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Abstract 
Energy Regulation by the Skeleton: Exploring the Role of                                   

Bone-Derived Lipocalin-2 

Steven Shikhel 

Life relies on the integration of external environmental stimuli and internal signals to balance fluctuations 

in nutrient availability to achieve homeostasis. Bone has recently emerged as a pleiotropic endocrine 

organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and 

glucose homeostasis, respectively. These findings have raised the question of whether other bone -

derived hormones exist and what their potential functions are. Here we identify, through molecular 

and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and 

gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose 

homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In 

addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood–brain barrier, binds to 

the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the 

hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These 

results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses 

appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function 

of bone. Furthermore, we show that serum LCN2 levels correlate with insulin levels and β-cell function, 

indices of healthy glucose metabolism, in genetic and diet-induced mouse models of obesity and in obese, 

healthy or pre-diabetic patients. However, LCN2 serum levels also correlate with body mass index (BMI) 

and insulin resistance in the same patients; and are increased in obese mice. To dissect this apparent 

discrepancy, we examined LCN2 effects in hyperphagia and β -cell function mouse models of obesity or β 

-cell destruction. Silencing Lcn2 expression increases hyperphagia, fat and body weight and worsens β -



cell function and general metabolic dysfunction in obese, leptin receptor-deficient mice. Conversely, LCN2 

increases β-cell numbers and promotes β-cell function after streptozotocin-induced β -cell failure by (STZ) 

and acts as a growth factor necessary for β -cell adaptation to higher metabolic load in mice. These results 

support a protective role for LCN2 in obesity-induced glucose intolerance and insulin resistance that stem 

from its ability to decrease food intake and promote adaptive β-cell proliferation. 
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Nutrition and Metabolic Biology 

Metabolism is broadly defined as the sum of chemical processes needed to maintain life. Its regulation 

relies on the integration of external environmental stimuli and internal signals to balance fluctuations in 

nutrient availability and achieve homeostasis. Generally, anabolic pathways are active when nutrient 

supply exceeds demand to promote storage and growth while catabolic pathways become active in 

breakdown to meet the caloric and nutrients demands of the organism1.   The ability to store nutrients 

from the diet for later times has supported the development of animal life for nearly 600 million years. 

However, in the last 50 years, it has gone awry for a large population of humans2.  

 

In a remarkably short time, we have gone through gastronomic and technological revolutions. We have 

shaped our environment to one of caloric surplus through the creation and accessibility of highly palatable 

calorie dense foods while decreasing the need to expend energy3.  Diet-induced obesity (DIO) has existed 

throughout human history. It was a relatively rare condition associated with affluence. The association 

between obesity and high mortality rates was recognized even in biblical times. In the sixth century CE., 

the increase in mortality was explained due to divine retribution for violating two of the seven cardinal 

sins, “gluttony” and “sloth,” namely overnutrition and under-exertion. Supplanting divine retribution, the 

scientific community has offered new explanations on the cardinal causes of obesity-induced mortality. 

However, there is a current lack of consensus regarding obesity pathogenesis5. This lack of agreement 

results in poorly justified claims both from within and outside the scientific community, leaving individuals 

and patients weary, confused, and dissatisfied with the scientific process as it pertains to obesity 

treatment. To break this cycle, and to identify effective treatment modalities, we need to better 

understand obesity’s underlying causes4. 
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Colloquially, obesity is defined as an excess of body fat mass. Quantifying fat-mass requires sophisticated 

tools not widely available. Therefore, body mass index (BMI), which expresses body weight (kg) as a 

function of body height squared (m2) is used as a surrogate measure of body fat accumulation. Population-

based actuarial studies place the upper limit of normal BMI in adults at 25 kg/m2, and define obesity as 

BMI > 30 kg/m2, and designate a BMI between 25 and 30 as “overweight”4. Though BMI is an imprecise 

measure of adiposity, the CDC was able to track marked increases in the obesity rate among people living 

in developed and developing nations. This is especially true for children and adolescence and therefore a 

legitimate public health concern.  

 

Metabolic Syndrome (MeS) is characterized by a collection of metabolic abnormalities which include 

obesity, dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, and insulin resistance. Obesity has 

reached endemic proportions and has been deemed the leading cause of preventable death. The burden 

of obesity on health extends across multiple organ systems and increases the risk of chronic diseases, like 

nonalcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), atherosclerotic cardiovascular disease, 

cancer, pulmonary disease, chronic kidney disease, sleep apnea and rheumatoid arthritis5. 

 

These diseases exert tremendous strain on society through contributing to increased morbidity and 

mortality rates which stress limited health system resources. In the United States, obesity and its 

associated co-morbidities cost $1.42 trillion/year (8% of GDP), and this number is only expected to 

increase6. To develop therapies to combat obesity’s growing burden on population health, we must define 

the sources, causes and mechanisms underlying the pathogenesis of obesity. It is, therefore, necessary to 

integrate molecular, genetic, developmental, behavioral and environmental factors4. 
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Metabolic syndrome pathogenesis involves chronic caloric surplus resulting from small cumulative 

imbalances of energy intake and expenditure. In most mammals, including humans, the meal is the 

functional behavioral unit of food intake. The size and frequency of the meals ultimately determine the 

total daily energy intake which can vary greatly. For example, predatory hunters like lions and wolves may 

only eat once every couple of days, provided they can eat the entirety of their kill in what amounts to a 

single meal.  In contrast, grazing animals will spend the majority of their waking hours on feeding. Humans 

eat multiple meals a day, and each meal constitutes a modest fraction of total daily caloric intake7 . The 

identification of the molecular mechanisms which control short- and long-term feeding behaviors will 

better enable preventative and therapeutic approaches to obesity. 

 

Feeding behavior is largely due to two motivational aspects; to fulfill metabolic and hedonic needs. When 

body-fuel and nutrient sources are sensed to be low, metabolic feeding aims to alleviate its associated 

discomfort. Hedonic feeding results from the anticipation of a rewarding experience included with eating. 

Energy balance neurocircuitry has identified neuronal substrates implicated in these distinct but 

complementary sources of motivation.  To date, neuronal populations in the hypothalamus and brainstem 

have been ascribed as the main central regulators’ areas of energy homeostasis.   

 

The arcuate nucleus (ARC) of the hypothalamus contains two populations of neurons with opposing 

effects on food intake8. The activity of both populations of neurons can be influenced by the periphery 

due to the ARC’s proximity to the median eminence, a breach in the blood-brain barrier due to fenestrated 

capillaries9. Peripheral hormones have been described to signal short-term availability clues, such as those 

emanating from the gut. Others, like leptin, have been regarded as hormones which relay information 

regarding long-term energy stores10.  Gut hormones like PYY and GLP1 can signal directly to the arcuate 

nucleus and to the brainstem. They can also act through vagal afferents which converge in the nucleus of 
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the tractus solitarius of the brainstem. Neuronal projections from the brainstem can then carry signals to 

the hypothalamus10.  

 

Cholecystokinin (CCK) is a peptide secreted from enteroendocrine cells of the gut in response to intestinal 

nutrient intake. CCK acts by modulating vagal inputs and by directly effecting central 

brainstem/hypothalamic feeding circuits. CCK-expressing gut enteroendocine cells are located adjacent 

to CCKA-receptor positive vagal affect nerves making it possible for local paracrine effects to occur. When 

the vagal nerve signals below the diaphragm are surgically or chemically interrupted, the effects of CCK 

are blocked. CCKR positive neurons can be stimulated by mechanosensory mechanisms like gastric 

distention or stroking of the intestinal mucosa7.   Plasma CCK levels rise within minutes of meal onset and 

is rapidly degraded following its release. The increase in CCK can activate cFOS in gut-recipient regions of 

the caudomedial NTS which is also mediated by vagal afferents. Combinations of gastric loads, duodenal 

nutrients infusion or gastric loads and peripheral CCK generate greater cFOS expression than any stimuli 

alone indicating both paracrine and endocrine roles of CCK 6. Ghrelin is an orexigenic hormone secreted 

by gastric X/A cells. In contrast to CCK, ghrelin is increased during fasting and decreases after refeeding. 

Peripheral and central ghrelin administration rapidly promote appetitive and consummatory ingestive 

behaviors.  

 

The adipokine leptin, which is secreted in proportion to body fat provides information about long-term 

energy stores. Peripheral and central administration of leptin suppresses fasting-induced increases in 

feeding which modulates meal size without affecting meal frequency4. Leptin receptor signaling in 

neurons which express peptide neurotransmitter pro-opiomelanocortin (POMC) and cocaine-

amphetamine-regulated transcript (CART) cause a suppression of feeding while increasing metabolic rate. 

These anorexigenic neurons are located in the lateral ARC and express alpha-melanocyte stimulating 
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hormone (α-MSH) 11. POMC is a prohormone that produces ϒ-melanocyte-stimulating hormone (MSH), 

adrenocorticotropic hormone (ACTH) and β-lipotrophin. ACTH and β-lipotrophin produce several more 

substances including α-MSH and β-MSH which act as ligands to bind and activate the Melanocrtin-4 

receptor (MC4R) in the paraventricular hypothalamus (PVH)12. A second group of neurons, the 

neuropeptide Y (NPY) and agouti-related peptide (AgRP), are inhibited by leptin receptor causing appetite 

to be stimulated 13–15AGRP signals through PC1 as a natural antagonist of MC4R.  These orexigenic neurons 

rapidly initiates food seeking behavior.  

 

Genome wide association studies (GWAS) have consistently identified genetic variants within the MC4R 

coding region as important regulators of obesity and adiposity. However, other melanocortin receptor 

(MCRs) exist 16. The melanocortin system consists of five 7-transmembrane G-protein coupled receptors, 

MC1R, MC2R, MC3R, MC4R and MC5R.  Historically, the primary function of the melanocortin system was 

believed to be in pigmentation due to the function of MC1R which is primarily found in the periphery, 

especially in the skin. After cloning of the other receptors, it was found that many key physiological 

functions necessary for animal survival and reproduction can be attributed to the MCR system. The MCRs 

have varied tissue expression profiles. While MC1R is primarily expressed in the melanocytes of the skin, 

MC2R is expressed in the adrenal cortex of the adrenal gland, MC3R in the CNS, GI tract and kidney, MC4R 

in the CNS, and MC5R in exocrine cells throughout the body. The MCR system is involved in many critical 

functions including feeding behavior, energy homeostasis, response to stress, response to UV radiation, 

sexual function and behavior, pain response, fear flight, cardiovascular function, kidney function, immune 

response, sebaceous gland secretion and others17. 

 

Both MC3R and MC4R have effects on energy homeostasis but their roles are different. The MC4R-KO are 

obese, hyperphagic and hyperinsulinemic. The MC3R-KO are different and rather unusual. The increase in 
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weight is primarily observed in females but increase adipose mass in both sexes. The MC3R-KO mice are 

not hyperphagic suggesting the obesity phenotype results from increased energy efficiency. Though 

increase in adiposity is similar in both models, the MC3R mice are less insulin resistance and less steatotic. 

Whereas, other MCR’s are more selective on their ligand binding preferences, MC3R does not 

discriminate. MC3R responds to physiological doses of α-, β-, ϒ-MSH, ACTH or AGRP.  

 

Receptor Site of expression Major Functions 

MC1R Periphery i.e. skin Pigmentation 

MC2R Adrenal cortex of adrenal gland Adrenocortical steroidogenesis 

MC3R CNS, GI tract, kidney Energy homeostasis - energy 
Expenditure/Efficiency 

MC4R CNS Energy homeostasis – food 
intake, erectile dysfunction 

MC5R Exocrine cells Synthesis and secretion of 
exocrine gland products 

 

Evolution of Bone 

Typically, the skeleton has been viewed as an assemblage of calcified tubes which provides the framework 

of the body, protects vital organs and creates points of attachment for skeletal muscle to allow for 

movement and ultimately life on land. However, that’s not the entirety of the skeleton’s biological role;the 

bone marrow is the predominant site of hematopoiesis18 , and is essential for homeostatic control of 

minerals like calcium, phosphorus, and sodium. The skeleton contains more than 99% of the body’s 

calcium, 80-90% of the body’s phosphate and two-thirds of the body’s sodium19. 

 

One of the most dramatic episodes of evolution occurred late in the Devonian period which started 419.2 

million years ago and spanned 60 million years. Vertebrate organisms began to transition from aquatic to 

terrestrial living which allowed animals to escape competitive pressures from the water and explore niche 

opportunities on land. However, these first terrestrial animals experienced significant barriers which 

necessitated changes in the morphological and physiological mechanisms that underlie most life 
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processes such as movement, feeding, respiration, and reproduction. Minerals could no longer be freely 

absorbed from the surrounding aqueous environment, gas exchange and water balance require vastly 

different mechanisms between water and air, and gravity on land is far stronger than in water20,21.  

 

Osteichthyes evolved approximately 420 million years ago and were the first organism to have a fully 

mineralized endoskeleton22. The skeleton is comprised of two distinctive tissues, bone, and cartilage. Bone 

contains osteoblasts, osteocytes, and osteoclasts while chondrocytes reside within cartilage. The 

osteoblasts and chondrocytes are derived from mesenchymal origins23  whereas osteoclasts are derived 

from multinucleated cells of hematopoietic origins in the bone marrow24.  

 

To survive on land, terrestrial animals developed a much larger, energy-expensive appendicular skeleton 

for seemingly opposing purposes: a stable structure to facilitate ambulation, and mechanisms to maintain 

mineral homeostasis. Endochondral ossification is the process by which mineralized bone is formed from 

an intermediate cartilaginous template which provides a substantially stronger and mineral filled 

skeleton. The process starts when cartilage is invaded by blood vessels that deliver osteoblasts into what 

becomes the marrow space. Osteoblasts use the cartilage template to form lattice-like spicules of 

trabecular or ‘spongy’ bone which is remodeled by osteoclasts, specialized bone cells that resorb bone 

matrix. Also, osteoblasts differentiate in the fibrous tissue that surrounds the developing bone and forms 

a dense cortical shell.  Endochondral ossification provides a clear evolutionary advantage for life on land. 

The trabeculae provide a large surface area:bone volume ratio, and allow for osteoclastic resorption and 

the rapid release of calcium into circulation, while a dense cortical shell bears most of the mechanical 

force by bones.  
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The structural integrity of the skeleton is critical for vertebrate survival. For the skeleton to fulfill its many 

functions throughout adulthood, the skeleton constantly renews itself through a process called bone 

remodeling. Bone modeling is a process which occurs during development. Bone (re)modeling is 

characterized by resorption of pre-existing mineralized bone extra-cellular matrix (ECM) by osteoclasts 

followed by de novo bone formation by osteoblasts25. Bone resorption and bone formation occur 

sequentially and in a balanced manner to maintain bone mass during adulthood26. Any imbalance 

between these two processes would cause skeletal disorders characterized by either a low or a high bone 

mass phenotype25. The most common bone remodeling disease, osteoporosis, is characterized by either 

increased osteoclastic activity, decreased osteoblastic activity or a combination of both, leading to low 

bone mass and increased risk of fracture. 

 

Endocrine networks have enjoyed tremendous evolutionary success because they provide the means to 

sense internal and external changes in the environment, and the ability to integrate this information into 

coordinated, tissue-specific responses in the organism. Endocrine systems arose to regulate extracellular 

mineral ion concentrations using dietary sources and dissolution from skeletal stores via osteoclastic 

resorption.  Mineralization of the skeleton meant being in constant danger of extracellular calcium loss 

which would be detrimental to muscle and nerve function. The emergence of the parathyroid-calcium axis 

works to resolve this issue. The parathyroid gland detects a decrease in calcium in the blood by using 

calcium-sensing receptors, which mediates the secretion of PTH, which then works in a rapid, pleiotropic 

fashion to increase calcium levels. PTH works by stimulating osteoclasts to access internal calcium stores 

through bone resorption and acts in the kidney to increase calcium reabsorption in the distal convoluted 

tubule and production of active Vitamin D, which, in turn, increases intestinal calcium absorption27.  
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Bone as an Endocrine Organ 

The first discovery that implicated bone as an endocrine organ concerns the role of bone in regulating 

phosphate homeostasis through FGF23. Phosphate is ingested through the diet, absorbed by the small 

intestine through either a sodium-phosphate co-transporter or by diffusion. However, the major control 

point for phosphate homeostasis is the kidney, which expresses hormone-regulated proteins to modulate 

phosphate filtration. FGF23 signals to promote phosphate excretion by downregulating NPT2a, a 

hormone-regulated protein in the kidney, and inhibits Vitamin-D production as a counter-regulatory 

phosphaturic hormone to remove excess phosphate that accompanies PTH-stimulated bone resorption 

during calcium mobilization. Interestingly, FGF23 is produced almost exclusively by the osteocytes, an 

ideal situation to negatively feed into the PTH-vitamin D endocrine loop27.  

 

Considering the skeleton’s sheer size, its many functions, and the continuous nature of bone remodeling, 

it is easy to postulate the skeleton requires a large amount of energy28. Using 18F-fluorodeoxyglucose and 

PET imaging, it was shown that total glucose uptake in bone exceeds that of traditional glucose-utilizing 

organs, including muscle, WAT and liver. The accumulation of glucose in bone was located predominantly 

in osteoblast-enriched regions, and the amount of glucose uptake decreases with age29. 

 

Simple clinical observations add credence the possibility that a relationship between energy metabolism 

and bone exists. Insufficient food intake during childhood results in arrested growth. Patients with 

anorexia nervosa, a psychiatric disease characterized by voluntary food restriction leading to weight loss, 

display decreased or arrested bone growth and bone loss30. Conversely, type 2 diabetes patients who are 

overweight or obese with visceral fat accumulation, have an adequate or increased bone mineral 

density31. However, fracture risk is increased with diabetes. Higher body weight exerts a great mechanical 

load on the skeleton which explains the absence of bone loss, but adipose tissue produces cytokines which 



11 
 

have a deleterious effect on bone32. In addition, menopause is associated with a decrease in skeletal 

integrity, called postmenopausal osteoporosis. Decreasing sex-steroid hormones like estrogen have 

powerful effects on energy metabolism and bone remodeling33,34. Estrogen deficiency causes a decrease 

in energy expenditure and induces activation of receptor activator of nuclear factor kappa-Β ligand 

(RANKL) by osteoblasts which recruit osteoclasts and favors bone resorption causing bone loss35. 

 

It has been difficult to tease apart the pathophysiology of complex metabolic diseases. However, with 

advances in genetic techniques, scientists can systematically decipher the function a gene of interest in 

vivo to reveal hidden crosstalk between organs that influence in each other. The first supportive molecular 

evidence that energy and bone metabolism are linked originated from the realization that leptin, an 

adipocyte-derived protein, inhibits appetite, gonadal function and bone mass36. Leptin inhibits bone mass 

accrual by signaling brainstem neurons to prevent synthesis of serotonin 37. Thereafter, other adipokines 

(adiponectin) and gut-derived (GLP1, GLP2, and serotonin) proteins were observed to regulate energy 

homeostasis and bone mass30.  

 

Analysis of clinical and murine observations lead to the hypothesis that regulation of bone mass and 

energy metabolism is coordinated and a bone-energy endocrine loop exists36. The revelation that bone 

itself can regulate energy metabolism in a reciprocal manner via a secreted hormone was uncovered to 

be osteocalcin38. 

 

Osteocalcin is secreted exclusively by osteoblasts and is a multifunctional hormone. Osteocalcin is most 

abundant non-collagenous protein the bone ECM. It contains 46-50 amino acid residues that undergo 

post-translational modifications of three glutamic acid residues (GLA)39. This post-translational 

modification of osteocalcin is essential for calcium and hydroxyapatite binding which allows deposition of 
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osteocalcin in the bone ECM. Uncarboxylated osteocalcin has a low affinity to hydroxyapatite and is easily 

released into the circulation (Patti et al., 2013). Circulating undercarboxylated osteocalcin is the active 

form which signals peripherally.  When the gene is deleted in mice bone mineralization is normal, but  

Ocn-/- mice are abnormally docile, fat and breed poorly. 

 

Genetic studies in mice and humans have shown that activated, under-carboxylated osteocalcin 

influences glucose metabolism, male fertility and brain development and functions38,40–42. Osteocalcin 

promotes glucose homeostasis by increasing pancreatic β-cell proliferation and insulin secretion, 

improving insulin sensitivity in muscle and adipose tissue38,43. These results showed that bone is a true 

endocrine organ and can influence whole-body glucose metabolism.  

 

The integration of bone and energy metabolism via osteocalcin is modulated through insulin signaling. 

Osteocalcin secreted by osteoblasts regulate insulin secretion, but insulin signaling in osteoblasts in return 

regulates activation of osteocalcin. First insight into the regulation of osteocalcin came from the 

observation that another osteoblast-derived gene, Esp, encoding for osteoblast testis-specific protein 

tyrosine phosphatase (OST-PTP), also regulates glucose homeostasis. Esp-/- mice display a mirror image 

of what is observed in the Ocn-/- mice38. Esp-/- mice are hypoglycemic, hyperinsulinemic and the serum 

fraction of undercarboxylated osteocalcin was significantly higher than in control mice38. Since OST-PTP is 

a tyrosine phosphatase, the insulin receptor (INSR) in osteoblasts was hypothesized to be the target of 

OST-PTP since INSR activity is often inhibited by protein tyrosine phosphatases44. 

 

Furthermore, studies in mice where InsR was removed in osteoblasts had a similar phenotype to that of 

the Ocn-/-. A more relevant and stronger phenotype was observed in InsRosb-/- than in two classical insulin 

target organs, skeletal muscle and white adipose tissue (Bruning et al., 1998; Bluher et al., 2002). Double 
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heterozygous compounds for InsR and Ocn (InsRosb+/-; Ocn+/-) display metabolic abnormalities similar to 

the Ocn-/- mice, whereas, removing one allele of InsR in the Esp-/- (InsRosb+/-; Esp-/-) normalizes the 

metabolic abnormalities seen in the Esp -/-. These genetic studies verify that insulin signaling in 

osteoblasts is a determinant of osteocalcin activity in osteoblasts to whole-body glucose homeostasis 38,43. 

 

The above studies which illustrate the contribution of InsR in the osteoblast in mice fed a normal diet 

raised an important follow-up question; does bone contribute to insulin resistance in mice fed a high-fat 

diet (HFD)? Indeed, genetic and biochemical observations suggest that insulin resistance in bone develops 

as a result of a loss of InsR mediated Smurf1 upon increases in the circulating level of free saturated fatty 

acids45–48. 

 

Additionally, the coordinated connection between bone and energy metabolism implicates that a 

decrease in osteoblast number would compromise glucose metabolism in an osteocalcin-dependent 

manner. To test this hypothesis, an inducible global ablation of osteoblasts model was used. By cross-

breeding transgenic mice expressing a tamoxifen-regulated Cre under the control of the osteocalcin 

promoter with mice expressing an inactive form of Diptheria Toxin A (DTA) chain introduced into a 

ubiquitously expressed locus one can address such hypothesis. When tamoxifen was injected in these 

mice for ten days, the result was a loss of 50% of their osteoblasts, increased blood glucose levels, glucose 

intolerance, and insulin insensitivity. There was also a decrease in osteocalcin levels which could explain 

the changes in glucose metabolism. To examine whether changes were solely dependent on osteocalcin, 

30ng/g of recombinant osteocalcin was administered for four weeks, causing restoration of osteocalcin 

levels. Administering osteocalcin rescued glucose intolerance and improved decreases in beta-cell area, 

beta cell mass, and islet number49.  
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However, differential effects were still observed. Insulin sensitivity, gonadal fat weight, energy 

expenditure, and food intake persisted following osteocalcin treatment indicating the skeleton acts 

through osteoblasts to regulate aspects of energy metabolism in osteocalcin-dependent and -

independent manners. Additionally, these results indicate a novel function of the skeleton on energy 

regulation since osteocalcin is not implicated in the regulation of appetite49. 

 

Furthermore, FOXO1, one of the four FOXO isoforms of Forkhead transcription factors, play a significant 

role in regulating whole-body energy metabolism. FoxO1 is highly expressed in insulin-responsive tissues 

including pancreas, liver, skeletal muscle, adipose tissue, and bone. In these tissues, FOXO1 orchestrates 

a transcriptional cascade to maintain glucose homeostasis. In the fasted state, FOXO1 promotes the 

expression of gluconeogenic enzymes in the liver to increase endogenous glucose production. Following 

feeding, pancreatic beta cells secrete insulin which promotes the uptake of glucose by peripheral tissues 

and suppresses the activity of FOXO1 thus suppressing gluconeogenesis and glycogenolysis. FOXO1 

inhibits insulin secretion and sensitivity in its peripheral target organs through its expression in 

osteoblasts50. Mice lacking FoxO1 in osteoblasts (FoxO1osb-/-) have improved glucose disposal load and 

glucose tolerance which was also related to the favorable glucose metabolism by the liver, muscle and 

white adipose tissue. At the molecular level, part of the metabolic actions of FoxO1 is through regulation 

of osteocalcin activity51–53. 

 

In search of other osteoblast-derived molecules involved in the regulation of energy metabolism, a 

microarray was performed on primary osteoblasts derived from the FoxO1osb-/- mice. Amongst the most 

highly secreted proteins was Lipocalin-2 (LCN2), a glycoprotein implicated in the pathogenesis of obesity 

but not previously described in bone54 . 
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Lipocalin-2 

Lipocalin-2 is a secreted protein which belongs to the Lipocalins, a group of transporters of small lipophilic 

molecules such as steroids, lipopolysaccharides, iron and fatty acids in circulation55. Typically, despite 

sequence diversity, lipocalins are distinguished by a characteristic cup-shape calyx formed by an eight-

stranded, anti-parallel, symmetrical β-barrel fold with a cylindrical shape56.  The hydrophobic residues 

which line the calyx provide a binding site for lipophilic molecules through hydrophobic interaction57. 

Lipocalins are typically named after the ligands they bind and their proposed function. It’s therefore not 

surprising the LCN2 goes by many names including neutrophil gelatinase-associated lipocalin (NGAL), 

24p3, oncogenic lipocalin, siderocalin, 25kDa-α2-microglobulin-related protein, and uterocalin. 

 

Human LCN2 was initially isolated in purified by Kjeldsen and coworkers as a 25-kDa neutrophil protein 

which can be associated with gelatinase B (matrix metalloproteinase 9, MMP9) from human neutrophils58. 

LCN2 was then cloned one year later by the same group59. By examining the three-dimensional folds of 

LCN2, it was proposed that LCN2 is most closely related to epididymal retinoic acid-binding proteins and 

the major urinary protein60. Interestingly, LCN2 is unique in that it can bind macromolecules and 

hydrophobic molecules due to the much larger and shallower mouth of the calyx compared to the proteins 

previously mentioned61. Human and murine LCN2 share 85% homology in amino acid composition and 

exhibit 70% similarity in nucleotide composition56. 

 

The first ligand of LCN2 was discovered by while producing recombinant LCN2 (rLCN2). When expressed 

in bacteria, rLCN2 appeared either colorless or a light rosé depending on the particular strain used. The 

color was determined to be related to the presence of iron, and a small iron-binding molecule called 

enterobactin (enterochelin, Ent) (Goetz et al., 2000). Ent is a key siderophore of many gram-negative 

bacteria which are used to sequester iron from host cells62–64 . The LCN2:siderophore:Fe complex can 
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inhibit iron acquisition which results in inhibition of their growth. This causes a “tug-of-war” for iron 

between the host and bacteria65. 

 

The initial finding that LCN2 plays a role in iron delivery linked LCN2 to immunity63,66–68. During bacterial 

infection, the expression of LCN2 is upregulated whereby it acts as an acute phase protein58,69–71. For 

example, the expression of LCN2 rises 1000-fold in humans and rodents in response to tubular injury72,73. 

 

Expression of LCN2 can be induced both in vitro and in vivo by a variety of factors such as 

lipopolysaccharide, pro-inflammatory cytokines like TNF-α, IL-1β, IL-3, IL-6 and IL-17, retinoic acid, growth 

factors and nutrients like glucose palmitate, oleate, and insulin. Transcriptional activity of the nuclear 

factor-κB (NF-κB) seems to be the main pathway involved in LCN2 stimulation74 (Bu et al., 2006) but C/EBP 

has also been shown to play a critical role in Lcn2 expression75 (Larsen et al., 2014).  Activation of Lcn2 

gene transcription is followed by synthesis and secretion where it thereby interacts with its receptors in 

the periphery. 

 

LCN2 binds two cell-surface receptors: brain type organic cation transporter (24p3R) and megalin (LDL-

related protein 2 or LRP2)73,76,77. Megalin, a multiligand endocytic receptor, was the first receptor of LCN2 

to be characterized. It was found to be expressed in the kidney epithelia to facilitate the renal absorption 

of LCN278. Through 24p3R, LCN2 has been shown to play a role in apoptosis and the inflammatory 

response56,76,79. In addition, LCN2 has been implicated in a variety of cellular processes such as cell death, 

cell migration, cell differentiation, cell proliferation, iron delivery, inflammation, insulin resistance and the 

innate immune response to bacterial infection80.  
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In addition to the link observed between iron, bacterial immunity, and LCN2; LCN2 has been reported to 

play a role in numerous pathological conditions  Recent studies have shown an increased expression and 

an important role of LCN2 in cancerous conditions like breast cancer, leukemias, pancreatic ductal 

adenocarcinoma, oral cancer, colorectal cancer, brain tumors, gastric cancer, endometrial cancer, 

hepatocellular carcinoma, multifaceted cancer; kidney diseases like acute kidney injury, chronic kidney 

disease/proteinuria, congenital obstructive nephropathy, kidney ischemia and reperfusion injury, virus-

associated nephropathy, lupus nephritis; liver dysfunctions like acute liver injury, acute hepatic failure, 

fatty liver disease; cardiovascular disease like acute heart failure, chronic heart failure, autoimmune 

myocarditis, atherosclerosis, coronary artery disease, endothelial dysfunction and hypertension; 

pancreatic abnormalities like pancreatitis and pancreatic cancer; sepsis-induced acute respiratory distress 

syndrome; diabetes and obesity; psoriasis, rheumatoid arthritis and other diverse inflammatory 

conditions. Also, LCN2 plays a pivotal role in the CNS anomalies including neuroinflammatory and 

neurodegeneration conditions like mild-cognitive impairment and Alzheimer’s disease, multiple sclerosis, 

gliomas, autoimmune disorders, brain injury, encephalitis, intracerebral hemorrhage, schizophrenia, and 

spinal cord injury. LCN2 is also involved in several behavioral responses including pair hypersensitivity, 

cognitive functions, emotional behaviors, depression, neuronal excitability, and anxiety80,81. 

 

Studies on the molecular mechanism of Metabolic syndrome (MeS) have revealed a tight association with 

low-grade chronic inflammation which may substantially contribute to its associated complications. This 

is illustrated by the fact some cytokines like IL-1 IL-6, and TNF-α are involved in modulating metabolic 

homeostasis and show immunomodulatory properties. Metabolic inflammation is characterized by the 

dysregulation of these cytokines which become highly expressed in inflamed tissues like liver and adipose 

and contribute substantially to increased circulating concentrations in obesity. LCN2 is no different in this 

regard and since it's expressed in adipose tissue has been considered an adipokine. The first evidence that 
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LCN2 is changed with obesity came from the observation that LCN2 expression is increased in the white 

adipose tissue (WAT) of Leprob/ob  mice. Expression and serum levels are increased in genetic (Leprob/ob , 

Leprdb/db ), dietary (HFD) and microbiota-dependent (Tlr5) murine models of obesity82–84. The function and 

role of LCN2 in metabolic disease are controversial.  

 

Experiments in Lcn2-deficient mice fed with a HFD significantly potentiated diet-induced obesity, 

dyslipidemia, fatty liver disease, and insulin resistance (IR) (Guo et al., 2010). However, this is disputed by 

the results of another study whereby no difference was observed in insulin sensitivity between WT and 

LCN2-deficient mice on a HFD85. These two studies were further contradicted by a third study which 

showed LCN2-knockout mice were protected from aging and HFD induced IR, and genetic deletion of LCN2 

protected leptin receptor (Leprdb/db ) deficient mice from IR86. The paradoxical roles of LCN2 are far from 

being resolved, but some possible explanation for the discordant phenotypes exist. First Guo et al. and 

Jun et al. used the same mice where exons 2 through 5 were deleted. Law et al. used a different Lcn2-/- 

mice where exons 1 through 6 were deleted. The targeting strategy and generation of mice could explain 

the phenotypic differences through giving rise to truncation products or differentially spliced protein with 

residual functions not detectable with anti-LCN2 antibodies since LCN2 was not detected in either model. 

In addition, diet and environment could play as a confounder. Different HFD formulations were used in all 

three studies which could elicit varying phenotypes. Differences in housing conditions such as 

temperature and cleanliness of the mouse facility can produce variations in microbiota and as a result 

weight gain. 

 

In a subsequent study is was demonstrated LCN2 is a critical modulator of PPAR-ϒ activation at levels of 

the recruitment of coactivators/corepressors thereby impacting adipogenesis and lipogenesis in adipose 

tissues and liver8787. Impact on the formation of obesity, inflammation, and obesity-associated metabolic 
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dysfunction was also shown in rat models after feeding with a high-fructose diet for 4-8 weeks. Expression 

of Lcn2 correlated with hepatic inflammation, mitochondrial malfunction and oxidative stress88. In mouse 

models of NAFLD and in primary culture LCN2 was linked to the formation of intracellular accumulation 

of lipid droplet partly regulated by Perilipin 589. Comparative analysis of wild-type and Lcn2 deficient mice 

revealed that mice lacking LCN2 accumulated more lipids in the liver when fed on methionine and choline-

deficient diets 89 . Furthermore, LCN2 was directly linked to the pathogenesis of NASH in Fatty Liver 

Shionogi (FLS) mice strain which are genetically programmed to develop NASH. These findings indicate 

LCN2 has an essential function in lipid metabolism90. 

 

Importantly, serum LCN2 is increased in obese humans and correlated with measures of insulin resistance. 

In 229 subjects a positive correlation was observed between serum LCN2 and adiposity, 

hypertriglyceridemia, hyperglycemia and CRP levels. Obese individuals with a BMI > 30 kg/m2 had 60% 

higher levels of serum LCN2 when compared to individuals with a BMI < 23 kg/m2 91. A study investigating 

adult patients with type 1 diabetes, latent autoimmune diabetes, and type 2 diabetes, found LCN2 to be 

increased in all diabetes groups and correlated with increases in IL-6 levels92. In addition, plasma LCN2 

and subcutaneous adipose tissue levels were increased in patients with gestational diabetes93. In yet 

another study, LCN2 levels were again increased in patients with T2DM and correlated positively with 

serum TNF-α levels and LDL concentration94.  

 

Interestingly, plasma levels of LCN2 were reduced in patients with long-term diabetes (T2D) 95 . Recently, 

a study aimed to investigate the role of LCN2 expression and serum levels of obese and non-obese 

Egyptian Women. 188 obese woman who were subdivided into three groups according to fasting blood 

glucose, normal glucose (NG), impaired glucose (IG) or diabetes (T2D). LCN2 expression and serum were 
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higher in obese woman compared to lean controls. They were also higher in the IG and T2DM compared 

to NG obese women96. 

 

A study investigating the development of NAFLD revealed a close correlation between serum LCN2 and 

the progression of insulin resistance97. Similarly, LCN2 was shown to be significantly higher in women with 

NAFLD than in women with severe obesity without liver disease. In the same study, TNF-α, IL-6, resistin, 

and adiponectin stimulated LCN2 expression in HepG2 cells,98 confirming that expression of LCN2 is 

moderated by pro-inflammatory triggers99.  Moreover, in another study analyzing adult patients with 

NAFLD, urinary LCN2 levels correlated with BMI, insulin resistance and lipid profiles100. Increased serum 

LCN2 levels were observed in Chinese men with coronary artery disease, especially in association with 

components of the metabolic syndrome101. However, another study did not observe differences in serum 

LCN2 levels but did detect an increase in serum LCN2-MMP9 complex and significant upregulation of LCN2 

in visceral adipose tissue of obese individuals102. Furthermore, a study of 272 participants found no 

correlation between LCN2 serum levels and HOMA-IR and cardiovascular risk factors103. It remains likely 

that in obesity and related disorders, the increased expression of various pro-inflammatory cytokines like 

TNFα, IL-1β, IL-6, and IFN-ϒ, is involved in the upregulation and induction of LCN2104. 

 

The mechanism and the factors which contribute to the increased concentrations in patients with diabetes 

is unclear, but dietary factors such as saturated fat, has been shown to lead to an acute increase in 

circulating LCN2 levels in mice and humans105,106 . Interestingly, insulin can upregulate circulating LCN2 

levels in humans mediated by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase 

(MAPK)107.   
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The Kousteni lab found LCN2 to be amongst the most highly secreted protein in a microarray of primary 

osteoblasts from FoxO1osb-/- mice. Its expression was confirmed in bone and compared to all other tissue 

where it is at least 10-fold higher than any other tissue indicating the bone is the predominant tissue 

expressing LCN2 under baseline conditions54. Previously, LCN2 has displayed an important role in 

musculoskeletal health and disease. In 1995, Blaser and colleagues reported that very high concentrations 

of LCN2 were found in the synovial fluids (vicious fluids present in the cavities of moveable joints) of 

patients with inflammatory rheumatoid arthritis108.  

 

In addition, LCN2 transgenic mice were marked by a smaller phenotype, presented bone 

microarchitectural changes in bone endochondral and intramembranous bones, and further showed a 

reduced deposition in the osteoblast bone matrix and impairment in the expansion of bone marrow 

cavity109. In bone, LCN2 has been recognized as a mechano-responding gene regulating bone and energy 

homeostasis110,111. 
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Abstract 

Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, 

FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These 

findings have raised the question of whether other bone-derived hormones exist and what their 

potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 

(LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice 

demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin 

secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast -derived LCN2 

inhibits food intake. LCN2 crosses the blood–brain barrier, binds to the melanocortin 4 receptor 

(MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-

dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-

derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent 

manner, and show that the control of appetite is an endocrine function of bone.  
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Introduction 

Central signals as well as several hormones and circulating peptides influence food intake and/or energy 

expenditure in a coordinated manner to regulate body weight. Those include, but are not limited to leptin, 

insulin, glucagon-like peptide-1, cholecystokinin and peptide YY, which are produced in distinct peripheral 

organs and influence food intake by signaling in the hypothalamus, the brainstem or afferent autonomic 

nerves1,2,3,4,5,6. It is conceivable that, in addition to these known signals, other hormones exist, which 

control food intake. 

Bone has emerged as an endocrine organ that can regulate energy metabolism. A hormone secreted by 

osteoblasts, osteocalcin (bglap), promotes energy expenditure, insulin secretion and glucose homeostasis 

in mice and humans7,8,9,10. Another hormone, FGF23, which is secreted by osteoblasts and osteocytes, acts 

on the kidney to regulate phosphate metabolism11. The identification of osteocalcin as a regulator of 

energy metabolism indicates that other hormones synthesized by bone cells may potentially affect 

additional aspects of energy metabolism. Studies have suggested that osteoblasts have an anorexigenic 

function in vivo12 and therefore we tried to identify anorexigenic signal(s) that originate from osteoblasts. 

MC4R, which is expressed mainly in the paraventricular nucleus of the hypothalamus (PVH), regulates 

food intake, body weight and caloric efficiency in rodents and humans13,14,15,16,17. MC4R mutations in 

humans account for up to 5% of cases of childhood obesity and 0.5% to 2.5% of adult obesity, while 

deletion of Mc4r in mice results in hyperphagic obesity18,19,20. The anorexigenic signalling through MC4R 

is regulated by binding of MC4R to the anorexigenic α-melanocyte-stimulating hormone (α-MSH, the 

proteolytic cleavage product of pro-opiomelanocortin-α (Pomc)) and the orexigenic (appetite stimulating) 

Agouti-related protein (AGRP), which are released by different hypothalamic arcuate neurons. More 

recently, defensin β3, which is produced mainly in skin, was shown to be a MC4R ligand. Defensin β3 

https://www.nature.com/articles/nature21697#ref1
https://www.nature.com/articles/nature21697#ref2
https://www.nature.com/articles/nature21697#ref3
https://www.nature.com/articles/nature21697#ref4
https://www.nature.com/articles/nature21697#ref5
https://www.nature.com/articles/nature21697#ref6
https://www.nature.com/articles/nature21697#ref7
https://www.nature.com/articles/nature21697#ref8
https://www.nature.com/articles/nature21697#ref9
https://www.nature.com/articles/nature21697#ref10
https://www.nature.com/articles/nature21697#ref11
https://www.nature.com/articles/nature21697#ref12
https://www.nature.com/articles/nature21697#ref13
https://www.nature.com/articles/nature21697#ref14
https://www.nature.com/articles/nature21697#ref15
https://www.nature.com/articles/nature21697#ref16
https://www.nature.com/articles/nature21697#ref17
https://www.nature.com/articles/nature21697#ref18
https://www.nature.com/articles/nature21697#ref19
https://www.nature.com/articles/nature21697#ref20
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modulates MC4R signalling by inhibiting the action of α-MSH or AGRP21. These observations suggest that 

the list of MC4R-modulating proteins controlling food intake may not be complete. 

We show that LCN2, a protein that was previously thought to be exclusively secreted by adipose tissue 

(an adipokine) and is associated with obesity, is expressed by osteoblasts, at levels that are at least tenfold 

higher in osteoblasts than in white adipose tissue or other organs. Osteoblast-derived LCN2 crosses the 

blood–brain barrier and suppresses appetite after binding to the MC4R in the hypothalamus. This result 

broadens our understanding of the control of appetite as well as the endocrine role of bone and identifies 

LCN2 as an osteoblast-derived hormone that activates the anorexigenic pathway in a MC4R-dependent 

manner. 
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Methods 

Mice 

To generate tissue-specific Lcn2-deficient mice, a targeting vector containing LoxP sites within introns 2 

and 6, and designed to delete a 1.9 kb genomic fragment comprising Lcn2 exons 3−6, was electroporated 

into 129/B6 ES cells. The neomycin-resistance gene flanked by two FRT sites and driven by the human β-

actin promoter was used for positive selection. The diphtheria toxin A gene (DTA) driven by the PGK 

promoter is incorporated into the 3′ end of the vector allowing for negative selection. After vector 

linearization with AsiSI and electroporation into 129/B6 ES cells, homologous recombinants were 

identified by Southern blot and PCR, and these were subsequently injected in C57BL/6 blastocysts to 

generate chimaeric mice that expressed the mutated allele. F1 heterozygotes originating from the 

intercross of chimaeric mice with wild-type C57BL/6 mice were screened for germline transmission of the 

mutant allele and bred with transgenic mice expressing the Flp recombinase under the control of the β-

actin promoter to generate mice carrying the Lcn2 floxed, Δneo/lacZ allele, Lcn2fl/+ (C57BL/6J: 75%; 

129/B6: 25%). Lcn2fl/+ were crossed with Col1a1-Cre25, Bglap-Cre29, Adipoq-Cre40 or EIIa-Cretransgenic 

mice to create mice with osteoblast-specific (Lcn2osb
+/− and Lcn2(OC)osb

+/−), adipocyte-specific (Lcn2fat
+/−), or 

global deletion of Lcn2(Lcn2+/− mice) (C57BL/6J: 87.5%; 129/B6: 12.5%). Of note, the GTex database 

artificially shows that the Coll1a1 and Bglap genes are expressed in several tissues because bone as a 

positive control is not included in the expression panels of this database. Lcn2-heterozygous mice were 

intercrossed and animals homozygous for Lcn2 deletion in osteoblasts (Lcn2osb
−/− and Lcn2(OC)osb

−/−), 

adipocytes (Lcn2fat
−/−) or global deletion of Lcn2 (Lcn2−/− mice) were obtained. C57BL/6J, ROSAmT/mG (stock 

number 007676), homozygous and heterozygous leptin-receptor-deficient mice, B6.BKS(D)-Leprdb/J 

(stock number 000697), and mice lacking Mc4r, B6;129S4-Mc4rtm1Lowl/J (stock number 006414) were 

purchased from The Jackson Laboratory. Foxo1osb
−/−;Lcn2-reporter mice that had a double-fusion reporter 

gene that encodes luciferase-2 and mCherry (termed Lcn2–mCherry), Pomc–hrGFP, Npy–hrGFP and Sim1-

https://www.nature.com/articles/nature21697#ref25
https://www.nature.com/articles/nature21697#ref29
https://www.nature.com/articles/nature21697#ref40


29 
 

cre mice have been described10,15,41,42,43. All mice were housed under standard laboratory conditions (12 h 

on/off; lights on at 7:00) and temperature-controlled environment with food and water available ad 

libitum. In each experiment the mice used were of the same genetic background, as they were all 

littermates. 10–12-week-old male mice of all genotypes and female Lcn2−/− mice were used in all 

experiments unless otherwise stated. Investigators were blinded during experiments and outcome 

assessment. Mouse genotypes were determined by PCR; primer sequences are available upon request. 

All animal procedures were approved by the Columbia University Institutional Animal Care and Use 

Committee. 

Human samples 

Men age ≥18 years old with type 2 diabetes were recruited through advertisement flyers. Type 2 diabetes 

was defined as HbA1c ≥ 6.5% (according to the IDF Diabetes Atlas 2015 (http://www.diabetesatlas.org)). 

Subjects were excluded if they had a history of disorders associated with altered skeletal structure or 

function such as chronic kidney disease, chronic liver disease, active malignancy, acromegaly, Cushing’s 

syndrome, thyroid disease, hyper- or hypoparathyroidism or organ transplant. Additionally, subjects were 

excluded if they were currently using teriparatide, loop diuretics, anti-convulsive therapies, 

corticosteroids (>3 weeks over the past 3 years), thiazolidinediones or SGLT2 inhibitors. Bisphosphonate 

and/or denosumab use within the past 12 months were also exclusion criteria. Fasting morning blood was 

drawn and serum was stored at −80 °C. Patients with or without mutations in MC4R were enrolled in a 

study on the genetic basis of obesity. Participants had blood drawn after an overnight fast, and plasma 

and the buffy coat were separated. Genomic DNA was purified and the coding sequence of MC4R and at 

least 20 base pairs of flanking intronic sequence were Sanger sequenced and analysed for sequence 

variants using Sequencher. Primer sequences are available upon request. All studies were approved by 

https://www.nature.com/articles/nature21697#ref10
https://www.nature.com/articles/nature21697#ref15
https://www.nature.com/articles/nature21697#ref41
https://www.nature.com/articles/nature21697#ref42
https://www.nature.com/articles/nature21697#ref43
http://www.diabetesatlas.org/
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the Columbia University Medical Center Institutional Review Board and informed written consent was 

obtained from all participants or their guardians. 

Metabolic studies 

Glucose tolerance (GTT), insulin tolerance (ITT) and glucose-stimulated insulin secretion (GSIS) tests were 

performed as previously described10. For Leprdb/db mice, the dose of glucose during GTT was 1 g per kg 

body weight and the dose of insulin during ITT was 2.5 U per kg body weight. Hyperglycemic clamps were 

performed at Albert Einstein DRTC Animal Physiology Core, as previously described44. Insulin levels were 

measure by the insulin ELISA kit (Crystal Chem). Urine elimination of catecholamines (epinephrine and 

norepinephrine) was measured in acidified morning urine samples collected during three consecutive 

days by EIA (Bi-CAT, Alpco Diagnostics). Creatinine (Microvue creatinine assay kit, Quidel corp.) was used 

to normalize between urine samples. ELISAs were performed for measurement of LCN2 (R&D Systems) 

and leptin (EMD Millipore) levels in the serum. TSE Labmaster (TSE systems) and Oxymax System 

(Columbus Instruments) were used for indirect calorimetry and food-intake measurements. After at least 

48-h acclimation to the chambers, data collected for a 48-h period were analysed as per the 

manufacturer’s recommendations. For fast–refeeding experiments, metabolic cages (Nalgene, Rochester, 

NY) were used and food intake calculated as the change of powdered food weight. Mice were individually 

housed, fed ad libitum and allowed to habituate to the cages for 3 days. Following the initial acclimation, 

mice were fasted for 16 h and refed 2 h after the start of the light phase for four consecutive days. 

Measurements of food intake after refeeding were collected from the last day. For pair-feeding 

experiments, mice were individually housed starting at 4 weeks of age. Pair feeding started at 5 weeks of 

age and continued for a period of 8 weeks. Food intake was measured daily, and Lcn2osb
−/− mice were 

provided every day with the average amount of food consumed by the Lcn2fl/fl littermates that were 

https://www.nature.com/articles/nature21697#ref10
https://www.nature.com/articles/nature21697#ref44
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fed ad libitum on the previous day. Body composition was determined using Bruker Minispec nuclear 

magnetic resonance (Bruker Optics, Billerica, MA). 

LCN2 treatment 

Recombinant LCN2 was freshly diluted in phosphate-buffered saline at a concentration of 15 ng μl−1 and 

administered to mice daily intraperitoneally (i.p.) at a dose of 10 μl g−1. Control, vehicle-treated mice, were 

injected with phosphate-buffered saline. In the study with C57BL/6J wild-type mice, daily injections were 

initiated at 9 weeks for a period of 16 weeks. GTT, ITT and GSIS tests were performed at 8, 9 and 10 weeks 

after treatment initiation. Food intake and serum insulin were measured at the end of the treatment 

period (15 weeks). In the study with Leprdb/db mice injections were initiated at 12 weeks of age for a period 

of 16 weeks. Mc4r−/− mice were injected daily with LCN2 for 8 weeks starting at 8 weeks of age. Mice were 

randomized so that body weight and body composition matched cohorts were used. 

Recombinant protein and LCN2 protein identification 

For the construction of the bacterial vector expressing LCN2 fused with GST, the cDNA encoding mature 

mouse LCN2 (residue 83–625) was subcloned into the BamHI/NotI sites of the pGEX-4T-3 vector (GE 

Healthcare). Purification of bacterially produced mouse recombinant LCN2 protein was performed as 

described7. In brief, the GST–LCN2 fusion protein was bacterially produced and purified on glutathione–

sepharose 4B beads according to standard procedures. After extensive washes, LCN2 was cleaved out 

from the GST moiety using thrombin. A HiTrap Benzamidine column was subsequently used to deplete 

the thrombin from the preparation. Purity and identity of the protein was assessed by SDS–PAGE followed 

by Coomassie blue staining and microcapillary LC–MS/MS performed at Taplin Biological Mass 

Spectometry Facility (Harvard Medical School) as described below. Endotoxin concentration was 

determined as being below the detection limit. 

https://www.nature.com/articles/nature21697#ref7
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For LCN2 protein identification by microcapillary LC–MS/MS, endogenous LCN2 protein was purified from 

flushed bone and adipocyte tissue extracts that were subjected to LCN2 antibody (AF1857, R&D) 

immunoprecipitation. Eluates from LCN2 immunoprecipitation along with purified recombinant protein 

were analysed by SDS–PAGE followed by Coomassie blue staining. Bands corresponding to the LCN2 

protein were excised and sent to the Taplin Biological Mass Spectometry Facility (Harvard Medical School). 

Following in-gel trypsin digestion of the gel slice containing the LCN2 protein, the resulting peptides were 

extracted from the gel and separated on a nano-scale high-performance liquid chromatography (HPLC) 

capillary column. Eluted peptides were subjected to electrospray ionization and injection into an LTQ-

Orbitrap mass spectrometer (Thermo Scientific). Peptides were detected, isolated and fragmented to 

produce a tandem mass spectrum of specific fragment ions for each peptide. Peptide sequences (and 

hence protein identity) were determined using the database search algorithm Sequest. Sequence 

coverage of the LCN2 recombinant protein was 71%, whereas coverage of bone or fat-derived LCN2 was 

44.5% and 43% respectively. Owing to the absence of tryptic sites in the first 47 amino acids of the protein, 

the N terminus was absent from all analyses. Of note, LCN2 has no sequence or structural similarity to any 

of the known MC4R ligands, α-MSH, AGRP and defensin β3. This is consistent with the lack of sequence 

or structural similarity between α-MSH, AGRP and defensin β3. However, a search throughout the amino 

acid sequence of mouse LCN2 revealed the presence of an RGRW motif (amino acids 48–51) that 

biochemically resembles and may functionally mimic the binding motif of α-MSH to MC4R. 

Intracerebroventricular infusions 

Mice were anesthetized with avertin and placed on a stereotaxic instrument (Stoelting). The calvaria was 

exposed and a 0.7 mm hole was drilled upon bregma. A 28-gauge cannula (Brain infusion kit 2, Alzet) was 

implanted into the third ventricle. The cannula was secured to the skull with cyanoacrylate and attached 
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with tubing to a primed osmotic pump (Alzet) placed in the dorsal subcutaneous space of the mouse. The 

rate of delivery was 0.25 μl h−1 for 14 days. 

For assessment of Fos induction by single-bolus injection, 12-week-old male mice were anesthetized by 

i.p. injection of ketamine/xylazine (100 mg per kg/10 mg per kg) and a chronic stainless steel guide cannula 

was implanted stereotaxically bilaterally into the PVH with the following coordinates: bregma −0.7 mm; 

midline ± 0.3 mm; dorsal surface 4.3 mm. Cannulas were secured to the skull with cyanocrylate adhesive 

gel. After a 12-day recovery and acclimation of mice to handling, mice were injected with saline (4 μl), 

LCN2 (0.125 mg ml−1) or MT-II (0.125 mg ml−1) through the internal/injector cannula using a 5-μl Hamilton 

syringe. After 1 h, mice were anesthetized with ketamine/xylazine and perfused transcardially with PBS 

and subsequently with 4% paraformaldehyde (PFA). Brains were post-fixed in 4% PFA/PBS for 16 h at 4 °C, 

cryoprotected in 30% sucrose/PBS overnight, embedded in cryomatrix and sectioned at 10 μm. For Fos 

immunostaining, goat anti-Fos (sc-52-G, Santa Cruz Biotechnology) and Alexa Fluor 488 (A11055, Life 

Technologies) antibodies were used. To quantify Fos expression and calculate the average number of Fos-

responsive neurons in each mouse three sequential matched brain sections containing the PVH from each 

mouse were selected and Fos-positive neurons in the PVH were counted. 

LCN2 brain measurements 

Following 2 h of i.p. injection of Lcn2−/− mice with recombinant LCN2 or vehicle, blood vessels were 

extensively washed with PBS and the indicated brain regions were dissected out. Tissues were 

homogenized in ice-cold PBS supplemented with protease inhibitors and soluble fractions were used to 

measure LCN2 levels by ELISA (R&D Systems) normalized to total protein concentration as determined by 

DC Protein Assay (Bio-Rad Laboratories). For the detection of lower LCN2 values in the serum 
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of Lcn2−/− mice, a range of lower standards was used to generate the standard curve, ranging from 

19.52 pg ml−1 to 2.5 ng ml−1. 

Gene-expression analyses 

RNA isolation, cDNA preparation and real-time PCR analyses were carried out following standard 

protocols. For bone tissue analysis, bone-marrow cells were removed completely by extensively flushing 

the femurs with PBS. Trizol reagent was used for RNA extraction, random hexamers cDNA synthesis kit 

(Clontech Laboratories) for reverse transcription PCR and SYBR Green Master Mix (Bio-Rad Laboratories) 

for quantitative PCR. Actb was used as an internal control. Data are presented as fold change over control, 

unless otherwise indicated. Primer sequences are available upon request. 

Histological analysis 

Bone histomorphometry analyses were performed as previously described45. In brief, lumbar vertebrae 

were dissected, fixed, dehydrated and embedded in methyl metacrylate (MMA). Von Kossa, toluidine blue 

and tartrate-resistant acid phosphatase (TRAP) staining were used to measure bone volume over tissue 

volume (BV/TV), osteoblasts and osteoclasts number, respectively. For pancreas histological analysis, the 

procedure described previously10 was followed. In brief, samples were fixed in 10% neutral formalin, 

embedded in paraffin and sectioned at 5 μm. Immunohistochemistry was performed using guinea-pig 

anti-insulin (A0564, Dako), rabbit anti-glucagon (A0565, Dako) and rabbit anti-Ki67 (ab16667, Abcam) 

antibodies. DeadEnd Colorimetric TUNEL assay (Promega) was performed to assess apoptosis. 

Osteomeasure software and a Leica DM 5000B microscope outfitted with CCD camera (Sony) was used 

for pancreas and bone histomorphometric analysis. For cryosection preparation from tissues of reporter 

mice, tissues were isolated from mice perfused with 4% PFA/PBS, fixed in 4% PFA/PBS for 4−24 h at 4 °C, 

cryoprotected in 30% sucrose/PBS overnight, embedded in cryomatrix (Tissue-Tek) and sectioned at 

https://www.nature.com/articles/nature21697#ref45
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10 μm. Bone samples were decalcified for 48 h before cryoprotection and embedding. 

Immunohistochemical analysis of samples from Lcn2–Luc2–mCherry and Cre-reporter mice was 

performed using anti-mCherry (ab167453, Abcam), anti-GFP (632375, Clontech Laboratories) and anti-

RFP (600-401-379, Rockland Immunochemicals) antibodies, respectively. Alexa Fluor 488 and 594 (A11029 

and A21207, Life Technologies) were used for signal detection. Experiments were repeated at least three 

times and representative images are presented. 

Brain-binding assay 

Lcn2−/− or Mc4r−/− brains were snap-frozen in liquid nitrogen, and 10-μm sections were prepared and 

desiccated overnight at 4 °C under vacuum. The following day brain sections were rehydrated in ice-cold 

binding buffer (50 nM Tris-HCl (pH 7.4), 10 nM MgCl2, 0.1 mM EDTA and 0.1% BSA) for 15 min and 

incubated 1 h at room temperature in the presence of biotinylated LCN2 (25 pg ml−1) or biotinylated GST 

as a control. After washing in harvesting buffer (50 mM Tris-HCl (pH 7.4)), samples were fixed in 4% PFA 

for 15 min, washed in PBS, and incubated with goat anti-biotin antibody (SP-3000, Vector Laboratories) 

overnight at 4 °C. The signal was visualized, after incubation with anti-goat Alexa Fluor 488 (A11055, Life 

technologies) followed by DAPI counterstaining, using an Olympus Bx53F microscope. To test for assay 

specificity, the procedure described above was performed in the presence of 100-fold excess of non-

biotinylated LCN2 or GST (2.5 ng ml−1). Experiments were repeated three times and representative images 

are presented. 

Electrophysiology studies 

Brain slices were prepared from young adult male mice (5–8 weeks old) as previously described46,47. In 

brief, male mice were deeply anaesthetized with an i.p. injection of 7% chloral hydrate and transcardially 

perfused with a modified ice-cold artificial CSF (ACSF) (described below). The mice were then decapitated, 

https://www.nature.com/articles/nature21697#ref46
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and the entire brain was removed, and immediately submerged in ice-cold, carbogen-saturated (95% 

O2 and 5% CO2) ACSF (126 mM NaCl, 2.8 mM KCl, 1.2 mM MgCl2, 2.5 mM CaCl2, 1.25 mM NaH2PO4, 26 mM 

NaHCO3 and 5 mM glucose). Coronal sections (250 μm) were cut with a Leica VT1000S vibratome and then 

incubated in oxygenated ACSF at room temperature for at least 1 h before recording. The slices were 

bathed in oxygenated ACSF (32 °C–34 °C) at a flow rate of ∼2 ml min−1. All electrophysiology recordings 

were performed at room temperature. 

The pipette solution for whole-cell recording was modified to include an intracellular dye (Alexa Fluor 350 

hydrazide dye) for whole-cell recording: 120 mM K-gluconate, 10 mM KCl, 10 mM HEPES, 5 mM EGTA, 

1 mM CaCl2, 1 mM MgCl2 and 2 mM MgATP, 0.03 mM Alexa Fluor 350 hydrazide dye (pH 7.3). 

Epifluorescence was briefly used to target fluorescent cells, at which time the light source was switched 

to infrared differential interference contrast imaging to obtain the whole-cell recording (Zeiss Axioskop 

FS2 Plus equipped with a fixed stage and a QuantEM:512SC electron-multiplying charge-coupled device 

camera). Electrophysiological signals were recorded using an Axopatch 700B amplifier (Molecular 

Devices), low-pass filtered at 2–5 kHz, and analysed offline on a PC with pCLAMP programs (Molecular 

Devices). Membrane potential and firing rate were measured by whole-cell current-clamp recordings from 

neurons in brain slices. Targeting of Pomc and Npyneurons was anatomically restricted to the arcuate 

nucleus of the hypothalamus, whereas Sim1 neurons were targeted within the paraventricular nucleus of 

the hypothalamus. Recording electrodes had resistances of 2.5–5 MΩ when filled with the K-gluconate 

internal solution. 

LCN2 (1.25 pM) was added to the ACSF for specific experiments. Solutions containing drug were typically 

perfused for 5 min. A drug effect was required to be associated temporally with peptide application, and 

the response had to be stable within a few minutes. A neuron was considered depolarized or 

hyperpolarized if a change in membrane potential was at least 2 mV in amplitude. 
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Cell culture and treatment 

HEK293T (obtained from ATCC) and hypothalamic GT1-7 cells (obtained from The Salk Institute)48 were 

maintained in DMEM (25 mM glucose) supplemented with 10% FBS and 100 U ml−1 penicillin and 100 μg 

ml−1streptomycin and cultured at 37 °C in a 5% CO2 atmosphere. INS1 cells (obtained from ThermoFisher 

Scientific) were maintained in RPMI supplemented with 10% FBS, 10 mM HEPES, 1 mM sodium pyruvate, 

50 μM β-merchaptoethanol and 100 U ml−1 penicillin and 100 μg ml−1streptomycin and cultured at 37 °C 

in a 5% CO2 atmosphere. Cell lines were tested and found to be free of mycoplasma. GT1-7 cells were 

authenticated by examining the expression of their specific panel of genes as described in ref. 48. For 

LCN2/α-MSH treatment and gene expression analysis in GT1-7, cells were serum starved overnight in 

DMEM supplemented with 0.5% FBS before being treated with various concentrations of LCN2, α-MSH or 

vehicle for 4 h. Primary islets were isolated as described previously8. For isolation of primary osteoblasts, 

calvaria from 3-day-old mice were digested in 1 mg ml−1 collagenase (Worthington Biochemical) for 1 h at 

37 °C with shaking, filtered, washed in αMEM and cultured in αMEM supplemented with 10% FBS and 

100 U ml−1 penicillin and 100 μg ml−1 streptomycin. When cells reached confluence, medium was 

supplemented with 5 mM β-glycerolphosphate and 100 μg ml−1 ascorbic acid (mineralization medium) 

which was replaced every 2 days thereafter. All experiments were repeated at least three times in 

triplicate. 

Binding assays 

For binding assays, a 100-mm dish of HEK293T cells was transfected with 10 μg of the expression construct 

containing MC4R, MC3R or MC1R(purchased from Origene Technologies) using Lipofectamine 2000 

(Invitrogen, Chicago, IL) according to the manufacturer’s instructions. Transfection efficiency was tested 

by real-time PCR. Subsequently, 36 h after transfection, cells were dissociated with an enzyme-free cell-

dissociation buffer (Life Technologies), washed with PBS and plated on white CoStar 96-well plates 
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pretreated with gelatin. For saturation binding assays and calculation of the dissociation constant, Kd, 24 h 

later cells were washed with binding medium (0.5% BSA in Ca2+/Mg2+PBS) and incubated with serial 

dilutions of biotinylated protein in binding medium for 2 h at 37 °C. Protein biotinylation was performed 

using the EZ-Link NHS-PEG4-biotinylation kit from Fisher Scientific. Following washes with binding 

medium, cells were fixed with 4% PFA for 10 min, washed with binding medium supplemented with 0.3% 

Triton X-100 and further incubated for 30 min with extra-avidin peroxidase (Sigma-Aldrich) in binding 

buffer. Cells were extensively washed and bound peroxidase was quantified using TMB substrate (Thermo 

Fisher Scientific). The reaction was terminated by addition of TMB stop solution (Immunochemistry 

Technologies) and absorbance was read at 450 nm in a Fluostar Omega (BMG Labtech) microplate reader. 

Non-specific binding was determined in the presence of 100 μm non-biotinylated protein and specific 

binding was calculated by subtracting absorbance values for nonspecific binding from total binding values. 

Control experiments were performed using the maximum amount of biotinylated protein and HEK293T 

cells transiently transfected with the pcDNA3.1 vector alone, but no signal was detected. For competition 

binding assays, 50 nM and 10 nM of biotinylated LCN2 and α-MSH (Sigma-Aldrich), respectively, 

(corresponding to their Kdvalues) were added together with serial dilutions of non-biotinylated protein 

ranging from 10−11 to 10−5 M and the procedure described above for determination of binding affinities 

was followed. Recombinant human AGRP (aa 83–132) and mouse leptin proteins were purchased from 

R&D. The incubation time that is sufficient to ensure that equilibrium has been reached was determined 

by kinetic experiments. Biotinylated α-MSH (10 nM) was incubated in the presence of 10 nM LCN2 and 

specific binding was determined at various time points thereafter, For binding assays in GT1-7, cells were 

transiently transfected with 100 nM control siRNA (si-scramble) or siRNAs against Mc4r (Dharmacon) 

using Lipofectamine 2000. Silencing efficiency was tested by real-time PCR. Subsequently, 36 h after 

transfection, cells were dissociated, washed with PBS and plated on white CoStar 96-well plates. The cells 

were treated 24 h later with 60 ng ml−1 biotinylated LCN2 or equimolar amounts of α-MSH and binding 
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assays were performed as described above. Binding data were analysed using Graphpad Prism Software. 

All experiments were repeated four times in triplicate. 

cAMP assays 

For cAMP quantification in GT1-7, cells were serum starved overnight (0.5% FBS), pre-incubated in the 

presence of 0.5 mM IBMX for 30 min at 37 °C and then stimulated with various amounts of LCN2 in the 

presence of 0.5 mM IBMX for 15 min. cAMP concentration was measured by ELISA (Enzo Life Sciences) 

and data were normalized to total protein content measured by DC Protein Assay. α-MSH was used as a 

positive control. For determination of cAMP production in the presence of SHU9119 (Tocris, Bioscience), 

cells were pretreated with 10 μM of the antagonist for 1 h before LCN2 treatment. For determination of 

cAMP production in the absence of receptors, 48 h before LCN2 treatment (60 ng ml−1), cells were 

transiently transfected with 100 nM ON-TARGETplus SMARTpool siRNA targeting Mc4r or Slc22a17 or 

control (Dharmacon) using Lipofectamine 2000. For dose-response assays and calculation of EC50, 

HEK293T cells were transiently transfected with 10 μg of pCRE/luciferase (pCRE–luc), a cAMP-inducible 

luciferase-expressing plasmid along with 10 μg of the expression construct 

containing MC4R, MC3R or MC1R. pRL-CMV Renilla (Promega) was used as an internal control. 24 h later, 

cells were dissociated, washed with PBS and plated on white CoStar 96-well plates. 48 h after transfection, 

cells were serum starved (0.5% FBS) overnight, pre-incubated in the presence of 0.5 mM IBMX for 30 min 

at 37 °C and then stimulated with increasing amounts of LCN2, α-MSH or leptin in the presence of 0.5 mM 

IBMX for 15 min at 37 °C. Luciferase activity was determined using the Dual-Glo Luciferase Assay System 

(Promega) and quantified using Fluostar Omega. Luciferase activity was normalized to renilla activity and 

is presented as relative luciferase activity over vehicle-treated cells. Control experiments were performed 

using HEK293T cells transiently transfected with pCRE-luc or the MC4R-expression construct alone but no 
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signal was detected. Data were analysed using Graphpad Prism Software. Experiments were repeated at 

least four times in triplicate. 

Western blotting 

For bone tissue analysis, bone-marrow cells were removed completely by flushing the femurs extensively 

with PBS. Tissue extracts from wild-type mice were analysed on SDS-polyacrylamide gel, transferred to a 

nitrocellulose membrane and probed with LCN2 (AF1857, R&D) and GAPDH (14C10, Cell Signaling 

Technology) antibodies following standard procedures. For signal-transduction pathways in GT1-7 cells, 

cells were serum starved overnight in DMEM supplemented with 0.5% FBS and then stimulated with 

various amounts of LCN2 for 5 or 15 min as indicated. Cells were lysed and analysed by western blotting 

using the following antibodies: anti-cFos (7963, Abcam) anti-pERK1/ERK2 (4370), anti-pAMPK (2531), anti-

p-tyrosine (9416), anti-pCREB (9198), anti-ERK1/ERK2 (total ERK1/ERK2, 9102), anti-AMPK (total AMPK, 

2532) and anti-CREB (4820) from Cell Signaling Technology. Anti-β-actin (sc-47778, Santa Cruz 

Biotechnology) was used as an internal loading control. Experiments were repeated at least three times 

and representative images are presented. Gel source data are provided in Supplementary Fig. 1. 

Northern blotting 

Trizol reagent was used for RNA extraction from tissues of C57BL/6J mice according to the manufacturer’s 

instructions. For bone tissue analysis, bone-marrow cells were removed completely by flushing the femurs 

extensively with PBS. 10 μg total RNA was resolved on formaldehyde-agarose gels followed by transfer 

onto an Ambion BrightSTar-Plus membrane and hybridization with a 32P-labelled probe in Ultrahyb 

(Ambion, Thermo Fisher Scientific). A β-actin-specific probe was used as an internal control. Uncropped 

images are provided in Supplementary Fig. 1. 
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Microarray analysis 

Total RNA was extracted from primary osteoblasts isolated from mouse calvaria using Trizol reagent 

(Invitrogen). Microarray analysis was performed using the GeneChip 3′ IVT express kit and mouse genome 

430 2.0 array gene chips (Affymetrix) according to the manufacturer’s instructions. In brief, antisense RNA 

was synthesized from 500 ng of RNA and was biotinylated followed by purification and fragmentation 

using the GeneChip 3′ IVT express kit. Fragmented aRNA was hybridized to Affymetrix mouse genome 430 

2.0 array gene chips. Following hybridization, chips were scanned with a GeneChip Scanner 3000 7G 

(Affymetrix). Data were normalized using the Mas5 method, and then log2 transformed. Data were 

deposited in Gene Expression Omnibus previously (accession number GSE43242). Differential expression 

was analysed using LIMMA. We focused on genes which code for secreted molecules (Gene 

Ontology49 Accession number GO:0005615 extracellular space) with Benjamini–Hochberg50 raw P < 0.1 

FDR ≤ 0.33 and |log2FC ≥ 2|. For a given gene, only the transcript with the lowest P value is given in 

Extended Table 1. 

Statistical analysis 

Results are presented as mean ± s.e.m. Unpaired, two-tailed Student’s t-test was performed for 

comparisons between two groups and one-way ANOVA for comparisons of more than two groups. For all 

experiments *P ≤ 0.05 or #P ≤ 0.05. Effect size between wild-type and Lcn2osb
−/−mice was calculated 

according to the formulae from ref. 51. Sample-size determinations were based on the means and 

variances of preliminary data to achieve 80% power and a 5% experiment-wise error rate assuming either 

an analysis of covariance (ANCOVA) parametric design for cross-sectional comparisons or a repeated 

measures analysis of variance (rmANOVA) for metabolic studies in mice. 
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Data availability 

All data supporting the findings of this study are available within the paper and Supplementary 

Information. Source Data for all figures are provided with the paper. Uncropped versions of the gel images 

are provided in Supplementary Fig. 1. 
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Results 

LCN2 is an osteoblast-enriched hormone 

Mice with osteoblast-specific knockdown of Foxo1 (Foxo1osb
−/−) show improved energy metabolism, in 

part owing to osteocalcin activation10. Therefore, we searched for osteoblast-secreted molecules that 

regulate energy homeostasis downstream of FOXO1. Among them, the gene that encodes LCN2, a 25 kDa, 

secreted glycoprotein, was one of the most highly upregulated in osteoblasts (Supplementary Table 1), 

bone and serum of Foxo1osb
−/− mice (Fig. 1a, b). Because LCN2 has been considered an adipokine that is 

associated with obesity22,23,24, we analysed LCN2 expression in all tissues and identified bone as the 

predominant organ where Lcn2 is expressed, with at least tenfold higher expression levels in bone than 

in white fat (Fig. 1c–e and Extended Data Fig. 1a, c). Lcn2 expression increased with osteoblast 

differentiation similar to osteocalcin and alkaline phosphatase (Extended Data Fig. 1b). Therefore, LCN2 

is an osteoblast-enriched, secreted protein that is upregulated in Foxo1osb
−/− mice, which have improved 

energy metabolism. 

Osteoblast-derived LCN2 decreases food intake 

To determine the cellular origin of LCN2, we generated mice that lacked LCN2 in osteoblasts (Lcn2osb
−/−) 

or adipocytes (Lcn2fat
−/−)25,26(Extended Data Figs 1d–k, 2c). Lcn2osb

−/− and Lcn2fat
−/− mice showed a 67% and 

27% decrease in serum levels of LCN2, respectively. Osteoblast-derived and fat-derived LCN2 is the same 

protein (Extended Data Fig. 2a, b). 

Lcn2osb
−/− mice had compromised glucose metabolism, as was shown by decreased glucose tolerance, 

insulin sensitivity, a lack of insulin secretion after glucose or arginine challenge (Fig. 1f, h, j and Extended 

Data Fig. 3a, b), and 50% reduction in insulin levels (Fig. 2a). Islet numbers and size, β-cell mass and β-cell 
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proliferation were decreased in the pancreas of Lcn2osb
−/− mice without changes in apoptosis, islet 

architecture or differentiation (Extended Data Fig. 3c–g). None of these parameters were affected 

in Lcn2fat
−/− mice (Fig. 1g, i, k, 2b). In all experiments Col1a1-Cre mice were identical to wild-type 

littermates (Extended Data Fig. 3i–p). 

In spite of low circulating insulin levels and decreased insulin sensitivity, Lcn2osb
−/− mice showed increased 

gonadal fat weight (16.5%), total fat mass (19.6%) and body weight (5%), which was an expected 

magnitude of change since lean and bone mass were unaltered (Fig. 2c–e). Lcn2fat
−/− mice did not show 

changes in fat or body weight (Fig. 2f–h). Expression of adipogenic factors increased, whereas expression 

of lipolytic factors decreased in Lcn2osb
−/− mice (Extended Data Fig. 3q). Energy expenditure and 

sympathetic nervous system activity were similar in Lcn2osb
−/− and control mice (Extended Data Fig. 3r–t). 

By contrast, 3-month-old Lcn2osb
−/− mice showed 16.4% increase in food intake, which persisted following 

normalization by body weight, whereas food intake was not affected in Lcn2fat
−/− mice (Fig. 2i, 

j and Extended Data Fig. 3u). During growth, food intake was increased by 23.7% in 3-week-

old Lcn2osb
−/− mice and preceded the increase in body weight that manifested at 4 weeks of age (Fig. 2k, 

l). These observations, and the lack of Adipoq-Cre expression in bone-marrow adipocytes27,28, indicate that 

neither bone marrow nor white fat contribute to an amount of LCN2 in circulation that can regulate 

appetite and glucose metabolism. These results also suggest that increased appetite accounts for the 

increase in body weight in Lcn2osb
−/− mice and may contribute to the development of glucose intolerance. 

To examine this hypothesis, we pair-fed Lcn2osb
−/− mice with their wild-type littermates. Body weight, fat 

mass and insulin sensitivity were normalized, whereas serum insulin levels and insulin secretion after 

glucose load remained compromised in Lcn2osb
−/− mice and as a result their glucose intolerance persisted 

(Extended Data Fig. 4a–f). Therefore, we examined whether LCN2 signals in β-cells directly to affect β-cell 

functions. LCN2 stimulated insulin secretion directly in primary pancreatic islets (Extended Data Fig. 3h). 
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Therefore, the anorexigenic function of LCN2 influences fat mass, body weight and insulin sensitivity, 

whereas the ability of LCN2 to improve glucose tolerance probably reflects its direct action on pancreatic 

islets. 

Inactivation of Lcn2 in osteoblasts using another osteoblast-specific line expressing Bglap-

Cre29 (Lcn2(OC)osb
−/−, Extended Data Fig. 2c) reproduced the metabolic phenotype of Lcn2osb

−/− mice 

(Extended Data Fig. 4g–q). Bone mass and osteocalcin expression and activity were not affected 

in Lcn2osb
−/− mice (Extended Data Fig. 4r–t), indicating that their metabolic phenotype is not secondary to 

a bone defect or changes in osteocalcin activity. Of note, osteocalcin does not regulate appetite7.The 

biological significance of these observations was validated in humans. Serum levels of LCN2 inversely 

correlated with body weight and glycated haemoglobin (HbA1c) in patients with type 2 diabetes mellitus 

(Fig. 2m, n). 

A physiological role for LCN2 in feeding regulation was found, as there was a threefold increase in serum 

levels of LCN2 1–3 h after refeeding wild-type mice after overnight fasting (Fig. 2o). The increase in LCN2 

was owing to LCN production by osteoblasts, as it correlated with a 1.6-fold increase in Lcn2 expression 

in bone, but not in fat or other tissues (Extended Data Fig. 4u). Similarly, food intake was suppressed at 

1–3 h after refeeding wild-type mice (Fig. 2p). 

Lcn2osb
−/− mice had higher cumulative food intake at all examined time points after refeeding and twofold 

higher rate of food intake at 2 h after refeeding (Fig. 2q). Intraperitoneal administration of LCN2 to 

fasted Lcn2osb
−/− mice immediately after refeeding suppressed food intake within 1 h as efficiently as in 

wild-type mice. Thus, upregulation of Lcn2expression by osteoblasts following feeding is an acute 

anorexigenic signal to limit appetite after a meal in the mouse. 
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LCN2 suppresses food intake in lean and obese mice 

We then investigated whether exogenous LCN2 could exert a sustained anorexigenic effect. Daily 

intraperitoneal administration of LCN2 (150 ng g−1) to wild-type mice for 16 weeks increased serum LCN2 

levels by twofold, an increase similar to that observed after postprandial upregulation of serum LCN2 

levels (Extended Data Fig. 5a), and led to an 18% decrease in food intake (Fig. 3a). Fat mass, body weight 

and body-weight gain decreased by 32%, 9.4% and 34%, respectively (Fig. 3b, cand Extended Data Fig. 5b, 

c). Circulating insulin levels increased and glucose tolerance, insulin secretion and sensitivity and energy 

expenditure improved in LCN2-treated mice (Fig. 3d–f and Extended Data Fig. 5d–f). The identity and 

purity of the recombinant protein was verified by mass spectrophotometry (Extended Data Fig. 5g–h). 

Treatment of mice with an inactive leptin receptor (Leprdb/db mice)30with LCN2 for 16 weeks suppressed 

food intake, gonadal fat and body-weight gain by 16.5%, 22% and 26%, respectively (Fig. 3g–

i and Extended Data Fig. 5i). Glucose tolerance, insulin sensitivity and energy expenditure were improved 

in Leprdb/db mice treated with LCN2 (Fig. 3jand Extended Data Fig. 5j, k). These results indicate that LCN2 

counteracts, at least in part, deleterious consequences of the lack of leptin signaling on appetite and 

energy expenditure. They also support observations that Lcn2 expression is upregulated in obesity to 

counteract adiposity, inflammation and insulin resistance22. 

LCN2 acts on the hypothalamus to suppress appetite 

Because Lcn2osb
−/− mice did not show changes in the expression of adipose- or gut-derived hormones that 

affect food intake, we tested whether LCN2, which is not expressed in the hypothalamus (Fig. 1c, 

d and Extended Data Fig. 1a, c), can cross the blood–brain barrier and signal directly in the brain to 

regulate food intake. 
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LCN2 or vehicle was delivered intraperitoneally to Lcn2−/− mice. Notably, hyperphagia and the entire 

metabolic phenotype—and lack of changes in bone mass—of the global Lcn2−/− mice are identical, 

including in their magnitude, to those observed in Lcn2osb
−/− mice (Extended Data Fig. 6h–s). LCN2, at a 

dose restoring normal serum levels (107 ng ml−1), accumulated in the brainstem, thalamus and mostly in 

the hypothalamus of Lcn2−/− mice within 2 h of treatment at levels similar to those of wild-type mice 

(Extended Data Fig. 6t). Fasting and subsequent refeeding of wild-type mice led to a twofold increase in 

LCN2 levels in the hypothalamus (Extended Data Fig. 6u). Intracerebroventricular (ICV) infusions 

in Lcn2−/− mice, at a dose restoring normal LCN2 levels in the hypothalamus, normalized appetite 

in Lcn2−/− mice and decreased body-weight gain by 5% (Fig. 4a, b). There was no leakage of centrally 

delivered LCN2 into the circulation (Extended Data Fig. 6v). ICV infusion of LCN2 decreased appetite and 

body-weight gain in wild-type mice with similar amplitude as ICV infusion of leptin or melanotan II (MT-

II), a potent synthetic analogue of α-MSH (Fig. 4c–f). Therefore, LCN2 suppresses appetite in the mouse 

by signaling directly in the brain.  

LCN2 activates cAMP signaling in the hypothalamus 

We investigated how LCN2 suppresses food intake after signaling in the hypothalamus. LCN2 did not 

induce phosphorylation of AMPK, ERK1, ERK2 or tyrosine kinase but activated cAMP as efficiently as 

0.5 nM α-MSH, the equimolar amount of the most potent LCN2 dose (10 ng ml−1) in mouse GT1-7 

hypothalamic cells (Fig. 4g, h). LCN2 dose-dependently upregulated and subsequently downregulated 

cAMP activity. The same bell-shaped response curve was observed in the regulation of appetite after ICV 

infusion of increasing concentrations of LCN2 in wild-type mice (Fig. 4i). These responses suggest receptor 

desensitization as seen in the case of signaling that is mediated by G-protein-coupled receptors31,32. 
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LCN2 activates MC4R signaling in the hypothalamus 

Among all hypothalamic pathways that affect appetite, only the expression of downstream effectors of 

MC4R signalling was altered in Lcn2osb
−/− mice and in LCN2-treated wild-type mice (Extended Data Fig. 7a–

d). Therefore, we analysed whether MC4R transduces LCN2 signals. Several lines of evidence supported 

this hypothesis. First, LCN2 dose-dependently induced cAMP activity in Mc4r-expressing HEK293T cells 

with an EC50 (the half-maximal response) of 1.41 ± 0.25 nM (Fig. 5a and Extended Data Figs 7h, 8i). 

Although α-MSH stimulated cAMP with an EC50 of 0.09 ± 0.01 nM, the potency of cAMP induction by LCN2 

was higher compared to the effect of α-MSH in low, but physiologically relevant doses found in the brain 

(10−12 M and 10−11 M). Second, silencing Mc4r or pharmacologically inhibiting its activity in GT1-7 cells 

abrogated LCN2-induced cAMP activity (Extended Data Fig. 7e–g). Third, LCN2 activated MC4R signalling 

in GT1-7 cells (Extended Data Fig. 7i–n). By contrast, among the two known LCN2 receptors, megalin (also 

known as Lrp2) is not expressed in GT1-7 cells, whereas silencing of Slc22a17 (known as 24p3R) did not 

affect LCN2 signalling (Extended Data Fig. 7o–t). Fourth, biotinylated LCN2, at a physiological dose in the 

hypothalamus (25 pg ml−1), bound to PVH neurons and neurons in the ventromedial nucleus of the 

hypothalamus (VMH) of Lcn2−/− mice, where Mc4r is expressed33 (Fig. 5b and Extended Data Fig. 9a). 

Binding of LCN2–biotin was competitively displaced by an excess of unlabelled LCN2, and no signal was 

detected with GST–biotin. Binding of LCN2 was abolished in the hypothalamus of Mc4r-deficient mice (Fig. 

5b), or in GT1-7 cells where Mc4r was silenced by short-interfering RNA (siRNA) (Extended Data Fig. 7u). 

LCN2 binding was not detected in neurons of the arcuate nucleus of the hypothalamus. 

LCN2 binds to MC4R in HEK293T cells with a dissociation constant (Kd) of 51.39 ± 4.78 nM and competed 

for binding with α-MSH with an inhibitor constant (Ki) of 46.34 ± 1.11 nM. By comparison, α-MSH bound 

to MC4R with a 4.5-fold higher affinity (Kd = 11.93 ± 1.23 nM) than LCN2 and competed for binding with 

LCN2 with a Ki of 12.63 ± 1.10 nM (Fig. 5c–e and Extended Data Fig. 8i). Leptin and AGRP were used as a 
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negative and additional positive control, respectively. Similar to α-MSH, LCN2 bound to and activated 

cAMP signalling through the MC1 and MC3 receptors (Extended Data Fig. 8a–h). However, MC1R and 

MC3R do not regulate appetite34,35. Therefore, LCN2 binds to Mc4r-expressing hypothalamic neurons and 

activates MC4R signalling. 

LCN2 activates PVH neurons of the hypothalamus 

We investigated whether LCN2 signals directly in Mc4r-expressing cells. ICV administration of LCN2 

induced, with similar potency to MT-II, Fos expression in PVH neurons of wild-type (36% of PVH neurons 

were activated by LCN2 and 35% activated by MT-II), but not Mc4r−/− mice (Fig. 5f and Extended Data Fig. 

7v). To assess the effects on cellular activity of hypothalamic neurons, we targeted Sim1-expressing 

neurons in the PVH (PVH–Sim1) and Pomc- and Npy-expressing neurons in the arcuate nucleus for 

electrophysiological recordings (Extended data Fig. 9b–d). A subpopulation of PVH–Sim1 neurons have 

been linked to Mc4rexpression and activities related to energy balance and MC4R-mediated activation of 

PVH and anorexia15,36,37. Therefore, these functions of PVH–Sim1 neurons help to better define the effect 

of LCN2 on melanocortin signalling. PVH-Sim1 neurons were depolarized in the presence of LCN2 

(1.25 pM; in control artificial cerebrospinal fluid (ACSF), resting membrane potential 

(RMP) = −50.8 ± 4.1 mV; in ACSF + LCN2, RMP = −43.2 ± 3.3 mV; n = 8 in each group, P < 0.05). The 

remaining 12 neurons from the PVH remained unchanged in response to LCN2 (1.25 pM; in control ACSF, 

RMP = −47.1 ± 2.8 mV; in ACSF + LCN2, RMP = −47.2 ± 2.7 mV; n = 12, P > 0.05) (Fig. 5g, j). LCN2 (1.25 pM) 

did not alter the resting membrane potential of any Npy neurons (in control ACSF, RMP = −43.5 ± 1.4 mV; 

in ACSF + LCN2, RMP = −43.5 ± 1.5 mV; n = 26, P > 0.05) and Pomc neurons (in control ACSF, 

RMP = −46.1 ± 2.1 mV; in ACSF + LCN2, RMP = −46.3 ± 2.2 mV; n = 13, P > 0.05) (Fig. 5h, i). These data 

support activation of PVH neurons by LCN2, which is independent of the activity 

within Pomc or Npy/Agrp neurons of the arcuate nucleus. 
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MC4R is necessary for regulation of appetite by LCN2 

To determine whether MC4R mediates the anorexigenic function of LCN2 in vivo we treated Mc4r−/− and 

wild-type mice with LCN2. LCN2 suppressed appetite and decreased body weight in wild-type but not 

in Mc4r−/− mice (Fig. 6a–c). LCN2 treatment did not improve glucose metabolism in Mc4r−/− mice, although 

treatment improved energy expenditure, glucose tolerance and insulin sensitivity in wild-type mice 

(Extended Data Fig. 10a–d). Analysis of Lcn2osb
+/−::Mc4r+/− mice showed a significant increase in appetite, 

body weight and fat mass, and decreased glucose tolerance and insulin sensitivity compared 

to Lcn2osb
+/− and Mc4r+/− mice (Fig. 6d–g and Extended Data Fig. 10e–k). Therefore, LCN2 suppresses 

appetite by signaling through MC4R. 

To understand how LCN2 regulates MC4R signalling in humans, we measured LCN2 levels in the plasma 

of six patients with MC4R mutations and in six age-, gender- and body-mass-index-matched control 

subjects who had normal MC4R sequences (Fig. 6h, i and Extended Data Fig. 10l). LCN2 levels were two–

fourfold increased in three out of the five young-adult patients and in the single pediatric patient with 

MC4R mutations, as expected for GPCR ligands when the GPCR carries inactivating mutations. 
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Discussion 

We have identified a mode of endocrine regulation of energy metabolism by bone, which occurs through 

control of appetite. LCN2, which is secreted by osteoblasts, acts as a hormone that mediates an acute and 

chronic anorexigenic function of bone in lean and obese mice. Osteoblast-derived LCN2 crosses the blood–

brain barrier, and binds to and activates MC4R in PVN neurons of the hypothalamus with potency similar 

to that of leptin and comparable to the potent α-MSH analogue, MT-II. In addition to appetite-suppressing 

activities, LCN2 regulates insulin secretion and increases insulin sensitivity and glucose tolerance. 

At this time there is no experimental evidence to explain why bone would suppress food intake. It is 

possible that the food-suppressing function of the skeleton resembles the homeostatic role of leptin; a 

decrease in bone mass and Lcn2 expression could allow an increase in food intake to restore nutrient 

uptake and maintain body growth through skeletal growth and/or increase in bone mass. Independent of 

the reasons for this regulation of energy intake, the underlying mechanisms that regulate appetite, and 

the abnormal glucose metabolism and obesity that are associated with metabolic disease, have not yet 

been fully elucidated. In that respect, the role of the skeleton in the control of energy intake and 

homeostasis may provide new insights into the pathogenesis of these diseases. 

Note added in proof: Two earlier studies reported that Lcn2 deficiency does not affect appetite38,39. The 

reasons for the different results are not clear, but maybe due to different methodology, including 

differences in generating the Lcn2-deficient mice. However, the effects of exogenous LCN2 support the 

conclusion drawn from our loss-of-function experiments. 
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Figures 

Figure 1: LCN2 regulates glucose homeostasis through its expression in osteoblasts. 

 

a, mRNA expression of Lcn2 in bone. b, Serum levels of LCN2 in mice. c, d, mRNA and protein expression 

of LCN2 in wild-type (WT) tissues. BAT, brown adipose tissue; subc. fat, subcutaneous fat; WAT, white 

adipose tissue. c, Northern blot analysis of Lcn2 levels. Actbwas used as a loading control. d, Western blot 

analysis of LCN2 levels. GAPDH was used as a loading control. e, LCN2 in bone and fat tissues of Lcn2–

mCherry mice. Scale bar, 40 μm. f, g, Glucose-tolerance test of osteoblast-specific (f) or adipocyte-specific 

(g) Lcn2-knockout mice compared to wild-type (Lcnfl/fl) littermates. h, i, Insulin-tolerance test of 

osteoblast-specific (h) or adipocyte-specific (i) Lcn2-knockout mice compared to wild-type (Lcnfl/fl) 

littermates. j, k, Glucose-stimulated insulin secretion in osteoblast-specific (j) or adipocyte-specific 

(k) Lcn2-knockout mice or wild-type littermates. Data are mean ± s.e.m.; n = 10 (a, b), n = 12 (f), n = 7 

(g, k), n = 6 (h) and n = 8 (i, j) mice per group; representative of three independent experiments. In f, h, j, 

the effect size (d) > 0.84; *P < 0.05 (Student’s t-test). 
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Figure 2: Inactivation of Lcn2 in osteoblasts increases food intake. 

 

a, b, Serum insulin levels of osteoblast-specific (a) or adipocyte-specific (b) Lcn2-knockout mice compared 

to wild-type (Lcnfl/fl) littermates. c–l, Analysis of fat pad mass (c, f), body fat mass (d, g), body weight 

(BW; e, h, l) and cumulative food intake (i, j, k) of Lcn2osb
−/− (c–e, i, k, l) and Lcn2fat

−/− (f–h, j) 

mice. m, n Body weight (m) and HbA1c (n) inversely correlate with serum LCN2 levels in patients with type 

2 diabetes. o, p, LCN2 serum levels (o) and food intake (p) in wild-type mice that were fast (FD) or fasted 

and refed (RF). q, Food intake in Lcn2osb
−/− mice that were fasted and refed after intraperitoneal LCN2 

administration. Data are mean ± s.e.m.; n = 11 (a, c, o), n = 10 (b, d), n = 13 (e), n = 8 (f, h), n = 7 (g, j), n = 9 

(i, l, p), n = 5 (k) and n = 4 (q) mice per group; representative of three independent experiments; d > 0.96 

(a, c, d, i, k) and d > 0.74 (e, l). a, c, d, e, i, k, l, o, *P < 0.05 (Student’s t-test). q, *P < 0.05, vehicle-

treated Lcn2osb
−/− versus vehicle-treated wild-type mice and LCN2-treated Lcn2osb

−/−mice (ANOVA); and 

#P < 0.05, LCN2-treated wild-type mice versus vehicle-treated wild-type mice (Student’s t-test) 
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Figure 3: LCN2 suppresses food intake in lean and obese mice. 

 

a, Daily food intake of wild-type mice treated with vehicle or LCN2. b, c, h, i, Analysis of fat mass (b, h) and 

body weight (c, i) of wild-type or Leprdb/db mice treated with vehicle or LCN2. g, Cumulative (for the two 

phases, dark and light) daily food intake of wild-type or Leprdb/dbmice treated with vehicle or LCN2 during 

different light phases of the day. d–f, j, Glucose-tolerance test (d, j), glucose-stimulated insulin secretion 

(e), insulin-tolerance test (f) of wild-type or Leprdb/db mice treated with LCN2. Data are mean ± s.e.m.; n = 8 

wild-type and n = 6 Leprdb/db mice; representative of three independent experiments. a–g, *P < 0.05 

(Student’s t-test). h–j, #P < 0.05, Leprdb/db versus Leprdb/+ mice treated with vehicle (Student’s t-test). 

*P < 0.05, Leprdb/db vehicle versus Leprdb/+ (vehicle) and Leprdb/db (LCN2) groups (ANOVA). 
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Figure 4: LCN2 signals directly in the brain to suppress food intake. 

 

 

a–f, i, Change in food intake (a, c, e, i) and body weight (b, d, f) in Lcn2−/− or wild-type mice during ICV 

administration of LCN2 (a–d, i), leptin or MT-II (e, f). AUC, area under the curve. g, Western blot analysis 

of phosphorylated (p-) or total (t-) AMPK, ERK1/ERK2 and tyrosine kinase (tyr). β-actin was used as a 

loading control. Veh, vehicle; FBS, fetal bovine serum. h, cAMP production in GT1-7 cells after treatment 

with LCN2 or α-MSH. In i, data from c for vehicle and low-LCN2 are included. Data are mean ± s.e.m.; n = 6 

(a, b), n = 10 (c, d, i) and n = 5 (e, f) mice per group; n = 3 (h); representative of three independent 

experiments. *P < 0.05 (Student’s t-test). 
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Figure 5: LCN2 binds to and signals through MC4R in the hypothalamus. 

 

a, cAMP production of HEK293T cells overexpressing MC4R after treatment with LCN2, leptin or α-MSH b, 

Binding of biotinylated LCN2 or GST (control) to hypothalamic sections from Lcn2−/− or Mc4r−/−mice in the 

presence or absence of 100-fold excess of non-biotinylated LCN2 or GST. PVH, paraventricular nucleus of 

the hypothalamus; 3V, third ventricle. c–e, Saturation (c) and competitive binding (d, e) assay curves of 

LCN2 and α-MSH in Mc4r-transfected HEK293T cells. Leptin and AGRP were used as a negative and 

additional positive control, respectively. f, Fos expression in the PVH of wild-type and Mc4r−/− mice 

treated with LCN2 or MT-II. g–j, Representative traces (g–i) and change in resting membrane potential (j) 

of neurons after LCN2 treatment. LCN2 treatment induced depolarization in a Sim1-cre::tdTomato (g) but 

not Npy–hrGFP (humanized renilla green fluorescent protein) (h) or Pomc–hrGFP (i) neuron. Scale bars, 

100 μm. Data are mean ± s.e.m.; representative of three independent experiments. *P < 0.05 (Student’s t-

test). 
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Figure 6: MC4R mediates suppression of appetite by osteoblast-derived LCN2. 

 

 

a–f, Analysis of food intake (a, d), body weight (b, e), fat pad mass (c, g) and body fat mass 

(f) in Mc4r−/− mice treated with LCN2 for 8 weeks(a–c) or in Mc4r+/−, Lcn2osb
+/−, Mc4r+/−::Lcn2osb

+/− and wild-

type littermates (d–g). h, i, LCN2 plasma levels in patients with mutated and normal MC4R at different 

ages (h) and body-mass indexes (i). Data are mean ± s.e.m.; n = 5wild-type and n = 8 Mc4r−/− mice (a–

c), n = 7 wild-type, Mc4r+/− and Mc4r+/−::Lcn2osb
+/− mice and n = 5 Lcn2osb

+/− mice (d–g); representative of 

three independent experiments. a–c, *P < 0.05, vehicle-treated wild-type mice compared to the other 

groups; d–g, *P < 0.05, Mc4r+/−::Lcn2osb
+/− mice versus wild-type, Mc4r+/− and Lcn2osb

+/− mice 

(ANOVA); #P < 0.05, Mc4r+/− versus wild-type mice (Student’s t-test). 
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Supplemental Figures 

Extended Data Figure 1 | Identification of Lcn2 as an osteoblast enriched gene and generation 
of mice lacking Lcn2 in osteoblasts (Lcn2osb−/−) and adipocytes (Lcn2fat−/−). 

 

 



63 
 

 

a, Real-time PCR analysis of Lcn2 expression levels in the indicated tissues from wild-type mice. b, Lcn2, 

Bglap and Alp expression levels in differentiating osteoblasts (day 0–day 15). c, Lack of Lcn2 expression in 

indicated tissues of the Lcn2–mCherry-reporter mouse. Scale bars, 40 μ m. d, Targeting strategy used to 

generate a floxed allele of Lcn2. The targeting vector, which contains loxP sites within introns 2 and 6, is 

designed to delete a 1.9 kb genomic fragment containing Lcn2 exons 3− 6. Location of probes used for 

Southern blotting (5′ and 3′ ) and primers used for PCR to detect the floxed (a and b) and mutant allele (c 

and d) are indicated. e, Southern-blot analysis on DNA from targeted embryonic stem (ES) cells and mice 

from F1 and F2 generation showing germline transmission of the mutated allele. 
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Extended Data Figure 2 | Osteoblast-specific activation of Cre in Col1a1-Cre and Bglap-Cre 
mice. 
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a, b, Tandem mass spectrum of an eluted peptide fragment of bone-derived (a) and fat-derived (b) 

LCN2. c, Specific expression of Cre in osteoblasts, but not any other tissues in mT/mG::Col1a1-Cre mice 

and in mT/mG::Bglap-Cre mice. Scale bars, 100 μ m. Results are representative of three independent 

experiments.  
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Extended Data Figure 3 | LCN2 regulates glucose homeostasis through its expression in 
osteoblasts. 
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a, b, Glucose infusion rate (a) and serum insulin levels (b) during hyperglycaemic clamp. c, Insulin staining 

and islet histomorphometry of pancreatic sections. d, Ki67 immunostaining and histomorphometric 

analysis of Ki67-immunoreactive cells in pancreatic islets (arrows indicate Ki67-positive cells). e, 

Histomorphometric analysis of TUNEL-positive β -cells in the pancreas. f, Expression of insulin genes, cell 

cycle genes and β -cell dedifferentiation markers in pancreatic islets. g, Insulin and glucagon 

immunostaining and histomorphometric analysis of insulin- and glucagon-immunoreactive cells in 

pancreatic islets of Lcn2osb −/− mice and their Lcn2fl/fl littermates. h, Insulin secretion in pancreatic islets 

treated with increasing doses of LCN2. i–p, Glucose tolerance (i), insulin tolerance (j) and glucose-

stimulated insulin secretion (k), random-fed serum-insulin levels (l), fat pad mass (m), fat mass (n),food 

intake (o) and body weight (p) are not altered in Col1a1-Cre mice compared to their wild-type littermates. 

q, Expression levels of Cebpa, Pparg, Tgl (also known as Pnpla2), Plin1 (also known as Plin) and Lpl in white 

adipose tissue. r, s, Urinary levels of norepinephrine (r) and epinephrine (s) in Lcn2osb −/− mice and 

Lcn2fl/fl littermates. t, u, Indirect calorimetry measurements (t) and daily food intake normalized to body 

weight (u) in Lcn2osb −/− mice and Lcn2fl/fl littermates. Scale bars, 200 μ m (c), 100 μ m (d) and 50 μ m 

(g). Data are mean ± s.e.m.; n = 5 (a, b, e, r–t), n = 8 (c, d, q), n = 7 (i–p), n = 3 (g) and n = 9 (u) mice per 

group. Results are representative of three independent experiments. * P < 0.05 (Student’s t-test). 
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Extended Data Figure 4 | The anorexigenic function of LCN2 influences fat mass, body weight 

and insulin sensitivity identically in Lcn2osb −/− and Lcn2(OC)osb −/− mice. 
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a–f, Body weight (a), fat mass (b), insulin tolerance (c), serum insulin levels (d), glucose-stimulated insulin 

secretion (e) and glucose tolerance (f) in pair-fed Lcn2osb −/− and Lcn2fl/fl littermates. 

Data from Figs 2l, 2d, 1h, 2a, 1j and 1f, respectively, for fed Lcn2osb −/− mice are included for comparison. 

g, Detection of the Lcn2 floxed (primers a–b) and mutant allele, Δ flox, (primers c–d) in genomic DNA 

isolated from tissues of Lcn2(OC)osb −/− mice. h, i, Serum levels of LCN2 (h) and tissue expression of Lcn2 

(i) in Lcn2(OC)osb −/− mice and their Lcn2fl/fl littermates. j–q, glucose tolerance (j), insulin tolerance (k), 

glucose-stimulated insulin secretion (l), random-fed serum-insulin levels (m), fat pad mass (n), fat mass 

(o), food intake (p) and body weight (q) in Lcn2(OC)osb −/− mice and their Lcn2fl/fl littermates. r, 

Histomorphometric analysis of bone mass and Von Kossa staining of vertebral sections. BV/TV, bone 

volume over tissue volume; Ob.N./T.Ar, osteoblast numbers per trabecular area; OcS/BS, osteoclast 

surface per bone surface. s, Expression levels of osteoblastogenic and osteoclastogenic genes in bone in 

Lcn2osb −/− mice and their Lcn2fl/fl littermates. t, Serum osteocalcin levels in Lcn2osb 

−/− mice and their Lcn2fl/fl littermates. u, Lcn2 expression levels in indicated tissues following fasting–

refeeding of wild-type mice. Data are mean ± s.e.m.; n = 6 (a–f, r), n = 3 (s), n = 10 (t) and n = 5 (u) mice 

per group; n = 3 wild-type, n = 7 Bglap-Cre, n = 7 Lcn2(OC)osb −/− and n = 6 Lcn2fl/fl mice (h–q). Results 

are representative of three independent experiments. * P < 0.05 (Student’s t-test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Extended Data Figure 5 | Exogenous LCN2 decreases body-weight gain and increases energy 
expenditure in lean and obese mice.  

 

 

a–f, Wild-type mice were treated with LCN2 (150 ng g−1 per day) or vehicle for 16 weeks. a, Serum levels 

of LCN2. b, Body-weight gain. c, Expression levels of Cebpa and Pparg in white adipose tissue. d, Serum 

insulin levels. e, Pancreas insulin staining and islet histomorphometry. Scale bar, 200 μ m. f, Indirect 

calorimetry measurements. g, h, Coomassie blue staining (g) and mass spectrometry analysis (h) of 

recombinant mouse LCN2. Body-weight gain (i), insulin tolerance (j) and indirect calorimetry (k) 

measurements of Leprdb/db mice treated with LCN2 (150 ng g−1 per day) or vehicle for 16 weeks. n = 8 

mice wild-type and n = 6 Leprdb/db mice per group. Results are representative of three independent 

experiments. Data are mean ± s.e.m.; * P < 0.05 (a–f; Student’s t-test). #P < 0.05 (i–k) for Leprdb/db 

(vehicle or LCN2 treated) versus Leprdb/+ (vehicle) groups (Student’s t-test). * P < 0.05 (i–k) Leprdb/db 

(LCN2) versus Leprdb/+ (vehicle) and Leprdb/db (vehicle) groups (ANOVA). 
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Extended Data Figure 6 | Increased food intake, compromised glucose metabolism and 
normal bone mass in Lcn2−/− mice. 
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a, Serum levels of leptin in Lcn2osb −/− mice and their Lcn2fl/fl littermates. b, Expression levels of leptin 

in white adipose tissue. c–g, Expression levels of the gastrointestinal hormones that regulate appetite Cck 

(c), Pyy (d), Glp1 (also known as Zglp1; e), Gip (f) and ghrelin (Ghrl; g) under fed (F), 16-h fasted (FD) and 

re-fed (RF) (2 h after 16-h fasting) conditions for Lcn2osb −/− mice and their Lcn2fl/fl littermates. h, 

Detection of the Lcn2 mutant allele, Δ flox, (primers c–d) in genomic DNA isolated from tissues of Lcn2−/− 

mice. i, j, Serum levels of LCN2 (i) and tissue expression of Lcn2 (j) in Lcn2−/− mice and their Lcn2+/+ 

littermates. k–s, Analysis of Lcn2−/− mice and their Lcn2+/+ littermates. k, Glucose tolerance test. l, Insulin 

tolerance test. m, Glucose-stimulated insulin secretion. n, Fat pad mass. o, Fat mass. p, Food intake. q, 

Body weight. r, Bone histomorphometric analysis. s, Expression levels of osteoblastogenic and 

osteoclastogenic genes in bone. t, u, LCN2 crosses the blood–brain barrier to regulate food intake. t, LCN2 

levels in the brain and serum of Lcn2−/− and wild-type littermates 2 h after i.p. administration of LCN2. u, 

LCN2 levels in the brain of wild-type mice 3 h after refeeding. v, LCN2 levels in the brain and serum of 

Lcn2−/− mice following ICV administration of 0.02 ng h−1 LCN2 or vehicle for 8 days. Data are mean ± 

s.e.m.; n = 10 (a, b, i), n = 5 (c–g, k, l, p, r, s), n = 7 (m–o, q), n = 4 (j, t) and n = 3 (u, v) mice per group. 

Results are representative of three independent experiments. * P < 0.05 (Student’s t-test). 
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Extended Data Figure 7 | MC4R, but not SLC22A17, is required for the stimulation of cAMP 
activity and anorexigenic gene expression induced by LCN2. 
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a–d, Expression levels of neuropeptides regulating appetite in the hypothalamus of Lcn2fl/fl and Lcn2osb 

−/− mice (a, c) and wild-type mice injected daily i.p. with LCN2 (150 ng g−1 per day) or vehicle for 16 weeks 

(b, d). e, o, Mc4r (e) or Slc22a17 (o) expression levels in GT1-7 hypothalamic cells following transfection 

with Mc4r or Slc22a17 siRNA. si-scramble, Scramble siRNA. f, g, p, cAMP production in GT1-7 cells treated 

with LCN2 following pretreatment with the SHU9119 inhibitor (g) or silencing of Mc4r (f) or Slc22a17 (p) 

expression. h, Expression levels of melanocortin receptors and LCN2 receptors in HEK293T cells 

transfected with an MC4R expression vector or empty vector. ND, not detected. i, j, Western blot analysis 

of CREB phosphorylation (i) and FOS induction (j) in GT1-7 cells treated with LCN2, vehicle or α -MSH. k–

t, Expression levels of Mc4r and targets in GT1-7 cells treated with LCN2 or α -MSH for 4 h (k–n) and after 

silencing of Slc22a17 (q–t). u, Binding of biotinylated LCN2 and α -MSH in GT1-7 cells transiently 

transfected with Mc4r siRNA or scramble siRNA. v, Quantification of Fos-expressing neurons in the PVH 

of wild-type and Mc4r−/− mice injected with LCN2 or MT-II. Data are mean ± s.e.m. of triplicates. n = 9 (a) 

and n = 7 (b–d) mice per group. Results are representative of three independent experiments. * P < 0.05 

(Student’s t-test). 
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Extended Data Figure 8 | Binding affinity and activation potency of LCN2 on MC3R and MC1R. 

 

a–f, Saturation (a, d) and competition binding (b, c, e, f) assay curves of LCN2 and α -MSH in 

HEK293T cells transfected with MC3R (a–c) or MC1R (d–f). Displacement of biotinylated α -MSH (b, 

e) or biotinylated LCN2 (c, f) by the indicated proteins. g, h, cAMP production in HEK293T cells 

transfected with MC3R (g) or MC1R (h) along with a cAMP/luciferase reporter and treated for 15 min 

as indicated. Results are representative of three independent experiments. Data are mean ± s.e.m.; i, 

EC50, Kd and Ki of LCN2, α  MSH and AGRP on melanocortin receptors expressed in HEK293T cells. 
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Extended Data Figure 9 | Binding and activation of PVH neurons by LCN2. 
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a, Binding of biotinylated LCN2 to PVH and VMH neurons, but not neurons in the arcuate nucleus (ARC) in 

hypothalamic sections of Lcn2−/− and Mc4r−/− mice. Competition with unlabelled LCN2 or GST. b–d, 

Bright-field images of a targeted (as indicated by the arrows) neurons. b, A Sim-1 neuron from a Sim-1 

cre::tdTomato mouse. c, A Pomc neuron from Pomc–hrGFP mouse. d, A Npy neuron from Npy–hrGFP 

mouse. The same neuron is shown in red (Alexa Fluor 594, tdTomato), green (FITC, hrGFP) and blue (Alexa 

Fluor 350, DAPI), as well the merged image. Scale bars, 100 μ m (a) and 50 μ m (b–d). 
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Extended Data Figure 10 | MC4R is required for the improvement in glucose metabolism and 
energy expenditure by LCN2. 
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a–d, Mc4r−/− and wild-type littermates were treated with LCN2 (150 ng/g/day) or vehicle for 8 weeks. a, 

Indirect calorimetry measurements. b, Serum insulin levels. c, Glucose tolerance test. d, Insulin tolerance 

test. e–k, Serum levels of LCN2 (e), indirect calorimetry measurements (f–h), glucose tolerance test (i), 

insulin tolerance test (j) and glucose-stimulated insulin secretion (k) in Mc4r+/−, Lcn2osb +/−, 

Mc4r+/−::Lcn2osb +/− and wild-type littermates. Data are mean ± s.e.m.; n = 5 wild-type and n = 7 Mc4r−/− 

mice (a–d). l, LCN2 plasma levels in patients with mutated and normal MC4R sequences. n = 6 wild-type, 

Mc4r+/− and Mc4r+/−::Lcn2osb +/− mice and n = 5 Lcn2osb +/− mice (e–k). Results are representative of 

three independent experiments. * P < 0.05 indicated genotypes or treatments versus wild-type mice 

(Student’s t-test). #P < 0.05 when comparing either Mc4r−/− (vehicletreated) and Mc4r−/− (LCN2-treated) 

groups (a) or Mc4r+/−::Lcn2osb +/− mice versus wild-type, Mc4r+/− and Lcn2osb +/− mice (f–k) (ANOVA). 
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Abstract  

Regulation of food intake is a recently identified endocrine function of bone that is mediated by Lipocalin 

2 (LCN2). Osteoblast-secreted LCN2 suppresses food intake, induces satiety after feeding and decreases 

fat mass while improving glucose tolerance, insulin secretion and sensitivity. We now show that serum 

LCN2 levels correlate with insulin levels and β-cell function, indices of healthy glucose metabolism, in 

genetic and diet-induced mouse models of obesity and in obese, healthy or pre-diabetic patients. 

However, LCN2 serum levels also correlate with body mass index (BMI) and insulin resistance in the same 

patients; and are increased in obese mice. To dissect this apparent discrepancy, we examined LCN2 effects 

in hyperphagia and β -cell function mouse models of obesity or β -cell destruction. Silencing Lcn2 

expression increases hyperphagia, fat and body weight and worsens β -cell function and general metabolic 

dysfunction in obese, leptin receptor-deficient mice. Conversely, LCN2 increases β-cell numbers and 

promotes β-cell function after streptozotocin-induced β -cell failure by (STZ) and acts as a growth factor 

necessary for β -cell adaptation to higher metabolic load in mice. These results support a protective role 

for LCN2 in obesity-induced glucose intolerance and insulin resistance that stem from its ability to 

decrease food intake and promote adaptive β-cell proliferation. 
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Introduction 

The discovery of multiple endocrine functions of bone established a new paradigm in which proteins 

secreted from osteoblasts can act on distal organs to coordinate whole-body energy metabolism1-6. The 

function of osteoblasts on regulating energy metabolism have solely been attributed to osteocalcin which 

subsequently raised the question of whether multiple bone-derived hormones exist and whether 

osteoblasts elicit unanticipated endocrine functions7. In response to this question, a known hormone with 

a previously unidentified action in bone was found to mediate a new metabolic function of osteoblasts: 

regulation of food intake. Lipocalin-2 (LCN2) is a hormone preferentially expressed by osteoblasts in at 

least 10-fold higher levels as compared to other tissues at basal states.  Its inactivation in osteoblasts in 

mice increases food intake by 16%, fat mass, and body weight and leads to glucose intolerance and insulin 

resistance, a decrease in circulating insulin levels, islet number and size, β-cell mass and β-cell 

proliferation, and lack of insulin secretion following a glucose challenge. In addition, chronic 

administration of exogenous LCN2 in lean and obese mice decreases food intake, fat mass, and body 

weight gain, supporting a beneficial role for LCN2 in energy metabolism8 Osteoblastic expression and 

circulating LCN2 levels increase rapidly after a meal in mice indicating an acute physiological role of LCN2 

in the regulation of feeding. The postprandial increase in LCN2 is required for suppression of food intake 

and termination of the meal. This effect is conserved in humans. Healthy women Postprandial LCN2 

regulation is conserved in humans since LCN2 levels were elevated in normal weight women following a 

meal9. 

Several studies have reported a beneficial role for LCN2 in energy metabolism which include protection 

from diet-induced obesity, fatty liver disease, atherogenic dyslipidemia and insulin resistance, suppression 

of hepatic gluconeogenesis and, promotion of adaptive thermogenesis through activation of brown 

adipose tissue and fatty acid oxidation9-12. In addition, postprandial LCN2 positively correlates with energy 
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expenditure and improved fatty acid oxidation following a high-fat-meal in women with normal BMI9 

Although circulating levels of LCN2 increase with body weight and insulin reistance in mouse models of 

obesity and insulin resistance, and in human subjects, the role of LCN2 is not well understood9, 13-22. 

Furthermore, serum LCN2 is  decreased in long-term type 2 diabetes patients and are inversely correlated 

with body weight and glycated hemoglobin in diabetic patients23. These observations suggest a complex 

etiology regulating LCN2 serum levels in lean and obese subjects with or without diabetes and prompted 

us to interrogate what serum levels of LCN2 may reflect in each situation.   

Observations relevant to the mode of LCN2 regulation provide insight into its role throughout the 

pathophysiology of diabetes. Besides its functions in suppressing appetite and favoring glucose 

metabolism, LCN2 acts as an acute phase protein in tissues in which it is minimally expressed in the basal 

states, such as kidney and liver24-31. LCN2 production is stimulated by both pro- and anti-inflammatory 

cytokines; which had led to several ascribed functions and roles in various pathological setting of LCN232-

34. Whether modulation of LCN2 in these contexts is deleterious or protective is currently unclear. It 

appears to depend on cell context and confounding associated comorbidities35. Nonetheless, LCN2 is 

upregulated by pro-inflammatory cytokines in the obese state to resolve inflammation in adipocytes and 

macrophages14-15. Interestingly, expression of Mc4r, the receptor of LCN2 in the hypothalamus mediating 

its anorexigenic effect, increases during inflammation; and, MC4R antagonism improves food intake in 

both acute and chronic inflammatory diseases presumably by counteracting the functions of LCN236-37. In 

addition, LCN2 could play a protective role in obesity by promoting β-cell proliferation and function38. 

These observations suggest that elevated LCN2 levels in obesity may be a compensatory homeostatic 

response to counteract hyperglycemia and insulin resistance by suppressing body weight and by 

promoting β -cell proliferation, at least at the early stages of the disease.  

We have found that serum LCN2 levels correlate with insulin levels and β -cell function, in genetic and 

diet-induced mouse models of obesity and in obese, pre-diabetic patients. However, LCN2 serum levels 
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also correlate with body mass index (BMI) and insulin resistance in the same patients; and are increased 

in obese mice. Increasing Lcn2 through genetic means improves metabolic function while silencing Lcn2 

increases hyperphagia, body weight and worsens metabolic dysfunction as indicated by increased blood 

glucose, a higher impairment in glucose stimulated insulin secretion and a decrease in insulin levels. In 

addition, a beneficial effect of LCN2 on β-cell function was observed in mouse models of β-cell failure due 

to toxicity or high fat diet. These results support a protective role for LCN2 in obesity-induced glucose 

intolerance and insulin resistance. 
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Methods 

Human study participants and sample collection 

Pre-diabetic women were recruited as part of the NANTOS study. Pre-diabetes was defined as %HbA1c 

between 5.7 and 6.4. Subjects were excluded if they had a history of disorders associated with altered 

skeletal structure or function such as chronic kidney disease, chronic liver disease, active malignancy, 

acromegaly, Cushing’s syndrome, thyroid disease, hyper- or hypoparathyroidism or organ transplant. 

Additionally, subjects were excluded if they were currently using teriparatide, loop diuretics, anti-

convulsive therapies, corticosteroids (>3 weeks over the past 3 years), thiazolidinediones or SGLT2 

inhibitors. Bisphosphonate and/or denosumab use within the past 12 months were also exclusion 

criteria. Fasting morning blood was drawn and serum was stored at −80 °C. Age and anthropometric 

characteristics such as height, body weight, and waist circumference were recorded. Body mass index 

was calculated as ratio of body weight(kg) to height squared(m 2). Homeostatic model assessment 

(HOMA) is a method to quantify insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) using 

glucose and insulin measurements.  HOMA-R was calculated by multiplying fasting glucose by fasting 

glucose and dividing by constant 22.5 (HOMA-IR = FPG*FPI/22.5). HOMA-B = (20*FPI) / (FPG – 3.5) %. 

(Turner et al., 1979; Mathews et al., 1985). 

Exclusion criteria included if previous use of teriparatide or rhPTH, glucocorticoid use within the past 2 

years, pregnancy or breastfeeding within the past 6 months, a history of Cushing's syndrome, 

uncontrolled thyroid disease, malabsorption syndrome, significant liver disease, creatinine clearance 

<30 mL/min, other chronic disorders of mineral metabolism such as Paget's disease, and osteogenesis 

imperfecta. Postmenopausal status was defined as having no menstrual period for more than 1 year in 

both groups. The study was approved by the institutional review boards of CUMC; all subjects gave 

written informed consent. 
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Mice  

Lcn2fl/+ mice were generated as previously described8. Lcn2fl/+ mice were crossed with Col1a1-Cre or 

EIIa-Cre transgenic mice to generate osteoblast specific or global deletion of Lcn2 mice. Lcn2-

heterozygous mice were intercrossed and animals homozygous for Lcn2 deletion in osteoblasts 

(Lcn2osb
−/−) or global deletion of Lcn2(Lcn2−/− mice) were obtained. C57BL/6J, homozygous and 

heterozygous leptin-receptor-deficient mice, B6.BKS(D)-Leprdb/J (stock number 000697), leptin-

deficient mice, B6.Cg-Lepob/J (stock number 000632) and mice lacking Mc4r, B6;129S4-Mc4rtm1Lowl/J 

(stock number 006414) were purchased from The Jackson Laboratory. High fat diet fed mice were 

given a 60% fat diet for 16 weeks ( Research Diets D12492). All mice were housed under standard 

laboratory conditions (12 h on/off; lights on at 7:00) and temperature-controlled environment with 

food and water available ad libitum unless otherwise specified. In each experiment the mice used were 

of the same genetic background, as they were all littermates. 10–12-week-old male mice of all 

genotypes and female Lcn2−/− mice were used in all experiments unless otherwise stated. Investigators 

were blinded during experiments and outcome assessment. Mouse genotypes were determined by 

PCR; primer sequences are available upon request. All animal procedures were approved by the 

Columbia University Institutional Animal Care and Use Committee. 

RNA Isolation  

RNA isolation, cDNA preparation and real-time PCR analyses were carried out following standard 

protocols. For bone tissue analysis, bone-marrow cells were removed completely by extensively 

flushing the femurs with PBS. Trizol reagent was used for RNA extraction, random hexamers cDNA 

synthesis kit (Clontech Laboratories) for reverse transcription PCR and SYBR Green Master Mix (Bio -
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Rad Laboratories) for quantitative PCR. Actb was used as an internal control. Data are presented as 

fold change over control, unless otherwise indicated. Primer sequences are available upon reque st.  

Metabolic tests 

Glucose tolerance (GTT), insulin tolerance (ITT) and glucose-stimulated insulin secretion (GSIS) tests 

were performed as previously describes45. For Leprdb/db mice, the dose of glucose during GTT was 1 g 

per kg body weight and the dose of insulin during ITT was 2.5 U per kg body weight. Insulin levels were 

measure by the insulin ELISA kit (Crystal Chem).  

STZ 

To check whether enhanced lipocalin-2 serum levels could ameliorate hyperglycemia caused by 

pancreatic b-cell failure, 9-week old male mice (8 per group) were injected with a single high dose of STZ 

(150mg/kg of body weight) to induce b-cell death and subsequently injected daily with 150ng/g 

recombinant lcn-2, one week following STZ injection. Blood glucose was measured every 48h with a 

glucometer. STZ induced diabetes (fed blood glucose>250mg/dl) in 50% of the mice injected by day 2 , 

56.25% by day 4 and 62.5% by day 6 which remained stable thereafter, with blood glucose levels raging 

from 400-500mg/dl. 

siRNA 

siRNA against LCN2 was delivered to Leprdb/db mice as a complex with a polymer-based reagent (In vivo 

JetPei) every two days for 30 days by subcutaneous injections. 
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Statistics 

Authors must fully describe all statistical tests used during the analysis in the methods, and the statistical 

test used must also be reported in the relevant figure legend. We encourage authors to describe methods 

used to assess whether the data met the assumptions of the statistical test utilized (e.g., normal 

distribution). Authors must specify whether statistical tests are one-sided or two-sided. When making 

multiple comparisons on a single data set, authors should choose statistical tests that account for multiple 

groups (such as ANOVA rather than a series of t tests). The statistical analysis should also correct for 

repeated measures when comparing multiple measurements within subjects. A statement describing 

inclusion/exclusion criteria must be included in Methods if any samples were excluded from the analysis. 

Error bars must be defined, either in Methods or in the legends themselves; e.g., “Data represent mean ± 

SEM.” Variance around the mean and statistical analysis should not be presented if fewer than 3 

independent samples are included. 
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Results 

LCN2 correlates with β-cell function and insulin resistance in pre-diabetic women 

To elucidate the connection between LCN2 and obesity in the development of diabetes, we examined 

potential correlations between serum LCN2 levels, glucose tolerance and insulin sensitivity in a 5-year 

prospective study of obese pre-diabetic women (n=88). Subjects characteristics are summarized in Table1. 

Spearman’s correlation showed a positive association between serum LCN2 levels and BMI (r=0.3*), waist 

circumference (r=0.29*), serum insulin levels (r=0.39) and HOMA-B (r=0.39*). At the same time, LCN2 

levels positively correlated with HOMA-IR (r=0.37*) and inversely correlated with serum adiponectin 

levels (r=-0.29*), which are both indices of insulin resistance (Table 2 and Suppl. Figure 1A-F). 

The correlations between serum LCN2 levels and BMI, Waist Circumference and HOMA-IR became 

stronger when BMI was segregated into obese (BMI>30 kg/mg2 (n=39)) and severely obese 

(BMI>35kg/mg2 (n=25)) groups (Table 3). A logistic regression analysis, showed that an increase of HOMA-

IR by 1SD, or 34% above the mean, increased the likelihood of belonging in the highest quartile of serum 

LCN2 levels (Odds ratio (OR) = 2.81 [1.46-5.40], p=0.002). 

Subsequently, we examined whether baseline serum LCN2 levels could predict diabetes progression in 

the same group of obese pre-diabetic women. A prospective analysis at the end of the 5-year follow-up 

study indicated that whereas HOMA-IR was associated with the risk of becoming diabetic, as this was 

defined by HbA1c levels above 6.5%, baseline fasting LCN2 serum level was not associated with the risk 

of developing diabetes (OR=0.98 per 1 SD increase [0.86-1.23]; p=0.56) (Table 4). 

In a separate cohort of post-menopausal women (n=97), LCN2 increases in type-2-diabetics (T2D) and 

with BMI classification in non-diabetics (Table 5). LCN2 serum levels are elevated in diabetics (87.28 

ng/ml±5.15), as compared to non-diabetic lean controls subjects (58.58 ng/ml±7.61) (Fig. 1A). Also, in 

non-diabetic subjects increasing BMI is associated with rising LCN2 levels (Fig. 1B). The magnitude of 
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increase in T2D was independent of BMI as LCN2 serum levels were elevated among all BMI groups of T2D 

(Fig. 1C). A decrease in HbA1c with increasing LCN2 levels was previously shown in T2D men of similar 

age8. 

Therefore, while the increased LCN2 levels are indicative of the onset of insulin resistance in the pre-

diabetic state they are indicative of a better metabolic regulation in the presence of insulin resistance in 

T2D.  This biphasic opposite association of serum LCN2 levels with disease severity in the two stages of 

the disease possibly reflects its inability to predict diabetes onset and its unlikely involvement as a 

causative factor in disease progression. On the contrary, and in light of our previous observations of a 

beneficial role for LCN2 in obesity and glucose metabolism in mice, the increase in LCN2 levels with the 

onset of insulin resistance most probably reflects a compensatory protective response for LCN2 increasing 

as glucose metabolism deteriorates to subsequently improve b-cell function and decrease hyperglycemia.  

Serum LCN2 levels are increased in mouse models of obesity  

To better understand the role LCN2 and the impact of modulating circulating LCN2 levels in the 

pathophysiology of diabetes we took advantage of genetic and diet-induced mouse models of obesity and 

diabetes. Our previous observations in diabetic and obese pre-diabetic subjects prompted us to examine 

whether LCN2 serum levels are elevated in obese or diabetic mouse models including the leptin-receptor 

deficient, leptin-deficient, MC4R-deficient and high-fat-diet-fed mice.  Circulating LCN2 levels are 

increased in leptin-deficient (Leprdb/db) mice (Fig. 2A), leptin deficient (Leprob/ob) mice (Fig. 2B) and 16-week 

old obese insulin resistant Mc4r-/- mice (Fig.2C), as compared to wild-type controls. Placing wild-type 

mice on a 60% high-fat-diet (HFD) for 16-weeks results in a 25% increase in serum LCN2 compared to 

littermate controls on regular-chow-diet (RCD) (Fig. 2D). The increase in circulating LCN2 levels was 

evident as early as five weeks of age in Leprdb/db mice (Fig. 2E) whereas circulating LCN2 levels remained 

normal in 2-month-old MC4R-/- mice but started increasing at three months of age (Fig. 2F). While being 
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fed an ad libitum HFD, LCN2 levels started to increase at four weeks and became significantly different at 

ten weeks compared to mice on RCD (Fig. 2G). The observed difference in kinetics of LCN2 levels likely 

coincides with the differential onset of insulin resistance in each mouse model. These results recapitulate 

our findings in prediabetic subjects showing an increase in LCN2 serum levels in response to the 

development of impaired glucose metabolism.  

The increase in circulating LCN2 levels, thus far, has been difficult to attribute to changes of transcriptional 

activity. Significant increases of LCN2 expression are seen in tissues when compared to their baseline 

which express low levels of LCN2. However, their total input is exceedingly small when compared to bone 

(Fig 2 H-M). Forthcoming analysis will be targeted to increasing sample size and evaluating protein content 

in each tissue, serum, and whole blood to evaluate the role of secretory events. 

The correlational observations made in obese and diabetic mouse models cannot resolve whether 

elevation of circulating LCN2 is a compensatory or driving response as insulin resistance and adiposity 

increase. To examine the specific effect of increased osteoblast and circulating LCN2 level in a genetic 

mouse model, transgenic mice overexpressing LCN2 in osteoblasts (Col1a1-Lcn2Tg) were generated (Suppl 

Fig 3A).  Transgenic Col1a1-Lcn2Tg mice display a 50% increase in systemic LCN2 levels as compared to 

wild type littermates (Fig. 3A) resulting in a 12.5% reduction in food intake, total fat mass and body weight, 

lower fed and fasting blood glucose levels, improved insulin sensitivity and increased energy expenditure 

(Fig3. B-J). The effect of increased LCN2 levels on glucose and energy metabolism agrees with our previous 

observations in wild-type mice treated with intermittent injections of recombinant LCN28. The 

improvement in metabolic parameters in the transgenic mice remained until at least six months of age, 

the latest time point these mice were monitored, suggesting that sustained elevated LCN2 levels, do not 

lead to obesity and insulin resistance. 
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LCN2 silencing worsens hyperphagia, glucose intolerance and LCN2 silencing worsens 

hyperphagia, glucose intolerance 

Elevating LCN2 via genetic (Col1a1-Lcn2Tg) and pharmacological means, as previously seen by treatment 

of rLCN to WT and Leprdb/db, is non-pathogenic and provides beneficial effects on metabolic function by 

decreasing food intake and improving beta-cell function. Therefore, we aimed to lower LCN2 levels in 

Leprdb/db where circulating LCN2 levels are elevated and assess whether this increase is driving the increase 

in adiposity and hyperglycemia, or is a compensatory, protective mechanism against weight gain, 

hyperglycemia, β-cell failure, and glucose intolerance. For this purpose, Lcn2 expression was silenced in 

Leprdb/db mice by systemic delivery of LCN2 siRNA every two days for 30 days by subcutaneous injections. 

This regime decreased circulating LCN2 levels by 50% (Fig. 4A), normalizing it to those of wild-type mice. 

A decrease in Lcn2 expression was observed in bone (30%), liver (50%) and adipose tissue (60%) (Fig. 4B).   

Leprdb/db mice given siRNA for LCN2 subcutaneously displayed worsened metabolic health. Food intake 

increased by 24% which correlates with a 50% increase in body weight and a corresponding 44% increase 

in gonadal fat pad weight (Fig. 4 C-E). In agreement with the hyperphagia, expression of anorexigenic 

downstream targets of the melanocortin 4 receptor (MC4R) pathway genes like Trh, Crh, Sim1 and BDNF 

was decreased in the hypothalamus of Lcn2 silenced Leprdb/db mice following (Fig 4. F). Fed and fasting 

blood glucose levels increased by 50% while insulin levels decreased (Fig. 4G-I). Also, silencing Lcn2 further 

impaired glucose stimulated insulin secretion (Fig. 4J).  

We have previously observed a direct effect of LCN2 treatment on islet size and function in vivo and in 

vitro8. To better understand the mechanism by which glucose metabolism becomes further compromised 

in diabetic mice following LCN2 silencing, pancreas histology was performed.  Islet number, size and mass 

are all reduced following reduction in LCN2 in Leprdb/db mice compared to controls (Fig. 4K).  

Similarly, using a second model of decreased LCN2 levels, the Lcn2osb-/- mice which have 68% less 
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circulating LCN2 levels, on HFD, resulted in further worsened body weight gain, fat pad mass, glucose 

levels, glucose intolerance and insulin resistance as compared to wild-type littermate controls (Fig 5A-D). 

The human and mouse data reported here, together with our previous genetic and pharmacological 

manipulations of LCN2, support a protective role for increased levels of endogenous LCN2 to counteract 

the adverse effects of hyperphagia and hyperglycemia on obesity and insulin resistance.  

LCN2 promotes adaptive β-cell proliferation and function in mouse models of diabetes and 

obesity.  

Serum LCN2 levels are positively associated with insulin levels and β-cell function in obese, pre-diabetic 

patients and in mouse models of obesity. In addition to limiting appetite, LCN2 may function to improve 

glucose handling by increasing β-cell mass and function. Indeed, our previous observations showed that 

LCN2 acts directly on mouse pancreatic islets to increase insulin secretion, and promote β-cell 

proliferation8. To test this hypothesis, we examined whether LCN2 acts as a growth factor to increase 

mass and functionality of β-cells as a compensatory mechanism of hyperglycemia. First, we evaluated a 

model of extreme hyperglycemia caused by pancreatic β-cell failure. Mice were injected with a single high 

dose of streptozotocin (STZ) to induce β -cell death. LCN2 was administered eight days after STZ injection. 

At this time point, STZ induced a 75% loss in β -cells resulting in blood glucose levels to rise above 250 

ng/ml (Fig. 6A-E). The dose of LCN2 administered was the same to the one that improves glucose 

metabolism and insulin sensitivity in healthy, wild type mice8. Treatment with rLCN2 increased β -cell area, 

islet number and β-cell mass while lowered fed and fasted glucose by 50% (Fig. 6A-E). Glucose tolerance 

improved with rLCN2 treatment. There was a 3-fold increase in serum insulin levels which could explain 

the improved glucose tolerance in rLCN2-treated diabetic mice (Fig. 6F, G). In spite of the massive 

destruction of β-cells, this dose of LCN2 prevented STZ-induced lethality (Fig. 6H). All mice treated with 

LCN2 survived through the two months of treatment whereas only 20% of mice given vehicle were alive.  
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Subsequently, we examined whether LCN2 is necessary for β-cell adaption to higher metabolic load. We 

used a short-term physiological intervention model, where mice are placed on a high-fat-diet for seven 

days. This model has previously been shown to induce b-cell proliferation before noticeable changes in 

insulin resistance and can be used to identify early drivers of b-cell proliferation39. β-cells and control mice 

were placed on a regular-chow-diet (RCD) or a high-fat-diet (HFD, consisting of 60% kcal from fat) for 

seven days. After the seventh day mice were euthanized and pancreata were processed for histological 

analysis. Body weight and glucose increased comparably in both WT and Lcn2-/- (Fig. 7A, B). However, 

whereas insulin significantly increased 2-fold in the WT mice, the Lcn2-/- failed to increase insulin 

production to meet increased metabolic demands (Fig. 7C). The Lcn2-/- have less of the smallest islets 

indicating a potential lack of ability for hyperplasia. Subsequently, after seven days of HFD, a group of 

mice were fasted overnight and a glucose-tolerance-test was performed which Lcn2-/- have worsened 

glucose tolerance. These results indicate that LCN2 is required to mount the early protective response of 

β-cells proliferation to suppress hyperglycemia in mice fed HFD.  
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Discussion 

LCN2 is secreted by osteoblasts to suppress appetite and improve glucose metabolism in lean and obese 

mice. Herein, we show that obese mice have increased circulating levels of LCN2 to protect against 

hyperglycemia and metabolic deregulation by maintaining β-cell function. From our studies in obese, pre-

diabetic and diabetic patients we observe a positive correlation between serum LCN2 levels with HOMA-

B and insulin levels but also with HOMA-IR and BMI.  

The increase in LCN2 is in agreement with the elevated circulating LCN2 levels that have been reported in 

obese and insulin resistant states in mice and humans. The clinical9-12 studies are cross-sectional thus 

showing causality is hard and difficult to make a confident conclusion. Several indications suggest that, at 

least at the early stages of the disease, LCN2 up-regulation may be a consequence of hyperglycemia and 

a protective mechanism against inflammation-induced insulin resistance and hyperglycemia.  Indeed, 

circulating LCN2 levels are not associated with insulin resistance in non-diabetic, healthy men and women 

in our studies or in reported observations12 but increase in T2D and are inversely correlated with body 

weight and glycated hemoglobin within long-term diabetic patients23 possibly reflecting an exhaustion of 

LCN2 response, while disease remains. LCN2 levels in T2D are positively associated with the indexes of 

insulin secretion and insulin resistance but negatively associated with fasting plasma glucose suggesting 

that increased LCN2 levels may contribute to enhance insulin secretion in diabetes and ameliorate 

hyperglycemia22.  

The increase in serum LCN2 levels with increasing adiposity follows a pattern similar to that of the 

anorexigenic adipokine leptin; where the serum concentration increase is associated with the 

development of leptin resistance40. Inflammation has been proposed as a potential unifying mechanism 

behind the pathogenesis of obesity and insulin resistance. Nevertheless, given that LCN2 is up-regulated 

by pro- and anti-inflammatory cytokines and a positive correlation between LCN2 levels and C-reactive 
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protein (CRP) concentrations in obese humans has been shown13-15, the underlying chronic low-grade 

inflammation in obesity may be the trigger for LCN2 upregulation.  

This study and the work of others in mouse models support the notion that the positive correlation of 

LCN2 with adiposity, insulin resistance, and hyperglycemia observed in humans in a beneficial 

compensatory response to combat hyperglycemia by improving islet function.  LCN2 serum levels are 

elevated in mouse models of obesity. Silencing Lcn2 expression in leptin receptor-deficient mice deceased 

circulating LCN2 levels and lead to worsening of their metabolic phenotype by increasing hyperphagia, 

insulin resistance and glucose intolerance. Similar to our finding’s, others have shown that Lcn2 expression 

is upregulated in the obese state to counteract and resolve increases in diet-induced inflammation due to 

increased adiposity13-15. Also, because exogenous LCN2 suppresses appetite and improves glucose 

metabolism and energy expenditure in obese Leprdb/db mice, it's likely LCN2 plays a protective role in the 

development of obesity and insulin resistance.  

Our observations showing that osteoblast-derived LCN2 exerts a beneficial influence on energy 

metabolism are in agreement with several studies in mice lacking Lcn2 in all cells. These studies showed 

that LCN2 promotes insulin sensitivity and glucose homeostasis by various mechanisms such as promoting 

adaptive thermogenesis and suppressing hepatic gluconeogenesis; decreasing gonadal fat and body 

weight, improving insulin sensitivity; suppressing a pro-atherogenic metabolic profile; and, by activating 

brown adipose tissue and fatty acid oxidation thus promoting oxidative metabolism9-12. 

Interestingly, improved fatty acid oxidation has also been reported in normal-weight women whom LCN2 

serum levels correlate with energy expenditure measured after a high-fat meal9. In contrast, one study 

reported that Lcn2 deficiency protects mice from developing age- and obesity-induced insulin 

resistance41; whereas a second study reported small effects of LCN2 in glucose intolerance and lack of an 

effect in age- or obesity-induced insulin resistance42. These studies were performed using mice in which 
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Lcn2 has been inactivated by deletion of either exons 1 to 543 or exons 2 to 544. 

In contrast, we inactivated Lcn2 by deletion of exons 3-6. It is possible that deletion of different exons of 

Lcn2 accounts for differences in the potency of the metabolic phenotype developed. However, the effects 

of exogenous LCN2 support the conclusion drawn from our loss-of-function experiments.  Moreover, 

recent studies in humans have noted that circulating LCN2 levels are decreased in type 2 diabetic 

patients23 suggesting that the favorable effects of LCN2 in energy metabolism may be conserved in 

humans. 

In addition to the previously well-characterized anorexigenic effects of osteoblast-secreted LCN28, we 

show here a distinct beneficial role of LCN2 on beta cell function. Data from obese pre-diabetic and 

diabetic patients and mouse models of beta cell failure due to toxicity or high-fat-diet support this initial 

hypothesis. These results are complemented by our previous observations that treatment lean and obese 

Leprdb/db mice, with exogenous LCN2, increased b-cell proliferation, b-cell mass, and blood insulin levels 

and that these effects result from direct actions of LCN2 on mouse pancreatic islets inducing beta cell 

proliferation and insulin secretion8. 
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Figures 

Figure 1: LCN2 increases with changes in BMI and diabetes status.  

 

 

(a-c) Serum LCN2 of female subjects of varying BMI and diabetes status. Serum LCN2 levels in  (a) lean 

healthy (n=11)  and lean T2D (n=54) females (b) female subjects with NGT segregated by BMI, lean (n=11), 

overweight (n=14), Obese I (n=8), Obese II (n=10) (c) female subjects with T2D segregated by BMI, lean 

(n=10), overweight (n=11), Obese I (n=15), Obese II (n=14). Data are mean ± s.e.m.  *P < 0.05 (ANOVA) 
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Figure 2: LCN2 serum levels increase in mouse models of obesity.   
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(a–g), Analysis of serum levels of LCN2 in mouse models of obesity (a) wild-type (n=12), Leprd/+(n=6), 

Leprdb/db(n=9), (b) wild-type (n=4), Leprob/+(n=3), Leprob/ob(n=3), (c) Mc4R+/+(n=5) and Mc4R-/- (n=9), (d) 

regular-chow diet (RD) (n=XX), high-fat diet (HFD) (n=X), (e) Leprdb/db (n=5), (f) Mc4R+/+(n=5) and Mc4R-/- 

(n=9), (g) regular-chow diet (RD) (n=8), high-fat diet (HFD) (n=6), (h-m) mRNA expression analysis of Lcn2 

in mouse models of obesity (h-i)  wild-type (n=3-9), Leprd/+(n=7-10), Leprdb/db(n=4-9) of bone, liver, gonadal 

white adipose tissue (gWAT), subcutaneous white adipose tissue (sqWAT), white blood cells (WBC), brown 

adipose tissue (BAT), intestine, kidney, muscle, spleen, (j-k)  wild-type (n=4), Leprob/+(n=3), Leprob/ob(n=3) 

of bone, liver gWAT, sqWAT, WBC, BAT, intestine, kidney, muscle (l-m) regular-chow diet (RD) (n=8), high-

fat diet (HFD) (n=6) of bone, gWAT, liver. Data are mean ± s.e.m. *P < 0.05 (Student’s t-test). 
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Figure 3: Transgenic mice expressing increased  Lcn2 in osteoblasts have lower body weight 
and improved glucose metabolism  

 

 

 

(a-j) analysis of metabolic phenotype of wild-type and Col1α1-Lcn2Tg mice (a) serum levels of LCN2 (b) 

food intake (c) fat mass as percent of BW (d) body weight (e) fed glucose (f) fasting glucose (g) volume of 

oxygen consumption (h) volume of CO2 production (i) heat production (j) insulin tolerance test. Data are 

mean ± s.e.m. *P < 0.05 (Student’s t-test). 
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Figure 4: LCN2 silencing worsens hyperphagia and glucose intolerance and in obese mice 
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(a-k) analysis of metabolic phenotype of 12-week old male Leprdb/db treated with si-scrambled (si-scr)(n=4) 

or si-LCN2 (n=5) for 30 days (a) serum levels of LCN2 (b) relative Lcn2 expression levels (c) food intake (d) 

body weight following treatment (e) fat pad weight (f) expression of Mc4r targets, Trh, Crh, Sim1 and Bdnf 

(g) fed glucose (h) fasting glucose (i) fed insulin (j) glucose-stimulated insulin secretion (k) Pancreas insulin 

staining and islet histomorphometry.  Data are mean ± s.e.m. *P < 0.05 (Student’s t-test). 
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Figure 5: Lcn2 deficiency exacerbates diet-induced obesity 

 

(a-d) analysis of metabolic phenotype of 22-week old male Lcn2 fl/fl (n=8) and Lcn2osb-/- (n=8) mice fed 

HFD for 14 weeks (a) body weight (b) fat mass (c) glucose-tolerance test (d) insulin tolerance test.  Data 

are mean ± s.e.m. *P < 0.05 (Student’s t-test). 
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Figure 6: LCN2 promotes β-cell proliferation and function following STZ treatment 

 

 

(a-h) analysis of β-cell function of 9-week old male WT mice given veh or STZ and treated with vehicle 

(n=8) or rLCN2 (n=8) (a) β-cell area (b) islet number (c) β-cell mass (d) fasting glucose (e) fed glucose (f) 

glucose tolerance test (g) serum insulin (h) Kaplan-Meier survival curve.  Data are mean ± s.e.m. *P < 0.05 

(Student’s t-test).  
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Figure 7: LCN2 is necessary for compensatory insulin response after one week high-fat diet 

 

(a-e) analysis of insulin response following one-week HFD in 12-week female mice WT (n=5) and total-

body Lcn2 knock-out mice (TKO) (n=5) (a) body weight (b) glucose  (c) insulin (d) Islet size (e) glucose 

tolerance test.  Data are mean ± s.e.m. *P < 0.05 (Student’s t-test).  
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Tables 

Table 1: Baseline characteristics of the prediabetic women population 

Table 1: Baseline characteristics of the prediabetic women population 

Parameters N=88 

Age (yrs) 56.2 ± 10.8 

BMI (Kg/m²) 32.2 ± 8.3 

FINRISK score 15.8 ± 4.3 

Waist circumference (cm) 97.4 ± 18.8 

Blood glucose (mmol/L) 6.32 ± 0,54  

HbA1C (%) 6.0 ± 0.4 

Insulin (XX) 15.6 ± 9.3 

Lipocalin 2 (ng/mL) 81.9 ± 29.4 

Adiponectin (XX) 4.85 ± 2.88 

HOMA-R 4.43 ± 2.86 

HOMA-B 111.7 ± 63.4 
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Table 2: Pearson correlation coefficients between Lipocalin 2 and insulin resistance 
parameters 

Table 2: Pearson correlation coefficients between Lipocalin 2 and insulin resistance parameters  

Parameters r (p) 

BMI (kg/ m2) 0.30* 

Waist circumference (cm)  0.29* 

Insulin  0.39* 

HOMA-B 0.39* 

HOMA-IR 0.37* 

Adiponectin   -0.29* 

Blood glucose (mmol/L) 0.03 

All variables were log-transformed 

* p<0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

Table 3 : Strengthenning of the correlation coefficients between Lipocalin 2 and BMI, waist 
circumference and HOMA-IR according to BMI cut-off 

Table 3 : Strengthenning of the correlation coefficients between Lipocalin 2 and BMI, waist 
circumference and HOMA-IR according to BMI cut-off  

  BMI Waist circumference HOMA-IR 

Whole population (n=88) 0.30** 0.29* 0.37** 

BMI > 30 Kg/m² (n=39) 0.49** 0.47** 0.41* 

BMI > 35 Kg/m² (n=25) 0.61** 0.52* 0.51* 

All variables were log-transformed 

*p≤0.01    **p<0.005 

Odd-ratio risk of high lipocalin group = 2.81 [1.46-5.40] ; p=0.002 
Odd-ratio risk of high lipocalin group = 2.85 [1.32-6.16] ; p=0.008 - adjusted on BMI 
Odd-ratio risk of high lipocalin group = 2.44 [1.16-5.14] ; p=0.02 - adjusted on waist circumference 
Odd-ratio risk of high lipocalin group = 2.62 [1.20-5.73] ; p=0.02 - adjusted on BMI and waist 
circumference (= overadjusted) 
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Table 4: Diabetes during the 5-year follow-up 

Table 4: Diabetes during the 5-year follow-up 
 n Mean (SD) Median [Q1-Q3] p (Wilcoxon) 

CJP + 33 82.7 (27.9) 76.4[62.6-94.4]   

CJP - 55 81.5 (30.5) 76.0[62.4-100.6] 0.9 

CJP1 + 30 83.4 (29.1)  76.7[62.4-101.2] 

CJP1 - 58 81.2 (29.8) 76.2[64.0-100.4] 0.87 

CJP3 + 20 75.3 (22.6)   69.9[62.2-84.8] 

CJP3 - 68 83.9 (31.0) 77.6[63.3-101.6] 0.25 

CJP =1 Fast blood glucose ≥ 1.26 g/l OR 1 HGPO (blood glucose  2h00 ≥2g/l) OR initiation of an oral 
antidiabetic treatment, and end of follow-up if bariatric surgery 

CJP1 = 1 Fast blood glucose ≥ 1.26 g/l, 
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Table 5. Characteristics of the T2D and non-T2D study population 

Table 5. Characteristics of the T2D and non-T2D study population 

 Non-T2D (n=43) T2D (n=54) 

Parameters 
Lean 
 (n=11) 

Overweight 
 (n=14) 

Obese 
 (n=18) 

Lean 
 (n=10) 

Overweight 
 (n=11) 

Obese 
 (n=33) 

Age (yrs) 61.63±2.42 58.64±1.80  61.38±1.54  68.00±2.77  65.36±1.82  54.81±2.45  

BW (Kg) 59.18±1.90 69.48±1.86 86.88±2.26 52.90±1.72 68.03±1.93 92.41±2.40 

BMI (Kg/m2) 22.87±0.64  27.07±0.33  35.53±0.79  21.55±0.59  27.23±0.38  36.30±0.82  

HgbA1c (%) 5.68±0.07 5.65±0.08 5.90±0.08 7.35±0.26 8.31±0.64 7.90±0.35 

Glucose 
(mg/dl) 

87.54±2.12 88.85±1.84 91.72±2.46 118.90±13.20 167±23.79 160.81±15.60 

Lcn2 (ng/ml) 58.58±7.61  85.84±7.09  79.88±3.83  82.88±8.84  89.21±12.09  87.97±7.04  
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Conclusion 

Bone can act as an endocrine organ to regulate whole-body energy metabolism through the osteoblast-

specific protein, osteocalcin. The question of whether additional osteoblast-derived hormones exist was 

addressed through genetic manipulation of osteoblast number. Mice with half of their osteoblasts ablated 

have a host of metabolic abnormalities including increased appetite. Fifty percent fewer osteoblasts led 

to a significant decrease in osteocalcin levels.  Normalizing osteocalcin levels restored certain aspects of 

their metabolism, but the effect on food intake persisted. These series of experiments revealed 

osteocalcin-independent hormones might exist and identified appetite as another metabolic function 

regulated by osteoblasts49. 

The identification of the hormone responsible for this novel function was achieved by performing a 

microarray on primary osteoblasts from the osteoblast-specific FOXO1 knockout mouse51. FOXO1 is a 

transcription factor regulating osteoblast function. Its effects on energy metabolism are only in part due 

to its ability to monitor OCN activity; raising the possibility that additional hormones involved in energy 

metabolism may be targets of FoxO1. A microarray was performed comparing the gene expression profiles 

of wild-type and Foxo1 deficient primary osteoblasts. The experiment revealed the gene encoding 

Lipocalin-2 (LCN2) to be increased in primary osteoblasts of FoxO1-/- mice. Furthermore, the expression 

in bone and serum level was confirmed to be raised in the FoxO1osb-/- mouse54. 

LCN2 is a secreted glycoprotein recognized for its role in innate immunity66  and its involvement in 

metabolism as an adipokine82. However, expression profiling in wild-type mice revealed bone to be the 

predominant source of LCN2 under non-pathological conditions. Lcn2 is expressed at least 10-fold higher 

in bone than in fat or any other tissue. This observation led to the generation of mice lacking Lcn2 

specifically in osteoblasts (Lcn2osb-/- mice). Analysis of these mutant mice showed that inactivation of Lcn2 
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in osteoblasts caused a 67% reduction in serum levels of LCN2 and increased food intake by 16% creating 

an increase in adiposity and body weight.  

Furthermore, circulating insulin levels, glucose tolerance, and insulin sensitivity are all lower in mutant 

mice. Islet number and size, β-cell mass and proliferation, and insulin secretion were all decreased in 

Lcn2osb-/- mice. Analysis of the time course of changes in food intake, glucose, and body weight revealed 

that changes in food intake preceded changes in glucose or body weight. Interestingly, pair-feeding to 

normalize food intake in the Lcn2osb-/- mice restored body weight, fat mass, and insulin sensitivity but did 

not rescue the decrease in serum insulin levels or insulin secretion following a glucose load. As a result, 

glucose intolerance persisted indicating LCN2 might have a direct effect on insulin production and 

secretion. Treating primary b-cells in culture with LCN2 revealed an ability to favor β-cell proliferation and 

insulin secretion.  

The canonical role of LCN2 as an acute phase protein, its ability to regulate food intake chronically and 

directly affect insulin secretion prompted the study of LCN2 in an acute feeding setting. One to three 

hours following refeeding, circulating LCN2 increase threefold corresponding to suppression of food 

intake at this time. The increase seems to contribute to postprandial satiety. Lcn2-null mice eat more than 

wild-type mice after refeeding and restoration of LCN2 via a single intraperitoneal injection of rLCN2 

suppresses postprandial hyperphagia to wild-type levels in Lcn2-/-.  

LCN2 crosses the blood-brain-barrier, accumulates in the hypothalamus, activates neurons in the 

paraventricular nucleus of the hypothalamus and binds to the melanocortin-4-receptor (MC4R) in the 

paraventricular nucleus and ventromedial neurons of the hypothalamus. To confirm that LCN2 acts 

centrally, an intracerebroventricular pump was implanted to release LCN2 which resulted in reduced food 

intake and body weight.  



122 
 

A series of molecular and biochemical studies showed the LCN2 activates the MC4R pathway. LCN2 

treatment to hypothalamic cells induced cAMP production and induced MC4R target genes through direct 

binding to MC4R with an affinity similar to that of its known ligand, alpha-melanocyte stimulating 

hormone (aMSH). Accordingly, LCN2 cannot accumulate or activate the PVN neurons in the hypothalamus 

of MC4R-depleted mice. In addition, MC4R-knockout mice do not benefit from the anorexigenic effects of 

LCN2 treatment. These observations establish a central role for MC4R in mediating the anorexigenic 

response of LCN2.  

The two previously reported receptors, 24p3R, and megalin do not seem to play a role in this response. 

Silencing 24p3R in hypothalamic cells showed no effect on the anorexia-promoting pathway of LCN2 and 

megalin is not expressed centrally.  24p3R is expressed in the pancreas, in the liver, but not in adipose 

tissue. By acting peripherally on these tissues LCN2 can affect aspects of energy metabolism, especially 

because LCN2 plays a primary role in insulin secretion. In the future, it would be interesting to evaluate 

how known mutant forms of endogenous LCN2 would affect food intake and glucose metabolism 112,113. 

 Previous studies using different mouse models of germline deletion of Lcn2 have shown differential roles 

of LCN2 on metabolic health. Studies have reported a beneficial role for LCN2. It is protective in diet-

induced obesity, fatty liver disease, atherogenic dyslipidemia, and insulin resistance, can suppress hepatic 

gluconeogenesis and promotes adaptive thermogenesis through activation of brown adipose tissues and 

FA oxidation106,114–116.  In contrast, one study has reported a minimal effect of Lcn2 deficiency in glucose 

homeostasis with no impact on body weight85 , whereas another showed protection from aging and 

obesity-induced insulin resistance86. Differences in targeting strategy and mainly the retention of a PGK-

neo cassette in the latter studies, which shown to disrupt the expression of other genes located near the 

intended target, may account for differences in the phenotypes development.  
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Nevertheless, chronic administration of exogenous LCN2 in lean and obese mice decrease food intake, fat 

mass, and body weight gain, and improve glucose homeostasis and energy expenditure; providing further 

evidence that LCN2 plays a beneficial role in regulating energy metabolism54. Indeed, it would be helpful 

for the future study of LCN2 to conduct side-by-side experiments of available mouse models. A majority 

of studies using total-knock-out LCN2 mice have used mice initially generated by Flo et al., 2004 or Berger 

et al., 2006. In addition, both the Kousteni lab and Barasch lab have made floxed LCN2 mice for conditional 

cell ablation experiment which can be crossed with constitutive active CRE drivers like EIIa to create global 

knock-out mice. Conducting a battery of experiments in a controlled environment would clear up 

controversy and educate us on LCN2 genetics.   

In agreement with Mosialou et al., a recent study showed that LCN2 deficient mice display hyperphagia, 

increased body weight and fat mass, hyperinsulinemia, polyuria, glycosuria, and fasted hypoglycemia 

compared to wild-type mice111. Moreover, increased LCN2 levels upon transgenic reconstitution of the 

estrogen-deactivating enzyme in adipose tissues of obese leptin-deficient mice, ob/ob mice contribute to 

reduced local and systemic inflammation, enhanced insulin sensitivity in peripheral tissues and improved 

overall diabetic phenotype117.  

Feeding experiments in mouse and human subjects have also observed the postprandial increase of 

LCN2106,118.  Using a multiplexed screening approach to investigate metabolism-related changes in 

cytokines found LCN2 to be elevated after feeding compared to fasted mice118. Interestingly, LCN2 has 

also been reported to be increased in the fasted state119. The use of a fed-control group would have 

benefited the Peterson group. In humans, postprandial serum levels of LCN2 were significantly increased 

after various high-fat-meals. The largest increase was observed after a 40% saturated fat meal. This 

increase was accompanied by enhanced total energy expenditure, but only in normal-weight individuals. 

In obese subjects, a decrease in postprandial LCN2 concentrations occurred rather than an increase106.  
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Yet to be uncovered is the critical component in feeding involved in LCN2 upregulation and secretion. 

Induction of Lcn2 expression has been observed by a variety of stimuli such as glucose, insulin, fatty-acids 

like palmitate and oleate, micronutrients like vitamin-D, and both pro- and anti-inflammatory cytokines120. 

In 3T3-L1 adipocytes, glucose and insulin synergistically act in LCN2 upregulation and secretion. The 

secretion of LCN2 can be induced by both glucose and a non-hydrolyzable form of glucose, methyl-O-

glucose, but to a lesser degree, indicating a change in metabolic state is not entirely necessary119. In the 

kidney, ER stress drives proteinuria induced LCN2 production which is modulated through ATF4121. The 

mechanism by which LCN2 is secreted from various cell types may differ. How osteoblasts secrete LCN2 

remains to be elucidated.   

Furthermore, hyperinsulinemic induction by flowing glucose and insulin to maintain an increased level of 

insulin increases circulating LCN2 levels in humans107. Interestingly, the role of cytokines production and 

postprandial inflammation in humans have garnered attention122–127. The pathophysiology by which low-

grade-chronic-inflammation develops in the metabolic syndrome may be due to prolonged ineffective 

resolution of postprandial inflammation128–130.  

The role of LCN2 in acute and chronic stress paradigms remains to be resolved. This debate seems to be 

dependent on cell type and context. In the gut, LCN2 protects from inflammation associated with 

microbiota alterations131. Changes in intestinal inflammation, via interaction with bacteria, precede and 

correlate with obesity and insulin resistance132–134. How proteins like heme which can be found in our diet, 

especially in animal protein, cause bacterial changes and modulate LCN2 is another potential avenue of 

investigation.  

Another early site of metabolic inflammation is the brain83,135–139. There are diverse functional roles of 

LCN2 in the central nervous system (Jha et al., 2014). A recent publication found LCN2 to protect the brain 

during inflammatory conditions. An unbiased proteomic approach found LCN2 to be the most 
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substantially elevated cytokine in the CNS after peripheral LPS injection. The Lcn2-/- mice had exacerbated 

levels of pro-inflammatory cytokines and exhibited worse behavioral phenotypes indicating LCN2 serves 

as a protective factor.  We have also seen that LCN2 accumulates in the hypothalamus following refeeding 

and would be interesting to investigate the role LCN2 has on resolving inflammation postprandially 

centrally. 

Further supporting a beneficial over a detrimental homeostatic response of LCN2, its circulating levels 

increase in obesity and insulin resistance associated with hyperglycemia in humans, decreased in long-

term diabetes, and are inversely correlated with body weight and glycated hemoglobin in diabetic 

patients54,82,91,95,140,141. Up-regulation of Lcn2 in diabetics has also been reported but may be reflective of 

associated comorbidities such as kidney and cardiovascular disease142. Given that LCN2 is up-regulated in 

pro-inflammatory conditions to resolve inflammation in adipocytes and macrophages109,133, its 

upregulation during obesity may be a protective mechanism against inflammation-induced insulin 

resistance at the early stages of the disease.  

Therefore, while the increased LCN2 levels are indicative of metabolic deregulation during the onset of 

insulin resistance in the pre-diabetic state, they are indicative of better metabolic regulation in the 

presence of insulin resistance in T2D.  This biphasic, opposite association of serum LCN2 levels with 

disease severity in the two stages of the disease possible reflects its inability to predict diabetes onset and 

its unlikely involvement as a causative factor in disease progression. On the contrary, and in light of our 

previous observations the increase in LCN2 levels with the onset of insulin resistance reflects a 

compensatory protective response for LCN2. As glucose increases and metabolism deteriorates, LCN2 

works to improve b cell function and decrease hyperglycemia.   

By examining different models of obesity in mice, Leprdb/db , Leprob/ob , Mc4R-/- and DIO we were able to 

observe the kinetics of the increase in LCN2. The increase of LCN2 levels coincides with the differential 
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onset of insulin resistance in each mouse model recapitulating our findings in prediabetic subjects. 

Congenital elevation of Lcn2 in transgenic mice led to a decrease in food intake and improved metabolism 

but to a less profound degree as compared to LCN2 treatment in adult mice, possibly due to 

developmental adjustments. The improvement in metabolic parameters in the transgenic mice remained 

until at least six months of age, the latest time point these mice were monitored suggesting that sustained 

elevated LCN2 levels, do not lead to obesity and insulin resistance. 

To further examine what the effect of increased production of LCN2 in mouse models of obesity, we 

silenced Lcn2 in Leprdb/db mice, reducing LCN2 levels by 50% and returning them to levels observed in wild-

type mice. Lowering LCN2 had detrimental effects on metabolism. The silenced mice become more 

hyperphagic and had a greater increase in fat mass compared to Leprdb/db controls. This effect is in 

opposition to a study which concluded a detrimental role of LCN2 in the pathogenesis of obesity, 

previously described. The group generated Leprdb/db ;Lcn2-/- (DKO) mice which showed improvement in 

insulin tolerance compared to Leprdb/db controls86. The specific effect of leptin and leptin receptor 

inactivation on LCN2 levels need further characterization. We did not see any changes in leptin in the 

Lcn2osb-/- mice despite an increase in fat mass. Treatment with rLCN2 decreased leptin levels significantly 

and possibly to a disproportionate degree than would be observed due to decreases in fat mass. 

Previously, it has been shown that activating leptin receptor in RINm5F insulinoma cell line upregulated 

LCN2143.   

Indeed, our previous observations showed that LCN2 acts directly on mouse pancreatic islets to increase 

insulin secretion, and promote b-cell proliferation54. In addition to limiting appetite, LCN2 may also 

improve glucose handling in obesity by improving b-cell mass and function. This observation was shown 

to be true in two mouse models. A pharmacological model wherein β-cells are destroyed and treatment 

with LCN2 restored function of beta cells and a diet-induced-model where given HFD for one week 

produced proliferation of islets in wild-type mice but not in Lcn2-/- mice.  
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Whether LCN2 resistance occurs in obesity, whether LCN2 is induced by underlying inflammation to 

combat the deleterious effects of obesity, or whether there is even a change in the function of LCN2 under 

various pathophysiological conditions remains open and requires further research, as studies in humans 

are cross-sectional and causality is difficult to conclude 10. 
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