cytochrome c oxidase subunit 6C	ENSBTAP00000018778	2,01
278	Eukaryotic translation elongation factor 1 epsilon 1	ENSBTAP0000003285	2,01
279	Desmoplakin	ENSBTAP00000020103	2,00
280	CD22	ENSBTAP00000015781	2,00
281	Syntaxin 7	ENSBTAP00000022780	2,00
282	ER membrane protein complex subunit 4	ENSBTAP0000008411	2,00
283	5'-Nucleotidase, cytosolic II	ENSBTAP00000017090	2,00

Tab. 4.2.6: Massenspektrometrisch eindeutig identifizierte Proteine des Nukleus, die in den Lymphozyten von BNP-Überträgertieren (n = 2) nach ConA-Stimulation mindestens zweifach höher abundant waren als in den Lymphozyten von Kontrolltieren (n = 2).

A: Fortlaufende Nummer, B: Name des identifizierten Proteins, C: Identifikationsnummer des Proteins aus der Ensembl-Datenbank (http://www.ensembl.org/Bos_taurus/Info/Index), D: Ratio: Verhältnis der Expressionsänderung im BNP-Tier (nach ConA-Stimulation/konstitutiv) zur Expressionsänderung im Kontrolltier (nach ConA-Stimulation/konstitutiv)

Anhand der Tabellen 4.2.1 - 4.2.6 wird ersichtlich, dass die PBL von Kontroll- und Überträgertieren nach ConA-Stimulation unterschiedliche Proteine stärker exprimieren, was auf die Ausbildung verschiedener Immunkapazitäten hindeutet.

CD4⁺ T-Lymphozyten (T-Helferzellen, Th) werden bei der Maus in unterschiedliche Subpopulationen eingeordnet (Fang et al. 2015). So kann sich die aktivierte CD4⁺ Th-Zelle im Zuge einer Immunantwort in eine Th1-, Th2-, Th6-, Th7-, Th9-, Th10-, Th17-, Th22-, Tfh- (follikuläre Th-Zelle) oder eine Treg-Zelle (regulatorische T-Zelle) differenzieren. Im Verlauf dieser Immunantworten werden bestimmte Transkriptionsfaktoren exprimiert, anhand derer der eingeschlagene Pfad der T-Helfer-Immunantwort identifiziert werden kann. An diesen und weiteren differenziellen Proteinen aus dem proteomischen Datensatz wurde deutlich, dass beide Kuhgruppen über unterschiedliche Immunkapazitäten verfügen und verschieden auf die ConA-Stimulation reagieren. In weiteren Experimenten sollten die proteomischen Befunde und die Hinweise auf unterschiedliche Immunantworten beider Kuhphänotypen mittels Western Blot überprüft werden.

4.3 Untersuchungen der durch ConA-Stimulation stärker exprimierten Proteine mittels Western Blot

Um die ausgebildeten Immunantworten der Kontroll- und Überträgertiere nach ConA-Stimulation weiter zu spezifizieren wurde die Expression wichtiger Transkriptionsfaktoren der Th-Immunantworten mittels Western Blot untersucht.

4.3.1 29 Antikörper zeigen gegen viele Transkriptionsregulatoren keine Bindung in Rinderlymphozyten

Insgesamt wurden in Western Blots 34 Antikörper getestet, von denen fünf an Rinderlymphozyten-Lysat gebunden haben. Die folgenden 29 Antikörper zeigten dagegen keine Bindung bei Rinderlymphozyten-Lysat: anti-Tbet, anti-RORyT, anti-IRF4, anti-GATA3, anti-FoxP3, anti-IL17, anti-STAT3, anti-pSTAT1 (Tyr701), anti-pSTAT4 (Ser721), anti-pSTAT5 (Tyr694), anti-STAT5b, anti-pSTAT6 (Tyr641), anti-p38MAP-Kinase (Tyr180/182), anti-pLAT (Tyr175), anti-pJUN (Ser63) II, anti-BTK, anti-mTOR, anti-ZAP70, anti-TLR2, anti-LILRA, anti-NOS2, anti-CD25, anti-CD103, anti-CD64, anti-CD61, anti-TIMP3, anti-cFOS, anti-BLIMP1 und anti-SCAMP3.

4.3.2 Kein Expressionsunterschied von STAT5a und TF IIB in Kontrollund Überträgerlymphozyten nach ConA-Stimulation

Die Expression der Transkriptionsregulatoren Signal transducer and activator of transcription 5a (STAT5a) und Transcription initiation factor IIB (TF IIB) wurde in Rinderlymphozyten-Lysat getestet (Abb. 4.3.2.1 und Abb. 4.3.2.2).

Bei den ConA-stimulierten Kontrolllymphozyten konnte ein geringer Expressionsanstieg von STAT5a auf den Faktor 1,10, im Vergleich zu den unstimulierten Kontrollzellen, nachgewiesen werden. Eine Expressionsänderung von STAT5a bei den Überträger-PBL konnte nicht festgestellt werden. Die konstitutive Überträgerlymphozyten STAT5a-Expression der war geringgradig stärker (Faktor 1,15) als bei den Kontrolllymphozyten (Abb. 4.3.2 A, kE).

Abb. 4.3.2.1: STAT5a-Expressionsänderung in Kontrolllymphozyten (grüne Säulen, n = 17) und Überträgerlymphozyten (schwarze Säulen, n = 6) nach 20 min ConA-Stimulation im Western Blot. Auf der y-Achse ist der Grad der Expression von STAT5a abgebildet. Die Werte der ConA-stimulierten Zellen beziehen sich auf die Werte der konstitutiven Expression (kE) der unstimulierten Kontrolllymphozyten (Expressionsfaktor entspricht 1). Die STAT5a-Expression stieg bei den stimulierten Kontrolllymphozyten geringgradig um den Faktor 1,10 im Vergleich zu den unstimulierten Kontroll-PBL. Die ConA-Stimulation bewirkte keine Expressionsänderung in den Überträgerzellen. Die konstitutive STAT5a-Expression der Überträgerlymphozyten war um den Faktor 1,15 stärker als die

der Kontrolllymphozyten Die Intensität der STAT5a-Banden (92 kDa) ist im Insert über den Säulen dargestellt. Die entsprechenden Banden wurden quantifiziert und auf beta-Aktin normalisiert.

Bei den ConA-stimulierten Kontrolllymphozyten ein konnte geringer Expressionsabfall von TF IIB auf den Faktor 0,9 im Vergleich zu den unstimulierten Kontroll-PBL werden. Die **ConA-Stimulation** gezeigt bewirkte keine Überträgerzellen. Expressionsänderung den Insgesamt die in war Expressionssteigerung bei den Überträgerlymphozyten nach ConA-Stimulation geringgradig (Faktor 1,1) stärker als bei den Kontrolllymphozyten (Abb. 4.3.2.2).

Abb. 4.3.2.2: TF IIB-Expressionsänderung in Kontrolllymphozyten (grüne Säulen, n = 9) und Überträgerlymphozyten (schwarze Säulen, n = 3) nach 20 min ConA-Stimulation im Western Blot. Auf der y-Achse ist der Grad der Expression von TF IIB abgebildet. Die Werte der ConA-stimulierten Zellen beziehen sich auf die Werte der konstitutiven Expression (kE) der unstimulierten Kontrolllymphozyten (Expressionsfaktor entspricht 1). Die TF IIB-Expression sank bei den ConA-stimulierten Kontrolllymphozyten auf den Faktor 0,9 im Vergleich zu den unstimulierten Kontroll-PBL. Die ConA-Stimulation bewirkte bei den Überträgerlymphozyten keine Änderung der TF IIB-Expression. Somit war die Expressionssteigerung bei den Überträgerlymphozyten nach ConA-Stimulation um den Faktor 1,1 stärker als bei den Kontrolllymphozyten. Die Intensität der TF IIB-Banden (38 kDa) ist im Insert über den Säulen dargestellt. Die entsprechenden Banden wurden quantifiziert und auf beta-Aktin normalisiert.

Insgesamt konnte für die Transkriptionsfaktoren STAT5a und TF IIB kein signifikanter Expressionsunterschied zwischen Kontroll- und Überträgerlymphozyten vor oder nach ConA-Stimulation festgestellt werden.

4.3.3 Verifikation der stärkeren STAT1-Expression in Kontrolllymphozyten nach 48 h ConA-Stimulation

Mit Western Blots konnte die erhöhte STAT1-Expression in Kontrolllymphozyten aus dem Proteomikexperiment (Tab. 4.2.3, Protein Nr. 34, Ratio 15,23) verifiziert werden (Abb. 4.3.3). Das Signaltransduktionsmolekül STAT1 induziert bei der Maus die Expression des Transkriptionsfaktors Tbet, der dann die Differenzierung der aktivierten CD4⁺ T-Zellen zu Th1-Zellen steuert (Kanhere et al. 2012). Bei den ConA-stimulierten Kontrolllymphozyten konnte ein Expressionsanstieg auf den Faktor 1,4 im Vergleich zu den unstimulierten Kontroll-PBL nachgewiesen werden. Die Expression von STAT1 sank bei den stimulierten Überträger-PBL im Vergleich zu den unstimulierten Zellen auf den Faktor 0,7. Im konstitutiven Zustand exprimierten die Kontrollzellen 1,2 Mal mehr STAT1 als die Überträgerzellen und nach der ConA-Stimulation exprimierten die Kontroll-PBL STAT1 doppelt so stark wie die Überträger-PBL (Abb. 4.3.3).

Abb. 4.3.3: Verifikation der STAT1-Expressionsänderung in Kontrolllymphozyten (grüne Säulen, n = 5) und Überträgerlymphozyten (schwarze Säulen, n = 1) nach 48 h ConA-Stimulation im Western Blot. Auf der y-Achse ist der Grad der Expression von STAT1 abgebildet. Die Werte der ConA-stimulierten Zellen beziehen sich auf die Werte der konstitutiven Expression (kE) der unstimulierten Kontrolllymphozyten (Expressionsfaktor entspricht 1). Die STAT1-Expression stieg bei den stimulierten Kontrolllymphozyten um den Faktor 1,4 im Vergleich zu den unstimulierten Kontroll-PBL. Die Expression von STAT1 sank bei den stimulierten Überträger-PBL im Vergleich zu den unstimulierten Zellen auf den Faktor 0,7. Die konstitutive Expression war bei den Kontrollzellen 1,2-fach stärker als bei den Überträgerzellen. Nach der ConA-Stimulation exprimierten die Kontroll-PBL STAT1 2-fach stärker als die Überträger-PBL. Die Intensität der STAT1-Banden (91 kDa) ist im Insert über den Säulen dargestellt. Die entsprechenden Banden wurden quantifiziert und auf beta-Aktin normalisiert.

4.3.4 Überträgerlymphozyten zeigen eine stärkere Expression von pSTAT3 (Tyr705)

Zur weiteren Charakterisierung der Immunantwort der **BNP**-Tiere nach ConA-Stimulation wurde die Expression von pSTAT3 (Tyr705) im Western Blot getestet. Beide Kuhphänotypen phosphorylierten vermehrt STAT3 an Tyr 705 nach 20 min ConA-Stimulation. Dabei war die Expressionssteigerung der

106

Überträgerlymphozyten von pSTAT3 (Tyr705) um den Faktor 1,4 stärker im Vergleich zu den Kontrolllymphozyten (Abb. 4.3.4).

4.3.4: Nachweis der pSTAT3 (Tyr705)-Expressionsänderung bei Kontrolllymphozyten (grüne Säulen, n = 8) und Überträgerlymphozyten (schwarze Säulen, n = 2) nach 20 min ConA-Stimulation im Western Blot. Auf der y-Achse ist der Grad der Expression von pSTAT3 (Tyr705) abgebildet. Die Werte der ConA-stimulierten Zellen beziehen sich auf die Werte der konstitutiven Expression (kE) der unstimulierten Kontrolllymphozyten (Expressionsfaktor entspricht 1). Die pSTAT3 (Tyr705)-Expression stieg bei den ConA-stimulierten Kontrolllymphozyten um den Faktor 1,25 im Vergleich zu den unstimulierten Kontrollzellen. Die stimulierten Überträgerlymphozyten exprimierten pSTAT3 (Tyr705) um den Faktor 1,70 stärker im Vergleich zu den unstimulierten Überträgerzellen. Damit war die Expressionssteigerung bei den Überträgerlymphozyten nach ConA-Stimulation 1,4-fach stärker als bei den Kontrolllymphozyten. Die Intensität der pSTAT3 (Tyr705)-Banden (80 kDa) ist im Insert über den Säulen dargestellt. Die entsprechenden Banden wurden quantifiziert und auf beta-Aktin normalisiert.

4.3.5 Überträgerlymphozyten exprimieren PLC_y1 nach ConA-Stimulation stärker als die Kontrolllymphozyten

Die Phospholipase y 1 (PLCy1) spielt zusammen mit den Proteinen Linker for activation of T-cells family member 1 (LAT), Lymphocyte-specific protein tyrosine kinase (LCK) und Zeta-chain TCR associated protein kinase 70 (ZAP70) eine wichtige Rolle bei der TCR (T-Zell-Rezeptor)-vermittelten Signalübertragung; die Mitogen-activated protein (MAP)-Kinase bei Aktivierung, Proliferation und der Interleukin 2-Produktion von T-Zellen bei der Maus und beim Menschen (Chuck et al. 2010) (Chiang and Hodes 2015).

Die Western Blot Experimente zeigten, dass die ConA-Stimulation bei den Kontrolllymphozyten keine Änderung der PLCy1-Expression bewirkte. Die Überträgerlymphozyten hingegen zeigten eine 1,5-fach stärkere PLCy1-Expression nach ConA-Stimulation. Insgesamt konnte so bei den Überträgerlymphozyten eine 1,4-fach gesteigerte PLCy1-Expression im Vergleich zu den Kontrolllymphozyten nach ConA-Stimulation nachgewiesen werden (Abb. 4.3.5).

Abb. 4.3.5: Nachweis der PLC γ 1-Expressionsänderung im Lysat von Kontrolllymphozyten (grüne Säulen, n = 4) und Überträgerlymphozyten (schwarze Säulen, n = 3) vor und nach 48 h ConA-Stimulation im Western Blot.Auf der y-Achse ist der Grad der Expression von PLC γ 1 abgebildet. Die Werte der ConA-stimulierten Zellen beziehen sich auf die Werte der konstitutiven Expression (kE) der unstimulierten Kontrolllymphozyten (Expressionsfaktor entspricht 1). Die stimulierten Kontrolllymphozyten exprimierten PLC γ 1 nur 1,05-fach stärker als ihre unstimulierten Kontrollzellen. Die Überträgerlymphozyten zeigten nach ConA-Stimulation eine 1,5-fach stärkere PLC γ 1-Expression. Insgesamt exprimierten die stimulierten Überträgerlymphozyten PLC γ 1 um den Faktor 1,4 stärker als die stimulierten Kontrollzellen. Die Intensität der PLC γ 1-Banden (155 kDa) ist im Insert über den Säulen dargestellt. Die entsprechenden Banden wurden quantifiziert und auf beta-Aktin normalisiert.

4.4 Nachweis einer unterschiedlichen Expression von Signaltranskriptionsfaktoren in Lymphknoten *in situ*

Die Expression von Signaltransduktionsmolekülen wurde *in situ* im Darmlymphknoten von drei Kontrollkühen und einer BNP-Kuh mittels Immunhistochemie getestet. Zu diesem Zweck wurden die Lymphknoten beider Immunphänotypen mit Antikörpern gegen pSTAT1 (Tyr701), TF IIB, ZAP70, PLCv1, pSTAT3 (Tyr705), RORvT, IRF4 und IL17 gefärbt.

STAT1 ist ein wichtiges Signaltransduktionsmolekül der Th1-Immunantwort bei der Maus (Fang et al. 2015). Bei den hier untersuchten Rindern konnte mittels Immunhistochemie nachgewiesen werden, dass in Kontrolllymphknoten STAT1 stärker an Tyr 701 phosphoryliert wurde als im Überträgerlymphknoten. Im Kontrolllymphknoten konnte die pSTAT1 (Tyr701)-Expression mit den CD4⁺ T-Zellen assoziiert werden. Im Kontrolllymphknoten sowie im Überträgerlymphknoten zeigten auch die CD4⁻ T-Zellen eine pSTAT1 (Tyr701)-Expression (Abb. 4.4.1).

Abb. 4.4.1: Expression von CD4 (rot, A und D) und pSTAT1 (Tyr701) (grün, B und E) im Darmlymphknoten von Kontrolltieren (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D-F). Die Zellkerne sind mit DAPI (blau) gefärbt. Im Kontrolllymphknoten (B) wurde STAT1 stärker an

Tyr 701 phosphoryliert als im Überträgerlymphknoten (E). Im Kontrolllymphknoten (C, Overlay: gelb) und im Überträgerlymphknoten (F, Overlay: gelb) zeigten sowohl, CD4⁺ T-Zellen als auch CD4⁻ T-Zellen eine pSTAT1 (Tyr701)-Expression.

Das Signaltransduktionsmolekül TF IIB ist bedeutend für die Initiation der Transkription und ist beim Menschen Bestandteil des Präinitiationskomplexes, welcher sich im Zellkern befindet (Plaschka et al. 2016). Bei den hier untersuchten Rindern war die TF IIB-Expression der CD4⁺ T-Zellen in Kontrolllymphknoten genauso stark wie im Überträgerlymphknoten (Abb. 4.4.2).

Abb. 4.4.2: Expression von CD4 (rot, A und D) und TF IIB (grün, B und E) im Darmlymphknoten von Kontrolltieren (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D - F). Die Zellkerne wurden mit DAPI (blau) gefärbt. Die Zellen im Lymphknoten des Kontrolltieres (C, Overlay: gelb) und die des Überträgertieres (F, Overlay: gelb) zeigten die gleiche TF IIB-Expression.

ZAP70 kontrolliert die Signalübertragung am B-Zell-Rezeptor (BCR) sowie am TCR und reguliert die Entwicklung der humanen T-Zellen (Fischer et al. 2010). Im Überträgerlymphknoten wurde ZAP70 deutlich stärker exprimiert als im Kontrolllymphknoten. In den Untersuchungen der hier getesteten Kühe, zeigten die CD4⁺ T-Zellen des Kontrolllymphknotens keine ZAP70-Expression im Vergleich zu

CD4⁺ T-Zellen Überträgerlymphknotens, den des die eine sehr starke ZAP70-Expression aufwiesen (Abb. 4.4.3). Ebenso war die Gesamtexpression von ZAP70 im Überträgertieres Lymphknoten des deutlich höher als im Kontrolllymphknoten (Abb. 4.4.3).

Abb. 4.4.3: Expression von CD4 (rot, A und D) und ZAP70 (grün, B und E) im Darmlymphknoten von einem Kontrolltier (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D - F). Die Zellkerne sind mit DAPI (blau) gefärbt. Im Überträgerlymphknoten (E) war eine deutlich höhere Expression von ZAP70 erkennbar im Gegensatz zum Kontrolllymphknoten (B). ZAP70 wurde im Überträgerlymphknoten vor allem von CD4⁺ T-Zellen (F, Overlay: gelb), aber auch von weiteren Lymphozyten exprimiert (F, ZAP70: grün). Im Kontrolllymphknoten hingegen exprimierten die CD4⁺ T-Lymphozyten kein ZAP70 (C, Overlay: gelb).

PLC_Y1 spielt ebenfalls eine wichtige Rolle bei der Signalübertragung am humanen TCR (Chuck et al. 2010). Im Western Blot konnte bereits eine gesteigerte Expression von PLC_Y1 nach 48 h ConA-Stimulation bei den Überträger-PBL im Vergleich zu den ConA-stimulierten Kontrolllymphozyten nachgewiesen werden (4.3.5). Auch bei den hier getesteten Rindern konnte mittels Immunhistochemie eine deutlich stärkere PLC_Y-Expression im Überträgerlymphknoten im Vergleich zum Kontrolllymphknoten festgestellt werden. In allen Zellen des Überträgerlymphknotens war die PLCy1-Expression deutlich höher als im Kontrolllymphknoten, wo nur eine sehr geringe PLCy1-Expression nachweisbar war. Es war außerdem auffällig, dass PLCy1 im Überträgerlymphknoten vor allem von ringförmig angeordneten Zellen im Randbereich exprimiert wurde und weniger von Zellen im Zentrum des Lymphknotens (Abb. 4.4.4).

Abb. 4.4.4: Expression von CD4 (rot, A und D) und PLCy1 (grün, B und E) im Darmlymphknoten von einem Kontrolltier (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D - F). Die Zellkerne sind mit DAPI (blau) gefärbt. Im Überträgerlymphknoten (F, Overlay: gelb) wurde deutlich mehr PLCy1exprimiert als die Kontrolltiere (C: Overlay: gelb). Im Überträgerlymphknoten zeigten die CD4⁺ T-Zellen eine deutlich stärkere PLCv1-Expression als die CD4⁺ T-Zellen des Kontrolllymphknotens. In allen Zellen des Überträgerlymphknotens war die PLCy1-Expression deutlich höher als im Kontrolllymphknoten, wo nur eine sehr geringe PLCy1-Expression feststellbar war. Im Überträgerlymphknoten wurde PLCv1 vorranging von den ringförmig angeordneten Zellen im Randbereich exprimiert und weniger von Zellen im Zentrum des Lymphknotens (E, F).

STAT3 wird von den Zytokinen IL6 und IL23 aktiviert und spielt eine entscheidende Rolle bei der murinen Th17 Entwicklung (Yang et al. 2007). Zur weiteren Spezifizierung des Immunphänotyps wurde der Transkriptionsfaktor für die Th17-Immunantwort ebenfalls bei der Immunhistochemie getestet. Im Western Blot konnte bereits eine gesteigerte pSTAT3 (Tyr705)-Expression nach kurzzeitiger **ConA-Stimulation** den Überträgerlymphozyten im bei Vergleich zu den ConA-stimulierten Kontrolllymphozyten festgestellt werden (Abb. 4.3.4). Bei den hier untersuchten Rindern wurde das Protein STAT3 im Überträgerlymphknoten deutlich Tyr 705 phosphoryliert im stärker an als Kontrolllymphknoten. Im Kontrolllymphknoten war die pSTAT3 (Tyr705)-Expression im Wesentlichen mit den CD4⁺ T-Zellen assoziiert. Im Darmlymphknoten der immundevianten Kuh exprimierten hingegen die CD4⁻T-Zellen deutlich mehr pSTAT3 (Tyr705) als die CD4⁺ T-Zellen (Abb. 4.4.5).

Abb. 4.4.5: Expression von CD4 (rot, A und D) und pSTAT3 (Tyr705) (grün, B und E) im Darmlymphknoten von Kontrolltieren (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D-F). Die Zellkerne sind mit DAPI (blau) gefärbt. Das Überträgertier (E) phosphoryliert mehr STAT3 an Tyr 705 als die Kontrolltiere (B). Im Kontrollymphknoten (C: Overlay: gelb) war die pSTAT3 (Tyr705)-Expression mit den CD4⁺T-Zellen assoziiert und im Überträgerlymphknoten (F, Overlay: gelb) exprimierten auch CD4⁻T-Zellen pSTAT3 (Tyr705).

RORyT ist der Mastertranskriptionsfaktor für humane und murine Th17-Zellen und die RORyT-Expression wird von STAT3 reguliert (Wilson et al. 2007, Yang et al. 2007). Im Überträgerlymphknoten konnte *in situ* eine deutlich höhere

ROR_YT-Expression gegenüber den Kontrolllymphknoten festgestellt werden. Bei den in der Immunhistochemie untersuchten Rindern war die ROR_YT-Expression im Überträgerlymphknoten und den Kontrollymphknoten assoziiert mit den CD4⁺ T-Zellen. Im Überträgerlymphknoten zeigten auch CD4⁻ T-Zellen eine stärke ROR_YT-Expression als die CD4⁺ T-Zellen (Abb. 4.7.6).

Abb. 4.4.6: Expression von CD4 (rot, A und D) und RORyT (grün, B und E) im Darmlymphknoten von Kontrolltieren (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D - F). Die Zellkerne wurden mit DAPI (blau) gefärbt. Die Zellen des Überträgerlymphknotens (F, Overlay: gelb) exprimierten mehr RORyT als die des Kontrolllymphknotens (C, Overlay: gelb). Im Überträgerlymphknoten zeigten allen Zellen eine starke RORyT- Expression, wobei die RORyT-Expression der CD4⁻ T-Zellen deutlich stärker war als die der CD4⁺ T-Zellen (F).

Interferon regulatory factor 4 (IRF4) spielt ebenfalls eine essentielle Rolle bei der Entwicklung von murinen Th17-Zellen (Brustle et al. 2007). Auch bei den hier untersuchten Rindern zeigten nur die Zellen des Darmlymphknotens vom BNP-Tier eine starke IRF4-Expression, jedoch nicht die Zellen des Kontrolllymphknotens. Sowohl die CD4⁺T-Zellen als auch die CD4⁻T-Zellen des Überträgerlymphknotens wiesen eine gleich starke IRF4-Expression auf (Abb. 4.4.7).

Abb. 4.4.7: Expression von CD4 (rot, A und D) und IRF4 (grün, B und E) im Darmlymphknoten von Kontrolltieren (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D - F). Die Zellkerne sind mit DAPI (blau) gefärbt. Nur im Lymphknoten des Überträgertieres (E) wurde IRF4 exprimiert, nicht im Kontrolllymphknoten (B). Im Überträgertier wurde IRF4 von den CD4⁺ T-Zellen (F, Overlay: gelb) und von CD4⁻ T-Zellen (F, IRF4: grün) gleich stark exprimiert.

Das Zytokin IL17 gehört neben IL17B, IL17C, IL17D, IL17E, und IL17F zu der IL17-Familie und wird gemeinsam mit IL17F von Th17-Zellen produziert (Raphael et al. 2015). In den Untersuchungen der hier getesten Kühe, konnte im Überträgerlymphknoten eine deutlich stärkere **IL17-Expression** als im Kontrolllymphknoten nachgewiesen werden. Alle CD4⁺ T-Zellen des Überträgerlymphknotens exprimierten deutlich mehr IL17 als die des Kontrolllymphknotens, die nur eine geringe IL17-Expression der CD4⁺ T-Zellen zeigten. Die CD4 T-Zellen des Übertragerlymphknotens zeigten eine starke IL17-Expression, welche beim Kontrolllymphknoten nicht festgestellt werden konnte (Abb. 4.4.8).

115

Abb. 4.4.8: Expression von CD4 (rot, A und D) und IL17 (grün, B und E) im Darmlymphknoten von Kontrolltieren (n = 3, A - C; repräsentative Abbildung) und einem Überträgertier (D - F). Die Zellkerne sind mit DAPI (blau) gefärbt. Im Überträgerlymphknoten (F, Overlay: gelb) konnte eine stärkere IL17-Expression als im Kontrolllymphknoten (C, Overlay: gelb) festgestellt werden. Die CD4⁺ T-Zellen des Überträgerlymphknotens (F) exprimierten deutlich mehr IL17 als die des Kontrolllymphknotens (C). Die CD4⁻ T-Zellen des Überträgerlymphknotens (F) zeigten eine gesteigerte IL17-Expression im Vergleich zu den CD4⁻ T-Zellen des Kontrolllymphknotens (C), bei denen keine IL17-Expression nachgewiesen werden konnte.

Zusammenfassend bestätigen die immunhistologischen Färbungen eine stärkere Phosphorylierung von STAT1 an Tyr 701 bei den Kontrolltieren. Bei TF IIB gab es keine Expressionsunterschiede zwischen Überträger- und Kontrolllymphknoten. Das Überträgertier hingegen zeigte *in situ* eine stärkere Phosphorylierung von STAT3 an Tyr 705 und exprimierte im Darmlymphknoten deutlich mehr ZAP70, PLCy1, RORyT, IRF4 und IL17 als die Kontrolltiere.

4.5 Identifikation von PregSure BVD ungeimpften Kühen mit einem hyperproliferativen Immunphänotyp

Die bereits durchgeführten Experimente mit PregSure BVD geimpften Kontroll- und Überträgerlymphozyten zeigten einen deutlich hyperproliferativen Immunphänotyp der BNP-Tiere nach ConA-Stimulation (Abb. 4.1.1). Im nächsten Schritt sollten auch Lymphozyten von nicht mit PregSure BVD geimpften Kühen mit verschiedenen polyklonalen Stimulanzien inkubiert werden, um zu überprüfen, ob unter diesen Tieren ebenfalls ein hyperproliferativer Phänotyp auftritt. Bei dem Screening eines PregSure BVD ungeimpften Rinderbestandes zeigte ein deutlicher Prozentsatz der Kühe die eine gesteigerte Proliferationsrate, hochsignifikant von dem Proliferationsgrad der anderen ungeimpften Kontrolltiere abwich (Abb. 4.5.1).

Von 73 getesteten ungeimpften Kontrolltieren (Mittelwert der Proliferationsrate: 31) proliferierten die Lymphozyten von zwölf Tieren (16 %, Mittelwert der Proliferationsrate: 140) nach ConA-Stimulation signifikant stärker und in dieser Gruppe relativ einheitlich. Zudem war kein signifikanter Unterschied zur Proliferationsrate der BNP-Tiere (Mittelwert der Proliferationsrate: 156) vorhanden.

Somit reagierten die Lymphozyten dieser hyperproliferativen, ungeimpften Kontrollkühe (Hyper-Kühe) 4,5 Mal stärker als die unauffälligen Kontrolltiere (**** $p \le 0,0001$) und nur 0,9 Mal weniger als die Überträgerlymphozyten. Es gab zwölf Tiere ohne signifikanten Unterschied zu BNP und somit fanden wir 16 % der ungeimpften Kühe mit einem hyperproliferativen Immunphänotyp (Abb. 4.5.1).

117

Abb. 4.5.1: Dargestellt ist der Grad der Zellproliferation von Lymphozyten PregSure BVD ungeimpfter Kontrollkühe (grüne Säule, biol. n = 61, techn. n = 99), PregSure BVD ungeimpfter Tiere mit einem hyperproliferativen Phänotyp (Hyper, graue Säule, biol. n = 12, techn. n = 48) und von Überträgerlymphozyten (schwarze Säule, biol. n = 5, techn. n = 86) als Reaktion auf die polyklonale ConA-Stimulation (5µg/ml) nach 48h *in vitro* Inkubation. Die Proliferationsrate entspricht dem Quotienten der counts per minute (cpm) -Werte von stimulierten Zellen im Vergleich zu unstimulierten Zellen (Proliferationsrate entspricht dem Faktor 1) desselben Tieres. Nach ConA-Stimulation proliferierten die Hyper-Lymphozyten um den Faktor 4,5 stärker (****p ≤ 0,0001) und die BNP-Lymphozyten fünf Mal mehr als die Kontrolllymphozyten (****p ≤ 0,0001). Zwischen den Hyper-PBL und den BNP-PBL gab es keinen signifikanten Unterschied in der Proliferationsrate.

Mit diesem Versuch konnte unsere Hypothese bestätigt werden, dass sich Tiere in einem nicht PregSure BVD geimpften Kuhbestand identifizieren lassen, die grundsätzlich einen hyperproliferativen Phänotyp aufweisen, ohne dass die Tiere geimpft wurden.

Um den hyperproliferativen Immunphänotyp weiter zu charakterisieren, wurden die Lymphozyten der drei Kuhgruppen (Kontrolle, Hyper, BNP) anschließend mit den Zytokinen Interleukin 2 (IL2), Interleukin 4 (IL4) und Interferon gamma (IFNy) stimuliert. Bei Immunantworten dienen diese Zytokine der Differenzierung von Th1 und Th2-Antworten. So produzieren murine Th1-Zellen vorrangig die Zytokine IL2,

IFN_γ und Tumornekrosefaktor alpha (TNFα) (Raphael et al. 2015) und murine Th2-Zellen sekretieren bevorzugt IL4, IL5 und IL13 (Liao et al. 2011b).

Auf das Th1-Zytokin IL2 zeigten die Kontrollzellen eine 4-fach, die Hyper-PBL eine 12-fach und die IL2-stimulierten BNP-Lymphozyten eine 16-fach gesteigerte Proliferationsrate im Vergleich zu den unstimulierten Zellen. Somit reagierten die Hyper-PBL dreifach stärker (**** $p \le 0,0001$) und die BNP-PBL vierfach stärker (**** $p \le 0,0001$) auf die IL2-Stimulation als die IL2-stimulierten Kontrollzellen. Zwischen IL2-stimulierten Hyper-PBL und BNP-Lymphozyten gab es keinen signifikanten Unterschied (Abb. 4.5.2).

Abb. 4.5.2: Dargestellt ist der Grad der Zellproliferation von Lymphozyten PregSure BVD ungeimpfter Kontrollkühe (grüne Säule, biol. n = 16, techn. n = 22), PregSure BVD ungeimpfter Tiere mit einem hyperproliferativen Phänotyp (Hyper, graue Säule, biol. n = 12, techn. n = 16) und von Überträgerlymphozyten (schwarze Säule, biol. n = 1, techn. n = 7) als Reaktion auf die IL2-Stimulation (1ng/ml) nach 48h *in vitro* Inkubation. Die Proliferationsrate entspricht dem Quotienten der counts per minute (cpm) -Werte von stimulierten Zellen im Vergleich zu unstimulierten Zellen (Proliferationsrate entspricht dem Faktor 1) desselben Tieres. Die Hyper-PBL reagierten dreifach stärker (****p ≤ 0,0001) auf die IL2-Stimulation und die BNP-PBL proliferierten vier Mal mehr als die IL2-stimulierten Kontrollzellen (****p ≤ 0,0001). Zwischen den Hyper-PBL und den BNP-PBL gab es keinen signifikanten Unterschied.

IFNy wurde für die Th1-Immunantwort und IL4 für die Th2-Immunantwort getestet.

Die IFNy-Stimulation (Abb. 4.5.3) erzielte weder gesteigerte noch signifikant unterschiedliche Proliferationsraten bei den Kontroll-PBL (Mittelwert der Proliferationsrate: 0,99), bei den Hyper-PBL (Mittelwert der Proliferationsrate: 1,22) und bei Überträgerlymphozyten (Mittelwert der Proliferationsrate: 1,23).

Abb. 4.5.3: Dargestellt ist der Grad der Zellproliferation von Lymphozyten PregSure BVD ungeimpfter Kontrollkühe (grüne Säule, biol. n = 13, techn. n = 13), PregSure BVD ungeimpfter Tiere mit einem hyperproliferativen Phänotyp (Hyper, graue Säule, biol. n = 11, techn. n = 12) und von Überträgerlymphozyten (schwarze Säule, biol. n = 1, techn. n = 7) als Reaktion auf die IFN γ -Stimulation (1ng/ml) nach 48h *in vitro* Inkubation. Die Proliferationsrate entspricht dem Quotienten der counts per minute (cpm) -Werte von stimulierten Zellen im Vergleich zu unstimulierten Zellen (Proliferationsrate entspricht dem Faktor 1) desselben Tieres. Die IFN γ -Stimulation zeigte keine gesteigerte Proliferationsrate bei allen drei Tiergruppen sowie keinen signifikanten Unterschied zwischen den drei Tiergruppen.

Die IL4-Stimulation (Abb. 4.5.4) erzielte keine signifikanten Unterschiede zwischen Proliferationsraten der Kontroll- (Mittelwert der Proliferationsrate: 1,84), Hyper- (Mittelwert der Proliferationsrate: 1,84) und BNP-Lymphozyten (Mittelwert der Proliferationsrate: 1,97).

Abb. 4.5.4: Dargestellt ist der Grad der Zellproliferation von Lymphozyten PregSure BVD ungeimpfter Kontrollkühe (grüne Säule, biol. n = 12, techn. n = 12), PregSure BVD ungeimpfter Tiere mit einem hyperproliferativen Phänotyp (Hyper, graue Säule, biol. n = 9, techn. n = 11) und von Überträgerlymphozyten (schwarze Säule, biol. n = 1, techn. n = 3) als Reaktion auf die IL4-Stimulation (1ng/ml) nach 48h *in vitro* Inkubation. Die Proliferationsrate entspricht dem Quotienten der counts per minute (cpm) -Werte von stimulierten Zellen im Vergleich zu unstimulierten Zellen (Proliferationsrate entspricht dem Faktor 1) desselben Tieres. Die Unterschiede zwischen Kontrolllymphozyten und Hyper-PBL bzw. BNP-PBL waren nach IL4-Stimulation nicht signifikant.

Insgesamt zeigten diese Versuche, dass die Lymphozyten von 16 % der Tiere aus der getesteten Rindergruppe nicht PregSure BVD geimpfter Tiere wie die der BNP-Tiere auf ConA- und IL2-Stimulation hyperproliferativ reagierten. Anhand dieser Immunstimulanzien konnten wir in einer PregSure BVD ungeimpften Kuhpopulation ebenfalls Tiere mit einem hyperproliferativen Phänotyp identifizieren.

4.6 Hemmung der verschiedenen Immunreaktionen

Zur weiteren Charakterisierung des devianten Immunphänotyps wurden die Lymphozyten aller drei Kuhgruppen (Kontrolle, Hyper, BNP) *in vitro* mit verschiedenen Inhibitoren präinkubiert und anschließend mit ConA stimuliert. Ziel dieser Experimente war es, die Hyperproliferation der immundevianten Kühe möglichst zu hemmen oder die Immunantwort der Kontrolltiere zu enthemmen, um die unterschiedlichen Th-Antworten funktionell nachweisen zu können. Für die Hemmung der verschiedenen Immunpfade wurden mehrere Inhibitoren *in vitro* in Proliferationsassays getestet. Ein BTK-Inhibitor, 17β-hydroxy Wortmannin, ein p38MAP-Kinase Inhibitor, 1-Methyl-D-tryptophan, 1 α ,25-Dihydroxyvitamin D3, ein STAT5 Inhibitor, Nifuroxazide, der STAT3 Inhibitor V und der STAT3 Inhibitor VI zeigten keine signifikanten Unterschiede bei der Beeinflussung der Proliferationsrate zwischen den Kontrolltieren, Hyper- und Überträgertieren (Tab. 4.6).

Inhihitor	Hemmung von	Proliferationsrate		
		Ktr	Hyper	BNP
STAT3 Inhibitor V	STAT3	1,32	1,27	1,43
1-Methyl-D-tryptophan	IDO und INDOL1	1,21	1,11	1,23
1α,25-Dihydroxyvitamin D3	IRF4	1,13	1,05	1,19
STAT3 Inhibitor VI	STAT3	1,05	1,01	1,04
STAT5 Inhibitor	STAT5	1,02	0,99	1,07
17β-hydroxy Wortmannin	PI3-Kinase und mTOR	1,03	0,90	1,05
Nifuroxazide	Phosphorylierung von STAT3	0,98	0,88	0,99
p38 MAPK Inhibitor	p38 MAP Kinase	0,82	0,73	0,76
BTK Inhibitor	ВТК	0,82	0,67	0,67

Tab. 4.6: Darstellung der getesteten Inhibitoren (BTK Inhibitor (50μM/ml), 17β-hydroxy Wortmannin (10μM/ml), p38MAP-Kinase Inhibitor (250nM/ml), 1-Methyl-D-tryptophan (200ng/ml), STAT5 Inhibitor (10μg/ml), Nifuroxazide (0,1μM/ml), STAT3 Inhibitor V (0,01μM/ml) und STAT3 Inhibitor VI (1μg/ml)) auf Kontroll-PBL, Hyper-PBL und Überträger-PBL nach 12 h *in vitro* Inkubation mit anschließender ConA-Stimulation (5μg/ml) für 32 h, die keine signifikante Hemmung bei den drei Kuhgruppen bewirkten. Der Proliferationsfaktor der Zellen entspricht dem Quotienten aus den inhibierten ConA-stimulierten Zellen und den uninhibierten ConA-stimulierten PBL für jedes getestete Tier (Proliferationsrate der nur ConA-stimulierten Lymphozyten entspricht 1).

4.6.1 Der STAT3 Inhibitor III hemmt die Proliferation der immundevianten ConA-stimulierten Lymphozyten

Der STAT3 Inhibitor III zeigte bei den Kontrolllymphozyten keine Hemmung der Proliferation nach ConA-Stimulation (Abb. 4.6.1). Dagegen kam es bei den Hyper-PBL und den BNP-PBL zur signifikanten Inhibition der Proliferationsrate im Vergleich zu den Kontroll-PBL. Zwischen den inhibierten Hyper-PBL und BNP-PBL gab es dabei keinen signifikanten Unterschied bei der Hemmung.

Abb. 4.6.1: Dargestellt ist der Grad der Zellproliferation von ConA-stimulierten (5µg/ml) Kontrolllymphozyten (grüne Säule, biol. n = 6, techn. n = 10), Hyper-PBL (graue Säule, biol. n = 7, techn. n = 12) und BNP-PBL (schwarze Säule, biol. n = 1, techn. n = 6), die mit dem STAT3 Inhibitor III (50ng/ml) für 12 h *in vitro* präinkubiert und anschließend für 32 h mit ConA stimuliert wurden. Die y-Achse beschreibt die Proliferationsrate der Zellen in %. Die Proliferationsrate der Zellen entspricht dem Quotienten aus den inhibierten ConA-stimulierten Zellen und den uninhibierten ConA-stimulierten PBL (Proliferationsrate der nur ConA-stimulierten Lymphozyten des jeweiligen Tieres entspricht 1). Die Kontroll-PBL wurden im Vergleich zur Ausgangsproliferation um 5 %, die Hyper-PBL um 37 % und die BNP-PBL um 35 % inhibiert. Der STAT3 Inhibitor III hemmte die Hyper-PBL (Mittelwert der Proliferationsrate nach Inhibition: 0,63) signifikant um 34 % im Vergleich zu den Kontrollymphozyten (Mittelwert der Proliferationsrate nach Inhibition: 0,95) (**p ≤ 0,01). Bei den Überträgerlymphozyten (Mittelwert der Proliferationsrate nach Inhibition: 0,65) war eine signifikante Hemmung um 32 % im Vergleich zu den Kontrollzellen (Mittelwert der Proliferationsrate nach Inhibition: 0,95) nachweisbar (*p ≤ 0,05). Der STAT3 Inhibitor III ist ein Zell-durchlässiges Tyrphostin-Analogon, dass den STAT3-Immunpfad und die Janus kinase (JAK) 2 beim Menschen hemmt (Wang et al. 2016). Die Hyperproliferation der immundevianten Lymphozyten (Hyper- und BNP-PBL) nach ConA-Stimulation konnte mit diesem Inhibitor bei den BNP-Überträgern und bei den im Rahmen dieser Arbeit identifizierten Hyper-Tieren signifikant inhibiert werden (s. Abb 4.6.1).

4.7 Funktionelle Korrelation zwischen dem hyperproliferativen Immunphänotyp und der Häufigkeit verschiedener Krankheiten

Abschließend sollte untersucht werden, ob es Hinweise gibt, dass der hyperproliferative Immunphänotyp mit einer Änderung der Funktion korreliert, zum Beispiel häufigere Erkrankungen oder Änderung der Milchleistung. Die immundevianten Tiere könnten zum Beispiel mit einer unzureichenden Immunabwehr auf bestimmte Krankheitserreger reagieren und persistente sowie latente Infektionen entstehen.

Um die funktionelle Relevanz des immundevianten Phänotyps festzustellen, wurden Milchleistungsdaten und Gesundheitsparameter der Rinder des PregSure BVD ungeimpften Bestandes von 54 Kontrollkühen und zwölf Hyper-Kühen im Gesamtuntersuchungszeitraum von 35 Monaten überprüft. Die Kontrolltiere gaben durchschnittlich 29,81 Liter Milch am Tag und erbrachten eine durchschnittliche Laktationsleistung von 8795 Litern Milch. Die Hyper-Tiere erlangten eine Tagesmilchleistung von 29,46 Litern Milch und erzielten eine durchschnittliche Laktationsleistung von durchschnittlich 9911 Litern Milch. Beide Kuhgruppen zeigten damit keine signifikanten Unterschiede in der Milchleistung. Die Milchparameter Fett, Eiweiß, Harnstoff und Laktose waren bei beiden Immunphänotypen fast identisch. Die Kontrollmilch zeichnete sich durch 3,80 % Fett, 3,48 % Eiweiß, 4,75 % Laktose und einen Harnstoffgehalt von 25,62 mg/dl aus. Die Milch der Hyper-Tiere zeigte ähnliche Werte mit 3,89 % Fett, 3,49 % Eiweiß, 4,62 % Laktose und einen Harnstoffgehalt von 26,02 mg/dl Milch. Die Zellzahl in der Milch der Kontrolltiere lag

durchschnittlich bei 94060 somatischen Zellen pro ml Milch und die Milch der Hyper-Tiere hatte durchschnittlich 140420 somatische Zellen pro ml Milch. Die erhöhte Zellzahl der Hyper-Tiere könnte erste Hinweise auf eine unzureichende Eutergesundheit mit einer anfänglichen subklinischen Mastitis (>150.000 somatischen Zellen pro ml) (Lavon et al. 2016) geben. Ein signifikanter Unterschied zwischen beiden Immunphänotypen konnte nicht festgestellt werden.

Des Weiteren wurden Fertilitäts- und gynäkologische Parameter näher betrachtet. Bei 33,3 % der Kontrolltiere und 41,7 % der Hyper-Tiere erfolgte die Brunsteinleitung und Brunstsynchronisation medikamentös mit einem Gonadotropin releasing hormone (GnRH)- und einem Prostaglandin F2α-Analogon. Die Brunsteinleitung und Synchronisation erfolgte bei den Hyper-Tieren 1,2 Mal häufiger als bei den Kontrolltieren. Um eine erfolgreiche Trächtigkeit zu diagnostizieren, mussten die Kontrolltiere 2,2 Mal und die Hyper-Kühe 2,0 Mal besamt werden. Nach der Besamung wurde bei vier Kontrolltieren eine Trächtigkeit festgestellt, die bei der zweiten Trächtigkeitsuntersuchung nicht mehr bestätigt werden konnte. Bei den Hyper-Tieren waren alle weiteren Trächtigkeitskontrollen ohne besonderen Befund. Während der Geburt musste bei 33,3 % der Kontrolltiere und 8,3 % der Hyper-Tiere eine Zughilfe eingesetzt werden. Somit hatten die Kontrolltiere vier Mal häufiger eine Schwergeburt als die Hyper-Kühe. Bei den Kontrolltieren sind 11,4 % und bei den Hyper-Tieren sind keine Totgeburten aufgetreten.

Die Erkrankungen wurden den einzelnen Organsystemen oder einem speziellen Krankheitsbild zugeordnet (Abb. 4.7). Dabei wurden alle gewonnen Daten im Gesamtzeitraum von 35 Monaten herangezogen. Eine Klauenproblematik (Abb. 4.7 A), die sich häufig mit dem Krankheitsbild der Dermatitis digitalis und Pododermatitis septica darstellte, zeigten 64,8 % der Kontrolltiere und 75 % der Hyper-Tiere. An einer Erkrankung des Euters (Abb. 4.7 B), welches sich hauptsächlich durch Mastitiden äußerte, litten 35,2 % der Kontrolltiere und 50 % der Hyper-Tiere. Eine Stoffwechselstörung (Abb. 4.7 C) konnte bei 13 % der Kontrolltiere und 25 % der Hyper-Tiere diagnostiziert werden. Diese Tiere zeigten häufig eine hypokalzämische Gebärparese oder Ketose. Ebenfalls bei 13 % der Kontrolltiere und 25 % der Hyper-Kühe wurden Verletzungen an der Haut, am Schwanz und an den

125

Hörnern (Abb. 4.7 D) festgestellt. Eine Erkrankung des Atmungstraktes (Abb. 4.7 E) konnte bei 3,7 % der Kontrolltiere und 8,3 % der Hyper-Kühe beobachtet werden. Diese Tiere erkrankten häufig an einer Bronchopneumonie. Eine Problematik des Bewegungsapparates (Abb. 4.7 F), die sich hauptsächlich durch Bursitiden, Distorsionen sowie Luxationen äußerte, wurde bei 7,4 % der Kontrollkühe und 16,7 % der Hyper-Tiere diagnostiziert. Bei 3,7 % der Kontrolltiere und 8,3 % der Hyper-Tiere konnten parasitäre Infektionen (Abb. 4.7 G) nachgewiesen werden.

Erkrankungen im Beprobungszeitraum

Abb. 4.7: Darstellung des prozentualen Anteils von Kontrolltieren (grüne Säulen, n = 54) und Tieren mit einem hyperproliferativem Phänotyp (Hyper, graue Säulen, n = 12), die an einer Erkrankung im Beprobungszeitraum von 35 Monaten litten. An einer Klauenerkrankung (A) litten 64,8 % der Kontroll- und 75 % der Hyper-Kühe und 35,2 % der Kontroll- und 50 % der Hyper-Tiere zeigten eine Erkrankung des Euters (B). Eine Stoffwechselstörung (C) konnte bei 13 % der Kontroll- und 25 % der Hyper-Kühe diagnostiziert werden. Bei 13 % der Kontroll- und 25 % der Hyper-Tiere wurden Verletzungen an Haut, Schwanz und Hörnern (D) festgestellt. Eine Erkrankung des Atmungstraktes (E) konnte bei 3,7 % der Kontroll- und 8,3 % der Hyper-Tiere diagnostiziert werden. Eine Problematik des Bewegungsapparates (F) wurde bei 7,4 % der Kontroll- und 16,7 % der Hyper-Tiere nachgewiesen und 3,7 % der Kontroll- und 8,3 % der Hyper-Kühe erkrankten an parasitären Infektionen (G).

Eine Erkrankung des Uterus, häufig durch Retentio secundinarum gekennzeichnet, konnte bei 27,8 % der Kontrollkühe und 33,3 % der Hyper-Tiere festgestellt werden. Eine Problematik der Ovarien, die sich hauptsächlich durch Zysten darstellte, war bei 16,7 % der Kontrolltiere und 8,3 % der Hyper-Kühe vertreten und eine Azyklie zeigten 7,4 % der Kontrollkühe und 8,3 % der Hyper-Tiere.

Die 54 Kontrolltiere stammten von 26 Bullen und die zwölf Hyper-Tiere von zehn Bullen ab. Der hyperproliferative Phänotyp konnte damit keinem bestimmten Bullen zugeordnet werden. Die Rasse, das Alter und das Trächtigkeitsstadium hatten ebenfalls keinen Einfluss auf die Proliferationsrate der Lymphozyten der beiden Kuhgruppen.

Zusammenfassend geben diese Daten klare Hinweise, dass Tiere mit einem hyperproliferativen Phänotyp, häufiger an Erkrankungen der Klauen, des Euters, des Uterus, der Ovarien, des Stoffwechsels, des Atmungsapparats und des Bewegungsapparats leiden und häufiger Verletzungen an Haut, Horn und Schwanz sowie Parasitenbefall zeigen als die Kontrolltiere (Abb. 4.7). Ein signifikanter Unterschied dieser Befunde konnte zwischen den beiden Kuhgruppen jedoch nicht festgestellt werden.

5 **DISKUSSION**

Seit 2006 ist die immunmediierte Erkrankung BNP bei neugeborenen Kälbern in Deutschland und Europa sowie seit 2011 in Neuseeland bekannt (Bastian et al. 2011). Die pathogenen Serum- oder Kolostrumantikörper von BNP-Überträgerkühen lösen eine hämorrhagische Diathese (Friedrich et al. 2011, Pardon et al. 2011) mit plötzlichem Auftreten von multiplen äußeren und inneren Blutungen, Thrombozytopenie, Leukozytopenie und Knochenmarksdepletion bei unter vier Wochen alten Kälbern aus (Penny et al. 2009, Laming et al. 2012). Nur etwa 10 % dieser Kälber erholten sich bisher vollständig, die restlichen erkrankten Kälber wurden euthanasiert oder verstarben (Pardon et al. 2011). Es bestätigte sich der zwischen Verwendung des inaktivierten Zusammenhang der Impfstoffs PregSure BVD bei Mutterkühen und dem Auftreten der BNP bei deren neugeborenen Kälbern (Kasonta et al. 2012, Sauter-Louis et al. 2012, Jones et al. 2013). Jedoch induzierten nur 5-10 % der mit PregSure BVD geimpften Kühe durch ihr Kolostrum die BNP bei ihren Kälbern (Bastian et al. 2011). Bei den restlichen Kühen, die ebenfalls mit PregSure BVD geimpft waren, entwickeln die Kälber nach Kolostrumaufnahme keine BNP (Bastian et al. 2011).

In der vorliegenden Arbeit wurden deshalb eventuell abweichende Immunreaktionen von BNP-Überträgerkühen im Vergleich zu den PregSure BVD geimpften Kontrollkühen untersucht. Vorversuche unserer Arbeitsgruppe zeigten bereits eine abweichende Immunreaktion zwischen PregSure BVD geimpften Kontrollkühen und BNP-Überträgerkühen nach polyklonaler B- und T-Zell-Stimulation mit PWM (Fröhlich 2015). In dieser Arbeit wurde darüber hinaus die reine T-Zell-Stimulation mit dem Mitogen ConA auf PBL beider geimpfter Kuhphänotypen mittels *in vitro* Proliferationsassays überprüft. Die PBL der BNP-Tiere proliferierten nach ConA-Stimulation 8-fach stärker als die PBL der PregSure BVD geimpften Kontrolltiere (Abb. 4.1). Diese Daten zeigen, dass die BNP-Überträgerlymphozyten und eine abweichende Immunreaktion der BNP-Tiere nachweisbar ist. Auch mit dem T-Zell-Stimulanz Phytohämagglutinin (PHA) zeigten die BNP-PBL eine signifikant

128

höhere Proliferationsrate (5-fach) im Vergleich zu den geimpften Kontrollzellen (Fröhlich 2015). ConA bewirkt über CD28 (Perrin et al. 1997) und PHA über CD2 eine T-Zell-Stimulation (Seggewiss et al. 2005). Die Reaktion auf diese T-Zell-Stimulanzien und das T- und B-Zell-Stimulanz PWM beweisen eindeutig einen hyperproliferativen Phänotyp der BNP-Tiere nach polyklonaler Immunstimulation. Dies ist die erste Beschreibung einer abweichenden Immunkapazität von BNP-Rindern nach reiner T-Zellstimulation.

Beim Rind sind aktuell Informationen zu anderen abweichenden Immunreaktionen publiziert (Martin et al. 2016). In einer Studie wurden 128 gesunde Kühe entweder mit einem Typ 1- oder Typ 2-Antigen immunisiert um eine Antikörper- (AMIR) oder Zell-mediierte Immunreaktion (CMIR) unterscheiden zu können. Für die Typ 1-Reaktion wurde Candida albicans und für die Typ 2-Reaktion Hen egg white lysozyme (HEWL) als Testantigen verwendet (Thompson-Crispi et al. 2012, Heriazon et al. 2013, Thompson-Crispi et al. 2013). Der Nachweis der Antikörper-mediierten Immunreaktion erfolgte mit der Bestimmung des IgG-Titers im ELISA und die Zell-mediierte Immunreaktion wurde mit einem verzögerten Hypersensitivitätstest festgestellt (Martin et al. 2016). Diese Einteilung der verschiedenen Immunreaktionen kann nicht mit unseren Ergebnissen verglichen werden, weil die gesamte Versuchsdurchführung nicht mit unserer übereinstimmt. In der Studie von Martin et al. zeigte sich jedoch, dass die PBMC beider Kuhgruppen nach ConA-Stimulation keine Unterschiede in der Genexpression von GATA3 und IL4 für die Typ 2-Reaktion sowie für die Typ 1-Reaktion keinen Unterschied in der T-box transcription factor TBX21 (Tbet) Genexpression ergaben (Martin et al. 2016). Dagegen zeigten die AMIR-Rinder nach ConA-Stimulation im ELISA durchaus eine gesteigerte IL4-Konzentration und die CMIR-Rinder eine gesteigerte IFNy-Genexpression in der Real-Time-PCR (Martin et al. 2016). Im Gegensatz zu unseren Ergebnissen konnte in der Studie von Martin et al. kein signifikanter Unterschied zwischen AMIR- und CMIR-Rindern in der Zellproliferation nach ConA-Stimulation festgestellt werden (Martin et al. 2016). Bislang liefern nur die Daten unserer Arbeitsgruppe eine deutliche Unterscheidung von verschiedenen Immunkapazitäten beim Rind nach
polyklonaler Stimulation sowie Expressionsunterschiede bestimmter Signaltransduktionsmoleküle nach ConA-Stimulation und *in situ*.

Die überschießende Immunreaktion der BNP-Tiere im Proliferationsassay nach ConA-Stimulation wurde im nächsten Schritt auf proteomischer Ebene analysiert, um mögliche immunologische Unterschiede beider Phänotypen zu detektieren. Hierfür wurde das Proteom von unstimulierten und ConA-stimulierten Lymphozyten beider Kuhgruppen untersucht (Kap. 4.2). Die Lymphozyten wurden mit Hilfe von Oberflächenbiotinylierung und Fraktionierung in die drei Fraktionen Plasmazellmembranoberfläche, Nukleus und Zytosol aufgetrennt. Die Proteinausstattung jeder Zellfraktion wurde separat im Massenspektrometer analysiert und die Unterschiede in der Proteinexpressionsänderung nach ConA-Stimulation zwischen Kontroll- und Überträgerzellen guantitativ ausgewertet. Die guantitative Proteomanalyse mittels Massenspektrometrie ist bestens geeignet, um differenziell exprimierte Proteine zu identifizieren (Paul et al. 2013). Insgesamt konnten in diesem proteomischen Experiment aus allen drei Zellfraktionen von Kontroll- und BNP-Lymphozyten 5459 Proteine identifiziert werden. Dabei wurden 644 Proteine der Plamazellmembranoberfläche (Tab. 4.2.1 und Tab. 4.2.2), 2495 Proteine dem Zytosol (Tab. 4.2.3 und Tab. 4.2.4) und 2320 Proteine dem Nukleus (Tab. 4.2.5 und Tab. 4.2.6) zugeordnet. Die BNP-Überträgerlymphozyten exprimierten nach ConA-Stimulation insgesamt deutlich mehr Proteine als die Lymphozyten PregSure BVD geimpfter Kontrollkühe. Nach ConA-Stimulation waren bei den BNP-PBL auf der Plasmazellmembranoberfläche 75 Proteine (Tab. 4.2.2) und bei den Kontroll-PBL 17 Proteine (Tab. 4.2.1) höher abundant. Im Zytosol zeigten die BNP-Lymphozyten nach ConA-Stimulation eine höhere Abundanz von 457 Proteinen (Tab. 4.2.4) und die Kontrolllymphozyten von 275 Proteinen (Tab. 4.2.3). Die BNP-PBL wiesen nach ConA-Stimulation im Nukleus eine gesteigerte Expression von 283 Proteinen auf (Tab. 4.2.6) und bei den Kontroll-PBL waren 301 Proteine (Tab. 4.2.5) höher abundant. Mit Hilfe der differenziellen Proteomanalyse konnte damit das Proteinrepertoire von unstimulierten und ConA-stimulierten Lymphozyten von gesunden PregSure BVD geimpften Kontrolltieren und BNP-Überträgertieren verglichen und erhebliche qualitative und

quantitative Expressionsunterschiede detektiert werden. Dieser Datensatz stellt damit erstmalig die Proteinausstattung von Rinderlymphozyten nach Stimulation mit dem T-Zell-Stimulanz ConA dar und zeigt fundamentale Unterschiede im Proteinrepertoire der beiden Immunphänotypen vor und nach Stimulation mit ConA (PubMed Recherche, Stand September 2016). Bei der genauen Betrachtung der stärker exprimierten Proteine beider Kuhgruppen ist auffällig, dass die PBL der Kontrolltiere nach ConA-Stimulation den Transkriptionsfaktor STAT1 (Tab. 4.2.3, Nr. 34, Ratio: 15,23) stärker exprimierten als die PBL der Überträgertiere. Im Gegensatz dazu wurden die Transkriptionsfaktoren STAT3 (Tab. 4.2.2, Nr. 38, Ratio: 2,57) und IRF4 (Tab. 4.2.4 Nr. 342, Ratio: 2,40) nach **ConA-Stimulation** in den Uberträgerlymphozyten stärker exprimiert. STAT1 ist ein wichtiges Signaltransduktionsmolekül der murinen und humanen Th1-Immunantwort (Fang et al. 2015, Raphael et al. 2015). Die Proteine STAT3 und IRF4 hingegen sind bei Maus und Mensch bedeutende Transduktionsregulatoren für die Differenzierung der Th17-Zellen aus aktivierten CD4⁺ T-Zellen (Ivanov et al. 2007). An diesen und weiteren differenziellen Proteinen aus dem proteomischen Datensatz wurde deutlich, dass beide Kuhgruppen über unterschiedliche Immunkapazitäten verfügen und verschieden auf die ConA-Stimulation reagierten. Die Daten zeigen auf Proteinebene einen funktionellen Unterschied zwischen beiden Immunphänotypen. So weisen die differenziell exprimierten Proteine darauf hin, dass die Kontrolllymphozyten nach polyklonaler ConA-Stimulation vorwiegend eine Th1-Immunantwort und die Überträgerlymphozyten eine Th17-Immunantwort ausbilden könnten. Beim Rind sind bislang Th1-, Th2, Th-17 und Treg-Immunantworten beschrieben (Maeda et al. 2013). Jedoch sind die genauen Vorgänge der Th-Differenzierung beim Rind noch weitgehend unbekannt (PubMed Recherche, Stand September 2016). In unserer Arbeitsgruppe wurden bereits die Auswirkungen vom T- und B-Zell-Stimulanz PWM auf das Rinder-PBL-Proteom untersucht (Fröhlich 2015). Dabei zeigte sich, dass die PBL der PregSure BVD geimpften Kontroll- und BNP-Tiere auch auf dieses polyklonale Stimulanz ganz unterschiedliche Proteine hochregulierten (Fröhlich 2015).

Zur weiteren Charakterisierung dieser abweichenden Immunreaktionen wurde die Expression weiterer wichtiger Transkriptionsfaktoren im Western Blot und mittels Immunhistochemie getestet. Da eine differenzielle Expression von STAT5a und STAT5b nach ConA-Stimulation im Proteom der Rinder-PBL nachgewiesen werden konnte, wurden diese in weiteren Experimenten untersucht. In der differenziellen Proteomanalyse wurde STAT5a im Nukleus 1,5-fach und STAT5b im Zytosol 2,3-fach (Tab. 4.2.4, Nr. 268) stärker von den PBL der BNP-Tiere nach ConA-Stimulation exprimiert. Im Western Blot konnte keine Expressionsänderung von STAT5a (Abb. 4.3.2.1) nach ConA-Stimulation bei beiden Immunphänotypen detektiert werden. STAT5a gehört neben STAT5b zum Transkriptionsfaktor STAT5 der Treg-Zellen des Menschen (Villarino et al. 2016) und könnte so möglicherweise auch zur Differenzierung der Treg-Zelle aus der naiven CD4⁺ T-Zelle beim Rind beitragen. Zur STAT5-Phosphorylierung, also zu seiner Aktivierung in PBMC beim Rind ist zumindest bekannt, dass es vom KK34-Gen induziert wird (Yamaguchi et al. 2016), jedoch ist die genaue Funktion von STAT5 in Rinderlymphozyten unbekannt (PubMed Recherche, Stand September 2016). Da die mögliche Treg-Immunantwort der BNP-Überträgertiere untersucht werden sollte, wurden weitere spezifische Transkriptionsfaktoren der Treg-Zellen des Menschen getestet. Dabei konnten wir keine Expression von FoxP3, STAT5b sowie keine STAT5-Phosphorylierung auf unstimulierten und ConA-stimulierten PBL von beiden Kuhgruppen feststellen. Es ist deshalb zu vermuten, dass die BNP-Überträgertiere keine Treg-Immunantwort ausbilden oder dass STAT5a oder STAT5b eine andere Funktion in Rinderlymphozyten übernimmt. So spielt STAT5a beim Rind auch eine wichtige Rolle im Gewebe. Bei der Genanalyse von 16721 Holstein- und Jersey-Rindern konnte STAT5a mit der Milchproduktion assoziiert werden und mittels RNA-Sequenzierung von STAT5a wurde eine differenziell höhere Expression von STAT5a in der Milchdrüse im Vergleich zu weiteren 15 getesteten Geweben detektiert (Raven et al. 2016). Im Western Blot konnte jedoch kein Unterschied von STAT5a zwischen Kontroll- und BNP-PBL im naiven Zustand und nach ConA-Stimulation festgestellt werden, welche keine eindeutigen Hinweise zur Ausbildung einer Treg-Immunantwort der beiden Immunphänotypen lieferten. In weiteren Versuchen sollte geklärt werden, welchen Einfluss STAT5 auf Rinderlymphozyten nimmt und ob die BNP-PBL nach Stimulation mit STAT5 eine Treg-Immunantwort ausbilden oder ob STAT5a sowie STAT5b möglicherweise eine andere Funktion im Rindlymphozyten besitzen. Dies kann in Stimulationsversuchen der Rinder-PBL mit phosphoryliertem STAT5a sowie STAT5b und in *in situ*-Experimenten beider Immunphänotypen durchgeführt werden, sobald rinderspezifische Antikörper zur Verfügung stehen.

Des Weiteren konnte in der differenziellen Proteomanalyse im Nukleus der BNP-PBL nach ConA-Stimulation eine stärkere Expression der RNA-Polymerase II (TAF5 RNA polymerase II, Tab. 4.2.6; Nr. 251, Ratio 2,08) detektiert werden. Beim Menschen übernehmen die RNA-Polymerasen katalytische Funktionen bei der Transkription (Juven-Gershon et al. 2008) und TF IIB ist bedeutend für die Initiation der Transkription (Plaschka et al. 2016). Daraufhin wurde im Western Blot und in der Immunhistochemie die TF IIB-Expression beider Immunphänotypen analysiert, um mögliche Unterschiede während der Transkription ausfindig zu machen. Unsere Untersuchungen zeigten keinen Expressionsunterschied von TF IIB zwischen beiden Immunphänotypen nach ConA-Stimulation und *in situ* (Abb. 4.3.2.2 und Abb. 4.4.2). Bislang gibt es zu TF IIB bei Immunreaktionen des Rindes nur die von uns generierten Daten (PubMed Recherche, Stand September 2016). Beim Menschen ist bekannt, dass TF IIB am Vitamin D3 Rezeptor (VDR) bindet (DeLuca and Zierold 1998), welcher im Nukleus der BNP-Lymphozyten nach ConA-Stimulation stärker exprimiert wurde (Vitamin D 1α,25 dihydroxyvitamin D3 receptor, Tab. 4.2.6; Nr. 199, Ratio 2,33). Der VDR ist unter anderem bei der primären Immunthrombozytopenie (ITP) bedeutend (Liu et al. 2016). Wurden PBMC von ITP-Patienten und einer gesunden Kontrollgruppe mit 1 α ,25-Dihydroxyvitamin D3 inkubiert (Liu et al. 2016), zeigte sich eine prozentuale Reduzierung der Th1- und eine prozentuale Steigerung der Th2-Zellen bei den ITP-Patienten im Vergleich zu den gesunden Kontrollen in der Durchflusszytometrie (Liu et al. 2016). Weiterhin wurde in der Real-Time-PCR deutlich, dass eine gesteigerte Genexpression von GATA3 und FoxP3, eine geringere Genexpression von Tbet sowie keine Veränderung der RORyT-Expression bei den ITP-Patienten vorlag (Liu et al. 2016). Somit konnte eine gesteigerte Th2-Immunantwort bei den ITP-Patienten festgestellt werden (Liu et al. 2016). Die Th1und Th17-Immunantwort hingegen wurden mit 1a,25-Dihydroxyvitamin inhibiert oder

blieben unbeeinflusst (Liu et al. 2016). In dieser Arbeit wurde der Effekt von 1 α ,25-Dihydroxyvitamin D3 auf bovine PBL in *in vitro* Proliferationsassays getestet (Tab. 4.6). Nach Inkubation mit 1 α ,25-Dihydroxyvitamin D3 und Stimulation mit ConA zeigten sich keine signifikanten Veränderungen in der Proliferationsrate beider Kuhgruppen. Es kann somit kein Zusammenhang mit TF IIB und dem VDR sowie der Wirkung von 1 α ,25-Dihydroxyvitamin D3 auf die getesteten Lymphozyten hergestellt werden. Unsere Daten zeigen, dass TF IIB zur Unterscheidung der verschiedenen Immunphänotypen nicht herangezogen werden kann. Für die weitere Analyse der unterschiedlichen Immunantworten wurden deshalb die beim Mensch bekannten Transkriptionsfaktoren für die Th1- und Th17-Reaktion analysiert, da es nach der differenziellen Proteomanalyse eindeutige Hinweise für die Ausbildung dieser Immunantworten gab.

Um der nachzugehen, die Kontrolllymphozyten Fragestellung ob eine Th1-Immunantwort ausbilden, wurde der Transkriptionsfaktor STAT1 im Western Blot getestet. Bei Maus und Mensch differenzieren sich die Th1-Zellen aus der naiven CD4⁺ Th-Zelle durch die Produktion der Transkriptionsregulatoren STAT1 und STAT4 sowie des Mastertranskriptionsfaktors Tbet (Kanhere et al. 2012, Oestreich and Weinmann 2012). Sie sekretieren IFNy, IL1 β und TNF α (Mosmann et al. 1986) und bilden die zelluläre Immunantwort gegen intrazelluläre Erreger aus (Abdoli and Najafian 2014). Die Kontrolllymphozyten exprimierten im Western Blot nach ConA-Stimulation doppelt so stark STAT1 wie die Überträger-PBL (Abb. 4.3.3). Ebenso konnte in der Immunhistochemie gezeigt werden, dass STAT1 im Kontrolllymphknoten stärker an Tyr 701 phosphoryliert wurde als im Überträgerlymphknoten, was bedeutet, dass STAT1 in Kontrolllymphknoten stärker aktiviert wurde als im Überträgerlymphknoten. Die pSTAT1 (Tyr701)-Expression des Kontrolllymphknotens konnte mit den CD4⁺ T-Zellen assoziiert werden, was für eine Th1-Immunantwort der Kontrolltiere spricht. Neben den CD4⁺ T-Zellen zeigten auch CD4⁻T-Zellen im Kontrolllymphknoten und im Überträgerlymphknoten eine STAT1 (Tyr701)-Phosphorylierung (Abb. 4.4.1), was auf die Aktivierung von STAT1 auch in anderen Zelltypen hindeutet. Einen Unterschied in der Phosphorylierung zwischen CD4⁺ und CD4⁻ T-Zellen konnte nicht nachgewiesen werden. Um

festzustellen, um welche CD4⁻T-Zellen es sich dabei handelt, müssen zukünftig immunhistochemische Doppelfärbungen von pSTAT1 (Tyr701) weitere mit Zellmarkern wie CD8, CD25 oder IgM angefertigt werden. Bei der Maus lässt sich in CD8⁺ T-Zellen der Milz nach viraler Infektion unphosphoryliertes STAT1 nachweisen (Gil et al. 2012). Beim Rind muss zukünftig noch geklärt werden, ob eine STAT1-Phosphorylierung an Tyr 701 auf CD8⁺ T-Zellen stattfindet. Unsere Befunde beschreiben somit erstmalig eine pSTAT1 (Tyr701)-Phosphorylierung im Rinderlymphknoten. Das nicht aktivierte STAT1 Protein, welches wir ebenfalls auf den Kontrolllymphozyten vermehrt im Western Blot nach ConA-Stimulation (Abb. 4.3.3) nachweisen konnten, ist beim Rind bislang nur aus anderen Geweben bekannt (Vitorino Carvalho et al. 2016). Bei der Untersuchung des Endometriums Rindes wurde eine STAT1-Expressionssteigerung sowie die erhöhte des Phosphorylierung von STAT1 während der frühen Trächtigkeit (20. Tag) im Vergleich zum Östrus nachgewiesen (Vitorino Carvalho et al. 2016). Unsere Daten zeigen, dass die Kontrolllymphozyten nach ConA-Stimulation eine Th1-Immunantwort ausbilden. Zur weiteren Abklärung der Th1-Immunantwort, sollten, wenn spezifische Antikörper für das Rind zur Verfügung stehen, die Expressionsunterschiede von Tbet und IL12 auf PBL und in situ auf Lymphknoten beider Immunphänotypen überprüft werden.

Da es klare Hinweise aus der differenziellen Proteomanalyse gab, dass die PBL der BNP-Überträgertiere Transkriptionsfaktoren Th17-Immunantwort der stärker exprimierten, wurden diese im Western Blot und in der Immunhistochemie getestet. Dazu wurde die Phosphorylierung von STAT3 untersucht, weil das Transduktionsmolekül STAT3 die Differenzierung der Th17-Zellen bei Maus und Mensch induziert (Nalbant and Eskier 2016), aber noch keine immunologischen Daten nach ConA-Stimulation oder in situ beim Rind zu Th17 vorlagen (PubMed Recherche, Stand September 2016). Unsere Versuche ergaben, dass beide STAT3 Kuhphänotypen nach ConA-Stimulation vermehrt an Tyr 705 phosphorylierten. Die Expressionssteigerung war bei den Überträgerlymphozyten jedoch um den Faktor 1,4 stärker im Vergleich zu den Kontrolllymphozyten (Abb. 4.3.4). Auch die deutlich stärkere Phosphorylierung des Proteins STAT3 an Tyr 705

im Überträgerlymphknoten im Vergleich zu Kontrolllymphknoten konnte in der Immunhistochemie gezeigt werden. Somit bilden die BNP-Überträgertiere nach ConA vermehrt eine STAT3-abhängige Immunantwort aus. In den Kontrolllymphknoten war die pSTAT3 (Tyr705)-Expression vorwiegend mit den CD4⁺ T-Zellen assoziiert. Im Darmlymphknoten der immundevianten Kuh exprimierten interessanterweise die CD4⁻ T-Zellen deutlich mehr pSTAT3 (Tyr705) als die CD4⁺ T-Zellen (Abb. 4.4.5). Beim Menschen spielt STAT3 nicht nur in CD4⁺ T-Zellen eine essentielle Rolle, sondern beispielsweise auch in CD8⁺ T-Zellen beim Hyper-IgE-Syndrom (Ives et al. 2013). Bei diesem Syndrom wurde festgestellt, dass IL21 nur die STAT3-Phosphorylierung, aber nicht die Aktivierung von STAT1 oder STAT5 in naiven humanen CD8⁺ T-Zellen induziert (Ives et al. 2013). Möglicherweise ist dies auch bei den bovinen CD8⁺ T-Zellen der Fall. Hierzu könnten in weiteren Versuchen die Lymphozyten beider Immunphänotypen gesortet werden, um nach Stimulation mit verschiedenen Zytokinen, die jeweilige STAT-Phosphorylierung zu überprüfen. Es könnte somit auch festgestellt werden, ob es eine Abweichung zwischen der STAT-Phosphorylierung in verschiedenen Lymphozytensubpopulationen beider Kuhgruppen gibt. Um die häufigere STAT3 (Tyr705)-Phosphorylierung in CD4 T-Zellen der Uberträgertiere weiter zu analysieren, sollte in weiteren Versuchen die pSTAT3 (Tyr705)-Expression in CD8⁺ T-Zellen und B-Zellen untersucht werden. Zukünftig müsste auch die STAT3-Expression in CD8⁺ T-Zellen und B-Zellen zunächst mittels Durchflusszytometrie analysiert werden. Beim Menschen wurde bereits der Einfluss von ConA auf die STAT3-Phosphorylierung in Tumorzellen untersucht, um mögliche Chemotherapeutika und Bio-Marker zu finden (Pratt and Annabi 2014). Da der JAK/STAT-Signalweg in zahlreichen Tumoren für Tumorwachstum, Proliferation und für eine gesteigerte Kanzerogenität von Bedeutung ist (Stechishin et al. 2013) kann die Inhibition von JAK2/STAT3 die Invasivität, Ausbreitung und den fortschreitenden Krankheitsverlauf des humanen Glioblastoms reduzieren (Senft et al. 2011). Die Hemmung von JAK2/STAT3 konnte bei den PBL der immundevianten Tiere ebenfalls eine Reduzierung der erhöhten Proliferationsrate bewirken (Abb. 4.6.1). Im Hinblick darauf, könnte die STAT3-Phosphorylierung in dysregulierten Zellen auch beim Rind eine wichtige Rolle spielen. Unsere Daten weisen darauf hin, dass die BNP-Überträgertiere funktionell

eine abweichende Immunantwort im Vergleich zu den Kontrolltieren ausbilden, weil sie nach ConA-Stimulation STAT3 anstelle von STAT1 aktivieren. Zeigen die Lymphozyten eine gesteigerte Phosphorylierung von STAT3 an Tyr 705, bilden diese eine Th17-Immunantwort aus, was bei BNP-Überträgertieren nach ConA-Stimulation nachweisbar ist.

Weiterhin konnte im Überträgerlymphknoten in situ eine deutlich höhere RORyT-Expression gegenüber dem Kontrolllymphknoten festgestellt werden. Während bei den CD4⁺ T-Zellen keine Unterschiede bei der RORyT-Expression gefunden wurden, zeigte sich bei den CD4 T-Zellen eine deutlich stärkere RORyT-Expression im Überträgerlymphknoten (Abb. 4.4.6). Unsere Daten beweisen erstmalig eine unterschiedliche Expression von RORyT im Rinderlymphknoten der beiden Immunphänotypen mittels Immunhistochemie. Beim Menschen wurden immunhistochemische Nachweise von RORyT in Lungengewebe und Lungenlymphknoten AIDS-Patienten mit dem Immune bei Reconstitution Inflammatory Syndrom (IRIS) nach einer Infektion mit Mykobakterium parascrofulaceum durchgeführt (Hibiya et al. 2011). Dabei zeigte sich, dass beim Vergleich von exsudativen und proliferativen Läsionen der Lunge die RORy⁺ T-Zellen hauptsächlich in exsudativen Läsionen vorhanden waren, was dort für eine Th17-Immunantwort spricht (Hibiya et al. 2011). Im Vergleich dazu zeigten die proliferativen Läsionen vorrangig eine Th1-Immunantwort (Hibiya et al. 2011). Dies könnte bedeutend für die Abwehr gegen Mykobakterien und die Reduzierung der bakteriellen Belastung in der frühen Verlaufsform sein, wobei die genauen Effekte der verschiedenen Th-Zellen noch unbekannt sind (Hibiya et al. 2011). Diese Kenntnisse der Th1- und Th17-Immunreaktionen bei Infektionen lassen sich möglicherweise auf das Rind übertragen. Denn beim Rind konnte RORyT ebenfalls bei einer Mykobakterien-Infektion detektiert werden (Doherty et al. 2016). Bei der Genanalyse von PBMC von mit Mykobakterium bovis infizierten Rindern wurde das RORyT-Gen (RORC) identifiziert (Doherty et al. 2016), aber noch keine RORyT-Expression speziell in Th17-Zellen des Rindes nachgewiesen (PubMed Recherche, Stand September 2016). Unsere Daten zeigen beim Rind erstmalig auf Proteinebene eine RORyT-Expression in situ und dabei eine höhere

RORyT-Expression im BNP-Lymphknoten als im Kontrolllymphknoten. Bei Maus und Mensch ist bekannt, dass RORyT der Mastertranskriptionsfaktor der Th17-Zellen ist (Nalbant and Eskier 2016). Die Th17-Zellen sind beim Menschen an diversen Autoimmunerkrankungen wie der Psoriasis beteiligt (Ivanov et al. 2006) und könnten auch bei der BNP eine bedeutende Rolle spielen. Außerdem sind bei der Maus CD8⁺ T-Zellen bekannt, die RORyT exprimieren, was zusätzlich mit der Produktion von IL6, TGFB, IL17 sowie IL23 assoziiert ist (Curtis et al. 2009). Dies könnte bedeuten, dass auch beim Rind CD8⁺ T-Zellen RORyT exprimieren. Die publizierten Daten von Mensch und Maus und unsere gewonnenen Daten zeigen, dass RORyT nicht nur von CD4⁺ T-Zellen, sondern auch von CD4⁻ T-Zellen des Rindes exprimiert werden. Zur Abklärung der genauen Zellsubpopulationen, müssen auch hier weitere Doppelfärbungen von RORyT mit Zellmarkern wie CD8 und IgM in der Immunfluoreszenz durchgeführt werden. In dieser Arbeit wurde festgestellt, dass im BNP-Überträgerlymphknoten neben der gesteigerten RORyT- auch eine stärkere IL17-Expression im Vergleich zum Kontrolllymphknoten nachweisbar ist. Alle CD4⁺ T-Zellen des Überträgerlymphknotens exprimierten deutlich mehr IL17 als die des Kontrolllymphknotens, wo nur eine geringe IL17-Expression der CD4⁺ T-Zellen nachweisbar war (Abb. 4.4.8). Unsere Daten zeigen erstmalig eine IL17-Expression in situ im Rinderlymphknoten (PubMed Recherche, Stand September 2016). Beim Rind sind zahlreiche Immunreaktionen und Erkrankungen mit IL17 assoziiert. Bei der Infektion mit Mykobakterium avium subsp. paratuberculosis (MAP) des Rindes wurden PBMC von infizierten und erkrankten Tieren mittels Real-Time-PCR die IL17-Genexpression im Vergleich zu der nicht infizierten Kontrollgruppe untersucht (Allen et al. 2011). Dabei konnte eine gesteigerte IL17-Genexpression sowohl bei den MAP-erkrankten Rindern als auch bei den infizierten, nicht aber bei den Kontrolltieren, nachgewiesen werden (Allen et al. 2011). Somit wurde eine gesteigerte IL17-Genexpression bei allen infizierten Tieren festgestellt (Allen et al. 2011), was für eine abweichende Immunreaktion nach einer MAP-Infektion spricht. Auch bei Kühen, die an einer Mastitis mit Staphylococcus aureus erkrankten, war die IL17-Genexpression in den somatischen Zellen der Milch hochreguliert im Vergleich zu den PBMC derselben Kühe (Tao and Mallard 2007). Die publizierten Daten weisen lediglich auf die Hochregulation des IL17-Gens bei infizierten sowie erkrankten Kühen nach Infektionen mit verschiedenen Erregern, aber nicht die stärke Expression von IL17 auf Proteinebene hin. Die Daten zeigen, dass Kühe mit bestimmten Infektionskrankheiten eine gesteigerte IL17-Genexpression besitzen. Diese Erkenntnisse lassen sich zumindest insofern auch auf die BNP übertragen, da die BNP-Überträgerlymphozyten nach Immunstimulation mit ConA ebenfalls mit einer stärkeren IL17-Expression reagieren als die Kontrolllymphozyten. In unserer Arbeitsgruppe konnte jedoch die stärkere IL17-Expression auf Proteinebene festgestellt werden und belegt somit eindeutig einen funktionellen Unterschied der verschiedenen Immunphänotypen.

Neben den Proliferationsergebnissen und den proteomischen Daten spricht auch die unterschiedliche Expression des Transkriptionsfaktors IRF4 dafür, dass die BNP-PBL immunologisch funktionell anders reagieren als die Kontroll-PBL. Dabei zeigten die Zellen des BNP-Darmlymphknotens eine starke IRF4-Expression, jedoch nicht die Zellen der Kontrolllymphknoten. Unsere Daten weisen erstmalig eine starke IRF4-Expression in situ im Lymphknoten der Uberträgertiere nach. Beim Rind ist auch die genaue funktionelle Bedeutung von IRF4 bislang unbekannt (PubMed Recherche Stand, September 2016). Beim Menschen konnte das IRF4-Gen dagegen bereits bei verschiedenen Erkrankungen identifiziert werden. Mittels Meta Genome-Wide Association Strategy (meta-GWAS) konnte ein gemeinsames Gen identifiziert werden, das mit der Systemischen Sklerose (SS) und der Rheumatischen Arthritis (RA) des Menschen assoziiert ist (Lopez-Isac et al. 2016). Das IRF4-Gen wurde mit beiden Autoimmunkrankheiten in Verbindung gebracht (Lopez-Isac et al. 2016). Weiterhin wird das IRF4-Gen im Immunoglobulin M Multiplen Myelom (IgM MM) des Menschen stärker exprimiert als bei anderen Formen des multiplen Myeloms und kann als prognostischer Faktor genutzt werden (Ryu et al. 2016). So vermuten die Autoren, dass die IgM MM-Immunzellen mit einer hohen IRF4-Expression aggressiver agieren als die Zellen, die eine geringere Expression von IRF4 zeigen (Ryu et al. 2016). Diese Informationen sind auch für die BNP interessant und könnten zur Identifizierung der immundevianten Tiere beitragen. Zukünftig könnten beispielsweise PBL von BNP- und Kontrollkühen nach Infektion mit verschiedenen

Erregern auf ihre Immunreaktion untersucht und dabei eine mögliche unterschiedliche IRF4-Regulation genauer analysiert werden.

Verglichen mit den Kontrolltieren zeigten die BNP-Lymphozyten sowohl in situ als ConA-Stimulation in vitro eine gesteigerte auch nach Expression aller Transkriptionsfaktoren der Th17-Immunantwort eine gesteigerte sowie IL17-Expression. Dies spricht dafür, dass die BNP-Tiere bevorzugt eine Th17-Immunantwort ausbilden, wie sie bei Maus und Mensch bereits bekannt ist. Die murinen und humanen Th17-Zellen werden von den Transkriptionsregulatoren STAT3, IRF4 und dem Mastertranskriptionsfaktor RORyT induziert und sekretieren die Zytokine IL17A, IL17F, IL22 und IL26 (Nalbant and Eskier 2016). Sie sind gegen extrazelluläre Bakterien und Pilze gerichtet und werden mit verschiedenen Autoimmunerkrankungen in Verbindung gebracht (Lochner et al. 2015). So zeigten Beispiel Patienten mit einer immunen Thrombozytopenie zum (ITP) in mononukleären Knochenmarkszellen eine größere Population an Th17-Zellen als nicht Erkrankte (Song et al. 2016).

Um die hochsignifikant stärkere Zellproliferation der BNP-Überträgerlymphozyten auf T-Zell-Stimulanz ConA weiter zu untersuchen, sollte die generelle das Signalverarbeitung und Signalübertragung am TCR überprüft werden. Dafür wurden ZAP70 und PLCv1 im Western Blot und in der Immunhistochemie getestet. In der Proteomanalyse konnte bereits eine stärkere ZAP70-Expression an der BNP-Überträgerlymphozyten Plasmazellmembranoberfläche der nach ConA-Stimulation detektiert werden (Zeta-chain TCR associated protein kinase 70, Tab. 4.2.2; Nr. 60, Ratio 2,16). Darüber hinaus zeigte sich eine gesteigerte PLCy1-Expression (Abb. 4.3.5) nach ConA-Stimulation bei den BNP-PBL im Vergleich zu den Kontroll-PBL. Ebenfalls wurde mittels Immunhistochemie eine deutlich stärkere PLCy1-Expression im Überträgerlymphknoten im Vergleich zum PLC_v1 Kontrolllymphknoten festgestellt (Abb. 4.4.4). wurde im Überträgerlymphknoten vor allem von ringförmig angeordneten Zellen im Randbereich exprimiert und weniger von Zellen im Zentrum des Lymphknotens. Im Zentrum des Lymphfollikels befinden sich hauptsächlich B-Lymphozyten und in der parakortikalen Zone sind vorrangig T-Lymphozyten auffindbar (Ben-Hur et al. 2004).

Unsere Daten zeigen also, dass die gesteigerte PLCy1-Expression hauptsächlich mit T-Lymphozyten assoziiert ist. Des Weiteren war die ZAP70-Expression in den CD4⁺ T-Zellen des Überträgerlymphknotens deutlich stärker als in den CD4⁺ T-Zellen des Kontrolllymphknotens (Abb. 4.4.3). Die gesteigerte Expression von PLCy1 und ZAP70 in CD4⁺ T-Zellen beim BNP-Rind ist sehr interessant und könnte auf eine Stimulation des TCR hinweisen. Beim Rind liegen bislang nur immunologische Daten zu ZAP70 bei Kühen mit einer MAP-Infektion vor (Leite et al. 2015). Dabei konnte festgestellt werden, dass CD4⁺ T-Zellen von MAP-infizierten Kühe bereits unstimuliert eine reduzierte ZAP70-Expression aufweisen im Vergleich zu ConA-stimulierten Zellen (Leite et al. 2015). Die gesteigerte ZAP70-Expression im BNP-Lymphknoten in situ kann durchaus bedeutend für die BNP sein. Da die genauen Wirkmechanismen von PLCy1 und ZAP70 am TCR beim Rind noch nicht ausreichend erforscht sind, lässt sich bislang nur vermuten, dass beim Rind die gleichen Vorgänge wie bei der Maus und beim Menschen ablaufen. PLCy1 und ZAP70 sind (neben LAT und LCK) bei Maus und Mensch bedeutsam für die TCR-vermittelte Signalübertragung, MAP-Kinase-Aktivierung, T-Zell-Proliferation und die IL2-Produktion von T-Zellen (Chuck et al. 2010, Chiang and Hodes 2015). Die TCR-Stimulation erfolgt dort über die Phosphorylierung und Aktivierung der zeta-Kette des TCR und LCK (Chiang and Hodes 2015). Das aktivierte LCK phosphoryliert ZAP70, welches wiederum LAT und SLP76 durch Phosphorylierung aktiviert (Chiang and Hodes 2015). Nachfolgend wird durch PLCv1 die Signalübertragung am TCR weitergeleitet (Chiang and Hodes 2015). Beim Menschen ist eine gesteigerte PLCy- und ZAP70-Expression auch mit verschiedenen Formen der Leukämie assoziiert, was auf eine Dysregulation am TCR zurückzuführen und auch für die BNP bedeutend sein könnte. Da die Chronische Lymphatische B-Zell-Leukämie (CLL) des Menschen eine sehr schlechte Prognose hat, werden zur Früherkennung und zur Abschätzung des Behandlungserfolgs prognostische Marker eingesetzt (Frezzato et al. 2016). ZAP70 liefert in diesem Zusammenhang wichtige Informationen, denn eine Überexpression von ZAP70 führt zu einer aggressiveren Verlaufsform der Leukämie (Frezzato et al. 2016). Die aggressivere Verlaufsform zeigt sich in der Überexpression von PLCy1 und ZAP70 (Frezzato et al. 2016), die ebenfalls bei den stark proliferierenden Lymphozyten der BNP-Tiere nachweisbar ist

und mit dem hyperproliferativem Phänotyp der BNP-PBL assoziiert sein könnte. In weiteren Versuchen muss die abweichende Signalübertragung und -weiterleitung der BNP-Lymphozyten weiter analysiert werden. Dazu sollten insbesondere mögliche Expressionsunterschiede von LAT und LCK der beiden Kuhgruppen untersucht werden, da diese bei Mensch und Maus ebenso bedeutsam für die TCR-vermittelte Signalübertragung sind (Chiang and Hodes 2015).

Im nächsten Schritt wollten wir der Frage nachgehen, ob der hyperproliferative Immunphänotyp der BNP-Überträgertiere bereits vor der Impfung mit PregSure BVD vorhanden war oder ob die Impfung selbst diese abweichende Immunreaktion der BNP-Tiere ausgelöst hat. Falls nicht durch die Impfung induziert, wäre davon auszugehen, dass der abweichende Immunphänotyp generell in der Kuhpopulation verbreitet ist. Deshalb wurden Tiere einer PregSure BVD ungeimpften Kuhpopulation mittels in vitro Proliferationsassays beprobt und untersucht, ob BNP-ähnlich reagierende Tiere in einer solchen Herde nachweisbar sind. Bei dem Screening dieses ungeimpften Rinderbestandes zeigten 16 % der Kühe eine gesteigerte Proliferationsrate nach polyklonaler ConA-Stimulation im Proliferationsassay (Abb. 4.5.1). Diese wichen hochsignifikant von dem Proliferationsgrad der anderen ungeimpften Kontrolltiere ab, unterschieden sich aber nicht von dem der BNP-Tiere. Somit konnten wir bei 16 % der getesteten Tiere einen hyperproliferativen der BNP-Überträgertiere, Immunphänotyp. ähnlich dem nachweisen. Die Lymphozyten dieser hyperproliferativen, ungeimpften Kontrollkühe (Hyper-Kühe) reagierten 4,5 Mal und die Überträgerlymphozyten 5 Mal stärker auf die ConA-Stimulation als die Kontrolltiere (Abb. 4.5.1). Der identifizierte hyperproliferative Immunphänotyp wurde durch die Stimulation von Lymphozyten der drei Kuhgruppen (Kontrolle, Hyper, BNP) mit den Zytokinen IL2, IL4 und IFNy weiter charakterisiert. Dabei zeigte sich, dass die BNP-Tiere auch durch eine in vitro Stimulation ausschließlich mit IL2 signifikant stärker als die Kontrolltiere proliferierten und sich die Hyper-Tiere ebenfalls wie die BNP-Tiere verhielten (Abb. 4.5.2); die Stimulation mit IL4 und IFNy führte dagegen zu keiner differenziellen Immunreaktion. Die getesteten Zytokine dienten der Differenzierung von Th-Zellen. So wird IL2 bei der Maus und beim Menschen von T-Lymphozyten, NKT-Zellen (Boyman and Sprent

2012) und B-Lymphozyten sekretiert (Gaffen and Liu 2004) und reguliert die Differenzierung der aktivierten CD4⁺ T-Zellen den verschiedenen zu T-Helfer-Subtypen (Boyman and Sprent 2012). Weiterhin steuert IL2 die Zellproliferation und das T-Zell-Wachstum (Boyman and Sprent 2012), was zum hier beschriebenen, abweichenden Immunphänotyp passt. IL2 aktiviert komplexe Immunreaktionen und stellt ein wichtiges Zytokin der Th1-, Th2-, Th17- und Treg-Immunantwort dar (Liao et al. 2011a). Unsere Daten zeigen eine gesteigerte T-Zellproliferation der immundevianten Tiere, die mit IL2 im Zusammenhang steht. ConA stimuliert die T-Zellen (Quade and Roth 1999) und diese Stimulation wird bei der Maus über CD28 mit einer Ko-Stimulation von CD80 und CD86 bewirkt (Perrin et al. 1997). Die gesteigerte Zellproliferation der immundevianten Tiere nach ConAsowie nach IL2-Stimulation lässt sich mit der gesteigerten PLCy1- und ZAP70-Expression im Überträgertier erklären. Somit konnten wir nachweisen, dass die BNP-Tiere eine qualitativ abweichende Immunantwort ausbilden.

Die alleinige Stimulation der PBL mit IFNy und IL4 ergab keinen signifikanten Unterschied zwischen den beiden Immunphänotypen. Diese Daten sprechen allerdings nicht dagegen, dass die Kontrolllymphozyten eine Th1-Immunantwort bilden. In Versuchen beim Menschen konnte bestätigt werden, dass die Zytokine IFNy sowie IL4 auch zu einer Th17-Immunantwort führen können (Baharlou et al. 2016, Massoud et al. 2016), diese jedoch nicht ausreichend stark induziert wird. Somit kann sich kein Unterschied zwischen den beiden Immunphänotypen abzeichnen. Es werden zukünftig weitere Untersuchungen mit den entsprechenden Transkriptionsfaktoren Tbet und GATA3 für die Th1- sowie für die Th2-Immunantwort durchgeführt, sobald geeignete rinderspezifische Antikörper zur Verfügung stehen. Auch die Sekretion von Zytokinen wie TNFa, IL1β, IL5 und IL10 soll dabei untersucht werden. Beim Rind wurde in einer Studie bereits getestet, ob in PBMC von Kühen um den 100. Laktationstag eine gesteigerte Zytokin-Genexpression nach ConA-Stimulation mittels Real-Time-PCR feststellbar ist (Paibomesai et al. 2013). Es zeigte sich ein signifikanter Anstieg von IFNy und IL4 nach ConA-Stimulation im Vergleich zu den unstimulierten Zellen (Paibomesai et al. 2013). Jedoch wurde eine gesteigerte IFNy-Genexpression nach der Kalbung und eine erhöhte IL4-Regulierung

vor der Geburt in unstimulierten Zellen nachgewiesen (Paibomesai et al. 2013). Die Ergebnisse dieser Arbeit geben einen Hinweis darauf, dass die Zellproliferation nach ConA-Stimulation nicht mit dem Reproduktionsstatus der Tiere korreliert (Kap. 4.7).

Die im Zuge dieser Arbeit generierten Daten zeigen, dass 16 % einer PregSure BVD ungeimpften Kuhpopulation nach polyklonaler ConA-Stimulation (Abb. 4.5.1) einen hyperproliferativen Immunphänotyp aufweisen, welcher auch mit einer solitären IL2-Stimulation (Abb. 4.5.2) im *in vitro* Proliferationsassay bestätigt werden konnte. Daten aus unserer Arbeitsgruppe zeigen zudem, dass ein vergleichbarer Prozentsatz an Kühen (15%) auch nach PWM-Stimulation hyperproliferativ reagiert. Hyper-Tiere können somit durch in vitro Proliferationsassays mit ConA und PWM zuverlässig identifiziert werden. Es muss jedoch geklärt werden, ob die immundevianten Tiere generell auf eine Stimulation hyperproliferativ reagieren oder ob es Tiere gibt, die auf einen bestimmten Stimulus vorrangig mit einer T- oder B-Zell-Stimulation reagieren. Hierfür sollte eine Stimulation mit einem B-Zell-Stimulanz durchgeführt werden. Dies könnte mittels Staphyloccocus aureus Covan I (SAC) erfolgen (Sakowicz-Burkiewicz et al. 2012). Zur weiteren Analyse der verschiedenen Immunphänotypen muss zukünftig ein proteomisches Experiment mit nicht PregSure BVD geimpften Kühen durchgeführt werden. Es sollten die Proteine der Hyper-PBL mit denen der BNP-PBL unstimuliert und nach ConA-Stimulation verglichen werden, um auch auf Proteinebene den Beweis zu erhalten, dass nicht nur die BNP-PBL, sondern auch die Hyper-PBL vor und nach der Stimulation funktionell andere Proteine stärker exprimieren als die Kontrolllymphozyten. Das Auffinden der Hyper-Tiere mittels Proliferationsassays weist jedoch schon darauf hin, dass die abweichende Immunkapazität der BNP-Tiere bereits vor der Impfung vorhanden war und somit durch eine fehlgeleitete, überschießende Immunantwort auf die Impfung auch zur Entstehung der pathogenen BNP-Antikörper beigetragen haben könnte. Nachdem die gesteigerte Proliferationsrate mit ConA und die stärkere Expression der Transkriptionsfaktoren der Th17-Immunantwort bei den BNP-Überträgertieren bewiesen wurde, sollte auch der funktionelle Nachweis der unterschiedlichen Th-Antworten erfolgen. Dies wurde mit verschiedenen Inhibitoren und anschließender ConA-Stimulation von Lymphozyten aller drei Kuhgruppen (Kontrolle,

Hyper, BNP) erreicht. Dabei zeigte die Mehrzahl der eingesetzten Inhibitoren (BTK-Inhibitor, 17β-hydroxy Wortmannin, p38MAP-Kinase Inhibitor. 1-Methyl-D-tryptophan, 1a,25-Dihydroxyvitamin D3, STAT5 Inhibitor, Nifuroxazide, STAT3 Inhibitor V und STAT3 Inhibitor VI) keine signifikanten Unterschiede bei der Beeinflussung der Proliferationsraten zwischen den Kontrolltieren, Hyper- und Überträgertieren (Tab. 4.6). Somit konnte ein entscheidender Unterschied bei der Signaltransduktion von BTK, IDO, IDOL1, IRF4, STAT5 oder P38MAP-Kinase bei allen drei Kuhgruppen ausgeschlossen werden. Einen funktionellen Unterschied erzielte der STAT3 Inhibitor III bei den getesteten Lymphozyten, aber nicht der STAT3 Inhibitor V sowie der STAT3 Inhibitor VI. Der STAT3 Inhibitor III zeigte keine Hemmung der Proliferationsrate der Kontrolllymphozyten nach ConA-Stimulation (Abb. 4.6.1), aber bei den Hyper- und BNP-Lymphozyten kam es zu einer signifikanten Inhibition der Proliferationsrate im Vergleich zu den Kontrollymphozyten. Beim Rind wurde die Wirkung des STAT3 Inhibitors III (WP1066) auf periphere Blutleukozyten bislang nicht beschrieben (PubMed Recherche Stand, September 2016). Beim Menschen agiert der STAT3 Inhibitor III als ein Zell-durchlässiges Tyrphostin-Analogon, das STAT3 und die Janus kinase (JAK) 2 hemmt (Wang et al. 2016). Im Gegensatz dazu hemmt der STAT3 Inhibitor V STAT3-Komplex-Bildung, STAT3-DNA-Bindung die die und die Transkriptionsaktivierung von STAT3 und inhibiert die Expression für die regulatorische STAT3-Gencodierung von Cyclin D1, Bcl-xL und Survivin (Siddiquee et al. 2007). Weiterhin hemmt er das Wachstum des Mammakarzinoms in vivo beim Menschen (Siddiquee et al. 2007). Der STAT3 Inhibitor VI inhibiert selektiv die Funktion der STAT3-SH2-Domäne (Schust et al. 2006) und damit die Aktivierung, Dimerisation und Translokation von STAT3 und steigert die Apoptose in STAT3-abhängigen Mammakarzinom-Zelllinien (Schust et al. 2006). Unsere Daten zeigen, dass eine erfolgreiche Inhibition von STAT3 der immundevianten Rinder-PBL nach ConA-Stimulation nur mit dem STAT3 Inhibitor III möglich ist, welcher im Gegensatz zu den anderen STAT3 Inhibitoren JAK2 hemmt. In weiteren Versuchen sollte die JAK-Expression der zwei Kuhgruppen im Western Blot analysiert werden. Da nur eine Inhibition mit dem STAT3 Inhibitor III möglich war, sollte die JAK2-Expression in den PBL der BNP-Überträgertiere nach Stimulation signifikant

stärker sein. Bislang gibt es beim Rind nur Daten zur Inhibition von STAT3 und dessen Auswirkungen auf die Maturation boviner Oozyten und die Entwicklung des bovinen Embryos in der Frühträchtigkeit in vitro (Mo et al. 2014). Dabei konnte festgestellt werden, dass der Leukemia inhibitory factor (LIF) eine wichtige Rolle für die Phosphorylierung von STAT3 übernimmt (Mo et al. 2014). Wird die JAK2/STAT3-Aktivität inhibiert, so nimmt die LIF-induzierte Maturation von bovinen Oozyten ab (Mo et al. 2014). In dieser Arbeit erfolgte ebenfalls die Hemmung der JAK/STAT3-Aktivität, welche sich in der Inhibition der Proliferationsrate der immundevianten Tiere wiederspiegelt. Möglicherweise reagieren Rinderzellen nur auf eine JAK2/STAT3-Hemmung und nicht auf die anderen STAT3-Inhibitionen, die beispielsweise beim Mensch bekannt sind. Beim Menschen spielt STAT3 eine wichtige Rolle bei der Dysregulation von T-Zellen bei Krebspatienten. Bei Patienten mit einem malignen Gliom konnte gezeigt werden, dass nach STAT3-Inhibition die Phosphorylierung der Spleen tyrosine kinase (SYK) an Tyr 705 in Monozyten und die Phosphorylierung von ZAP70 in T-Zellen zunimmt (Hussain et al. 2007). Diese STAT3-Inhibition erfolgte mit dem STAT3 Inhibitor III WP1066, der bei den immundevianten Rindern ebenfalls eine Hemmung erzielte. Wir konnten darüber hinaus eine stärkere ZAP70-Expression der BNP-Lymphozyten in situ mittels Immunhistochemie nachweisen (Abb. 4.4.3). In weiteren Experimenten sollte deshalb die SYK- und die ZAP70-Phosphorylierung auf Rinder-PBL nach Hemmung mit dem STAT3 Inhibitor III untersucht werden um nachzuweisen, ob der Mechanismus der STAT3-Hemmung durch diesen Inhibitor derselbe ist wie beim Menschen. Beim des oralen Plattenepithelkarzinom Menschen wurde die Wirkung vom STAT3 Inhibitor III WP1066 ebenfalls untersucht (Zhou et al. 2014). Dabei zeigte sich, dass eine Kombination aus Cisplatin und WP1066 die Zellproliferation, Migration und Invasivität der Tumorzellen hemmt und beim chemotherapeutisch resistenten oralen Plattenepithelkarzinom (Zhou et al. 2014), chronisch lymphatischer Leukämie (CLL) (Lu et al. 2015b) sowie beim Mantelzell-Lymphom (MCL) (Lu et al. 2015a) eingesetzt werden kann, da er die konstitutive STAT3-Aktivierung und modulierte mRNA-Expression von anti- und proapoptotischen Genen hemmt (Lu et al. 2015a). Der Nachweis der konstitutiven STAT3-Phosphorylierung konnte in situ im BNP-Lymphknoten erbracht werden (Abb. 4.4.5) und ist vermutlich typisch für

dysregulierte T-Lymphozyten. Ferner zeigen die Ergebnisse mit dem STAT3 Inhibitor III eine Hemmung der Zellproliferation der immundevianten Tiere ein Phänomen, das ebenfalls chemotherapeutisch bei diversen Tumorerkrankungen des Menschen genutzt wird. Zukünftig sollten weitere Inhibitionsversuche mit beispielsweise einem Tbet-Inhibitor für die Th1-Immunantwort und für die Th17-Immunantwort eine RORyT-, IRF4- oder IL17-Inhibition im Proliferationsassay durchgeführt werden. Damit können die genauen immunologischen Vorgänge einer Th1-Antwort der Kontrolltiere und einer Th17-Immunantwort der BNP-Überträgertiere weiter charakterisiert und spezifiziert werden.

Da 16 % der nicht PregSure BVD geimpften Tiere eine gesteigerte Proliferationsrate nach ConA- und IL2-Stimulation zeigen und somit einen ebenso hyperproliferativen Immunphänotyp wie die BNP-Tiere aufweisen, wurde die funktionelle Korrelation dieses Immunphänotyps mit bestimmten Leistungsparametern sowie der Häufigkeit von verschiedenen Erkrankungen analysiert. Dabei hatten Abstammung, Rasse, Alter und Trächtigkeitsstadium keinen Einfluss auf die Proliferationsrate der Lymphozyten beider Kuhgruppen. Bei der Betrachtung der Leistungsdaten zeigten die Kontrolltiere und die Hyper-Tiere keine signifikanten Unterschiede. Die Tagesmilchleistung und die durchschnittliche Laktationsleistung wiesen bei den Hyper-Tieren geringgradig höhere Werte auf als bei den Kontrolltieren. Die Milchparameter Fett. Eiweiß, Harnstoff und Laktose waren bei beiden Immunphänotypen fast identisch. Ein kleiner Unterschied konnte aber bei der Zellzahl in der Milch festgestellt werden (Kap. 4.7). Die erhöhte Zellzahl der Hyper-Tiere könnte erste Hinweise auf eine unzureichende Eutergesundheit mit einer anfänglichen subklinischen Mastitis (>150.000 somatische Zellen pro ml) (Lavon et al. 2016) geben. Insgesamt konnte jedoch kein signifikanter Unterschied in den Milch- und Leistungsdaten zwischen beiden Immunphänotypen festgestellt werden. Dagegen zeigten die Untersuchungen der Gesundheitsdaten, dass bei 29,6 % der Hyper-Tiere häufiger eine Erkrankung des Euters diagnostiziert wurde (Abb. 4.7 B). Diese Daten geben eindeutige Hinweise, dass Tiere mit einem hyperproliferativen Phänotyp eine schlechtere Eutergesundheit besitzen als die Kontrolltiere. In einer kanadischen Studie wurden ebenfalls die Immunreaktionen auf verschiedene

Antigene mit dem Risiko an einer Mastitis zu erkranken analysiert, welche jedoch nicht mit den Daten dieser Arbeit verglichen werden können. Die getesteten Tiere dieser Arbeit stammten aus einer nicht PregSure BVD geimpften Kuhpopulation und waren nicht, wie in der kanadischen Studie, im Vorfeld mit verschiedenen Antigenen immunisiert worden (Thompson-Crispi et al. 2013). Dabei wurde die Inzidenz von klinischen Mastitiden sowie der Schweregrad der Erkrankung bei 458 laktierenden Holstein-Kühen aus 41 Beständen untersucht (Thompson-Crispi et al. 2013). Die Immunreaktionen der untersuchten Kühe wurden in eine starke oder schwache Antikörper-mediierte Immunreaktion vom Typ 2 oder eine Zell-mediierte Immunreaktion vom Typ 1 eingeordnet (Thompson-Crispi et al. 2013). Den getesteten Rindern wurden zweimalig ein Typ 1- (Candida albicans) oder Typ 2-(Hen egg white lysozyme (HEWL) Antigen injiziert (Thompson-Crispi et al. 2013). Die Einteilung der verschiedenen Immunreaktionen erfolgte mit der Bestimmung des IgG-Titers für die AMIR im ELISA (Thompson-Crispi et al. 2013). Die Tiere, die eine Reaktion im verzögerten Hypersensitivitätstest gegen Candida albicans aufwiesen wurden der CMIR zugeordnet (Thompson-Crispi et al. 2013). Es zeigte sich, dass Kühe mit einer starken Antikörper-mediierten Immunreaktion eine signifikant geringere Inzidenz besitzen an einer klinischen Mastitis zu erkranken als Tiere, die nur eine schwache bis durchschnittliche Antikörper-mediierte Immunreaktion vorwiesen (Thompson-Crispi et al. 2013). Dabei zeigten die Tiere, die eine schwache Antikörper-mediierte Immunreaktion besaßen, eine deutlich schwerere Mastitis-Symptomatik auf (Thompson-Crispi et al. 2013). Ein signifikanter Unterschied zwischen starker und schwacher Zell-mediierter Immunreaktion und der Inzidenz bzw. dem Schweregrad einer Mastitis konnte nicht bestätigt werden (Thompson-Crispi et al. 2013). Die Autoren stellten die Hypothese auf, dass die Schlachtung dieser Tiere, bei denen eine schwache Antikörper-mediierte Immunreaktion festgestellt wurde, die Inzidenz von klinischen Mastitiden in den Beständen deutlich reduzieren würde (Thompson-Crispi et al. 2013). In einer früheren Studie dieser kanadischen Arbeitsgruppe wurden 699 Holstein-Kühe mit verschiedenen Immunreaktionen (AMIR und CMIR) auf verschiedene Erkrankungen untersucht (Thompson-Crispi et al. 2012). Hierfür wurden ebenfalls gesunde Rinder mit einem Typ 1- oder Typ 2-Antigen immunisiert (Thompson-Crispi et al. 2012). Die

Einteilung der unterschiedlichen Immunreaktionen erfolgte wiederum mit der Bestimmung des IgG-Titers für die AMIR im ELISA und die CMIR-Rinder wurden mit einer Reaktion im verzögerten Hypersensitivitätstest gegen Candida albicans identifiziert (Thompson-Crispi et al. 2012). Dabei zeigten die Kühe mit einer gesteigerten AMIR- aber auch mit einer gesteigerten CMIR-Immunreaktion eine höhere Inzidenz von Mastitiden (Thompson-Crispi et al. 2012). Diese Daten widersprechen denen, die im darauffolgendem Jahr publiziert wurden (Thompson-Crispi et al. 2013) und geben Anlass zu der Vermutung, dass die gewählte Methode zur Einteilung der verschiedenen Immunreaktionen suboptimal war. Die von uns gewonnenen Daten können mit diesen Ergebnissen nicht verglichen werden, da diese gesamte Versuchsdurchführung nicht mit unserer übereinstimmt. Die Autoren teilten die Kühe nach Immunisierung, mit einem vorausgewählten Antigen, in eine AMIR- und CMIR-Immunreaktion ein und bestimmten die IgG-Konzentration oder wiesen Reaktionen mit dem verzögerten Hypersensitivitätstests nach. Die von uns getesteten Rinder waren nicht geimpft und weisen eine grundsätzlich abweichende Immunreaktion nach polyklonaler Stimulation auf. Weiterhin lässt sich kein Zusammenhang der Hyper-Tiere mit einer der von Thompson-Crispi et al. beschriebenen Gruppen herstellen. Anhand der generierten proteomischen Daten und Proliferationsdaten könnten die von uns getesteten Tiere am ehesten einer CMIR-Immunantwort mit einer low oder high Reaktion eingeordnet werden. Für die Analyse der AMIR müsste der Antikörpertiter nach Infektion mit beispielsweise Clostridien oder Listerien mittels ELISA für die Kontroll- und immundevianten Kühe bestimmt werden.

Bei der weiteren Analyse der Gesundheitsdaten konnten wir feststellen, dass die Hyper-Tiere häufiger eine Erkrankung des Uterus, eine Azyklie, eine Stoffwechselstörung (Abb. 4.7 C), eine Klauenproblematik (Abb. 4.7 A), eine Problematik des Bewegungsapparates (Abb. 4.7 F), eine Verletzung an der Haut, am Schwanz und an den Hörnern (Abb. 4.7 D), eine Erkrankung des Atmungstraktes (Abb. 4.7 E) oder eine parasitäre Infektion (Abb. 4.7 G) zeigten als die Kontrolltiere. Unsere Daten zeigen, dass die Hyper-Tiere nicht nur häufiger an einer Erkrankung eines Organsystems leiden, sondern einen generell schlechteren

Gesundheitszustand aufweisen als die Kontrolltiere. Im Vergleich dazu hatten die Kontrolltiere häufiger Fruchtbarkeitsprobleme. Sie entwickelten Probleme an den Ovarien und mussten häufiger besamt werden als die Hyper-Kühe, bis eine erfolgreiche Trächtigkeit diagnostiziert werden konnte. Während der Geburt wurde bei den Kontrolltieren auch häufiger eine Zughilfe eingesetzt als bei den Hyper-Tieren und die Kontrolltiere litten im Gegensatz zu den Hyper-Tieren generell häufiger an gynäkologischen Problemen. Die genauen Zusammenhänge zwischen den betroffenen Organsystemen und dem abweichenden Immunphänotyp konnten bislang nicht erklärt werden, bedürfen jedoch weiterer Analysen. Wir können mit unseren Daten aber aktuell schon deutliche Hinweise aufzeigen, dass ein hyperproliferativer Immunphänotyp mit der Häufigkeit bestimmter Erkrankungen korreliert.

Die Ergebnisse dieser Arbeit geben klare Hinweise darauf, dass Kühe mit einem hyperproliferativen Phänotyp eine erhöhte Zellzahl besitzen und häufiger an einer Euterproblematik leiden als die Kontrollkühe. Um einen signifikanten Unterschied beider Immunphänotypen im Bereich der Eutergesundheit zu erhalten, muss die Stichprobenmenge der untersuchten Hyper-Tiere erhöht werden.

Zukünftig sollen weitere, nicht PregSure BVD geimpfte, Rinderbestände untersucht und der Gesundheitsstatus der identifizierten Hyper-Tiere mit dem der Kontrolltiere verglichen werden, um eine höhere Stichprobenmenge zu erhalten und um die bereits gewonnen Daten statistisch verifizieren zu können. Besonderes Augenmerk sollte dabei auf die Eutergesundheit mit zugehörigem Mastitisrisiko, Verletzungen an Haut, Hörnern und Schwanz, Erkrankungen des Atmungs- und Bewegungstraktes und auf parasitäre Infektionen gelegt werden. Des Weiteren müssen die gynäkologischen Parameter wie beispielsweise ovariale Zvsten die und medikamentöse Brunsteinleitung weiter untersucht werden. Dabei sollte auch die Analyse der Leistungsdaten im Vordergrund stehen, da anhand der bisherigen Daten nicht absehbar ist, ob der hyperproliferative Immunphänotyp sich positiv oder negativ auf die Milchleistung auswirken könnte. Die bisher gesammelten Daten geben klare Hinweise, dass der hyperproliferative Immunphänotyp mit einer Änderung der Immunreaktion korreliert. Diese immundevianten Tiere können eventuell keine

ausreichende Immunabwehr gegen bestimmte Erreger ausbilden und so das Risiko von persistenten sowie latenten Infektionen im Rinderbestand anheben. Aus diesem Grund sollten weitere Versuche mit Tieren durchgeführt werden, die bereits an einer Erkrankung leiden, wie beispielsweise einer Listeriose, MAP-Infektion, einer Mastitis mit *Escherichia coli* oder einer Campylobakteriose. Des Weiteren besteht das Risiko, dass Tiere mit einem abweichenden Immunphänotyp keine ausreichende Immunität nach einer Schutzimpfung ausbilden und somit bestimmte Impfprogramme eine schlechtere Erfolgsrate verzeichnen. Auch der Einsatz von neuartigen Impfstoffen stellt für diese Tiere eine besondere Gefahr dar, da diese möglicherweise anders auf die Impfung beziehungsweise das Adjuvans reagieren als geplant. So könnten die immundevianten Tiere nach einer Impfung erneut pathogene Antikörper produzieren und eine weitere impfassoziierte Erkrankung hervorrufen. So kann auch die Produktion der pathogenen BNP-Antikörper (Bastian et al. 2011) durch die abweichende Immunreaktion der BNP-Tiere im Vergleich zu den geimpften Kontrolltieren erklärt werden.

Zusammenfassend liefern die Daten dieser Arbeit neue immunologische PregSure BVD Informationen, sowohl über geimpfte Kontrollund BNP-Überträgertiere als auch über nicht PregSure BVD geimpfte Rinder. Nach polyklonaler ConA-Stimulation reagierten alle BNP-Überträgertiere mit einer hochsignifikant gesteigerten Proliferationsrate im Vergleich zu den ebenfalls geimpften Kontrolltieren. Diese Daten bestätigen somit einen hyperproliferativen Immunphänotyp der BNP-Kühe, der bereits mit einer **PWM-Stimulation** nachgewiesen wurde (Fröhlich 2015). Des Weiteren wurde erstmals das Proteinrepertoire von ConA-stimulierten Lymphozyten von beiden Immunphänotypen analysiert. Dabei zeigte sich, dass die geimpften Kontrolllymphozyten und BNP-Lymphozyten nach T-Zell-Stimulation unterschiedliche Proteine stärker exprimieren. So konnte eine gesteigerte STAT1-Expression nach ConA-Stimulation sowie im Vergleich zu den BNP-Tieren eine stärkere pSTAT1 (Tyr701)-Expression in situ im Darmlymphknoten der Kontrolltiere nachgewiesen werden. Dies deutet darauf hin, dass die Kontrolltiere nach ConA eine Th1-Immunantwort ausbilden. Die **BNP-PBL** zeigten nach ConA-Stimulation hingegen eine stärkere

pSTAT3 (Tyr705)-Phosphorylierung sowie PLCy1-Expression und im Lymphknoten in situ eine gesteigerte ZAP70-, PLCy1-, RORyT-, IRF4- und IL17-Expression. Dies spricht für die Ausbildung einer Th17-Immunantwort der BNP-Überträgertiere nach ConA und weist auf eine abweichende Signalübertragung und Weiterleitung am TCR hin. Des Weiteren wurden in einer nicht PregSure BVD geimpften Rinderpopulation 16 % Tiere identifiziert, die nach ConA und IL2 einen ebenso hyperproliferativen Immunphänotyp aufwiesen wie die BNP-Überträgertiere. Ein funktioneller Nachweis der Th17-Antworten der immundevianten Tiere erfolgte mit der signifikanten Hemmung der PBL-Hyperproliferation von Hyper- sowie BNP-Tieren mit dem STAT3 Inhibitor III. Somit konnten wir beweisen, dass der abweichende Immunphänotyp in einer PregSure BVD ungeimpften Rinderpopulation vorhanden ist. Bei näherer Analyse dieser ungeimpften Kühe fanden wir eindeutige Hinweise darauf, dass die immundevianten Tiere häufiger an bestimmten Erkrankungen leiden als die Kontrolltiere. Wir vermuten, dass die immundevianten Tiere bestimmte Erreger ungenügend eliminieren oder eine unzureichende Immunität ausbilden. Deshalb sollten zukünftig weitere Untersuchungen zu beiden Immunphänotypen durchgeführt und die Leistungs- sowie die Gesundheitsdaten verglichen werden. Der immundeviante Phänotyp der BNP-Tiere zeigt, dass es bei Anwendung neuer Impfungen zur Ausbildung einer ungenügenden Immunität oder falschen Immunreaktionen kommen könnte.

6 ZUSAMMENFASSUNG

Die bovine neonatale Panzytopenie (BNP) ist eine meist tödlich verlaufende Erkrankung bei unter vier Wochen alten Kälbern, die durch eine hämorrhagische Diathese, Thrombozytopenie, Leukozytopenie und Knochenmarksdepletion gekennzeichnet ist. Als Ursache für die BNP konnte die Impfung mit PregSure BVD nachgewiesen werden, wonach nur 5-10 % der geimpften Kühe pathogene BNP-Antikörper ausbildeten, die sie über das Kolostrum an ihre Kälber weitergaben.

Ziel dieser Arbeit war es, eine differenzielle Immunreaktion von PregSure BVD geimpften Kontrollkühen und BNP-Überträgerkühen auf das T-Zell-Stimulanz ConA nachzuweisen. Außerdem sollte untersucht werden, ob Kühe mit einer Immunreaktion wie die BNP-Überträgertiere auch in einer nicht PregSure BVD geimpften Rinderpopulation auffindbar sind. Des Weiteren sollte die funktionelle Korrelation der beiden Immunphänotypen mit der Häufigkeit von diversen Erkrankungen analysiert werden.

Im ersten Teil dieser Arbeit wurden PBL von PregSure BVD geimpften Kontroll- und BNP-Überträgertieren in vitro mit dem T-Zell-Stimulanz ConA stimuliert. Es zeigte sich ein signifikant hyperproliferativer Immunphänotyp der BNP-Kühe nach ConA-Stimulation im Vergleich zu den ebenso geimpften Kontrolltieren. Des Weiteren wurde mittels differenzieller Proteomanalyse festgestellt, dass die Lymphozyten von geimpften Kontrollkühen und BNP-Überträgertieren nach Proteine ConA-Stimulation unterschiedliche stärker exprimieren. Um die verschiedenen Immunkapazitäten weiter zu charakterisieren wurde die Expression wichtiger Transkriptionsfaktoren nach Immunstimulation getestet. Es konnte eine gesteigerte STAT1-Expression der Kontrolllymphozyten nach ConA-Stimulation sowie eine stärkere pSTAT3 (Tyr705)und PLC₁-Expression der Überträgerlymphozyten nach ConA-Stimulation nachgewiesen werden. Darüber hinaus wurde in situ im Kontrolllymphknoten eine gesteigerte pSTAT1 (Tyr701)-Expression festgestellt, was für eine Th1-Immunantwort der Kontrolllymphozyten spricht. Im Überträgerlymphknoten zeigte sich in situ eine stärkere pSTAT3 (Tyr705), RORyT-, IRF4-, IL17-, ZAP70- und PLCy1-Expression im

Vergleich zum Kontrolllymphknoten. Diese Daten deuten darauf hin, dass die BNP-Überträgerlymphozyten eine Th17-Immunantwort ausbilden und eine abweichende Signalübertragung sowie Signalweiterleitung am TCR der BNP-PBL vorliegt. Weiterhin konnte der funktionelle Nachweis einer Th17-Antwort der immundevianten Tiere mit dem STAT3 Inhibitor III, mittels dessen sich die Hyperproliferation hemmen ließ, erbracht werden. Um die Hypothese zu bestätigen, dass der abweichende Immunphänotyp bereits vor der Impfung mit PregSure BVD vorhanden war, wurden PBL von nicht PregSure BVD geimpften Tieren untersucht. Dabei zeigte sich, dass 16 % der PBL dieser ungeimpften Rindern ebenfalls hyperproliferativ auf die ConA- sowie auf eine IL2-Stimulation im in vitro Proliferationsassay reagierten. Diese immundevianten Kühe wiesen in ihrer Zellproliferationsrate keinen signifikanten Unterschied zu den BNP-Tieren nach ConA- und IL2-Stimulation auf. Um die funktionelle Relevanz des immundevianten Phänotyps festzustellen, wurden die Milchleistungsdaten und Gesundheitsparameter der PregSure BVD ungeimpften Rinderpopulation analysiert. Dabei konnte eindeutig nachgewiesen werden, dass die immundevianten Tiere häufiger an Erkrankungen leiden als die Kontrolltiere, beispielsweise an einer Euterproblematik.

Die Daten dieser Arbeit belegen, dass der abweichende Immunphänotyp auch in einer nicht PregSure BVD geimpften Rinderpopulation vorhanden ist. Zukünftig müssen weitere Untersuchungen zu beiden Immunphänotypen durchgeführt werden und die Leistungs- sowie die Gesundheitsdaten verglichen werden, um Auswirkungen auf die Immunfunktion, z.B. bei der Abwehr von Infektionserregern, nachweisen zu können. Am Beispiel der BNP wurde die abweichende impfassoziierte Immunreaktion des immundevianten Phänotyps deutlich und könnte bei der Durchführung neuer Impfprogramme zu keiner ausreichenden Immunisierung oder falschen Immunreaktionen führen.

7 SUMMARY

Bovine neonatal Panzytopenia (BNP) is a disease of newborn calves with an extremely high lethality rate. Affected calves suffer from haemorrhagic diathesis, thrombocytopenia, leukocytopenia and bone marrow depletion. Vaccination with PregSure BVD was proven to be the cause for BNP, where upon 5-10 % of the vaccinated cattle produced pathogenic BNP antibodies, which they transferred to their calves via colostrum.

The aim of this study was to detect a differential immune response of PregSure BVD vaccinated control cows and BNP cows to the T-cell stimulant ConA. Furthermore, we examined if cows with the same immune response as BNP cows were also present in non-PregSure BVD vaccinated cattle herd. Moreover, the correlation of both immune phenotypes with certain diseases and their incidence was analyzed.

In a first experiment, we stimulated lymphocytes of PregSure BVD vaccinated control and BNP cows with the T-cell stimulant ConA in vitro. Here, BNP cows showed a significantly hyperproliferative immune phenotype after ConA stimulation in comparison to the vaccinated control cows. Furthermore, we ascertained that lymphocytes of vaccinated control and BNP cows express different proteins stronger after being stimulated with ConA. In order to further characterize these different immune capacities, we subsequently examined the expression of important transcription factors. An increased STAT1 expression of the control lymphocytes after ConA stimulation as well as an elevated pSTAT3 (Tyr705) and PLCy1 expression of the BNP lymphocytes after ConA stimulation could be detected. Furthermore, pSTAT1 (Tyr701) showed increased abundance in control lymphocytes in situ, indicating a Th1 immune response. In situ examinations of the BNP lymph node, on the other hand, revealed a stronger expression of pSTAT3 (Tyr705), RORyT, IRF4, IL17, ZAP70 and PLCy1. These data suggest, that BNP lymphocytes preferentially develop a Th17 immune response and point to a deviant extra- and intracellular signal transduction cascade at the TCR of BNP lymphocytes. Also, the Th17 response of immune deviant animals was demonstrated with STAT3 inhibitor III, which inhibited the hyperproliferation. In order to confirm the hypothesis of deviant immune phenotype being present even before PregSure BVD vaccination, PBL of non PregSure BVD vaccinated animals were examined. We observed that 16 % of those unvaccinated cows showed a hyperproliferative reaction to both ConA and IL2 stimulation *in vitro*. Comparison of ConA and IL2 stimulated cell proliferation rates of these immune deviant cows to BNP cows did not show significant differences. To examine the functional relevance of immune deviant phenotypes, milk and health parameters of the PregSure BVD unvaccinated cattle population were analyzed and correlated to data of *in vitro* proliferation assays. Collected parameters revealed that animals with an immune deviant phenotype were more likely to suffer from disease.

Our data prove the existence of a deviant immune phenotype also in a non PregSure BVD vaccinated cattle population. Further examinations of both immune phenotypes are needed, comparing performance as well as health data in order to evaluate the impact on immune function, e.g. during defense against infectious agents. Exemplified by BNP, the deviant and vaccination associated immune reaction of the immune deviant phenotype became clearly evident and could lead to insufficient immunization or wrong immune responses in new vaccination programs.

8 LITERATURVERZEICHNIS

- Abdoli, R. and Najafian, N. (2014). "T Helper Cells Fate Mapping by Co-stimulatory Molecules and its Functions in Allograft Rejection and Tolerance." Int J Organ Transplant Med 5(3): 97-110.
- Adkins, B., Leclerc, C. and Marshall-Clarke, S. (2004). "Neonatal adaptive immunity comes of age." Nat Rev Immunol 4(7): 553-564.
- Aleri, J. W., Hine, B. C., Pyman, M. F., Mansell, P. D., Wales, W. J., Mallard, B. and Fisher, A. D. (2015). "Assessing adaptive immune response phenotypes in Australian Holstein-Friesian heifers in a pasture-based production system." J Anim Sci 93(7): 3713-3721.
- Allen, A. J., Park, K. T., Barrington, G. M., Lahmers, K. K., Abdellrazeq, G. S., Rihan, H. M., Sreevatsan, S., Davies, C., Hamilton, M. J. and Davis, W. C. (2011). "Experimental infection of a bovine model with human isolates of Mycobacterium avium subsp. paratuberculosis." Vet Immunol Immunopathol 141(3-4): 258-266.
- Assad, A., Amann, B., Friedrich, A. and Deeg, C. A. (2012). "Immunophenotyping and characterization of BNP colostra revealed pathogenic alloantibodies of IgG1 subclass with specifity to platelets, granulocytes and monocytes of all maturation stages." Vet Immunol Immunopathol 147(1-2): 25-34.
- Azizi-Semrad, U., Krenbek, D., Hofbauer, G., Karanikas, G., Maldonado-Gonzalez, E., Pietschmann, P. and Willheim, M. (2010). "Cytokine profiling of human peripheral blood CD4+ T lymphocytes reveals a new Th-subpopulation (Th6) characterized by IL-6." Eur Cytokine Netw 21(2): 105-115.
- Babiuk, S., Horseman, B., Zhang, C., Bickis, M., Kusalik, A., Schook, L. B., Abrahamsen, M. S. and Pontarollo, R. (2007). "BoLA class I allele diversity and polymorphism in a herd of cattle." Immunogenetics 59(2): 167-176.
- Baharlou, R., Ahmadi-Vasmehjani, A., Davami, M. H., Faraji, F., Atashzar, M. R., Karimipour, F., Sadeghi, A., Asadi, M. A. and Khoubyari, M. (2016). "Elevated Levels of T-helper 17-associated Cytokines in Diabetes Type I Patients: Indicators for Following the Course of Disease." Immunol Invest: 1-11.
- Bastian, M., Holsteg, M., Hanke-Robinson, H., Duchow, K. and Cussler, K. (2011). "Bovine Neonatal Pancytopenia: is this alloimmune syndrome caused by vaccine-induced alloreactive antibodies?" Vaccine 29(32): 5267-5275.
- Bell, C. R., Kerr, M. G., Scott, P. R., Morrison, W. I. and Brown, H. (2014). "Evidence of a high incidence of subclinically affected calves in a herd of cattle with fatal cases of Bovine Neonatal Pancytopenia (BNP)." BMC Vet Res 10: 245.
- Bell, C. R., MacHugh, N. D., Connelley, T. K., Degnan, K. and Morrison, W. I. (2015). "Haematopoietic depletion in vaccine-induced neonatal pancytopenia depends on both the titre and specificity of alloantibody and levels of MHC I expression." Vaccine 33(30): 3488-3496.

- Bell, C. R., Rocchi, M. S., Dagleish, M. P., Melzi, E., Ballingall, K. T., Connelly, M., Kerr, M. G., Scholes, S. F. and Willoughby, K. (2013). "Reproduction of bovine neonatal pancytopenia (BNP) by feeding pooled colostrum reveals variable alloantibody damage to different haematopoietic lineages." Vet Immunol Immunopathol 151(3-4): 303-314.
- Bell, C. R., Scott, P. R., Kerr, M. G. and Willoughby, K. (2010a). "Possible preventive strategy for bovine neonatal pancytopenia." Vet Rec 167(19): 758.
- Bell, C. R., Scott, P. R., Sargison, N. D., Wilson, D. J., Morrison, L., Howie, F., Willoughby, K. and Penny, C. D. (2010b). "Idiopathic bovine neonatal pancytopenia in a Scottish beef herd." Vet Rec 167(24): 938-940.
- Ben-Hur, H., Kossoy, G., Mehrdad, H., Elhayany, A. and Zusman, I. (2004). "Response of T and B lymphocytes in the spleen, lymph nodes and mammary tumors in rats treated with human soluble tumor-associated antigens and commercial human albumin." Oncol Rep 12(6): 1329-1333.
- Benedictus, L., Luteijn, R. D., Otten, H., Lebbink, R. J., van Kooten, P. J., Wiertz, E. J., Rutten, V. P. and Koets, A. P. (2015). "Pathogenicity of Bovine Neonatal Pancytopenia-associated vaccine-induced alloantibodies correlates with Major Histocompatibility Complex class I expression." Sci Rep 5: 12748.
- Benedictus, L., Rutten, V. P. and Koets, A. P. (2016). "Pregnancy boosts vaccineinduced Bovine Neonatal Pancytopenia-associated alloantibodies." Vaccine 34(8): 1002-1005.
- Boyman, O. and Sprent, J. (2012). "The role of interleukin-2 during homeostasis and activation of the immune system." Nat Rev Immunol 12(3): 180-190.
- Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 72: 248-254.
- Bridger, P. S., Bauerfeind, R., Wenzel, L., Bauer, N., Menge, C., Thiel, H. J., Reinacher, M. and Doll, K. (2011). "Detection of colostrum-derived alloantibodies in calves with bovine neonatal pancytopenia." Vet Immunol Immunopathol 141(1-2): 1-10.
- Brustle, A., Heink, S., Huber, M., Rosenplanter, C., Stadelmann, C., Yu, P., Arpaia, E., Mak, T. W., Kamradt, T. and Lohoff, M. (2007). "The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4." Nat Immunol 8(9): 958-966.
- Chiang, Y. J. and Hodes, R. J. (2015). "Regulation of T cell development by c-Cbl: essential role of Lck." Int Immunol 27(5): 245-251.
- Chuck, M. I., Zhu, M., Shen, S. and Zhang, W. (2010). "The role of the LAT-PLCgamma1 interaction in T regulatory cell function." J Immunol 184(5): 2476-2486.
- Ciccia, F., Guggino, G., Ferrante, A., Cipriani, P., Giacomelli, R. and Triolo, G. (2016). "Interleukin-9 and T helper type 9 cells in rheumatic diseases." Clin Exp Immunol 185(2): 125-132.

- Cooper, M. A., Fehniger, T. A. and Caligiuri, M. A. (2001). "The biology of human natural killer-cell subsets." Trends Immunol 22(11): 633-640.
- Cosmi, L., Liotta, F., Maggi, E., Romagnani, S. and Annunziato, F. (2014). "Th17 and non-classic Th1 cells in chronic inflammatory disorders: two sides of the same coin." Int Arch Allergy Immunol 164(3): 171-177.
- Curtis, M. M., Way, S. S. and Wilson, C. B. (2009). "IL-23 promotes the production of IL-17 by antigen-specific CD8 T cells in the absence of IL-12 and type-I interferons." J Immunol 183(1): 381-387.
- DeLuca, H. F. and Zierold, C. (1998). "Mechanisms and functions of vitamin D." Nutr Rev 56(2 Pt 2): S4-10; discussion S 54-75.
- Demasius, W., Weikard, R., Hadlich, F., Buitkamp, J. and Kuhn, C. (2016). "A novel RNAseq-assisted method for MHC class I genotyping in a non-model species applied to a lethal vaccination-induced alloimmune disease." BMC Genomics 17(1): 365.
- Demasius, W., Weikard, R., Kromik, A., Wolf, C., Muller, K. and Kuhn, C. (2014). "Bovine neonatal pancytopenia (BNP): novel insights into the incidence, vaccination-associated epidemiological factors and a potential genetic predisposition for clinical and subclinical cases." Res Vet Sci 96(3): 537-542.
- Deutskens, F. (2012). Untersuchungen zur Ätiologie der Bovinen Neonatalen Pnazytopenie (BNP) Dissertation, JLU Gießen.
- Deutskens, F., Lamp, B., Riedel, C. M., Wentz, E., Lochnit, G., Doll, K., Thiel, H. J. and Rumenapf, T. (2011). "Vaccine-induced antibodies linked to bovine neonatal pancytopenia (BNP) recognize cattle major histocompatibility complex class I (MHC I)." Vet Res 42: 97.
- Doherty, R., Whiston, R., Cormican, P., Finlay, E. K., Couldrey, C., Brady, C., O'Farrelly, C. and Meade, K. G. (2016). "The CD4(+) T cell methylome contributes to a distinct CD4(+) T cell transcriptional signature in Mycobacterium bovis-infected cattle." Sci Rep 6: 31014.
- Elyaman, W., Bradshaw, E. M., Uyttenhove, C., Dardalhon, V., Awasthi, A., Imitola, J., Bettelli, E., Oukka, M., van Snick, J., Renauld, J. C., Kuchroo, V. K. and Khoury, S. J. (2009). "IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells." Proc Natl Acad Sci U S A 106(31): 12885-12890.
- Erskine, R. J., Corl, C. M., Gandy, J. C. and Sordillo, L. M. (2011). "Effect of infection with bovine leukosis virus on lymphocyte proliferation and apoptosis in dairy cattle." Am J Vet Res 72(8): 1059-1064.
- Euler, K. N., Hauck, S. M., Ueffing, M. and Deeg, C. A. (2013). "Bovine neonatal pancytopenia--comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK)." BMC Vet Res 9: 18.
- Fang, Z., Hecklau, K., Gross, F., Bachmann, I., Venzke, M., Karl, M., Schuchhardt, J., Radbruch, A., Herzel, H. and Baumgrass, R. (2015). "Transcription factor co-

occupied regions in the murine genome constitute T-helper-cell subtype-specific enhancers." Eur J Immunol 45(11): 3150-3157.

- Fischer, A., Picard, C., Chemin, K., Dogniaux, S., le Deist, F. and Hivroz, C. (2010). "ZAP70: a master regulator of adaptive immunity." Semin Immunopathol 32(2): 107-116.
- Foucras, G., Corbiere, F., Tasca, C., Pichereaux, C., Caubet, C., Trumel, C., Lacroux, C., Franchi, C., Burlet-Schiltz, O. and Schelcher, F. (2011).
 "Alloantibodies against MHC class I: a novel mechanism of neonatal pancytopenia linked to vaccination." J Immunol 187(12): 6564-6570.
- Frezzato, F., Accordi, B., Trimarco, V., Gattazzo, C., Martini, V., Milani, G., Bresolin, S., Severin, F., Visentin, A., Basso, G., Semenzato, G. and Trentin, L. (2016).
 "Profiling B cell chronic lymphocytic leukemia by reverse phase protein array: Focus on apoptotic proteins." J Leukoc Biol.
- Friedrich, A., Buttner, M., Rademacher, G., Klee, W., Weber, B. K., Muller, M., Carlin, A., Assad, A., Hafner-Marx, A. and Sauter-Louis, C. M. (2011). "Ingestion of colostrum from specific cows induces Bovine Neonatal Pancytopenia (BNP) in some calves." BMC Vet Res 7: 10.
- Friedrich, A., Rademacher, G., Weber, B. K., Kappe, E., Carlin, A., Assad, A., Sauter-Louis, C., Hafner-Marx, A., Buttner, M., Bottcher, J. and Klee, W. (2009).
 "Increase in the incidence of a bleeding disorder in voting calves due to bone marrow damage." Tieraerztliche Umschau 64(10): 423-431.
- Fröhlich, K. J. H. (2015). Untersuchungen zur Immunpathogenese der Bovinen Neonatalen Panzytopenie Dissertation, LMU München.
- Gaffen, S. L. and Liu, K. D. (2004). "Overview of interleukin-2 function, production and clinical applications." Cytokine 28(3): 109-123.
- Geginat, J., Paroni, M., Maglie, S., Alfen, J. S., Kastirr, I., Gruarin, P., De Simone, M., Pagani, M. and Abrignani, S. (2014). "Plasticity of human CD4 T cell subsets." Front Immunol 5: 630.
- Gil, M. P., Ploquin, M. J., Watford, W. T., Lee, S. H., Kim, K., Wang, X., Kanno, Y., O'Shea, J. J. and Biron, C. A. (2012). "Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function." Blood 120(18): 3718-3728.
- He, J., Zhang, X., Wei, Y., Sun, X., Chen, Y., Deng, J., Jin, Y., Gan, Y., Hu, X., Jia, R., Xu, C., Hou, Z., Leong, Y. A., Zhu, L., Feng, J., An, Y., Jia, Y., Li, C., Liu, X., Ye, H., Ren, L., Li, R., Yao, H., Li, Y., Chen, S., Zhang, X., Su, Y., Guo, J., Shen, N., Morand, E. F., Yu, D. and Li, Z. (2016). "Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus." Nat Med.
- Henniger, P., Henniger, T., Seehusen, F., Distl, O. and Ganter, M. (2014). "Causes of death in calves with experimentally induced bovine neonatal pancytopenia (BNP)." Berl Munch Tierarztl Wochenschr 127(1-2): 61-69.

- Heriazon, A., Quinton, M., Miglior, F., Leslie, K. E., Sears, W. and Mallard, B. A. (2013). "Phenotypic and genetic parameters of antibody and delayed-type hypersensitivity responses of lactating Holstein cows." Vet Immunol Immunopathol 154(3-4): 83-92.
- Hibiya, K., Tateyama, M., Teruya, H., Nakamura, H., Tasato, D., Kazumi, Y., Hirayasu, T., Tamaki, Y., Haranaga, S., Higa, F., Maeda, S. and Fujita, J. (2011). "Immunopathological characteristics of immune reconstitution inflammatory syndrome caused by Mycobacterium parascrofulaceum infection in a patient with AIDS." Pathol Res Pract 207(4): 262-270.
- Hussain, S. F., Kong, L. Y., Jordan, J., Conrad, C., Madden, T., Fokt, I., Priebe, W. and Heimberger, A. B. (2007). "A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients." Cancer Res 67(20): 9630-9636.
- Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. and Littman, D. R. (2006). "The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells." Cell 126(6): 1121-1133.
- Ivanov, II, Zhou, L. and Littman, D. R. (2007). "Transcriptional regulation of Th17 cell differentiation." Semin Immunol 19(6): 409-417.
- Ives, M. L., Ma, C. S., Palendira, U., Chan, A., Bustamante, J., Boisson-Dupuis, S., Arkwright, P. D., Engelhard, D., Averbuch, D., Magdorf, K., Roesler, J., Peake, J., Wong, M., Adelstein, S., Choo, S., Smart, J. M., French, M. A., Fulcher, D. A., Cook, M. C., Picard, C., Durandy, A., Tsumura, M., Kobayashi, M., Uzel, G., Casanova, J. L., Tangye, S. G. and Deenick, E. K. (2013). "Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8(+) T-cell memory formation and function." J Allergy Clin Immunol 132(2): 400-411 e409.
- Iwasaki, A. and Medzhitov, R. (2010). "Regulation of adaptive immunity by the innate immune system." Science 327(5963): 291-295.
- Jaskowski, J. M., Polak, M. P., Marszalek, A., Nowak, K., Frackowiak, H. and Olechnowicz, J. (2012). "Bovine neonatal pancytopenia in calves in Poland." Pol J Vet Sci 15(3): 565-566.
- Jones, B. A., Sauter-Louis, C., Henning, J., Stoll, A., Nielen, M., Van Schaik, G., Smolenaars, A., Schouten, M., den Uijl, I., Fourichon, C., Guatteo, R., Madouasse, A., Nusinovici, S., Deprez, P., De Vliegher, S., Laureyns, J., Booth, R., Cardwell, J. M. and Pfeiffer, D. U. (2013). "Calf-level factors associated with bovine neonatal pancytopenia--a multi-country case-control study." PLoS One 8(12): e80619.
- Juven-Gershon, T., Hsu, J. Y., Theisen, J. W. and Kadonaga, J. T. (2008). "The RNA polymerase II core promoter the gateway to transcription." Curr Opin Cell Biol 20(3): 253-259.
- Kanhere, A., Hertweck, A., Bhatia, U., Gokmen, M. R., Perucha, E., Jackson, I., Lord, G. M. and Jenner, R. G. (2012). "T-bet and GATA3 orchestrate Th1 and Th2

differentiation through lineage-specific targeting of distal regulatory elements." Nat Commun 3: 1268.

- Kappe, E. C., Halami, M. Y., Schade, B., Alex, M., Hoffmann, D., Gangl, A., Meyer, K., Dekant, W., Schwarz, B. A., Johne, R., Buitkamp, J., Bottcher, J. and Muller, H. (2010). "Bone marrow depletion with haemorrhagic diathesis in calves in Germany: characterization of the disease and preliminary investigations on its aetiology." Berl Munch Tierarztl Wochenschr 123(1-2): 31-41.
- Kasonta, R., Holsteg, M., Duchow, K., Dekker, J. W., Cussler, K., Bendall, J. G. and Bastian, M. (2014). "Colostrum from cows immunized with a vaccine associated with bovine neonatal pancytopenia contains allo-antibodies that cross-react with human MHC-I molecules." PLoS One 9(10): e109239.
- Kasonta, R., Sauter-Louis, C., Holsteg, M., Duchow, K., Cussler, K. and Bastian, M. (2012). "Effect of the vaccination scheme on PregSure(R) BVD induced alloreactivity and the incidence of Bovine Neonatal Pancytopenia." Vaccine 30(47): 6649-6655.
- Krappmann, K., Weikard, R., Gerst, S., Wolf, C. and Kuhn, C. (2011). "A genetic predisposition for bovine neonatal pancytopenia is not due to mutations in coagulation factor XI." Vet J 190(2): 225-229.
- Kristensen, B., Hegedus, L., Madsen, H. O., Smith, T. J. and Nielsen, C. H. (2015). "Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis." Clin Exp Immunol 180(1): 58-69.
- Kurschus, F. C., Croxford, A. L., Heinen, A. P., Wortge, S., Ielo, D. and Waisman, A. (2010). "Genetic proof for the transient nature of the Th17 phenotype." Eur J Immunol 40(12): 3336-3346.
- Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." Nature 227(5259): 680-685.
- Lambton, S. L., Colloff, A. D., Smith, R. P., Caldow, G. L., Scholes, S. F., Willoughby, K., Howie, F., Ellis-Iversen, J., David, G., Cook, A. J. and Holliman, A. (2012).
 "Factors associated with bovine neonatal pancytopenia (BNP) in calves: a case-control study." PLoS One 7(5): e34183.
- Laming, E., Melzi, E., Scholes, S. F., Connelly, M., Bell, C. R., Ballingall, K. T., Dagleish, M. P., Rocchi, M. S. and Willoughby, K. (2012). "Demonstration of early functional compromise of bone marrow derived hematopoietic progenitor cells during bovine neonatal pancytopenia through in vitro culture of bone marrow biopsies." BMC Res Notes 5: 599.
- Lavon, Y., Kaim, M., Leitner, G., Biran, D., Ezra, E. and Wolfenson, D. (2016). "Two approaches to improve fertility of subclinical mastitic dairy cows." J Dairy Sci 99(3): 2268-2275.
- Leite, F. L., Eslabao, L. B., Pesch, B., Bannantine, J. P., Reinhardt, T. A. and Stabel, J. R. (2015). "ZAP-70, CTLA-4 and proximal T cell receptor signaling in cows infected with Mycobacterium avium subsp. paratuberculosis." Vet Immunol Immunopathol 167(1-2): 15-21.

- Liao, W., Lin, J. X. and Leonard, W. J. (2011a). "IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation." Curr Opin Immunol 23(5): 598-604.
- Liao, W., Lin, J. X., Wang, L., Li, P. and Leonard, W. J. (2011b). "Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages." Nat Immunol 12(6): 551-559.
- Liu, W., Li, H., Hao, Y., Li, Y., Lv, M., Xue, F., Liu, X., Zhang, L. and Yang, R. (2016). "Decreased immunosuppressive actions of 1alpha, 25-dihydroxyvitamin D3 in patients with immune thrombocytopenia." Mol Immunol 78: 89-97.
- Lochner, M., Wang, Z. and Sparwasser, T. (2015). "The Special Relationship in the Development and Function of T Helper 17 and Regulatory T Cells." Prog Mol Biol Transl Sci 136: 99-129.
- Lopez-Isac, E., Martin, J. E., Assassi, S., Simeon, C. P., Carreira, P., Ortego-Centeno, N., Freire, M., Beltran, E., Narvaez, J., Alegre-Sancho, J. J., Spanish Scleroderma, G., Fernandez-Gutierrez, B., Balsa, A., Ortiz, A. M., Gonzalez-Gay, M. A., Beretta, L., Santaniello, A., Bellocchi, C., Lunardi, C., Moroncini, G., Gabrielli, A., Witte, T., Hunzelmann, N., Distler, J. H., Riekemasten, G., van der Helm-van Mil, A. H., de Vries-Bouwstra, J., Magro-Checa, C., Voskuyl, A. E., Vonk, M. C., Molberg, O., Merriman, T., Hesselstrand, R., Nordin, A., Padyukov, L., Herrick, A., Eyre, S., Koeleman, B. P., Denton, C. P., Fonseca, C., Radstake, T. R., Worthington, J., Mayes, M. D. and Martin, J. (2016). "Brief Report: IRF4 Newly Identified as a Common Susceptibility Locus for Systemic Sclerosis and Rheumatoid Arthritis in a Cross-Disease Meta-Analysis of Genome-Wide Association Studies." Arthritis Rheumatol 68(9): 2338-2344.
- Lu, K., Chen, N., Zhou, X. X., Ge, X. L., Feng, L. L., Li, P. P., Li, X. Y., Geng, L. Y. and Wang, X. (2015a). "The STAT3 inhibitor WP1066 synergizes with vorinostat to induce apoptosis of mantle cell lymphoma cells." Biochem Biophys Res Commun 464(1): 292-298.
- Lu, K., Fang, X. S., Feng, L. L., Jiang, Y. J., Zhou, X. X., Liu, X., Li, P. P., Chen, N., Ding, M., Wang, N., Zhang, J. and Wang, X. (2015b). "The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6." Cancer Lett 359(2): 250-258.
- Maeda, Y., Ohtsuka, H., Tomioka, M. and Oikawa, M. (2013). "Effect of progesterone on Th1/Th2/Th17 and regulatory T cell-related genes in peripheral blood mononuclear cells during pregnancy in cows." Vet Res Commun 37(1): 43-49.
- Maggi, L., Santarlasci, V., Capone, M., Rossi, M. C., Querci, V., Mazzoni, A., Cimaz, R., De Palma, R., Liotta, F., Maggi, E., Romagnani, S., Cosmi, L. and Annunziato, F. (2012). "Distinctive features of classic and nonclassic (Th17 derived) human Th1 cells." Eur J Immunol 42(12): 3180-3188.
- Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. and Lugli, E. (2013). "The who's who of T-cell differentiation: human memory T-cell subsets." Eur J Immunol 43(11): 2797-2809.

- Martin, C. E., Paibomesai, M. A., Emam, S. M., Gallienne, J., Hine, B. C., Thompson-Crispi, K. A. and Mallard, B. A. (2016). "Short communication: Cytokine profiles from blood mononuclear cells of dairy cows classified with divergent immune response phenotypes." J Dairy Sci 99(3): 2364-2371.
- Massoud, A. H., Charbonnier, L. M., Lopez, D., Pellegrini, M., Phipatanakul, W. and Chatila, T. A. (2016). "An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells." Nat Med 22(9): 1013-1022.
- McGill, J. L., Rusk, R. A., Guerra-Maupome, M., Briggs, R. E. and Sacco, R. E. (2016). "Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica." PLoS One 11(3): e0151083.
- Mo, X., Wu, G., Yuan, D., Jia, B., Liu, C., Zhu, S. and Hou, Y. (2014). "Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development." Mol Reprod Dev 81(7): 608-618.
- Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L. (1986). "Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins." J Immunol 136(7): 2348-2357.
- Nalbant, A. and Eskier, D. (2016). "Genes associated with T helper 17 cell differentiation and function." Front Biosci (Elite Ed) 8: 427-435.
- Oestreich, K. J. and Weinmann, A. S. (2012). "Transcriptional mechanisms that regulate T helper 1 cell differentiation." Curr Opin Immunol 24(2): 191-195.
- Onderdijk, A. J., Baerveldt, E. M., Kurek, D., Kant, M., Florencia, E. F., Debets, R. and Prens, E. P. (2015). "IL-4 Downregulates IL-1beta and IL-6 and Induces GATA3 in Psoriatic Epidermal Cells: Route of Action of a Th2 Cytokine." J Immunol 195(4): 1744-1752.
- Paibomesai, M., Hussey, B., Nino-Soto, M. and Mallard, B. A. (2013). "Effects of parturition and dexamethasone on DNA methylation patterns of IFN-gamma and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows." Can J Vet Res 77(1): 54-62.
- Pang, B., Shin, D. H., Park, K. S., Huh, Y. J., Woo, J., Zhang, Y. H., Kang, T. M., Lee, K. Y. and Kim, S. J. (2012a). "Differential pathways for calcium influx activated by concanavalin A and CD3 stimulation in Jurkat T cells." Pflugers Arch 463(2): 309-318.
- Pang, D. J., Neves, J. F., Sumaria, N. and Pennington, D. J. (2012b). "Understanding the complexity of gammadelta T-cell subsets in mouse and human." Immunology 136(3): 283-290.
- Pardon, B., Steukers, L., Dierick, J., Ducatelle, R., Saey, V., Maes, S., Vercauteren, G., De Clercq, K., Callens, J., De Bleecker, K. and Deprez, P. (2010).
 "Haemorrhagic diathesis in neonatal calves: an emerging syndrome in Europe." Transbound Emerg Dis 57(3): 135-146.

- Pardon, B., Stuyven, E., Stuyvaert, S., Hostens, M., Dewulf, J., Goddeeris, B. M., Cox, E. and Deprez, P. (2011). "Sera from dams of calves with bovine neonatal pancytopenia contain alloimmune antibodies directed against calf leukocytes." Vet Immunol Immunopathol 141(3-4): 293-300.
- Paul, D., Kumar, A., Gajbhiye, A., Santra, M. K. and Srikanth, R. (2013). "Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture." Biomed Res Int 2013: 783131.
- Penny, C. D., Bell, C., Morrison, L., Howie, F. and Willoughby, K. (2009). "Pancytopenia and haemorrhage in young beef calves." Vet Rec 164(24): 762.
- Perrin, P. J., Davis, T. A., Smoot, D. S., Abe, R., June, C. H. and Lee, K. P. (1997).
 "Mitogenic stimulation of T cells reveals differing contributions for B7-1 (CD80) and B7-2 (CD86) costimulation." Immunology 90(4): 534-542.
- Plaschka, C., Hantsche, M., Dienemann, C., Burzinski, C., Plitzko, J. and Cramer, P. (2016). "Transcription initiation complex structures elucidate DNA opening." Nature 533(7603): 353-358.
- Pratt, J. and Annabi, B. (2014). "Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells." Cell Signal 26(5): 917-924.
- Quade, M. J. and Roth, J. A. (1999). "Dual-color flow cytometric analysis of phenotype, activation marker expression, and proliferation of mitogenstimulated bovine lymphocyte subsets." Vet Immunol Immunopathol 67(1): 33-45.
- Raphael, I., Nalawade, S., Eagar, T. N. and Forsthuber, T. G. (2015). "T cell subsets and their signature cytokines in autoimmune and inflammatory diseases." Cytokine 74(1): 5-17.
- Raven, L. A., Cocks, B. G., Kemper, K. E., Chamberlain, A. J., Vander Jagt, C. J., Goddard, M. E. and Hayes, B. J. (2016). "Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle." Mamm Genome 27(1-2): 81-97.
- Rutz, S., Eidenschenk, C., Kiefer, J. R. and Ouyang, W. (2016). "Post-translational regulation of RORgammat-A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases." Cytokine Growth Factor Rev.
- Ryu, D., Kim, H. J., Joung, J. G., Lee, H. O., Bae, J. S., Kim, S. J., Kim, H., Park, W. Y. and Kim, K. (2016). "Comprehensive genomic profiling of IgM multiple myeloma identifies IRF4 as a prognostic marker." Oncotarget.
- Sakowicz-Burkiewicz, M., Kocbuch, K., Grden, M., Maciejewska, I., Szutowicz, A. and Pawelczyk, T. (2012). "Impact of adenosine receptors on immunoglobulin production by human peripheral blood B lymphocytes." J Physiol Pharmacol 63(6): 661-668.
- Salinovich, O. and Montelaro, R. C. (1986). "Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium
dodecylsulfate-polyacrylamide gel electrophoresis." Anal Biochem 156(2): 341-347.

- Sanchez-Miguel, C., McElroy, M. and Walsh, E. (2010). "Bovine neonatal pancytopenia in calves in Ireland." Vet Rec 166(21): 664.
- Sauter-Louis, C., Carlin, A., Friedrich, A., Assad, A., Reichmann, F., Rademacher, G., Heuer, C. and Klee, W. (2012). "Case control study to investigate risk factors for bovine neonatal pancytopenia (BNP) in young calves in southern Germany." Prev Vet Med 105(1-2): 49-58.
- Schroter, P., Kuiper, H., Holsteg, M., Puff, C., Haas, L., Baumgartner, W., Ganter, M. and Distl, O. (2011). "[Reproducibility of bovine neonatal pancytopenia (BNP) via the application of colostrum]." Berl Munch Tierarztl Wochenschr 124(9-10): 390-400.
- Schumann, D. (2011). Bovine neonatale Panzytopenie: Laborexperimentelle Untersuchungen im Rahmen der Ursachenforschung Dissertation, LMU München.
- Schust, J., Sperl, B., Hollis, A., Mayer, T. U. and Berg, T. (2006). "Stattic: a smallmolecule inhibitor of STAT3 activation and dimerization." Chem Biol 13(11): 1235-1242.
- Seggewiss, R., Lore, K., Greiner, E., Magnusson, M. K., Price, D. A., Douek, D. C., Dunbar, C. E. and Wiestner, A. (2005). "Imatinib inhibits T-cell receptormediated T-cell proliferation and activation in a dose-dependent manner." Blood 105(6): 2473-2479.
- Senft, C., Priester, M., Polacin, M., Schroder, K., Seifert, V., Kogel, D. and Weissenberger, J. (2011). "Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells." J Neurooncol 101(3): 393-403.
- Shakweer, M. M., Behairy, M., Elhefnawy, N. G. and Elsaid, T. W. (2016). "Value of Foxp3 expressing T-regulatory cells in renal tissue in lupus nephritis; an immunohistochemical study." J Nephropathol 5(3): 105-110.
- Siddiquee, K., Zhang, S., Guida, W. C., Blaskovich, M. A., Greedy, B., Lawrence, H. R., Yip, M. L., Jove, R., McLaughlin, M. M., Lawrence, N. J., Sebti, S. M. and Turkson, J. (2007). "Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity." Proc Natl Acad Sci U S A 104(18): 7391-7396.
- Song, Y., Wang, Y. T., Huang, X. J. and Kong, Y. (2016). "Abnormalities of the bone marrow immune microenvironment in patients with immune thrombocytopenia." Ann Hematol 95(6): 959-965.
- Stechishin, O. D., Luchman, H. A., Ruan, Y., Blough, M. D., Nguyen, S. A., Kelly, J. J., Cairncross, J. G. and Weiss, S. (2013). "On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells." Neuro Oncol 15(2): 198-207.

- Tao, W. and Mallard, B. (2007). "Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows." Vet Immunol Immunopathol 120(3-4): 201-211.
- Thompson-Crispi, K. A., Hine, B., Quinton, M., Miglior, F. and Mallard, B. A. (2012). "Short communication: Association of disease incidence and adaptive immune response in Holstein dairy cows." J Dairy Sci 95(7): 3888-3893.
- Thompson-Crispi, K. A., Miglior, F. and Mallard, B. A. (2013). "Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average, or low immune responders." Clin Vaccine Immunol 20(1): 106-112.
- Turner, J. D., Faulkner, H., Kamgno, J., Cormont, F., Van Snick, J., Else, K. J., Grencis, R. K., Behnke, J. M., Boussinesq, M. and Bradley, J. E. (2003). "Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection." J Infect Dis 188(11): 1768-1775.
- Villarino, A., Laurence, A., Robinson, G. W., Bonelli, M., Dema, B., Afzali, B., Shih, H. Y., Sun, H. W., Brooks, S. R., Hennighausen, L., Kanno, Y. and O'Shea, J. J. (2016). "Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions." Elife 5.
- Vitorino Carvalho, A., Eozenou, C., Healey, G. D., Forde, N., Reinaud, P., Chebrout, M., Gall, L., Rodde, N., Padilla, A. L., Delville, C. G., Leveugle, M., Richard, C., Sheldon, I. M., Lonergan, P., Jolivet, G. and Sandra, O. (2016). "Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium." Reprod Fertil Dev 28(4): 459-474.
- Wang, D., Saga, Y., Sato, N., Nakamura, T., Takikawa, O., Mizukami, H., Matsubara, S. and Fujiwara, H. (2016). "The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Metphosphatidylinositol 3-kinase-AKT signaling pathway." Int J Oncol 48(6): 2303-2309.
- Willoughby, K., Gilray, J., Maley, M., Dastjerdi, A., Steinbach, F., Banks, M., Scholes, S., Howie, F., Holliman, A., Baird, P. and McKillen, J. (2010). "Lack of evidence for circovirus involvement in bovine neonatal pancytopenia." Vet Rec 166(14): 436-437.
- Wilson, N. J., Boniface, K., Chan, J. R., McKenzie, B. S., Blumenschein, W. M., Mattson, J. D., Basham, B., Smith, K., Chen, T., Morel, F., Lecron, J. C., Kastelein, R. A., Cua, D. J., McClanahan, T. K., Bowman, E. P. and de Waal Malefyt, R. (2007). "Development, cytokine profile and function of human interleukin 17-producing helper T cells." Nat Immunol 8(9): 950-957.
- Wisniewski, J. R., Zielinska, D. F. and Mann, M. (2011). "Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method." Anal Biochem 410(2): 307-309.
- Yamaguchi, T., Schares, S., Fischer, U. and Dijkstra, J. M. (2016). "Identification of a fourth ancient member of the IL-3/IL-5/GM-CSF cytokine family, KK34, in many mammals." Dev Comp Immunol 65: 268-279.

- Yang, X. X. O., Panopoulos, A. D., Nurieva, R., Chang, S. H., Wang, D. M., Watowich, S. S. and Dong, C. (2007). "STAT3 regulates cytokine-mediated generation of inflammatory helper T cells." Journal of Biological Chemistry 282(13): 9358-9363.
- Zhao, S., Chen, Z., Yu, D., Tang, M. and Zhang, W. (2016). "[Tubacin promotes Foxp3 expression and suppressive function of mouse CD4+;CD25+; regulatory T cells]." Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 32(3): 339-342.
- Zhou, X., Ren, Y., Liu, A., Jin, R., Jiang, Q., Huang, Y., Kong, L., Wang, X. and Zhang, L. (2014). "WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis." Sci Rep 4: 7461.
- Zold, E., Szodoray, P., Nakken, B., Barath, S., Kappelmayer, J., Csathy, L., Hajas, A., Sipka, S., Gyimesi, E., Gaal, J., Barta, Z., Hallay, J., Szegedi, G. and Bodolay, E. (2011). "Alfacalcidol treatment restores derailed immune-regulation in patients with undifferentiated connective tissue disease." Autoimmun Rev 10(3): 155-162.
- Zundler, S., Schillinger, D., Fischer, A., Atreya, R., Lopez-Posadas, R., Watson, A., Neufert, C., Atreya, I. and Neurath, M. F. (2016). "Blockade of alphaEbeta7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo." Gut.

9 DANKSAGUNG

An erster Stelle möchte ich mich bei Frau Prof. Dr. Cornelia A. Deeg, meiner Doktormutter, für die außergewöhnliche und höchst engagierte Betreuung dieser Arbeit bedanken. Sie bot mir die Möglichkeit an einem sehr interessanten und elementar wichtigen Bereich der Rinderimmunologie zu forschen und stand mir jederzeit, auch an ihren freien Tagen sowie am Wochenende zur Seite. Mit ihrer großartigen fachlichen Kompetenz trieb sie diese Arbeit stetig voran. Ich weiß dieses Engagement sehr zu schätzen und möchte mich für jegliche Unterstützung ganz herzlich bedanken.

Bei Herrn Prof. Dr. Göbel möchte ich mich für die Bereitstellung des Arbeitsplatzes am Institut für Tierphysiologie der LMU München bedanken.

Des Weiteren möchte ich mich bei Frau Dr. Hauck aus dem Helmholtz Zentrum München bedanken, die die Arbeiten in der Abteilung Proteinanalytik und damit eine wichtige Grundlage dieser Arbeit ermöglichte.

Mein Dank für die finanzielle Förderung dieses Projektes und meiner Doktorarbeit gilt der H. Wilhelm Schaumann Stiftung. Ohne die finanzielle Unterstützung der Stiftung wäre die Anfertigung dieser Arbeit nicht möglich gewesen und ich bin stolz der Stiftung eine Dissertation mit wichtigen Erkenntnissen der Rinderimmunologie darbieten zu können.

Bei Herrn Dr. Reese möchte ich mich für die Unterstützung bei den statitistischen Fragestellungen bedanken.

Ferner möchte ich mich sehr herzlich bei Herrn Prof. Dr. Armin Scholz, Herrn Dr. Stefan Nüske sowie den Mitarbeitern Jürgen Lange, Michael Satter und Nobert Dierig des Lehr- und Versuchsguts Oberschleißheim bedanken. Sie kümmerten sich großartig um unsere BNP-Kuh 007 "Baileys" und auch unsere zweite BNP-Kuh 008 "Lilie" wird dort bestens versorgt. Ich durfte zu jeder Zeit Blutproben entnehmen und konnte wichtige Fragen zum Gesundheitszustand sowie zu den Leistungsparametern der beprobten Tiere stellen. Ich möchte mich außerdem bei Herrn Bätz bedanken, der mir alle notwendigen Daten des LVGs zu bestimmten Fragestellungen

zusammenstellte. Das LVG ermöglicht uns die Erforschung der abweichenden Immunreaktionen von Rindern und legt mit der Bereitstellung von frischen Kontrollund BNP-Blutproben das Fundament für weitere Untersuchungen. Ich möchte mich für die sehr gute Zusammenarbeit bedanken.

Ein ganz besonderer Dank gilt auch der Familie Bollner und der Familie Murr, die mir die Möglichkeit gaben, von ihren PregSure BVD geimpften Tieren Blutproben zu entnehmen. Sie stellten uns jederzeit die nötigen Proben zur Verfügung und förderten mit ihrem ausgesprochenen Engagement dieses Projekt.

Herzlich bedanken möchte ich mich bei Barbara Amann und Sieglinde Hirmer, die mir mit ihrer Hilfsbereitschaft und ihrem Wissen des Öfteren halfen, die Probleme des täglichen Wahnsinns zu meistern. Sieglinde präparierte mit mir literweise Rinderblut und sagte stets die richtigen Worte, damit ich das große Ziel vor Augen behielt. Bärbl unterstützte mich ungemein mit ihrer fachlichen Erfahrung und ihrem liebenswerten sowie besonderem Naturell. Vielen Dank für Alles! Ihr seid unersetzlich für diese Arbeitsgruppe.

Des Weiteren möchte ich mich bei meinen Arbeitskollegen Dr. Roxane Degroote, Dr. Kristina Kleinwort, Dr. Patrizia Uhl, Dr. Nina Burkhardt und Melanie Schauer bedanken. Ihr habt mit mir gelacht, mich unterstützt, viel gelehrt, in schweren Momenten ertragen, Rätsel im Labor oder am PC gelöst, Großkampftage gemeistert, Kabel beim Stromausfall verlegt, damit ich weiterschreiben konnte und wildes Rinderfangen im Stall gespielt. Vielen Dank für die Unterstützung, für die schöne Doktorandenzeit und gute Zusammenarbeit. Ich wünsche euch für die Zukunft alles Gute.

Ich möchte mich darüber hinaus bei Frau Prof. Dr. Dr. Eva Zeiler bedanken, die mir beibrachte, dass Rinder die tollsten Tiere dieser Welt sind. Ich danke dir für die zahlreichen fachlichen Gespräche, die Motivation für diese Doktorarbeit, deine Unterstützung und die lustigen Praxisfahrten mit lauter Musik. Danke!

Ganz besonders bedanken möchte ich mich bei meiner adretten Mittwochsrunde, die mich mit Grillen und lustigen Gesprächen die letzten Monate bei Laune gehalten hat. Ihr habt mit mir gelitten als Baileys sterben musste, aber auch gefreut als Lilie ein Teil der AG wurde. Besonderer Dank gilt Therés Becker, die mich in allen Lebenslagen unterstützt und als Ersatzspieler ein Teil dieser AG ist. Sie versorgte mich mit nervenstärkenden Leckereien, abendlichen Überlebenspaketen oder hatte ein offenes Ohr für misslungene Experimente.

Mein ganz besonderer Dank gilt auch meiner Familie, die mich immer unterstützt. Ohne meine Eltern Dietmar und Monika Lutterberg wäre diese Arbeit niemals möglich gewesen. Ihr habt mir den Rücken gestärkt, mich motiviert und zur richtigen Zeit kritisiert. Ihr seid tolle Menschen, die ich niemals missen möchte. Bei meinen beiden älteren Schwestern Silke und Vera, die mit ihrer objektiven und liebevollen Art immer an meiner Seite sind, möchte ich mich ebenfalls ganz herzlich bedanken. Danke sagen möchte ich auch meiner Oma Frieda und meiner leider bereits verstorbenen Tante Lisa, denen ich diese Arbeit widme. Ihr habt immer an mich geglaubt, mit jeder Prüfung mitgefiebert und mich unterstützt. Auch wenn ich keine "richtige Doktorsche" geworden bin weiß ich, dass ihr immer an mich denkt. Außerdem möchte ich mich bei Danny Holota bedanken. Du bist mein Ratgeber, meine Motivation, mein Ruhepol und mein bester Freund. Danke, dass du mich immer unterstützt und als Partner an meiner Seite bist.