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Abstract 

Mental health is an important determinant of communities’ well-being, influenced not only by 

individual attributes, but also by social and organisational environments in which people 

work and live. Despite studies examining mental health status among specific populations, 

few attempts are evident that focus on solution designs for detecting and measuring impact of 

mental health conditions. In this study, we develop a construct utilising design science 

research principles for outlining common vocabulary around the problem, and solution design 

relevant to a mental health management system. For the case of IT professionals, the 

developed construct is informed through a social-media based dataset containing more than 

65,000 cells and 100 attributes potentially identifying influencing factors. Machine learning 

techniques are applied to the dataset to discover new findings for this specific group. It is 

anticipated that the analysis reported in this study would contribute in developing other 

electronic health management systems both for communities and healthcare professionals.  

Keywords: healthcare IS; design research; mental disorder; diagnosis; occupational stress; ICT 

professionals. 

1 Introduction  

Professionals in many organizations often handle relatively stressful tasks within daily 

operations, affecting mental wellbeing. Mental health problems have an impact on 

professional communities directly through increased absenteeism; creating a negative 

influence on productivity and profits, as well as an increase in costs.  Around half of 

individuals with a diagnosis of mental illness have moderate or severe occupational 

impairment, leading to social exclusion, poor self-esteem, and financial hardship (De 
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Choudhury et al. 2013). Standard, symptom-based treatments, in isolation, have inadequate 

effects on occupational outcomes that has led many to conclude that work outcomes for people 

with mental illness can be improved by increased involvement by workplaces. This 

involvement requires a systematic support that enables appropriate analysis, management, 

and exploring of solution strategies such as developing rehabilitation plans for individuals.  

Mental health condition is one of the main causes of occupational dissatisfaction and sickness 

(French et al. 1982; Boyce et al. 2008) in the workplace (Bell & Klein, 2001). In workplaces where 

Information Technology (IT) professionals work, mental stress triggers when external 

demands and expectations exceed professionals’ physical capacity, skills, and knowledge for 

comfortably managing problem solving and relevant tasks (Lands Bergiset et al., 1998; Joyce 

et al., 2009; Brohan et al. 2010). For the IT professionals, chronic exposure to stressful situations 

such as work overload, poor supervisory support and low input into decision-making links to 

a range of debilitating health outcomes (both physical and mental health issues), including 

depression, anxiety, emotional exhaustion, immune deficiency disorders and cardiovascular 

disease (Noblet & La Montagne, 2006). Although these understandings benefit social 

awareness and suggest treatment options, holistic solution strategies in relation to developing 

mental health management systems are required, and guidance for systematic solution 

development is still lacking.  

Research in healthcare IS addresses issues regarding organizational, operational, managerial, 

technical and social aspects of IS in different healthcare settings. For developing systematic 

solutions and design knowledge much healthcare IS research takes a positivist stance (Lin et 

al., 2017). Design science research approaches promote views, methods, guidelines, 

approaches, and experiences for developing innovative IS solution artefacts such as constructs 

(in terms of constituting the language to specify problems and solutions vocabulary), models 

(in terms of abstractions for representing solutions), methods (in terms of algorithms of 

solutions), and instantiations (in terms of system prototypes) (Hevner et al. 2004). In this study, 

to address the issue of discovering factors affecting mental health conditions we outline here 

a construct for detecting a particular mental health condition (e.g. depression based on age 

group, sex, occupation, and country of the worker) among IT professionals. The proposed 

construct also informs a solution language by utilizing various machine learning approaches 

that provide an innovative concept in designing more formal systematic mental health 

management solutions. 

Stressful working conditions impact indirectly on professionals’ well-being by limiting an 

individual’s ability to make positive changes to their lifestyle behaviours (e.g. smoking, 

sedentary behaviour) or by directly contributing to their negative health behaviours (Michie 

and Williams, 2003). At a broader scale, occupational mental issues of workforce could result 

in poor efficiency and throughput in the economies of countries, even impacting wider issues 

such as poverty and other social calamities (Cox et al. 2004; Danziger, 2009; Laitinen-Krispijn, 

2000).  IT professionals in particular can experience considerable occupational stress due to 

real time demands, equipment malfunctions, intrusion and other security threats system, 

system cutover problems and unanticipated disasters (Al-Saggaf et al. 2017). As IT 

professionals work in all sectors and in all countries, they provide a good population around 

which to develop a general construct. 
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In considering mental health of IT professionals, the following research issues are important 

for developing both generic problem significance and provisions for solution strategies 

regarding a mental health management system:  

1) What exogenous and endogenous workplace factors affect mental health among IT 

professionals?  

2) What are the attributes of IT professionals who are more vulnerable to mental health 

issues?  

3) What are the common mental health issues diagnosed in the IT professionals and how 

prevalent is mental disorder?  

4) What is the relationship between mental health issues and attitudes toward mental 

health based on cultural norms (geographic location)?  

5) What is the most influential attribute contributing toward diagnosis of mental health 

conditions?  

6) Why are people with severe mental illness excluded from work? And does it matter if 

people with severe mental illness work? 

Understanding such concerns are prerequisite to selecting technologies for decision support 

solution frameworks that may better handle mental health issues.  

Social media sites are abundant, offering common platforms where people express and share 

their personal issues using comments, photos, icons and other content. Social media data are 

imbued with useful information about personal well-being and life-style and many social 

media or organization media sites provide publicly available large datasets that contain 

relevant attributes of professionals. This provides a source of big data to address our questions. 

Our aim in this study is to provide understanding around mental health problems and 

possible data-driven decision support solution approaches developed through the use of 

machine learning (ML) techniques. This has been shown to be effective in other areas of mental 

health research (Teipel et al., 2016). In DSR, research in relation to designing constructs has a 

significant impact on the way in which tasks and problems are comprehended for fully 

functional solution design (Boland, 2002; Hevner et al. 2004). Problem representation has a 

profound impact on design work, and theoretical constructs shape the development of models 

or representations of the problem domain.   

The remainder of the paper is organized as follows: Section 2 presents background to the study 

while section 3 describes methodological details. Section 4 reports on the proposed design 

construct that informs mental health issue detection and guides solution design, followed by 

a discussion and evaluation in section 5. Finally, section 6 provides a conclusion and future 

directions of the study.  

2 Related Works 

Today’s social media technologies allow people to express their views freely online which 

provides rich and valuable content that can enable opportunities for new insights or support 

information (Mislove et al., 2007). As a result, a growing number of researchers are using social 

media data for a range of online health, medical, and psychosocial studies (De Choudhury et 

al. 2013). However, it is important to carefully consider the online content of target population 
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for the assessment of generalisability (Choi et al. 2017). Joyce et al. (2016) identified that 

depression is a most common factor of mental disorders in most developed countries while 

carrying out a systematic meta-review examining the effectiveness of the interventions of 

workplace mental health. The study by Joyce et al. (2016) concluded that there are empirically 

supported interventions that workplaces can utilize systematic solutions to aid in the 

prevention of common mental illness. 

Cousins et al. (2004) described the development of health and safety executive (HSE) new 

stress Management Standards—that offer organizations’ continuous improvement through a 

three-phase stress preventative process—and the development of a supporting ‘Indicator Tool’ 

(a two-phase questionnaire to assess employee perceptions of working conditions). They 

mentioned the HSE's aim to provide an associated methodology that will enable organizations 

to effectively tackle work-related stress, and subsequently reduce both its incidence and 

prevalence. (LaMontagne et al. 2007) discussed how job related stress has a wide range of 

adverse effects on mental, physical, and organizational health. These studies also emphasised 

how developing systems approaches for reducing the adverse impact of job stress, prevalent 

practice is dominated by the worker. These studies imply a clear need for designing computer-

based solutions for measuring and detecting mental health conditions.  

Sharma et al. (2009) developed the Global Mental Health Assessment Tool – Primary Care 

(GMHAT/PC) to assist general practitioners and other health professionals to make a quick, 

convenient, and comprehensive standardized mental health assessment. They mentioned that 

it may help for detecting and managing mental disorders in primary care and general health 

settings more effectively. Gabriel and Liimatainen (2000) represented the importance of mental 

health of the workplace in enhancing the economic and social integration of people with 

mental health difficulties. They analysed the scope and impact of mental health problems in 

the labour markets in five countries including Finland, Germany, Poland, United Kingdom, 

and United States and their work to advance and to advocate for employment for people with 

mental health difficulties. Cox and Cox (1993) considered the traditional approach to 

occupational health which points up the importance of psychosocial and organizational issues. 

They focused the development of a new three factors framework of concern, that is, 

organizational health based on health, work and organization. They addressed the 

organizational health problems and managed effectively within the framework that proved 

successful for the more tangible workplace hazards.  

Although some of these studies addressed mental health issues at the workplace in general, 

none have considered mental stress in IT workplaces, nor have any had a focus to develop a 

solution design understanding, for instance, by applying data-driven methods for the purpose 

of mental stress detection. This paper collects social media/open sourced data to examine 

various attributes of tech workers and to diagnose their mental health conditions by applying 

ML techniques, ultimately to suggest a solution design approach for better management of 

mental health issues. 

3 Design Methodology 

The research adopted a design science research (DSR) methodology for designing the 

proposed artefact. DSR has received increasing attention by information systems (IS) design 

researchers in recent years and can produce distinct types of artefacts: constructs, models, 

methods, instantiations and theories (Gregor & Hevner, 2013). Baskerville et al. (2015) 
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described design science as representing (a) a design-science research project, (b) an artefact 

“build and evaluate” project such that a research project may entail, (c) the production of new 

knowledge from design-and-development, and (d) the creation of reports or articles 

describing this design-science research project. Our study follows this model to produce a new 

construct in the form of an artefact design and its evaluation. Baskerville et al. (2015) also 

suggested that DSR is an approach that enables structural guidance for researchers to create 

modernized or innovative system artefacts: in our study, a design construct forming a 

language of problems and solutions that can be applied for a real solution development.  

3.1 DSR framework  

The study adopted a DSR framework for the design construct comprising problem definitions 

and in principle solution strategies, informed by ML techniques intended to address the 

decision making around mental health conditions for their appropriate management. Hevner 

et al.’s (2004) seven guidelines provide useful criteria for defining a DSR study problem space, 

specifying a design based solution artefact, implementing the design solution, evaluating the 

design artefact and communicating study details and results. In addition, our description here 

is practically guided by Gregor and Hevner (2013), explicating the level of contribution to 

artefact abstraction and knowledge for the production of a publication (e.g. artefact design 

through conceptualization of ensemble artefact view defined in Miah & Gammack, 2014). 

 

Figure 1: Our methodological steps for identifying mental health issues 

We utilise four design phases namely data collection and processing, data classification, 

problem statement and diagnosis of mental health issues (illustrated in figure 1). This 

complements the approach of Miah, Vu, Gammack and McGrath (2017) in which three phases 

(problem identifications, artefact development and communication about the artefact) were 

recreated from Hevner’s et al. (2004) DSR framework. We mapped these design guidelines as 

follows: guideline 1 defining the type of artefact as construct, guideline 2 is to signify the mental 

health problems, guideline 3 conducting an experiment to demonstrate utility of the 
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technology’s provisions, guideline 4 identifying requirements of decision support for mental 

health issues management, guideline 5 comparing and contrasting on the selection of 

technologies, guideline 6 selecting evaluation techniques and guideline 7 communicating the 

studies among academic and industry audiences.   

3.2 Data collection  

We used a publicly available dataset (https://www.kaggle.com/osmi/mental-health-in-tech-2016) 

containing attributes of workers working in IT/tech workplaces. The dataset contains the 

number of attributes of IT/Tech workplace workers. In this dataset, the total number of records 

in each part is approximately 10,000. We used part 1 to analyse the situation in IT workplace 

and part 2 to detect the percentage of IT workplace workers who are suffering from mental 

stress. 

This dataset contains 100 columns where each column represents a unique piece of 

information about a tech worker. Although each of the individual columns provides valuable 

information for diagnosis of tech workplace workers mental health conditions, in this paper, 

we selected 23 columns because the other 77 columns are not strictly necessary for detecting 

mental health conditions of tech workplace workers. We divided our dataset into two parts to 

detect and examine the mental stress of IT workplace workers. Overall, these columns contain 

both mentally “sick” and mentally “sound” workers information. Part 1 contains 13 columns 

(including demographic indicators) and part 2 contains 10 columns based on the following 

questions which are shown below. 

Overview of part 1  

• Have you heard of or observed negative consequences for co-workers who have been 

open about mental health issues in your workplace? 

• Do you believe your productivity is ever affected by a mental health issue? 

• If yes, what percentage of your work time (time performing primary or secondary job 

functions) is affected by a mental health issue? 

• Do you think that discussing a mental health disorder with previous employers would 

have negative consequences? 

• Would you be willing to bring up a physical health issue with a potential employer in 

an interview? 

• Would you bring up a mental health issue with a potential employer in an interview? 

• Do you think that team members/co-workers would view you more negatively if they 

knew you suffered from a mental health issue? 

• How do you describe your work position? 

• How willing would you be to share with friends and family that you have a mental 

illness? 

• What is your age? 

• What is your gender? 

• What country do you live in?  
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Overview of part 2 

• Have you observed or experienced an unsupportive or badly handled response to a 

mental health issue in your current or previous workplace? 

• Have your observations of how another individual who discussed a mental health 

disorder made you less likely to reveal a mental health issue yourself in your current 

workplace? 

• Do you have a family history of mental illness? 

• Have you had a mental health disorder in the past? 

• Do you currently have a mental health disorder? 

• If yes, what condition(s) have you been diagnosed with? 

• If maybe, what condition(s) do you believe you have? 

• Have you been diagnosed with a mental health condition by a medical professional? 

• Have you ever sought treatment for a mental health issue from a mental health 

professional? 

• If you have a mental health issue, do you feel that it interferes with your work when 

being treated effectively? 

3.3 Ground Truth Dataset 

We now discuss how we constructed our dataset with ground truth information (on whether 

the IT/Tech workers conditions are mentally sick). We use our dataset and divided into two 

sets (1) for the positive (YES) class (mentally sick) and (2) for the negative (NO) class (mentally 

sound). We justified the information in each set manually using three experts. We analysed 

approximately 10,000 records of IT workplace workers where 58% obtained YES and 42% 

obtained NO. Table 1 illustrates the overview of mental condition of IT/Tech workers. 

 

Total number of IT/Tech workers 1,433 

Mentally Sick workers 933 

Mentally Sound 500 

Table 1: Overview of mental condition of IT/Tech workers  

3.4 Measuring Mental Illness 

We acknowledge that mental health can be a variable condition, and the spectrum is not as 

binary as the classification of “sick and “sound” suggests, and moreover that “mental illness” 

is itself controversial in psychology since at least Szasz (1960). Nonetheless as with any fuzzily 

defined categorisation, particular classifications can be usefully distinguished and evidentially 

supported. As experts were used to determine the class level distinction, the detection has an 

authorised basis, so we preface our discussion of measurement by noting this design choice.  

Figure 2 represents a measuring procedure for detecting mental health conditions using a ML 

technique. In this procedure, we collect data for finalizing the features of the dataset and then 

applied the ML technique for detecting the mental health indicators associated with anxiety, 

depression, bipolar disorder, personality and mood as the initial focus for our investigation.  
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Figure 2: Detecting procedures that were used in this study 

We first analyse a set of demographic attributes including age group, sex, occupation, and 

country that were used to represent the range of mentally sick people in IT/Tech workplace 

(Table 2). Attributes such as family problems, past condition, present condition, and 

workplace environment condition were used for detecting the mental disorder in the 

workplace (Table 3).  

 

Variable Total Anxiety Disorder Mood Disorder Other Disorder 

Age Group 

20-30 222 134 53 35 

31-40 239 150 69 20 

41-50 76 38 29 9 

>50  27 13 10 4 

Sex 

Male 363 207 102 54 

Female 177 114 52 11 

Occupation 

Back-end Developer 139 72 44 23 

Supervisor/Team Lead 75 49 18 8 

Executive Leadership 28 13 11 4 



Australasian Journal of Information Systems Islam, Miah, Kamal & Burmeister 
2019, Vol 23, Research on Health Information Systems Approaches to Measure Mental Health Conditions 

  9 

Variable Total Anxiety Disorder Mood Disorder Other Disorder 

DevOps/SysAdmin 55 34 16 5 

Dev Evangelist/Advocate 27 16 11 0 

Support 26 17 6 3 

One-person shop 47 20 15 12 

Front-end Developer 76 55 16 5 

Designer 24 16 5 3 

Other 66 40 19 7 

HR 3 3 0 0 

Country 

United States of America 384 228 115 41 

United Kingdom 62 43 17 2 

Australia 16 9 6 1 

Canada 23 15 3 5 

Germany 10 4 5 1 

Netherland 22 8 5 9 

France 3 2 0 1 

Denmark 2 1 0 1 

Other Country 45 26 11 8 

Table 2: Categorization of IT/Tech workers in various mental disorders 

 

Mental health disorder in the 

past? 

 Sex Anxiety Mood Other Total 

YES 
M 137 22 13 172 

F 82 15 3 100 

NO 
M 70 14 6 90 

F 33 2 1 36 

Family history of mental illness? 

YES 
M 86 13 8 107 

F 57 9 1 67 

NO 
M 121 23 11 155 

F 58 8 3 69 

Currently have a mental health 

disorder? 

YES 
M 124 22 15 161 

F 72 14 2 88 

NO 
M 83 14 4 101 

F 43 3 2 48 
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Mental health issue in current or 

previous workplace? 

 Sex Anxiety Mood Others Total 

YES 
M 107 15 9 131 

F 58 11 2 71 

NO 
M 100 21 10 131 

F 57 6 2 65 

Diagnosed with a mental health 

condition by a medical 

professional? 

YES 
M 93 16 9 118 

F 61 12 3 76 

NO 
M 114 20 10 144 

F 54 5 1 60 

If you have a mental health 

issue, do you feel that it 

interferes with your work when 

being treated effectively? 

NA 
M 103 20 10 133 

F 58 6 1 65 

Rarely 
M 46 5 3 54 

F 21 4 1 26 

Some 

Times 

M 47 7 5 59 

F 30 6 2 38 

Often 
M 11 4 1 16 

F 6 1 0 7 

Table 3: Number and proportion of IT/Tech workplace workers mental disorder into various conditions 

4 Artefact Description 

The proposed design construct comprises two aspects: identifying factors that affect mental 

health conditions at the workplace and design and evaluation of a solution approach for a 

particular group to showcase a solution strategy as represented in figure 3. For identifying 

affecting factors, we first collected open access data operating a modified API open-sourced 

programming code (source: https://developers.facebook.com/docs/graph-api/using-graph-

api/). The collected data was in the form of textual content. We proposed an analytics 

methodology as illustrated in figure 4. Secondly, we used a machine learning technique for 

classifying the collected textual data for showcasing some findings in terms of solution design.  

 

 

Figure 3: General structure of the proposed construct 

Nunamaker et al. (1991) argued that the process of constructing solution artefacts and offering 

understanding of problems are important tasks for design researchers. Supporting this 

argument, Hevner et al. (2004) described that in design research it is imperative to provide 

 

Factors affecting mental 

health conditions at work 

Design Construct of mental health 

conditions 

Machine learning 

approach as a solution 
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“the language in which problems and solutions are defined and communicated” that can 

inform design of “cutting-edge” IS applications. 

 

 

Figure 4: Method of a ML based Analytics 

The proposed analytics methodology (figure 4) consists of steps such as initial conditions of 

workers (Healthy Worker in IT Workplace), assessed by a set of methods (e.g. personalized risk 

profiling). Next, when the workers engage their workload, their mental illness can be assessed 

by methods such as examining physical or mental conditions. Then the third step is to assess 

the mental issues, by finding the factors affecting their individual conditions. Finally the ML 

has been applied to validate the factors through measuring the comparison between ground 

truth response and ML response. The ground truth response created by three domain experts 

in which a binary conversion from textual data to numeric data was taken to test the ML 

technique’s acceptability.  

Machine learning in the most general conception is a set of tools and methods with the aim of 

modelling and understanding data. ML algorithms can learn how to perform important tasks 

by generalizing from examples (Oleksy, 2017). This is often feasible where manual 

programming is not. As more data becomes available, more ambitious problems can be 

tackled. These algorithms have the ability to extract information and infer structure from 

collections of measurements, data streams such as sound/video signal and human language 

(Yin et al. 2017, Burmeister et al. 2015).  

Learning in general is mainly performed in two ways: knowledge acquisition and skill 

refinement. Thus, ML contributes to decision support systems (DSS) in two major realms: 

through supporting the acquisition and refinement of problem-solving knowledge and 

solution strategies, and through enabling DSS to adapt and evolve to be more efficient and 

effective in decision-making support. In this aspect we gained knowledge for investigating 

how ML techniques can be suitable for good decision support and useful for knowledge 

acquisition in their ability to adapt.  
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5 Discussion and Evaluation  

The paper so far has presented a construct design for informing important mental health issues 

and possible solution provision so a fully-functional decision support application in future can 

be developed. We promoted an idea of using online available data to assess potential of the 

factors affecting mental health at IT workplace and machine learning based solution design. 

We discussed the performance of different ML classifiers in detecting mentally ill workers in 

a shorter time. The experiment was conducted using MATLAB (MATLAB is a productive 

software environment for researchers to analyse and visualize data with latest techniques. We 

used the latest version of 2016b, for better outcome). We applied four major ML classifiers such 

as Decision trees (it is method for using a tree-like graph or model of decision aspects), K-

Nearest Neighbour (KNN), Support Vector Machine (Support Vector Machine (SVM) is a 

discriminative classifier, is one of the most popular machine learning algorithms), and 

Ensemble as mentioned earlier.  

Each ML classifier technique has sub-classifiers such as Decision trees- Simple Tree, Medium 

Tree, and Complex Tree; SVM- Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, 

and Coarse Gaussian; KNN- Fine, Medium, Coarse, Cosine, Cubic and Weighted, Ensemble- 

Boosted tree, Bagged tree, Subspace discriminant, Subspace KNN, RUSBoosted tree. 

Performances of these classifiers have been computed by using the evaluation matrices 

parameters such as precision, recall, and F-measure (F-measure has a common use in data 

mining projects. It combines precision and recall for the harmonic mean of precision and 

recall). 

All the evaluation metrics that we used are defined as follows. 

Precision is the ratio of true positives to the cases that are predicted as positive. It is the 

percentage of selected cases that are correct. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall is the ratio of true positives to the cases that are actually positive. It is the percentage of 

corrected cases that are selected. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

F-measure is the mean of Precision and Recall. It takes both false positives and false negatives 

into an account. F-measure is calculated as: 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑅

𝑃 + 𝑅
 

The experiment was carried out by using 10-fold cross-validation on all testing data sets. For 

every ML classifier, we found the value of its sub-classifier which persists to precision, recall 

and F-measure (refer to table 4). The result has been graphically represented in figures 5 and 

6.  
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Algorithm Precision Recall F-measure Accuracy 

Complex Tree 0.994623 0.991425 0.993022 99 

Medium Tree 0.994577 0.982851 0.988679 98.5 

Simple Tree 0.957974 0.952840 0.955400 94.1 

Fine KNN 0.997851 0.995712 0.996781 99.5 

Medium KNN 0.988159 0.983922 0.986036 98.1 

Coarse KNN 0.933537 0.978563 0.955520 94 

Cosine KNN 0.997826 0.983922 0.990825 98.7 

Cubic KNN 0.988159 0.983922 0.986036 98.1 

Weighted KNN 0.997851 0.995712 0.996781 99.5 

Linear SVM 0.997860 1 0.998929 99.9 

Quadratic SVM 0.996794 1 0.998394 99.8 

Cubic SVM 0.996794 1 0.998394 99.8 

Fine Gaussian SVM 0.997851 1 0.998924 99.5 

Medium Gaussian SVM 0.996788 0.998927 0.997856 99.7 

Coarse Gaussian SVM 0.996791 0.998928 0.997858 99.7 

Ensemble Boosted  Tree 0.996784 0.996784 0.996784 99.5 

Ensemble Bagged Tree 0.996791 0.998928 0.997858 99.7 

Ensemble Subspace Discriminant 0.95010 0.979635 0.964643 95.3 

Ensemble Subspace  KNN 0.904244 0.981779 0.941418 92 

Ensemble RUSBoosted Tree 0.995694 0.991425 0.993555 99.1 

Table 4: Precision and recall corresponding to best F-measure of the different classifier 

Figure 5 represents the result of precision and recall values of different classifiers where the x-

axis represents the different sub-classifiers of Decision Tree, KNN, SVM and Ensemble 

techniques. We mentioned (1-20) as a symbol of Decision trees- Simple Tree, Medium Tree, 

and Complex Tree; SVM- Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and 

Coarse Gaussian; KNN- Fine, Medium, Coarse, Cosine, Cubic and Weighted, Ensemble- 

Boosted tree, Bagged tree, Subspace discriminant, Subspace KNN, RUSBoosted tree 

respectively and y-axis represents the range of value. 
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Figure 5: Precision-recall curve for the 20 sub-classifiers of machine learning techniques 

Similarly, Figure 6 showed the result of F-Measure where the x-axis represents the name of 

different sub-classifiers and y-axis represents the percentage of the sub-classifier result. 

 

Figure 6: Performance comparisons among the classifiers 

Using the above ML classification techniques, we examined detection performance of mentally 

ill IT workplace workers, so as to comprehend the significance of different feature types. We 

already demonstrated the results of various characterizations with various proportions of four 

features. The outcome showed that, in our test set, the best performing model is SVM. In 

addition, for all of the features precision, recall and F-measure calculation, SVM gives the most 

outstanding outcome relating to the class of mental disorder indicative of IT workplace 

workers.  

Moreover, in figures 7 and 8, we have shown the various range of mental disorders values 

based on age group and sex, where x-axis represents the various names of the mental disorders 

and y-axis represents the number of people who are feeling anxious and moody. 
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Figure 7: The range of age group in IT/Tech workers with mental disorders 

 

Figure 8: The number of male and female in IT/Tech workers with mental disorders 

Similarly, figures 9 and 10 demonstrate the result of the range of mental disorder values based 

on occupation/positions such as back-end developer, supervisor/team leader, executive, 

system admin, dev evangelist, one person shop officer, font-end developer, designer, and HR, 

and country such as USA, UK, Australia, Canada, Germany, Netherland, and France, where 

the x-axis represents the designation of IT workplace workers and their country respectively 

and the y-axis represents the number of people who are feeling anxiety, mood etc. In figure 9, 

we examined all of the occupational positions in the IT workplace for calculating the mental 

disorders. It was observed that for all of the mental disorders, back-end developers are 

suffering the most. We trust that our present study has laid the ground for future research on 

deductions and revelation of new data in view of cause-event correlation. A limit in the data 

set used is the small number of occupation classifications. The IT workplace is much more 

diverse than these few classifiers suggest, and they vary between countries (Al-Saggaf et al., 

2017). 
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Figure 9: The number of people in the different sections of the IT/Tech workplace with mental 

disorders. 

Figure 10 shows the populations of some countries who are suffering from different mental 

disorders in the IT/Tech workplace. The country with the largest population (67%) is the USA 

with anxiety, mood and other disorders, whereas Denmark has the smallest population. Apart 

from the USA, the largest countries are UK, Australia, and Canada respectively. However, 

interpretation of the figure can be misleading, because it is population based and based upon 

the limited sample in the publicly available data set. For instance, anxiety and depression are 

the two most prevalent mental illnesses experienced in Australia (Birch, 2015; Sayers et al., 

2017). Similarly, in figure 8 anxiety is the most prevalent in IT workers. Mood in this data set 

includes, but is not limited to, depression. A more representative data set would therefore be 

likely to show different results to what is depicted in figure 10. 

 

Figure 10: The number of people in the different countries of the IT/Tech workplace with mental 

disorders 
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6 Conclusion 

The paper represents basic requirements of developing a systematic IS solution for 

establishing common vocabulary of problems and solution technique selection. In our study 

we used a representative case of IT professionals. For promoting an understanding on mental 

health issues and possible technology selection for decision support solution design, we have 

exhibited the capability of using IT/Tech workplace survey data for measuring and detecting 

mental disorders among tech workers. To give a clear understanding of our work, the research 

challenges were stated at the start of this paper. The proposed analytics performed on the 

selected dataset, provide some insight on the research challenges. Below is the summary of 

our findings: 

• What exogenous and endogenous workplace factors affect the mental health of tech 

worker?   

It was revealed that there are four key factors that significantly contribute toward the mental 

health condition of tech workers. These factors include ‘minimal risk’, ‘workplace concern’, 

‘activity concern’, and ‘emotional stresses. 

• What are the attributes of tech workers who are more vulnerable to mental health 

issues?  

Although, most of the workers working in technical departments are prone to mental health 

issues, our study found that the worker with ‘family history of mental stress’, ‘past condition 

of mental stress’, are more likely to develop mental health issues. In addition, the current 

workplace environment can act as a catalyst to further magnify the chances of mental health 

of already vulnerable workers.   

• What are the common mental health issues diagnosed in the tech workers and how 

many mental disorder episodes they had experienced? 

Proposed analytics performed on the selected dataset suggest various mental health issues 

that tech workers could possibly be presented with. Common mental health issues include 

‘anxiety disorder’ (generalized, social, phobia, etc.), ‘mood disorder’ (‘depression’, ‘bipolar 

disorder’, etc.) and other kinds of disorders  such as (‘personality disorder’, ‘seasonal affective 

disorder’, ‘burn out’, ‘PDD-NOS’, ‘combination of physical impairment’ (strongly near-

sighted) with a possibly mental one (MCD / "ADHD"), ‘substance use disorder’ , ‘stress 

response syndromes’, ‘sexual addiction’, ‘obsessive-compulsive disorder’, and ‘post-traumatic 

stress’). These results showing a relationship between mental illness and physical impairment 

are recognised more widely, as seen in the Equally Well initiative recently launched by the 

Australian National Mental Health Commission to better address the physical needs of people 

experiencing mental illness (Roberts et al. 2018).  

Analytics presented in Table 2 above suggested that workers in the age bracket of 20-30 years 

are more likely to get anxiety. This finding is supported by an OECD report (OECD, 2012) on 

the relationship between work and mental health, which reported that mental health 

workplace challenges tend to arise at an early age. This could possibly due to lack of their 

experience of dealing with high-stress tech environment and other pressures at the early stages 

of their professional career. The situation could be better with the age as workers get more 

experience and find ways to deal with work related anxiety and depression.  
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• What is the relationship between mental health issues and attitudes toward mental 

health based on the geographic location in the global workplace?  

The relationship of mental health issues with geographic locations varies country to country. 

Table 3 presents information on mental health condition of workers working in various 

countries.  

• What is the most influential attribute contributing toward diagnosis of mental 

health condition in the tech workplace? 

Although we considered a total of 23 attributes for diagnosis of mental health conditions of 

tech workers, the most significant attributes are found to be family history of mental illness, 

personal history of mental illness, present situation of mental health and the working 

environment. We trust that these attributes provide valuable information on the influential 

attributes contributing toward the diagnosis of mental health condition in the tech workplace. 

In this paper, we make an attempt to get an insight of mental health condition of tech workers 

by applying various ML techniques. Our findings suggest that all the classifiers results are 

almost 99%.  

In future work, we will extend the literature in the area of growing attention called ‘Mental 

Health Mining’, in particular in health related knowledge discovery. The suitability of mental 

illness data for disease surveillance will be demonstrated along with its potential limitations 

in a case study of mental illness around the world. Additionally, the state-of-art and 

empirically validated machine learning algorithm will be employed in order to gain insight 

into the most common mental illnesses around the world. We will use further techniques to 

extract paraphrases from more types of mental disorder features. Also, we will be using more 

datasets to verify the efficiency and effectiveness of ML techniques to subsequently improve 

the predictive accuracy. This will prove the way for a larger scale investigation into the topic 

in the upcoming research. As a result, the benefits of high quality input data as well as the 

innovative visualization tool for patterns exploration will considerably facilitate knowledge 

discovery. Finally, the literature on social media data mining for mental health applications 

will be extended with a new practical application to the current matters of concern, including 

depression and anxiety. 
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