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ABSTRACT 

 

 

The Effects of Mathematical Game Play on the Cognitive and Affective  

Development of Pre-Secondary Students 

 

Patrick Galarza 

 

 Society has consistently sought means of improving  extant effective tools and designing 

new effective tools for educational purposes.  With the consistent progression of technology, 

mathematical games—especially mathematical educational video games—stand out as 

potentially powerful mediums for helping new mathematics learners make sense of formal 

mathematical ideas. The aim of this study was to understand the effects that the introduction and 

use of a specific mathematical video game had for the cognitive, affective, and content-retentive 

learning outcomes of eighth graders studying elementary algebra for the first time.  The three 

research questions guiding the study were the following: 1) How does integrating mathematical 

game play into a traditional eighth grade algebra curriculum impact students' cognitive learning 

outcomes in elementary algebra?; 2) How does integrating mathematical game play into a 

traditional eighth grade algebra curriculum impact students' affective outcomes about both 

mathematics in general and algebra specifically?; 3) How does integrating mathematical game 

play into a traditional eighth grade algebra curriculum impact students' content retention in 

elementary algebra? In order to realistically implement mathematical educational games in 

typical mathematics classrooms, a holistic understanding of such games’ effects must be 

understood through research addressing several aspects of students’ learning experiences.  

 This study utilized a mixed methodology,  drawing both quantitative and qualitative data 

from instruments administered to a class of eighth graders split into control and treatment 

groups.  Quantitative data primarily entailed a series of three short examinations that tested 



 

 

 

students on their algebraic equation-solving content knowledge. Some additional metrics from 

game play data were recorded and discussed as quantitative data by the principal researcher.  

Qualitative data primarily entailed two series of interviews—one in two parts and one in three 

parts—and one questionnaire.  Some additional observations of student interactions were also 

recorded and discussed as qualitative data by the principal researcher. Data on student cognition 

and student affect were collected at the beginning, middle, and end of the treatment. Data on 

student content retention were collected  following a one-month recess after the treatment. 

 This research suggests nine attributes that typified the mathematical game play 

experience found in this study: three attributes regarded student cognition, four attributes 

regarded student affect, and two attributes regarded student content retention.  Additionally, the 

principal researcher designed and discussed a framework for assessing the cognitive mappings 

formed by student game players between content featured in mathematical game play and 

content of formal mathematical ideas. In analyzing these mappings, the principal researcher 

highlighted types of interspatial cognitive connections that proved to be either fruitless or, in 

fact, detrimental to student game players, damaging proper development and/or understanding of 

formal mathematical ideas. The study’s results have implications for informing future 

considerations of educational game design and the practical implementation of educational 

games as pedagogical tools within classrooms.  
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Chapter 1: Study Introduction 

 

 To capitalize on the consistent progression of technology, mathematics educators in the 

past several decades have sought to take advantage of available classroom tools, particularly as 

ease-of-access has increased. Only in the mid-to-late 1980s did educational computer programs 

gain notoriety and acceptance from the academic community, although nowadays, computer usage 

in most schools and universities is commonplace (Lepper & Gurtner, 1989; Sheingold & Hadly, 

1990). With computer usage having become so widespread, educators have had opportunities to 

consider new ways of representing old pedagogical ideas by galvanizing them with novel 

technology and information in the hopes that more powerful mathematical learning tools will 

emerge for future use. Among these potentially powerful learning tools is the mathematical game 

(Bright, Harvey & Wheeler, 1985; Civil, 2002; Devlin, 2011; Plass, Homer, & Kinzer 2015). 

 Salen and Zimmerman's (2004) general definition of a game, which will be used in this 

study, is  “[a game is a] dynamic, interactive system in which players engage in an artificial conflict 

with a quantifiable outcome” (p. 80). We then define a mathematical game as a game such that all 

aspects of the game space—including but not limited to things such as the game’s rules, the game 

players’ strategies, and the game’s hypothetical outcomes—are explicitly connected to some kind 

of formal mathematics. In general, games can involve any number of human players and exist 

across any number of mediums (up to design and representation), and do not necessarily require 

the use of technology. Familiar examples of mathematical games include Chess, which relies on a 

lattice board configuration and point-to-point transitions, or Nim, which can be solved using binary 

digital sums under the “exclusive or” operation. 

 The argument for utilizing mathematical games for pedagogical purposes is multifaceted. 

One consideration is that games inherently evoke the concept of childhood and adolescent “play,” 
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which can be extremely useful for entertaining abstract ideas (Vygotsky, 1980). Appealing to 

situated learning theory, the environment and context in which this play exists allow learners 

meaningful interactions with mathematical concepts (Brown, Collins, & Duguid, 1988). Several 

studies have already been conducted showing that the use of games for the teaching and learning 

of mathematical ideas is viable (Ke, 2006; Kebritchi, 2008; McCue, 2011; van den Heuvel-

Panhuizen, Kolovou & Robitzsch. 2013; Wijers, Jonker & Drijvers, 2010). 

 However, many individuals still express concern and caution regarding the 

misappropriation of games as tools in education. Some researchers warn that games, viewed as an 

efficient educational resource, run the risk of being overly relied upon, thus limiting peer-to-peer 

and peer-to-instructor interaction, while others argue that games' true utility in helping students 

achieve conceptual mastery may be sidelined by developers and educators who are satisfied with 

building only procedural accuracy (Devlin, 2011; Kitchen & Berk, 2016). 

 In response to these concerns, it is important that educators investigate the effects that 

meaningful mathematical game play has on mathematics learners; rather than merely instilling 

procedural accuracy, mathematics games should help students strive further, in the hopes of 

achieving conceptual understanding and strategic competence, among other attributes (National 

Research Council, 2001). Achieving this level of meaningful mathematical game play can be 

challenging, as multiple social and psychological factors may impact the experience of the 

learner(s). Researchers have reported differences in cognitive and affective changes for students 

in both traditional mathematics courses and mathematics courses that include mathematical games, 

as students of varying gender, prior knowledge, and socioeconomic status can have extremely 

different experiences even when studying in the same course with the same curriculum  (Bryce & 

Rutter, 2003; de Jean, Upitis, Koch & Young, 1999; Feng, Spence, & Pratt, 2007; Fennema, 1978;  
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Jordan & Levine, 2009; Reyes & Stanic, 1988). 

 The limited extant literature is inconclusive on the matter of content retention (e.g. the 

ability to reproduce, explain, and comprehend mathematical ideas experienced earlier), sometimes 

arguing that games induce enhanced student retention because of their repetitive nature and other 

times stating that it is the dynamism of game play that provides students with memorable 

experiences that contribute to enhanced retention; competing perspectives must consider the 

variety of game attributes and qualities that create  unique game spaces, making generalizations 

challenging. Still other studies say that it is not universally true that retention is enhanced by the 

playing of mathematical games, but rather, that there is no significant difference in students' 

retention (Arici, 2008; Chow, Woodford, & Maes, 2011; Pivec, Dziabenko & Schinnerl, 2003; 

Ricci, Salas, & Cannon-Bowers, 1996).   

 Based on the aforementioned literature, it can be argued that the implementation of 

curricula including mathematical games requires further research to create a more conclusive 

picture of different learners' changing cognition and affects with respect to mathematics, as well 

as students' abilities to retain content encountered in both a traditional classroom format and a non-

traditional game-based format.   

Purpose for Study 

 This research explored the cognitive and affective developments of eighth grade algebra 

students as they utilized, alongside their traditional curriculum, a mathematical game—in 

particular, one played on a technological device—to augment their learning experiences within the 

classroom.  Additionally, students' abilities to retain content encountered in their main course of 

study and through the mathematical game were examined one month following the study's 

treatment phase. Students' gender  and prior mathematical knowledge were considered and 

examined in order to draw conclusions about various benefits different learners might bring to or 
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receive from a game-enhanced curriculum. 

 The following research questions guided the study: 

1. How does integrating mathematical game play into a traditional eighth grade algebra 

curriculum impact students' cognitive learning outcomes in elementary algebra? 

2. How does integrating mathematical game play into a traditional eighth grade algebra 

curriculum impact students' affective outcomes about both mathematics in general and 

algebra specifically? 

3. How does integrating mathematical game play into a traditional eighth grade algebra 

curriculum impact students' content retention in elementary algebra? 

Procedure for Study 

 The study took place over a four-month period separated into three phases: the 

intervention-phase, the break-phase, and the retention-phase. The intervention-phase was the two-

month period in which the bulk of the study was be conducted. The break-phase was the one-

month winter recess period following the intervention-phase in which students did not have 

mathematics courses due to time off from school; this was important because the pause in 

mathematics learning allowed the study to collect meaningful data relating to content retention. 

The retention-phase was a week long period following the break-phase in which the study collected 

data for content retention. 

 The mathematical game used in this study, Dragonbox Algebra 12+, is a single-player 

game played on a personal computing device. It saves player progress through the game and allows 

opportunities for revisiting and reassessing completed problems. 

 The study focused on an eighth-grade algebra class with 30 students taught by a single 

instructor. The class was divided into a control and treatment group. The control group participated 

in its usual learning of algebra content, while the treatment group spent some of its class time 
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participating in a game-based algebra-learning experience. During game play sessions, the 

researcher acted as an aide to the primary instructor to help guide game integration; this effectively 

meant that he maintained the game play equipment and supervised students during their game play 

sessions with minimal interaction otherwise. Further, students who participated in the study were 

selected for interviews, and completed a selection of examinations and questionnaires, as described 

later. 

 To address research question 1, both quantitative and qualitative data were collected. First, 

quantitative data were collected to measure student cognition via the “Algebra Game's Ability 

Tests (AGATE 1, AGATE 2),” a pair of similar tests that were designed to measure the cognitive 

mathematics abilities and skills that the study's game imparted to or reinforced for students.  The 

AGATE aligned with the standard algebra course curriculum and were verified as a set of content-

appropriate examinations by the algebra course instructor. To ensure content alignment and 

facilitate the verification process, the examination's construction drew on questions from 

examinations used in previous iterations of the standard course of study. The AGATE 1 was utilized 

as a pretest administered at the start of the intervention-phase while the AGATE 2 was utilized as 

a posttest administered at the end of the intervention-phase. The two examinations were 

administered to both student populations. The primary difference between the two examinations 

was that, while each exam’s questions covered identical content, numbers and variables were 

changed between the pretest and posttest examinations. This was a superficial change and did not 

meaningfully impact students' abilities to utilize algebraic knowledge. Results of the AGATE 1 

were used to establish a baseline for individual and classroom knowledge. Additionally, the 

AGATE 1 was used to establish and verify the comparability of the treatment and control groups. 

Results of the AGATE2 were analyzed using the statistical techniques of analysis of co-variance 
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(ANCOVA) and emphasized the correlation between aspects such as a student's learning balance 

(control group vs. game-enhanced group) or gender, and AGATE 2 performance. The data of the 

AGATE 1 and AGATE 2 were reviewed on both an individual-level (thus granting utility for some 

qualitative data collection) and a class-level. 

 Second, qualitative data were collected via on-site researcher-student interviews to help 

make sense of changes and developments in student cognition. Extended dialogue between the 

researcher and students of the game-based condition was required to make sense of and track the 

aforementioned changes and developments, so several interviews were conducted at the half-way 

point and end of the intervention-phase. Students were pseudorandomly selected from the game-

enhanced course to participate in both rounds of the cognition-focused interviews. The interview 

protocol sought to answer thematic questions such as “What's the connection between students' 

game play and students' corresponding mathematics output?,” “How are students using the 

game?,” and “How does game play influence students' approaches to mathematical (algebraic) 

tasks?” A sample question was “do you think that playing Dragonbox has changed the way you 

understand your regular Algebra course content, for better or worse? Why or why not?” 

Additionally, some interview questions were student-specific when drawing on data collected from 

the AGATE examinations, as mentioned earlier. Interviews were recorded and video data were 

replaced by transcriptions. Interview responses were axially coded, and emerging themes were 

paired with (or against) results from the quantitative data when applicable. Together, the qualitative 

and quantitative data were used to answer how student cognition was affected by game play. 

 To address research question 2, qualitative data were collected via on-site researcher-

student interviews to help interpret students' changes and developments in affects. This protocol 

differed from the one used for collecting data on students’ cognitive changes and did not have the 
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exact same set of participants. These interviews were conducted at the start, middle, and end of the 

intervention-phase of the study to show how student affects changed in the game-based condition. 

Students were chosen pseudorandomly from the game-enhanced course to participate in all rounds 

of the affect-focused interviews. The protocol for these interviews drew on ideas found in Tapia 

and Marsh's ATMI (2004), “Attitudes Towards Mathematics Inventory,” among other sources.  

Like the ATMI, this interview protocol encouraged students to describe the intensity of affects and 

relationships, but unlike the typical selections on a Likert scale, these intensities were justified and 

examined through researcher-student dialogue to gather evidence for questions such as “What's 

the connection between students' game play and affect with respect to mathematics?” Sample 

prompts provided to students included “I think it’s useful that I study mathematics in school?” or 

“I am often confused when doing mathematics.” Interviews were recorded and video data were 

replaced by transcriptions. Interview data were axially coded to find emerging themes. 

 To address research question 3, quantitative data to measure content retention were 

collected via the Algebra Game's Ability Tests: Retention Module (AGATE 3), an examination 

structured and designed identically to the aforementioned AGATE 1 and AGATE 2. The AGATE3 

was administered during the retention-phase of the study. It was administered to all students in 

both groups. Results of the AGATE3 were analyzed using ANCOVA, emphasizing the correlation 

between aspects such as a student's learning group (control classroom vs. game-enhanced 

classroom) or gender, and AGATE 3 performance.  

 To further address research question 3, qualitative data were collected via an open-ended 

questionnaire to help interpret what impacted students' content retention. The questionnaire was 

designed independently by the principal researcher and was administered only to students studying 

a game-enhanced curriculum. It was utilized following completion of the AGATE3 and sought to 
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answer questions such as “What aspects of mathematics learning do students find most 

memorable?” and “What aspects of game-based learning—if any—do students attribute to 

retention gains/detriments?” A sample question was “What content in your algebra course have 

you found most memorable? Why?” Questionnaire data were axially coded, and emerging themes 

were paired with (or against) results from the quantitative data when applicable. 

 Additional information about all instruments utilized is provided in Chapter 3. 
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Chapter 2: Literature Review 

 

Introduction 

 

Game-based learning, especially for mathematics study, has a history extending back to 

the times of ancient civilizations and a contemporary life in our modern era, finding special 

promise and excitement with the birth of new technologies, particularly thanks to digital media. 

In this literature review, I will examine the extant literature on the nature of mathematical game 

play and the general overview of mathematical game play’s effects on student learning, 

cognition, affect, and retention, and several controversies and critiques about the use of games 

for education.  

 

What is Play, What is Game Play, and Why Should We Care? 

 There is evidence of some form of game-playing in most societies across human history, 

and with good reason: play is essential to the development and maintenance of the human 

psyche, whether the player recognizes it or not. Although we might trace our records on the 

nature of play back to the ancient Greeks and Romans (Fagan, 2017; Goldhill, 2017), the 

watershed treatises describing the benefits of play—particularly for adolescent development—

emerge in the mid-to-late 20th century by way of Lev Vygotsky and Jean Piaget.  

 In 1933, Vygotsky wrote on Play and its Role in the Mental Development of the Child, in 

which he attempted to characterize play before emphasizing its importance for the developing 

mind. Vygotsky wrote on play after discussing it in his 1930 text Mind in Society as a means by 

which a child’s zone of proximal development (sometimes referred to as ZPD) may expand or 

shift. For an individual, the zone of proximal development is described by Vygotsky as “[the 

difference between a child’s] actual developmental level as determined by independent problem 

solving and the level of [that child’s] potential development as determined through problem 
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solving under adult guidance or in collaboration with more capable peers” (Vygotsky, 1978, pp. 

85-86).  Notably, Vygotsky takes issue with characterizations of play as always yielding pleasure 

and being loosely structured. As counterexample to the former, Vygotsky might say that a player 

can reap no pleasure from play if some particularly important outcome was not achieved; as 

counterexample to the latter, he might suggest that a girl who plays as the mother of her doll 

subconsciously imposes upon herself the rule that “I will only do as I feel a mother would, and 

nothing else.” He argues that there is a redefining of characteristics of some real-world 

situation—during play, a new world is imagined. However, Vygotsky also comments on how 

play evolves as the player’s mind matures: “the development [from] an overt imaginary situation 

and covert rules to [a covert imaginary situation with overt rules] outlines the evolution of 

children’s play” (p. 94).  It is here that Vygotsky reveals his central theory of play: the 

individual’s concept and enactment of play serves as an evolving psychological device that 

transitions the player from preferences for ambiguous purpose bereft of structure towards 

preferences for meaningful purpose reliant on structure. Vygotsky comments that “creating an 

imaginary situation can be regarded as a means of developing abstract thought. The 

corresponding development of rules leads to actions on the basis of which the division between 

work and play becomes possible” (p.100). Vygotsky concludes that it is this new understanding 

of abstract thought that allows developing minds to attribute meaning and purpose to the objects 

in their surrounding worlds, marking powerful developmental growth.  

 In Play, Dreams, and Imitation in Childhood (1952), Piaget describes play as being “a 

modification, varying in degree, of the conditions of equilibrium between reality and the ego” (p. 

4). He draws primarily on the work of Groos, Hall, and Buytendijk while constructing a list of 
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criteria describing the characteristics of play. Piaget refers to his earlier theory of assimilation1 

and accommodation2, put forth in The Psychology of Intelligence (Piaget, 2005) to describe play, 

first, as having an “opposition between assimilation of objects to the child’s activity and 

accommodation of the child’s activity to objects” (p. 2). In this sense, play acts as a real-world 

parallel to the psychological balancing between assimilation and accommodation, since players 

choose how to play corresponding to their understanding of the objects with which they play, but 

must also abide by some hidden mandates of those objects which informs the way(s) play is 

conducted; the player is afforded opportunities for both real and imagined reconceptualizing. 

Piaget’s sense of play, much like Vygotsky’s, imagines a new world. Although Piaget goes on to 

discuss play as being spontaneous, pleasurable (contrary to Vygotsky), disorganized (also 

contrary to Vygotsky), and free of conflict, Piaget’s most salient point is his conclusion that play 

indicates a predominance of assimilation over accommodation in a developing mind. 

Corroborating Vygotsky’s findings, Piaget writes that it is by considering and reconsidering the 

real-world meanings of the things a player encounters that he or she achieves a heightened 

understanding of the role or roles those things play. A comparison of Vygotsky’s views and 

Piaget’s views on play is included in Figure 2.1.    

                                                 
1 “…’Assimilation’ may be used to describe the action of the organism on surrounding objects, in so far as this 
action depends on previous [behavior] involving the same or similar objects” (Piaget, 2005, p.7).  
2 “Conversely, the environment acts on the organism and…we can describe this converse action by the term 
‘accommodation’” (Piaget, 2005, p.7).  
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Figure 2.1: A comparison of Vygotsky and Piaget’s theories on play. 

 Regarding play as being psychologically beneficial established a baseline for further 

inquiry, and academics refined the general notion of play into specific types of play. For our 

purposes, we look at some definitions specifically surrounding “game play.”  

 As stated in Chapter 1, although there are many competing definitions for what a game is, 

this literature utilizes the one put forth by Salen and Zimmerman (2004) stating that a game is “a 

dynamic, interactive system in which [a player or several] players engage in an artificial conflict 

with a quantifiable outcome” (p. 80). This requires some definitional unpacking. Note first that 
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the game is portrayed as a system that a player may enter. By entering, a player is granted agency 

which manifests as interactivity with the system. Because of this interactivity, the system is put 

into a state of dynamic flux which allows it to change based on player actions. Presumably, these 

actions are set towards achieving an imagined goal: the resolution of some artificial conflict. 

Finally, there is some sort of quantifiable outcome recognizing the player’s impact on the system 

and clarifying whether and potentially how the artificial conflict was resolved.  

In preparing this definition, Salen and Zimmerman rigorously reviewed definitions of the 

term “game” put forth by other authors, as well as closely associated definitions, such as ones for 

“playing a game.” From this definition, we can make further refinements, such as talking about a 

“mathematical game,” which is defined by the author of this text as a game for which the entire 

framework of the game space is explicitly connected to some kind of formal mathematics; or 

perhaps more generally, an “educational game,” which Hogle (1996) defines as “a 

game …designed to be used as a cognitive tool” (p. 7). Note that there are distinctions inherent 

among playing a mathematical game to learn new content, playing a mathematical game to better 

understand content one is in the process of learning, and playing a mathematical game to practice 

already known content; mathematical games can be played for any of these reasons, and 

literature has shown that playing a mathematical game has varying effects depending on if the 

game is played in a pre-instructional, co-instructional, or post-instructional phase of learning 

(Bright, Harvey & Wheeler, 1985). We may also preliminarily describe a “game space” as the 

physical, digital, and/or imagined locations in which the game’s player(s) interact with the 

artificial conflict for the duration of the game. For example, in a game of basketball, the game 

space houses both the players’ physical interactions on the basketball court and the imagined 

thoughts generated by each player to navigate the game. Figure 2.2 shows a hierarchy of game 
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definitions. With all our working definitions in place, we can turn our attention to the greater 

body of literature on the pedagogical uses of educational games.  

 

Figure 2.2: Our hierarchy of game definitions 

 

The First Wave of Teaching and Learning with Mathematical Games: Research through 

the Late 1960s 

 Modern mathematical games research finds its catalysts—technological advancements 

and new theories of cognitive psychology—in the late 20th century. However, prior to this point, 

mathematical games research was still carried out, but with slightly variant research goals and a 

weaker foundation. This section and the following two provide a chronological analysis of the 

three epochs of research related to mathematical games as identified by the author.   

  Since the integration of digital learning technologies into most school and university 
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classrooms didn’t begin until the 1980s (Lepper & Gurtner, 1989; Sheingold & Hadley, 1989), 

the era here identified as the First Wave of game-based research in classrooms saw games 

represented or constructed via immobile physical utilities, thus complicating their 

implementation processes. Accordingly, among the little mathematical game-based research that 

exists up to 1970, the studies that were rigorously implemented were primarily concerned with 

student achievement and cognition, and took one of two approaches: they either masked extant 

drilling scenarios with a superficial conflict (e.g. timed equation solving, recognition games, 

etc.), or generated completely novel educational games whose full constructive processes and 

rules had to be included in the literature. For instance, early work done by both Hoover (1921) 

and Wheeler and Wheeler (1940) described flash card use for, respectively, playing an 

arithmetical drill game with third graders, and playing a bingo-esque numeral-recognition game 

with first graders. In contrast, Bastier’s (1969) report on several arithmetic and geometric game 

play experiences with students ages 10 and 11 is accompanied by several pages of diagrams, lists 

of materials, and game play instructions. This allows readers to construct the games so that the 

study’s results might be replicable and so that the games could be shared on a wider scale. 

Steiner and Kaufman (1969) write on a selection of their “operational systems games,” meant for 

teaching algebra at the elementary and secondary levels; they describe only a few basic games, 

stating that a compendium more fully delineating the games will be published separately by 

McGraw-Hill. It is important to note a prevalent trend that will be challenged later: in the 

majority of early mathematics game-based research, students only encounter formal 

mathematical ideas at what Steiner and Kaufman call a “pre-mathematical level” (p. 445); 

students usually did not directly engage formal mathematics content in these games, but they 

found related ideas that could facilitate the learning of select concepts during students’ later 
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formal coursework. It wasn’t necessarily the case that games directly engaging with formal 

mathematics content were impossible to construct, but it was challenging to construct such 

games while still making the game play experiences meaningful and distinct from the usual kind 

of formal mathematics study; for example, in the case of Hoover’s game, while students 

technically engaged with formal mathematical ideas, the game play was virtually 

indistinguishable from traditional drilling exercises. One notable counterexample showing a 

game that does meaningfully integrate mathematical thinking into a distinct game play 

experience arises in Layman Allen’s game series WFF ’N PROOF, which allowed players to toss 

sets of customized dice and compete to make mathematics statements based on the rolled 

characters from their selected game version: classic WFF ‘N PROOF for symbolic logic, ON-

SETS for set theory, or EQUATIONS for elementary arithmetic (Allen, Allen & Miller, 1966; 

Allen, Allen & Ross, 1970; Allen, Jackson, Ross & White, 1978).   

The Second Wave of Teaching and Learning with Mathematical Games: Research from the 

Early 1970s through the Late 1980s 

 The mid-20th century’s emergence of theories validating the importance of play 

galvanized what is here described as a Second Wave of game-based teaching and learning 

research that emphasized finding generalizable properties of useful games for mathematics 

learning and new methods for designing and sharing new games. This stands in contrast to the 

First Wave, which primarily aimed to adapt extant commercial games for more limited classroom 

utility.  

Keith Edwards and David DeVries were prominent researchers in this new wave and 

produced several early texts examining the questions “how should games be played in the 

classroom, and can they affect more than just achievement?” In Games and Teams: A Winning 

Combination (1972), Edwards, DeVries, and colleague John Snyder took Allen’s EQUATIONS 



 

17 

 

and implemented their “Teams-Games-Tournament” (TGT) system for four classes of seventh 

graders over nine weeks, treating two classes as non-game-playing control groups, and two 

classes as game-playing experimental groups. They concluded that “combining…EQUATIONS 

with team competition significantly increased students’ mathematics achievement over that of a 

traditionally taught class. The effect was observed for [game-specific skills] as well as more 

general arithmetic skills” (p. 20). Following this significant success for using mathematics games 

in the classroom to improve student cognition and achievement, Edwards and DeVries 

reimplemented their EQUATIONS/TGT system in further studies, this time not only revisiting 

student achievement in populations comparable to those of their initial study, but also analyzing 

multiple facets of student affect; they generally found that the game play improved student 

affect, specifically by encouraging peer-to-peer communication, lowering students’ perceived 

course difficulty, and increasing overall student satisfaction  (DeVries & Edwards, 1972;  

Edwards & DeVries, 1974; DeVries, Edwards & Slavin, 1978). Interestingly, Edwards and 

DeVries found that their TGT implementation did not produce significant changes to student 

achievement or affect in seventh grade social studies classes utilizing the commercially produced 

game Ameri-card (1974); the success of the EQUATIONS implementation, therefore, is mainly 

attributed to the notion that the game’s concepts are ever-relevant in a mathematics course 

(whereas Ameri-card tested several bits of factual trivia, like the names of US states and 

geographical regions). Contemporary studies found that combining TGT with other mathematics 

games could help student achievement at the seventh-grade level (Hulten, 1974), but not 

necessarily at the fourth- and fifth-grade levels (Slavin & Karweit, 1979). 

 The resounding success of EQUATIONS allowed Allen to modify the game so that it 

could be one of the first mathematical games to be ported from a physically-playable format to a 
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digitally-playable format (Allen & Ross, 1975). Interestingly, the digital version of 

EQUATIONS, which was effectively single-player, did not improve student achievement and 

affect in the ways that the physical, multiplayer variant had (Moore, 1980).  Nonetheless, several 

other mathematics games began getting ported to computer systems, or completely designed for 

computer systems from the ground up, including the following games: POE (Moore, 1980), Fish 

Chase (Kraus, 1981), Nim (Kraus, 1982), Speedway and Tug-of-War (McCann, 1977). This 

marked an important turning point for the actual means of game delivery and implementation.  

 With mathematical games quickly gaining popularity and seizing upon the benefits of 

digital programing, the literary corpus turned back towards the question “how should a 

mathematical game be designed?” This query is deeply treated throughout the prolific work of 

George Bright, John Harvey, and Margariete Wheeler. Their writings typically addressed 

questions about in-game mathematical representations and associated constraints (e.g. Should 

fractions be represented numerically? pictorially?) (1980a; 1981). Their paper, Incorporating 

Instructional Objectives into the Rules for Playing a Game (1979a), is an essential work of our 

Second Wave. In it, the authors affirmatively respond to the question “when instructional 

objectives of a game are incorporated directly into the rules, is learning interfered with or 

enhanced?” During play sessions of their various arithmetic games aimed at improving 

elementary schoolers’ conceptions and procedural accuracy when working with multiplication 

and division questions, directly incorporating formal mathematical concepts and language into 

the game’s rules did not make the game any less effective; this showed a feasible alternative to 

the “pre-mathematical” approaches described by Steiner and Kaufman and bolstered the 

viewpoint that more games like EQUATIONS could be produced. These results are elaborated 

upon in a pair of studies done by Bright, Harvey, and Wheeler (1979b; 1980b), culminating in 
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their NCTM-commissioned report, Learning and Mathematics Games (1985), which discusses 

the best instructional and taxonomic levels to utilize mathematical games for learning. This 

report ultimately concluded that, based on a review of sixty-seven texts on learning with 

mathematical games, introducing students to games that incorporate formal mathematics content 

following some in-class instruction would be best for improving students’ knowledge, 

comprehension, application skills, and mathematical analyses, stating that game play before or 

during the learning of formal content more frequently led to mixed results.  

Additional support for mathematical game-based learning came from the emergence of 

situated cognition theory. In Situated Cognition and the Culture of Learning (Brown, Collins & 

Duguid, 1988), Brown, Collins, and Duguid write that “many teaching methods implicitly 

assume that conceptual knowledge is independent of the situations in which it is learned and 

used;” they instead propose a theory of teaching and learning called “cognitive apprenticeship,” 

which emphasizes the environment wherein acquired information is “situated” (p.3). If 

knowledge is indeed situated, then it is not necessarily true that abstraction of information is the 

key to content acquisition and transfer.  The authors argue that knowledge should be viewed 

instead as tools that require practical, situated uses (referred to as authentic [mathematical] 

activity) if they are to provide learners with deeper understanding. Situated cognition directly 

adds credibility to teaching and learning via mathematical games, as the games situate the 

learner's play within a game space that provides the learner with a context for engaging with and 

doing mathematics, forming the cognitive apprenticeship.  Within this space, the learner acquires 

a practical, exercised, and consistent understanding of mathematical content that can potentially 

be used to scaffold an understanding of related abstract concepts. 
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The Third Wave of Teaching and Learning with Mathematical Games: Research from the 

Early 1990s to the Present 

With all the necessary pieces in place by the end of the 1980s, mathematics game-based 

research seemed more viable than ever, but researchers were still reviewing past information and 

seeking new information about what such research should look like, and how it could benefit 

aspiring learners. With some ideas of generalizable good-design principles and practices 

discovered from the Second Wave, the following era—here identified as the Third Wave—

emphasized instead game utility that could be specialized.  

Early in the Third Wave, several overviews on the state of game-based learning (Amory, 

Naicker, Vincent & Adams, 1999; Hogle, 1996; Randel, Morris, Wetzel & Whitehill, 1992) were 

published. These texts typically reviewed extant literature from the First and Second Waves on 

whether game play in any subject could improve learner affect, content retention, reasoning 

skills, or higher order thinking. Reviews were mixed. The literature found that game-based 

learning was not generally more effective than classroom instruction for the purposes of 

improving cognition and learning outcomes, but that there was a higher chance of success in two 

cases: first, when specific content goals were targeted, and second, when computer games were 

utilized (Hogle, 1996; Randel et al., 1992). Both characteristics were emergent trends 

specifically in mathematics game-based learning. Discussion about games’ potential for 

improving learner affect and retention also abounded and were accompanied by questions about 

what genres of games might be best for learning, as well as questions about whether gender 

differences impacted the game play experience (Amory et al., 1999; Hogle, 1996). Notably, 

during this time period, diverse game-based studies (many of which featured mathematics 

learning games, specifically) were conducted that began directly engaging with all of these 

questions (Blum & Yocom, 1996; Inkpen et al., 1994; Koran & McLaughlin, 1990; Lawry et al., 
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1995; Murray, Mokros & Rubin, 1998; Ricci, Salas & Cannon-Bowers, 1996).  

 At the turn of the millennium, mathematics games research found itself as a budding field 

with a solid theoretical foundation, eager to capitalize on the advancements of digital 

technologies in the forms of more powerful personal computers, enhanced handheld devices, and 

improved video-game-rendering hardware from the commercial game industry. Games could 

now be shared more easily on a global scale and implemented en masse within the classroom in 

either single-player or multiple-player formats. Accordingly, mathematics games educators and 

researchers set out to begin deeply exploring the variety of queries that had been posed, but only 

topically analyzed in the pre-millennium era.  

The Strands of Mathematical Proficiency 

 In 2001, the National Research Council published its landmark report on the state of 

mathematics education in the United States, Adding It Up; early in the report, the authors present 

five components (referred to as “strands”) of mathematical proficiency:  conceptual 

understanding, procedural fluency, strategic competence, adaptive reasoning, and productive 

disposition (p.5). They are defined in the text as follows:  

• Conceptual Understanding—Comprehension of mathematical concepts, 

operations, and relations 

• Procedural Fluency—Skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately 

• Strategic Competence—Ability to formulate, represent, and solve mathematical 

problems 

• Adaptive Reasoning—Capacity for logical thought, reflection, explanation, and 

justification 
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• Productive Disposition—Habitual inclination to see mathematics as sensible, 

useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy 

(p.116).  

The first four strands deal specifically with learners’ cognitive growth potentials, while 

the fifth strand deals with learners’ affective growth potentials. Several authors have illustrated 

how mathematical games can directly empower learners to master most, if not all, of these 

strands and have pointed out the ways in which mathematical games provide learners with 

additional learning benefits. In the second half of this literature review, I will do the following: 

examine the five strands as they overlap and interweave with mathematical game-based learning 

for cognitive, affective, and retentive growth; introduce and briefly discuss the game chosen for 

the purposes of the study this review accompanies; and provide some popular critiques of 

mathematical game-based learning.  

 

On Cognitive Change 

 “Cognition” and “cognitive change” are challenging terms to define, particularly because 

of the broad array of topics related to thinking that they may encapsulate. Typically, when these 

terms are encountered in a game-based setting designed to facilitate mathematics learning, they 

are somehow used to measure the fluidity of students’ reasoning, the depth of students’ 

understanding, how students justify and reason within the mathematical space, the mastery of 

learning outcomes, or other closely related ideas.  

In the Second Wave of research described earlier, Brown, Collins, and Duguid 

constructed the theory of situated cognition, which advocates for the learning of new (in our 

case) mathematical content in environments that allow for authentic and meaningful exercise of 

mathematical ideas supporting the emergence of mathematical understanding. Explorations into 
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situating meaning and personalization for mathematics learning has proven effective in 

traditional mathematics classrooms (Bernacki & Walkington, 2014; Stephens & Konvalina, 

1999; Toh, 2009; Walkington, Cooper & Howell, 2013), and the same strategy is at least as 

potent in game-based learning. Related to the theory of situated cognition is James Paul Gee’s 

theory of “Meaning as Action Image,” which argues that because humans usually think more 

experientially than logically, the most effective types of learning must emerge from routines in 

which learners are slowly able to acclimate to new concepts by having continued experiences 

with those concepts (Gee, 2004). However, it should be noted that the implementation of a 

teaching and learning approach based on the theories of situated cognition and/or meaning as 

action image may be experientially and practically different depending on the content being 

targeted for teaching. The case of situating tasks to develop students’ cognition pertaining to 

formal mathematics content must intrinsically differ from the case of situating tasks to develop 

students’ cognition pertaining to, for example, musical composition; not all strategies that 

effectively contribute to an apprenticeship of one field will be applicable during an individual’s 

apprenticeship in another field because of, minimally, social differences, neural differences, and 

representational differences that exist between any two fields (Clancey, 1994). Collins, Brown, 

and Holum (1991) investigated differences between effective cognitive apprenticeships for 

teaching dialogue (by Palincsar) and mathematical problem solving (by Schoenfeld). In their 

observations, it’s clear that although similar methodologies may be employed across disciplines 

to develop cognitive apprenticeships (e.g. modelling, coaching, scaffolding, etc.), the 

corresponding implementations differ mechanically across subjects—whereas Palincsar’s 

students are heavily reliant on consistent verbal discussion and spoken or written dialogue to 

develop content mastery throughout their apprenticeships, Schoenfeld’s students pause and 
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translate their plain-speech dialogue into written representations of polynomial equations, 

consider changes that might be made to those representations either with peers or in individual 

reflection, then reinitiate or rejoin the greater discussion. This example of dialogic teaching 

demonstrates a lesser reliance on visualized content than does this example of mathematics 

teaching, but both qualify as creating effective cognitive apprenticeships. Up to content, it’s 

entirely possible that a different lesson of dialogic teaching and a different lesson of 

mathematical problem solving could have cognitive apprenticeships near-identical in structure; 

each apprenticeship is heavily influenced by the contexts and resources available to and for 

instruction, and many characteristics of games and game spaces afford instructors unique 

characteristics and opportunities that can be drawn upon to appropriately situate mathematics 

content for this type of learning. 

Because games can provide new learners with “sandboxes” (places in which learners can 

explore concepts within the system’s constraints, but usually without repercussions) and/or 

recurrent content structured via scaled difficulty gradients, they situate learning in a synthesized 

world that inherently makes the learner’s trials and explorations meaningful and authentic (Gee, 

2004). Because of difficulty gradients, game play can also be structured to ensure that new 

challenges are always within students’ reach (Devlin, 2011); additionally, game designers and 

mathematics instructors can aid students gradually attempting these new challenges by 

scaffolding the learning of new content, defined by Wood, Bruner, and Ross (1976) as “[a] 

process that enables a child or novice to solve a problem, carry out a task or achieve a goal which 

would be beyond his unassisted efforts” (p. 90). Together, these aspects effectively create an 

artificial version of Vygotsky’s zone of proximal development.  

Games that feature reusable, flexible resources allow learners opportunities to experiment 
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with new concepts to gain deeper understanding of them. This makes mathematical games 

(especially mathematical video games) strong candidates for helping students achieve procedural 

fluency, particularly because they provide sustained periods of time for learners to review and 

connect a myriad of examples related to any specific topic. However, even in cases in which 

players/learners may be forced to replay a game because of failure, learning emerges (Devlin, 

2011; Squire & Barab, 2004). Oftentimes, failure in game play provides the player with an 

impetus to revisit his or her prior knowledge and seek out a new strategy, encouraging adaptive 

reasoning. Whereas many mathematics curricula fail to interweave topics, mathematical games 

can reintroduce concepts throughout the time spent playing; this can be done by creating special 

objectives that might challenge the player to deviate from the forward path and revisit or 

reexplore previously cleared content, or content that interweaves concepts from previous game 

experiences (Devlin, 2011). 

Further, in a game designed chiefly for the learning of mathematics, the game world is 

inextricably linked to the doing of mathematics; together, they form an endogenous fantasy3 that 

stands apart from the traditional classroom context (Ke, 2008). In cases for which the formal and 

informal learning environments are so tightly wound together, there are often opportunities for a 

type of adaptive reasoning that Holbert and Wilensky term “epistemological integration:” a 

database of knowledge seamlessly fused from both game experiences and formal content 

knowledge (2012). The benefits afforded by situating mathematics in an endogenous space are 

elaborated upon by many authors (Gee, 2005a; Gee, 2013; Huizenga, Admiraal, Akkerman & ten 

Dam, 2011; Pivec, Dziabenko & Schinnerl, 2003; Rosas et al., 2003; Wijers, Jonker & Drijvers, 

2010; Van Eck, 2006a), but are particularly well characterized by Keith Devlin in his 2011 text 

                                                 
3 E.g. The game space and the mathematics space are seamlessly intertwined and overlapped.  
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Mathematics Education for a New Era. Devlin notes that because funding and generating real-

world problem-solving scenarios on a massive scale is often neither practical nor possible, 

capitalizing on the situated worlds of games (which can be computationally modified and 

generated) may help instructors assess student understanding and learning. He compares student 

learning experiences in the synthesized, virtual worlds of games to solving “real world” word 

problems, like those appearing on the NAEP surveys for the past several decades. These word 

problems often confound students with artificial, unrelatable scenarios and can inhibit learning; 

Devlin maintains that doing mathematics in game-based environments likely has the potential for 

developing more powerful strategic competencies. Additional support for developing strategic 

competencies via educational game play is bolstered by Gee’s characterization of games as 

providing players/learners with information both “on demand” (e.g. easy-access to rules, 

controls, or hints) and “just in time” (e.g. scaffolding scenarios in time-aware, compact chunks 

that ensure information is not diffusely distributed), allowing learners to take full stock of their 

information base before approaching a problem (Gee, 2003; Gee 2004).  

As reported by the National Research Council for science learning, game-based learning 

has also proven itself as a powerful means of improving concept concretization—that is, helping 

learners understand and make sense of concepts that initially seem abstract (2011). This is 

evident based on a wealth of studies describing game-based treatments producing improvements 

in learners’ spatial cognition and visualization (Barlett, Vowels, Shanteau, Crow & Miller, 2008; 

Feng, Spence & Pratt, 2007; Granic, Lobel & Engles, 2014; Shute, Ventura & Ke, 2015; Terlecki 

& Newcombe, 2005) which are potentially helpful for teaching about geometric concepts. Being 

able to provide learners with a means of concretization makes game-based learning good, in 

general, for conceptual understanding—arguably the most challenging strand of mathematics 
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proficiency. Devlin demonstrates that improper conceptual understanding can go undetected for 

years when he discusses the work of Uri Leron, an Israeli mathematician, who demonstrated that 

university students in mathematics and computer science maintain false conceptions of 

mathematical functions they acquired in grade school, such as that a function applied to an 

argument changes the argument (p. 114). Such students might be able to operate with procedural 

accuracy and fluidity, and yet will never be able to recognize their own conceptual 

misunderstandings. Because the challenges of conceptual understanding extend beyond the realm 

of mathematical games, there are naturally occurring difficulties, from a design perspective, with 

inducing conceptual understanding in an artificial game space. However, some studies have 

shown that intentionally concretizing abstract concepts can help students achieve baseline or 

improved conceptual understanding (Galarza, 2017; Kebritchi, Hirumi & Bai, 2010). In other 

cases, conceptual understanding can emerge as an unintended byproduct of playing a game, as 

was the case with a digital clothing and furniture designer who achieved a deep understanding of 

geometric properties just by working through her designs in the game Sims (Gee, 2013). A model 

summarizing the ways in which aspects of game-based learning induce cognitive change is 

presented in Figure 2.3.  
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Figure 2.3: A mapping of how some aspects of game-based learning may contribute  

to cognitive change. 

On Affective Change 

 “Affect” and “affective change” typically relate to an array of emotional aspects that may 

characterize a learner or group of learners. In studies concerning mathematics learning, these 

aspects may include the way(s) that a learner feels about the mathematics he or she is learning, 

the value that the learner perceives as being derived from his or her experiences, the opinion(s) 

that the learner has about himself or herself as a learner of mathematics, or the opinion(s) that the 

learner has about the ways in which the mathematics is being presented, just to name a few 

examples. Arguably, the positive variants of all these elements fall under the umbrella term 

“productive disposition” suggested by the NCTM, as they relate to learners being more interested 

in doing and learning mathematics.  
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 One of the most important aspects contributing to a student’s productive disposition in 

the mathematics classroom is a strong motivation. A great deal of research has been done on the 

effects that game-based learning has on students’ motivations towards formal content acquisition, 

and while many authors have demonstrated cases in which motivation for formal learning has 

improved (Bragg, 2012; Ke, 2008; O’ Rourke, Main & Ellis, 2012; Rosas et al., 2003; Squire & 

Barab, 2004), there have been roughly just as many cases demonstrating that motivations either 

did not change following a game-based learning intervention, or in fact declined (Bragg, 2007; 

Huizenga et al., 2011; Kebritchi, Hirumi & Bai, 2010; Tüzün, Yılmaz-Soylu, Karakus, Înal & 

Kızılkaya, 2008). Again, as reported by Ke (2008), a large part of motivation in game-based 

learning interventions is directly related to the student’s connection to the endogenous fantasy 

that exists; in cases when games are designed for specific student populations—for example, in 

the handheld video games designed specifically for 1st and 2nd graders in Rosas et. al’s study 

(2003)—this can manifest itself very clearly with overall improvements to student affect and 

specifically motivation. To the contrary, in cases in which games are built in a one-size-fits-all 

fashion, there is a seeming lesser chance of success. For example, in the Kebritchi et. al study 

(2010), although a treatment group of pre-algebra and algebra students were reported as having 

significant cognitive growth over their non-game-playing peers, those same students did not 

report any affinity for the games being played (a selection from Pearson’s DimensionM series) 

and showed no changes in motivation as compared to the non-game-playing students. Bragg 

(2012) also showed that improved motivation can lead to improved focus when it comes to 

classroom activities: in a study assessing the effects of using games to motivate on-task 

behaviors in 5th and 6th grade mathematics classrooms, Bragg reported that during game-playing 

sessions, students were focused on their learning task 93% of the time, while during non-game-
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playing sessions, they were only focused on their learning task 72% of the time. While 

improving motivation is always a plus, there are cases when game-playing can detract from 

motivation and focus. For example, Ke (2008) cautions that in cases when the game goals and 

learning goals are not entirely intertwined—that is, when there are aspects of game play that do 

not feed directly into mathematical learning—there sometimes arise opportunities for students to 

lose focus on the content goals. Bragg (2007) notes that game play sessions can be crippling to 

student motivation if the game played is too challenging; in a study playing mathematical games 

with 5th and 6th graders, Bragg noted that some students became disinterested in the content 

because, among other reasons, the concepts in the game were too advanced mathematically. 

Additional considerations for why student work motivations may dip during game play sessions 

could be that students are not as interested in games when the games are “prescribed” to them by 

instructors, or that students, in anticipation of playing a game in the classroom, get overly excited 

by the prospect of playing a commercial game, and become disappointed if the selected 

educational game does not meet their expectations (Wouters, van Nimwegen, van Oostendorp & 

van der Spek, 2013).  

 Another aspect of mathematics game-based learning that contributes to affective change 

is games’ intrinsic potential for creating new social dynamics or fostering existing dynamics 

(Bryce & Rutter, 2003; Ito et al., 2009). Among the 97% of teens aged 12-17 that play electronic 

games recreationally, 76% noted that they do not strictly play games alone, indicating the 

ubiquity of social connections during game play (Lenhart et al., 2008). Typically, games can be 

categorized as being “single player,” meaning that only one player engages in a conflict, or 

“multiplayer,” meaning that multiple players work, either with or against each other, in the game 

space. However, regardless of whether players are working with or against each other in the 



 

31 

 

game space, they share experiences inside and outside of the game which help them form what 

Gee calls an “affinity space” (2005b). An affinity space is a space that arises from the shared 

experiences relating to some sort of content (in this case, game play) that takes on 11 specific 

properties; example properties include the space encouraging individual and distributed 

knowledge among space inhabitants, encouraging the dispersal of knowledge among space 

inhabitants, and not segregating inhabitants according to any personal characteristics or 

qualifiers. Gee discusses the websites (both official and player-generated) around a historical 

game, Age of Mythology, as being good examples of how educational game play can be used to 

create a pervasive learning experience that appeals to players even once game play has finished; 

players are encouraged to explore the affinity spaces in which they can discuss and reflect on 

their experiences with others, and actively seek greater learning opportunities.  

 Mathematical game-based learning may also help learners’ affects by instilling them with 

a newfound sense of agency or control when doing mathematics. When playing a game, learners 

make choices that directly effect their in-game outcomes, adding weight and meaning to each 

decision (Pivec et al., 2003). Elements of identity, interaction, organic creation, risk-taking, and 

customization all contribute to players’ sense of agency and ownership over in-game activities; 

these may not be readily available in a typical classroom environment (Gee, 2005a). Oftentimes, 

the highlight of these game-contextualized choices is that learners feel as though they are making 

independent decisions that help them fully understand and grasp their learning experiences 

(O’Rourke, Main & Ellis, 2012).  

Finally, learner affect when playing mathematical games can also be influenced by 

changes to learners’ outlooks, perceived values, and enjoyment of mathematics. Several studies 

have already shown that mathematical game players at the elementary- (Plass et al. 2013), 
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secondary- (Wijers et al., 2010), and university-levels (Amory et al., 1999) have all experienced 

improvements in their outlook on mathematics in general, and enjoyment of their specific 

mathematics courses’ content. Devlin (2011) attempts to explain this by stating that because a 

game can be designed to purposefully embed mathematics into its player experience, 

mathematics in such a game space is inherently useful; this perceived usefulness of mathematics 

may then be taken back to the formal learning environment by the player. Granic et al. (2014) 

also points out that, “because [game play provides] players concrete, immediate feedback 

regarding specific efforts players have made” (p. 6), situating learning in game play is an ideal 

strategy for encouraging what Dweck calls  an incremental4 theory of intelligence, as opposed to 

an entity5 theory of intelligence; learners who have or adopt the former theory are more likely to 

be motivated for success in formal learning environments (Dweck, 2000). A model summarizing 

the ways in which aspects of game-based learning induce affective change is presented in Figure 

2.4.  

 

                                                 
4 “…intelligence is not a fixed trait…, but something [that is] cultivated through learning” (Dweck, 2013, p.3). 
5 “…intelligence is portrayed as an entity that dwells within us and that we can’t change” (Dweck, 2013, p. 2). 
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Figure 2.4: A mapping of how some aspects of game-based learning may contribute 

to affective change. 

 

On Content-Retentive Change 

 When Bright, Harvey, and Wheeler published their report on the state of mathematics 

game-based research in 1985, they were careful to note that little-to-no significant research had 

been done about mathematics games for the sake of content retention (p. 131). Using a study to 

check for mathematics content retention can be challenging primarily because following the 

phase in which new content is learned during the study, there must be a gap in students’ formal 

learning. Few institutions would be willing to pause students’ formal mathematics learning for an 

extended period of time or treat the learned concepts as forbidden topics in the time between 
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concept learning and a potential retention check. Accordingly, retention studies conducted in 

formal learning environments frequently check for an imperfect sense of content retention on 

constrained windows of time, often varying between only a week and a month.  

Hogle (1996) stated that extant literature comparing the retention rates of traditional 

learning methods and game-based learning methods seemed to favor the latter. This was 

supported by Pivec et al. (2003) who reported that, at the time of writing, of 11 studies carried 

out examining the retentive abilities of game-based learning as compared to traditional learning 

methods (e.g. Ricci et al., 1996), 8 studies favored game-based learning, while the other 3 

showed no significant difference. While some studies done since these reviews were published 

have supported the use of game-based learning for the sake of content retention (Arici, 2008; 

Chow, Woodford & Maes, 2011; Wouters et al., 2013), others have rejected the notion (Hicks, 

2007; Jain, 2012). Although the literature demonstrating the retentive benefits of mathematics 

game-based learning is positively oriented, it remains unconvincing. However, the literature has 

identified certain game attributes that could potentially improve leaners’ retention of new content 

acquired via game play.  

As stated in earlier sections, mathematics games may be constructed so that the game 

space is entirely enveloped by an endogenous fantasy binding game play to some targeted 

content knowledge. The retentive benefits of endogenous fantasy were investigated by Parker 

and Lepper (1992), who conducted two studies using Logo, a programming language designed to 

facilitate young learners’ acquisition of problem-solving and formal mathematics skills. Across 

the two studies (𝑛 = 47, 𝑛 = 31), third and fourth grade students were tasked with constructing 

geometric graphics and solving geometric problems in Logo; however, some students’ lessons 

were situated in a fantasy context, while other students’ lessons were not. Going further, of the 
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students whose learning was situated in a fantasy context, only half of those students were able 

to choose their context, while the other half of the students were randomly assigned a fantasy 

context. Across both studies, it was found that just situating work within a fantasy setting was 

sufficient for improving content retention—whether the student had chosen the fantasy context 

or not made no difference. However, Ke (2008) notes that if a fantasy is not truly endogenous—

for example, if the content to be learned is only superficially applied over the fantasy setting—

then the fantasy does run the risk of completely subverting important aspects of content 

acquisition, and later, retention.  

Core to the notion of game-based learning are the concepts of spiraled, recurring and 

reusable game content as encouraging and enabling improved content retention. Van Eck (2007) 

notes that “things learned early in games are brought back in different, often more complex 

forms later. Players know that what they learn will be relevant in the short and long term” (p.15). 

Devlin (2011) mentioned that players were often encouraged by game objectives to revisit 

content that had been previously engaged, or sometimes forced to do so to overcome prior 

failings—and that this was not something for players to shirk from, but to embrace.  Because 

failure is not usually viewed as an irredeemable turning point from either the player or designer’s 

perspective in many educational games, and because key content goals can be consistently 

revisited, complexified, and improved upon, exploring content via mathematical game play can 

be a useful means of creating varied, interrelated, and memorable experiences with important 

information.  

Additionally, greater engagement and on-task focus during the learning of new content 

has also been linked with improved content retention (Hannafin & Hooper, 1993). As discussed 

in the review of affective growth, mathematical games do have the potential to elucidate on-task 
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behavior, when implemented correctly (Bragg, 2012; Ke, 2008; O’ Rourke, Main & Ellis, 2012; 

Rosas et al., 2003; Squire & Barab, 2004), so there is further evidence that such implementations 

may lead to improved content retention. Although some literature has claimed that seamless 

integration of content into a game play experience directly improves student engagement, and by 

extension, content retention (Titus & Ng’ambi, 2014), Hannafin and Hooper (1993) have argued 

that this is a non-obvious, non-generalizable conclusion, as student engagement, motivation, and 

effort may improve even in cases when a course’s instruction via game play does not sufficiently 

address formal learning objectives. A model summarizing the ways in which aspects of game-

based learning induce (content) retentive change is presented in Figure 2.5.  

 

Figure 2.5: A mapping of how some aspects of game-based learning may contribute 

to (content) retentive change. 
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Critiques 

 For all the benefits that the literature suggests mathematical games, in general, can 

potentially provide, their implementation as formal learning tools has been subject to some 

controversy and criticism.  

Since games are often viewed as a transplant to the educational industry from the 

commercial entertainment industry, educational games often are branded “edutainment,” a term 

which evokes a half-hearted sense of both education and entertainment coming together for a 

product that achieves neither aspect quite perfectly (Hogle, 1996; Rosas et al., 2003). For 

example, one study showed that the Lumosity series of games—specifically constructed by 

neuroscientists to improve cognitive skills—failed to significantly improve players’ cognitive 

skills for exercises such as association and matching tasks after 8 hours of play time by players 

ages 18 to 22; players from the same demographic who instead played the commercial game 

Portal for the same amount of time and under the same conditions were reported as greatly 

improving spatial skills, persistence, and problem-solving (Shute et al., 2015). Rebelling against 

the edutainment archetype, many educational game designers have branded themselves as 

“serious game” designers. Serious games remold the fused aspects that critics ascribed to the 

industry: they are games that don’t have entertainment as their primary purpose, but may include 

it as a means of adding comfort and accessibility to an educational gaming experience (Michael 

& Chen, 2005; Djaouti, Alvarez & Jessel, 2011).  

Joseph (2009) writes that “for years, video games have been blamed for turning children 

into mesmerized robots, agents of sexism and racism, and violent gun-toting psychopaths…” 

(p.253). On the notion of mesmerization, Ke (2008) cautions that educational game players can 

sometimes be distracted by goals of a game that are unrelated to content learning. This may 
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inhibit student achievement of content mastery due to distraction. Joseph hints specifically at 

portrayals of in-game violence as being one potential type of distraction that may influence 

learners not only when playing a game, but also once the game session has completed. However, 

while this claim has hounded the game design industry for years, it is chiefly unfounded; several 

studies have shown that violence in video games is likely not responsible for encouraging 

negative behavior outside of the game (Granic et al., 2014; Tear & Nielsen, 2013) and, in fact, 

some studies have even found that violent video games can potentially strongly improve players’ 

cognitive skills for a variety of aspects, but most notably for spatial thinking (Barlett et al., 

2009).   

One final critique often lobbed at games of all kinds is that they unilaterally favor male 

players. However, this is a stereotype that has been rejected in the industry thanks to a variety of 

studies showing the contrary (Bryce & Rutter, 2003; Kahne, Middaugh & Evans, 2009). 

Although some literature has shown that among teens ages 12-17, more males (99%) than 

females (94%) regularly play some form of video game in their leisure time (Lenhart et al., 

2008), these percentages are comparable. Additional studies have found that educational games 

can be designed in such a way that they can cater to both halves of a population, appealing 

equally to both males and females (Amory, 1999), or designed to specifically engage with tropes 

of importance to one gender specifically (de Jean, Upitis, Koch & Young, 2010).   

 

Choosing a Mathematical Discipline and Mathematical Game for Research Based on this 

Literature Review 

 As discussed earlier, when used as an instructional tool, mathematical games have the 

potential to impact learners’ cognitive outcomes, affective outcomes, and content-retentive 

outcomes in meaningful ways. Because of the literature’s clear indication that the quality and 

learning outcomes of elementary algebra courses can be improved by both technological 
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interventions (Gilbert et al., 2008; Glickman & Dixon, 2002; Neurath & Stephens, 2006; 

Stephens & Konvalina, 1999) and content personalization (Bernacki & Walkington, 2014; 

Stephens & Konvalina, 1999; Toh, 2009; Walkington, Cooper & Howell, 2013), an elementary 

algebra course is a particularly strong candidate for game-based learning.  

 Usiskin (1988) describes the instruction of algebra as shifting students from numerically-

dependent mindsets to variable-manipulating mindsets. He discusses how algebra may be viewed 

as a generalized form of arithmetic, a study of procedures for solving specific problem types, a 

study of relationships among quantities, and (especially in university-level algebra) the study of 

algebraic structures; his discussion makes it clear that the learning of algebra is a progression 

from a point of very concrete information (e.g. a basic understanding of well-defined 

arithmetical operations) towards increasingly more abstract ideas. Other authors (Devlin, 2000; 

Witzel, Mercer & Miller, 2003) have argued that good algebra instruction should facilitate and 

augment learners’ progression through these stages. In particular, when it comes to equation 

solving, authors have indicated that exposure to varied representations of equations and different 

types of equation-solving strategies can give students greater conceptual flexibility and 

understanding of the nature of algebra as a whole, and problem-solving in general (Star & Rittle-

Johnson, 2007). Therefore, a game that addresses algebra in a way that scales up from concrete 

to abstract ideas and provides a thorough treatment of equation-solving—with variation from the 

way the content is taught in class—would be an excellent candidate to assess game-based 

learning. Here, I will describe the game used co-instructionally in the study accompanying this 

literature review—Dragonbox Algebra 12+—which was selected because it is a strong 

representative of some of the most desirable qualities of games for mathematics education 

identified earlier.  
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 Dragonbox Algebra 12+ is a single-player video game divided up into a series of 

chapters, each containing twenty to thirty stages. It was intentionally designed from the ground 

up so that players could access algebraic equation solving experiences from a novel game-based 

perspective; accordingly, the goals within the game are directly aligned with learning goals in 

formal algebra content. Dolonen and Kluge (2015) do an excellent job of describing the game 

play experience within each stage:  

“[Each stage] consists of two large fields corresponding to the two sides of an equation, 

along with a storage located underneath consisting of objects that can be pulled out and 

placed within the two fields. The game is organized into chapters with increasing 

difficulty. A level ends when the main symbol—the dragon box (and later an “x”)—

stands alone in one field. Other evaluation criteria are whether the player has used the 

correct number of steps and whether there is an excessive number of objects in the other 

field that could have been eliminated. The player gets feedback on whether the criteria for 

successfully solving a level are met by getting one, two, or three stars. An object can be 

moved into a field and inside an equation in accordance with the four basic arithmetic 

operations [of addition, subtraction, multiplication, or division]. It may add to or subtract 

from a side in the equation depending on how the student has assigned a plus or a minus 

sign to the object in the store, act as a multiplier when placed beside another object in a 

field, and act as a divisor when it is placed beneath an object and thus creates a fraction 

bar or a multiplication of an existing divisor. When an object is drawn into a field, 

algorithmic rules are activated. When the player adds or subtracts an object on a field 

(one side of the equation), a dent appears in the other field (the other side of the 

equation), which shows that a corresponding object should be placed there. The student 

cannot progress further in the game until the dent has been filled with a corresponding 

object” (pp. 3-4). 

 

 

In a typical Dragonbox stage, the solver is tasked with performing the in-game equivalent 

of isolating a single variable on one side of an equation; this experience is a concretized, 

manipulatable parallel to formal algebraic equation solving, affording solvers great agency and 

control over their actions and decisions. Throughout game play, strategies for the game’s version 

of equation solving will change and evolve; players will begin the game by (covertly) learning 

about additive and multiplicative inverses in expressions, then dive into equations in which 

they’ll be required to correctly utilize the various properties of equality in order to aid in variable 
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isolation. As players proceed through the stages and chapters, the fundamental elements of 

equation-solving are continually revisited and expanded upon for the sake of internalizing the 

information for the learner, thus potentially promoting cognitive growth for the learning of new 

content and instilling relevance into previously encountered content for the sake of retention.  

Later, the in-game equivalents of additional properties (e.g. the distributive property of 

multiplication over addition) and new equation-solving techniques (e.g. factoring of like-terms) 

are introduced via short pictorially-guided tutorials designated as “New Power” stages, 

introducing information “just in time.” In many levels, these abilities act to facilitate and 

augment earlier encounted solving processes, but in some levels, utilization of new properties or 

techniques is mandatory, up to the resources the game has provided the solver.  

It is worthwhile to consider the utility of the equation-solving processes that Dragonbox 

aims to teach to new learners. At some point in the possibly near future, technologies may arise 

that will invalidate the need to have a holistic understanding of the equation-solving process. 

However, even an individual utilizing an equation-solving utility would need to have an intimate 

understanding of, minimally, the fundamentals of how an equation works. That person would 

first need to recognize the origin of the equation and the relationship it is modeling. He or she 

might need to differentiate between constant values, variable values, known and unknown 

quantities, and the differences and meanings in represented operations or other symbols or ideas. 

These fundamental components are the things that Dragonbox is looking to instill in new 

learners’ minds. The game provides a thorough treatment in understanding the properties of 

equality, which helps learners make sense of the game’s representations of regular addition, 

subtraction, multiplication, and division. It introduces equations featuring many unknown 

quantities but emphasizes the differences between variable quantities being sought and those 



 

42 

 

quantities that might be considered constants. Lastly, it also provides learners with a variety of 

tools and solving strategies that they will more than likely need when attempting to solve 

equations at a moment’s notice in practical situations, such as financial budgeting, test score 

averages, or otherwise. 

For many students, one of the largest challenges to overcome in transitioning from formal 

computational thinking towards structured algebraic thinking is fully understanding the 

distinction between variables and constants; Usiskin (1995) describes algebra as a language of 

generalization that, when properly utilized, allows solvers to move away from computations in 

which all numerical values are known towards computations in which not all values are 

explicitly known, but in which relationships between or among values may be deduced. 

Dragonbox attempts to circumvent this issue of representation by staging the game’s earliest 

levels so that no reference is made to any formal mathematical symbology; additionally, the 

game never introduces formal terminology to describe any of the operations carried out within a 

stage. For instance, it refers to “isolating a variable” as “getting a dragon alone,” thus helping 

build upon the game’s endogenous fantasy (previously identified as being an important trait 

affecting the extent of epistemological integration, individual interest, and motivational 

improvements) of befriending and growing dragons from eggs to maturity. Similarly, for much of 

the game, “standard” representations of algebra content are not utilized. For example, the 

“variable being isolated” is not initially shown as, say, an x, but is the eponymous 

“dragonbox”—a literal box containing a shy dragon which will only reveal itself when it is alone 

(i.e. isolated). Although these representations may be viewed as asking mathematics learners to 

adopt a new perspective on mathematical/algebraic vernacular, this design choice is very 

intentional and aligns with the literature; building upon the endogenous fantasy of the 
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Dragonbox world and introducing a vernacular with novel pictorial representations for 

mathematical ideas prevents students from shying away from the game as a possible “drill-

generator.” Instead, they identify the unique art style and representations as aspects of a 

potentially inviting puzzle-like game.  

Nonetheless, the game does have a unique set of allowable actions (albeit most of which 

map to analogous mathematical processes for solving equations) and so, in this sense, students 

must learn two sets of processes (one in the algebra classroom and one in the game space), not 

just one. The premise is that since the two sets of processes are related, the learning in both 

spaces should be mutually beneficial; however, this could (unproductively) just be creating 

“additional” things to learn. In either case, it should be noted that not all actions that could be 

carried out in formal mathematics doing are allowed in game play—in particular, Dragonbox is 

designed with two prominent scaffolds aimed at facilitating the learning of the equation-solving 

process.  

The first scaffold is termed here as the “pre-emptively corrective” mechanic. This 

mechanic prohibits players from making movements that would disrupt certain mathematical 

processes from being completed correctly (e.g. adding some non-zero value to only one side of 

an algebraic equation, then beginning a new mathematical process before balancing the 

equation). Notably, because of its pre-emptive nature, this scaffold precludes students from 

investigating in-game processes that would be incorrect when considered by their formal 

mathematical equivalents. Although an error-lite or error-free approach to the teaching and 

learning of new content has been advocated for by several studies in cognitive psychology 

(Ausubel, Novak & Hanesian, 1968; Bandura, 1986; Barnes & Underwood, 1959; Skinner, 

1953), more recent work has proposed that learning is actually enhanced by allowing and then 
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correcting error instances (Kornell, Hays & Bjork, 2009; Metcalfe, 2017; Slamecka & Fevreiski, 

1983). As discussed earlier, game play redefines and reshapes game players’ psychological 

responses to failure in a typically less-negative (or even positive) fashion; although Dragonbox 

chooses to ignore some error opportunities with this scaffold, other game-based research has 

found that, when properly implemented, many error-corrective processes in game play have been 

beneficial to the learning of new content (Ivancic IV & Hesketh, 2000; Nowak, Plotkin & 

Krakauer, 1999; Ziv, Ben-David & Ziv, 2005).  

The second scaffold is termed here as the “finite tile bank.” This mechanic prohibits 

players from introducing terms or components of terms (i.e. in-game equivalents of variables or 

numbers) from outside those given to the player; this will be investigated more deeply with 

illustrations in Chapter 3. It should be recognized that this scaffolding decision reduces student 

agency over many decisions, but provides, in exchange, a targeted set of numbers and variables 

which are all guaranteed to be relevant, which is, intuitively, useful for first-time algebra learners 

and doers independently exploring content.   

  Both the chapters and the stages follow separate scaling difficulty gradients; for example, 

a later stage in Chapter 1 may be objectively harder to solve than an early stage in Chapter 2, but 

Chapter 2 will peak with more complicated content than anything presented in Chapter 1. This 

system ensures that players always have a challenge at hand. 

  By default, hints are not provided, but players can request hints during each stage, giving 

them access to information on-demand.  Further, feedback on player work is provided at the end 

of each stage via a ranking from 1 to 3 stars; players may revisit levels to produce “more 

elegant” (e.g. fewer steps, fully simplified, etc.) mathematical solutions that may earn more stars 

than previous attempts, potentially providing players with a chance to revisit content for a more 
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whole understanding or overall fulfilling experience.  

Lastly, because the game is single-player, each player can progress through the game at 

his or her own pace. However, because the game can be played on a variety of devices, it has the 

potential to create new social dynamics extending beyond the scope of a single individual, 

depending on how it is incorporated into formal learning activities, which may also be useful 

depending on one’s learning goals. (I discuss more specific details about the game Dragonbox in 

Chapter 3.) 

A wealth of literature has discussed the design decisions in the game’s construction, as 

well as various studies that have used the game to examine cognitive and affective growth 

(Clark, Sengupta, Brady, Martinez-Garza & Killingsworth, 2015; Dolonen & Kluge, 2015; 

Gutiérrez‐Soto, Arnau & González‐Calero, 2015; Katirci, 2017; Nordahl, 2017; Siew, 

Geofrey & Lee, 2017).  In a lecture entitled “The Role of the Teacher of the Future,”6 (2015) 

given at the Universidad ORT Uruguay, Dragonbox director Jean-Baptiste Huynh discussed the 

University of Washington’s Center for Game Science’s June 2013 Algebra Challenge. The 

challenge aimed to improve algebra mastery in Washington K-12 schools by having students 

aged 7-17 play an adaptive version of the usual Dragonbox game. In the lecture, Huynh reported 

that “93% of children that played at least 1.5 hours learned basic equation-solving concepts,”7 

and that “children of all ages were able to learn the basic concepts for solving linear equations.”8 

These early findings made Dragonbox an attractive learning tool for algebra-learning at all 

stages of academia. However, while affective growth (specifically increased confidence in 

                                                 
6 Original: “El Rol del Maestro del Futuro” 
 
7 Original: “93% de los niños que jugaron 1,5 horas aprendieron los conceptos básicos de resolución de 
ecuaciones.”  
 
8 Original: “Niños de todas las edades pueden aprender los conceptos básicos de resolver ecuaciones lineales.”  
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mathematics and comfort-level with algebra problems) has been consistently high for Dragonbox 

players in these studies (Dolonen & Kluge, 2015; Katirci, 2017; Nordahl, 2017; Siew, Geofrey & 

Lee, 2017), improvements to content mastery have varied, and no study has checked for any 

form of content retention.  

Gutiérrez‐Soto et al. (2015) reported that after using Dragonbox to supplement remedial 

algebra learning for 9 early-college-level students during two 75 minute sessions across two 

consecutive days, “…it seems that the students were able to recover or remember some solving 

techniques [for algebraic equation solving] that relate to the actions used when problem-solving 

with [Dragonbox],”9 (p. 43). Supporting this is the Siew et al. study, in which 60 Malaysian 

students aged 14 were split into two groups—a treatment group that would learn algebra by 

playing Dragonbox, and a control group that would study algebra using a traditional classroom 

setting—for a 16-hour algebra-learning session. Pretests and posttests were administered based 

primarily on items from the TIMSS 2011 and the Malaysian curriculum for 7th and 8th grade 

students; results showed that the control group mean rose from 13.5% to 49.6% correct answers, 

while the treatment group mean rose from 13.2% to 71.1% correct answers.  

However, concluding a study that pre-instructionally presented algebra game play and 

then followed up with formal equation-solving, Katirci (2017) writes that, in the case of one 

class of 7th grade American public-school students playing the game 10 minutes a day each 

school day for five weeks, it seems that Dragonbox would be best used as a co-instructional 

supplement to formal pre-algebra or algebra coursework; in Katirci’s study, mastery of game 

content did not immediately map to mastery of corresponding algebra concepts, and instructor 

                                                 
9 Original: “…parece que los alumnos han recuperado o recordado unos modos de resolución que se pueden 
relacionar con alguna de las acciones que se usan cuando resuelven con el DragonBox Algebra©.” 
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guidance was required. In Dolonen and Kluge’s study (2015), 75 Norwegian students aged 13-14 

split into two groups for specialty mathematics learning using either Dragonbox or a non-game 

mathematics learning utility, Kikora (effectively used as a drill-generator for algebraic concepts), 

for 8 hours over the course of 4 weeks; while both groups did have significant gains in learning 

as measured by a pretest and  posttest built around the course curriculum and TIMSS items 

released as of 2012, the Kikora group statistically improved twice as much as the Dragonbox 

group. 

 In the present study, Dragonbox game play was implemented co-instructionally while 

students were learning new algebra content; however, this learning experience was unique 

compared to the studies listed here incorporating Dragonbox game play. The cited texts typically 

either chose to pre-instructionally utilize the game (Katirci, 2017; Nordahl, 2017) or co-

instructionally use the game, but with instructors drawing explicit connections between game 

play and formal content (e.g. Dolonen & Kluge, 2015; Siew, Geofrey & Lee, 2017). In one case 

the game was used post-instructionally as a tool for remediation (Gutiérrez‐Soto, Arnau & 

González‐Calero, 2015).  

 

Closing and Intended Contributions to the Literature 

  In closing, educational games have the potential to profoundly transform formal 

mathematics learning for cognitive, affective, and retentive growth. Although much of the 

literature is still undecided on the best ways of doing this, there are strong indications that games 

which intentionally embed mathematics concepts into their designs have a heightened chance of 

success when they are properly introduced and implemented in the mathematics classroom.  

The study that this literature review accompanies will aim to contribute to the game-

based research on cognition, affect, and content-retention by meeting the following goals: 1) 
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identify the cognitive connections generated by students linking their game play and formal 

mathematics experiences; 2) articulate the specific aspects of students’ uses of formal algebraic 

equation solving techniques that are impacted by game play; 3) portray an image of students’ 

essential affective changes in terms of factors including but not limited to engagement with 

mathematics, outlook on mathematics, and self-image as mathematics doers; 4) describe the 

aspects of game play experiences that prove memorable over an extended period of time when 

engaging content involving techniques for solving algebraic equations.  
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Chapter 3: Methodology 

 

Introduction 

 

This study was designed to explore the cognitive, affective, and content-retentive 

developments of pre-secondary students playing a mathematical game as a supplement to the 

students’ formal mathematics coursework. As demonstrated by the literature review in the 

preceding chapter, the utilities of mathematical games for improving learners’ cognition, affect, 

and content retention are still unclear, though generally positively oriented. This study was 

designed to contribute information to each of these three fields of consideration to clarify the 

uses of educational games for pedagogical purposes. Because elementary algebra courses were 

previously shown to be good candidates for studying the impacts that mathematical games can 

have on students’ learning outcomes, and because there are a wealth of well-documented 

technological resources (including mathematical games) available specifically for use with this 

topic, this study examined an eighth grade elementary algebra course in which some students 

played the mathematical video game Dragonbox Algebra 12+ as a co-instructional supplement 

to their formal algebra instruction. Although this was not a completely experimental study, for 

utility, this text uses the term “treatment group” to refer to the students who participated in the 

algebra game play supplement (which will be referred to as the “treatment”); similarly, the term 

“control group” is used to refer to those students who did not participate in the treatment and 

received their usual formal in-class algebra instruction. 

Research Questions 

In accordance with the stated goals, the following research questions, as discussed earlier, 

guide the study: 

1. How does integrating mathematical game play into a traditional eighth grade algebra 

curriculum impact students' cognitive learning outcomes in elementary algebra? 
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2. How does integrating mathematical game play into a traditional eighth grade algebra 

curriculum impact students' affective outcomes about both mathematics in general and 

algebra specifically? 

3. How does integrating mathematical game play into a traditional eighth grade algebra 

curriculum impact students' content retention in elementary algebra? 

Setting and Participants 

 

The study was conducted at a K-12 independent school in a large city on the eastern coast 

of the United States. The intervention phase of the study (in which students participated directly 

in the treatment, and cognitive and affective data were collected) took place over eight weeks in 

2017 from late October to mid-to-late December. The second phase of the study (in which data 

on content-retention were collected) took place on two consecutive days in early January 2018. 

This timing was essential for adding validity to the retention data, as the period between the end 

of the intervention phase and the start of the retention phase constituted a winter recess in which 

students would not be expected to have formal algebra instruction due to classes not being in 

session. 

The school’s elementary algebra course, taught by one instructor who was not the 

principal researcher, had 30 matriculated students ages 13-14. The students were mixed in terms 

of gender, ethnicity, prior mathematics knowledge, and socioeconomic status. Students were 

recruited for the study earlier in the academic year via exposure to three on-site talks on using 

mathematical games as pedagogical tools given by the principal researcher to the whole 8th 

grade. Students were offered a digital copy of the Dragonbox Algebra 12+ game as 

compensation for participation in the study. Because they were minors, students were only able 

to participate in the study pending receipt of both a parental permission form and a student 
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consent form.  

 Of the 12 affirmative respondents, 11 students were randomly selected to form the 

treatment group. This decision was necessary due to the soft-limitation of 11 students imposed 

by the school’s available hardware in its computer lab; in this study, Dragonbox Algebra 12+ 

was played on 11 personal computers using the Windows 10 operating system and the Microsoft 

Store software platform. Like the full course of 30 students, the 11 students in the treatment 

group were mixed in terms of gender, ethnicity, prior knowledge, and socioeconomic status. 

However, the treatment group ended up having slightly more males than females with a female-

to-male ratio of 3:8.   

Of the 19 students who were not chosen for the treatment group, 11 students’ course 

profiles were randomly blindly sourced to form a control group for the study. The sourced data 

provided by the course instructor contained information only on students’ genders and cognitive 

examination performances; the female-to-male ratio was 6:5. Because no data were sourced on 

the control group students’ ethnicities or socioeconomic statuses, it is not possible to say with 

certainty whether these aspects were mixed; however, as mentioned earlier, the general 

population of 30 was mixed for all these aspects. 

Students in the control group received strictly formal mathematics instruction throughout 

the entire intervention phase of the study. Typically, this meant that control group students would 

attend a class that would involve a combination of lecture and problem-working—usually, 

though not necessarily, in that same order each day. They would be joined by treatment students 

for the latter half of each session. Students in the treatment group received mixed mathematics 

instruction; for two of five class sessions each week, treatment students would spend the first 

half of the period utilizing the mathematical game as a learning supplement, then rejoin control 
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students in the second half of class. Typically, this meant that treatment group students would 

usually miss some lecture component on game play days; however, for the other three days each 

week (i.e. when game play did not occur), students in both groups received identical instruction. 

 

The Game Play Experience and Instructional Approach 

 

As mentioned, the treatment group received a mixture of formal mathematics instruction 

and an algebra game play alternative. Game play sessions were substituted for traditional class 

time for twenty-minute sessions twice a week for 8 weeks; notably, class periods were 42 

minutes long. This means that in a typical week during the intervention phase of the study, a 

student in the treatment group had roughly 160 minutes of formal algebra instruction and 40 

minutes of Dragonbox Algebra 12+ game play; note that a few minutes could be lost on either 

account due to students walking from the computer lab to the algebra class from game play 

sessions mid-period. Game play sessions with the treatment group students were always 

conducted during the first half of algebra periods.  

In each session, students would meet the principal researcher in the computer lab. 

Usually, the principal researcher would have prepared each of the computers to have the 

Dragonbox Algebra 12+ software on screen by the time students entered the room. Upon 

entering, students would immediately sit at their assigned computers and begin playing while the 

principal researcher observed the students for the roughly twenty-minute half-period. Students 

sat adjacent to and across from one another and were free to discuss in-game content. 

Students who participated in the algebra game play experience played Dragonbox co-

instructionally, in the sense that they were learning new algebra equation-solving content while 

playing through a game that was designed to help enhance their algebra equation-solving 

abilities. The principal researcher supervised game play but did not attempt to directly influence 
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students’ exploration within game play or attempt to directly influence students’ connection-

making between the content encountered in game play and formal algebra equation-solving 

ideas. This approach was taken primarily for two reasons. First, few studies in the literature 

utilized Dragonbox co-instructionally, and no study utilizes this variant of co-instructional 

learning when working with Dragonbox. It is interesting to see the connections and themes that 

arise naturally for students from this experience – without any expert interference. Games, more 

generally, are often picked up and played by students outside of the classroom context, and so 

this study provides a perspective on what students might acquire from playing Dragonbox even 

outside of school settings. Second, because the principal researcher would bring biases to the 

teaching and learning process while actively facilitating connections between game play and 

formal mathematics content, he did not provide instruction so as not to exert any strong 

influences on the treatment group that would present a challenge of accountability during data 

analysis or conflict with the primary algebra teacher’s algebra instruction.  

Dragonbox Game Play Connections to Formally Expressed Algebraic Concepts 

 

The game used in the study, Dragonbox Algebra 12+, contains many representations of 

concepts central to the algebraic equation-solving process. This section expounds upon what the 

principal researcher has decided are the game’s most important representations and mechanics 

for ease of discussion in later sections. Table 3.1 is included at the end of this section for quick 

reference on in-game representations of equation-solving concepts. It is accompanied by Table 

3.2, which displays some in-game mechanics associated with different in-game movements. Note 

that although game play does not initially utilize notations and representations found in equation 

solving typically, it steadily moves towards them, so that by the later chapters in the game, game 

play stages may appear precisely as if they were equations from, for example, a textbook. 
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Recalling part of Dolonen and Kluge’s (2015) description of game play provided in the literature 

review, the game players’ goals are here reiterated: “[each stage] consists of two large fields 

corresponding to the two sides of an equation, along with a storage located underneath consisting 

of objects that can be pulled out and placed within the two fields.... A level ends when the main 

symbol—the dragon box (and later an “x”)—stands alone in one field” (pp. 3-4).  

 Chapter 1-9 is one of the earliest levels to feature an “equation” screen. In Figure 3.1, 

most of the screen is divided into two halves; the left half has two tiles on it, and the right half 

has one tile on it. Each of these tiles can be thought of as a variable, but the glowing box 

represents the variable that needs to be “solved for” or “isolated.” This level may be thought of 

as a model of an equation such as 𝑥 + 𝑎 = 𝑏. In this first screen shot, we see that the bottom of 

the screen is a tile bank that allows the player to introduce new tiles into the board/equation; 

because any new tiles that the player wishes to introduce to the equation must come from this tile 

bank, players are bound to a finite (though potentially large) number of possible moves. To 

“solve for the variable/box” on this level, the player is supposed to drag the dark-creature tile 

from the tile bank onto the left hand side of the equation in order to have it “cancel out” the 

bright-creature tile; the game will then prompt the player to move another copy of the tile onto 

the right hand side of the model equation, demonstrating the addition/subtraction properties of 

equality and establishing a notion of additive inverses. 
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Figure 3.1: An early problem that emphasizes the addition/subtraction property of equality. 

 In game play, equivalents to a variety of arithmetic conventions can also be utilized. 

Figure 3.2 demonstrates a fraction— “fish over fish”—that the player is prompted to reduce into 

a white one-dot tile (representing the number one); in a much later level, the reverse is also 

described (e.g. change the number 1 into “fish over fish”). Figure 3.3 then establishes that, if a 

player has “one times some variable” (e.g. 1𝑥), represented here by a variable-box joined to a 

white one-dot tile by a silver circle, the player can click on the white-dot tile to make it vanish 

(e.g. treating 1𝑥 as just 𝑥). 
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Figure 3.2: The concept of a “whole fraction” equaling 1 is suggested to the player. 
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Figure 3.3: The convention of writing, for example, 1𝑥 as 𝑥 is taught to the player. 

 Game play also features separate treatments for the multiplication and division properties 

of equality. In Figure 3.4, the player is instructed to “divide” both sides of the equation by 

inserting the only tile in his/her tile bank into an indent on the left-hand side of the equation; 

upon doing this, he/she is prompted to also place one copy of that tile under each term on the 

right-hand side. Until the player satisfies this prompt, no other progress can be made; the game is 

designed to force certain moves during play to guarantee players’ adherence to certain 

mathematical ideas—in this case, the division property of equality is enforced once the player 

had indicated an interest in dividing somewhere in the equation. This board is effectively 

representing an equation such as 𝑎𝑥 = 𝑏 + 𝑐, and showing players that the solution when solving 
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for 𝑥 can be found by computing 
𝑎𝑥

𝑎
=

𝑏

𝑎
+

𝑐

𝑎
. Figure 3.5 demonstrates the game play equivalent 

of the multiplication property of equality, using a similar set up.  

 

Figure 3.4: A level analogous to the equation 𝑎𝑥 = 𝑏 + 𝑐 representing  

the division property of equality. 
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Figure 3.5: A level analogous to the equation 
𝑥

𝑎
= 𝑏 + 𝑐 representing  

the multiplication property of equality. 

 Further levels demonstrate the notion of combining like terms and factoring within 

fractions. In Figure 3.6, the player is instructed to drag a white two-dot tile onto a white three-dot 

tile in order to create a white five-dot tile; the level can then be solved by “flipping” the white 

five-dot tile in the tile bank into a black five-dot tile, and using the black five-dot tile to balance 

the equation (effectively, one solves 𝑥 + 2 + 3 = 𝑎 by first getting 𝑥 + 5 = 𝑎, advancing to 𝑥 +

5 − 5 = 𝑎 − 5, and concluding that 𝑥 = 𝑎 − 5). Figure 3.7 shows an equation with a fraction for 

which the player is instructed to tap the white six-dot tile, which will “factor” it into a white 

three-dot tile and white two-dot tile.  
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Figure 3.6: A level representing the equation 𝑥 + 2 + 3 = 𝑎 that teaches players about 

combining like terms. 
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Figure 3.7: A level that instructs players on factoring within a fraction.  

Levels in the second half of the game introduce concepts related to parentheses, which 

typically appear as bubbles (Figure 3.8). However, for cases in which the terms within the 

parentheses would be joined by a plus or minus sign, and there is a term multiplying or dividing 

the parenthetical terms, the bubble is instead a block of ice (which cannot instantly be “popped”) 

to indicate that operations such as multiplication and division must interact with all of the terms 

in the parentheses. Figure 3.9 demonstrates the equivalent of the distributive property of 

multiplication over addition, while Figure 3.10 demonstrates the factoring of like terms.  
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Figure 3.8: A representation of the equation (𝑥) = 𝑎, encouraging players to “pop the 

bubble.” 

 

Figure 3.9: A level demonstrating the distributive property of multiplication over addition. 
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Figure 3.10: The equivalent of the equation (
𝑥

3
+

𝑥

3
) = 𝑎 + 𝑏 is presented to the player; one 

suggested method is to “factor out” the 
1

3
 coefficient, first.  
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Table 3.1: Comparison of Essential Equation-Solving Concepts in Elementary Algebra 

and Representations of those Concepts in Dragonbox Algebra 12+ 

Algebra Equation-Solving Concept Dragonbox Representation Examples 

 

 

 

 

 

 

 

Left-Hand Side, Equals Sign, Right-Hand 

Side 

of the Equation 

 
Or 

 
(Above, a clear game board shows left and 

right halves split by a bar to indicate the two 

sides of an equation and equals sign; below, a 

typical equation that appears in late-game 

Dragonbox.) 

 

 

 

Variable Being Solved For 

 
(At left, the eponymous “Dragonbox” tile; at 

right, the standard tile for 𝑥.) 

 

 

 

 

 

Other Variables 

 
 

Above, random creature tiles; below, a 

standard tile for the random variable 𝑐. 
 

 

Whole Numbers 
 

At left, a tile with five dots to symbolize the 

number 5; at right, the tile for 6. 
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Negatives 

 
At top left, the “negative” of a creature tile 

shown earlier; at top right, a tile with one dot 

on a dark palette to symbolize the number 

−1; at bottom left, a standard −𝑏 tile; at 

bottom right, a standard −5 tile. 

 

 

 

 

 

 

Addition/Subtraction 

 
At left, two free-floating variable tiles are 

treated as being added together; at right, the 

standard plus-sign may also be used. Notably, 

subtraction is dealt with by adding the 

negative tiles shown earlier. 

 

 

Multiplication 

 
In both cases, a circular bullet is shown 

indicating a product between two terms. 

 

 

 

Division/Fractions 

 
At left, the representation of a fraction like, 

say, 
𝑥

𝑎
; at right, the standard fraction 

𝑐

𝑑
. 
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Parentheses (First Variant) 

 
At left, a bubble surrounds the sum of two 

fractions; at right, standard parentheses 

surround the sum of two fractions. 

 

 

 

 

Parentheses (Second Variant) 

 
At left, a bullet binds a term to parentheses 

containing a sum—Dragonbox uses an ice-

block instead of a bubble in this case in order 

to indicate that the Distributive Property of 

Multiplication over Addition may be used; at 

right, a bullet binds 𝑎 to parentheses 

containing a sum, but standard parentheses 

are used. 
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Table 3.2: Examination of In-Game Mechanics Related to Essential Equation-Solving Actions 

Player’s Intended Actions in terms of Formal 

Equation-Solving Language 

In-Game Mechanics’ Response(s) 

 

If the player chooses to introduce any new 

term to the equation…  
…he/she must choose a term from the tile-

bank provided at the start of the level. 

 

 

 

 

 

If the player chooses to “add a term…” 

 
…he/she will see an indent on the screen 

indicating where else a term must be “added” 

to obey the Addition Property of Equality. 

This indent must be filled before continuing. 

 

 

 

 

 

 

If the player chooses to “multiply by a 

term…” 

 
…he/she will see several indents on the 

screen indicating where else a term must be 

“multiplied” to obey the Multiplication 

Property of Equality. These indents must be 

filled before continuing. 

 

 

 

 

 

 

If the player chooses to “divide by a term…” 

 
…he/she will see several indents on the 



 

68 

 

screen indicating where else a term must be 

“divided” to obey the Division Property of 

Equality. These indents must be filled before 

continuing. 

 

 

 

 

 

If the player chooses to “change 1 into an 

equivalent fraction…” 

 
…he/she will swipe the 1 until it becomes a 

fraction of question-marks, then tap a 

different tile to populate the question-marks 

with that tile’s content. These question-marks 

must be converted before continuing. 

 

 

 

 

If the player chooses to create 

“parentheses…” 

 
…he/she may drag a bubble icon onto the 

terms he/she wishes to put into the 

“parentheses.” The “parentheses” can be 

removed by tapping to “pop” the bubble. The 

ice-block variant of parentheses discussed in 

the previous table can be created by 

combining the bubble variant of parentheses 

with the multiplication procedure. 

 

 

 

 

 

 

If the player chooses to “factor…” 
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…he/she may remove one term from 

“parentheses;” he/she will then be prompted 

(by a slight glow) to remove other terms to 

complete the factoring. The factoring must be 

completed to continue. 

 

 

 

 

If the player chooses to utilize the 

“Distributive Property of Multiplication over 

Addition…”  

 
…he/she may drag the multiplying term onto 

the attached “parentheses”; the distribution 

will complete automatically.  

 

Instruments and Data Collection 

 

This study utilizes a convergent mixed-methods research design, defined by Merriam and 

Tisdell (2016) to be a “design in which the qualitative and quantitative data are collected more or 

less simultaneously; both data sets are analyzed and the results are compared” (p. 46). Chatterji 

(2010) argues that mixed-method designs considerably improve the flexibility of a study’s data 

collection resources and allows for the quantitative and qualitative data to scaffold each other for 

increased support. In this study, the primary use of the collected qualitative data is to aid in the 

identification and description of trends found in the quantitative data, although throughout the 

study, both the quantitative and qualitative data were collected on ongoing overlapping intervals. 

The collection of qualitative data was deemed particularly important due to much extant 
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literature collecting primarily superficial qualitative data.  

Instruments for collecting data on cognition. 

 Two quantitative instruments and two qualitative instruments were developed for 

collecting data on student cognition throughout the study.  

 The quantitative instruments were the first and second variants (of three) of the Algebra 

Games Abilities Tests (AGATE 1 and AGATE 2, respectively) designed by the principal 

researcher. To formulate these designs, the principal researcher first identified that, among the 

four strands of cognitive growth potentials scaffolding cognition research in mathematics 

education as defined in the literature review, procedural fluency, conceptual understanding, and 

strategic competence with respect to elementary algebra could be well-addressed via a 

quantitative instrument that could clarify each student’s equation-solving prowess. He next 

reviewed the formal algebraic content that both paralleled the game play of Dragonbox Algebra 

12+ and also appeared in students’ planned formal mathematics instruction. Finally, he presented 

a series of drafts of each AGATE to the algebra course instructor to confirm that by the end of 

the intervention phase of the study, all students would have had, minimally, some formal 

treatment of all concepts appearing on the exams. No references to game play were included in 

the AGATE designs; although this starkly separates the endogenous fantasy of game play and the 

formal mathematics, this decision was made because the AGATEs would be utilized by both the 

treatment and control groups, the latter of which would have no game-related knowledge. Each 

of the AGATEs contained 17 questions split across 8 parts—each part asks for the solver to 

isolate a different variable in various one-step and multiple-step equations. However, the 17 

questions are organized conceptually into three subsections: questions 1-5 examine basic uses of 

the addition, subtraction, multiplication, and division properties of equality; questions 6-10 test 
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the former, but also introduce fractional multiplication and division; questions 11-17 test both of 

the former, but test also the distributive property of multiplication over addition, heightened 

mastery of inverse operations, and, to a limited extent, factoring skills. Changes to content 

between the two exams were superficial; for example, a question on the AGATE 1 may only 

have differed with a corresponding question on the AGATE 2 by way of the numbers and 

variables utilized in the problem. Because this was a superficial change, it didn’t impact students’ 

abilities to use their algebraic knowledge.  The AGATE 1 was administered as a pretest to all 

students at the start of the intervention phase during their algebra period. Similarly, the AGATE 2 

was administered as a posttest to all students at the end of the intervention phase during students’ 

algebra period; however, two students were absent during the administration of the AGATE 2 at 

the end of the treatment phase. These students were unable to complete the AGATE 2 because 

they left the US several days early—and prior to the final two game play sessions—for travel 

during winter recess; they would only return following the one-month recess, by which point, 

potential AGATE 2 data would not be useful. 

 The qualitative instruments, Cognition-Focused Interview Protocols 1 and 2, were 

utilized only with students from the treatment group and were designed to help students vocalize 

the impact, if any, that their algebra game play experiences may have had on the way that they 

think about and solve algebraic equations. Students were chosen pseudorandomly to participate 

in the interviews; of the first four students asked to participate, two declined and two agreed. 

Declining students were replaced by two new pseudorandomly chosen students who agreed. The 

final four agreeing students participated in both protocols 1 and 2.  

The first protocol was conducted half-way through the eight-week treatment phase and 

the second protocol was conducted at the end of the eight-week treatment.  The protocol guided 
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the principal researcher through an open-ended, free-response interview with each of the students 

in roughly 20-minute blocks occurring outside of the algebra class (meaning on students’ free 

periods or before or after class sessions). Most of the questions in the second protocol make 

some reference to student responses to the first protocol; for questions that do not make such 

reference, it is noted that the time of interest is “since the last interview,” as opposed to the full-

course experience.  

The Cognition-Focused Interview Protocols were designed around a selection of themes 

that the literature review exposed as being important; although some of the language on the two 

protocols differs, each protocol contains 7 question-types which are presented in the same order 

in each protocol. Question-type 1 probes for how students have utilized the game, asking 

specifically if they’ve ever played it outside of the study in the past, or during the treatment 

duration outside of regular class periods or even outside of school; this may provide an 

explanation for the utility or interest a student may have in the game. Question-type 2 asks 

students to provide a description of game play, checking to see if they can articulate the game 

design’s intentional parallels between game play and algebraic equation solving. This was 

potentially useful because it could provide insight regarding whether students were aware they 

may have been refining their algebra skills via game play. Question-type 3 directly asks students 

if they feel their understanding of content from elementary algebra was impacted by game play, 

and if so, whether it was impacted positively or negatively. This question-type naturally flows 

from the previous one, as both relate to the parallels between the mathematical game and the 

formal classroom mathematics as perceived by the learner/player. Question-type 4 asks students 

if any experience(s) from game play impacted their actions while doing mathematics during their 

formal algebra course; here, the potential of passive information transfer, from an informal 
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environment to a formal environment, is assessed. Question-type 5 asks whether anything from 

game play complicated or contradicted information found in the formal algebra course, probing 

for potential dissonance that could cause the student mathematical confusion. Question-type 6 

asks students whether content encountered during game play appears to parallel content from 

their formal algebra course, and whether game content ever appears to parallel potentially 

confusing concepts from students’ formal mathematics learning; this question particularly seeks 

to determine if there is any algebra content which was learned better by students through the 

informal game play experience. Finally, question-type 7 asks students to walk the principal 

researcher through a level(s) of Dragonbox Algebra 12+ while justifying the actions made either 

via informal language or with algebra-specific vocabulary. The student is also asked whether he 

or she would be able to construct an algebraic model of the game level using numbers and 

variables. This last question-type elucidates how students express their algebraic thinking and 

potentially draw connections between game play content and formal algebraic ideas.  

Instruments for collecting data on affect. 

 Three qualitative instruments were developed for collecting data on student affect 

throughout the study: Affect-Focused Interview Protocols 1, 2, and 3. These instruments were 

utilized only with students from the treatment group and were designed to help students vocalize 

the impact, if any, that their algebra game play experiences may have had on the ways they view 

the field of mathematics (and more specifically, algebra), themselves as mathematics doers, and 

related perspectives and ideas. Of the first four students pseudorandomly asked to participate in 

these interviews, three agreed and one declined; the declining student was replaced with a 

pseudorandomly chosen student who agreed to participate. The final four agreeing students 

participated in each of the three protocols.  Notably, although there was some overlap in the 
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student volunteers from the Cognitive-Focused Interview Protocols and the Affective-Focused 

Interview protocols, they are not identical sets of students: exactly two students, Ivan and 

Harold, went through all Cognitive-Focused and Affective-Focused Interview Protocols.  

The first protocol was conducted at the beginning of the eight-week treatment, the second 

protocol was conducted at the middle of the eight-week treatment phase, and the third protocol 

was conducted at the end of the eight-week treatment phase.  Each protocol guided the principal 

researcher through an interview that asked a student to respond to each item in a series of 

prompts by first selecting a Likert scale position and then explaining why he or she chose that 

position. Each interview for each protocol occurred in roughly 20-minute blocks outside of the 

algebra class (meaning on students’ free periods or before or after class sessions). The same 

selection of 16 questions appears across all three protocols. 

 The Affective-Focused Interview protocols draw on ideas from Tapia and Marsh’s 

“Attitudes Towards Mathematics Inventory,” sometimes referred to as ATMI (2004). The original 

ATMI utilizes a 5-point Likert scale that asks students to identify the intensity of their views 

across 40 prompts from “strongly disagree” to “strongly agree.” A sample item from the original 

ATMI is the prompt “Mathematics is a worthwhile and necessary subject.” However, the 

principal researcher believed that richer data could be collected if students talked out their views 

and explained how and why those views had been established. Therefore, in the Affective-

Focused Interview protocols, a student first selects his or her position on the Likert scale relative 

to a prompt, and then elaborates as much as he or she chooses. However, this design choice 

required a shortening of the prompt list from 40 items to 16 items for time limitations. The 

principal researcher utilized the ATMI as a basis for the Affective-Focused Interview protocols, 

directly quoting some items from the original ATMI, adapting other items from the original 
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ATMI to be better suited for the new protocols/setting/population, and generating some novel 

prompts that look specifically at elements core to this research. An example of an adapted 

prompt is “I am often confused when doing mathematics;” the original prompt had been “I am 

always confused in my mathematics class.” In this case, the prompt was changed to encourage a 

broader perspective on when, where, and how an individual might be utilizing mathematical 

thinking. An example of a novel prompt in the same spirit of the original ATMI follows: “There’s 

no mathematics involved in playing games.” This prompt is clearly aimed at determining 

students’ views on whether game play can be mathematical in nature, or if games are something 

incompatible with mathematical learning or doing.   

Instruments for collecting data on retention. 

 

  One quantitative instrument and one qualitative instrument were developed for collecting 

data on student content retention assessed one month after the intervention phase of the study. 

During the one-month interim, students were on winter recess in mid-to-late December and early 

January, and as such, were not expected to receive any instruction related to schoolwork from 

their formal courses or from the study.  

 The quantitative instrument was the third variant of the Algebra Games Abilities Tests 

(AGATE 3) designed by the principal researcher. The AGATE 3 was designed using the same 

process used for the AGATE 1 and AGATE 2. The AGATE 3 was also structurally identical to 

the AGATE 1 and 2, aside from some superficial changes; for example, a question on the 

AGATE 3 may only have differed with a corresponding question on the AGATE 1 or 2 by way of 

the numbers and variables utilized in the problem. As mentioned earlier, because this was a 

superficial change, it didn’t impact students’ abilities to use their algebraic knowledge. The 

AGATE 3 was administered to all students the first day they returned from winter recess in early 
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January; however, one student was absent during the administration of the AGATE 3 during the 

retention phase. This student indicated that he would be out of the country for an extended period 

following the winter recess, so it was unclear at what point in the future he would be able to 

complete the AGATE 3; he returned roughly a week after the study had concluded, so his data 

point for the AGATE 3 was invalidated since he had been doing his formal mathematics 

coursework from home during this time. 

 To complement the quantitative data from the AGATE 3, the qualitative instrument used 

for gathering data on content retention was the Effects of Mathematical Game Play Study 

Questionnaire. The questionnaire included five open-ended questions asking participants to 

discuss what aspects, in their current and previous mathematics course experiences, have been 

most memorable. It was administered the day after the administration of the AGATE 3. Students 

were asked to provide examples and justify their responses in the questionnaire instructions. A 

sample item from the questionnaire is “What learning experiences or activities in your study of 

algebra this academic year have you found most memorable? Why?” Although the questionnaire 

was administered to all members of the treatment group (and no members of the control group), 

no questions directly discuss or reference the algebra game play experience so as not to influence 

students to discuss game play. These data were collected specifically to determine the degree to 

which students correlate their content retention in their algebra course with the algebra game 

play experience and was examined by the principal researcher to identify themes of the treatment 

experience that could directly relate to changes in content retention.  

Additional game play data. 

 

At the end of the treatment, the principal researcher did record some in-game statistics 

that were available for each student’s Dragonbox Algebra 12+ profile. In particular, this included 



 

77 

 

the number of in-game levels each student completed (of 10) and the “quality” of a student’s 

solution to a problem (measured from 1 to 3) based on the number of moves taken to complete 

the level and whether the final solution was in simplest form. These were combined to form a 

metric referred to as “levels attempted” reintroduced later in analysis; to combine these data, the 

principal researcher tripled the initial number of levels possible (thus representing Level X with 

1, 2, or 3 as the response “quality”) and computed the percentage students completed of the new 

total of levels, for which a quality of 2 would include completion of a quality of 1, and a quality 

of 3 would include completion of both qualities 1 and 2.  

Timeline overview. 

 

On the first day of the study, students in both the control and treatment groups completed 

the AGATE 1 pretest exam, and four students from the treatment group agreed to participate in 

the first affective-focused interview. The AGATE 1 exams from the treatment group were 

collected by the principal researcher, and the algebra course instructor collected and held the 

AGATE 1 exams from the control group; the principal researcher did not have access to exam 

results at that time. The affective-focused interviews were all conducted according to the 

protocol described earlier and were video recorded by the principal investigator. Following 

transcription by the principal investigator, the recordings were deleted; this was the standard 

procedure for all interviews conducted during the study.  

Four weeks into the study, at the half-way point of the treatment phase, the second 

affective-focused interview and first cognitive-focused interview were conducted, recorded, and 

transcribed. In the final week of the treatment phase, eight weeks into the study, the AGATE 2 

posttest exam was administered to students in both the treatment and control groups, and the 

final rounds of both the cognitive-focused and the affective-focused interviews were conducted 
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with students from the treatment group. Again, the algebra course instructor maintained the 

AGATE 2 data, although all interview data were immediately available to the principal 

investigator.  

Following the treatment phase, no data were collected during the 1-month winter recess.  

Following the recess, on the first day that students returned to school in mid-January, the 

principal researcher administered the AGATE 3 to the students in both the treatment and control 

groups and administered a retention-focused questionnaire to the students in the treatment group. 

Upon collecting the questionnaires and the AGATE 3 from the treatment group students, the 

principal researcher had collected all necessary data from the treatment group students. Once this 

was confirmed, the algebra course instructor randomly selected 11 student profiles from the 

control group, and the principal researcher was given access to each of those 11 students’ 

AGATE 1, 2, and 3 results.  

As two final clarifying remarks, note that all interviews were conducted outside of the 

usual algebra-period time whenever students had free periods, and the AGATEs were all 

administered during the formal algebra class time. The questionnaire for the treatment group was 

also administered outside of students’ usual algebra-period time. Figure 3.11 provides a visual of 

the data-collection timeline.  



 

79 

 

 

Figure 3.11: A timeline of the study identifying when, for what, and with whom  

each instrument was utilized. 

 

 

Data Analysis 

 

Addressing research question 1. 

 

 To address the first research question about cognitive learning outcomes, data on student 

cognition from the AGATE 1, AGATE 2, and cognition-focused interview protocols were 

analyzed in several ways. The themes resulting from those analyses were interwoven to provide a 

holistic answer to the first research question.   

To begin analysis, the principal researcher first graded the AGATE 1 and AGATE 2; 
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notably, he was the sole grader in this process. Results of the AGATE 1 were used to establish a 

baseline of prior knowledge on both an individual and class-wide scale. All AGATEs were 

graded by the principal researcher in the following two ways: i) Each question was graded as 

being either correct (1) or incorrect (0), and no partial credit was awarded. Note that correct 

responses contained a question’s solution without any notational errors, but did not have to be in 

simplest form (e.g. a response writing “
4

2
𝑥” instead of “2𝑥” would be considered correct if all 

other work leading to that point was correct). The decision to not penalize work for not being in 

simplest form was made because Dragonbox game play does not require solutions to be in the 

game-equivalent of simplest form—levels only require the in-game variable to be isolated. ii) In 

addition to grading responses as either correct or incorrect, the principal researcher coded 

incorrect responses as falling into one of the following error categories: 1) Computationally 

Erroneous; 2) Consistently Applying an Incorrect Conceptual Framework; 3) Omitted; 4) 

Attempted, but either Incomplete or Unjustified. 

Here, these categories are briefly described. Work that was deemed “Computationally 

Erroneous” typically consisted of only one error that could be the result of carelessness, such as 

missing a negative sign in a final answer, or incorrectly summing two numbers together; 

“Computationally Erroneous” work did not contain compelling evidence that the student did not 

understand the processes necessary to solve the algebraic equation. Work in which the student 

was “Consistently Applying an Incorrect Conceptual Framework,” however, did contain 

compelling evidence that the student did not have a correct understanding of how to solve the 

question at hand; this evidence was usually demonstrated across several recurrent errors either 

within the same question’s work, or sometimes across multiple questions’ work, for questions 

that involved identical or closely related understanding. Questions in which no work whatsoever 
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was provided were marked as being “Omitted.” Questions that seemed to have some work, but 

presented no final answer, or which came up with nonsensical responses with or without work 

were marked as “Attempted, but either Incomplete or Unjustified.”  

Analysis based on grading (i) utilized the statistical techniques of Analysis of Co-

Variance (ANCOVA) and the statistical software R, assessing each student’s AGATE 2 results in 

conjunction with covariate data to identify cognitive development on individual and communal 

bases within and across the two groups over the course of the eight-week intervention phase. 

Two ANCOVAs were conducted; for both, the primary covariate was students’ AGATE 1 results. 

This was done to verify that AGATE 1 scores were significant predictors of AGATE 2 scores. In 

the first ANCOVA, gender and group assignment were additional covariates. In the second 

ANCOVA, gender was maintained as a covariate, but a quantile for “in-game chapters 

attempted” was included as an explanatory variable, rather than the binary group assignment, 

while the group covariate was excluded. The number of in-game chapters attempted served as a 

rough estimate for the progress that students made through the game’s 10 chapters; students with 

different quantiles for this measure might be considered as having completed “more of” or “less 

of” the treatment. Similarly, students in the control group could be considered to have completed 

0 chapters. 

Analysis based on grading (ii) examined and unpacked students’ errors on both individual 

and communal scales, and compared responses from the AGATE 1 and AGATE 2. This analysis 

was done primarily by addressing patterns in students’ responses that developed within each 

conceptual bucket of questions (i.e. within questions 1-5, questions 6-10, or questions 11-17). 

Themes of students’ cognitive changes—especially students’ misconceptions—that were 

identified from student work on the AGATEs were investigated and elaborated upon with respect 
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to potential connections to game play.  

To support many of the claims made in reviewing the quantitative data, the principal 

researcher reviewed data harvested from the interview transcripts and, in analysis, described 

patterns of behavior, outlooks, and other cognitive changes that arose among interviewees. Each 

of the 8 interviews (2 for each of 4 students) were analyzed on both an individual scale (e.g. 

Student A Interview 1, Student A Interview 2) and a communal scale (e.g. all students’ Interview 

1 responses). Emergent themes were paired up with students’ AGATE 1 and AGATE 2 responses. 

Themes were sought and viewed primarily through a lens of connecting game play to 

mathematics-doing, or mathematics-doing to game play.  

The stated quantitative analyses helped the principal researcher recognize changes in 

cognition during the treatment that impacted students’ cognitive outcomes, and the qualitative 

analyses helped assess the connections held by these changes and outcomes to the algebra game 

play experience. Together, these helped the principal researcher describe how integrating 

mathematical game play into a traditional eighth grade algebra curriculum impacted students' 

cognitive learning outcomes in elementary algebra. 

Addressing research question 2. 

 

To address the second research question about affective outcomes, data on student affect 

from the affect-focused interview protocols were analyzed to identify a variety of emergent 

themes related to the algebra game play experience.  

The affect-focused interview protocols differed from the cognition-focused interview 

protocols in a notable way: although students still responded to prompts provided by the 

principal researcher, their responses were preceded by their given Likert-scale rating, which 

could present any of the following perspectives: strongly disagree, disagree, (feel) neutral, agree, 
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strongly agree. Students’ Likert-scale responses from the 12 interviews (3 for each of 4 students) 

were first analyzed to chart instances of converging and diverging viewpoints from interviewees 

that spanned the course of the treatment. For example, initially similar Likert-scale responses 

during the first series of interviews changing to rather unlike responses during the second or third 

series of interviews indicated a divergence of opinion; the reverse indicated a convergence of 

opinion. Checking for convergences and divergences of opinions was done to identify interview 

prompts for which students’ responses might suggest something about the game play 

experience’s impact on students’ affective outcomes. In particular, convergences suggest ways 

that game play might influence all students’ affective outcomes universally, and divergences 

suggest ways that game play might influence each student’s affective outcomes differentially. 

Once these prompts were identified, students’ responses were closely analyzed on both an 

individual scale (e.g. Student A Interview 1, Student A Interview 2) and a communal scale (e.g. 

all students’ Interview 1 responses). Qualitative analysis of students’ responses to such prompts 

identified recurring themes which the principal researcher coded and looked at relative to the 

algebra game play experience.  

The stated qualitative analyses helped the principal researcher recognize changes in affect 

during the treatment that impacted students’ affective outcomes. These analyses helped assess the 

connections held by these changes and outcomes to the algebra game play experience. Using 

these, the principal researcher described how integrating mathematical game play into a 

traditional eighth grade algebra curriculum impacted students' affective outcomes in relation to 

both elementary algebra and mathematics in general. 

Addressing research question 3. 

 

To address the third research question, data on content retention were attained by 
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collecting quantitative data from the AGATE 3 and qualitative data from a retention-focused 

questionnaire.  

To begin analysis, the principal researcher first graded the AGATE 3 using precisely the 

same two methods as had been used for the AGATE 1 and AGATE 2. Then, using the statistical 

techniques of Analysis of Co-Variance (ANCOVA) and the statistical software R, each student’s 

AGATE 3 results were assessed in conjunction with covariate data to identify the extent of 

students’ content retention on individual and communal bases within and across the two groups 

following the one-month recess. Two ANCOVAs were conducted; for both, the primary covariate 

was students’ AGATE 2 results. In the first ANCOVA, gender and group assignment were 

additional covariates. In the second ANCOVA, gender was maintained as a covariate, but a 

quantile for “in-game chapters attempted” was included as an explanatory variable instead of the 

binary group assignment covariate. As before, the number of in-game chapters attempted served 

as a rough estimate for the progress that students made through the game’s 10 chapters; students 

with different quantiles for this measure might be considered as having completed “more of” or 

“less of” the treatment.  

As had been done for the AGATE 1 and AGATE 2, in addition to grading responses as 

either correct or incorrect, the principal researcher coded incorrect responses as falling into one 

of the following error categories: 1) Computationally Erroneous; 2) Consistently Applying an 

Incorrect Conceptual Framework; 3) Omitted; 4) Attempted, but either Incomplete or 

Unjustified. After this, the principal researcher conducted an analysis of students’ error types that 

examined and unpacked students’ errors on both individual and communal scales, comparing 

responses across the AGATEs. This analysis was done primarily by addressing patterns in 

students’ responses that developed within each conceptual bucket of questions (i.e. within 
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questions 1-5, questions 6-10, or questions 11-17). Themes related to students’ content retention 

were investigated and elaborated upon with respect to potential connections to game play.  

To support the claims made in reviewing the quantitative data, the principal researcher 

reviewed qualitative data harvested from the accompanying questionnaire. Emergent themes 

found analyzing the qualitative data were paired up with students’ AGATE 2 and AGATE 3 

responses. Themes were sought and viewed through a lens of connecting the algebra game play 

experience to memorable content learning or vice versa.  

The stated quantitative analyses helped the principal researcher recognize the extent to 

which students retained content knowledge following the treatment phase, and the qualitative 

analysis helped assess the connections that students’ content retentive reflections held to the 

algebra game play experience. Together, these helped the principal researcher describe how 

integrating mathematical game play into a traditional eighth grade algebra curriculum impacted 

students' content retention in elementary algebra. 
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Chapter 4: Results 

 

Introduction 

 This chapter further elaborates on the analytical techniques used for reviewing each of 

the data sets mentioned in Chapter 3 and demonstrates results from the study. Quantitative data 

were collected from the AGATE 1 and AGATE 2 to compare data on cognition between the 

treatment and control group on both an individual and population-wide level. Quantitative data 

were also collected from the AGATE 3 to compare data on retention between the treatment and 

control groups on both an individual and population-wide level. Qualitative data were collected 

only from the treatment group from a set of two cognition-focused interview protocols, a set of 

three affect-focused interview protocols, and one retention-focused questionnaire.  

 A pseudorandom selection of 11 eighth-grade students (of a potential 30) formed the 

treatment group for this study, and a random selection of 11 of the remaining 19 students formed 

the control group. The principal researcher recognizes and comments that, because 𝑛 < 30, the 

central limit theorem does not guarantee generalization of the following statistical results, and 

some quantitative data may be overly influenced by outliers. 

 To address concerns about normality of the data set, three Shapiro-Wilk tests were 

conducted using the results of the AGATE 1, AGATE 2, and AGATE 3. Considering the Shapiro-

Wilk test’s null hypothesis that each of the AGATE 1, AGATE 2, and AGATE 3 data sets used in 

this chapter are normally distributed, p-values of 0.0577, 0.2535, and 0.7133, respectively, were 

calculated, indicating that the null hypothesis should not be rejected in any of these cases; 

therefore, the following statistical considerations work with the assumption of the data being 

normally distributed. In addition to running statistical tests, several data plots are also included to 
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make better sense of the results. 

On Cognition 

Preliminary observations. 

 The AGATE 1 was administered at the beginning of the study to determine the baseline 

of both individual and classroom knowledge related to algebraic equation solving. A selection of 

the measures of central tendency and dispersion (e.g. simple range, median, and interquartile 

range) were calculated within and across each of the treatment and control groups’ results to 

assess students’ content masteries at the very beginning of the study. Use of these measures was 

selected over the use of alternatives (e.g. mean and standard deviation) to make the data more 

robust, as the small population sizes in question may otherwise be more susceptible to outlier 

data points. Note that the following calculations use 9 of the original 11 treatment students, as 

two were unable to participate in the AGATE 2, so their corresponding AGATE 1 data points 

were invalidated.  

Ranges were comparable; in both groups there was a floor of 0%. The treatment group 

ceiling was 70.59%, while the control group ceiling was 64.71%. Treatment and control group 

medians were identically 17.65%. However, the IQRs varied slightly with 23.53% for the 

treatment group and 35.30% for the control group. This distribution of scores is displayed in 

Chart 4.1. 
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The AGATE 2 was administered at the end of the treatment phase of the study to 

determine changes to students’ cognition regarding equation solving processes. For the AGATE 

2, ranges were again comparable; in both groups, there was a floor of 0%. The treatment group 

ceiling was 88.24%, while the control group ceiling was 82.35%.  The treatment group’s class 

median remained at 17.65% across 9 students (recall that 2 students were absent on the day of 

examination administration, and their data could not be collected in the future); however, the 

control group’s median of 11 students was 47.06%.  The IQRs of both groups were more 

comparable, with 41.18% for the treatment group and 32.36% for the control group; notably, the 

IQR of the treatment group had grown considerably, while the IQR of the control group had 
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stayed roughly the same. Recognizing this, one also notes that the results of both groups were 

surprisingly low, given that the course instructor agreed that all students would have had some 

familiarity with each concept appearing on the AGATEs by the end of the treatment phase. The 

distribution of scores is displayed in Chart 4.2.

 

Additionally, the following Chart 4.3 summarizes each student’s results on the AGATE 1 

and AGATE 2 and Table 4.1 offers a summary of the measures of central tendency and 

dispersion from both groups’ results across both examinations. 
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Table 4.1: A Comparison of the Measures of Central Tendency and Dispersion of Students’ 

Results on the AGATE 1 and AGATE 2 Across Exams and Groups 

 

Data Type 

AGATE 1 

Treatment 

(𝑛 = 9) 

AGATE 1 

Control 

(𝑛 = 11) 

AGATE 2 

Treatment 

(𝑛 = 9) 

AGATE 2 

Control 

(𝑛 = 11) 

Score Floor/Ceiling 0%/70.59% 0%/64.71% 0%/88.24% 0%/82.35% 

Median 17.65% 17.65% 17.65% 47.06% 

IQR 23.53% 35.30% 41.18% 32.36% 

 

As discussed in Chapter 3, the AGATE 2 results of all control and treatment group 

students were also analyzed twice via analysis of covariates (ANCOVA) in which the primary 

covariate was students’ AGATE 1 results. The following formula was used for the first analysis:  

 

𝐴𝐺𝐴𝑇𝐸 2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = (𝐵0 + 𝐵1 ∗ 𝐴𝐺𝐴𝑇𝐸 1 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 + 𝐵2 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐵3 ∗ 𝐺𝑟𝑜𝑢𝑝). 

 

This ANCOVA detected that AGATE 1 scores served as statistically significant predictors of 
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AGATE 2 results (𝑓 = 3.997, 𝑝 =  .001) when controlling for gender and group assignment; no 

other variables were found to be significant. A second ANCOVA was computed using the 

following formula:  

 

𝐴𝐺𝐴𝑇𝐸 2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

= (𝐵0 + 𝐵1 ∗ 𝐴𝐺𝐴𝑇𝐸 1 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 + 𝐵2 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐵3

∗ 𝐺𝑎𝑚𝑒 𝐶ℎ𝑎𝑝𝑡𝑒𝑟𝑠 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑). 

 

This ANCOVA detected that AGATE 1 scores served as statistically significant predictors of 

AGATE 2 results (𝑓 = 3.117, 𝑝 =  .0076) when controlling for gender and considering the 

explanatory variable for the number of game chapters attempted by students (i.e. a rough 

measure of how much game content students encountered); no other variables were found to be 

significant above and beyond AGATE 1 scores.  Based on these two ANCOVA results, the only 

claim that can be made is that students’ prior knowledge at the start of treatment was the best 

predictor of students’ results obtained at the end of treatment. Further, the following Chart 4.3 

demonstrates the relationship between the percentage of game chapters attempted by treatment 

group students and each student’s AGATE 2 performance for the 9 treatment group students who 

completed the AGATE 1 and AGATE 2. 
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Additional quantitative data were collected on the number of error types students across 

the groups made on the AGATE 1 and AGATE 2. The principal researcher coded responses as 

either being correct or falling into one of the following error categories: 1) Computationally 

Erroneous; 2) Consistently Applying an Incorrect Conceptual Framework; 3) Omitted; 4) 

Attempted, but either Incomplete or Unjustified. 

For the AGATE 1, the treatment group gave 187 responses in total10. Forty-six responses 

were correct, 11 were computationally erroneous, 31 showed consistent applications of an 

incorrect conceptual framework, 77 were omitted, and 22 were attempted, but either incomplete 

or unjustified. For the AGATE 2, the treatment group gave 153 responses in total11. Forty-three 

responses were correct, 3 were computationally erroneous, 24 showed consistent applications of 

an incorrect conceptual framework, 50 were omitted, and 33 were attempted, but either 

incomplete or unjustified. For the AGATE 1, the control group gave 187 responses in total. Fifty 

responses were correct, 7 were computationally erroneous, 42 showed consistent applications of 

                                                 
10 Each of 11 students answered the same 17 questions. The same is true of the control group for the AGATE 1 and 
the control group for the AGATE 2. 
11 As mentioned before, two students were absent, so each of 9 students answered the same 17 questions. 
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an incorrect conceptual framework, 57 were omitted, and 31 were attempted, but either 

incomplete or unjustified. For the AGATE 2, the control group gave 187 responses in total. 

Eighty-nine responses were correct, 11 were computationally erroneous, 38 showed consistent 

applications of an incorrect conceptual framework, 40 were omitted, and 9 were attempted, but 

either incomplete or unjustified. These data are visualized in Figure 4.1.  

 

Figure 4.1 is rich with information but can be challenging to navigate. The most 

important error-related aspects for examination are boxes which contain at least one gold 

triangle. If a box’s top triangle is gold, but its bottom triangle is green (e.g. Francine, Question 

12), this is an indication that a student initially had some sort of conceptual misunderstanding but 

was able to correct it during the treatment. If a box’s bottom triangle is gold, but its top triangle 
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is green (e.g. Ivan, Question 11), this is an indication that a student originally had the correct 

means of understanding a question but became confused about the process during the treatment. 

If both of a box’s triangles are gold (e.g. Dan, Question 4), then a student held some 

misconception at the start of the treatment and, most likely, maintained that misconception 

throughout the treatment; however, there is also the possibility that the misconceptions seen at 

the beginning and end of the treatment are distinct.  

Figure 4.1 may additionally be used to detect patterns of cognitive change within and 

between the groups. As mentioned in earlier chapters, the AGATEs’ 17 questions may be thought 

of as testing concepts in three parts: questions 1-5 examine basic uses of the addition, 

subtraction, multiplication, and division properties of equality; questions 6-10 test the former, but 

introduce fractional multiplication and division; questions 11-17 test both of the former, but test 

also the distributive property of multiplication over addition, heightened mastery of inverse 

operations, and, to a limited extent, factoring skills. Reemphasizing the importance of gold 

triangles, areas of Figure 4.1 that include, across many students, partially or fully gold boxes 

would be places in which the treatment and/or control populations either suffered or recovered 

from some type or types of conceptual misunderstanding. Because of the insight that it provides, 

Figure 4.1 will serve as our guidebook for navigating the analysis of students’ cognitive changes; 

I identified four important themes across these results that I discuss in the subsequent sections.  

Students’ potential cognitive changes based on quantitative and qualitative data. 

 A combination of students’ quantitative and qualitative data informed the researcher’s 

following observations on cognitive changes which have been organized into four greater 

themes. 

Metacognitive unidirectionality: likening game play to formal mathematics-doing. 

Across the cognitive-focused interviews, students discussed the extent to which they felt 
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game play synchronized with formal equation-solving ideas. For the most part, student 

metacognition regarding the link between game play and formal equation solving was 

unidirectional; most observations made by students about game play expressed situations in 

which, while playing Dragonbox, they had called themselves back to ideas about formal 

mathematics doing. In general, there is little evidence showing that students might do the reverse 

(e.g. calling back to Dragonbox experiences while doing equation solving as a part of their 

algebra course), and no evidence that during the treatment, students considered the relationship 

bidirectionally. In the following transcript samples, John and Harold each discuss connections 

between the essence of the Dragonbox experience and the process of isolating variables. John’s 

description provides an example of game play which he likens back towards formal mathematics 

for better cognitive maneuverability—he saw Dragonbox as a covert version of his algebra 

exercises.  Harold’s description provides a weak link between doing algebra in a formal 

classroom setting and drawing back to game play experiences. 

[John Interview 1] 

[0:15-0:47] John: Like, at first, [players] wouldn’t think [the game] would be like math 

‘cause there’s no, like, “Oh, 2+2 is 4,”  but then you realize ‘cause you have to get X by 

itself, and you have to like, what do you call it, like, um... I can’t think of the word, but 

you have to get X by itself and that’s like math, yeah. 

____________________________ 

[Harold Interview 2] 

[2:12-2:20] Harold: I see how DragonBox can relate to math, ‘cause I remember [earlier 

this week in class] when I was first talking about [how] I need to isolate variables [to 

solve my problem,] that kind of reminded me of Dragonbox.  

 

Perspectives like the one John put forth seemed to be dominant when speaking with the other 

two interviewees, Ivan and Greg. However, whereas John and Harold only elaborated on, 

arguably, the most obvious connection between game play and equation-solving, Ivan and Greg 
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each discussed deeper connections. Ivan spoke not only about recognizing that game play 

strategies and goals aligned with equation-solving techniques, but also that sometimes it was 

more convenient for him to perform in-game when he converted his problem into formal 

mathematical notation—a resoundingly clear indication of his metacognitive perspective. Greg 

simply noted further connections beyond just variable-isolation, pointing out in-game 

implementations of like terms and negative numbers, as examples.  

[Ivan Interview 1] 

[0:38-2:18] Ivan: I would say. . . sometimes [to beat a level] you have to actually think of 

[the game problem] as a math equation…like, you can just ignore those different little 

cubes[/tiles] and actually think of it as a math problem, like x and y, one and two and 

three…because if you actually look at the game, it has the two different sections of a 

work place, and that is almost symbolizing the equal sign, where you move it between 

them to change color… 

__________________________________________________________________ 

[Greg Interview 2] 

[0:38-1:09] Greg: [Dragonbox is] like an algebra game. The problems in the game are 

just like the ones we do in [class]. When you combine like terms, the symbols, numbers, 

and letters… if you bring stuff to the other side [of the screen] and you change the 

symbols…if you bring a negative star, like, whatever symbol, to the other side, it 

becomes positive. 

 However, while most interviewees indicated their calling-back of formal algebra-doing 

for the sake of expediting their game play experiences, John’s interview makes it clear that the 

mapping of game play experiences to formal mathematics-doing is neither necessarily automatic 

nor effortless when game play is never formally connected to the mathematics in one way or 

another.   

[John Interview 2] 

[4:09-4:29] John: …like I said, DragonBox is different. It’s not numbers. It’s more like 

pictures and stuff to isolate the variable... I wouldn’t think about this game while I’m 

doing math cause it’s not like numbers. 

 

Quantitative data could not be provided to parallel any of the here-stated qualitative data, as there 
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was no work produced on students’ AGATEs that appears to refer to any in-game representations 

or modalities.   

 

Dual-natured development of mathematical reflexes. 

Some students reported that, because of game play, select mathematical processes 

became 

second-nature and automatic to them—here, the principal researcher adopts the term “reflexive” 

from an interview with student Ivan. Ivan discusses some circumstances in his formal algebra 

course in which he realized he was involuntarily calling upon his Dragonbox experiences. 

However, his mathematical reflexes—developed, in part, by Dragonbox mechanics that force 

certain actions—ended up leading him down the wrong path while solving a question in class on 

at least one occasion, demonstrating the negative potential of this attribute.  

 [Ivan Interview 1] 

 

[3:20-4:03] Ivan: …so, for example, a few days ago when I was playing [the game], like, 

it’s almost like... “reflex” when you’re doing it. It’s like the first step you automatically 

know, and then one time I remember on a math test, I actually just had it a few days ago, 

I’ve actually applied what I’ve just remembered, and kind of used the reflex that I’ve got 

off of this game for my math test. 

 

[4:04-4:13] Researcher: Now, you’re saying reflex. What do you mean by reflex? Is there 

a specific thing you meant? 

 

[4:15-4:19] Ivan: Yes, it is a very simple [equation].  

 

*Ivan writes 
𝑥

𝑦
+ 𝑎 = 𝑏 on the board, and indicates he needs to solve for 𝑥* 

 

[4:33-4:55] Ivan: Yeah. This. At first, I was confused on whether or not I should also 

multiply 𝑦 to the 𝑎 and multiply 𝑦 to the 𝑏, and then after I watched the game, and kind 

of remembered what’s going on in the game, I just automatically know that you just can’t 

multiply [the 𝑦] to the 𝑎. So, this is almost like a reflex now where you see 𝑦 you just 

multiply it to the other side. 

 *Ivan writes 𝑥 + 𝑎 = 𝑦𝑏 and concludes that 𝑥 = 𝑦𝑏 − 𝑎* 

 

Recalling the description of the multiplicative property of equality’s Dragonbox equivalent 
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demonstrated in Chapter 3, one recognizes that the operation that Ivan describes would never 

have been allowed by Dragonbox’s in-game mechanics regulating operations involving 

multiplication. In this case, Ivan is misremembering a scenario from game play and internalizing 

it potentially because he recognizes the game’s mechanics would not allow him to make an 

illegal movement. Although the AGATEs do not have any questions that line up precisely with 

the one Ivan presented (
𝑥

𝑦
+ 𝑎 = 𝑏), there is one that comes close: question 7, which appears as 

𝑧

𝑎
= 4 + (−𝑑) [solving for 𝑧] on the AGATE 1, and as 

𝑧

𝑑
= 5 + (−𝑐) [solving for 𝑧] on the 

AGATE 2. Figure 4.1 indicates that Ivan developed a conceptual misunderstanding related to this 

question type sometime between the AGATE 1 and AGATE 2 (meaning during the treatment 

phase).  

In the AGATE 1 iteration, he is able to correctly multiply both sides of his equation by 

the denominator 𝑎—in particular, he is careful to indicate that he is multiplying the whole right-

hand side of the equation by placing its original contents in brackets. Instead, on the AGATE 2 

iteration, he effectively transfers his denominator to the right-hand side of the equation—even 

having just successfully solved a question, number 6, in which he clearly interacted differently 

with a fraction’s denominator (Figure 4.2).  
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 Ivan’s trust in the Dragonbox engine to prevent him from making algebraically incorrect 

moves is not unfounded and there are circumstances which highlight the potential positive 

aspects of the reflexivity attribute. Figure 4.1 shows, too, that each of Dan, Francine, and Ivan 

incorrectly responded to question 5 on the AGATE 1, and that, of these three who were following 

an incorrect conceptual framework, only Ivan was able to provide a correct solution to question 5 

on the AGATE 2.  

On the first exam, the equation was 𝑦 × (−𝑏) = 𝑎 + 2, and on the second exam, it was 

𝑦 × (−𝑎) = 2 + 𝑏; both cases asked to solve for 𝑦. Again, although game play did not feature a 

question that mirrored these precisely, it had one level that came close—the early-game Chapter 

3-16, the in-game equivalent of 𝑎 × 𝑥 + 𝑏 = 𝑑 (Figure 4.3).  
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Figure 4.3: A level reimagined by Ivan as a formal algebraic equation during his first interview 

 

[Ivan Interview 1] 

 

[10:59-11:06] Researcher: … Can you try to solve this, but I would love it if you could 

explain every move that you’re making, okay? 

 

[11:07-11:39] Ivan:  Okay. So, in this one, the dot here kind of represents the multiply 

sign, so in normal math you would just divide the 𝑎, so I will just put it under, it goes out 

to all of it. You can just cancel it out…oh…actually, I have to reset this level…I would 

just do this… 

 

*Ivan has written the equivalent of 𝑥 +
𝑏

𝑎
=

𝑑

𝑎
, but decides to scrap it when he sees an 

alternative method. * 

 

[11:40-11:41] Researcher: So again, tell me what you’re doing.  

 

[11:42-11:47] Ivan: I was adding a negative [𝑏 to both sides] so that it could just cancel 

out into zero. 

 

*Now, Ivan has gotten the equivalent of 𝑎𝑥 = 𝑑 − 𝑏. * 

 

[11:48-11:48] Researcher: Ah, I see. 

 

[11:49-12:02] Ivan: And then now I’m assuming I just have to divide by what’s left, so 𝑎, 

and, uh, that’s it.  
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In his solution to this question, Ivan works his way through the problem to a point that is very 

similar to question 5 on either AGATE with the main difference being the absence of a negative 

term multiplying onto the variable for which he is solving. However, in executing his final 

movement in the Dragonbox level, Ivan states he need only “divide by what’s left,” and the game 

engine only allows him to do just that. Comparing this to his work from the AGATE 1, it’s clear 

that he has progressed and corrected an error in which he felt that division by a term changed the 

sign of that term—an error that Francine maintains across exams. Figure 4.4 compares the work 

of Dan, Francine, and Ivan on question 5 of the AGATEs 1 and 2.  
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 It’s not entirely clear why Dan and Francine might not have corrected their 

misunderstandings as Ivan did from either game play experiences or regular algebra class 

sessions; it is important to note both that Chapter 3-16 was an early in-game level that all 

treatment students had cleared by the time of the AGATE 2, and 8 of the 11 control group 

students were able to answer question 5 correctly. However, there was one notable difference 

among the treatment students: Ivan discussed the level with the researcher during an interview, 

while the other students did not necessarily reflect on or discuss the level’s content in a formal 
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sense.  

Challenges isolating variables included in fractions. 

Students’ AGATE 1 and AGATE 2 performances indicated that both treatment and 

control group students struggled across the AGATEs with questions that involved fractional 

multiplication and division; here, we review a variety of misconceptions related to these 

questions that were present at either the start or end of the treatment. Some misconceptions 

demonstrated at the beginning and end of the treatment phase appear unlinked in the sense that a 

student may have had one misconception on the AGATE 1 and an entirely different 

misconception on the AGATE 2. This diversity in demonstrated misunderstandings makes it 

challenging to attribute any one aspect of game play to perpetuating a specific erroneous 

concept. However, one interviewee was able to attribute game play to his mastery of the 

multiplication and division properties of equality; following the review of misconceptions, 

Greg’s vignette demonstrating this is discussed. 

Francine’s performances stand out as particularly interesting cases because they bring to 

light something curious: although Francine is completely unable to produce any correct answers 

to questions 5 through 10 on the AGATE 2 (thus gaining points neither in the entire second 

bucket of questions nor the tail of the first), she does go on to provide multiple correct answers in 

the third bucket of questions which has several equations that do not utilize operations on 

fractions. Francine is not alone in her challenges with the second bucket of questions, 6 through 

10; Figure 4.1a shows that there was a large discrepancy between the groups’ performances in 

this section.  
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While control group students greatly increased the number of these questions they 

answered correctly on the AGATE 2 as compared to the AGATE 1, several treatment group 

students that answered questions correctly on the AGATE 1 answered the same question types 

incorrectly on the AGATE 2—look specifically to Cristi, Dan, and Ivan. Comparing the 

conceptual misunderstandings of students in both groups indicates a pervasive disclarity 

regarding the actual processes for isolating variables when the variables are a part of fractions. 

Figure 4.5 shows the work of Francine from the treatment group and Rachel from the control 

group demonstrating, respectively, misunderstanding of the multiplication property of equality, 

and misunderstanding of fractional multiplication including a variable.  
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Curiously, Rachel’s exact error is replicated by several control group students, including 

Paige, Sarah and Val, while some combination of both Francine and Rachel’s errors are 

replicated by Monica and Natasha; upon closer examination, more than a misunderstanding of 

fractional multiplication, Rachel’s conceptual misunderstanding in question 9, for example, 

seems to be that 
1

7
×

7

𝑎
 has the sevens “cancel,” leaving only an 𝑎 behind—presumably as the new 

numerator, the old one having been erroneously “deleted.”  

Following up on this point, question 8 was correctly answered by Cristi, Dan, and Ivan on 

the AGATE 1, but incorrectly answered by all three students on AGATE 2. However, each of 

them presented unique errors on the AGATE 2, and only Ivan’s lined up exactly with errors seen 

by other students—namely, he has the same misunderstanding about fractional multiplication 

that Paige, Rachel, Sarah, and Val do. Dan’s misunderstanding is a variant that includes a sign 

swapping. While Ivan and Dan consistently apply their erroneous misunderstandings in questions 
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like 9 and 10, Cristi’s misunderstanding seems unfounded on both exams; Figure 4.6 shows the 

work of Cristi, Dan, and Ivan on question 8, plus Cristi’s work on question 9. What is most 

perplexing is that on the AGATE 1, both Cristi and Ivan’s work on question 8 indicate some form 

of interaction with fractional multiplication or division that was correct, but lost by the time of 

the AGATE 2.   
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Having taken the previously examined misconceptions into account, it might seem 

unlikely that game play could serve as a good resource for correcting students’ understandings of 

operations involving fractions with variables. However, in the following transcript sample, Greg 

explicitly discusses his correct understanding of the multiplication and division properties of 
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equality which he derived from game play, indicating that such learning is indeed possible.  

[Greg Interview 1] 

[6:27-6:42] Greg: Well, the part in Chapter 3 when you have to take a number and put it 

to every side, like, made me think…when we have an algebra problem…and, like, say it’s 

a variable that’s a fraction, say 
𝑥

3
 plus…no, whatever, it doesn’t matter… equals [21]. 

 

*Although he has Chapter 8-17 open on screen, Greg clarifies that for what he wants to 

demonstrate, he is going to use, for simplicity,  
𝑥

3
= 21.* 

[6:43-7:03] Researcher: Here, can we put that on the board? That would be great if you 

wanted to show it to me. I know that marker’s not the best, but... okay, so what have we 

got here?  

[7:04-8:07] Greg: Um, so for this, I can multiply it by three…so, 
𝑥

3
= 21…you multiply 

by the reciprocal, wait um... yeah. So…𝑥 = 63… 

 

*Greg writes 
𝑥

3
÷

1

3
= 21 ÷

1

3
 and evaluates it to get 

𝑥

3
×

3

1
= 21 ×

3

1
 , and ultimately 𝑥 =

63.*  

[8:10-8:14] Researcher: Yeah, great. So, what about this is somehow related to the game 

play? 

[8:15-8:22] Greg: So, you know the part where I said we take this [number] and then, 

like, you put it here? You had to [divide by 
1

3
] everywhere. 

[8:23-8:25] Researcher: When you say, “put it here,” are you saying put it on the bottom? 

Yeah, why don’t you just show me [in the game]? 

[8:26-8:29] Greg: Like…and then you put it on everything here.  

 

*Greg points to the 2 in 2𝑥 and indicates that, when multiplying by the reciprocal, the 

multiplication property of equality extends over all the terms in the equation; therefore, 

he places a 2 in the denominator of each term to signify multiplying by 
1

2
 (Figure 4.7). * 

[8:35-8:46] Researcher: So, the idea that when you’re going to do some sort of, let’s say, 

can we call it division… on a term in the equation, you need to do that division on all of 

the terms in the equation…is that what you’re saying? 

[8:47-8:47] Greg: Yeah. 



 

109 

 

 

Figure 4.7: In the above shot, Greg demonstrates his intention to divide by 2. In the below shot, 

he expresses the division property of equality by dividing each term on both sides of the equation 

by 2. 

 

 

Greg had the benefit of discussing game play that involved solving for variables that were 
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part of fractions with the principal researcher. It is also notable that Greg was one of only three 

students that completed all the game’s content during the treatment phase—Cristi, Dan, and Ivan 

only completed 75%, 65%, and 85% of the sum content, respectively. Greg’s ability to engage 

with many more levels that were visually similar to formal algebra content (e.g. Figure 4.7) may 

have helped him achieve understanding on this matter this his peers did not. However, Francine, 

the only other student who completed the AGATE 2 and the full game content, was shown to 

struggle in the second bucket of questions—although she did score highly on the AGATE 2 

compared to her peers, overall.     

Challenges with advanced content, especially factoring. 

Because the final bucket of questions, 11 through 17, were very diverse from a 

mathematical perspective, students’ results varied dramatically. Content tested in these questions 

provided students with opportunities to exercise heightened mastery over inverse operations, 

factoring, and the distributive property of multiplication over addition. In general, most students 

in both groups with non-zero scores managed to increase the number of questions they answered 

correctly in this section between the AGATEs 1 and 2. However, one question stands out: 

number 15 was answered correctly only by Greg during the AGATE 2 (and had been answered 

correctly by no student during the AGATE 1), as demonstrated in Figure 4.1b.  
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This question stands out as one of the best candidates throughout the exams for the use of 

factoring strategies, which interview data showed students had a challenging time understanding 

during game play. In an interview with Harold, it becomes clear that he understands the utility of 

the in-game representation of factoring but is entirely unable to articulate it as a parallel to 

algebraic factoring or prove that he understands the concept beyond being a game move achieved 

with trial and error.  

[Harold Interview 2] 

 *Harold loads Chapter 7-7, which is the equivalent of the equation 𝑥 + 2𝑥 + 3𝑥 = 3. He  

subtracts 3 from both sides of the equation and then attempts to factor the left-hand side 

(Figure 4.8). * 

 

[13:21-13:44] Harold: Alright, so here’s what I think is an alternative thing you can do. I 

want to get [everything] inside [a] bubble. ... Alright so now I’m a little bit confused, I’m 

trying to get the box up here [so that I can remove it from the bubble/parentheses], so I 
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cancel this out. 

 

[13:45-13:47] Researcher: So, let me just ask you, when you pull that box out [of the 

bubble/parentheses], why do you pull that box out? 

 

[13:48-13:58] Harold: …so I can have it on the top, right here, so that I can remove these 

two boxes right here. All I need is one.  

 

 

 
Figure 4.8: The left-hand side of the screen pictured above is, effectively, 𝑥 + (−3) + 2𝑥 + 3𝑥.  

Harold intends to factor the left-hand side of the level, but cannot do so, as not all terms share a 

common factor since he subtracted 3 from both sides of the initial setting. 

 

 In this vignette, Harold demonstrates an understanding that some combination of in-game 

movements will lead him to eliminate what he views as “extra copies” of his main variable; 

however, even though the level actually began with all of the left-hand side tiles set in a 

“factorable form,” he is unable to recognize this, and assumes that all of the game tiles need to 

be present on the left-hand side in order to utilize a factoring technique.  

Misunderstandings about in-game powers upon first reveal were not altogether 

uncommon, especially during later levels which introduced more advanced concepts—besides 

the representation of factoring, the in-game representations of parentheses, the enforcement of 

the distributive property, and the equivalence of 1 and 
𝑥

𝑥
 (for non-zero 𝑥) all met some students 
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with initial confusion. However, increased exposure to the content proved to be a useful way to 

grapple with these ideas for at least some student. Greg indicated that he received good practice 

with factoring exercises that tied directly into his coursework during some levels in the game’s 

final chapter. For example, in Chapter 10-11, Greg attempted to solve the fully formally notated 

equation 𝑏(𝑒 + 𝑥) + 2 = (−2)(𝑥 + (−3)) + (−4); to be clear, all of the numbers, variables, 

operations, and signs in the equation appeared exactly as written here (besides the parentheses 

instead being ice blocks or bubbles). He was able to explain the use of the distributive property 

and basic inverse operations to get the equation to 𝑏𝑒 + 𝑏𝑥 = (−2)𝑥, then was able to identify 

that, because he was solving for 𝑥, he would need to move all 𝑥-terms to one side of the equation 

to factor. This resulted in him getting 𝑏𝑒 =  𝑥((−2) + (−1)𝑏), which he immediately changed 

to 
𝑏𝑒

(−2)+(−1)𝑏
= 𝑥 by treating the parentheses next to 𝑥 as a single term.  

The experience that Greg received when working in Dragonbox’s later chapters seemed 

to help him score points on question 15 when encountering it at the treatment’s conclusion, as he 

was able to both factor and then utilize the concept of polynomial division. Based on the work of 

the few other students that attempted the question in either group, it’s not entirely clear that all 

students understood the concepts of the distributive property or factoring, and it’s evident that 

many students still had minor confusion about utilizing inverse operations in novel situations. 

Figure 4.9 compares Greg’s question 15 solution to the work of fellow treatment student Ivan, 

and the work of two control students, Natasha and Owen. 
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Ivan’s work demonstrates a misunderstanding that equates 𝑐 × 𝑎 with 𝑐 + 𝑎 to produce as 

their sum 2𝑐𝑎; he also seems to mistakenly write a 𝑏 term as an 𝑎 term, but otherwise takes valid 

actions. Notably, no attempt at factoring is made. Natasha demonstrates an understanding that 

she may first subtract 𝑎 and 𝑑 from both sides of her equation, but presumably stumbles when 

dealing with a left-hand side of 𝑐 × 𝑎 + 𝑏 × 𝑐, ultimately dividing both sides of her equation 

incorrectly as opposed to utilizing a factoring technique to help isolate 𝑐; however, Natasha fails 

to recognize that her final response includes a 𝑐 on both sides of her equation.  Owen, in 

attempting to isolate 𝑐, makes a poor attempt at replicating most of the left-hand side of the 
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equation on the right-hand side, albeit with inverse operations; for instance, 𝑏 × 𝑐 + 𝑎 becomes 

𝑐 ÷ 𝑏 − 𝑎. Like Natasha’s response, Owen’s response also features a 𝑐 on both sides of his final 

equation. These responses are representative of the types of answers students provided to 

question 15, and it quickly becomes clear that factoring is a technique that was entirely 

unapparent to students from their formal coursework. Greg’s clear understanding of the process 

may link directly back to his articulated and demonstrated use of it in late-game Dragonbox.  

On Affect  

Preliminary observations. 

The Affect-focused interview protocols were administered to four treatment group 

students12 three times each during the treatment phase: once during the first week, once at the 

treatment’s half-way mark, and once during the last week of the treatment. Interviews were 

transcribed, and transcriptions were reviewed by the principal researcher to identify 

convergences and divergences across students’ viewpoints to identify and elaborate upon 

generally occurring themes.  

Because students’ responses were preceded by Likert scale ratings (e.g. five positions 

from Strongly Disagree to Strongly Agree), data analysis began by combing responses to identify 

prompts that elicited convergent and divergent ideas across the protocols (Charts 4.5a and 4.5b). 

Prompt responses demonstrating group convergences originally elicited disparate responses (e.g. 

at least two different Likert scale positions that were at least 2 steps apart) among students during 

the first and/or second round of interviews, but elicited comparable responses (e.g. either a 

unanimous Likert scale position, or 2 positions no more than 1 step apart) among students during 

the last round of interviews; conversely, prompts demonstrating group divergences originally 

                                                 
12 As mentioned earlier, these were not the exact same set of four students as in the Cognition-focused interview 
protocols; however, there was an overlap of two students.  
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elicited comparable responses among students during the first and/or second rounds of 

interviews, but elicited disparate responses among students during the last round of interviews. 

Prompts 4, 5, 7, and 14 were identified as convergent prompts, while prompt 13 was identified as 

the only divergent prompt.  
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Students’ potential affective changes based on qualitative data and researcher 

observations. 

 Student responses to prompts 4, 5, 7, 13, and 14 elucidated five themes related to the 

algebra game play experience which are examined in this section.  

Engagement with a sense of completion and understanding the importance of 

“working at one’s level.” 

 By the third interview protocol, all four interviewees had decided that they (minimally) 

agreed that completing a mathematics problem was generally a satisfying experience; however, 

justifications for the satisfaction varied slightly from student to student, and qualifiers were 

sometimes attached to the statement. Two students, Ivan and Dan, spoke about a sense of 

“wholeness” or “completeness” that overtook them at the end of a mathematical problem-solving 

experience when they felt the problem was at their level of workability and closely related to 

their existing pool of knowledge; during interview two, Ivan was able to elaborate on the 

exploratory nature of mathematics-doing as experienced through Dragonbox game play. 

[Ivan Interview 2] 

[2:43-2:49] Researcher: [Since you emphasize satisfaction when doing work “at your 

level,”] can you give me an example of maybe a good mathematics problem you 

completed recently, maybe in your current algebra course or elsewhere? 

 

[2:50-2:50] Ivan: That I completed? 

 

[2:51-2:51] Researcher: Yeah. 

 

[2:52-2:52] Ivan: Successfully? 

 

[2:53-2:56] Researcher: Yup and tell me about why [you had] a satisfying feeling. 

 

[2:57-3:08] Researcher: I don’t know, like today [in Dragonbox]? Because um, the way, 

when you’re [solving the equation], you learn more stuff on the way of trying to solve 

it… [you sometimes have to experiment] until you feel like something is complete, and 

that’s pretty much [what is satisfying]. 

 

*For clarity, Ivan did not reference a specific problem. * 

 

[3:09-3:18] Researcher: So, you work until you feel something is complete. Interesting.  
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He raises a point about the exploratory nature of mathematics that is mirrored in game play. In 

one sense, Dragonbox game play is a slightly more confined and constricted version of the larger 

mathematical/algebraic exploratory experience, since it is constrained by a system of preset in-

game mechanics. However, being able to grapple with new ideas and new strategies to try to 

achieve a specific goal can be rewarding and provide the solver with a sense of closure upon a 

successful completion. Rather than constraints, in-game mechanics could also be viewed as 

scaffolds—instead of having infinitely many tools and possibilities to consider when exploring 

equation-solving, Dragonbox game play usually requires the player to navigate each chapter 

using a specific set of pre-designated tiles and in-game powers. It gives players some sense of 

direction on their quest for completion, which several students picked up on and identified, as 

Ivan demonstrates. However, in his third interview, Harold brings up an important point that 

shows some potential danger of working within a game-based system. 

[Harold Interview 3] 

[2:31-2:37] Harold: If I solve a problem without really knowing what I was really doing, 

it wouldn’t feel very satisfying it would just be like “Oh wow, finished.” You know? “I 

did that equation.” 

 

[2:38-2:42] Researcher: Can you give me an example about what… sort of situation that 

might be? 

 

[2:43-2:53] Harold: What sort of situation? I can’t really give an example, but [there 

have] been multiple cases with, you know, me, solving a problem in [Algebra Teacher’s] 

class or [Dragonbox] with me having no idea how to do it.  

 

[2:54-2:54] Researcher: But you were able to solve it [each time]? 

 

[2:55-2:58] Harold: Yeah. I was able to solve it. I had no idea what I was doing though, 

so it was mainly luck.  

 

[2:59-3:01] Researcher: I see. So, you were sort of just… maybe, following a procedure, 

or something like that? 
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[3:02-3:02] Harold: Yeah.   

 

[3:03-3:03] Researcher: But you didn’t understand the procedure. 

 

[3:04-3:05] Harold: I didn’t understand the process of how to do it. 

 

[3:06-3:12] Researcher: Got it. But are you saying, then, that you do derive satisfaction in 

those cases where… 

 

[3:13-3:29] Harold: Well, when I know the content very well and I’m very comfortable 

with it, if I solve it, then that would give me a feeling of satisfaction. 

 

Harold’s discussion here indicates that a meaningful sense of completion is only achievable 

when the solver has a sense of rightness and resoluteness about the actions he or she carries out 

to solve a problem. Harold demonstrates here that, in his Dragonbox experiences (perhaps 

notably in his challenges with factoring discussed earlier), there is the danger of being able to 

complete a level with experimentation among finite options and, not even understanding the sum 

problem, feel no major impetus to revisit it. Although Harold doesn’t explicitly indicate it in his 

discussion, such experiences may have adverse effects on affect, potentially disillusioning 

students with content that might be considered “over their level.”  

Improved outlook on mathematics and, specifically, algebra. 

 At the time of the final interview, all interviewees had begun more strongly rejecting the 

idea of mathematics being a least favorite subject of theirs. Adam’s meditation on this issue 

showed growth in a very particular direction: enjoyment of mathematics was enhanced when 

learning was structured in a puzzle-like way, as the Dragonbox game play experience attempts.  

[Adam Interview 1] 

[3:57-4:04] Researcher… Okay, let’s go on to the next question. So, “Mathematics is one 

of the subjects I like the least.”  

[4:05-4:06] Adam: Disagree. 

[4:06-4:10] Researcher: Why is that? So, you do like it…not the least, right? 
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[4:10-4:18] Adam: Yea. It’s probably in, like, my half-er classes that I dislike the most. 

[4:20-3:21] Researcher: So, it’s in the bottom half? 

[4:21-4:22] Adam: Yea. 

[4:21-4:22] Researcher: Okay. 

[4:22-4:37] Adam: But still, it’s just a really fun class, ‘cause now we’re learning about 

new things. When last year, it was, kind of, just, like, mostly just [simple algebra], over 

and over again…but in different forms…but now we’re really learning about new rules 

and stuff like that. [It was an Honors Mathematics course.] 

[4:46-4:53] Researcher: Honors Math. So, it was probably, like, a pre-Algebra course that 

was sort of getting at some ideas of Algebra. So, you weren’t crazy about that course, but 

you like your current Algebra course a lot more? 

[4:53-4:54] Adam: Yes. 

[4:54-4:56] Researcher: And that’s because of the variety of the topics? 

 

[4:56-4:57] Adam: Yes. 

__________________________________________________ 

[Adam Interview 3] 

 

[4:00-4:14] Researcher: So, this question is asking, “mathematics is one of the subjects I 

like the least,” and you said you disagree, right? So, it must not be one of the subjects you 

like the least, so there must be subjects you like less than this. So, tell me about how math 

gets this position compared to the other subjects. 

[4:15-4:23] Adam: I don’t really…hate any of the subjects, they’re just kind of like, 

which is more, I don’t know, like, to my liking, I guess. 

[4:26-4:28] Researcher: What like aspects of math do you like? 

[4:29-4:36] Adam: I don’t know. With, like, algebra it’s pretty fun, like, trying to figure 

out “What’s this? What’s this?” based on other information you’re given.  

_________________________________________________________ 

[Adam Interview 3] 

[15:57-16:00] Adam: I don’t really play any of those [games designed to improve your 

mathematics skills,]  but this one’s pretty fun. 

[16:01-16:01] Researcher: You’re talking about Dragonbox? 
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[16:02-16:02] Adam: Yeah. 

[16:03-16:03] Researcher: Great, and you think it’s really helpful [for algebra learning]? 

[16:04-16:04] Adam: Yeah. 

Adam shows that he initially liked mathematics study because of the variety of topics he could 

encounter during the learning process; he later emphasizes the nature of algebra specifically as 

offering problem solvers systems of knowns and unknowns, which he finds enjoyable as an 

alternative to raw arithmetical computations and regards his game play experiences as being 

helpful facilitators for that work. Based on this description, it seems that a game like Dragonbox, 

which offers a more exploratory realm for learning about mathematics, could be a good tool for 

sharing exciting aspects of certain mathematical learning processes as opposed to, for example, 

games whose archetypes could be reduced to the “drill-and-kill” philosophy. In its earliest levels, 

Dragonbox did not aim to present itself to the player as an “algebra-learning game;” instead, it 

was focused on appealing to players as a puzzle-game of sorts in which a collection of pieces 

from a closed system must be manipulated for the player to progress (e.g. help his or her dragon 

grow). Only later does it reveal itself to be a game for encouraging algebra-learning, at which 

point the player might already have come to equate the equation-solving process with a sort of 

puzzle-completing journey. 

Newfound self-confidence as students in mathematics courses and the power of 

destressing. 

 By the third interview, all interviewees had (minimally) agreed that they felt they would 

enter mathematics courses confidently. The responses to this prompt were enlightening when 

considering the extent to which young mathematics students discussed the pressures and 

stressors of mathematics learning. Only Ivan expressed absolute confidence in his own abilities 

regarding new mathematics courses from start to finish, spurred on by his view of mathematics 

being a one-solution world. Comparatively, Adam and Dan initially expressed reservations about 
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diving into new mathematics courses; Adam said he felt neutral about entering courses 

confidently, while Dan said he disagreed about being confident, usually. Later, Adam meditated 

on the uniqueness of his algebra course’s fresh take on equation solving compared to his pre-

algebra studies, citing Dragonbox game play as a positive learning experience related to algebra 

content (as mentioned earlier, but reincluded ahead). Dan, having flipped from claiming to 

always be confused to claiming to almost never be confused, reflected further on the pressures of 

mathematics courses in general, and clarified how helpful doing mathematics in a destressed 

environment—like a game space—can be.   

[Adam Interview 3] 

[5:33-5:42] Researcher: … let’s go onto the next one. “I enter mathematics courses 

confidently.” 

[5:43-5:45, 5:48-5:51] Adam: Agree… I try to … have the highest expectations for 

myself. 

[6:11-6:15] Researcher: ... Has it always been like this? 

[6:16-6:17] Adam: No, not really. 

[6:18-6:24] Researcher: It hasn’t. Can you tell me about an experience when, or maybe a 

time when you weren’t entering mathematics courses confidently? 

[6:25-6:35] Adam: When I was in like second to sixth grade, I didn’t really like 

mathematics, but now I like it much more than I used to.   

[6:36-6:36] Researcher: What changed?  

[6:37-6:44] Adam: I don’t really know. I guess [learning algebra this year feels new] 

rather than basically just the same equations [in] different formats. 

____________________________________________ 

[Adam Interview 3] 

[15:57-16:00] Adam: I don’t really play any of those [games designed to improve your 

mathematics skills,] but this one’s pretty fun. 

[16:01-16:01] Researcher: You’re talking about Dragonbox? 

[16:02-16:02] Adam: Yeah. 
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[16:03-16:03] Researcher: Great, and you think it’s really helpful [for algebra learning]? 

[16:04-16:04] Adam: Yeah. 

             _______________________  

[Dan Interview 3]  

 

 [0:48-0:52] Researcher: Terrific. Okay, second, “I like playing games.” 

[0:53-0:53] Dan: Strongly agree.  

[0:54-0:54] Researcher: Tell me about it. 

[0:55-1:10] Dan: It’s fun, and you know, it separates you from [stressful 

experiences]…you can enjoy your time when you’re playing games and everything, and 

you get a good experience out of it, so I enjoy it, whether it’s like [Dragonbox] or [a 

sports game]. 

____________________________________________________________________ 

[Dan Interview 3] 

  

[4:32-4:39] Researcher: …Okay here’s the next question, “I enter mathematics courses 

confidently.” 

 

[4:40-5:08] Dan: Agree. Usually, I don’t feel too confused about a mathematics course, 

and if you’re doing good with the classwork that you’ve done, then moving into a new 

course will be, I would say, easier, because [you don’t have unresolved learning issues 

creating lingering sources of stress].  

 

Based on Adam’s earlier cited description of his algebra game play experience as having utility, 

it is likely that the diversity and freshness Adam references regarding his course work was 

impacted positively by his game play experience; these factors likely contributed to an 

improvement in his self-view as a mathematics student. Dan, having entirely flipped his self-

view as a mathematics student from a position of uncertainty to a position of confidence, 

emphasizes how easily stressors can build up and inhibit progress during mathematics learning—

and shows that when students have relatively stress-free experiences, their confidence levels can 

quickly improve. Dan mentions that, in his case, the type of game play for stress relief doesn’t 

matter so long as the game being played provides an enjoyable experience; since all students 

reported enjoying Dragonbox game play, it seems to be a good candidate for destressing the 

algebra-learning process.  
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Increased self-consciousness slightly weakening expressiveness and interest in 

reflection. 

 At the beginning of the treatment, all students agreed that they were comfortable 

expressing their mathematical ideas to other people, and all but Adam indicated they strongly 

agreed. However, in the final interview set, opinions had diverged, with Adam and Harold 

neutral about this point, Dan agreeing, and only Ivan yet strongly agreeing. The most prevalent 

concerns among interviewees when discussing this topic were all related to fears of failure, 

embarrassment, and insufficiency; for example, in his second interview, Dan expressed his 

paranoia about his peers discovering his incorrect work (or his inability to produce correct work) 

and poking fun at him for it. However, an equally deep issue came to light: it seemed that in 

some cases, the increased complexity of game play content mitigated students’ interests in 

attempting reflection on their work during the treatment phase, which may have internalized an 

approach to mathematics that encourages dismissiveness of complex ideas. Harold’s statements 

from the third round of cognition-focused interviews, addressed earlier, provides insight into the 

impact that game play experiences had in this regard. Here, that text is preceded by a transcript 

sample from his second affective-focused interview to demonstrate his views on approaching 

“something hard.”  

[Harold Interview 2] 

[15:19-15:27] Researcher: …Let’s go onto the next question. “I am comfortable 

expressing my own approaches to mathematics problems.” 

 

[15:35-15:59] Harold:  Neutral. I chose neutral because there’s some things that, like I 

said, that are easy, and hard. The things that are easy I have no problem explaining what 

my thinking behind it is. For something hard, my only goal would be to do it however 

I’m shown, so that’s why I would say that.  

___________________ 

[Harold Cognition-Focused Interview 3] 

[2:43-2:53] Harold: What sort of situation? I can’t really give an example, but [there 
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have] been multiple cases with, you know, me, solving a problem in [Algebra Teacher’s] 

class [and] [Dragonbox] with me having no idea how to do it.  

 

[2:54-2:54] Researcher: But you were able to solve it [each time]? 

 

[2:55-2:58] Harold: Yeah. I was able to solve it. I had no idea what I was doing though, 

so it was mainly luck.   

 

Harold comments quite specifically in the first sample that for content that he feels he 

doesn’t understand, he sees mimicry as a better option than actively seeking remediation; in the 

second sample, he openly discusses moving through the content of both his formal algebra 

coursework and Dragonbox game play without taking the time to pause for reflection and 

consideration, instead, attributing his content completion to the aforementioned mimicry and 

“mainly luck.”  

 Adam, the other student who felt neutral about explaining his work during the third 

interview, provided insight into the emotional challenges present when trying to explain content 

to others while not being entirely clear about it.  

[Adam Interview 3] 

[14:17-14:27] Researcher: So, do you think if I brought you a question [that] you 

got…right, would you be comfortable explaining… what you did…the steps that you did 

in that question? 

 

[14:28-14:28] Adam: Yes. 

 

[14:29-14:32] Researcher: What about if you got it wrong, would you be comfortable 

explaining what you did? 

 

[14:33-14:34] Adam: No. 

 

[14:35-14:36] Researcher: You wouldn’t. So, what’s the difference between the two?  

 

[14:37-14:44] Adam: I don’t know I guess it’s just … embarrassing, I guess, like when 

you’re [explaining something wrong to your] friends and stuff. 
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[14:45-15:03] Researcher: Interesting. So, there’s like this sense of embarrassment, you 

said, when around your friends. Is that because they’re on the same level as you? 

 

[15:04-15:10] Adam: Yes… 

 

Here, Adam indicates that he would generally be worried about expressing his mathematical 

errors to a peer out of embarrassment that he would be viewed as performing worse than his 

expected outcome. In this study, because students completed game play sessions in close 

physical proximity to one another, it’s possible that some of these feelings were exacerbated by 

the setting. To elaborate on this, although data on peer-to-peer interactions were not explored 

during interviews, they were noted by the researcher on several occasions. In over 50% of 

sessions, some form of peer-to-peer commentary expressing the heightened position of one 

student over another would occur; an example comment might be “What, you’re still on Chapter 

3? I’m already in Chapter 4,” or “how can you get stuck on that one? It’s so easy!” Although 

students’ emotional and psychological profiles were not investigated with reference to peer-to-

peer interactions, there is clear potential for feelings of inferiority or embarrassment to set in if 

one student feels he is struggling while his peer is clearly excelling. Additionally, while such a 

social setting could also potentially enable student collaboration, Harold and Adam’s interviews 

indicate that collaborative discussion is not universally the norm, and indeed, the researcher 

noted instances of collaboration in fewer than 25% of sessions.  

Tempered interest in the use of games as tools for mathematics learning. 

Although most of the students initially were high-energy and optimistic when discussing 

the prospects of games for mathematical learning, by the time of the third interview, they seemed 

somewhat fatigued by the treatment process; although they consistently expressed an affinity for 

the game used in the study in nearly every interview, as time went on, their discussions moved 

towards drawing deeper connections between commercial games and recreational tools rather 
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than between educational games and pedagogical tools. They also somewhat differed and 

wavered on their views of whether mathematics learning and doing had a place—passively or 

intentionally—in commercial recreational games. To be blunt, after eight weeks of game play 

sessions, it seemed that the novelty of the game play experience had worn off.  

In his third interview, Adam emphatically stated that, due to his enjoyable experience 

with Dragonbox, he would be interested in looking at other games that presented mathematics in 

interesting or novel ways. However, all other students felt neutral on this prospect. In his second 

interview, Ivan seemed to be in stark support of his algebra game play experiences as worthwhile 

means of learning mathematics in alternative ways—“math logic” would stand apart from “game 

logic” and parallels could be drawn. However, by the time of his third interview, he felt 

differently.  

[Ivan Interview 2] 

[16:37-16:43] Researcher: Interesting. Okay great, next question, “I like playing 

games that can help me improve my mathematic skills.” 

[16:44-16:45] Ivan: Strongly agree. 

[16:46-16:48] Researcher: Can you tell me a little bit about that? 

[16:49-17:09] Ivan: First of all, when you play games [like Dragonbox], it helps 

you interpret things in a different way where you can apply that game logic to real 

life, just like math. Yeah and... 

[17:10-17:12] Researcher: What is game logic? I like that, that’s an interesting 

term. 

[17:13-17:25] Ivan: It’s almost like…which one is a … better solution to 

something. What is the not so good solution? Uh, yeah... 

[17:26-17:29] Researcher: So, you judge the quality of solutions also. 

[17:30-17:30] Ivan: Yes. 
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[17:31-17:32] Researcher: And you think that playing games helps you do that? 

[17:33-17:33] Ivan: Yes. 

 ___________________ 

[Ivan Interview 3] 

[10:50-10:57] Researcher: … “I like playing games that help me improve my 

mathematics skills.” 

[10:58-11:02] Ivan: Neutral. 

[11:03-11:03] Researcher: Okay. 

[11:04-11:15] Ivan: Because usually you don’t really have to play games in order 

to understand something, cause usually when you just do math, you just know 

math. Yeah. 

[11:16-11:19] Researcher: If you do math, you know math? You don’t think 

that… 

[11:20-11:34] Ivan: It’s like, as long as you’re practicing with it [in a class], you 

always come up with... you’ll... math will sink in, and when you get really good 

with that method, then you’ll start manipulating that method into something you 

can use however you want.  

[11:35-11:42] Researcher: And are you qualifying games that improve your 

mathematical skills as part of that reinforcement? 

[11:43-11:47] Ivan: Yeah, I mean I’m not against playing games just to learn 

math, it’s...  

[11:48-11:49] Researcher: Got it. You just sometimes have other reasons to play 

games. 

[11:50-11:50] Ivan: Yeah. 

 

During his third interview, Ivan seems to have completely sidelined his notions about the 

importance of utilizing the logical systems inherent in game play for mathematics learning and 

instead expresses an affinity for just practicing mathematics in a more traditional manner. 

However, he does briefly discuss how mathematics can appear in commercial games, usually in 
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the form of arithmetical calculations for things like prices. All other students also agreed with 

this idea at points in their second and third interviews, clarifying in general that they recognize 

the presence of mathematical ideas in commercial games that are not designed to treat those 

concepts intimately. In his final interview remarks, Dan expressed his views on the place of 

educational games for mathematics learning relative to the place of commercial games.   

[Dan Interview 3] 

[13:36-13:41] Researcher: Okay, very good. Next question, “I like playing games that can 

help me improve my mathematical skills.” 

[13:42-14:14] Dan: Neutral because now, like, everybody plays different types of games 

and, like, different styles of games, and it doesn’t really focus on the category of math. 

Games like DragonBox2, I would like [them] to help me out, and [Dragonbox] is helping 

me out in ways, but, like, if we’re talking about games in general that are mainly focused 

on [the current commercial market], I don’t think it would, like, correspond back to math 

in any way… 

Although Dan clarifies that he does feel that his Dragonbox experience was useful and 

productive, and that he’s thankful for the opportunity to engage in the game’s algebra learning 

experience, educational games for mathematics just seem outside of the norm.  

On Retention 

 Preliminary observations. 

 The AGATE 3 was administered on the first day of regular classes to 21 participants 

following the host school’s usual winter recess to determine the extent to which an understanding 

of algebraic equation solving skills was retained by students over a one-month period in which 

they would not have access to their usual algebra schooling; as discussed earlier, one treatment 

group student was unable to complete the AGATE 3 prior to engaging in formal algebra 

coursework, so his data were not collected. While school was in recess, all treatment group 

students had access to their own copies of the Dragonbox game, provided by the researcher; no 

student reported playing the game during this period, although the one treatment student who 
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returned late was not able to be consulted on this.  

A selection of the measures of central tendency and dispersion (e.g. simple range, 

median, and interquartile range) were calculated within and across each of the treatment and 

control groups’ results to assess students’ content masteries following the recess. As before, use 

of these measures was selected over the use of alternatives (e.g. mean and standard deviation) to 

make the data more robust, as the small population sizes in question may otherwise be more 

susceptible to outlier data points.  

For the AGATE 3, ranges favored the control group: the treatment group floor was 0%, 

while the ceiling was 76.47%; the control group floor was 17.65%, while the ceiling was 

82.35%. However, the treatment and control medians were identically 41.18%. The IQR of the 

treatment group was 47.06%, while the IQR of the control group was 29.41%, continuing the 

trend seen when shifting from AGATE 1 to the AGATE 2 of the treatment IQR growing while 

the control IQR diminished. This distribution of scores is displayed in Chart 4.6. 
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Chart 4.7 summarizes each student’s results on the AGATE 2 and AGATE 3 and Table 4.2 

offers a summary of the measures of central tendency and dispersion from both groups’ results 

across both examinations, including revised values for the AGATE 2 treatment population which 

reflect the removal of the data of the student that could not complete the AGATE 3.  
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Table 4.2: A Comparison of the Measures of Central Tendency and Dispersion of Students’ 

Results on the AGATE 2 and AGATE 3 Across Exams and Groups 

 

Data Type 

AGATE 2 

Treatment 

(𝑛 = 8) 

AGATE 2 

Control 

(𝑛 = 11) 

AGATE 3 

Treatment 

(𝑛 = 8) 

AGATE 3 

Control 

(𝑛 = 11) 

Score Floor/Ceiling 0%/88.24% 0%/82.35% 0%/76.47% 17.65%/82.35% 

Median 26.47% 47.06% 41.18% 41.18% 

IQR 44.12% 35.30% 47.06% 29.41% 

 

  As discussed in Chapter 3, the AGATE 3 results were also analyzed twice via an analysis 

of covariates (ANCOVA) in which the primary covariate was students’ AGATE 2 results. The 

following formula was used for the first analysis:  

 

𝐴𝐺𝐴𝑇𝐸 3 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = (𝐵0 + 𝐵1 ∗ 𝐴𝐺𝐴𝑇𝐸 2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 + 𝐵2 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐵3 ∗ 𝐺𝑟𝑜𝑢𝑝). 

 

This ANCOVA detected that AGATE 2 scores served as statistically significant predictors of 

AGATE 3 results (𝑓 =  4.632, 𝑝 = 0.0003) when controlling for gender and group assignment; 
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however, gender was also found to be a statistically significant predictor of AGATE 3 results 

(𝑓 =  −2.566, 𝑝 = 0.022). A second ANCOVA was computed using the following formula:  

𝐴𝐺𝐴𝑇𝐸 3 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 
= (𝐵0 + 𝐵1 ∗ 𝐴𝐺𝐴𝑇𝐸 2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 + 𝐵2 ∗ 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐵3 ∗ 𝐺𝑎𝑚𝑒 𝐶ℎ𝑎𝑝𝑡𝑒𝑟𝑠 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑). 

 

This ANCOVA detected that AGATE 2 scores served as statistically significant predictors of 

AGATE 3 results (𝑓 = 3.821, 𝑝 = 0.002) when controlling for gender and considering the 

explanatory variable for the number of game chapters attempted by students; gender was again 

found to be a statistically significant predictor of AGATE 3 results (𝑓 =  −2.385, 𝑝 = 0.033). 

Based on these two ANCOVA results, two claims can be made: first, that students’ understanding 

of equation-solving techniques at the end of the treatment phase was the best predictor of 

students’ results following the one-month recess; second, that males appear to have retained less 

content knowledge than did females. However, the second claim is potentially overly-influenced 

by unaccounted factors of the control group as, of 8 female students who contributed data to 

these ANCOVA, only 2 were from the treatment group. The following Chart 4.8 demonstrates 

the relationship between the percentage of game chapters attempted by treatment group students 

and each student’s AGATE 3 performance for the 8 treatment group students who completed the 

AGATE 2 and 3.  
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As with the comparisons between the AGATE 1 and AGATE 2, additional quantitative 

data were collected on the number of error types students across the groups made on the AGATE 

2 and AGATE 3. The principal researcher again coded responses as either being correct or falling 

into one of the following error categories: 1) Computationally Erroneous; 2) Consistently 

Applying an Incorrect Conceptual Framework; 3) Omitted; 4) Attempted, but either Incomplete 

or Unjustified. 

For the AGATE 3, the treatment group gave 170 responses in total13. Sixty-eight 

responses were correct, 15 were computationally erroneous, 22 displayed a conceptual 

misunderstanding, 55 were omitted, and 10 were attempted, but either incomplete or unjustified. 

For the AGATE 3, the control group gave 187 responses in total14. Seventy-six responses were 

correct, 14 were computationally erroneous, 53 displayed a conceptual misunderstanding, 33 

                                                 
13 Because one student was absent for the AGATE 3, each of 10 students answered the same 17 questions. 
14 Each of 11 students answered the same 17 questions. 
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were omitted, and 11 were attempted, but either incomplete or unjustified. In figure 4.10, these 

data were compared with students’ AGATE 2 data to understand changes to student 

understanding over the recess period, as well as check for potential content retention.  

 

 Figure 4.10, like Figure 4.1, provides many directions for examination, but can be hard to 

utilize optimally at a glance. In the case of retention, the best boxes for examination would be 

boxes that consistently held their color from exam to exam (e.g. Monica, Question 8), indicating 

that a student’s view was perhaps correct on both the AGATE 2 and 3, or that the student may 

have maintained a misconception over the recess period; however, it should be noted that a 

student’s box could be singularly colored even if the misconceptions demonstrated for a question 

on either exam differed. Boxes that show a shift from green to gold (e.g. Greg, Question 15) 
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indicate that a student may have forgotten some aspect of equation-solving that was tested in a 

question; these can be useful for pointing out problems in which content information was not 

recalled by students over time. Finally, one other collection of boxes must be addressed: boxes 

which shift from being incorrect on the AGATE 2 to correct on the AGATE 3 (e.g. Dan, Question 

8). Because students were expected to not have access to formal mathematics work during the 

winter recess, it is unlikely (though possible) that they would be able to independently correct 

conceptual misunderstandings up to their own resources. Therefore, Figure 4.10 helps explain a 

seeming anomaly demonstrated in table 4.2: in the data presented tracking group progress from 

the AGATE 2 to the AGATE 3, the treatment group’s median rose, while the control group’s 

median fell. In the case of checking for content retention, only the latter case is to be expected. 

However, certain conditions need to be recognized as to why a median that rose may still 

actually be valuable for assessment in terms of content retention. First, students as test-takers 

may sometimes feel, for example, time-pressure, which may cause them to omit questions they 

might know how to solve (e.g. Val, Question 15; Owen, Question 14). Second, students may 

carelessly make procedural errors for which they cannot be awarded credit, even though they 

may understand the content they are responding to, in general, and could prove as such on a 

different occasion (e.g. Dan, Question 1; Ivan, Question 14). Third, because medians range over 

all students’ performances, they can be unreliable in terms of portraying the reality in terms of 

content retention; if two students had, together, answered the same number of questions correctly 

on two separate exams, their performances across exams would be equal in terms of credit 

received, but their individualized results where work was shown might demonstrate differences. 

Therefore, using Figure 4.10 as a guidebook, the following review of potential game play-

attributed content retention will assess student work on a question-by-question basis, as 
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supported by the qualitative content appearing in students’ questionnaires.   

Students’ potential retentive changes based on quantitative and qualitative data.  

 Comparing each group’s AGATE 3 results to their AGATE 2 scores provides insight into 

the potential retentive benefits of game play sessions. First, of all the questions answered 

correctly on the AGATE 2, the treatment group retained correct answers on the AGATE 3’s 

equivalent questions in 73% of cases, while the control group retained correct answers on the 

AGATE 3’s equivalent questions in 71% of cases. However, of the no-credit equivalent AGATE 

3 questions, treatment group responses showed that only 9.8% featured conceptual 

misunderstandings and 17% featured procedural errors (of 27%), while control group responses 

showed that 15.73% featured conceptual misunderstandings and only 3.3% featured procedural 

errors (of 29%). Therefore, the treatment group potentially remembered algebraic concepts more 

effectively than the control group, although they carried out far more procedural errors. Several 

students discussed game play as a factor contributing to their content retention levels. Figure 

4.11 contains a sample list of student responses citing some reasons students provided for 

potentially retaining content over time, including considering parallels between formal algebra 

learning and game play content and the notion of having interactivity with algebra-learning via a 

highly responsive and visualized system.  
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 Examining the three buckets of questions also provides some insight into the nature of 

content retention as affected by game play. From questions 1 through 5, almost no students in 

either group that answered a question correctly on the AGATE 2 answered the question’s AGATE 

3 counterpart incorrectly while demonstrating a conceptual misunderstanding—the only such 

case was control group student Sean’s response to question 4. Since this section was primarily 

dealing with the most elementary aspects of equation solving, this is not a surprising outcome.  

For questions 6 through 10, results were quite different. In this set of questions, Greg’s 

work on question 9 demonstrated a conceptual misunderstanding he had not shown in his correct 

answer to question 9 on the AGATE 2—namely, misuse of the multiplication property of 

equality. Every other treatment group student responded to the AGATE 3 counterpart of a 

question he or she had answered correctly on the AGATE 2 with a correct response. Four control 
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group students responded to question 7 on the AGATE 3 demonstrating a conceptual 

misunderstanding, and one student, Owen, demonstrated conceptual misunderstandings in all of 

questions 7 through 10, whose counterparts he had answered wholly correctly on the AGATE 2.  

As mentioned earlier, these questions primarily dealt with multiplication and division when the 

variable being solved for was part of a fraction. 

The final bucket of questions—numbers 11 through 17—had a similar pattern to that of 

the second bucket. Here, of the four treatment group students that had answered questions 

correctly on the AGATE 2, only one, Greg, answered such questions’ counterparts on the AGATE 

3 demonstrating conceptual misunderstandings. From the control group, nine students had been 

able to answer at least one question of 11 through 17 correctly on the AGATE 2, but four 

answered those questions’ counterparts on the AGATE 3 demonstrating conceptual 

misunderstandings (or, in the case of a fifth student, Owen, omitting or failing to complete the 

question). Notably, this section of questions tested further mastery of the properties of equality, 

plus some finer points such as the distributive property and potentially factoring techniques; 

therefore, it is unsurprising that the results of this bucket would be in line with the results of the 

second bucket.  

In Figure 4.12, a sample of treatment group students note that game play helped them 

recall strategies for solving algebraic equations—Francine comments on how Dragonbox 

mechanics automatically enforced the multiplication and division properties of equality, while 

John and Ellie comment about how the game’s “special powers” (effectively, introductions to in-

game parallels of formal mathematical concepts) made recalling equation-solving techniques 

simpler to recall and later apply. These comments may give some insight as to why a much larger 

number of control group students than treatment group students seemed to forget equation 
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solving techniques and mathematical properties necessary for solving the second bucket of 

questions and making progress through the third bucket of questions.  
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Chapter 5: Conclusion 

 

Summary  

 Thirty 8th-grade algebra students from a K-12 independent school in a large city on the 

eastern coast of the United States were invited to participate in this research study investigating 

what effects arose from first-time algebra learners spending a portion of their regularly allotted 

algebra class time playing a mathematical video game intentionally designed to help students 

acquire techniques for solving algebraic equations. Research questions guiding this study 

addressed three types of outcomes that impacted students’ algebra learning experiences: 

cognitive learning outcomes, affective outcomes, and content-retentive outcomes.  

A total of 22 students participated in the study; 11 students served as a control group and 

studied their traditional algebra curriculum, while the other 11 students served as a treatment 

group and played the mathematical video game Dragonbox Algebra 12+ twice a week in 20-

minute sessions for eight weeks during time typically allotted for their traditional algebra 

curriculum, studying their traditional algebra curriculum otherwise. During the treatment phase, 

data were collected on students’ cognitive baselines and outcomes as related to algebra equation 

solving content, as well as on students’ affective baselines and outcomes as related to views on 

mathematics, algebra, and identities as mathematics doers using a variety of quantitative and 

qualitative instruments. Following the 8-week treatment phase, participants had a 4-week winter 

recess from school in which they were not expected to engage with formal mathematical 

learning; data on content retention was collected the first two days following this recess period 

via an additional set of quantitative and qualitative instruments.  

Students’ results on two cognitive-focused tests (AGATE 1, AGATE 2) and one content-
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retention-focused test (AGATE 3), together with data collected from cognitive- and affective-

focused interviews (conducted only with the treatment group) and one content-retention-focused 

questionnaire (also conducted only with the treatment group) were the primary data sources used 

to answer this study’s research questions.  

Some additional data were collected on treatment group students’ game play experiences, 

such as the percent of game content completed by students during the treatment period and peer-

to-peer interactions during game play.  

To deeply understand the impact that mathematical game play may have in a course for 

new algebra learners, it is necessary to evaluate the multidimensionality of the student 

experience. This includes the following aspects: 1) the impact of mathematical game play on 

students’ cognitive outcomes as related to algebra doing; 2) the impact of mathematical game 

play on students’ affective outcomes as related to mathematics in general and algebra 

specifically; 3) the impact of mathematical game play on students’ content retention as related to 

algebra content knowledge. Conclusions for this study were motivated by analysis of quantitative 

data supplemented by analysis of qualitative data when possible; in some cases, certain 

conclusions were drawn strictly from analysis of qualitative data without the use of quantitative 

data (especially as related to affective change). 

 

Conclusions 

 

Question 1: How does integrating mathematical game play into a traditional eighth grade 

algebra curriculum impact students' cognitive learning outcomes in elementary algebra? 

Responses from the harvested data—most notably the study pretest (AGATE 1), the study 

posttest (AGATE 2), and the cognition-focused interviews—suggest that the integration of 
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mathematical game play impacted students’ cognitive learning outcomes in three ways: 1) on 

average, game-playing students did not improve their cognitive reasoning with regard to 

algebraic equation solving as significantly as did non-game-playing students; 2) game-playing 

students were able to recognize that game play was explicitly modeled around the solving of 

algebraic equations and, in some cases, made attempts (some productive, others unproductive or 

detrimental) to internalize experiences from game play for the sake of improving their 

mathematics content knowledge; 3) game-playing students had greater payoffs from game play 

in terms of improved cognitive reasoning with regard to algebraic equation solving when they 

were already strong mathematics students.  

Both game-playing students and non-game playing students performed very poorly (e.g. 

median scores below 25%) on the study’s quantitative pretest checking for cognitive reasoning 

regarding algebraic equation solving. More surprisingly, on the study’s quantitative posttest, both 

student groups continued to perform poorly (median scores below 50%), but non-game-playing 

students were able to significantly improve upon their pretest median score, while game-playing 

students maintained their pretest median score; this may have been in part due to student game 

players trading off some class time (usually lecture-focused) for game play time. However, since 

game play sessions only occurred twice a week during the treatment phase of the study, and 

since, on game play days, treatment students rejoined control students during the second half of 

class periods, approximately 80% of the instruction received by all students was identical.   

However, the raw quantitative evidence belies the full extent of cognitive changes 

undergone by game-playing students; it became clear from discussion with all interviewees that 

game-playing students found deep parallels and similarities between the game play of 

Dragonbox Algebra 12+ and the process of formally solving algebraic equations. In most cases, 
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this manifested as an observed “unidirectionality of metacognition” in which students would 

reimagine their game play content as formal algebra content to facilitate its completion; few 

cases were observed of the reverse scenario, and no cases were observed of any sort of 

bidirectional likening.  Based on interview data, it seemed that students who might have initially 

been considered weaker than their peers were slower to create this linkage, providing evidence 

that the connections between the algebra game play and actual formal algebra doing were 

nonobvious and required significant exposure to both game play and algebra content to see direct 

parallels. When students did see these deeper parallels, they made efforts to capitalize on them. 

Some students were able to describe the development of “mathematical reflexes” that prompted 

them to make certain decisions during the solving of algebraic equations based on newly 

constructed instincts arising from algebra game play. However, these new instincts served as 

double-edged swords; because the Dragonbox Algebra 12+ game mechanics would never allow 

a student to carry out an in-game move that paralleled an illegal operation in terms of equation 

solving, students developed a significant trust in their game play experiences to map directly 

back to their formal content. This meant that if students thought that a certain mathematical 

idea—correct or incorrect—paralleled something that they had done in game play, they would 

instinctually repeat that movement whenever possible. In one interview, an example was shown 

in which a student misattributed his understanding of an incorrect variant of the multiplication 

property of equality to a game play experience, although no equivalent to the procedure he 

described would ever have been able to appear during game play. However, other students 

(almost always those with strong pretest scores) were able to correctly attribute their masteries of 

certain mathematical ideas to correctly corresponding game play experiences. In at least one 

interview, a student discussed his mastery of isolating variables included in fractions as 
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stemming from game play, although this result was not widespread; that same student also 

recognized equivalents of factoring procedures in game play and replicated their formal algebraic 

variants when solving equations on the study posttest. The latter point is notable as this student 

was the only student across both the treatment and control groups to correctly answer a question 

that required factoring, giving some indication that factoring strategies were not taught in the 

traditional algebra course at the time of the posttest; other interviewees (commonly those with 

poorer pretest scores) struggled to describe and conceptualize the game play equivalents of 

factoring techniques as formal equation solving processes. These data made it clear that students 

who were more active about drawing parallels between game play and formal algebra equation 

solving techniques were those students who had begun the treatment with relatively strong 

pretest scores as compared to their peers and who had ended the treatment with relatively strong 

posttest scores as compared to their peers. Therefore, having a natural inclination towards or 

interest in mathematics—or perhaps succinctly phrased, “being a strong mathematics student”—

seemed to correlate with making greater gains in cognition when independently exploring 

Dragonbox Algebra 12+ game play in a co-instructional setting.  

 

Question 2: How does integrating mathematical game play into a traditional eighth grade 

algebra curriculum impact students' affective outcomes about both mathematics in general and 

algebra specifically? 

 

Responses from the harvested data—most notably the affective-focused interviews—

suggest that the integration of mathematical game play impacted students’ affective outcomes in 

four ways: 1) students adopted an improved outlook on mathematics and specifically algebra; 2) 
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students gained self-confidence as learners in mathematics courses; 3) students became more 

self-conscious about their mathematical abilities relative to their peers’ abilities; and 4) students 

acquired a tempered interest in the use of games as tools for learning mathematics. It should be 

noted that interviews ranged across only four male treatment group students; these data might be 

fair descriptors of affective changes that occurred for treatment group students in this study but 

are not necessarily widely applicable.  

Across the three affective-focused interview sessions, interviewees consistently became 

more and more confident that they did not consider mathematics a least favorite subject of theirs. 

Many students became more capable of describing a sense of completion and “wholeness” that 

they felt when correctly solving mathematics problems; game play experiences helped students 

articulate, specifically, that mathematics doing—either in the game space or in a formal 

classroom setting—was only rewarding when students were working at a level that they 

personally felt was appropriate for their mathematics study. Students discussed how game play 

content that was too easy felt empty, but how appropriately challenging game play content (or 

formally posed algebraic equations) could reward the solver with great satisfaction. Notably, 

students also echoed a point raised by Bragg (2007) regarding overly-challenging or complicated 

game play: game players (especially players of educationally-driven games) can be alienated 

from content and accordingly lose motivation to complete said content if the content’s 

presentation seems too opaque, insurmountable, or unwieldy. In this study, playing Dragonbox 

Algebra 12+ had a generally positive effect on students’ motivations; at least one student pointed 

out that formally solving algebraic equations became more enjoyable because he began seeing 

algebra questions as sorts of puzzles, based on his corresponding experiences with Dragonbox 

which did present itself as a typical puzzle-solving game. The sense of fulfilment and enjoyment 
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that students derived from their game play experiences significantly altered their views on 

mathematics study as potentially being a source of great stress. Many students explained that the 

pressures inherent in formal mathematics courses split between the responsibilities of 

continuously learning new content and the duties of having to prove knowledge of said content 

for a recorded grade that potentially carried real-world repercussions were fatiguing and 

persistent sources of stress. Game playing in general had consistently been described by all 

interviewees as an outlet for stress relief during their leisure time; by incorporating mathematics 

learning into game playing, students found that they were less stressed and more relaxed when 

thinking about algebra during their course, which directly improved their self-confidence levels 

and self-images as learners in mathematics courses. It is notable that most but not all aspects of 

the game playing experience of participants in this study were conducive to improvements in 

affect, however; among participants, there was an overall increase in self-consciousness 

regarding mathematics ability, which weakened students’ expressiveness and interest in extensive 

mathematical reflection. Playing a game that could provide implications for one’s mathematical 

abilities in the same physical space as peers who might potentially be perceived as more capable 

mathematics doers welled up fears of failure, embarrassment, and insufficiency as algebra 

learners for some students. Some students expressed paranoia about peers discovering their 

incorrect work either in game or on, for instance, a returned formal examination. Lastly, it 

became clear by the end of the treatment phase that although students still very much had an 

interest in both commercial and educational games, they had grown worn out of their Dragonbox 

experiences; what had at the study’s start seemed like an exciting and novel opportunity had later 

been viewed as an enjoyable short-term experience, but ultimately detached from students’ 

internalized “norms” of mathematics study.  
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Question 3: How does integrating mathematical game play into a traditional eighth grade 

algebra curriculum impact students' content retention in elementary algebra? 

 

Responses from the harvested data—most notably from the post-treatment, post-recess 

test checking for content retention (AGATE 3) and the retention-focused questionnaire—suggest 

that the integration of mathematical game play impacted students’ content retention in 

elementary algebra in two ways: 1) students with correct conceptual frameworks for algebraic 

equation solving maintained those frameworks slightly more frequently if they participated in the 

game playing experience as opposed to peers who did not; 2) students regarded game play 

experiences as forging powerful memories related to algebra learning even when not specifically 

prompted to make reference to game play. 

  By comparing results from the posttest AGATE 2 and the post-recess test AGATE 3, it 

was determined that game playing students retained roughly 73% of their correct conceptual 

frameworks between exams, and non-game playing students retained roughly 71% of their 

correct conceptual frameworks between exams. More curious was the result that, of the 

respective incorrectly answered 27% and 29% of AGATE 3 content equivalent to the correctly 

answered AGATE 2 content, errors in conceptual frameworks were detected in roughly a third of 

the treatment group’s responses, while they were detected in slightly more than half of the 

control group’s responses. The treatment group seemed to retain content better than the control 

group when dealing with procedures for isolating variables that were contained within fractions; 

treatment students also retained more content than did control students—though to a lesser 

extent—when dealing with more advanced algebra equation-solving content, such as uses of the 
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distributive property, factoring techniques, and more complicated applications requiring the use 

of inverse operations. Across all these results, however, it should be noted that control students, 

having performed better than treatment students in general on the posttest, had a slightly broader 

base of content that could potentially be retained/forgotten. Even accounting for this, strong 

evidence was provided via the post-recess questionnaire that game play created objectively 

memorable experiences linked to algebra learning for many students. When prompted only to 

discuss memorable aspects of mathematics experiences in their current and previous courses, 

treatment students made several references to their game play experiences. Some students 

discussed opportunities they’d had to apply concepts learned during game play to their formal 

algebra study. Others commented on the goal-based structure of game play that provided an 

impetus to master new content for the sake of progression. Still others commented on the visual 

nature of game play as being superior to, for example, learning via drill-focused worksheets. 

Although no treatment student reported playing the game (to which they all had access) during 

the recess period, more than half of all treatment students were able to describe some way in 

which Dragonbox Algebra 12+ game play had created memorable learning experiences that 

helped in retaining algebra equation solving content.  

The theoretical mapping between necessarily imperfect representations of mathematics in 

game play and formal mathematical ideas. 

 

This research demonstrates that a tension exists in a student game player’s theoretical 

mapping that binds together the space in which formal mathematics is done and the space in 

which mathematical game play occurs. For each mathematical game, and for each student game 

player, this mapping will be different. However, the findings demonstrated in this research 

suggest that students need significant guidance in order to successfully bridge the gap between 

game play and formal mathematics, or else they risk cognitive disconnects which could lead to 



 

150 

 

conceptual misunderstandings.  

 Formal mathematics, in the way it is typically presented and taught in educational 

institutions worldwide, is not described or classified as being a game; accordingly, any game that 

claims to offer a new means of learning formal mathematics must contain some content that does 

not directly parallel some aspect(s) of formal mathematics doing. If all a game’s content was 

comprised simply of things that one could do within a typical course of study—perhaps as read 

from a textbook or as presented in a lecture—or if, for instance, the game’s content was designed 

to explicitly spam game players with mathematical drills, the game likely wouldn’t fit the 

definition of being a mathematical game as described in this text. Therefore, we must recognize 

that any game selected for research of this nature must be a necessarily imperfect representation 

of formal mathematics with structural limitations influenced by design choices.  

 The imperfect representation of mathematics present within Dragonbox Algebra 12+ is 

not a proper subset of formal mathematics doing (and no such game-based representation can 

be); there are necessarily elements inherent to the game’s endogenous fantasy that have no place 

or parallel in formal mathematics. Instead, we should qualify this connection as a mapping that 

exists between the content presented in game play and some equivalent extant content of formal 

mathematics, recognizing that some elements of game play do not map to formal mathematics, 

and that some elements of formal mathematics do not map to game play. Herein lies something 

fairly problematic: students who are co-instructionally learning new mathematical ideas while 

simultaneously learning about ideas recurrent in game play must ably navigate the realms of both 

types of ideas. As the conclusions stated earlier demonstrate, students will often need support in 

spanning the gap between these realms in order to achieve cognitive growth. However, for 

students who do bridge the gap, it might be worthwhile; not only can they achieve growth in 



 

151 

 

cognition, but they can also potentially improve their affect regarding mathematics and their 

retention of learned content, as demonstrated in this study. As discussed in Chapter 2, navigating 

the reimagined sort of mathematics found in game play may have its own benefits up to each 

game’s design; in Dragonbox, one recognizes, as examples, that the in-game equivalents of many 

algebraic ideas are spiraled and revisited, that certain abstract aspects of algebra are given a 

concretized representation, and that the player has infinitely many chances to revise or reattempt 

work in pursuit of a high(er)-quality correct response. While these things could all be done 

within a classroom and by hand, packaging them within an endogenous fantasy helps draw 

students’ attention and maintain students’ interest (for a finite amount of time, as demonstrated), 

and also situates the learning in a space where it is automatically valuable to the student game 

player. Ultimately, we must recall that game play shouldn’t be considered a replacement for 

formal mathematics instruction, but a tool used to supplement a traditional learning process as 

seen in the classroom. 

 When the imperfect mapping is utilized and implemented correctly, students rightly 

recognize different concepts found in mathematics game play and formal mathematics content as 

being parallel equivalents; they recognize, too, that there are several aspects of formal 

mathematics content that might not be represented in game play, and several aspects of 

mathematics game play that might not necessarily be related to formal mathematics content. The 

intended cognitive mapping that game designers and content instructors want game players to 

acquire is visualized in Figure 5.1. In that figure, connections are represented unidirectionally 

from game play content to formal mathematics content, as this was the predominant reasoning 

scheme utilized by game playing students in this study; textually, one connection might read 

“’game playing content a’ is related to ‘formal mathematical content 1.’” 
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However, as demonstrated in this study, it is not uncommon for students (especially students who 

might have weaker conceptual frameworks for considering formal mathematics) to form different 

connections than those intended by the Dragonbox game designers. I will discuss, as examples, 

two game design decisions that led to cognitive confusion on the parts of some students and 

explain how this confusion might be pictorially visualized. 

 First, one design implementation that caused some cognitive confusion was the “pre-

emptively corrective” mechanic, which prevented students from making incorrect moves when 

trying to utilize one of the properties of equality; for example, as discussed in Chapter 3, when a 

player tries to “add” a term to one side of an “equation” in Dragonbox, he or she cannot make 

any additional moves before adding a copy of the same term to the opposite side of the 

equation—denoted by a graphically striking “groove” that must be filled by a game play tile. As 

shown in interviews, this mechanic played some part in causing a cognitive disconnect with one 
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student, who began incorrectly applying the multiplication property of equality outside of game 

play (in a realm bereft of the pre-emptively corrective mechanic). This shows a linkage—albeit 

an incorrectly formed one—between a game play mechanic that cannot be automatically 

enforced for mathematics practitioners in the real world and a concept of algebraic equation 

solving that was targeted for learning by Dragonbox’s game designers. 

 A second design implementation that caused some cognitive disconnect among students 

was the in-game representation of parentheses as sometimes being “ice blocks” and sometimes 

being “bubbles.” To an individual knowledgeable about formal mathematics, it might quickly 

become apparent that ice blocks were used when a parenthesis had a coefficient other than 1, and 

bubbles were used when a parenthesis had a coefficient of 1 (which would usually not be 

indicated in-game). However, no student interviewed was able to articulate a meaningful 

difference between the two types of parentheses and all were confused about what the need was 

for a representational difference (e.g. “Could one be parentheses, and the other, brackets?”). 

Here, the game designers intended for students to form a cognitive linkage joining the 

representation of parentheses in-game to, say, a potentially better recognition of the distributive 

property of multiplication over addition. Instead, no productive mathematical connection was 

formed by students.  

In Figure 5.2., a sample diagram illustrating two types of cognitive disconnects that were 

observed in this study are shown; however, more could potentially exist, even if not witnessed in 

this study. In the two disconnects demonstrated, we recognize the pre-emptively corrective 

mechanic as game developers’ attempt to teach students the properties of equality, but which 

ended up causing conceptual misunderstanding (red arrow); we recognize the bubbles/ice block 

conflict as game developers’ attempt to teach students about how coefficients work with 
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parentheses, but which ended up going unlinked to formal mathematics content by all students.  

 

 In addition to the discussed unintended, incorrect linkages observed in some students’ 

cognitive mappings in this study, other linkages might be imagined: 1) one could incorrectly link 

an aspect of game play with no formal mathematical equivalent to a formal mathematical idea 

targeted by game designers; 2) one could incorrectly link an aspect of game play with no formal 

equivalent to a formal mathematical idea not targeted by game designers; 3) one could 

incorrectly link an aspect of game play with a formal mathematical equivalent to a formal 

mathematical idea not targeted by game designers.  

Limitations and Recommendations 

 

 As described in the previous section, the central limitation of this study stems from the 

choice of Dragonbox Algebra 12+ as candidate for a mathematical game while investigating the 
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stated research questions. Therefore, this study’s findings and results are subject to the 

representation of mathematics contained uniquely within that game. While the principal 

researcher still considers Dragonbox Algebra 12+ to be a good representative of a mathematical 

game, several aspects of this study have highlighted instances and places in game play where 

instructor guidance is strongly recommended for new algebra content learners. 

 

Additional limitations. 

For future studies that might be structured similarly to this one, a few recommendations 

are made, in relation to limitations, that the principal researcher advises should be addressed. 

First, population choice is of paramount importance. Although the initial population of 30 

prospective students was well-mixed in terms of prior knowledge, gender, race, socioeconomic 

status, and additional attributes, there was some potential for attribute skewing in the formation 

of this study’s treatment and control groups; this is to say that some biases in the treatment 

student selection process may exist because the set of students agreeing to participate in the 

study may have begun the study with, as one example attribute, heightened interest in the algebra 

game play experience. Although the principal researcher randomly selected 11 students of the 12 

prospective participants with interest in joining the treatment group, the final treatment group of 

11 may not have been wholly representative of the entire population of 30 students. The same 

can be inferred about the control group, which was constructed by blindly sourcing 11 of the 19 

remaining prospective participants. In general, a larger population size could be utilized to help 

dilute potentially impactful attribute skewing. More specifically, a pre-study questionnaire might 

be utilized to purposely identify study participants who could form a diverse population. 

Collaboration across many potential study sites could improve population sourcing, as could 

multiple-researcher coordination. This would, additionally, counteract findings representative 
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only within unique populations and improve the strength and validity of the stated statistical 

analyses.  

The instruments used in this study might also be examined as places for potential 

adaptations. In the case of the AGATEs, questions might need to be reselected or rescaled based 

on the content that a specific course intends to cover; in the case of this study, although 

collaborative efforts between the course instructor and principal researcher were made in 

designing the AGATEs, certain question types (e.g. those involving factoring) seemed like they 

had never been discussed formally with students during the usual algebra course. Being able to 

closely align course content with game play content is essential in optimally collecting data 

specifically on students’ cognitive changes during a course of study, and improving students’ 

odds of forming correct cognitive connections; additional specifications could be made to game 

play levels that are covered or potentially assigned for even further alignment. With regard to the 

affect-focused interview protocols, additional questions could be included from Tapia and 

Marsh’s (2004) original ATMI—although many of the questions from that instrument were 

adapted or directly quoted for use in this study’s interview protocols, if a new study’s time 

affordances permitted, additional questions could be investigated. A general note regarding all 

interview protocols is that a larger research team could likely generate more interviews than did 

the principal researcher in this study; more interviews would make the qualitative data more 

robust and could potentially offer new perspectives not voiced by the interviewees from this 

study. As one limitation, all interviewees in this study were male, so it would be interesting to see 

if there were any differences in the treatment from the female perspective.  

Additionally, the timing of the implementation of the Dragonbox game as a learning tool 

might be reconsidered. In this study, game play sessions most often cut into treatment students’ 
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lecture time. However, it’s possible that game play could have been used in place of traditional 

classroom practice. This might require an extensive review of content being taught within 

students’ course to ensure content alignment with appropriate in-game equivalents. 

Classroom Applications. 
The results of this study offer lessons for all professional educators, but most especially 

for those interested in utilizing technological innovations or specifically implementing game-

based learning innovations for their students. Several characteristics were identified in this study 

that highlighted positive, neutral, and negative developments arising from prolonged game play; 

using these data, efforts should be made to offset potential negative effects of game-based 

learning scenarios, which may also manifest with other types of instruction. 

One important quality of classroom instruction informed by the results of this study is the 

need for well-differentiated content within a given curriculum. In this study, it was observed that 

student game players completed different amounts of game play content, and that while some 

students barely reached the main game’s half-way mark, other students managed to entirely clear 

all available content. Because students have different strengths and weaknesses, it’s important 

that students who excel at specific content can continuously encounter more and more 

challenging ideas and push their understanding; for students who might struggle, it’s equally 

important that they are supported to grasp the essential ideas of mathematics content and, ideally, 

achieve holistic understanding.  

In this study, it might have been prudent to implement a system in which a “classroom 

pace” was set; this may have prevented students from falling too far behind or getting too far 

ahead, while still feeling that they had agency and control over their mathematical learning. This 

consideration might help reduce students’ tendencies to become self-conscious about their 

abilities when learning new content, as was witnessed. Constructing individual/team-based 
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competitive environment(s) that could potentially motivate students in healthy ways during game 

play could also offset burgeoning self-conscious emotional reactions to difficulties. Such 

competition could be based around, in this case of game play, in-game performance, but also on, 

potentially, a presentation of formal mathematical concepts related to corresponding in-game 

content for which each student or student group would be responsible. As shown in this study, 

sometimes students would clear a level in Dragonbox explicitly for the sake of moving forward, 

taking no time to reflect on the mathematical concepts embedded within; reflection is important, 

as it allows students to better internalize the complex ideas that they may encounter. Reflection 

and presentation as a classroom unit encourages students to connect with peers and communally 

address the mathematics at hand.  

Additionally, this study’s results seemed to indicate that students did not always 

instantaneously recognize connections between game play and formal mathematics, which often 

created conceptual misunderstandings. It is essential that students are supported during any 

attempt to learn mathematics content in order to form correct cognitive connections linking 

formal mathematical content to any other analogous representation of such ideas. In the case of 

Dragonbox game play, rather than having students play the game individually, students can be 

broken into groups to complete and discuss levels together. Students or groups of students might 

present their solutions on certain levels to the class, which could catalyze whole-class 

discussions of parallels between game concepts and formal equation solving concepts. The 

greater the number of opportunities that students have to discuss and exhibit their understanding 

of conceptual ideas, the more likely it is that erroneous ideas will be flushed out and corrected.  

Lastly, especially with games and other more-general learning utilities that contain finite 

and reiterative content, it is worthwhile to create pacing that prevents students from fatiguing and 
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losing interest in their non-traditional learning source. Solutions for this will vary up to the 

resource being utilized but keeping students genuinely interested and excited in content will only 

benefit them during their learning experiences.  

 

Further research. 

There are also many aspects of the study which can inform further research. With 

consistently evolving technological innovations, the integration of new learning utilities into 

mathematics classrooms is key to working towards improved mathematics education. Therefore, 

further investigations must be undertaken to create a more essential picture of the best means for 

general technological and specifically game-based implementations.  

To achieve a better understanding of how game-based learning technologies may be 

useful to improving mathematics education, a series of parallel studies might be conducted 

across several educational strata (i.e. elementary school level, junior high school level, high 

school level, university level, etc.). This study allowed junior high school students to 

independently and co-instructionally explore the connections between game play and formal 

mathematical concepts, which might not be possible with younger students who have had less 

cognitive development. However, there is potential for use of this design choice with older 

students similarly to what was done in this study. It would be worthwhile to investigate other 

titles in the Dragonbox series to see if they similarly qualify as strong representatives of 

mathematical games that may function as pedagogical tools based on the literature review 

accompanying this study; other mathematical disciplines besides algebra, such as number theory 

or geometry, may also be suitable for this type of game-based exploration. Alternatively, a design 

like the one used in this study might be implemented using games outside of the Dragonbox 

family. Several of this study’s design variables may be altered to check their impact on the 
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overall effects of game-based learning, including the following: the subject content examined, 

the game utilized corresponding to the subject content, the type of structure and support provided 

to game-players, the type of learning experience for students as being independently driven or 

group driven, the amount of time spent playing the game, etc. However, as stated in earlier 

chapters, there are already a wealth of studies with combinations aligning with some of the stated 

design choices, so it would be prudent to ensure the collection of data from new study variants or 

to meaningfully revisit study variants which provide avenues for further investigation. 

Reflecting on the three conclusions drawn describing game-playing students’ cognitive 

changes, it becomes clear that connecting game play experiences to mathematics experiences 

was not a trivial, automatic occurrence on students’ parts in this study; when students did 

individually form a connection, the quality of the connection was variable (correlated, generally, 

with the quality of each student’s pre-existing cognitive framework of equation solving 

practices), and students’ attempts to translate information between mediums sometimes led to 

misunderstanding of formal mathematics content. Evidence exists to suggest that while 

reasonably strong mathematics students may benefit from exploratory, self-guided game play 

experiences, this will not be a universal norm; students with less developed cognitive 

frameworks for mathematics at the time of game play introduction may not make high-quality 

connections between game play and formal mathematics doing. Therefore, it is recommended 

that researchers intending to explore the uses of mathematical games as pedagogical tools for 

cognitive growth utilize the mathematical game of their choosing with (primarily) a guided 

approach (as opposed to an individualized exploratory approach); that is, researchers should 

enable course instructors to explicitly draw connections between game content and formal 

mathematics content for students at regular intervals during the learning experience. This should 
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not be viewed as wholly decrying the utility of individualized game based exploration; instead, a 

guided approach should be used to provide all students with a “safety net” of sorts in order to 

ensure that they are making the correct types of mathematical connections at each step of the 

learning process, thus preventing foundational conceptual misunderstandings potentially 

acquired through game play from concretizing in their mental schemas. Within the classroom, 

this might be implemented by splitting a class period into halves, allotting the first half for 

students’ individual game-based exploration, and the second half for guided lecture or guided 

group discussion that makes clear the connections between game content and formal 

mathematics content. Alternatively, game play could be assigned as an out-of-classroom activity 

and discussed within the classroom to provide examples of or parallels to formal mathematical 

ideas. The variety of ways that a guided approach may be implemented and utilized to mitigate 

the weaknesses of the individualized exploratory approach offers many avenues of investigation.  

Additionally, the two conclusions drawn describing game-playing students’ changes in 

content retention also stand out as offering leads in studying the utility of game-based learning; 

however, because content retention would necessarily be examined following a treatment phase, 

it is important to reiterate the suggestion that future studies utilize primarily a guided approach. 

In this study, content retention was checked for by utilizing a natural 1-month gap in the formal 

algebra curriculum, but it would be easy to iterate on this using both shorter scales (e.g. a 1-week 

winter recess) and longer scales (e.g. a 3-month summer recess). Although some information was 

collected in this study regarding what aspects of the Dragonbox game play experience aided 

students in content retention, responses were reasonably varied over a relatively small sample 

size. Investigations using primarily a guided approach should be done to further examine these 

results; researchers could potentially identify which themes among those presented by the 
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students in this study are recurring, and how the presence of those themes (or new themes) can 

be amplified during game-based learning experiences. It would also be worthwhile to check for 

content retention with the Dragonbox Algebra 12+ game playing experience with additional 

variants of this study’s design to determine further improvements that can be made in this regard.  

Closing. 

 Because of their inviting nature, mathematical games have the potential to function as 

exciting pedagogical tools, but a firm understanding of how they work, how they should be used, 

and what effects they may have on students in terms of cognition, affect, and content retention is 

essential to improving their utility for students. From this study, an understanding of how the 

introduction of one mathematical game into the curriculum of an 8th grade class of new algebra 

learners has impacted those learners’ cognitive, affective, and content retentive outcomes has 

been gained. From the perspective of educators consistently seeking technological innovations, 

especially game-based innovations, for mathematical learning, insight into the use of 

mathematical games as pedagogical tools has come from this study, offering substantial 

conclusions and opening additional pathways for future exploration in the field.  
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Instruments for Investigating Cognitive Changes 
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Cognition-focused interview protocol 1 [1 page]. 
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Cognition-focused interview protocol 2 [1 page]. 
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Instruments for Investigating Affective Changes 

Affect-focused interview protocol 1 [2 pages].
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Affect-focused interview protocol 2 [2 pages]. 
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Affect-focused interview protocol 3 [2 pages]. 
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Instruments for Investigating Changes in Students’ Content Retention 
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