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ABSTRACT 

Polymeric sandwich composites are appealing for lightweight structures that require 

high strength and stiffness such as parts of aircraft, marine vessels, civil infrastructures 

and wind turbine blades. In wind turbine blades, sandwich composites with polymeric 

foam or honeycomb core and fiber-reinforced polymer (FRP) skins are a promising 

solution to obtain sufficiently lightweight blades with high bending stiffness and 

strength. In naval structures, sandwich composites with foam core and fiber-reinforced 

composite skins are used to create a light, corrosion resistant and stiff structure. 

However, there are many challenging and unresolved scientific issues that engineers face 

in using sandwich composites in the above applications. Polymeric sandwich composites 

undergo complex loading histories in addition to constant exposure to hostile 

environments, i.e., temperature and humidity changes. Moreover, one of the 

characteristics of polymers is their prominent viscoelastic response when subjected to 

mechanical loading. The viscoelastic response of polymers becomes more pronounced at 

elevated temperatures and high humidity. Coupled mechanical loading and hostile 

environments cause the constituents of the sandwich structures to experience different 

time-dependent behavior and degradation, leading to complex failure mechanisms in 

sandwich composites. The aim of this study is to describe the performance of sandwich 

composites subjected to mechanical loading histories and various environmental 

conditions, by incorporating knowledge of the behavior in each constituent (skin, core, 

fiber-matrix constituents).  
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NOMENCLATURE 

1D One dimensional 

3D Three dimensional 

ASTM American Society for Testing and Materials 

B Material parameter 

C3D20 nonlinear three dimensional continuum elements 

C fourth-order elastic stiffness tensor 

CFRP carbon fiber-reinforced polymer 

Eo Relaxation modulus 

E Elastic modulus 

E∞ relaxed modulus 

Eq equation 

F strain measure 

f yield function 

FE Finite element 

FRP fiber reinforced polymer 

G shear modulus 

GFRP Glass fiber reinforced polymer 

I second moment of an area 

KB bulk modulus 

L length 
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mm millimeter 

MPa Megapascal 

NSF National Science Foundation 

N Newton 

NaCl Sodium chloride 

ONR Office of Naval Research 

P Piola stress 

PU polyurethane 

PVC polyvinylchloride 

PZT Lead Zirconate Titanate 

QLV Quasi linear viscoelastic 

RT  Room temperature 

t time 

UMAT User material 

v Stretch tensor 

W load  

wt weight 

Greek symbols 

    characteristics of relaxation time 

δij Kronecker delta 

    stress 

  Stress tensor 
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 ̅ Von Mises equivalent stress 

   Poisson’s ratio 

  strain 

  Strain tensor 

 ̇ Strain rate tensor 

 ̇   Elastic strain rate tensor 

 ̇   Plastic strain rate tensor 

S  Deviatoric stress 

  deflection 

θ temperature 

λ Material parameter 

Subscripts 

f foam 

s skin 

Superscripts 

pl plastic 

 

el elastic 
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1. INTRODUCTION AND LITERATURE REVIEW

1.1. Polymeric Sandwich Composites and Their Applications 

Sandwich structures consist of two thin face sheets (skins) with high stiffness and 

strength which are bonded with an adhesive to both sides of a relatively thick core. This 

sandwich system forms a lightweight structure with high strength and stiffness, and 

predominantly loaded under bending and/or twisting. The face sheets are usually made 

of metals or fiber composite laminates and the core is typically made of wood, and 

foams or honeycombs of polymeric or metallic materials. The skins carry the tensile and 

compressive loads and the core sustains the shear loads and holds the skins in positions 

away from the neutral axis of the structures, which maximizes the flexural stiffness of 

the structure [1]. When fiber composite laminates are used for skins, several materials 

that are used as fiber are glass, Aramid or Kevlar, because of their light weight, carbon 

and Boron for their high strength, and Silicon carbide for high temperature resistance. 

The common matrix materials include polymers, minerals and metals. Polymeric matrix 

includes thermoplastic resins such as polypropylene, polyphenylene sulfone, polyamide, 

polyetheretherketone, etc. and thermoset resins such as polyesters, phenolics, 

melamines, silicones, polyurethanes, epoxies. Mineral matrix includes silicon carbide 

and carbon that are often used in high temperature applications, and aluminum alloys, 

titanium alloys and oriented eutectics are some examples of metallic matrix [2]. For 

applications which having light weight is important, foams are the most efficient core 

materials and because of its simplicity of changing the core and skin materials in 
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manufacturing, sandwich construction are flexible in designing for different shape and 

deflection requirements [3]. 

The significant characteristics of sandwich composites are light weight, [2] superior 

bending stiffness, good acoustic damping, ease of machining and forming [4]. Sandwich 

composites also have an improved stiffness to weight ratio and it is also possible to 

optimize the performance by changing the core and skin materials and their thickness 

[5]. This flexibility in design is another advantage of using sandwich composites in 

structural applications. 

In Airbus A310, sandwich composites are used in several components, i.e., vertical and 

horizontal stabilizer, front landing gear hatch, motor mast reinforcement, and in Airbus 

A320 they are used in motor case, vertical and horizontal stabilizer. Also using sandwich 

composites in fighter aircrafts improved the maneuverability of the aircraft. Examples of 

fighter aircrafts that have structures made of sandwich composites are European airplane 

Alphajet or Airplane Mirage 2000 A.M.D-B.A. Some characteristics of composite 

components in aircraft industry are: 

1. Light weight that leads to save in fuel and improves performances. 

2. Saving in long-term cost of product by good fatigue resistance that enhances 

the life. 

3. Good corrosion resistance that leads to less frequent of inspection needed 

which saves the maintenance cost. 
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Another application of sandwich composites is in parts of helicopters, such as blades, 

vertical and horizontal stabilizer and rotor shaft [2]. Compared to metallic construction, 

using the composite in the secondary structures allows for 15% mass reduction and this 

saving is even more when using them in working pieces such as the elements of 

transmission of power and control parts that the mass reduction is up to 50%. 

In recent years there have been interests in sandwich composite bridge decks because of 

their inherent strength and stiffness per unit weight advantages compared to the 

traditional steel reinforced concrete [6]. Composite bridge decks are exposed to the loads 

due to actions of wheel, chemical attack, and changing in temperature and moisture 

including freeze and thaw shrinkage and humidity and these situations made them the 

weakest element in the bridge system. Vinylester polymer and E-glass fibers are typical 

materials used in bridge deck structures [7]. Also sandwich composites with 

polyurethane foam core and metallic (steel) skins are used to create stiff structures, 

without the need for secondary stiffening in lightweight decks. In the rehabilitation 

projects, weigh reduction of replacement decks leads to decreasing in dead load and 

consequently raises the live load rating of the structure [6]. 

Sandwich composites also have many applications in ship structures including the 

current and potential use in hulls and superstructures, bulkheads, decks, propellers, 

advanced mast systems and other equipment [8]. Polymeric sandwich composites are 

used in different boats and small ships, such as yachts, power boats, naval patrol boats, 

landing craft and mine hunting ships. Current sandwich composites used in marine 
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applications are usually made with thin face skins of fiber reinforced polymer laminate 

and a thick core of a very light material. A wide range of fibers such as glass, carbon and 

Kevlar fibers and resins like polyesters, vinylester and epoxy are being used in 

composite skins. A variety of core materials has been used in marine sandwich 

composites, and the most common materials are polyvinylchloride (PVC) foam, 

polyurethane foam and balsa wood [9]. The benefits of using composites are decreasing 

the weight, flatness for stealth requirements, and increased corrosion resistance. There 

has been a number of ships entirely made of sandwich composites consisting of foam 

cores and fiber reinforced skins. These structures have high strength and rigidity 

combined with light weight, low radar and magnetic signatures and good resistance to 

shock. [10] Hall et al. [11] investigated the performance of sandwich construction used 

in Navy minehunter by determining the physical properties of core materials and testing 

composite structures for their mechanical strength and resistance to underwater shocks. 

These tests provide information on failure modes and loading in various core materials 

for ship’s designers. They reported that in both static and cyclic loadings, failure is due 

to shear and initiates in the foam core.  

Another important application of sandwich composites is for wind turbine blades. In 

wind turbine blades, sandwich composites with polymeric foam or honeycomb core and 

fiber reinforced polymer (FRP) skins are a good solution to obtain sufficiently 

lightweight blades with high bending stiffness and strength. The blades of a wind turbine 

rotor are the most critical part of the wind turbine system [12]. The important 
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requirements for wind turbine blades are high stiffness, low density and long fatigue life 

and sandwich composites are the preferable choice because of their properties [13].  

1.2. The Effect of Environments (Temperature and Moisture) On the 

Mechanical Properties of Sandwich Composites 

Foam core sandwich composite structures which are used in naval structures have many 

advantages, such as high stiffness to weight ratio and corrosion resistance and leads to 

weight saving in marine structural applications; however, they are exposed to harsh 

environment. Xiaoming et al. [14] investigated long-term exposure of sea-water on foam 

core sandwich composite structures. They focused on understanding damages caused by 

sea water in foam materials, increases in weight and volumetric expansion of strains and 

degradation. In addition, the influences of sea water on the fracture behavior of foam 

materials and on interfacial debonding fracture, are studied experimentally and modeled 

using computational fracture mechanics. They showed that most of sea-water effects on 

the foams was limited to the exterior area. They also conducted experiments to 

investigate the effect of sea-water on the toughness of PVC foam. It was shown that the 

sea-water absorption in the crack tip area causes the increase in foam toughness. 

Similarly, they showed that the effect of exposure to external temperatures is limited to 

the outer facings because of the high thermal insulation properties of foam and both 

temperature and sea water reduce the elastic moduli of the foam.  

Siriruk et al. [15] studied the degradation and its effect on the mechanical behavior in 

sandwich composite structures comprising of PVC foam core and carbon fiber 
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reinforced vinyl ester skins due to exposure to sea water. They presented both 

experimental and analytical results concerning the properties and response of PVC 

foams and sandwich composites. Siriruk et al. [16] also studied sandwich structures in 

naval structures that are exposed to sea water and temperature fluctuations in long period 

of time. They investigated the influences of sea water on the interfacial mechanical 

response between foam and skins. Their testing results indicate that in the specimen that 

was affected by sea water, the delamination crack propagates at the interface region 

while in the dry sandwich composite specimen the crack stays within the foam. They 

also showed that fracture toughness decreases after sea water exposure and it should be 

considered in the design of ship structures.  

Kolat et al. [17] investigated the influence of core material selection and environmental 

conditions on the fracture toughness of sandwich structures. The study shows that 

fracture toughness of sandwich composite systems with polyurethane and coremat core 

increases under effect of sea water while with using wood and plywood the fracture 

toughness decreases after conditioning in sea water. The obtained data in this work, 

directly used by boat designers. Joshi et al. [18] analyzed the influence of moisture 

diffusion on viscoelastic sandwich composites deformation, and assumed the elastic and 

time-dependent properties of the foam core depend on the moisture concentration and 

conducted coupled analyses of moisture diffusion and deformation to predict the 

viscoelastic sandwich systems performance. They showed that the simulated results are 

capable in capturing the accelerated time-dependent responses at higher moisture 

concentration.  
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1.3. Time Dependent Studies on Polymeric Sandwich Composites 

Creep deformations in the polymeric constituents in the sandwich composites can 

influence the overall life performance of the polymeric sandwich structures. Also 

composite sandwich structures are often subjected to static and repetitive loadings such 

as the repetitive loading on the ship hull because of sea water waves, repeated loading 

due to motor vehicle over the bridge deck and aeroacoustics excitation of a turbine 

engine housing influenced by rotating turbine blades [1]. These repeated loadings can 

lead to fatigue failure in structures. 

Du et al. [19] investigated the creep response in sandwich composites with honeycomb 

core for a period of 30 days. Their result showed linear viscoelastic response in ambient 

conditions and loading equal to 30% of failure loading. Higher relative humidity lead to 

significant acceleration of creep strain. Shenoi et al. [20] studied creep and creep–fatigue 

in a sandwich structure including fiber-reinforced polymeric faces and a PVC foam core. 

They used both Burger and power law models for describing the creep behavior, which 

was compared with experimental results. They showed that creep is mainly due to the 

core for the sandwich composites and the creep response of the foam core material 

depends on the stress levels. Garrido et al. [21] conducted experimental and analytical 

studies on the creep behavior of sandwich composite consist of  glass-fiber reinforced 

polymer faces and rigid polyurethane foam core. They proposed a creep model to 

simulate the long-term deformations in sandwich composites by considering the 

viscoelastic contributions from the core material under shear and the glass-fiber 

reinforced polymer faces under tension/compression. 
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In this study the viscoelastic behavior of the PU foam core under shear stresses was 

described using Findley’s power law model and it was found that the linear viscoelastic 

behavior of material depends on stress level. The time exponents were assumed to be 

relatively unaltered. Using Findley’s power law that replaces the hyperbolic sine 

dependency of stress by a linear dependency, it was possible to determine a time-

dependent shear modulus and finally provide predictions that are stress independent. 

Chen et al. [22] carried out several three point bending creep tests on the sandwich 

composite samples made of various core and skin materials with different core and skin 

thicknesses and their result showed that the flexural creep behavior of the sandwich 

composite sample is influenced by the shape of  honeycomb core, core and skin 

thickness, and skin material type. Kim et al. [23] developed a multi-scale model to 

integrate different constitutive models of the constituents in the sandwich structures and 

in this study the quasi-static and creep tests were conducted for bulk epoxy, GFRP, 

polyurethane foam, and sandwich specimens under uniaxial tension and bending at room 

temperature and at 80
o
C. 

Scudamore and Cantwell [24] studied the moisture effect on the mechanical behavior of 

sandwich structures. They used sandwich composite structures consisting of E-

glass/epoxy as skins and an aluminum honeycomb core and showed that exposure to sea-

water in long term leads to degradation of the bond between the epoxy matrix and the 

aluminum core and causes cracks along the skin-core interface. Li and Weitsman [14] 

also investigated the sensitivity of the material properties of sandwich structures exposed 

to seawater in a long time period. They measured the fracture toughness of the foam core 
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material and the face/core debonding fracture toughness in the case of sandwich 

specimens and characterized the fracture toughness of wet and dry foams. They showed 

that sea water absorption, increases the foam toughness. This may be due to the 

mechanical softening and the ductility of the wet foam when the glass transition 

temperature was decreased. Also, to study the influences of seawater on the skin and 

core debonding, the pre-crack sandwich composites were immersed in seawater, and it 

was concluded that the fracture toughness at the core and skin interfaces showed 

degradation because of the presence of seawater. 

Ishai et al. [25] investigated the long-term temperature and moisture effects on damage 

tolerance of sandwich composites made of carbon fiber-reinforced plastic (CFRP) and 

glass fiber-reinforced plastic (GFRP) skins and a syntactic foam core. Tests were done 

on immersed sandwich panels at temperatures 25
 o

C and 50
o
C. During the exposure to 

moisture and high temperature, moisture absorption versus time was recorded by weight 

measurements and then an impact test was conducted and it was concluded that there is a 

remarkable strength reduction due to moisture content of syntactic foam specimens. 

Ishiaku et al. [26] also defined that a degradation happens in mechanical properties of 

sandwich composites due to moisture absorption. Belingardi et al. [27] characterized the 

sandwich composite properties with skins made of glass fiber epoxy and a polymeric 

foam core using a series of static and quasi-static tests. They showed the dependency of 

the structural response of the sandwich to the foam core strength properties. The 

viscoelastic creep behavior of sandwich composite beams and the effect of temperature 

changes are analytically investigated by Ramezani et al. [28]. Their results show that 
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creep of the core leads to remarkable differences in the internal forces and stress 

concentrations, which can have an important effect on the performance of sandwich 

beams under sustained loads. Also Hamed et al. [29] presented a theoretical modeling of 

creep response of sandwich composite beams which considers the influences of different 

boundary conditions and the viscoelastic properties of the core material. The theoretical 

approach combines the concept of the linear Boltzman’s principle of superposition as 

discussed by Findley [30] with the concepts of the high-order sandwich theory by 

Frostig [31]. Hamed et al. carried out a parametric study to investigate the capability of 

the model and the effect of boundary conditions on the creep behavior of sandwich 

composite and showed the concentration of shear and transverse normal stresses near the 

edges and their variation in time and the effect of boundary conditions in the creep 

response of sandwich composite beams. The change in deflection, internal forces and 

stresses with time shows different trends that depend on the boundary conditions of the 

beam. Figueroa et al. [32] investigated creep to failure and cyclic creep in foam core 

sandwich composites in seawater. The deflection was about 15% higher and lifetime 

reduction of over 50% were observed in specimens subjected to seawater compared to 

baseline condition. In cyclic creep, significantly reduced life and considerable damage 

were observed compared to creep to failure specimens. 

Coupled mechanical loading and hostile environments cause the constituents of the 

sandwich structures to experience different time-dependent behavior and degradation. 

Hostile environments could accelerate aging and change the life performance of the 

sandwich structures. Jeon [33] investigated a multi-scale experimental and modeling 
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approaches on time dependent response of different constituents of sandwich composite 

(polymeric matrix, skin, and foam core) and their interaction on the overall creep 

performance of smart polymer sandwich constructions. Kim et al. [34] studied the time-

dependent response of smart sandwich composites consist of glass fiber reinforced 

polymer (GFRP) skins, polyurethane foam core, and PZT crystals embedded in the 

GFRP skins. They developed a multi-scale model to integrate different constitutive 

models of the constituents in the sandwich composite structures. They conducted quasi-

static and creep tests for bulk epoxy, polyurethane foam, GFRP and sandwich composite 

specimens under uniaxial tension and bending, at room temperature and at 80
o
C and 

characterization of material and model verification are done using experimental data. 

Several studies have been done on investigating the time-dependent response of 

sandwich composites and the effects of using different materials as core and skin on the 

overall performance of composites under mechanical loadings. However, a 

comprehensive study on investigating the effect of environmental conditions (moisture 

and high temperature) and nonlinear mechanical response of the constituents on the 

time-dependent response of sandwich composite behaviors is currently lacking. In this 

study, two systems of polymeric sandwich composites are investigated under quasi-

static, creep and stress relaxation tests at different environmental conditions. The 

influences of different constituents on the overall performance of sandwich composites 

are also studied. 
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2. RESEARCH OBJECTIVES

The objectives of this study are: 

2.1. Determination of Mechanical Responses of Polymeric Sandwich 

Composites and Their Constituent Behaviors under Different Mechanical 

Loading and Environmental Conditions 

Two systems of polymeric sandwich composites are studied. The first system consists of 

glass fiber reinforced polymeric (GFRP) composites with epoxy matrix for skins and 

polyurethane foam core. The second system consists of carbon fiber reinforced 

polymeric (CFRP) composites with vinylester matrix and PVC foam core. The first 

sandwich composites are typically used for aircraft and wind turbine blades while the 

second systems are often used in naval structures. Experimental data on the sandwich 

composites and their constituents are obtained from UC Davis (Dr. La Saponara’s 

group). The following mechanical tests are considered: quasi-static, creep and relaxation 

tests at different environmental conditions. The baseline tests (dry and ambient 

temperature) are considered for both sandwich systems. The first sandwich systems are 

also tested after immersion in deionized water at room temperature and high temperature 

(50°C), while the second sandwich systems are also tested after immersion in sea water 

at room temperature and 50°C. A nonlinear viscoelastic constitutive model, for small 

deformation gradient problems, is formulated and implemented in finite element (FE). 

The model is used to understand the nonlinear time-dependent responses of the 

constituents at various environmental conditions. The multi-scale FE framework that 

consists of FRP skins and foam core is used for predicting the overall performance of 
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sandwich composites under different loading conditions such as quasi static and creep. 

The nonlinear mechanical response of sandwich composites obtained from the FE 

simulation will be compared with experimental data. 

2.2. Determination of Life Performance of Polymeric Sandwich Composites 

under Mechanical Loadings and Environmental Conditions  

After calibrating the material parameters in the model for each constituent in the 

sandwich composites, the FE framework will be used to understand life performance of 

sandwich structures and predict failure initiation in sandwich composites under various 

loading histories and environmental conditions. The presented modeling and simulation 

of sandwich composites that incorporate different mechanical responses of the 

constituents will be useful in designing polymeric sandwich structures. 

The organization of this study is as follows. Section 3 discusses a quasi linear 

viscoelastic constitutive material model in order to describe nonlinear mechanical 

responses of polymers undergoing moderate deformations. In section 4, experimental 

procedures for testing the sandwich composites and their constituents are explained. 

Section 5 includes the results and discussion of the response of foam, CFRP and GFRP 

skins and sandwich composites under uniaxial and bending tests in different 

environmental condition such as dry at ambient temperature, immersed in liquid at 

ambient temperature and immersed in liquid at 50°C. To investigate the time dependent 

material properties, creep, stress relaxation and cyclic relaxation tests were done on 

foam and sandwich composites. Section 6 is the conclusion of this study.  
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3. CONSTITUTIVE MATERIAL MODELS FOR THE

CONSTITUENTS 

In this chapter the constitutive materials models are described. The sandwich composites 

consist of polymeric foam core with viscoelastic behavior and fiber reinforced polymeric 

skin with elastic or elastic plastic behavior. 

3.1. Nonlinear Viscoelastic Constitutive Model for Polymeric Constituents 

The nonlinear viscoelastic model that is used in this study is based on the quasi-linear 

viscoelastic (QLV) model of Muliana et al. [35]. The model is used in order to describe 

responses of polymers undergoing moderate deformations. The QLV constitutive model 

is originally proposed by Fung [36] for modeling biological materials. The polymers are 

assumed to be isotropic and homogeneous and the material moduli changes with the 

extent of exposure to temperatures and/or moisture changes. The one-dimensional (1D) 

QLV model is written as: 

 ( )  ∫  (   )
  

  

  

  
  

 

  
 (3.1) 

where E is the relaxation modulus, F is the strain measure, and P is the first Piola-

Kirchhoff stress (force divided by the undeformed cross-sectional area). The extensional 

strain is defined as 
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  ( )  
 ( )

 (  )
   (3.2) 

where L(t) is the length at current time t. In this study, the following form of the strain 

measure is used 

  ( ( ))   [   ( )   ] (3.3) 

where A and B are the material constants and can be calibrated by fitting experimental 

data. It is assumed that we can separate the time-dependent function from the 

deformation dependent part in predicting the nonlinear stress relaxation: 

  ( )   ( )   ( ) (3.4) 

where  ( )  
 ( )

 ( )
 is the normalized time-dependent function in which  ( )      and 

   ( ) is the nonlinear elastic stress response. The QLV model in Eq. (3 – 1) can be 

rewritten as: 

 
 ( )  ∫  (   )

    

  

  ( )

  
  

 

  
 (3.5) 

where 
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  ( )         

   (3.6) 

In the uniaxial case, there are two material parameters that should be characterized from 

experiments, Eo and B, which are related to the instantaneous elastic response. Also the 

time-dependent function K(t) can be characterized from experiment and the parameter Eo 

corresponds to the elastic (Young’s) modulus in a linearized elastic response. With the 

relaxation modulus, the QLV constitutive model for viscoelastic polymer is: 

  ( )  ∫  (   )
  

  

  

  
  

 

  
 (3.7) 

where E(t) is the relaxation modulus of polymer and can be written as 

  ( )     ∑  

 

   

 
  
    (3.8) 

where     is the characteristics of relaxation time, En is the coefficient in the time-

dependent part, N is the number of term in the Prony series, and    is the relaxed 

modulus. The variable F in Eq. (3.7) is the nonlinear strain measure. 

Three-dimensional (3D) quasi-linear viscoelastic (QLV) model for isotropic materials, 

considering a generalization of the one-dimensional quasi-linear viscoelastic model, is: 
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    ( )  ∫   (   )
    

  
      ∫  ( 

 

  

 

  
  )

    
  

   (3.9) 

where δij is the Kronecker delta and λ is the material parameter, which is one of the two 

Lame’s constants and defined as: 

 λ = KB - (2/3)G (3.10) 

G is the shear modulus and KB is bulk modulus which both are material parameters that 

have the same time-dependent behavior as the extensional relaxation modulus. The 

corresponding Poisson’s ratio assumed to be constant,   which leads to: 

  ( )  
 ( )

 (    )
 (3.11) 

   ( )  
 ( )

 (     )
 (3.12) 

The strain measure in a generalized 3D quasi-linear viscoelastic model is defined as: 

  ( (̅ ))   [   ̅( )   ] (3.13) 

  (̅ )  √       (3.14) 
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 (3.15) 
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and the 3D quasi-linear viscoelastic model becomes 
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(3.17) 

where 

    
 

 (    )
 (3.18) 
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 (3.19) 
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  ̅ (3.20) 

The normalized time dependent function is  
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  ( )     ∑  

 

   

 
  
    (3.21) 

  ( )     ∑  

 

   

     (3.22) 

and the QLV model becomes: 

   (   )     ∫  (
 

  
   )   

  ̅
    
  

        ∫  (
 

  
   )   

  ̅
    
  

   (3.23) 

The above model is implemented in user material subroutine (UMAT) of ABAQUS FE 

analyses. The numerical algorithm was formulated by Muliana et al. [35] and is 

summarized in the Appendix. The two nonlinear material parameters E0 and B are 

determined from quasi-static tests, while the time-dependent parameters are determined 

from creep or relaxation tests. For isotropic polymers, the Poisson’s ratio is 

characterized from experiments. 

In this study we do not consider any degradation in the material model, but the model 

that is used is capable of taking degradation in account as a function of concentration of 

water, temperature and nonlinear strain. 

3.1. Elastic-Plastic Model for Skins 

The elastic-plastic material model [37], [38] is used to simulate the behavior of FRP 

skins in the sandwich composite. Some of the FRP skins show an elastic-plastic response 
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under mechanical loading, which will be shown later in this study. A rate-independent 

plasticity model is considered in order to capture the elastic-plastic response of the FRP 

skins. From the experimental observation for mechanical deformation of the FRP skins, 

the strains are relatively small, which allow for additive decompositions of the elastic 

and plastic deformations. Thus, the total strain rate is given as: 

 ̇   ̇    ̇   (3.24) 

where   ̇ is the total (mechanical) strain rate,  ̇   is the elastic strain rate, and  ̇   is the 

plastic strain rate. Equation (3.24) is an approximation when the elastic strains are 

infinitesimal. The rate of deformation tensor is work-conjugate to the Cauchy stress 

tensor and is used to define the strain rate: 

  ̇  
 

 
(
  

  
 (
  

  
)
 

) (3.25) 

The linear elastic isotropic constitutive equation can be written as 

        (3.26) 

which C denotes the fourth-order elastic stiffness tensor. For notational convenience we 

can write the above stress-strain relationship in vector notation in (3.26). 
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 (3.27) 

where E is Young modulus and    is the Poison ratio. The yield function is often 

expressed in terms of an equivalent stress, i.e. a scalar measure of the magnitude of the 

Cauchy stress tensor. Von Mises equivalent stress is: 

 ̅   ̅[ ]  √
 

 
    (3.28) 

which deviatoric tensor is  

     [ ]    
  [ ]

 
  (3.29) 

Using Von Mises equivalent stress definition, the yield function is written as: 

 [   ̅  ]   ̅[ ]   [ ̅  ] (3.30) 

The yield surface is  

 [   ̅  ]    (3.31) 
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 [  ̅ ] shows the isotropic hardening. The hardening parameters are state variables that 

are introduced to allow the model to describe some of the complexity of the inelastic 

response of real materials. In perfect plasticity which is the simplest plasticity model, the 

yield surface acts as a limit surface and there are no hardening parameters. In this study, 

from observed experimental tests of FRP skins, discussed in Chapter 4, an elastic-

perfectly plastic deformation model is adopted. 
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4. EXPERIMENTS

The experimental part of this study was done in UC Davis (Dr. Valeria La Saponara’s 

group). Two sandwich composite systems were manufactured using out-of-autoclave 

Vacuum Assisted Resin Transfer Molding. The first system is glass fiber reinforced 

polymer (GFRP) having E-glass fibers (quasi-unidirectional Vectorply E-LR 0908, with 

layup [90]4 per skin) and epoxy (Pro-set LAM 125/LAM237, with an infusion ratio of 

100:28 resin:hardener by weight ratio for the skins and polyurethane (PU) foam,(General 

Plastics FR-3704, nominal thickness 19.1 mm) for the core. We refer to this system as 

“GFRP/PU”. The resin cure cycle consisted of 14 hours at room temperature, followed 

by 8 hours at 82 °C in a convection oven. The GFRP/PU sandwich and its constituents 

(GFRP and PU) are immersed in distilled water at 25
o
C and 50

o
C. The second system is 

a sandwich with skins made of carbon fibers (quasi unidirectional Torayca T700S, with 

layup [90]4 per skin) and vinylester (Hetron FR 992, with additives cobalt naphthenate 

and methyl ethyl ketone peroxide with an infusion ratio of 100:0.15:1.25 by volume), 

and a polyvinylchloride foam core (DIAB Divinycell H100, nominal thickness 25.5 

mm). We refer to this system herein as “CFRP/PVC”. The vinylester had a cure cycle of 

45 minutes at room temperature and four hours at 82 °C. The CFRP/PVC sandwich and 

its constituents (CFRP and PVC) are immersed in artificial sea water at 25
o
C and 50

o
C. 

These composite systems and their constituents (pure resins, FRP skins, foam cores) are 

subjected to gravimetric tests, prior to mechanical loading. Table ‎4-1 provides the 

immersion testing conditions for the samples, with different durations dictated by 
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experimental constraints
1
. The expression “artificial sea water” stands for a solution of 

deionized water and 3.5 % wt. content of NaCl. 

Table ‎4-1: Immersion testing conditions 

Temperature Immersion fluid Sample Duration 

(days) 

50
o
C Deionized water GFRP skins, PU foam 150 

50
o
C Artificial sea water CFRP skins, PVC foam 107 

50
o
C Deionized water GFRP/PU 188 

50
o
C Artificial sea water CFRP/PVC 53 

RT Deionized water pure epoxy, GFRP skins, 

PU foam  

345 

RT Artificial sea water pure vinylester, CFRP 
skins, PVC foam  

210 

 
 
 

Baseline and conditioned sandwich composites and their constituents were subjected to 

several types of mechanical tests on a hydraulic axial machine (MTS 810). Typically, 

bending tests (quasi-static, creep and stress relaxation) were conducted on foam and 

sandwich samples, while quasi-static axial tests were run for monolithic FRP samples, 

following the requirements of the appropriate ASTM standard. The bending test setups 

are shown in Figure ‎4-1. The picture on the left is the test setup for three point bending 

test on PU foam, and the right picture is four point bending test on a PVC foam sample.  

                                                
1
 The immersion tests were planned until saturation was reached or up to 6 months. Immersion heaters were 

used in all tests. The evaporation rate of the room temperature water was slow enough not to require periodic 

refilling of the tank. 
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Figure ‎4-1 : Three and four point bending tests 

 

In addition, polymeric resin, fiber reinforced polymer skin and sandwich composites 

were manufactured and tested at different loading and environmental condition. 

Table ‎4-2 and Table ‎4-3 show a list of experimental tests conducted at UC Davis. Two 

sandwich composite systems are considered. The first system is made of polyurethane 

foam core and GFRP skins with epoxy matrix. The second system is made of PVC foam 

core and CFRP skin with vinylester matrix. Testing is first done for the constituents 

within sandwich composites which are used to support the development of the 
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constitutive model and calibrate the material parameters. Testing on sandwich 

composites is considered for validation of the model. 

Table ‎4-2: Summary of experimental tests in system 1 

Specimen Testing mode 
loading 

condition 

pure epoxy Uniaxial tension ramp 

Polyurethane foam bending ramp/creep 

GFRP skin Uniaxial tension ramp 

Sandwich beam bending ramp/creep 

 

Table ‎4-3: Summary of experimental tests in system 2 

Specimen Testing mode 
loading 

condition 

pure Vinylester Uniaxial tension ramp 

PVC foam bending ramp/creep 

CFRP skin Uniaxial tension ramp 

Sandwich beam bending ramp/creep 

 

 

 

The tests mentioned in Table ‎4-2 and Table ‎4-3 are conducted in three different 

environmental conditions, which are baseline (dry and room temperature), after 

immersion in fluid at room (25°C) and elevated temperature (50°C). The specimens for 

System 1 are immersed in deionized water, while the specimens in System 2 are 

immersed in sea water. All the tests as shown in the tables above are done for two 

different projects, System 1 (GFRP/PU) is for National Science Foundation (NSF) 

project and System 2 (CFRP/PVC) is for Office of Naval Research (ONR).  
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5. RESULTS AND DISCUSSION

In this chapter, the results are discussed for uniaxial, quasi static bending and time 

dependent tests and models for foams, skins and sandwich composites. 

5.1. Response of Uniaxial Tension Tests 

To characterize the skin behavior and obtain material parameters for the instantaneous 

elastic responses, the uniaxial test is performed on coupons of epoxy, vinylester, GFRP 

and CFRP. In FE analyses, one element is used to simulate loading under uniaxial 

tension due to a uniform stress and strain distributions (see Fig. 5.1). The dimensions of 

the coupons that are used in different uniaxial tests are shown in Table ‎5-1. 

Table ‎5-1: Coupon dimension 

Specimen width (mm) thickness (mm) 

epoxy coupon 25.78 1.66 

vinylester coupon 26.61 1.14 

GFRP 25.7 1.6 

CFRP 26.5 1.3 
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Figure ‎5-1 : One element model for uniaxial test 

 

The uniaxial tests are conducted on various specimens in different environmental 

conditions. Table ‎5-2 shows the uniaxial tests on pure resins and FRPs. 

Table ‎5-2: Uniaxial tension tests on pure resins and FRP 

Material Condition 

Pure Epoxy 

Baseline 

Immersion in deionized water at 25°C 

Immersion in deionized water at 50°C 

GFRP 

Baseline 

Immersion in deionized water at 25°C 

Immersion in deionized water at 50°C 

Pure Vinylester 

Baseline 

Immersion in sea water at 25°C 

Immersion in sea water at 50°C 

CFRP 

Baseline 

Immersion in sea water at 25°C 

Immersion in sea water at 50°C 
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The uniaxial tests are done on pure epoxy and experimental results and predictions are 

shown in Figure ‎5-2 to Figure ‎5-18. The calibrated material parameters are given in 

Table ‎5-3 and Table ‎5-4. The Poisson ratio for epoxy is measured as 0.34 and for 

vinylester is 0.25. 

 

Figure ‎5-2 : Pure Epoxy in baseline condition; model and experiment 
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Figure ‎5-3: Pure epoxy immersed in deionized water at 25°C; model and experiment 

 

 

Figure ‎5-4: Pure epoxy conditioned at 50°C; model and experiment 
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Figure ‎5-5: GFRP immersed in deionized water at 25°C (loading along fiber direction)  

 

 

Figure ‎5-6: GFRP immersed in deionized water at 50°C (loading along fiber direction); model 

and experiment 
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Figure ‎5-7: GFRP in baseline condition (loading perpendicular to fiber direction); model and 

experiment 

 

 

Figure ‎5-8: GFRP immersed in deionized water at 25°C (loading perpendicular to fiber 

direction); model and experiment 
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Figure ‎5-9: GFRP immersed in deionized water at 50°C (loading perpendicular to fiber 
direction); model and experiment 

 

 

Figure ‎5-10: Pure vinylester in baseline condition; model and experiment 
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Figure ‎5-11: Pure vinylester immersed in sea water at 25°C; model and experiment 

 

 

Figure ‎5-12: Pure vinylester immersed in sea water at 50°C; model and experiment 
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Figure ‎5-13: CFRP in baseline condition (loading along the fiber direction); model and 

experiment 

 

 

Figure ‎5-14: CFRP immersed in sea water at 25°C (loading along the fiber direction; model and 

experiment 
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Figure ‎5-15: CFRP immersed in sea water at 50°C (loading along the fiber direction); model and 
experiment 

 

In CFRP specimens with loading along the off-axis fiber direction of 90°, the elastic-

plastic material model is used for describing their mechanical response. Figure ‎5-16 to 

Figure ‎5-18 show the responses of CFRP in the 90° off axis angle at different 

environmental conditions. Table ‎5-3 and Table ‎5-4 summarize the calibrated material 

parameters for epoxy and vinylester matrix, and GFRP and CFRP skins under different 

environmental conditions. 
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Figure ‎5-16: CFRP in baseline condition (loading perpendicular to the fiber direction); model 

and experiment 

 

 

Figure ‎5-17: CFRP immersed in sea water at 25°C (loading perpendicular to the fiber direction); 
model and experiment  
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Figure ‎5-18: CFRP immersed in sea water at 50°C (loading perpendicular to the fiber direction); 

model and experiment  

 

Table ‎5-3: Mechanical properties of pure epoxy and vinylester 

 

 

baseline 4000 53 0

Immersion in deionized water at 25C 3500 36 0

Immersion in deionized water at 50C 2500 43 0

baseline 3200 20 89

Immersion in sea water at 25C 3540 7 0

Immersion in sea water at 50C 3670 10 278

standard deviation

for experiments

pure epoxy

pure vinylester

E(MPa) BconditionMaterial
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Table ‎5-4: Mechanical properties of GFRP and CFRP matrix 

 

 

Also from the experiments that we have done on foams and fiber reinforced polymeric 

skins, the observed ultimate stresses and strains are given in Table ‎5-5 for pure resins, 

CFRP and GFRP and Table ‎5-6 shows the load and deflection at the point of failure. We 

should consider that these stresses and strains are not exact and in some experiments 

show some variations.  

Table ‎5-5: Ultimate (failure) stress and strain for resins and FRP skins 

 

 

E (MPa) B

standard 

deviation for 

experiments

E (MPa)
yield stress

(MPa)

standard 

deviation for 

experiments

baseline _ _ 6800 _ 192

Immersion in deionized water at 25C 24000 5 0 5200 _ 164

Immersion in deionized water at 50C 24000 0 500 6200 _ 150

baseline 110000 0 2302 8000 16 541

Immersion in sea water at 25C 160000 50 0 7500 10.4 288

Immersion in sea water at 50C 112000 37 10816 7000 12 282

Material

GFRP

CFRP

loading along fiber direction loading perpendicular to fiber direction

Stress 

(MPa)
strain

Stress 

(MPa)
strain

Stress 

(MPa)
strain

Pure Epoxy 60 0.03 60 0.02 25 0.015

Pure Vinylester 30 0.009 20 0.0065 45 0.013

GFRP

(loading along fiber direction)

_ _
320 0.015 250 0.011

GFRP

(loading perpendicular to fiber direction)
25 0.004 25 0.005 20 0.0035

CFRP

(loading along fiber direction)
700 0.006 1500 0.011 500 0.006

CFRP

(loading perpendicular to fiber direction)
17 0.007 15 0.011 13 0.006

Material

Conditioned at 25°C Conditioned at 50°Cbaseline
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Table ‎5-6: Ultimate (failure) Load and deflection for foams 

Material 

baseline Conditioned at 25°C Conditioned at 50°C 

Load 

(N) 

Deflection 

(mm) 
Load(N) 

Deflection 

(mm) 

Load 

(N) 

Deflection 

(mm) 

Polyurethane 
foam 

80 12 75 12 80 12 

PVC foam 430 14 400 19 1300
2
 16 

  

                                                
2 From four point bending test 
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5.2. Quasi Static Bending Model and Tests 

In This part the three point and four point bending models for foam and sandwich 

composite are discussed. 

5.2.1. Three Point Bending Model for Foam 

The FE analysis is now used for describing bending in polymeric foams. The dimensions 

of the foam specimens are given in Table  5-7. It is a simply supported beam with loading 

in the middle of the beam. 

Table ‎5-7: Foam dimensions 

Specimen thickness 

(mm) 

width 

(mm) 

length 

(mm) 

span length 

(mm) 

Polyurethane beam  19 57.3 165 150 

PVC beam  25.5 57.2 165 150 

 

The diagram of three point bending is shown in Figure ‎5-19. Figure ‎5-20 shows the 

experimental test setup. The simply supported mechanical boundary conditions are 

assumed for FE model. In order to model a simply supported beam, one side of the beam 

is constrained to prevent displacement in y direction and on the other side of the beam, 

the displacements in y and x direction are restricted. Figure ‎5-21 shows the boundary 

conditions and the loading in mid-section of the beam. Also, two point are considered to 

have constraint to prevent displacement in the z direction. The FE mesh of the beam is 

generated using the nonlinear three dimensional continuum elements (C3D20) and a 

convergence study has performed in order to determine the number of elements required 

for the analyses. The convergence study is performed by comparing the result from the 
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FE analysis, within a linear elastic range, with the analytical solution of a linear elastic 

beam. 

 

Figure ‎5-19 Three point bending diagram 

 

 

Figure ‎5-20 Three point bending test set up 
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Figure ‎5-21: Boundary conditions of three point bending model 

 

For the analytical calculation of the deflection in quasi static three point bending test we 

have 

 
   (

  

    
 
    

   
) (5 – 1) 

where   is the deflection at the mid-section of the beam, W is the load at mid-section, L 

is beam length and E is elastic modulus. I is the second moment of an area for 

rectangular cross section of the beam, A is cross section area and G is shear modulus. 

These dimensions and properties are shown in Table ‎5-8 for PVC foam. The shear 

modulus for isotropic material is: 

 
  

 

 (   )
 (5 – 2) 
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Table ‎5-8: PVC foam properties and dimensions 

PVC foam (ONR) 

ν 
Max 

load (N) 
Length 
(mm) 

E 
(MPa) 

G 
(MPa) 

I 
Thickness 

(mm) 
Width 
(mm) 

0.25 420 150 65 26 79037.89 25.5 57.2 

 

The load-displacement plot for PVC foam in baseline condition is shown in Figure ‎5-22. 

Quasi static test was done five times to get repeatable results. By assuming the Young 

modulus equal to 65 MPa in Eq. 5-27, the analytical result captures the linear part of plot 

well. The overall response of foam under bending is nonlinear, as shown in Figure ‎5-22. 

The nonlinear material parameters were calibrated from the QLV model using FE model 

and are shown in Figure ‎5-23. The material properties that is obtained from calibration, 

assuming Poisson ratio equal to 0.25, are E= 75 MPa and B=7.2. Comparing the elastic 

modulus from calibration with analytical calculation we can see that they are almost in 

agreement. In analytical calculation a linear elastic behavior is assumed and the 

difference between the elastic modulus in analytical and model is because of the 

nonlinearity of material behavior.  
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Figure ‎5-22 : Experimental and analytical result for 3 point bending in PVC baseline foam 

 

 

Figure ‎5-23: FE result of PVC foam in baseline condition under quasi static test and comparison 

with experiment 
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In addition, three point bending tests are conducted for conditioned PVC foam after 

immersion in sea water at ambient temperature. The nonlinear material parameters 

calibration is shown in Figure ‎5-24. 

 

Figure ‎5-24: PVC foam conditioned in sea water at room temperature; model and experiment 

 

 Also three point bending tests are conducted on Polyurethane foam in three different 

environmental conditions such as baseline, immersed in deionized water at ambient 

temperature and immersed in deionized water at 50°C. By assuming the Young modulus 

equal to 24 MPa and using properties in Table ‎5-9 and Eq. 5-27, the analytical result 

captures the linear part of the plot well. It is shown in Figure ‎5-25. The overall responses 

of foam under bending are nonlinear and the nonlinear model result for different 

environmental conditions are shown Figure ‎5-26 to Figure ‎5-28. 
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Table ‎5-9: Polyurethane foam properties and dimensions 

Polyurethane foam (NSF) 

ν Max 

load(N) 

Length 

(mm) 

E 

(MPa) 

G 

(MPa) 

I Thickness 

(mm) 

Width 

(mm) 

0.34 80 150 24 9.23 29150.75 19 51 

 

 

Figure ‎5-25: Polyurethane foam at baseline condition; analytical result and experiment 
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Figure ‎5-26: Polyurethane foam in baseline condition; model and experiment 

 

 

Figure ‎5-27: Polyurethane foam conditioned in deionized water at ambient temperature; model 

and experiment 
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Figure ‎5-28: Polyurethane foam conditioned at 50 C; model and experiment 

 

The material properties obtained from three point bending tests for foams are shown in 

Table ‎5-10. 

Table ‎5-10: Material properties for foam in three point bending 

  

E(Mpa) B

baseline 75 7.2 2.7

conditioned in sea water at 25C 75 6 0

baseline 24 9 0

conditioned in deionized water at 25C 20 7 0

conditioned in deionized water at 50C 20 7 0

standard

 deviation for 

experiments

material condition
3 points bending result

PVC foam

Polyurethane
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5.2.2. Four Point Bending Model for Foam 

This model is used for simulating the bending in foam and sandwich composites. In this 

study both three point bending and four point bending tests are done on the specimens 

with the same material to check the accuracy and reliability of the result. In some cases, 

only four point bending test is done. The dimensions of foam specimens are the same as 

the ones used in three point bending and the prescribed loads are shown in Figure ‎5-29 

and the boundary conditions are shown in Figure ‎5-30. The distance between two loads 

is about 90 mm and each load line is located at about 30 mm from the beam end. The 

four point bending test set up and foam under bending are shown in Figure ‎5-31. 

 

Figure ‎5-29 Four point bending diagram 
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Figure ‎5-30: Boundary condition in four point bending 

 

 

Figure ‎5-31: Four point bending test on PVC foam 

 

For the beam under four point bending the deflection is  

 
  

   

   
(     )  

  

   
 (5 – 3) 
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where W is the load,   is the deflection at the loads, a is distance between support and 

loading, L is the beam length and E is elastic modulus. I is the second moment of area 

for rectangular cross section of the beam, A is cross section area and G is shear modulus. 

These dimensions and properties are shown in Table ‎5-11. 

Table ‎5-11: PVC foam properties and dimensions in four point bending 

PVC foam 

ν 
Max 

load(N) 

Length 

(mm) 

E 

(MPa) 

G 

(MPa) 
I 

Thickness 

(mm) 

Width 

(mm) 

0.25 1300 150 65 26 78761.53 25.5 57 

 

The load-displacement plot is shown in Figure  5-32. The quasi static tests were repeated 

3 times. By assuming the Young modulus equal to 65 MPa the analytical result for linear 

elastic material capture the linear part of plot well. Next, the FE analysis is performed 

for capturing the nonlinear responses of PVC foams, as shown in Figure  5-33. 
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Figure ‎5-32 : Experimental and analytical result for 4 point bending in PVC baseline foam 

 

 

Figure ‎5-33 : Experimental and FE result for 4 point bending in PVC baseline foam 

 

From the calibration we obtain material properties as follow: E=75 MPa, B=10. The 

comparison between results of four point bending and 3 point bending are shown in 
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Figure  5-34 .In this plot the 4 point bending result is compared with the 4 point bending 

model when the material properties from 3 point bending is used.  

 

Figure ‎5-34: Comparison between four point and three point bending for PVC in baseline 

condition 

 

Figure  5-34 shows that there is an agreement, especially in elastic region, between the 

result for three point bending test and four point bending test. Also the moment-

curvature diagram is shown in Figure  5-35 for 3 point bending and 4 point bending, 

which indicates similar behavior. Deviation starts at highly nonlinear response, but they 

are relatively small. 
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Figure ‎5-35 : Moment- curvature for PVC foam in baseline condition (3 point and 4 point 

bending comparison) 

 

Figure  5-36 shows the four point bending test for PVC foam conditioned in sea water at 

50°C and the model that is used to get material properties. The material properties that 

are obtained from this test are E=50MPa and B=6. 
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Figure ‎5-36: Experimental and FE result for 4 point bending in PVC foam at 50°C 

 

The same procedure is done for Polyurethane in four point bending condition. Analytical 

calculation using Eq. 5-29 and assuming the elastic modulus equal to 26 MPa for 

Polyurethane foam leads to result in Figure  5-37. 
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Figure ‎5-37: Four point bending analytical result for Polyurethane foam in baseline condition 
and comparison with experiment 

 

The nonlinear model result and comparison with experiment are shown in Figure  5-38. 

The material properties from calibration are E=30 MPa and B= 17. Comparing the 

elastic modulus, E=30 MPa, from nonlinear model and E=26 MPa from the analytical 

calculation does not show any significant difference. Figure  5-39 shows the comparison 

between model using properties from 3 point bending with four point bending model in 

baseline condition and they are relatively close. 
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Figure ‎5-38: Four point bending for Polyurethane foam in baseline condition; model and 

experiment 

 

 

Figure ‎5-39: Comparison of results from 3 point bending and 4 point bending for Polyurethane 

foam in baseline condition  
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5.2.3. Three Point Bending Model for Sandwich Composites  

In the previous sections, FE model and mesh were described for CFRP and GFRP skins 

and foams. In this part the sandwich composite will be simulated. For the sandwich 

composite we have three point bending and four point bending tests under different 

loading conditions such as ramp loading, creep and stress relaxation. The specimens are 

beams consist of PVC foam core and CFRP in CFRP/PVC system and polyurethane 

foam core and GFRP in GFRP/PU sandwich composite system. Loadings are 

perpendicular to fiber direction in skins. The tests and modeling are done in two 

different environmental conditions. The first condition is dry at ambient temperature 

(baseline condition) and the second condition is after immersion in deionized water at 

50°C in GFRP/PU system and immersion in sea water at 50°C in CFRP/PVC system. 

Figure ‎5-40 shows the sandwich composites used for three point bending test. 

 

 

Figure ‎5-40: Sandwich composite specimen  
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To simulate the sandwich composite in Abaqus, the foam and skin are modeled 

separately using partitioning. The nonlinear three dimensional continuum elements 

(C3D20) are used. A convergence study was first done in order to determine the proper 

number of elements.  

 

 

Figure ‎5-41: ABAQUS model for composite 

 

First, analytical model was considered in determining the overall mechanical response of 

sandwich composites, considering mainly a linear elastic response. The deflection of the 

composite beam consists of PVC foam and CFRP skin is analyzed and compared to 

experimental result. Figure  5-42 shows the core and skins layers. Table ‎5-12 shows the 

properties and dimensions of CFRP/PVC sandwich composite at baseline condition: 
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Figure ‎5-42: Sandwich composite layers 

 

Table ‎5-12: CFRP/PVC sandwich composite properties and dimensions at baseline 

Width 

(mm) 

Es 

(MPa) 

Ef 

(MPa) 

G 

(MPa) ν 

tf 

(mm) 

ts 

(mm) 

57.3 8000 75 30 0.25 25.16 1.22 

 

 
 

For CFRP/PVC Sandwich composite under three point bending loading we have: 

              (5 – 4) 

where the subscript ‘f’ shows the properties related to foam and subscript ‘s’ shows the 

skin’s properties and E is elastic modulus and I is the second moment of area. G is the 

shear modulus and A is the cross section area of foam core. So the maximum deflection 

at the center of the beam is 

 
   (

  

    
 
    

   
) (5 – 5) 
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By plotting the analytical calculation and comparing with experimental result we have 

 

Figure ‎5-43: Experimental and analytical result for 3 point bending in CFRP/PVC composite in 

baseline 

 

Assuming the elastic modulus 75 MPa in analytical calculations the analytical plot 

captures the experiments well as is shown in Figure  5-43  but from the experimental data 

it is seen that the material behavior is not linear so we need to use the nonlinear model to 

capture the experimental data accurately. FE analysis was done by considering nonlinear 

elastic response for both foam and skins. The material parameters for skins and foams 

are given in Table  5-4 and Table  5-10. The result for the nonlinear model and 

comparison with the experiment for specimens under baseline condition is shown in 

Figure  5-44.  
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Figure ‎5-44: CFRP/PVC sandwich composite in baseline; nonlinear model and experiment 

 

To be able to see the stress and strain change in sandwich composites Figure  5-45 to 

Figure  5-51 show the stress and strain contour in sandwich composite sample, during the 

quasi static bending tests at different stages of loading. In the FE simulations, the three 

point bending test induces indentation at the region where the load is prescribed. It is 

also seen that most of the stresses are carried by the skins, which is expected. Localized 

strains are seen close to the supports and loading applications, which could lead to 

damage initiation in these regions. 
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Figure ‎5-45: Stress (S11) in CFRP/PVC sandwich composite in baseline at 200 N loading 

 

 

Figure ‎5-46: Stress (S11) in CFRP/PVC sandwich composite in baseline at 416 N loading 
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Figure ‎5-47: Strain (E11) in CFRP/PVC sandwich composite in baseline at 200 N loading 

 

 

Figure ‎5-48: Strain (E11) in CFRP/PVC sandwich composite in baseline at 416 N loading 
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The same tests and calculations were done for the sandwich composite after conditioning 

in sea water at 50°C. The properties of CFRP/PVC sandwich composite after 

conditioning in sea water at 50°C, are in the Table ‎5-13.  

Table ‎5-13: CFRP/PVC sandwich composite properties and dimensions (conditioned at 50°C) 

Width 

(mm) 

Es 

(MPa) 

Ef 

(MPa) 

G 

(MPa) ν 

tf 

(mm) 

ts 

(mm) 

58.6 7000 50 20 0.25 25.8 1 

 

 
 

By plotting CFRP/PVC sandwich composite analytical result and comparing with 

experimental result, we have 

 

Figure ‎5-49 : Experimental and analytical result for 3 point bending in conditioned CFRP/PVC 

composite at 50° C  
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The experimental result and analytical calculation for linear elastic part are in good 

agreement. According to Figure ‎5-49 the sandwich composite behavior is not linear 

elastic and to be able to capture the experimental data we need to use nonlinear model. 

The nonlinear model result is shown in Figure ‎5-50. 

 

Figure ‎5-50: CFRP/PVC sandwich composite conditioned at 50° C; nonlinear model and 

experiment 

 

From Figure  5-50 the model does not capture the experiment completely, which is due to 

delamination behavior that occurs between foam core and CFRP skin during loading. To 

be able to capture the experiment after failure, we need to consider delamination in FE 

model. To consider delamination in sandwich composite, cohesive elements are used. A 

layer of adhesive is assumed using cohesive elements and the bending leads to 

debonding in sandwich layers. For modeling the delamination, a thin layer of cohesive 

elements between the skin and foam were considered. The elastic modulus of cohesive 
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elements is assumed to be 3000 MPa and the nominal stress at damage initiation 

assumed to be 0.32 MPa. Linear form of damage evolution based on effective plastic 

displacement has been used and the effective plastic displacement at the point of failure 

assumed to be 0.001 mm. By applying excessive load, failure happens in the cohesive 

elements and it is assumed that when material is fully degraded and the element fails, it 

will be removed from the mesh and this leads to sliding of skin and foam. The quasi-

static bending plot using cohesive elements and considering debonding is shown in 

Figure  5-51. 

 

Figure ‎5-51: CFRP/PVC sandwich composite conditioned at 50° C; nonlinear model with failure 

and experiment 

 

In Figure ‎5-51 we can see the debonding occurs when loading is about 350 N and the 

nonlinear model can predict the sandwich composite behavior accurately before failure 
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happens but after the delamination we need to consider the cohesive element to better 

capture the behavior after delamination.  

Figure ‎5-52 to Figure ‎5-54 show the stress contours in sandwich composite under quasi 

static bending. From the contours we can see that in loading of about 400N the bottom 

skin and foam debonds and there is a small sliding between skin and foam. In this stage 

of loading some parts of the cohesive elements fails due to excessive loading and this 

causes sliding between the skin and foam. 

 

 

Figure ‎5-52: Stress (S11) in CFRP/PVC sandwich composite at 50°C with 196 N loading 
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Figure ‎5-53: Stress (S11) in CFRP/PVC sandwich composite at 50°C with 308 N loading 

 

 

Figure ‎5-54: Stress (S11) in CFRP/PVC sandwich composite at 50°C with 406 N loading 
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In the strain contours we use logarithmic strain (LE) in order to illustrate the 

delamination or crack propagation.  

Figure ‎5-55 and Figure ‎5-56 show the logarithmic strain at different loadings in 

sandwich composite under a quasi-static bending test. 

 

 

Figure ‎5-55: Logarithmic strain (LE11) in CFRP/PVC sandwich composite at 50°C with 308 N 

loading 
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Figure ‎5-56: Logarithmic strain (LE11) in CFRP/PVC sandwich composite at 50°C with 392 N 

loading 

 

For the GFRP/PU sandwich composite we did the same tests and modeling for the 

baseline condition and after conditioning in deionized water at 50°C. For the quasi static 

bending test at baseline condition, the dimension of the sample is                 

mm and the skin thickness is 1.9 mm. Figure  5-57 shows the analytical calculation 

assuming E=30MPa captures the experiment. To have the nonlinear behavior of 

sandwich composite, we used the nonlinear model and the result is shown in 

Figure  5-58.  
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Figure ‎5-57: GFRP/PU sandwich composite in baseline; analytical calculation and experiment  

 

 

Figure ‎5-58: GFRP/PU sandwich composite at baseline; nonlinear model and experiment 

 

Figure ‎5-59 to Figure ‎5-62 show the stress and strain contour for sandwich composites at 

different loading. 
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Figure ‎5-59: Stress (S11) in GFRP/PU sandwich composite in baseline with 157 N loading 

 

 

Figure ‎5-60: Stress (S11) in GFRP/PU sandwich composite in baseline with 313 N loading 
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Figure ‎5-61: Strain (E11) in GFRP/PU sandwich composite in baseline with 157 N loading 

 

 

Figure ‎5-62: Strain (E11) in GFRP/PU sandwich composite in baseline with 313 N loading 
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Figure  5-63 shows the GFRP/PU sandwich composite nonlinear behavior after 

immersion in deionized water at 50°C. The dimension of samples is        

        and the skin thickness is 1.9 mm. First the simulation is done without 

assuming any failure in sandwich composite and then assuming crack in sandwich when 

loading is around 700 N.  

 

Figure ‎5-63: NSF sandwich composite conditioned at 50°C in deionized water; nonlinear model 

and experiment  

 

For modeling the crack initiation and propagation, cohesive elements in crack path are 

used. The elastic modulus of cohesive elements is assumed to be 5000 MPa and the 

nominal stress at damage initiation assumed to be 8 MPa. Linear form of damage 

evolution based on effective plastic displacement has been used and the effective plastic 

displacement at the point of failure assumed to be 0.09 mm. By applying excessive load, 

failure happens in the cohesive elements and it is assumed that when material is fully 
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degraded and the element fails, it will be removed from the mesh and in this way the 

crack propagates in the material. Figure  5-64 to Figure  5-67 show the stress contour in 

GFRP/PU sandwich composite after immersion in deionized water at 50°C at different 

loadings. 

 

 

Figure ‎5-64: Stress (S11) in GFRP/PU sandwich composite at 50°C with 306 N loading 
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Figure ‎5-65: Stress (S11) in GFRP/PU sandwich composite at 50°C with 517 N loading 

 

 

Figure ‎5-66: Stress (S11) in GFRP/PU sandwich composite at 50°C with 670 N loading 
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Figure ‎5-67: Stress (S11) in GFRP/PU sandwich composite at 50°C after crack 

 

In Figure  5-67 the loading is about 300 N after the load drops (as it is shown in 

Figure  5-63). Figure  5-68 to Figure  5-71 show the logarithmic strain in sandwich 

composite at different loadings. Also the crack initiation and propagation are shown in 

these figures. 
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Figure ‎5-68: Logarithmic strain (LE11) in GFRP/PU sandwich composite at 50°C at 306 N 

loading  

 

 

Figure ‎5-69: Logarithmic strain (LE11) in GFRP/PU sandwich composite at 50°C at 517 N 

loading 
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Figure ‎5-70: Logarithmic strain (LE11) in GFRP/PU sandwich composite at 50°C at 670 N 

loading 

 

 

Figure ‎5-71: Logarithmic strain (LE11) in GFRP/PU sandwich composite at 50°C after crack 
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5.3. Time-Dependent Response of Foams and Sandwich Composites 

Creep and relaxation tests were first conducted for the foam cores under bending. The 

purpose is to determine the time-dependent properties of the foam core. Later, creep and 

relaxation tests were also conducted for sandwich composites. The response from the 

sandwich composites is used to test the constitutive models. FE analyses are used to 

simulate the creep/relaxation response in sandwich composites. The relaxation modulus 

needs to be calibrated for the two foams tested (PU and PVC). 

5.3.1. Time-Dependent Response of Foams  

The time-dependent parameters for PVC foam from the QLV model were calibrated 

using the creep experiment in Figure ‎5-72. The Prony series that is used for calibration is 

 E( )     ∑   ( 
     )

 
    (5 – 6) 

where E represents the long-term relaxation modulus when the material is fully relaxed 

and     and    represent the relaxation modulus and relaxation time for each Prony term, 

respectively. The calibrated time-dependent properties are given in Table  5-14. 

Table ‎5-14: FE model time dependent material properties for PVC foam 

E E1 τ1 E2 τ2 

64 0.1 250 0.15 15000 
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Figure ‎5-72: PVC foam creep in baseline; model and experiment 

 

Figure  5-72 shows the result for creep under 50% of failure loading under quasi static 

tests. Creep tests done under 20% of failure loading, are used to validate the time-

dependent material parameters within the QLV model. We use the model for creep under 

20% of quasi static failure loading. The result is shown in the Figure  5-73. It is seen that 

QLV model can be used to describe the nonlinear time-dependent response of PVC 

foam. As it is shown in Figure  5-73, the material properties obtained from creep test 

under 50% of failure load are used in the model and compared with creep test under 20% 

of failure load and the result shows there is a good agreement between them. 
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Figure ‎5-73: PVC foam creep test under 20% failure loading and model prediction 

 

 

In the next step we use the PVC foam relaxation in four point bending test after 

immersion the sample in sea water at 50°C to get material properties. The holding 

displacement is 8.9 mm in this test and the material properties are shown in Table ‎5-15.  

 

Figure ‎5-74: PVC foam relaxation at 50°C and comparison with experiment 
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Table ‎5-15: FE model time dependent material properties for PVC foam at 50°C 

E E1 τ1 E2 τ2 

60 0.12 250 0.38 15000 

 

The value for elastic modulus E, as it is shown in Table ‎5-14 and Table ‎5-15 shows a 

small decreases by conditioning the foam in sea water at 50° C. Also comparison of the 

time dependent properties shows that by conditioning the PVC foam in sea water at 

50°C the relaxation accelerates compared to the one under baseline condition.  

For the Polyurethane foam we have the same procedure to obtain the relaxation modulus 

and time dependent properties. The Figure ‎5-75 shows that by using the relaxation 

modulus, E, equal to 16 MPa and time dependent properties in Table ‎5-16, the model 

captures the experiment well.  The load is 65% of failure load in quasi static bending 

test. 



 

 

86 

 

 

Figure ‎5-75: Polyurethane foam creep response; model and experiment 

 

Table ‎5-16: Polyurethane relaxation modulus and time dependent properties at baseline 

E E1 τ1 E2 τ2 

16 0.05 250 0.12 15000 

 

In this part we repeated the same test for polyurethane foam after immersion in 

deionized water at 50° C. The material properties are shown in Table  5-17 and the 

holding displacement is 6.5 mm for relaxation. Figure  5-76 shows the Polyurethane 

foam stress relaxation response after immersion in deionized water at 50° C. 
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Figure ‎5-76: Polyurethane foam stress relaxation response after immersion in deionized water at 
50° C; model and experiment 

 

Table ‎5-17: Polyurethane relaxation modulus and time dependent properties at 50° C 

E E1 τ1 E2 τ2 

14 0.1 350 0.16 15000 

 

The summary of the time dependent material properties for PVC and Polyurethane 

foams in baseline and after immersion in liquid at 50° C is shown in Table ‎5-18. 

Table ‎5-18: Time dependent material properties 

material condition E E1 τ1 E2 τ2 B 

polyurethane 
baseline 16 0.05 250 0.12 15000 9 

50°C 14 0.1 350 0.16 15000 7 

PVC 
baseline 64 0.1 250 0.15 15000 7.2 

50°C 60 0.12 250 0.38 15000 5.7 
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From the Table ‎5-18 it can be concluded that by conditioning the foam in liquid at 50°C 

the elastic modulus slightly decreases. The time dependent material properties also show 

that conditioning accelerates the creep and stress relaxation. 
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5.3.2. Time Dependent Behavior of Sandwich Composite  

By calibrating the time dependent material properties for the foams in the previous 

section, we can use them in sandwich composite FE analyses to determine the response 

of sandwich composites under creep or stress relaxation tests. 

The CFRP/PVC system consists of PVC foam core and CFRP skin and the loading is 

perpendicular to fiber direction. The span width (length of beam) is 150 mm, the width 

of specimen is 25.6 mm and the sandwich thickness is 27.6. Skin thickness is 1.4 mm. 

Figure ‎5-77 shows the CFRP/PVC sandwich composite behavior in baseline condition 

under stress relaxation with holding displacement of 1.63 mm. Figure ‎5-77 shows that 

the sandwich composite model can capture the experimental data very well. In next step, 

the stress relaxation test is conducted on CFRP/PVC sandwich composite after 

immersion in sea water at 50°C. The span width (length of beam) is 150 mm, the width 

is 58.25 mm and the sandwich thickness is 27.8. The skin thickness measured is 1.17 

mm. The holding displacement for stress relaxation test is 0.2 mm. Figure ‎5-78 shows 

the relaxation test. 
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Figure ‎5-77: CFRP/PVC sandwich composite stress relaxation at baseline condition 

 

 

Figure ‎5-78: CFRP/PVC sandwich composite relaxation at 50°C 

 

To check the accuracy of our model we used that for GFRP/PU sandwich composite to 

see how it can capture the experimental data. The length of specimen is 150 mm, width 

is 26 mm and thickness is 22 mm and to do the stress relaxation test, holding 
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displacement is 1.04 mm. Figure ‎5-79 shows the GFRP/PU sandwich composite stress 

relaxation at baseline condition. we can see that the model is in an acceptable agreement 

with the experimental data. 

 

Figure ‎5-79: GFRP/PU sandwich composite stress relaxation at baseline condition 

 

The next test on GFRP/PU sandwich composite is the stress relaxation test after 

immersion in deionized water at 50°C. Figure  5-80 shows the result and there is a good 

agreement between model and experiment. 
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Figure ‎5-80: GFRP/PU sandwich composite stress relaxation at 50°C 
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5.4. Time Dependent Response of Foam under Cyclic Loading 

In this part we use the material model to investigate the PU foam behavior under cyclic 

loading. The experiment and FE analysis were conducted for specimens under both dry 

at 25°C (baseline condition) and after immersion in deionized water at 50
o
C. The 

material properties were obtained from the quasi-static and relaxation tests, discussed in 

previous sections of this study. The displacement in the middle of the beam is fluctuating 

between 5 and 7 mm with frequency of 1 Hz and the load was measured in about 20000 

seconds. The result of FE analysis and experiment for a baseline specimen are shown in 

Figure  5-81. 

 

Figure ‎5-81: Polyurethane foam relaxation in baseline condition under cyclic loading 

 

The qualitative behavior in FE is the same as experiment but there is a difference 

between maximum and minimum loads during the cyclic test. The experiment shows 

much higher load range than the load range from the FE simulation. To understand the 
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reason for this problem the quasi static tests for polyurethane were studied and compared 

with cyclic FE analysis. It is shown in Figure ‎5-83. The cyclic FE analysis shows the 

agreement with quasi static tests and the loads at deflection 5 and 7 mm matches with 

what we have in cyclic FE result in first cycles. It seems that the much higher load range 

in the experiment is most likely because of the clamping condition. Lightly clamped 

specimen would deflect more at the clamp point than a tightly clamped specimen as 

discussed in [39]. To get a more accurate experimental result we need to repeat the 

cyclic test several times to obtain the best calming condition that matches with the quasi 

static tests. In this study because of the limitation in experimental works there is no 

possibility to have more test result.  

The cyclic test also was conducted on polyurethane foam after immersion in deionized 

water at 50 °C. The result of experiment and FE analysis are shown in Figure  5-82. 

Again we can see that the model using in FE analysis is capable of prediction of material 

behavior under cyclic loading and compared to quasi static tests at 5 and 7 mm 

deflection, in Figure  5-84, there is an agreement between the loads in quasi static tests 

and load in first cycle in cyclic test. The difference between model and experiment can 

express as a consequence of clamping or other conditions during the tests. 
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Figure ‎5-82: Polyurethane foam relaxation at 50°C under cyclic loading 

 

 

Figure ‎5-83: Load and displacement check for first cycle in cyclic test on polyurethane foam in 

baseline condition 
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Figure ‎5-84: Load and displacement check for first cycle in cyclic test on polyurethane foam at 

50C 
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6. CONCLUSIONS

In this study in order to understand the life performance of sandwich composites 

undergoing combined mechanical loadings and environmental effects, we have 

presented a multi-scale model for predicting the overall mechanical response of 

sandwich composites by incorporating different responses of the constituents (skins and 

foam core). A nonlinear viscoelastic model, following the quasi-linear viscoelastic 

(QLV) model, is used for the isotropic polymeric constituent (foam core) and an elastic-

plastic model is used for the FRP skins. Two systems of sandwich composites, i.e. GFRP 

skins with PU foam (GFRP/PU) and CFRP skins with PVC foam (CFRP/PVC) are 

studied. Responses of sandwich composites and their constituents subjected to various 

histories of mechanical loading (quasi-static, creep/relaxation, and cyclic) under 

different environmental conditions, such as dry in ambient temperature, immersion in 

liquid at ambient temperature and immersion in liquid at 50°C are investigated. The 

GFRP/PU sandwich composites and their constituents were immersed in deionized 

water, while the CFRP/PVC systems and their constituents were immersed in saline 

water. After immersion, mechanical tests under different loading histories were 

conducted. 

Using the uniaxial tension tests the fiber reinforced polymers (CFRP and GFRP) 

properties that are used in skins, are obtained. Then the quasi static and creep/relaxation 

bending tests were done on PVC and polyurethane foam to get the foam properties in 

different environmental conditions. Obtaining the properties of fiber reinforced skin and 
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foam core using the FE analyses and experimental data, we are able to predict the overall 

mechanical response of sandwich composite under different environmental conditions.  

In quasi static bending tests, we loaded the sandwich composites until failure occurred. 

In CFRP/PVC sandwich composites, delamination occurred between the skin and foam 

core as a result of excessive loading and we observed sliding of skin and foam on top of 

each other. The cohesive elements in Abaqus were used to capture the delamination 

observed in experiment. In GFRP/PU sandwich composite by excessive loading a crack 

was observed in sandwich composite, and using cohesive elements in Abaqus, the crack 

propagation in the foam core was simulated.  

By investigating the result of the tests and model we can conclude that the time-

dependent response in sandwich composites is mainly due to the viscoelastic response of 

foam and the viscoelastic response of skin is less significant. Also Immersion in fluid 

can alter the mechanical properties of the constituents in sandwich composites. The 

polyurethane foam became softer after immersion in 25º C but didn’t change by 

immersion in elevated temperature deionized water and PVC became softer after 

immersion at 50º C and the effect of immersion in sea water at room temperature wasn’t 

significant. 

The mechanical response of sandwich composites at dry condition (baseline) and after 

immersion in fluid can be quite different. Delamination happens in CFRP/PVC after 

immersion in 50º C sea water, while it is not seen for the baseline specimen. It is shown 
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in this study that the proposed multi-scale model together with a nonlinear viscoelastic 

constitutive model is capable in describing the overall mechanical response of sandwich 

composites. 
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 APPENDIX‎І 

NUMERICAL ALGORITHM 

In this work the numerical algorithm for the 3D quasi-linear viscoelastic model is used 

for polymer undergoing degradation and integrate it with a finite element (FE) 

formulation to define the viscoelastic polymer deformation. This numerical algorithm 

solves 3D quasi-linear viscoelastic model which is compatible with a displacement based 

FE code. The mechanical properties of the materials are assumed to change with the 

degradation. Degradation is assumed to be dependent on strain and concentration of 

water and the diffusion process is assumed independent of the deformation and 

degradation of the materials and governed by Fick’s law. Solving the equation that 

governs the diffusion of water, allows us to determine the deformation that depends on 

degradation in the viscoelastic polymeric material. 

The numerical algorithm is implemented at each Gaussian material point within 

elements in the Finite Element analyses. The rate of degradation at a fixed time t is 

approximated as: 

  

  
( )  

 ( )   (    )

  
 
        

  
(1) 

Deformation and concentration of water lead to degradation that using backward 

difference, is written as: 
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The time-dependent stress in Eq. (5-26) is approximated as 
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By assuming 

 
             

  

 (  )
 (5) 

The history variables can be written as: 
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By solving the time dependent stress incrementally we have 
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and the incremental stress is: 
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   is defined as : 
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It is needed to determine stiffness matrix at each material point at each instant of time to 

be able to provide trial strains or displacement for the next step. 

The consistent tangent stiffness matrix is: 
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